ML20052C019

From kanterella
Jump to navigation Jump to search
Slide Presentation Entitled Assumptions for Thermal Analysis of Preamplifier Unit.
ML20052C019
Person / Time
Site: 05000470
Issue date: 04/14/1982
From:
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML20052C013 List:
References
NUDOCS 8205040269
Download: ML20052C019 (36)


Text

,

ASSUMPTIONS FOR THERMAL ANALYSIS OF PREAMPLIFIER UNIT l

. CONTAINMENT TEMPERATURE VS. TIME USED AS A FORCING FUNCTION

. NUREG 0588 (EARLY VERSION) ITEMS

' USE LARGEST POSSIBLE o Q = (AS PER NUREG 0588)

CONVECTION Q = 4*UCHIDA

CONDUCTION Q = 4*TAGAMI CONDUCTION

. HEAT CONDUCTION IN WALL VIA A SUBROUTINE IN CONTRANS CODE i

1 8205040 %9 R

CE calculated containment response Generated by CE SGN/CONTRANS Codes pressure and temperature vs. time CESSARF generic mass / energy release ,

Arizona containment data - _

s ,i - 400 Vapor 7 max = 402 F I-

, l Temperature 0 80 seo,. i i

l. .n  !!

. i i 50 / '

i ,.

? ' ' 300

= 43.3 psig I '

P max 0 80 sec. '

i u

j l.lI

  • i i

i i

e

i. .

. . . y - i l l

40 I' ' i ' '

, 200 i i / To .

4 a I  ;  ;  ;

'/ ! / 'i. '
. ,-

!.!i -

c i

'  : - i .. ':j .' . . i i: l

  • G i l l  :  !

+

9- .' i.

m

~

30 i

?

'" \ '

l 100 E!

O N

i .

E a

Conthiment i I

. i ij, \ h. !;,i .

g Pres sure . g

' .i \

.  ! . . I, E '

$ iy h

l i l l i

I l .

I  : t\ -l 20 ,

, 3 , , , 3 0 I .

! :I l i n

,1 ii . i g

I!  ! -

. f l l .l

,1 'i i;

! '. i

' l' l

l i ii; l. llt 11 10

! i i

M l ii - , j!- -

i t

. .! ~.1 s' pray! tha!ij l  ! - '

1 I on.at80$ejci

~

8 3890 gpm a i l l  ;

' . a

.l' l.

. , i .. .iI

. 1 I a 0 ' ' ' I I' ' ' 8 i8 I'I 8 I I I ! I 'I i

l 10 100 1000 l TIl1E FOLLOWING BREAK (SECONDS) l l

a .

)

I l

1

- soo v

. - -a 1 pon

-s .run. gi y ;;; ---

suur 7
s. . sess F

, eyuc \

g E

pP,,)-..iesso ,

y e ise,sse suw Tawan4 Tune I3o m

k 100 I

E E N enassuns l r

  • i ,,

_ , . . .iw om e so secoues t e i , ,i,,, , , , , , , , ,

to 100 1000 10000 tasa pou.cwiwo sa:Ax maconos

~

l

\- .

Bechtel Palo Verde Nuclear Canerating Station FSAR CONTAINMENT PRESS'JRE AC TI.wJgpA7;gg 3tESPCNSE MSL3 (SLCT) WITH ICSS CF CNE l

CONTAINMENT COCLING TRAIN

102'% power 11SLB 8.78 ft'2 (worst case) . .

temperature vs tirne I -

.i --

8.g- e i I 4 1 '

s 's - .

I i  ! 'h

, e l

a  : .: : ,

500

! ' ' f ' '

I 8

l l

g I  ;

4 0 a ?

! . . I 4 e 1 8 e 8 . e 1 l . ee e g l  ;

' ' ll'

.  ; l i l l1 t

. l..i . ..

. a tA .

400 y

Contaipment vapor, temperature i e  :,  ;

, , igI l

, l- .

4 ji.

'j; l e

C  ! .  !  ! .l j' ll;l ll .f

' l' E o -

i I  !-

3 j i -

com, p" ne .

w 300 .i- _

5 l3 [j Saturati on j/ N g '.

