ML20052C246
| ML20052C246 | |
| Person / Time | |
|---|---|
| Site: | Midland |
| Issue date: | 04/22/1982 |
| From: | Jackie Cook CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.) |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML20052C247 | List: |
| References | |
| 16656, NUDOCS 8205040531 | |
| Download: ML20052C246 (45) | |
Text
..
O Consumers Power Jernes W Cook 0
Vice President - Projects, Engineering and Construction i
General offices: 1945 West Parnell Road, Jackson, MI 49201 e (517) 788 0453 April 22, 1982 O
b liarold R Denton, Director 2
NEO 7
Office of Nuclear Reactor Regulation 2
M4)'$
I D74:t b-US Nuclear Regulatory Commission Washington, DC 20555
\\
khp.
%p/(,,.r3 MIDLAND PROJECT MIDLAND DOCKET NO 50-329, 50-330 RESPONSE TO TIE NRC STAFF REQUEST FOR ADDITIONAL INFORMATION REQUIRED FOR COMPLETION OF STAFF REVIEW OF BORATED WATER STORAGE TANK AND TIE UNDERPINNING OF TIIF. SERVICE WATER PUMP STRUCTURE FILE:
0485.16, B3.0.8 SERIAL:
16656 ENCLOSURE: RESPONSE TO TIE NRC STAFF REQUEST FOR ADDITIONAL INFORMATION REQUIRED FOR COMPLETION OF STAFF REVIEW OF TIE BORATED WATER STORAGE TANK AND UNDERPINNING OF TIE SERVICE WATER PUMP STRUCTURE During the Staff audit held at Bechtel's Ann Arbor offices on March 16-19, 1982, the NRC Staff identified various concerns for our response. We are responding to these Staff requests by forwarding the enclosed document which addresses each individual NRC Staff concern identified for the Borated Water Storage Tank and the Service Water Pump Structure.
We believe the enclosed information combined with the discussion of these responses at our March 19, 1982 meeting, and the Atomic Safety and Licensing Board hearing testimony for borated water storage tank, responds to the request and individual concerns identified for us by the Staff. The responses contained in the enclosure to this correspondence lend further support to our conclusion that the design issues related to the service water pump structure and borated water storage tank have been adequately resolved. With the physical completion of the confirmatory issues open items noted in the enclosed document, we believe that the Staff should be in a position to concur with our request to proceed with the work, 3
C. coq
/\\ na3 r
y,Q-JWC/RLT/mkh
[
{ /,,
oc0482-0075a100
\\
l 8205040531 820422 P]Q PDR ADOCK 05000329 A
~
V 2
CC Atomic Safety and Licensing Appeal Board, w/o CBechhoefer, ASLB, w/o MMCherry, Esq, w/o FPCowan, ASLB, w/o j
RJCook, Midland Resident Inspector, w/o RSDecker, ASLB, w/o SGadler, w/o JHarbour, ASLB,-w/o
-GHarstead, Harstead Engineering, w/a DSHood,-NRC, w/a (2)
DFJudd, B&W, w/o-JDKane, NRC, w/a EJKelley, Esq, w/o RBLandsman, NRC Region III, w/a WHMarshall, w/o JPMatra, Naval Surface Weapons Center, w/a W0tto, Army Corps of Engineers, w/o WDPaton, Esq, w/o SJPoulos, Geotechnical Engineers, w/a FRinaldi, NRC, w/a HSingh, Army Corps of Engineers, w/a BStamiris, w/o
.s I
e I
l i
l
- oc0482-0075a100
I MIDLAND PLANT UNITS 1 AND 2 RESPONSE TO THE NRC STAFF REQUEST FOR ADDITIONAL INFORMATION REQUIRED FOR COMPLETION OF STAFF REVIEW OF THE BORATED WATER STORAGE TANK AND THE UNDERPINNING OF THE SERVICE WATER PUMP STRUCTURE BORATED WATER STORAGE TANK (S) FOUNDATION REPAIR CONFIRMATORY ISSUE 1 Provide a detailed releveling procedure for the Unit 1 tank.
RESPONSE
f A detailed procedure has been developed to define a plan of action to relevel BWST IT-60.
The tank will be lifted, the ring beam and the sand below the tank bottom will be leveled, and the tank will be reconnected to the foundation.
A summary of the procedure is provided below.
This procedure is supported by an analysis which demonstrates that the tank will not be overstressed during this operation.
Strain gaging of the tank will be used as a backup to this analysis.
1.
Lifting Procedure The anchor bolts will be disconnected from the tank by removing the nuts, and strain gages will be mounted on the tank wall and bottom.
Protected steel cable will be looped about the three heater tubes, strung through the nozzle G vent, and fastened to provide support as well as to minimize deflection of the heater tubes during the lift.
Fourteen hydraulic jacks (see Figure BWST-1) will be located beneath the anchor bolt chairs and sequentially raised to lif t the bolt chairs beyond the top of the bolts.
The tank will be supported by wooden dunnage.
At this point, 14 electromechanical jacks placed be-tween the hydraulic jacks will be connected to complete the lift (see Figure BWST-2).
The electromechanical l
jacks will be controlled from a central panel allowing the jacks to operate in unison to raise and lower the tank.
The total tank lift will be at least 3 feet.
Wooden dunnage will be placed between the tank bottom and ring wall for stable support during subsequent work.
Strain gages will be monitored to confirm that the tank stresses remain within allowable limits.
1 i
l i
Midlcnd Plcnt Unito 1 cnd 2 Rasponce to NRC R:quacto for 1
Additional Information for Review of BWST and SWPS Underpinning 2.
Leveling Procedure for Ring Wall Leveling will be accomplished by use of shims adjusted to e datum plane at least 1-1/2 inches above the lowest point on the original ring wall.
The level datum plane will be determined using a transit and the benchmark leveling procedure.
Forty numbered, prefabricated, 1-1/2 inch thick shims (see Figure BWST-3) will be placed between anchor bolts on the existing ring wall.
(At least a 1-1/2-inch gap must exist between the bottom plate and the original ring wall to permit flow of grout (see Item 3 below).
The top of the shim on the highest point on the ring wall will determine the elevation of the datum plane.
The transit wi]1 be used to establish how much the other shims must be raised using prefabricated incremental shims.
Final shin placement will be checked and documented.
Results will be recorded as elevation compared to a suitable site benchmark.
The leveled shim differential elevation shall be within +1/8 inch within any 30 feet of circum-ference and within +1'4 inch of the established datum
/
over the entire circumference in accordance with Amer-ican Petroleum Institute (API) 650 requirements for foundations (API 650, Welded Steel Tanks for Oil Stor-age, Fifth Edition, July 1973 and Supplement 1 of October 1973).
The shims will be fixed in place by packing grout around the stack of shims (see Fig-ure BWST-4).
Five-Star Grout manufactured by the American Grout Company will be used; this grout meets site specification requirements.
3.
Foundation Preparation and Tank Set-Down Because the bottom of the tank will be elevated above the previous foundation due to the shims, additional 3
sand must be added and contoured while the tank is supported by the dunnage.
First, a cofferdam made of asphalt-impregnated fiberboard (Celotex) will be in-stalled around the inner diameter of the ring wall to dike the additional sand (see Figure BWST-5).
Oil-impregnated sand will be added up to the lip of the l
cofferdam and evenly sloped so that the center of the crown is 3-1/4 inches higher than the sand at the edge.
A Celotex pad will be placed on the shims.
Because the tank will be elevated 1-1/2 inches, coupling nuts and threaded rods will be used to lengthen anchor bolts as required.
Dunnage will be removed and the vessel lowered, ensuring the anchor bolts are aligned with the bolt holes.
Anchor bolt nuts will be reinstalled.
The original ring wall will be cleaned in preparation for 2
i
Midlcnd Plcnt Unito 1 ond 2
=
Racpone@ to NRC R2questG for Additional Information for Review-of BWST and SWPS Underpinning pouring grout.
A form will be set up 4 inches outside the edge of the tank bottom (see Figure BWST-6).
Grout will be poured and allowed to set at a level no higher than the lip of the tank bottom plate.
This procedure will fill the void between the Celotex cofferdam and the bottom of the tank, providing a uniform level support for the tank..After the grout has cured, the anchor bolts will be sequentially tightened.
CONFIRMATORY ISSUE 2 Provide strain monitoring details, procedures, and accep-tance criteria for new ring beam.
RESPONSE
After the new ring beam is constructed, the maximum strain areas of each foundation, which are the transition zones between the ring wall and the valve pit, will be monitored using a strain gage system.
A summary of this strain gage system is provided below.
1.
Locations of Monitoring During the plant construction and operation periods, the strain measurements will be taken at the locations on the ring beam of both tanks as shown in Figure BWST-7.
2.
Apparatus and Procedure for Monitoring Figure BWST-8 shows details of the strain monitoring apparatus installed at each monitoring location.
This apparatus consists of a stainless steel rod embedded at one end in the ring beam and positioned inside a struc-tural steel tube.
The other end of the rod protrudes into a square structural tube through a hole in the side.
The tube is attached to the new ring beam with embedded studs and has a conduit attached to it; this conduit provides access for the expanding gage block shown in Figure BWST-9.
The expanding gage block, when lowered into the structural tube, will fit onto'a small
(
positioning rail welded to the tube, which holds the gage block in place.
The gage block can be expanded to fill the gap between the end of the rebar protruding into the tube and a small section of rebar welded to the opposite face of the tube.
By removing the gage block and measuring its width with a micrometer, the gap length can be determined.
By comparing the 3
Midland Plcnt Unito 1 cnd 2 R2cponce to NRC R2qu2 cts for Additional Information for Review of BWST and SWPS Underpinning measured gap length to the initial gap length as in-stalled, the average strain in the 20-foot gage length can be determined.
3.
Frequency of Monitoring The strain monitoring frequency of selected locations is every 60 days during plant construction and~every 90 days during the first year of plant operation.
Subsequently, it is planned that the frequency of measurement will be established after evaluating the measurements taken during the first year.
As a mini-mum, the BWST ring beams will be monitored annually for the next 5 years of plant operation and then at 5-year intervals thereafter.
4.
Acceptance Criteria a.
Allowable Strain:
If the cumulative incr6a'se in gap width exceeds 0.4 inch at any time during the monitoring period, at any monitoring location, the monitoring interval will be increased to at least every 60 days to permit evaluation of the strain.
If it is determined to be necessary, observation pits will be made to expose the ring beam for inspection of possible cracks.
b.
Absolute Strain:
The absolute strain, as a mea-sure of the cumulativ'e inctease in gap width, during 40 years of plant life, for all the refer-ence monitoring locations is 0.5 inch.
Strain monitoring procedures, including frequency of moni-toring and acceptance criteria, will be included as part of the technical specifications in the final safety analysis report.
4 l
l
Midicnd Plcnt Unito 1 and 2 RacponC3 to NRC Requ20tc for Additional Informttion for ReviGw of BWST and SWPS Underpinning SERVICE WATER PUMP STRUCTURE CONFIRMATORY ISSUE 1 Provide basis for establishing existing structural stresses.
RESPONSE
The overhang portion of the service water pump structure (SWPS) rests on fill.
Part of the load from the overhang is supported by the fill while the remainder receives its support from undisturbed natural material under the lower basemat.
Load transfer for the overhang load is primarily through the outside north-south walls to the lower basemat and then to the undisturbed natural material.
The loading on the fill under the overhang portion of the building is indeterminate because of the soil conditions.
Therefore, it is not possible to calculate the existing stresses in this portion of the building.
Evaluation of the building in its current state, however, has not revealed any structural distress.
During the underpinning installation, the structure will be jacked to transfer the load from the overhang to undisturbed natural material under the base of the underpinning wall.
Part of the jacking load will relieve the structural load supported on fill while the balance will relieve the load and the corresponding existing stresses being transmitted to the lower basemat by the north-south outside walls.
This then allows an analysis to determine the stresses in the structure.
CONPIRMATORY ISSUE 2 Provide justification for use of a subgrade modulus of 4,000 kcf during final jacking.
l
RESPONSE
As described during the March 16 through 19, 1982, NRC staff audit, the ef fects of preload are obtained by sub-tracting the results of System 2 from System 1.
Details of l
these systems were described during the audit.
5
. = _ _
Midland Plant Unito 1 and 2 R3cponsa to NRC Requ2Gto for Additional Information for R3visw of BWST and SWPS Underpinning l
When evaluating preload, the effects of differential settle-ment are not considered.
Differential settlement effects are considered in another system and are combined with the ef fects of preload by applicable loading combinations.