! temperature i ,

y ,

j j ,

-n .

g 3; i f- :lV / . i. ,  % "

r j

f I

i Satur at

9n ,

Q T '4;  !.;

6S .

'.lF '

i .

ria>;Oji

~

/ H-I $,..

SK'A u'r h

i lll$

e -

, ~

. 10e I ' ' ' '

1

. , j , .

-l i ...

'.; ' i '- ; a

! Il l lll a .i i g . g .

.I ,i-

? ,

. , il i

i-l: . l..  :

e g Q  !  !  !  ! !k!  !  ! I_ I lll l l l II 1 10 100 1000 TIME FOLLOWING BREAK (SECONDS) -

i

Ileat transfer coefficient vs time .

component thermal analysis -

(1) per NUREG 0588 - _

(2) with factor of 4 l.:

>  ; l l

i e i 4 i i

,e i lI g i 6 i* ,

. g . g 200 -

- !iI  : 'l I '

  • l.

i

. i l ..iiiii.

l a

i -l i.

i e i e is .

.  ; i ' l' l I C '

! 'l' ' ' l' *

.l

' l. .,

t ' ' l N

e 160 ' -

I e.* , ii 4 1

ll l lI.

! f g egl l, 's  !.

n . f. i i  ;!!- '  :

t i

t; -

!  ! l .l.  ;- , .

i. -

1 120

, i It .-

b I i . . .

I i E '  ! I l If

.l - '

i o ,

', i l l ,l i)

. . l  ;,  ;'

'l, *

,[ ;

It i i l l  ! 'I i.'

i us o l l e t , i; .l i.. lI.

l I

u .

l i . i '; ' i* lj. .:.

l 80 ' ' ' ' ' ' '

i u i * - ". .'

j'-?

' i g

5 )

i  !

l i .

l'b

.h'i.

e R

m - - l l l i

.l. -

I ' ..

l .

l I l l. I'. !l'.el tz 3ll!

i ia 40 i l i ,  :

i ,. e ,ii i .

' I0 rced/Ndo ra 1.l(l ij; !! l Fdrced (1) ' Dchida (2) k!'  !

Ml: .T i

i Convection ondensatio')leiih i Co,nve, ct, ion, . .... .

l - -

t ...al- ie..

O I 8 8 I I I18 I I I I ' 8 III 8 8 85 i '. .'

1 10 100 1000 I

4 2

TIME FOLLOWING BREAK (SECONDS) .

I

. _ , , . _. __m_. _ _ _ . -

e, Component heat flux vs. time -

fluREG 0588 .

(convection, Uchida condensation Tagami condensation) ,

.g l

  • it

. t i .

. .. i, ,- 1

. . i.

. .. .i, .i

. j; ' 8

. Ii 4 . g

. l...Ii

. . l r .

. r.

,l 3

\ .

l11!

i l

?

?

i 1

! i . l n .

1 ~ ,

l  :

' .i.;

I i l.

I . .

l t.

o i . ,

i .-

i.

i

.i m .

l . l . i en l .

2 i s

=>

g 1

i l i I i .i:i' i.'-

. ,I i.

i i i. .i. .

W .l l-

?

x  ! !i

! I i 'l Ii l I  :!i .

$ i .

w I

1 u

i i

i e

i

.!.4lsliu i

i i i v

.t.

I:, t .:

i '.;

i "l, u- .

.i i e p .-- i a

.i l t.  !.! i

,t.g.i . .. ei- I

. a .

. l , . ,g

. .l .

i- I  : i ll; i . ; .

i  : . i l l l .

1. .;. .

, i  ; i .

i_ i- i i <

i 0

^

  • .s s. i i i 1

.i

. l -l . . . -  :. .I i i i .

forced -

Uchida I ii l

.! Forced /tiatdrall!! ..-  ! .!.

Convection lCondensatly Convection i .

l '!

_j i e if iiti l l t Il e iIee i i ii-'Iti l 10 100 1000 TIME FOLLOWillG BREAK (SEC0flDS)

i 1

. L 4

. i

~

r e

i f

i l

p m n a

- - P e

r d e

i t

o t a e a u q

d l E

- i u s s n n I

n I

- i o

< . t c

- u

- l d f

0 n I o T C A

1 t f

R a O

e H

Fl l

I e h

t L

E a D i 01 " v f

4 R / s E 1 x i I

F e )

I t

L  : ,

P1 x N

E

(

T R

P t

, n x e a m) nP 4 m

i a ,

tT F F n( s *

  • o e - -

. C i t m

_ t f b r 3 l e r t /

t h f u o / / t r u mB P t b B l 8 m 0 u 1 9 2 n 2 6 i 1 1 0 m

u = = =

l A k f p C

l

-,w Containmer.t vapor temperature, ,

component surface temperature ,

vs time

- ~

l.:

ee t is a e i

,i e

4. Il i * .

8 .*

.i !

e'

  • I 500 -

? '  : I -

i T l i.-

max

=l402.*5Il

i. i:

i n .

i ll.: ,

' a i * . I el

' e I 8 =4 l l' l

.;.I' -

4 400  !' ' I i I

, Contqinment vapor tempdrature j

38l r, l

'j' ,,;

.j, ,'

q.

i'l; ',

c I .

l .  ;' ji jld .

I' i o  ! N  ? -

J ,I.o ior ir t -

w I '

  • I,' .l

l 4 300

/,-

j a -

,yfl, T max

= 298.7 i

il,

- l, ,

.,n /l .

, s s l 'j Vapor # .,i,

].a O . , , .

i l p .f.

s . ,

i- l i ... ,,

l

'h'.5 j h !'

- Cdmponent  !

!ll .l' p

I Tempor itt n  :;..  ;. i l'

e j ,

h il.i' .!  ;.

.i ,!'-

Ilj;.

i.

li -

l i 100

' . l i  ! ll' l ' ..

. j. ', I ilI l

i :e l

i l

i i .

il

?

l i

.!q l .

.4 . .

-e e 0- 1 I I l I Iil i i I e a l 11 i l l lll 1 10 100 1000 TItiE FOLLOWING BREAK (SECONDS)

ap -'-

!I iir :i; Ui "

1ll. :Ill k;n"Wi"t"iT3'ilFa'E"'i's'i "

'  !"'"A'"'i""'"""""""""'"'"i"""""*9

'l' l

yl! F i gu re 9 msta rest enrameurzen

' hIII$

"hhi.hb , J!j ifij..P" M  % g jjjl "H I

N =

e mviro. nt. ch n.cav.r.g. 7 i h i

( . . .

J

h. p [p] "l"' i"Il!ii j!lj g g 1 'l - AnaOE!I8'$'*'ta'Tnment o Vapor

] f!  ; i -- e H

iiy l r i ~

gii i;

S.$j

=

i i h- ~

l lIni ;l' ji uil l0f.!, $I j

iu .i,i g'nil! NI!! fOll !

i 1 I i i

**** ' * *"d 21 1 'iull!

p $S . -.T p i I -

1 I Ili ! I Iil il 0 l 0-Sh!.1d som sure.c. T A H.

i l' il til lui l lI I i i l lf I

' ' Hi j i lli i

I O O -er===prits.c sorr.c. v/c n.. a 1 I [,y if l

-lp!sd'h

! 'Ir (i p'd. jI,{ii'  ! I ' I I I f ,i ch!

l j

l i h E!' ' id i jl l i

, ll l

i I

l} h i

.ij a er. piiri.e sure.c. 14 m . s

@M; , a- j;;;'p aaaltar c'a==1 wa 22 l

{;4 g  ;

hi l l .

l i ll j

l

-i l

(filgh Volt.g. Mossitor) '

j$4~

i k' 3 0. y .!

i. o
;I i

Ill I gl1 i l e

F :1

? nooitor ch..n.i no. Is k]

l 'g ,!ll3-

[jd (contin ity nonitor) f:. . Il !i h ,

l i l i ,

I i f ,+t-Analytical Component Temp. I mj I

'1 0 % CN i  !$ ]i[ffl M g

f I

ll' Il l ! I 1

h [

llp . ';i, . i i '

l h]

hiI k[ l"I(i!!lif]

i e, .,

jlj ji.I c

, / .i d) s l .