1 Therefore, it is necessary to use a stiff structural spring l
as a boundary element in the model when considering preload e f fects.
The value of 4,000 kcf is large enough to make the ef fects of differential settlement negligible while being acceptable in the computer. analysis.
CONFIRMATORY ISSUE 3 I
Provide acceptance criteria for allowable di2ferential settlement during underpinning installation.
\\
RESPONSE
I During underpinning installation, the effects of differen-tial settlement will be monitored by a strain monitoring l
program.
Four extensometers will be mounted on the east l
and west exterior walls (refer to Figure SWPS-14 provided with the response to Confirmatory Issue 15).
A 5/16-inch displacement of the 20-foot gage length will cause under-pinning activities to be stopped until the cause of the displacement is determined and appropriate corrective actions are taken.
The 5/16-inch criterion is based on the reinforcing steel approaching two, thirds of its yield strain in the monitoring area.
CONFIRMATORY ISSUE 4 i
Recheck tendon anchor analysis fcr shear at the plate and wall and provide results.
RESPONSE
The post-tensioning anchorage has been reanalyzed for shear at the wall face, as requested during the March 16 through 19, 1982, NRC staff audit.
The resulting shear stress is 94 psi.
This is below the American Concrete Institute (ACI) allowable shear stress of 126 psi (2 Vf' ) for one-way action c
and is, therefore, acceptable.
CONFIRMATORY ISSUE 5 Reevaluate the use of drilled-in dowels regarding embedment or use of rock bolts.
6
Midland Plcnt Unita 1 cnd 2 Racponca to NRC Requ3Cta for Additional Information for R3 view of BWST and SWPS Underpinning
RESPONSE
Because of spacing and capacity limitations, rock bolts have been eliminated as a means of connecting the existing struc-ture to the underpinning wall.
Grouted-in reinforcement will be used at the vertical interface.
This reinforcement will consist of two rows of No. 9 bars spaced at 12 inches center to center.
Embedment length will be based on the splice length for a class C splice as defined in the ACI 349-76 Code.
CONFIRMATORY ISSUE 6 Perform sliding calculations using site-specific response spectra (SSRS) seismic loads and provide results.
RESPONSE
The stability analysis calculations have been refined using i
seismic loads equal to 1.5 times the Midland FSAR safe shut-down earthquake (SSE) loads.
These exceed the SSRS seismic loads.
Factors of safety against sliding are now 1.45 in the north-south direction and 1.5 in the east-west direction.
These values exceed the required value of 1.1.
Hence, the foundation is acceptable.
CONFIRMATORY ISSUE 7 Complete the calculation for an empty forebay cell and provide results.
RESPONSE
The calculation for an empty forebay cell has been com-pleted.
The structural capacities of the four enclosing walls and the base slab exceed the imposed forces.
The most critical loading, 60,1 f t-kips /f t, occurs on the east wall.
The capacity of this wall at the critical section is 70.6 ft-kips /ft.
CONFIRMATORY ISSUE 8 Provide maximum rebar stress in all elements of the base slab at elevation 620'.
i 7
s I
Mid1cnd Plcnt Unito 1 and 2 R;cpongo to NRC Requ2cto for Additional Information for Review i
of BWST and SWPS Underpinning
RESPONSE
The load case that causes the largest rebar stress in any element of the base slab at el 620' is:
U = 1. 0 ( D + F + L + P
+ E')
where D = dead load F = hydrostatic pressure L = live load P
= preload effects from jacking E'
= SSE Figure SWPS-1 gives the reinforcing steel stress in all ele-ments for this loading combination.
The reinforcing steel stresa in all elements is below the allowable value from the ACI 318-71 Code.
CONFIRMATORY ISSUE 9 Identify maximum rebar stress in elements adjacent to identi-fled critical elements and other areas of potential high stress.
RESPONSE
During the March 16 through 19, 1982, NRC staff audit, criti-cal elements were identified where the reinforcing steel stress exceeded 54 ksi (0.9Fy).
Stress calculations for these elements did not utilize additional reinforcement that is present.
These calculations also did not utilize the capacity of the concrete for resisting in-plane shear.
(This capacity was reserved for out-of-plane shear. )
These elements have been reanalyzed using the additional reinforce-(
ment and the available concrete capacity for in-plane shear.
Based on the new analysis, the reinforcing steel stress in t
all the previously designated critical elements is below I
54 ksi.
8
)
Midicnd Plant Unito 1 and 2 Racpon20 to NRC RequactG for Additional Information for Reviow of BWST and SWPS Underpinning The areas of potential high stress in the various structeral components are identified in Table SWPS-1.
The stresses for these areas consider the combined effect of out-of-plane shear, in-plane shear, membrane forces, and out-of-plane bending.
The capacities of these components have been cal-culated in accordance with the applicable ACI Code and found to be greater than the applied forces.
CONFIRMATORY ISSUE 10 Complete calculations for out-of-plane shear and provide results.
RESPONSE
The analysis of the existing structure considering out-of-plane shear has been completed.
The response to Confirmatory Issue 9 addresses the capacity of the structural elements for this force in combination with other applicable forces.
CONFIRMATORY ISSUE 11 Provide more information as to stress condition for existing parts of structure:
Maximum stresses Critical combination Identify true critical elements based on actual rebar S
(To demonstrate the behavior of the structure, provide the above information for a loaqing combination which generally gives governing stresses for the structure. )
RESPONSE
The building has been analyzed for all the applicable loading combinations.
The various structural components have been designed for the governing load combinations.
It has been noted that the following load combination generally governs:
l U = 1. 0 (D+F+L+H+S+P
+ E')
where H = lateral earth pressure S = surcharge l
E'
9
Midicnd Plcnt Unito 1 and 2 Racpons3 to NRC Requ20to for Additional Information for ReviGw of BWST and SWPS Underpinning For each wall and slab in the structure, plots of the ele-ment forces due to static, preload, and seismic forces at a vertical and horizontal line of elements were obtained to study the building behavior.
A copy of the graphs for the south wall are attached as Figures SWPS-2 through 10.
1 CONFIRMATORY ISSUE 12 Provide evaluation of interaction of the SWPS with the circulating water pump structure, retaining wall, and elec-trical duct banks.
RESPONSE
The SWPS is separated from the circulating water intake structure (CWIS) and the retaining wall by 1-inch expansion joints.
The maximum combined. east-west seismic movement of the SWPS and the retaining wall is less than the 1-inch gap.
- Hencc, there is no contact.
An evaluation of the interaction between the CWIS and SWPS will be performed later.
The concrete duct banks contain no reinforcement at the junction with the SWPS.
The connection to the building is considered flexible.
Hence, the duct banks offer no resis-tance to the movement of the SWPS during a seismic event.
CONFIRMATORY ISSUE 13 Provide procedures for acceptance of the bearing stratum.
Include a discussion of the maximum differential elevation between pier bottoms and the maximum thickness of lean concrete.
RESPONSE
l Approval of the foundation subgrade prior to placement of concrete for the pier will be given by the resident geo-technical engineer for the Midland remedial underpinning operations.
Acceptance or rejection of the subgrade will be based solely on the resident geotechnical engineer's obser-vations and judgment.
l 10
Midicnd Plcnt Unito 1 and 2 R0cponco to NRC Requacto for Additional Inform 2 tion for Revicw of BWST and SWPS Underpinning The resident geotechnical engineer's evaluation of the subgrade will consist of a visual inspection of the condi-tion of the bearing stratum to confirm that foundation conditions are as anticipated in the design.
In addition, for each foundation, a map of the subgrade will be prepared.
The map will include:
a.
A visual description of the subgrade material including consistency, color, and texture b.
Presence of any water c.
Elevation of subgrade once the suegrade has been approved, photographs will be taken of the subgrade and any exposed sidewalls.
The photo-graphs and map will serve as the permanent record.
To aid in evaluating the condition of the subgrade, the resident'geotechnical enginee-will generally use either a miniature static or dynamic cone penetrometer.
The static cone penetrometer will be used whenever cohesive soils are encountered.
The dynamic cone will generally be used if any granular soils are encountered.
Relationships between the data obtained using these devices and the estimated ultimate bearing capacity of the foundations are presented in Figures SWPS-11 and SWPS-12.
Additional geotechnical in situ and laboratory test (s) may be performed if the resident geotechnical engineer believes that initial findings require a further confirmation of conditions.
Such testing requirements will be determined on a case-by-case basis.
If the subgrade is not accepted by the resident geotechnical engineer, the piers shall be excavated to a depth where a suitable subgrade is encountered.
If such a pier is con-structed immediately adjacent to an existing pier, the maximum depth of excavation below the lean concrete mud slab for the existing pier shall not exceed 18 inches.
If the l
pier is not immediately adjacent to an existing pier, it can be extended to any suitable depth, provided that the base of the new pier's mud mat is not more than 18 inches below the zone of influence of any existing piers.
The zone of in-fluence of an existing pier shall be defined by lines extend-ing downward from the edge of the footing at a rate of two vertical to one horizontal (see Figure SWPS-13).
11
Midicnd Plcnt Unito 1 and 2 Racponc3 to NRC Requacto for Additional Information for Revisw of BWST and SWPS UnCerpinning If the subgrade is not acceptable at 18 inches below the existing pier or influence zone, defined in the above para-graph, the contingency plans addressed in the response to Confirmatory Issue 18 will be implemented.
All over-excavation shall be backfilled with lean concrete to the original design footing elevation.
The only maximum thickness restriction on the amount of lean concrete that can be placed beneath a footing is the limitation imposed by the above undermining restriction.
CONFIRMATORY ISSUE 14 Provide pier load test procedures.
RESPONSE
A load test will be performed to 1.3 times the jacking load for one of the initial piers.
In addition, a load-reload cycle will be built into the procedure to aid in determining the apparent Young's modulus of the foundation subgrade.
The test procedure will follow American Society for Testing and Materials standard methods for the Test for Load-Settlement Relationship for Individual Vertical Piles Under Static Axial Load, Designation D1143, with modifications deemed appropriate.
The load would be applied in accordance with D1143 in incre-ments of 25, 50, 75, and 100% of the jacking load, then with an overload of 115% and finally to 130%.
An intermediate rebound-reload cycle would be included at 100% of the jacking load.
A sufficient length of time shall be allowed for the 100 and 130% test increments so that movements are reduced to rates not exceeding 0.01 inch per hour.
Carlson pressure cells will be installed near the top and bottom of the shaft and measures will be taken to reduce skin friction effects.
The gaps between lagging and any l
corrugations will be filled and the pier will be lined with thick plastic sheeting to minimize effects due to side friction.
l 12
Midicnd Plcnt Unita 1 and 2 RecponC2 to NRC RequaOtG for Additional Information for R3viGw of BWST and SWPS Underpinning CONFIRMATORY ISSUES 15 AND 16 Provide strain monitoring criteria matrix.
Provide drawings on strain monitoring and Carlson meters, including locations and details.
RESPONSE
Figure SWPS-14 provides the requested information.
Also refer to the response to Confirmatory Issue 3.
CONFIRMATORY ISSUE 17 Identify critical construction stages and critical measure-ments.
RESPONSE
i During construction of the SWPS underpinning, two stages are considered most critical.
The first stage occurs during construction of corner Piers 1, 2, and 3.
After the construction of these corner piers, the entire weight of the overhang can be supported without depending on the fill support.
The second stage occurs during adjustment of the jacking load from initial to final loads.
During the construction of Piers 1 through 3, the extenso-meters, which monitor strain, and the settlement indicators (refer to Figure SWPS-14 ) shall be read twice each shift.
In addition, during this stage the load-measuring indicators located in Piers 1, 2, and 3 shall be monitored for an increase in load twice each shift.
When the final jacking load is applied, the existing structure is subjected to the maximum jacking load.
The extensometers on the east and west exterior walls will be monitored for strain twice each shift.
CONFIRMATORY ISSUE 18 Provide contingency plan and discussion of possible remedial actions.
l 13 t
Mi7 lend Plant Unito 1 and 2 R2cponco to NRC Rnquests for Additional Information for R2Vicw of BWST and SWPS Underpinning
RESPONSE
Postulated situations that might occur during underpinning construction and the appropriate remedial measures for such situations are listed below.
In any situation, one or a combination of measures may be adopted.
These measures will be included in a project specification.
1.
Failure of Dewatering System a.
If power fails, use the required backup power system i
b.
.If the system is inadequate, correct it with additional wells / pumps
~
c.