I, l p

!Ii!

% i I.a  !! Y [i. \ , i j ie.. .., j hll 3 i l, l,q h m ,,.q j }l , l, ll. ! b  !

h;i I I I il l qt; .

v i

'i? '. con l tainment Temperat i

4 i

k.; h U l ure i i }'il <

!I b,llij[i~ ij 2 h

L !

bp!fgt.Lyb l I '

y:il,t!,sii..i rinl i i , g ,.

i n[!!'n i {i I

u ll I

'! ;i f,p%

j N g'l? I "jP " "t remn rature in iI si@i i

i s. lii . -

ij ni!

o llllIlj ', ,.j i ti i't V i .

j

[l l h@i w i.@.l q ij l1 1 i I g ;g il i '-

lij li 1 I 1 i ' ' ' '

hk S;)ll I Il ii lI li

.I !D Idi f

i j

'I Y N; b $ !

. i s

0 h k. h ! l lI i

i l i 1 I h@ 3' b hd h m!N mm!m.NMiMl$elSN  !

7~/M E' h MNh.k e m_ h

a

SUMMARY

OF THERMAL EQUIVALENCE 1

1) CONTAINMENT TEMPERATURE VS, TIME IS CONSERVATIVE:

PEAK 0F;;400UF.

2) COMPONENT RESPONSE IN CONTAINMENT IS CONSERVATIVE:

PEAK 0Fs298 F.

l 3) MEASURED TEST RESULTS:

PEAK 0F;:3000 F VIA THERM 0 COUPLE MEASUREMENTS

4) CONCLUSION: THERMAL EQUIVALENCE HAS BEEN DEMONSTRATED 4 IN THAT THE COMPONENT HAS PHYSICALLY BEEN HEATED AND TESTED TO THE CONSERVATIVELY CALCULATED CONTAINMENT RELATED TEMPERATURE t

I e 4

i

, _ , _ _. _ . . _ _ ~. ,

i . ..

h i

i ADDITIONAL NOTES

1) THE WORST CASE HAS BEEN ANALYZED REGARDING THE f

COMPONENTS THERMAL RESPONSE (LARGEST BREAK AREA)

2) FOR THIS CASE A REACTOR TRIP OCCURRED AT.~e3 SECONDS

! AT 6 PSIG

3) NOTE AT THE TIME OF 6 PSIG:

l

. CONTAINMENT TEMPERATURE IS APPR0XIMATELY 220 F

. THERMAL LAG OF COMPONENT AT APPROXIMATELY 120 F

4) PREAMPLIFIER IS ENVIRONMENTALLY QUALIFIED AT APPR0XIMATELY 3000F; 400 F0IS ADDITIONAL CONSERVATISM t

n

5 0 9

wr,TT R

n g m =m e

-r.

A

E 1 L_J , J h_

G a'i i

l car.r. ar r nr :c.au.t.w.iral.

~ iv- v. - . .e -

'N sin /

.!/

l

+

A v 2

,- M ,

1

. . t h b b N

  • M -

~+-w.

E.

Ih m^- ,_,

-_. tt: ,,

etaMU2GMt;RE VS-S.REl%,ARE.A.,, - _ -

  • '*4=
  • M= w g eeeeg g,
  • m

{ W .- ___.4,

X 1

4 I

APPENDIX B 4

~! ANALYSIS OF UNCERTAINTIES i

. IN HARSH ENVIRONMENT TEST RESULTS WITH RESPECT TO TIME MARGINS I

e i

i 1

9

.b

f OBJECTIVE

! SHOW THAT A HARSH ENVIRONMENT TEST PERIOD IS SUFFICIENT T0 i DEMONSTRATE THE CAPABILITY OF A COMPONENT TO REMAIN OPERATIONAL CONSIDERING SAMPLE SELECTION, PRODUCTION, AND PHYSICAL PROPERTY UNCERTAINTIES.