If monitoring indicates excessive fines:
l 1)
Repair well 2)
, Replace well 3)
Evaluate effect of total quantity of fines l
lost during construction 2.
Uncontrolled: Groundwater Flow into Excavation a.
Identify the source of uncontrolled flow and l
correct it b.
Equalize water level in pier excavation and initi-ate'~dawatering as determined by the resident geotechnical engineer 3.
Ground Loss Use techniques such as forepoling or spieling a.
(sheeting) to stabilize ground b.
Use chemi~ cal or cement grouting
,4.'
Unacceptable Bearing Stratum a.
Excavate below planned elevation and backfill with lean concrete 2
b.
Increase bearing area of piers 5.
Excessive Pier Settlement i
Hold load until criteria defined for pier accep-i a.
l tance is met 7
b.
Increase embedment of future piers 14
Midicnd Pltnt Unito 1 cnd 2 Racponc2 to NRC Requ3ste for Additional Information for Revisw of BWST and SWPS Underpinning c.
Increase bearing area of future piers d.
Increase jacking load to accelerate settlements (individual piers only) e.
Install additional pier (s) f.
Remove pier, excavate to acceptable material, and replace pier concrete 6.
Jacking System a.
If the hydraulic system is defective, use the required backup system b.
If the jack malfunctions, replace the jack 7.
Loss of Monitoring - Extensometer a.
Use backup dial gage o.
Reestablish monitoring point 8.
Structural Damage to Existing Structure a.
Determine the cause b.
Remove the source of the problem c.
Repair the damage CONFIPMATORY ISSUE 19 Provide summary submittal of specification or drawing notes to cover frequency for checking and adjusting jacking loads.
RESPONSE
The following note. will be placed on the construction drawings:
During the construction of Piers 1, 2, and 3, the jacks shall be monitored every day, including holidays and weekends, and adjusted if necessary.
After attaining the initial jacking load for Piers 4 through 10, each jack shall be monitored and adjusted, if necessary, each working day.
P 15 l
Midicnd Plcnt Unita 1 cnd 2 Racponce to NRC Requacto for Additional Information for Raviow of BWST and SWPS Underpinning During the adjustment of the jacking load from initial to final load, all jacks shall be moni-tored every day, including holidays and weekends.
After the level of the final jacking load is attained, each jack shall be monitored and ad-justed, if necessary, each working day until the wedges are criven and the jacks removed.
CONFIRMATORY ISSUE 20 i
Provide method to be followed for transfer of jacking load into permanent wall.
RESPONSE
Upon completion of Pier 10, the structure is fully supported by initial jacking loads.
At this stage, the load is trans-ferred from the initial to the final design jacking load.
The final design jacking force shall be simultaneously applied to Piers 1 through 10 in three groups of jacks.
Each group is connected to a separate hydraulic system.-
The increase in force to reach the level of the final jacking force shall be applied incrementally.
The increments shall not exceed 25% of the additional force up to 75% of the increase.
Thereafter, increments shall not exceed 10%, up to 100% (+5%, -0%) of the required additional force.
The acceptance criteria for the final jacking force shall be when the rate of movement of the underpinning relative to the upper base slab (el 617') is less than 0.01 inch for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.
"This force shall be maintained, monitored every working day, and adjusted if necessary until the rate of settlement has reached a predetermined rate.
At this stage, the wedges shall be tightly driven and the jacks removed.
CONFIRMATORY ISSUE 21 Provide decision on tunnel location prior to hearing.
RESPONSE
As indicated in a report, Summary of Soils-Related Issues at the Midland Nuclear Plant, dated April 19, 1982, access to the north and east side underpinning piers will be from the outside of the building by use of open excavation.
Access for piers on the west wall will be provided by on pccess shaft from grade and a tunnel under the west side of the el 617' base slab.
l i
16
Midland Plcnt Unite 1 cnd 2 R20 ponce to NRC Requacts for Additional Information for R2 view of BWST and SWPS Underpinning CONFIRMATORY ISSUE 22 Provide a report on crack repair.
RESPONSE
A report discussing the evaluation and repair requirement for cracks in structures for the Midland Nuclear Plant has been submitted to the NRC.
CONFIRMATORY ISSUE 23 Perform a limit analysis on a wall considering the effects of cracking.
RESPONSE
The following is a brief status report on the limit analysis being conducted by the Portland Cement Association, consultants to Consumers Power Company.
===1.
Background===
In a previous report submitted to the NRC staff, cracks observed in the SWPS were described and their signi-ficance was evaluated.
Cracks observed in the structure were primarily attributed to restrained volume changes that occur in concrete during curing and subsequent drying.
No evidence of structural distress was ob-served.
Although the possibility of settlement-related cracking could not be completely eliminated, crack patterns did not support the conclusion that settlement was a primary cause of cracking.
As a measure of significance of observed cracks relative to future integrity of the structure, the tensile stress that uncracked concrete may be assumed to carry was compared to available tensile capacity provided by structural reinforcement causing the cracks.
This calculation was made for sections in the vicinity of cracks that had a measured width of 0.01 inch or greater.
In the calculation, concrete is assumed to carry a principal tensile stress of 4s/EF where f' is the specified concrete compressive stfength.
c 17
Midicnd Plcnt Units 1 and 2 Racponc@ to NRC Requn0tc for Additional Informction for R2viGw of BWST and SWPS Underpinning Based on this calculation, it was determined that available horizontal reinforcement in the east and west walls of the SWPS provided a resistance of approxi-mately 97% of the tensile stress assumed to be carried by concrete.
Resistance provided by vertical reinforce-ment exceeded the tensile stress assumed to be carried by concrete by a significant margin.
It was reasoned that if cracks in these walls had inclination of at least 15 degrees from vertical, both vertical and horizontal reinforcement would be sufficiently mobilized so that the resultant forces would exceed the stress attributed to concrete tensile strength.
Therefore, it was concluded that resistance provided by the rein-forcement was sufficient.
After review of the report on evaluation of cracking in the SWPS, NRC staff members requested that a more detailed analysis be made to evaluate the capacity of the east and west walls of the SWPS.
Therefore, the limit analysis described in this status report was initiated.
2.
Methodology The approach being used to evaluate the capacity of walls in the SWPS is to estimate forces that can be induced in the structure.
This is being done by evalu-ating capacities at selected sections of wall members.
Capacities are being calculated using representative stress versus strain relationships for material proper-ties, and using section geometries determined from engineering design drawings.
After sectional analyses are completed, the capability of the structure to resist hypothesized applied force distributions is calculated.
These calculations will indicate the maximum level of shear force and moment that can be induced in the walls under idealized support conditions.
Calculations will provide a " worst case" estimate of forces that the walls must resist.
Once this estimate is known, the capacity of the walls to resist applied forces can be evaluated.
3.
Expected Results Results from limit analyses will provide an estimate of the maximum in-plane bending and shear forces that can be induced in walls of the SWPS for assumed force l
distributions.
This will provide a conservative estimate of whether capacities of the walls are sufficient to resist applied forces.
It is expected that the final calculation would support the hypothesis that the walls have. sufficient capacity to resist the applied forces.
18
Midland Plant Unito 1 and 2 Racponce to NRC Requmetc for Additional Information for R2 view of BWST and SWPS Underpinning 4.
Current Status As of April 22, 1982, analyses have been completed for vertical and horizontal sections through the SWPS.
The north overhang of the building has been analyzed for the conservative assumption that it is unsupported by backfill or underpinning.
Calculations are in progress to evaluate horizontal shear forces that could be induced in the structure.
In addition, a report on limit analyses is in progress.. It is estimated that the calculations will be completed and the report will be submitted to the NRC by the first week of May 1982.
CONFIRMATORY ISSUE 24 P
Provide a commitment for monitoring fines from construction wells in Q-listed areas using a 0.005 mm filter and for monitoring the performance of the construction dewatering system.
RESPONSE
The construction dewatering system is a temporary system and, therefore, is not subject to as rigorous a criterion (0.005 mm particle size in well discharge water) as would be applied for a permanent well installation.
Consequently, the system operation test procedure for the construction dewatering system will be based on a 0.050 mm filter media.
If the quantity of soil particles retained on a 0.050 mm filter is greater than 10 ppm during well operation, the well will be retested and removed from the system if retests confirm that the criterion is exceeded.
The well discharge will be monitored for the 0.005 mm size for information.
If the amount of soil particles retained on a 0.005 mm filter is greater than 10 ppm, an engineering i
evaluation will be made based on actual pumping rates, etc, to determine the significance of the condition.
The NRC will be made aware of any such situation.
(
The dewatering system will be monitored by a series of
(
observation wells.
The wells will consist of 1/2-inch diameter slotted polyvinylchloride well screens with 1/2-inch diameter riser pipes.
The wells will monitor the groundwater levels in the fill and the undisturbed natural soil.
The - bottoms of wells used to monitor the water level in the fill will be installed at an elevation no lower than approximately 1 foot above the undisturbed natural soil.
19
~
Midland Plcnt Unito 1 and 2 Racponca to NRC Requacto for Additionni Information for R2 view of BWST and SWPS Underpinning The bottoms of wells used to monitor the water level in the undisturbed natural soil will be installed such that the bottom of the well screen is at approximately el 570' and the bottom of the bentonite seal will be approximately 2 feet below the interface of the fill and the undisturbed natural soil.
The construction dewatering system will be installed so that the excavation and construction operations can be performed under stable soil conditions.
The resident geotechnical engineer will observe groundwater conditions as part of his responsibilities.
The wells will be installed so that the water level in the fill will be drawn down to approximately the interface of the fill and natural soil.
If the natural soil at the dewatering well location is cohesionless, the wells will be installed such that the water level in the natural cohesionless material will be drawn down below the depth of any excavation made in that material.
Where such situations occur, the groundwater level will be lowered to approximately 2 feet below the base of the excavation, provided relatively pervious soil exists below the exca-vation.
If the material below the base of the excavation is cohesive and relatively impervious, the water in any cohesion-less material may be drawn down by localized dewatering techniques such as sumping.
20
t i
i 5%"
('
wE
=
IIEll 1
s.p
/
/
/
HYDRAULIC JACK
/
}
i i
__A l
CONSUMERS POWER COMPANY l
MIDLAND UNITS 1 AND 2 PLACEMENT OF HYDRAULIC JACK FIGURE BWST-1
';- cg l
N l
N l
(Y s p E
l N
i i
i i
\\
s 9
5 t
N y
j
\\
=
t i
l
[
/
'ri
< k e
l d
N
(
N CDNSUMERS POWER COMPANY As MIDLAND UNITS 1 AND 2
\\
FIGURE l-2 ELECTROMECHANICAL JACK FIGURE BWST-2 m
I
.. T" e
l 12*
l l
i 6
304 S/S E O 3"
l TYP l
v 3"
"T"
- Each 1-112" thick shim shall
[
be identified with a numerical 1132 "
stamping seqtuntially from I
111 6 "
- 1 through #42.
118 "
1/4" 1/2" CONSUMERS POWER COMPANY 1 1/2..
MIDLAND UNITS 1 AND 2 STAINLESS STEEL SHIMS FIGURE BWST-3 G 1986 51
%" TYP
,A T
-r GROUT
(
\\
RINGWALL
/
A m
[U
\\
e CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2 DETAll OF SHIM STACK FIXED BY GRdUTING FIGURE BWST-4 mee.s2
i
\\
(
l t
I r
i l
12" BOLT
=
=
CELOTEX COFFERDAM 11 h
i 12" 1/8" 1%"
l OIL IMPREGNATED y
SAND h
e n
..2
,;q..
. g* _.
~
< = -
12" FILL
=!
-.ill llElllllll )
I.
II E llE!!BlIllllE!
- . o,P
.y 9
- o....-
g..,
,9 EARTH
- .y i.?..,.
i, ig!
.;g:.
- q.
l ADDITIONAL EXISTING RINGWALL RINGWALL l
18" i
l l
CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2 COFFERDAM AND OIL IMPREGNATED SAND PAD FIGURE BWST-5 G-1986-58
BOLT
[
TANK WALL k
1 GROUT CELOTEX WOOD
\\
2 % k 4
1
//
/n e s
//,
OIL IMPREGNATED
["~
' SHIM' I'- h SAND
- i 9
SHIM 2
Ap"tI@
f
~
~M l
FlLL&
E iL.
. ;?.
..'.::4 l l .'. &*..- a.
.s ll
.:h:
=
g, \\ \\
ll
,.., : :9 E
0, *
- f ;.
ililiiin.
e
'. *f r
. 'o-i!.'.
. {'
.:l EXISTING ADDITIONAL RINGWALL RINGWALL l
CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2 TANK AND FOUNDATION AFTER POURING OF GROUT FIGURE BWST-6 G 1986 57
i l
BORATED STORAGE TANK 1T-60 I
- 'o, l 40*
m:
S 4603.90 SG h
\\x BORATED WATER 41'22 STORAGE TANK 2T-60 m
r g/ 2 l;,\\
40*
g; w.
\\\\
l t
6\\S
\\
30 VALVE PIT
.% (S /
x/
m 40
\\
'g
./
\\
'N
\\
VALVE PIT CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2 t
BORATED WATER STORAGE TANKS RING BEAM STRAIN MONITORING PROGRAM FIGURE BWST-7 G-1986 Si
r 'y <\\
'y N
4
/
RING WALL x
s A)
W PLAN VIEW A'
C-782-3 y yGAGEBLOCK -SEE FIGURE BWST4 l
I,
[
j 6"8CONDUlT 6b 1" SS ROD e
e ll l
.---------------------l-Q---=-_
MEASURED GAP-d '~ /
TS 8x8 20'-0" G AGE LENGTH SECTION v
RING SEAM l
.,e
~
^
6"OCONDUli 2 a
g
< i i ! s i
NELSON STUDS i
s g.w" 7., I W
- L 'L -i 1
CONSUMERS POWER COMPANY TS8x8 L.
-. _j MIDLAND UNITS 1 AND 2 SECTION C-782-3 STORAGE TANK FIGURE BW3T-8 G-1986 62
~
i r
ii d
Il N ll /
ll Ld CC l
h 1
N ll SPRING-
/h\\
LJ q
g
^'
4-SS WEDGES
////si.
EXPANDING GAGE BLOCK CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2 BORATED WATER STORAGE TANK FIGURE BWST-9 G-1986-60
Midland Plant Units 1 cnd 2 R3sponse to NRC Requestc for Additional Information for Review of BWST and SWPS Underpinning TABLE SWPS-1 i
MAXIMUM' REINFORCING BAR STRESSES Max Reinforcing Building Component Bar Stress (ksi)
South wall 49.007 North wall (main structure) 23.356 North wall (overhang) 20.378 West wall 38.348 East wall 47.551 Lower basemat Upper basemat 15.552 Slab at el 634.5' 45.713 Roof slab 40.789 l
Underpinning walls 42.752 i
l
- A yield line analysis of the lower base slab was performed.
The ultimate capacity of the slab provides a factor of safety of 2.5.
Building component stresses are from FSAR load combinations, except for the underpinning wall, which is from an ACI 349 load combination.
l l
llIl
)ll) 1 I
o Z
0 3-A 'o *-
p oo, mh'o o eAN m mO*
- Mmm
$o 2
1
'N $0, 5-1 0
T.
2 T.
n o
o d
2 2
2 T'
0 T
5-4 H.
M q*
a' m-m.
M M
4 5
ahG
- Aby,
-e"m pm*m N,o W a4oN mWmm D N"
$o 9e$
0 r
2 C
5 o
d o
o o
8 T
o o
6 9
T 5
q' H.
M y'
a*
m-p M
M y'
5 0
0 A 2au g'8a, 36O-pmm^
s' m*
A mmm A ~8m,
$m 8-7 8
0 1
o 3
T' 5
T T
o L
o t
o n
1 T
6 7
8:
3 H.
H.
q*
a*
m*
m-M H.
3 8
0 6
7 u
5 2
t
- Pmme, 9$m
$A 8
6-A'N.
p$m 5
~
9 m Sm*
7 8
3 B'
4 T.
3 T.
5 B
5 B
3 B
o i
6 0
H.
M 3
3-m*
m-H M
4 1
4
~
1 1
3 o'o $
9Owm o $a, 2_
8 -
8 8
P$A o $m Pm$
2 3
5 6
0 6
o n
o 5
2 o
B 2
T-3 T.
9 T
1 T
5 B.
4 m~
H.
M 3
3 2
3 5
M H.
n 1
1 c'
~
2O *
>$O5m o@ggm gmmQ62 0m g>x gE C$@m
)
/
m@ qIm 0Rm2 gyo hm Zjmm232g0km mmsE mHmmmm@ g E 0 o o ] S E' xm-o H' gmZO mm H0T gm $@me D gmZO mm m0Gog $2 mHmmmm C
OCaCC!mgn TOIMM nQEmDx< _
A E_D E EC CE_4n _ >zc N t
2E>:D /H:
3 Dmi(mM nf)
C o>Q O>(/m
)
C " ' C c + 1 + r + [ + g.
L
, OC2m M&- (/'a.
3 n) oa82u t
!i
,l;l lll i:
YN A2 PMD N
E 2
O A R R C
E UL S
1 T T L R
A C A P
ES WUW W
WIT E R S
T H ON C
PU S T E
IV U
R S
R PO U
R E MS G
D E N SU I
M A P
F L
UD SI NM O
C 4
2 0
8 6
4 2
8 0
9 8
6 5
4 3
1
\\
3 1
I 0
2 9
1 8
1 7
1
~~
2 1
1 1
0 1
9
SEISMIC LOAD IS BASED ON THE l
lll.,'l1 l,
t DOMINANT MODE IN THE NORTH SOUTH g g y' T W'L
~
DIRECTION WHICH CONTRIBUTES 89%
OF THE TOTAL NORTH SOUTH FORCE yo g,yggrigQ,,.ggg,,,, gg )
i i,ii.
.. i i. t,,
, i i..., t i i
k L E. AGNT%
MoR1ZOQL' i L MWF
- i iei i i i e e i i i i
.. i i! !.
!eit i t i, '
. i,
t,,....
t i i,
t.
i 1..
. i t,,
516110.- LUd_P i i X
A X
I ii i t e. e i i i !
1 i
- i i i i t t e
+
t i i
! I t i
! i ' ii
i i i i a i t ! >. ! e
.. ! e ia 6.*
O O
Q VKE. 'I,O AD i i i i ! i e e.
i i i iia ! e i
i e i i e i i e i..
. !iei.,
i
,, i !. e i.
e e
e 3 E.15 MI C.
l_ DAD
. i !
t i i !
i 1
i
,.. i i.
e
+ii
,i i
.,... i i i,,
t i.ir i
8 I i Me i t
i 4 l
1 i
- I
' ! l t i i i i t i ! I l ! t I f f I l ! I ' !
t i p i e
EI DM ! f M pTJ t
i I! I r f 'ii!
i ! t i t '
!iei i Il N i
' f i '
I i i i i
i i eit 4 i i i ! ' i ' I i 1
' i t ' ' '
'mn
! I'l'
... t i
.F i f5 i
i !
I f f i 1
' ' t 1
e 6
i i i e e e i i ! '
i e + i t
! I i l
if f i ! ! !
4 '
t t t
t i t
, i i
9.
i,,
i
. 1 i
.. i,
t
- e i
i i
! I t
I i i ! t i
i i
i i i i
,i e
i.
I !
t i !
I i i
1 l
i t
i r t
i t i t
i
! t 1
t
' t t t
' t I i i i
i i i I 8
! t i i
' ! ' i *
/_[f,[.)
I e. I I f I !
' ! t i 9 g
l t.
F l
l
! I t
! I I
? ? f I
' I I i t I
t l l-i t ' ? I t
i f
I l
t
! ' ? ' '
! ! ! ' I !
i i i
-i t t t i ! ' +
i i ' ' 1 '
. i i
i e
}
i i
! I
! t t ' ! ! ' !
t i i i !
! t e i l a
! I t
! ! 6 I
i i
i !
1 f
l i I I I ' t '
I 6
i e
t i Ei e i e a i i 1
i e t
t *
! f. It t i !
l
! ! I Ii i8 !
t !
I t
i l
+ '
' 3 i ! i '
' i
'I t iN! i
- I i i t ?
i
+
IDm U.
i
- i + a i
e i i
fi N !
+
i a
i
/ t N
I i f
I t f I
- i i
i r
ti !
i e
f e
i N i. i i i
, i i
'I
- + i !
i
/: !
! i i n.!
i 9 i t
. i
- i e +
i !
i
+ 'i. * ! i
- i i 1t i
i e
i i
! i i i i 1i4 i
t i i e i i ! !
i i
i e
1 5 i i t I i t il i !
e i
i\\ i !
' I '
3 1 1 i
'[ ' it I
t N1 1 ! ' '
'I i
1 l I
1 l i i l
! It ! 6 l
l j Nt ! t ]
- e 6 !
l t I
i _ i i i i I i i f i i O
UD
,s x.
w f-
\\ ' ' d~
PiATE
\\~>
'x
\\
i/
i il
\\_
\\
_V ELEMEJ{f
\\
- /
4
\\
\\
J
/A i
. i !t\\i i t\\!
i ei 1 ! ! ! !.
.t/.
ii
!i i i i ie
- /
, e* ! ! ! ! 'i
! I '
i i #
\\, ! i e i i i i i i e
I t r ! */
' i i !\\
!. Nii i
i _
./:
! l ! '/
8 i\\'i*'!
t i t i ie t i i
I l '
1 II I !
t't i l l \\i I t I t
_d1 I
! i e i t i i i
! i i i 9/ t i!
.. \\,
e 'i t,
,/!
a 1 i i i t
i i t i !
C i t 'r i i
i !
i e
. i s
~.
i
_ u,o s
i I /i !
r ' i i
! I s l l ! di f
i 1
1 !
l ! I I
t %\\f iA - ' I 1
I I i\\ \\ '
I
! ! ['
t i [ !! !
! I I ll I i t 8
i 8
! l
/!
I t !
1 i i 9
t i I
t
\\ \\t 8 i i/
i i t ! '
' i
, i i i i i
,. i e i
i\\ i \\
i /! t I t +.,
i ei 4 e i
O t, i i ! i i !
t i
' i i '. i.
. e i i i e i i i.
- i. ! t i i i t t i ! I if i
! i i
t\\ N
!/
i,
i i
i i
t I
I 1 I I \\i \\
[! !
'[ N ' ?
6 ! 9 { g /
! i e
e e i e i ! I i i
i l
i i t i
i :\\ i\\/ i 1/ i i t N _ ! I i i
- i ! 1 I i e i I t i i !
! 1 i
. e i + '
_ i i,
i i i i i /:
i ! i i i
e i 1 t i\\t *. ! /i i i
\\
i i
i
- i t i i i i I
\\? ! i i
\\...'
,l i i
i i
i lit i
t i
\\.
i ' It i i
- i i t i i e i I '
. i 4
_o.o 4
i,
i N
.fi
. i i i
I 1
' f I
f I ! I t t ' i 1
\\
/t i ! ! e !. i t\\
r ! ! i f, 3 i !. ! i i i i
! t t l, t.,
'1 8
t I !
I i b /? I ! ! ! I i I i I \\! ! I '
'/ ! !
! t I
' I, 8 i t
' i I
l I l 8 l !
! 1 i ! !
!0*it 1\\i i i ! Iit i i
- r i * ! ' t t ! a i
- 1 t
i i
i i t i t i
tI I
i I_'
i
- i I
i !\\! ! !/
i i i i ! t 8
- 8 * * ' 1 8 i
i i
I '
i i
i I I t * ! ! t t
' f 8 !
l i ' i i
ei1 l i t
! i l!
'/ t i
! I i I
i i '
I I l
!\\ i f
?. e i 6
' ' i ' * '
i t
8 I i it i ! i !
i i $
t i ! i 8 i
i i i i
!i
! ! I 'i i I t i t i\\if! t i lI
+ i I t !
i i
, 1 i.
- t i i i t V,!
e, i a i !
1 ! I i
? ' i e l
I i ! i ii i ii ! t i
i i e i i
.,, i i.
eur <,,,
i,
, ii
. i i..
, i,
- i t :
?.
l l!!
CONSUMERS POWER COMPANY i
4 i
l
,I lll MIDLAND UNITS 1 AND 2 l
4 t
I ! !
i't i
! l i I i! !
t 5
1 '
' i
! 1 I I
! t
- ' ' ' I ! ! ! !
i l
l, SERVICE WATER ll l',
l
PUMP STRUCTURE
.ii.,'r SOUTH WALL l
1.i !, ! I >
, i 1
l
, i,
, i l
t i
'i1 l
I i
.,1 FIGURE SWPS-3 I
i i
j k
61 3 R3
i.
SEISMIC LOAD IS BASED ON THE
... t i.. i
, i,
vv' - -
DOMINANT MODE IN THE NORTH SOUTH
- AL+
. i avtn N i
DIRECTION WHICH CONTRIBUTES 89%
_.i_
i.
, f
'li OF THE TOTAL NORTH-SOUTH FORCE j$Ff(_A -, AXi AL F DM LL - ( 3 y y ') i i,
...,. t i i i. i.., i
_ei e
FtOftlV.ON3AU 'LI Ali fH-I:.1 P M E N TS i,,,..
i i e
6 i*
,.. i t..
A X
A 46TATI C LU.AD
, t
.t
. i !.i..
i
- i
. i
! i i e
. i !.. '
. 'i i!
i ! i i. i r
,i;,,e O
C O
' VME LD A D i i t
! ! t
't i ' t.
i t i l l i i t i
- 1 i vii6 r i i *
.L DAD
. i i i e e i i
- ii!
' i i i t, i i..
. i i
,,i i.
6
. i
- Wl3 M IG 6.
I !
... i t i e
i.
...,,. 6 i
i 4
,.,i..
. j i,,.
i i e
i.....
i
, e.. i i ! !
.,a i iie,.
. t !
i 1
e i
e i
t t. '
l t I ! ! ! l l l t I i t i i i i l i
! I f i l i I !
! I f f f
I
- ! l
' I ! I II I I
!I !
' I !
i E ' I ' ! E
- I '
t 9 i !a i
tI} ! i i bi ki l i I i f i !
i R') fl ilEN5thM t (! VIP 5IF D 6
' i ' I i ' i i i i i i i '
' ' i * ' ' '
I * '
I i r.
e t ! i. i i +. t
- i e !
I i i t
i i I i i
' ! ' - 1 i
1 e i f !
! ' i t
i i
t
! t i.
e i e i! t t '
i i i i
i i
- 1 t i t.
, e i
i '
1 i f I
' i tt If j
j j
i g
[
t I !
I i i i t i !
! ! t 8 8 t 8 i i
i t
f f !
' ' t ' ' '
I !
' I ! t 6
1 i
t !
t t
e e i
- i ia
+
i *
- I i i
I i
i i
i a !
e i
i
! t a i g& ()
t
, i e i i i ! ' ' i i i i ' ! a r
- 6 i ! i e i ! i t
,i i 6, i i 6 I
i i e i i i i i i l ! I !
I ' t ' '
i ! t t
e t I I t i I !
- ! ! ! 'J ii i
6
. i i,
4.
4 i t i
! l t
6 i i i e ' ! ! i i
+. t ' ' e i '
' i i e t t 6 I i. 6 i
i t
i i
i !
t i i e +
t!
i
. t i
i i i i i
! 6 i
i i i
.., t * ! i ! l
~
i e,
I i
l i ! i ei i i e i i r i i
- i i t i t ' r t i
i e t i
i i e
i i i ! e t i i
I '
! ! I i * * '
- i t
.. i.
i i
t !
i.
e l
... i !e i
i 6 i e
- i i
t i t i
' ' ' ' ' i '
10 D i i
- i 8 i
! ' ! I '
i 8
i
4 i
I i '
t ' ' 1 t
t t I !
! i
, i. i
. t,
i t
I i
i t i i..
t t
i i
, !.. i i.
i
. i i... i I t !
f I i !
I t f I l t !
I 1 I
I i t *
!. ! i i
- i
! t i 8 l
- f
! I i t
! i e *
- I i e ! l i s i l
i ! ' i t t
! I i i 1 l I t
! I l I
I I
' ' t i f f
I i i f
f ! ' '.
6 I t i ! ' ? I i '
t ! l !
t i
i
! i ' ?
I ii l
I I i ? '
e i i ! t t i i t i. t ! ! i i ' !
' ' ' ' ! ' ' 6
- !tA' i
i f*
Ii 1/ :
~'
$ i I
"') n i t
V VIAlE
[h, U n'
2
-'W j l 3
g i I (
l i
n.iy. ?
'Ia I
aG *
- l
}
H f
5 e
..V-A Uld
. i i
i
/.\\
' /
- ME "X
i
\\
\\
~
7-
-t
\\
/
I
\\/
\\
i
/
. i i
\\
' i./ i. i t i i i i t i !
I Iii 6 i /! $ i e 4 i At
<\\.i
! ! l. !.
i i i i i t i i N.
i e t
f I t i i i i
! /r !F H i\\
lt t t i. t
/-
. *. i Ni t i t i i i !\\l i.
', i. i
/
/. i i/ i i ii
! Ai i i 1,!
e i, i !
i T! i i i i
. i
+ i e
i e
/
i e i 6 i\\i i
\\
i i !
i/
/.
i i !
\\ r t..
i f i.
i ei
_; ta
.~
\\
4.
, /,
- iv. u
\\., e i,
i
/
i e i
1 1-t i. I i i t i t t i /
/
i i i !
4
. t i
s t
! t I t
/
I i !
Iit i ! !
i/
/-
1 i i*
'll i
d'
! *. !I
} t i t i
.. e i j,
i !
i
/*
if t
e a jt
, l Vj
!\\
~\\ '
I t\\
i
! i !
t i
i g i g i
if'
- 9, j, i
\\ l I i
.\\ I ? I
' t
!/ i
/ ' t i ! 6 e t t t\\ ! j1 1
I e t I 11 i
! \\'I i t i/t.
/!
i t i i l i i ! ' 1 ! \\i t !\\
t I
- i
- 1 +/
- iY t
/
/.
e i iF ?
t !
!\\t i\\
i t i i i
1i i
Xi i i.
i/
i i V
t
!\\
! I i
/t i i/
iie i 1
ei l A,i h...e i ! /.,
I,..
i 1
1 A i i I: i i </
i i i i r e t
\\i s !. i. I.
/
. i.
i/ 1 i
- ifa i i t I
!\\!
\\! +.
\\
it U NoI ! t f I i t i e i i e i e_2 t
,. t. i i
.A
,\\
/,,..,
uuu a
i i
,,...,, i/
4 i
,,,nx
\\,,,
, i, #
i i,
t ie I ! I f I i i i Ii I t !
' l i
1
? ! ! t I'
?\\
t i. /
' i l 1 ' 6 I i i1' l ' t I f f f I/ !
! I t I
i !
i l ' ! l 6 i A'
'/!
f
- 1 t
'. t i !
i *
. ' i 1.ifa f I
- t ' ! !
I\\! ! i t
! I i 'li t i t If I i ' i i
i i I lif f i
i I I /fI i i I ii ' ! !
I f i i 1 '
i t t
'\\ / 6
' i e t t t
l I t ' '
ii 6
- f '
I i
\\t ! !
1
! I t I i 1
i ' I !
- i n 'i i i,
i
, 6,
1.
i 1.i i.
i. i i
i i i
l i
' ! i
- 1 1
E;*
i i ! '/ t I f i 1 1 l l 1 4 i l l I 1 i i i g lDjt ! 1 i i * ' i 1 i t f! ! !
\\,
t Iii t
t i 1
-se.e i,
i
+
i
,/. ! i i !
/r i i i
i r i i t i 1
- \\ t i
i AM l' CDNSUMERS POWER COMPANY lll I
MIDLAND UNITS 1 AND 2 iil i i i
,i i ! i li t
i i ! !
I '
' + i i.
i i t i
! i i
i !
e i
4o
'l SERVICE WATER l
ZvMME551bN ' ;
,l';
PUMP STRUCTURE SOUTH WALL t
. i,
l i i,.
. 1
,., i,..
FIGURE SWPS-4
. t -,,
e i t.i
. i,.,,
t i. # j i e
- a. wee.m k
..i, i
i SEISMIC LOAD IS BASED ON THE i
,,,i i e
.I W
DOMINANT MODE IN THE NORTH-SOUTH 50MTM ~EA LL DIRECTION WHICH CONTRIBUTES 89%
i O '
OF THE TOTAL NORTH-SOUTH FORCE
'i I N - f"LA LE 5 H kEA K 6 FURLF
( 3 1r V _1 t
. _; )
t
!. i i
! i ii!
HDRl7dNW'a LINE OF FI W ENT3 I i, ! t ! + i e rit ! ! ! i !
! ! i
+ i
'e i
.. 4 6
.... 6 i 4 i i, i i 1 ri i ' e i
r X
A X
3 I A IIC L A A_ _D e
8 i it i *'!
I I. t
_ t
., e i e
- i!
i i !
i i
! i e ie i i e
i, 6 ii.
! i i i t, i O
O O
VH_E bnA L/
!. i i., i !
i.
. i,, ' i !
t,.. i #
i i 8
I I
_ OAD 6 e e<
S E.15 LA l t _
l
,,,., i,,
i,
i i I
y i
- I j 4
i l i I
l t
i i e i ! i e
i i
i
. t ' '
i i t i i i i i....,..
.. i l 6 e t
i i t 6 i i 6 I I ! i it i i ' ?
i i i 6,8 s t*4_
60 !
i t i e i e -. e
' +
i i i t
i
' i I
' t f i t t ' '
' t t * ' ' ' i '
Li
! I e d EiN 51 D hl I KI tW F" 7t !
' i !
i i
' i
' I i i i !i ' '
i E i
, i !
I t '
i i
SDi U ' '
i ie
- i t ie i i t 1
I t
t i i
e '
t i e e
e i i i t i i i t i
i i i
t i ! I f
i '
? t ' ' ' ' ' !
I '
j
, i e
i 6 i i i
- ' I i i i t
t I t
j
- f
' ! t a g {
s e
i i
l i t
l e i !
8 I i t I8 t !
t
- i t
i i
i I t I !
i i i I e t
t i t
}
t i
i e i i 6
e i i ' ! 8
. i i t r i ! l i 6 i
e
' ' I
- t t '
e i e i
t i t i I
i! e t 1, !
t i i i i 1 e #
I r i 1
i i i i e
!i ! ff l
1 i i t i i i * '
t ! ' ' ! ' '
20,6'
. e i
.. i
' 4 i
e + e i
- 6 !
. 6 +
i i
i, i t,,
i
! t
}
t 1 I t 8 ! '
t t i f f f f I f ' ' '
' i 8 9 8 8 t t t'
I i l
' f f ' '
' ! ' f i ' i
- i I
i i t i
l I t 1
I I i !
? ? 9 I i !
! ' ! i
' s t 8
6 ' s t
1 8 ' ' 8 f * ' '
e t i t
i i
?
6 6
i t i s f i t nf I 1 i
i
?
i i t '
t i e t
! t. t 1
l
' 8 I 8
' t 9 i ! ' '
' ?
I 8
! l ! I
\\I t I '
t I
i l !
! I t ! l i i g 6 e ?
q ! e i e ' i ! ; i e i e i
e e !
1 t t i i i\\ 6 i e _
i t
6 I
i
!\\ : f i f
f I
t I
! 8 t ! t I
I i
I f ' '
i i t
i
. i i
, t ! j
! q g
} l e d> i l ! t t
j J t
i e i t i t e
6 t
, i i\\i j i
e i ? !
+
t i !
' ' ! # /.\\ '
t
! ! 6 1
tt i ee I
i t i
?
i i i a et i !
,_' N i\\
i i i
, i l !
. i !
i 6 i i
I
\\'i.
. i i
. i e i i i
[U U.
t '
'k\\1 1 i !
1 !
- ! l 6 !
I
'f
\\' t '
I 8
t
' ' t
~
I I i\\!\\!
l I ' !
I i ! [:
'\\i 8 i
4 i
8
' f t
t i if
\\'
l 8 1
!\\ !\\
i t t t I i
! /l !
! \\l f f i
- ' i
' t
! 8 i !
I l\\ ! $
i
- f t ! 1 e i i
- ii
!/ ! ii' A i t *
! t t i i t
' i N
\\
9 i
! 6 i !r-a i e i i 6 i
i !
.A
!A'
! t
/r a t i !
1 !
i i
- 6 i !
I '
t
! ' ! t i i N
\\
i i i
' e 8 ' f 8
i ! t
- i ' ' I
/
1 i i li l[s \\ ' 8 i t i !
! I f ! f'1 I
i t ! '
i ' i '
! ' ' ! I ' I
/i! ' i 6 i !
i\\
t i
- i t
' i * ' i
, i il M' t 6 ! t !
I i!
lik t
i i
a
- r e a
e r i A
a a
g]. '
. fi f ab 'Ja i a w.-
4 m
i n.n
~n
-w'
,e J'
~
- -----.p ' V is'
.w sh
-k F--
Vil'\\ is. '.
~
c M
i I F\\
t 4
/
\\
t N
k-i
\\'
w ELUvTM i W
i.
\\
-/\\
i\\
e
./!\\
it i.
t t I i
i i t 1
- \\\\
' ' : I i
e 1A 1i
./
N'ii
- e i i i\\\\i
/l i i
, e 3
- i e
i i e i i
! r i! t
- i
' i jTX
.//
4 ? t iTo l e j [ g t t g A
{
- l e
f; I !\\ !
i '
' t I ' I t ' i l l i e i i Iil
' f
' l '
' ' ! l l a i i i
! e ! i e 6
- \\' \\
/Jt t i e IU l */ ! 6 * \\t,
! ! t g e ! \\ l l
1 i e i i
' \\
/'.f_
,'f
? i
/
i i ;i f*
! '\\
e i !
i k,i.,,,,,,
a e
- i !
! * ! I
' ' ' ! ' t
! ' t !
i
,,, i,, g if.
,, 9 i(,
, a i, ;
i
(. u i
6 i t i i i e 6 e i
== j (( D
! ! 1 i i t i i !
! :\\
l! t I
' ' i ;11 / ! * !
\\'
1 1 1 6 ? i
\\
t '
!,i i i
\\ ! t i
'\\
lit i i ! I
\\/ 1*iit i\\
i i t i I e i e '
'
- i i ! t i
! i t t i
a i
e i a e i i i t i e i t ! \\.
'\\
t
' ! l !
' ' f i *I f i
- i t !
M' t t.i
- i i i i
! i t i t i Tt j + ! t.
i 6 i i!h
i e
+ e i e
' i i i ! e i ' '
' ' i ! '
- i A l' ' t i t !
' +
i i l i
! ? I
! t ' '
\\ * ' ' i i t 1 '@
i ' ' t 8 i i ! !
t i
! i ill
- ' i t
\\' '
- * *
- 3
- a i
- i !
l 1 i
! t t ' I I t 8 '
t I
I J f ! I '
?
! ! ' I I t
t i '
l t \\'
' l l
' ', 8 '
I t I
' I I f i
i i
! l \\! I f i !
t i e i ! I i t i I
i i ' i i ! !
! ' I f i e ' i i e i e ! i I I t 1 i '. I i !
6 i f ! t I i
! 8 l 8 t i i
!iii
! I t I
i e !
t_i i i i
i e i.N i
e i i t i i e e j !
6 e t 6 t
ii{ 6 e e i e i
= /,,f),0 i e i i i !
e i i lE i a i t N,i s
i e i
j i, i i i i l 1 9
i t t t
, i e
- , i i t i (,
, i i i i f, !
' ' i
' ' i
! ! I I I i f e
' l
' ' I 9 4 ! i l i e
i, e iji N-e a i
l
! ! ! t
- i !
t '#'!
I ' I
! I
' i '
i i I e i i i i ! ! ! !
t ! * ! t i i
- i i i
l 8 i '
I ! ! i !
! t t I i
! t ! ' 8 i f I '
! ! i i I ! ' '
' ' t ! i *
?
i i
I ! !
! ' s !
- 1 ' 1 1 1
' ' ' i. i i t '
?
i ! ' I
! 1
! ' I !
i t I I
8
? !
t i I ! ! ! I t8 ! I I i
! ! ! t ' !
I t
' ' ! 9 !
! t i 8 8 ' ! i i
I i I
i l ' 6 ' ' I i i + t
! I i I t f! i i ! !
' ' ? !
' ' ! I
' ' i 1 f f ' ! ' I 8
r I '
_g i
1 e t a
l t i
t i
a l #
+
+
1 !
e i
i l
! ' i t i ! l 9
' +
t '
l I
- 1
!t i !
i r !
' e e '
6 e
i e i ',
= 30 3 0 l 3 i e
i e 8 s l
? e t e
., i
., e i.
, i t.
. i,
bob h
1 !
I !
' I t I
f 4
I
.8 i ? ! I i !
i
- i !
6 ' i llll' ll'!ll'
- ll l
l,,
CONSUMERS POWER COMPANY i i
- l!!:
ll l
l MIDLAND UNITS 1 AND 2 i,
t i i
,,1 1
,-l SERVICE WATER
, i,
PUMP STRUCTURE i
i SOUTH WALL l
l
[
i i 1
FIGURE SWPS-5 p._
G-1986 78
t 6
e l
SEISMIC LOAD IS BASED ON THE t
DOMINANT MODE IN THE NORTH-SOUTH gyg g Q' DIRECTION WHICH CONTRIBUTES 89%
I e
i
. i OF THE TOTAL NORTH SOUTH FORCE MU MI.N I AISRMT i.lfDRito#TAL.J fis Dt NUI M &
.1 e
t
,, i i....,
i Et()lgggh7 TAI iLI N ti.
D f" k.],J,,Mt.Ml s i i..
i.
e i
... i i i X
X X
STATIL l_ 6AD t i, i i,
i
..,it i
e,
. 4
,a i,i..
i
. i..i
! i,,... i C
C D
VMELUAD i
e i.
i,,
i,
i e i
!, i i 5... i..<
~
. i 5 t.l E M IG ' LAD
,,. t e,,
s.
i #
i 9 9 i.,
e i ; i
,t 9 i e * *. !
i t i i
- t 6
- e. *, _i _
ii ! ' *.
s t
1 i 1
i i i f I ' i f f f f i ! '
I l ' l '
t 1 t i t
'-YO$U' IVMOMEN I f K-FT I FF,I t
I i i
i i ' i * ' i ! !
ii i t
' ' i !
i * ' i (z u' i i-i., i t
r..i...i i
! e i
i e
- i i,.,i
! i ei
- i i a
' ' i!
6 I !
i e ! *
! ! ! ! I f '
' * ! i ! ! ' '
' ' f ' ? '
e a f e
a
- iie i i t i t i
iif I
!!! I t t
t 6 l i f f i! i
? ! ! ! i
' ' P
- i ! ! ' i i ' '
i8
- ! I i
- i
! l n i j 6
- I
! !
- 8 i i e
8 t ' ' ? !
! l 8 ! ' '
l I !
t ' t I! i i i e i !
i l
? ? I
' ? i I l i 9
' ' t i I '
' if f I i
i i e e 6 i
! i e t i i.
i i
, e.,,
, +
1. +..
e i t I !
! ! ! e ? ! 8
! t i f t * ' ' ' '
6 6
e i i t i
i i t i e
t
- 6 1 ! ! l
} l i i e
! t jt 1 i j f f
t 6 i i i i i t i l {
l l ! I t i I i f i f f ' !
1 1 I f ! i e
i !
t i i ?
i i
! t 8 t i 1 i i ' ' f f f i i
' t i! i
' ' ' 1 i Iii
! t i I t ! ' i !
! I ' ' ' I '
i i i i t t
. t j
' 1 P i I
l j i i e e e t
I i ! I i i e i 8
i ' '
8 i
i 8 i i
e i i e
e ! 6 i
j i e 1 e e 41 [J I
t i t
. t g e
i i t ! t t
I p
i t i i t i i
- 6 ! '.
i i i i
1 i i t
t l i 1 i t
i t i ! !
- t I i 4 i I 8
? !
' ! 4 ' i
' ' i
!
- I i
r ! e i p i t i
6 j
! i 1 I i I I i '
I 6 i i !
? ' !
- 8 t I
- i e i 6
i
, i ; e 1 9 i e i i
t i i,
e !. '
i
! e i a
t
! i * * * * ' '
' 8 8
?
i e e
- i t.,
t i a t, {
+ i
- i t i e i !
e i t e i t
i e i e e
' t '
+
8 e
i.,
i.. ! e i t e
! i i t i e i eie i
6 1 e e
! e t
i e t t e i i ! i l t i '
! * * ! ' t I ' I f '
? I ' '
' ' t r e i t i i i t
6 !
. ! e t i ! ! i 6. t ? ! t '
- ! i e ! e t.
- i i i I f I ! !
' ' i 1 ' ' !
' ' 8 t ' '
l A fa i
- I i
' i ! I t
! i
! I 6 l '
i 6 4 e t
e a i e e i e e + i i e i i i e i
4.V e i
} q 6 8 i
j t
t ?
t i e I
i t
. i +
' ' ' t !
- i
' t t t 8 e i t
t i
6 t i + + 4 i i i i !
i i
6
! e
. t i ! l
. i..
i i i,..,,
i,... i i i
i i !
1 i
I t
- i 1 8 '
t ' ! ! '
i t i ! ' 1 I i e f
i i
! e i 4 e
I i r
8 f
8 I
f 8
I t I h
0 t ? j 0 I ! _ j b I I t
I ' ?
f f
9 0 3.'...,,,.
i i i.
t i i i i i.
. i !
i, i
.6 e ; } !
g i i, t ! )
ii e e i ; I e
. i i
i !
e
, s, ' s ;; t i
e ' '
! 1 !
s f a 1 i
- i
- i i
i * ! i i i ! I l
i i I * * ' 8 i i
n 't i '
i
.,. A,, i
, i
. i 6
i
!.8 u
e.. <
N.
,1,Li og 8
mer
.m A
' */ W JJ O.D M
/o m ~
_y h
Y r
I m
\\
PL AT E I
-i
\\
1
/.
E4EMENT5
/
i
\\
i
~. I r-I
\\
\\-
e. i e i
e,
i i e '/r i e r, ! '/2 th i.
+.'i:\\
e i t
! ! I i i i.
i i i ! +
I i i R.
1 e ! I i i ! i i '
II, is i
i
\\t i i i
\\
ii9
../.
.,/ i 1 : i i.
i
~\\
, i i e,,,
. i i
\\
/! I ' I
!\\
! i '/' 1 8
8 a-
- (.. V
\\*
\\
t fi f i 1 if
! t * + 1 1 Ii
\\' '
i 1,
s,.
, 4 s
.i s I
i
\\3 I
i ! '
I
/
r i ! t i
\\+
t _ 3
,/
1 <>
\\
, 3
,\\
i.,,s f.
{ 1 1, ( it e l \\r t i
!/ 1 ! ! ! ! /
I I ! I I l 1 e.
, i.
3
\\8 ' \\'
' i
- /
f
- t 8
16
'/
!\\
\\! I ' i i
! /i ! I i i
i i
' l * '
/
8 t
i l' ' \\' !
? I
!l i II i ! /k
! l !
- I f ? !
'I t E i ! i
! 'l i i i
/
'\\!
i t1 1 * ' l '
!/ f i ! '/! '
f f f i i
' ' l t !
5 1 \\i\\l i ! '
. \\ '. \\,'
i i
,f + i
.,/
i t i e i i ! I q i ! e i ili!
i
.\\ 1 i
t I' ie e i 6 it/
t,
_i i *
.,,\\
,e
.. i... i
,\\.
, /i i\\
so.
,/
r e i ! /. i t 4
- i !
- i i i i i i
!\\
t i, \\r i
i.
t i
t t e _\\
I,', i a,, 6 1
i, 6....,,
e.,..,i, s.,.+..
t
.., 1m N5 t
- \\
'i_i
' i !
i
!\\ i.
I'
/f i e *
! i t i i
i + '
e i
iil i l
1 n.
.-1 i., i.
,i,iin, t \\'
I t ! I I
! ! I I
i i '
+
t ! t l \\i
! i/ ! ' 1 i
2 I t ! ' t ' I 9 t\\
f / ! i i l'
t '
! t 1
i
? i ! *'
' ?
\\
l i
?
i t i
i !
6 i i iN
/. i ? ! t i i
' ' i i i i 6 e i !. ! t i i ii i I*.
~R 6 4 l
Iii!
- t t '
Nu - + +
i t
i i i 6 i
I i i i ! !.
1 i !
' ' ! i i!
t ie i t\\ /
v.,,'I i
ii,s
. i
. e
! I '
...,,, i i
1
, i,,
i.... i s.y I
acanvrgaum, i
ll:' '!
'Iil ll l
ll CONSUMERS POWER COMPANY
- lll ':
li:
MIDLAND UNITS 1 AND 2
- ll'.'ii
,ie i.
it i i
i,
... e,,,
e
... i i
PUMP STRUCTURE
+
SOUTH WALL i
FIGURE SWPS-6 c.w m m
SEISMIC LOAD IS BASED ON THE l
DOMINANT MODE IN THE NORTH-SOUTH 2 ' -
JUU1 H W AL. I-DIRECTION WHICH CONTRIBUTES 89%
__ i -
OF THE TOTAL NORTH-SOUTH FORCE epi c.ogp L.
i _ A r,r a,i-H;wrF i's v r 'i
-g i
i h L.hkth NT4 iNERW Q1_ U NE-N
. i i, ! i t i
i
. s i
.... i X
X X
CTAT. I C-w ftp i
i !.
3 i.
i.
t t
, i e
- i..
,1_
i O
O-o YKt' LO dD
' i t ii, I r
i !. i i. i t i it i. !. i i
i e i,,,
i.. i 2 i.
5 ElGIC.
@p i
s I
t r i 6 I i
e i e t ! !
. i i - i !
i a i i
! I i ! l !
i !
I i iiif, I i
! ! I i i t ' '
i' i i ' ' i i i i
!Al
_i _ I i
,1 i l _i J L Le.
M A 'D i e i
' ' I**
6 i
! i i
' i tIbN hlDN f hlY3 E P f I 1,
i i i r i 1
!i...
i t. ! i i e t
't
' ' 4 iI I I a !
t i j
. I i
i i
1 4 i f
f
.8
- * ' ' t
. i,
i i
i i 1
i i 1 6 i
i i
i I i e e i i a i,i.
1 !,
i I t ' i i i i. i t i i
i e e i ii 1
f. I !
i i i
t i
i e
i i
?
'I t
i t t t '
. i i i
i i
i t I i I t i i I i i I i
, i t Il 1
i i
i
' ?,
t
' ' i
- i i
i i
t i
! t i !
8 I
t i 1 i
i
! I I I 8 I t i t 8 i f ' f 8
' ' ' ' f '
' i i 4 i
i i t t.
i t i 70;D 9
. t i i i, i i
i t,
t !
. t
? r i
i t
. ?
!i i ! i i i
t t i !
I i
! !i i
I t I !. I f !
i ! t
. t I 1..
t I ! ! '
i i i ii e
i i i?
n t ! i e t i e i !
l t
i. t l 4 l
t 4.
i t..
t a i i s
I t
, i,,....
.... ! i e.
. t i i i
. i i
.,..., t.
I,.
4 i !. I !
6 ! ' ! i 9 I i f I ! ' 8 ! ' '
f 1 1 !.
8
' i
'l I, '
I i '
. ! I l
i, ! 4 6 i t t
! ! ' ' ? I ! t i
'. 1 ' ' I '
i 3 i
' i. !
i i !
I ! I
' I i t
! 6 ! j i j g 9 }
. a,, i. g.
. 6..
t t. t l 6_
I
! I t 1 i
f f I
, ! t t
((}, U 6
. i.
4 i
i.
. i. 9 !.
..... i. 1
. t.. e e
t i.. a
. i 8.
., 4 i
,, 4
,i
, i
. 4 8 !
i I i i
i
. t f
! i
?,
8 t ? I i
i
.. i..,,,
, i.
1.
i i.
i,,.,,
I
! I l I '
8 4
8 f !
I f ' !
. l l f 8
8 l ! i,
f f I f '
.. ' l
! t i
,I !
I t ' f,
t '
' I t f ! !
i I
' ' i i i.
t,,'
' ? !
4..
m
-. x%
n.n o--
r i
- A-t"L A 1 t1 b -4
- n.
w
- u. zn
'so y
s egg
/,
.f
,. /-
n -,
, i i,
, m-
, 1 i.
i,, i,.
, s i..,,
n. !, i
.. i i !. i..
..i1 i
A i I, j
.., i ! if
-av w
/
i
.,.e.
,s x
i
! I i. '
f ! l !
t i ? ' 1 t e i. ii.
1 i.
. i j i i,. '
f f i t,
t I !
8 !. '
I t ! t i.
l i
! ! t t i I !. i
! I
'
- I !t !
- . i !
s * ! 6 !
! t
!. i '
!,t 9,
I '. !
i ! I l Iif f '
! ! ! I i i ! ' f i ! t f i, ! ! I
' ! ! f I 1 i
. I 1,.
. i I
i, i,,...
i i,,.
1,ii
- iii, i i,,.
i,,
1.-.
!.i,,..
i
. i i..
. i...,,
so.o I f f I
! ! ! i, ! ! !
1 1 1.
.. I '.
t i i '
I 1 ! l !
8 I. ! I I f
' l ! I t
I i '
! ' i ?
i 9
' t f i I 8 i. ! 8 ! '
. 1 !.
I i *
! ' 1 ! ' ! !
1 i,,.
1,
- 1. '
I i i i i 8
' ! ' 4,
? * ! '. i '
t i e I i i
i
! I i,,,,,
..,, i,,,
i i
i i ! I i 1 !
l
. I 1 ' l f ~ *
. 1 1 ? t '. ! I f I r i t
t '. !
t
, i e
i g...
4n
. i.
. [. Ok MD ! !
! ! !, I i
1 i i !
I f
f l. t l::;,,;l:
- ; !ll
- ::
l l
- l
- : l; CONSUMERS POWER COMPANY ll:,;:!;:
- ; illl,.;
!,;l. ';
ll;l MIDLAN I UNITS 1 AND 2
.., i.
^
PUMP STRUCTURE
~
SOUTH WALL i
, i L
FIGURE SWPS-7
.._.. _.y k
_ -_ _G_198r,75-
l SEISMIC LOAD IS BASED ON THE i,,. i
,, i e
i.
DOMINANT MODE IN THE NORTH-SOUTH aum H W %L DIRECTION WHICH CONTRIBUTES 89%
i
^
OF THE TOTAL NORTH-SOUTH FORCE
-A.,Y IA I-M R C,b.-
I5w,I
., v. u m, c K L t '
I t
} ?m _
,,1 N h O f"- Ir.Lh ME M N t MM RIK dk.a ]
i
, e t i i
<
- e,. i i e e i i e ! * ?
. i i a
. 4 t r i a
f
'x X
x S~l A I I Ci, LDAD i
i i i,,
...i
! 4 i.
i., i 6
O o
a P R E L U A l/
. i
., i i..
1 f
, e i. i t I
l
. j i. i i,
t DAD
.5 t:,15 M I L
, i - i i
i i i
{ t e i
,,, i i i i
i e t t s !
a f
e I t I 9 t i t I
! ! t ! l f i I i i f f ? ! l i
t I f f I eii t I f I f I f f i
1 f f
I '
' i! I I I i
f I ! ! ' '
f
'
- i I i
! 1 i
' f i l
! ' ! Lv
. i !
J ' !s! '
s'
- i i tfiilWN
- i Ki h_ / P T 1 i
' i
- I ' '
I i '
' i ! l ! I i
i i ' '
1A A '
' +
I
? ' ! '
t i ' i f 1 1
9 e i t t !
! t i i e d
~
i i
?
8 I f
?. '
I i
! ' i I i fi' I I
8 '
"4 i f l !
I i f I i i
! l t I
! I ' i i
I i
r i t i
i t
t i i t
i i i
! t i l i
e i !
3 1 11 !
i 6 e l
9 t i t
t
! s 6 9 e
i t !
i a t I
i l 1
?
I l i '
i f f 8 I f '
} i t a
t t i f f f
I i ! i I
! ! I t 8 ' ' '
j t t i 9 e * !
$ t t e s i !
l 6 i j i i
{
a i t
i i e i !
! ' ! 'i't i
' ! ' t i i t *'
1
! t i e
.i i i t 6 6 i e
, I i i 9 6 6, t l
- I 9 ! I f f). c]
I ! e e
{ {
(,
i 9 l
8
' i
! t i 1 9 f f f
f f f i t
i I 1
! l ' l I f f f !
t i
i i ! i i e i i e i i i t i I
i t i i e
i e i
l i it ! !
I r
? ' i i f i !
i i i t
i i i
i i i ' t i t
3 ' ' ! !
' ' i I
i i i
- i i !
i i i t i e1 i
. i,.
i 6
i i i
i.
i, i, i. !
e t i e i i
+t i
l
' i l ' I t ' '
f I ' I I t
! ! e I I I I t ! t I
t i I * '
' t *
' i e ! i ? I f !
t
,e t i i,
t #. t i e i. 6.
- i.
. i
. ! i f
,,. i i i,
i,.
. i e i, i,. i i i
! t t i !
i '
i l i i i i i t i i * *
! I t t ' i t i,
i i i ' ! I ' '
- t t i
I ' ' ! I t f f!
t ! !
! ' ! I i ' ' ' ' i ! l
! I f f
!4 ? I '
I !
! I f Ii i
i t i i l ? e !
! t i i I 6 !
t t !
t i t i ' i 8 8
f I '
i i ! '
( ' 9 6 l I ' ' ' ' t !
- 6
- i i t *
' i
- i i i t i * '
' ' ' *
- i <<
' i * * * *
- c
. ' U {]
I i ! !
I it t i t i e
i i,
e g
- r e
e t e I
i i l, * !
,i i e
' ! ?
i. !
i i i ! !
a I
- i
' i ! i 3 i
i i t I i
! I f f 1
a t
p { t i
, e l e i j l
l i
t i l f
' I !
i e t )
I i 6 6 i j e e i !
- i t j
j i e i, e a e !
r i
e } i i t !,
e l i i t. i i e i
- t ! ! i i e 1 ! I i i i
- i ! i t 4 i
!, ! i t ' ' '
' i i t e i i
- i e i i ! i e
i e i i
i 8
- e i t
! ! ! r i t
i ! t t
- a ! t a i a
- ! I e i
' i t i ' i e i a t t *
! i t i e
i !
i e e
' '
- I i
! i
! t i i i=@
_a i
' ' i 8 l ?
a ' I r
i !
' i e
'jp3__' t
-I ' ' ' '
{'
Tf N '"
- H
- a""
i ""
JX57 ' i o.' =r g,g,,q bg b' M 'IL n
"to n 'te
- Qn f s _, ina i
i /
v si W
Wo s
n
!9 w7
- /',
. i i e i i! i v7 ! I i.
i i !, ! ! i i r
.
- i i i i e r e i ! i i i i i i ! i i ! ! t i i
. ! e i i i i i
i !
1(
l
! I i f ! I 8 ! f
' 1 ! ! !
! ! / ! ' f '
t '
' ' ' t i i t !
! ! ! ' f i 8 i j /! l l 8
! ! 8 f I t i e e
i,,
e ii
?\\
i !, ! '
! ! 4 !
8 i
i e. !,
t
,. i !. i. i
,A 3 i i e i,
i i i
A i
. i 1 i ii i i
, i i
- * !
- t 6 i
. t ' *
- i
/
- s c ' '
- e t ie
+ ' ie
~ 10. []
i
\\' t
'\\
iiii i i i t
i i i ' t i t/-
i i e
! i i,,. i i
i i
i 9.'
. t
, i i
\\,..
- 4. i,
i i... s e i,
i ! t I i 1 ! I f I
- i t
! I e 3r ' i 6 i
i
! I t !
- i t
a i a 1 i, t a i
! t 97 e
i e e ! I a. t i 9 e i t,
, e a i
9 i
\\i 6 +
t i e i,
~ ' 8
' t i 3( _
i ! ' ' i I i/? I
- 1 ! i i i
ef ' f i 8 * ! i !
f e q e i
l i
?
/t I t
! ' t
' t t e i
i i i
i
(
6 t
I I i
t I i A i! ! ! t i e
i e i !
1 1 1 1 ' ' ' f
\\t A
- ! t i t I I ' l l t 1 i
! 9 i e e t 9 e j e
}
i 9 e. e e i ! ! r
! ! i i ! '
! t ' !
i W ii!!
! ! 1 e i i i 1 I *
! I i t
- a i ! t i t i i i !
i i ' ! t i i ! ! i I t
i i i, e i ! i t e i e i i i, e i i
i
! +
i a i e i, i a i -
i i s.ii
' *i i
' ' ' i ! '
i e i e i i
- I D.cl
' ' I i ' ' '
' ' 1
' i
... i., !
. i i ! e i i i
.,. i i,
r.
' ! f i '
II! !
i 1
' ' i l t t t 8
i l I
- t ' i *
! I I
Q I ! l l I '
? I ! ' !
i ! '
- i 8
8 I
8 i i +
i ' i t
- t i
i I ! l
! I I
f
! 8 J
' I
,, i,
,.,. i,
..,,,, i i
,, i 4
,, i,,,,,.
i I.,,,,
.,, t,,, i
, e
. i,,.,,
i t !! I e !
t ' ! !
I1 i !
I I e i i t ' * ! I i i t ' ! e t
' ' ' ~ 8 8
?
[t I i ! i r
! l 6 i 8 I '
! 1 !
I i !
t
! ' t ' '
8 i t I i !
i i t
I t ! !
i f !
I
, i i...,
.sc,.c,
,, i,,
i..
i o_.
un m Suaw.-
!,i l
ll.',
- li;!'ill
- l
CONSUMERS POWER COMPANY i
- ll
- il : 'l:l
!;l l,';
MIDLAND UNITS 1 AND 2 i ii, 4
..,4
, 6 i,
e SERVICE WATER i
PUMP STRUCTURE j
SOUTH WALL 1
1 i
FIGURE SWPS-8 a
t G-1986-79 L
SEISMIC 1.OAD IS BASED ON THE DOMINANT MODE IN THE NORTH-SOUTH
, i.
sow 1 H ~W% L. -
,,, 'i. i DIRECTION WHICH CONTRIBUTES 89%
i
. i i
I N VL A hlir ' 5 H EAK PORa, f 3 nv-)
i OF THE TOTAL NORTH SOUTH FORCE r
~
. i i... i..
i
.ii..,
, i WElO K,h],,,_.,,jdMR o f'_
F J MENis i
... i
, i,...ii i
X M KIlC IHAP
..... i !
..i.
., i
, i.
i,,,,,
, i
. > i,,
i i ! > i I
I i i i ii e
o
.O PRE LO A D i
i
. i I i
. i i..
.ii.
i.
. i.
i,.
6
.> VlaIMir L.G A D i
i.
6 i i..,..
i i,,.
i.......
,i
, i,,
,,,..i.
i i
e 3..i i.t t
TH.U Tbl510 M f Y I t'M. NT.
I
-r l., !
.I
! l
,, 6 9
l l j
, k e
i i i
, !.. iI, I !
.. 6 t
.. i
... i...
, i i
l i.
iI ii,t,.
i.* '
. i.,
i i..,,
i i
i.
,i.
i i
,4 i.,,
4.
m.o
, 1 j
i
., i i,.
... i i, f f
' i i i
i i i
, ! i
. ! i,
i, 3
,.....,, I
.......i
,,...,.i.
i4
.., i
. j i,,
t i.
I l 8, f
, ! l !, !
4
..,, i,.
... i i i mo i,, t
- t,
i.,
t
, i,,
i
, t t, i I
, i!,
I i I i,
t I
... i. I,,.
i.
8.
. 1 3.
' ! ! l I e !,
, !. i ' i ' i
'. i, i,,
i. 1 i
I 4
1
, i
.,,, i i.
, i !
I
.. l
, I
. i,,,,
l I, !,..
! I 5
I i !.
I
., l.L
, !,, Ii l i
! l
. i, -
., w/ i.
.ea i.,.s.
.d.
22
.,en 4 D..'.IW __;Q L
___,.J 4 gry, v..
t.
v "T PLA i t.
e 3 s se.
, (, o
, g is
, ss g.
A A
====~ w t n
.?
, ?
4ggg i i i f..
,i
.. i i..
i 2,i
.- y m
.../
i i
E.T
/
'/
..... i i,....
n i
/
.\\.
i i i ! t
., i !
" I O. U-'
,,, !./,,,
. l.,, ! ! /
l..
. t
.\\
t i,
i 1... -
/..
., i x i 8
I
' i,
14,, i,,,
i i 'le" I.
, N..
l I I l
n..,. -
i iiv 4
, f i 1 ! ! l
, I l
!@ M, t.
I i
., i,.
.i i.
. e t, i, i i
,,, ! !/
. i
.. '.. i,
, i i i,
!. i.,,. i i
i !
l
! !, l
, I... I i i
.i!
i I
,f
...,, i.
i
- i.,,
,,,, i, i i
.o i,
i.,
i, i.,.
,,,,, i..,
mn
,94 ?.
I ' !,
.,i1
... !. i I
, I ! /, !, !
i,
, If I
,. 1 I !,
, l
, I,l,
t
, 1,. i
,,,, i i
, i i i,, i....
. # ii,,,
i,
i i
i i I i i
! i.
i !
l !
i,... '. i
. t i. ! !
4 i i i,.
i i i,
i,,,
i i,
i
,,, i l
I l
t i!
' 8, i... !
,, t,, i I i is-
,l i
,m' n 1.
i
.. i
,. i.,,,, '
.,4 4
4 4,
[UMfgMjQ%.
t.
. ! i, i.
i t.. i,
i, i i i i i, I i
i I It I
!I e
- !.,i l
i l
llll CONSUMERS POWER COMPANY
,, i i,
l'.;'!:',l
- ; ll' !
ll;l MIDLAN UNITS 1 AND 2 i
,, i,,,
i, i i i ie i
. i ii..
PUMP STRUCTURE i
I i
SOUTH WALL i
i I
FIGURE SWPS-9 e.-.
,t G496640
(
SEISMIC LOAD IS BASED ON THE DOMINANT MODE IN THE NORTH-SOUTH
,.. i,,
L
~f L' L e
. i aquat.w DIRECTION WHICH CONTRIBUTES 89%
OF THE TOTAL NORTH SOUTH FORCE g g g g g g g g p g*
' - i i i 6
.., i..i e.
_ aF-P 615 i t
., i..
VM'l lCA L l_I Mk i,
., i i e i, i...
+
i
... i....
.6
. i,
i
.., t r i i
t....
. r !
A X
X 57 K h IL, LAM D
~
i t
'i,i i
i!..
1 i i. Ii
.i i'a FME L.[,jA D i
O
_e
. i t i..,!
r i i
! i ' '
i i
. i. i, t i
t i. i. i i,,, i.
i i
, i..
.. i
'5 tA 5 M I C, LDAT)
. i..
r i '
i '
1 i t,
l t t t l I 1 ! l
! ! !, I f l I !
I I I I l ! !
1
,1 I '
l I I I 1 i I au
... v i,,,,,,,.
_IYD ilvlDME hll i f i k PT I PT I
' i
- i i
i i.'
.M.O rUW i,
.,4
,4, j
9 i
) t
? !... i t
.t
}
I j,.
i. t i
l 6..
6 i
'.t
' t t !
j i
$ l.. !
i i
i i l !
t i j l l
l t
I i f 1 i I f f I I i f f i I f I i
. i i.
i
,. i
, e i i !..
.. 1 i 1 9 ',
l
..., 4,.
1...,,
. i i
i.,
i zo.y t
t.
I t
I t.
, t t,
, t i.
} ! i e i ! t i !
I i i
l i, ' i I..
6 9. [.. !
t i I
t i ! t I t i i t i.
t 1 i
! I t
i I
f, ' t i
f I f ' '
I ' '
. i..
i !
! i i i i
t.
i e
e i.. I t i
a
' r t
. i, q {
. t ii Q ! I f. ! 4 t a
. t 8
I t
. I i t 8
! l. !
i 1 !
4 4
, i i
.,, 4 4 i.
..,.i, i,,
,,. i.,,..
i
.., i
.,,4 i
e i.
... i
. a.
. 6 i i.
i.
. 4 i
, t ln, n i
i,..
i,
I i, '
t i t,
, 6 e i i i i 6 e !
- I 8 t,
i i i. i 6
i i
t, i,..,
,. i.,.,,
i,,
,.. i 4
, 4,.,.
i t
! I ' ! ! ! I ' '
f,
.. i.
i i
i !
!. i I t '
8 i
! ! 1 I. 8 8
i
,, i,. 4 4,
4,
i..,.,..
1
.. i,
1 W
s'
' ' * - *=
/"
3s h
-' : ~
0,0
-c
+
e i
a M_A i t; a
a h
it.
, b,' b ; a
%, u.mun
,,/
ip
! l !
I i i f ! i l ! I i
! !. t '
! ! ! ! 8 1 ! ! '/
' 8 '
1 8 ! ! '
' ! ' t ! ', !,
' ' ' ' ' ' l ! '
I I I
I f i '
i, E! I ', ! ! 8 !
t i I ' ! l I, !
! !, '/
t i i t i 1 1 * !
i/
' t ! ' ? ' l 3
i f ' l ' ' '
l 8
t,,
- \\
i.. t I t
i f
i '
! l !
~ l
.. i....
./
1,...
i,,
i,s, i i 4,,.
x m.n i N ! t '
,t i
i ! I
?I
. I !
! ! f f f f
i I '
?
I !
.., s [
j
/
. t l { l t
., e.
8 t f i i \\' l
. i ! !
l i
., 4 x;
i.
{ { { l
! t }
t
. i i.
8
. 1 l t t 6
? I i
! (
t i ! l t
/
{
s n.
' i ' ' ! !
I 4
, i.,
1,
i
. i.
i !
- f f
i
. ! i i
i
?. !
f f. I %(
, ' t i i ! !
i i/
I I ! ! I
' i !
. i
' 8 '
' I l ! i l
\\1 i f I 1 '#E
, 1 5
' 1 !
. ' I t..,
i ! I f
?
- f I I,'
! ! ! f f i f
' ! I ' ! ' '
! '. t. !,
M
' i ' ! I th ! i i !.
. i i !t i i
!' n[! 1 l 6
j j. j
{ g 1
( { j j l j i ! !
j. ! ! ! i. I g 4..... j i.
I I.
! i 5
t.
,, i
->,,.y t
i. I f I f i i. ! ! 8 !
. I i
! ! I t ! ! ' ' !
'. t i ! ! !,.
. l t. !. 6.
t i t i.
! i
' ' t ! 8 1 !,
f i f f I l i I t I ! 9 f 4 1
- 8 ?
. i '
I l! ! ! 8 1 ! ! I I i i I f 1 i
f i f
! !. g 1 g
. t.
., e i {
j.
1 I f i
! t i !
i i l
i i l l !!
Ii t i a 1.
?
I t t 8 '
! ' I i ' !
8 t I I
! Iiii I !
! f f ? I ' ', ?
I t
- 8 f ! ! '.
I !
t
! i !
}
+
' i ! ! I
' ' 8 i ' ? ' ' ' I I i I e, ! ! ! l
! $ t i t 8 ? ! i 8 f
! i i
i I I
i t i a
! I i i !
, t t
i i f
i _ t 1.
t ' t f f. * '
I !..
' i,
i, i l ! l 1 !
I 8
i t
!',I I I ' I i
! I i f f 6
It i. ' ' !
' ' ? '
8 i 8 '
i i i I ' 4 1
! t
'I i '
. I i,,,
f f i !
t i
I t ~ i !. I I t i ! '
'. ! I e 1
9
' l I
i.
1 i
t
! I f r
. t I '
f !
i
- 3n.n
, i i ' i
' i i i i
i t
ma rr_ Angg ugdgf
. ' ! ' i,
, i.,
i i i !
i I '
i
, t i. t i '
!!ll1
- !; ll;;
- i l
CONSUMEFIS POWEP. COMPANY l
l
- lllll
.:;ll;l, j
MIDLAND UNITS 1 AND 2 i
i i i,
i i
,.ii.,
r i i.i SERVICE WATER
. i i
PUMP STRUCTURE i
SOUTH WALL i
. i..
t FIGURE SWPS-10 p._
G-198642
\\
~
75 5
3 5
/
60-$
?
E 5
E w
< _f 45 u*
30
/
5 f
/
15
. g/
0 0
100 200 300 DIAL READING ON CN-973 CONE PENETROMETER (pounds per square inch)
CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2
"E" r o s"Thi?El E
"#c'"21!st."??!eins?!
PENETROMETER FIGURE SWPSi11 G-1986 53
(
l L
60 Da
$<o e
45 E =g oc 5;
m-Y
$ in 30 5 m ba
= le o-3 15 P
u)*
4 E
cr 0
0 10 20 30 40 50 DYNAMIC CONE PENETROMETER RESISTANCE N (blows per foot) 43 l
l l
CONSUMERS POWER COMPANY MIDLAND UNITS 1 AND 2 RELATIONSHIP BETWEEN ESTIMATED ULTIMATE BEARING CAPACITY AND DYNAMIC CONE PENETROMETER RESISTANCE FOR A 6-FOOT WIDE STRIP FOOTING FIGURE SWPS-12 G-1986 54
V EXISTING NEW EXISTING PIER PIER PIER LEAN CONCRETE LEAN l
LEAN CONCRETE MUDMAT 1
CONCRETE MUDMAT 2
18" MAX ll ZONE OF ZONE OF CONSUMERS POWER COMPANY INFLUENCE INFLUENCE MIDLAND UNITS 1 AND 2 ZONE OF INFLUENCE OF ADJACENT PIERS FIGURE SWPS-13 n......**
.