TEST CASE A SAMPLE ANALYSIS TO JUSTIFY THE ADEQUACY OF THIS TEST PERIOD (AS SPECIFIED IN CENPD 255, REV. 3) WAS PERFORMED UTILIZING THE FOLLOWING UNCERTAINTY METHODOLOGY FOR AN ELECTRIC FILTER COMPONENT.

UNCERTAINTY METHODOLOGY C-E HAS PERFORMED A STOCHASTIC SIMULATION OF THE TEST COMPONENT

, FAILURE MODELS IN ANTICIPATED OPERATION AND TESTING MODES. MARGIN TO FAILURE WAS QUANTITATIVELY EVALUATED IN EACH CASE.

l

  1. # $ e 9 4WM M

k i ,

J ti U RESULTS l:

1 TEST PERIODS ON THE ORDER OF 10 MINUTES ARE MORE THAN ADEQUATE o

9 TO DEMONSTRATE THE SELECTED COMPONENT WILL FUNCTION AS REQUIRED.

e l'

i

/

5 i

\

s h

~. ,

s

.\ \ s

, r FAILURE MODE MODEL DEVELOPEEfjI CRIT $RIA

1. CONSERVATIVE 2.

CALCULABLE .,

3 4

I s

I.,

2  % .

D

'." , \ s

- 3 M

% 1

-(

i

., j i

J

" DEFINE Tile PROBLEM '

a .

l LAtlDITSiOBJECTIVE '

\/

IDENTIFY THE g FAILURE' ,

MODES ll \/ -

I DEFINE THE FAILURE MODES W TO TEMPERATURE PROFILES FOR BOT __,

1 ACTUAL AND TEST CONDITIONS .

\p 1

IDEllTIFICATION OF KEY PARAmiE DEVELOPMENT OF ANALYTICAL ED EACH FAILURE MODE (ACTUAL & T' DITIONS)

\/

i STOCHASTIC SIMULATION , -

ETHODS FOR EACH MODEL t

V l i '

D!

INTERPRETATION OF g

l .

TO TIE MARGIN) l k

e i

I ._ ~=-.

j s '

- I, y s,

I CIRCUIT WITHOUT CONFORMA 8tE SKIN

' l, a-

  • z ".:.

Q s f: ,1 s ;q -

MhYn-s w'

I CONFORMA 8LE COATING WI PLAM FIGURE 11 1

' INTERIOR VIEWS OF THE CIRCulT SOARD HOUSING i

l

~ ---

'T

. H. . :y . . > . . .

7.5kn 7.5 kil 7.5 kn 750 E1 :  : Ap g , NM

q 0.032 pf ::; 0.032 pf ;q 0.032 pf -- 0.032 pf l r

I t y I E5 7.5kn 7.5kn 75G 75G 7.5kn T,M

,M' ,M' '

%M E2 : M ' 40cv

~~

0 .032 pf I 0.032 yf 0.032 pC E E 0.032 yf E 0.032 yf l

U U f f o E6 e

7.5kn 7.5 kn 7.5 kn 750 E3 3 3,9 . pp o.032 uf ; o.032 yf ;; o.032 pf ; 0.032af

- y U y 1t E4 0 1

FIGURE 10 CIRCUIT SCHEMATIC FOR THE LOW PASS FILTER L y. .

j no e =

w,,w.y-_.* _ -

El EQ = 22.575kn DEVICE C V//

\

. i ii REQ

  • MMU 750 E5 E2
%W (.gooy)

, DEVICE O M' ,

4 REQ = 22.575kn M Y K:E O 'M-I i

' FIGURE 12 SIMPLIFIED HIGH VOLTAGE FILTER SCHEMATIC i

i

e TEMPERATURE EFFECTS ON ELECTRICAL PROPERTIES MODEL INFORMATION FAILURE CRITERION CIRCulT OUTPUT VOLTAGE DROPS BENEATH 500

, CONSERVATIVE ASSUMPTIONS 1. CIRCUIT COMP 0NEilTS OPERATE AT THE SURFACE TEMPERATURE EXPERIENCED BY THE COMPONENT ENCLOSURE B0X.NO CONDUCTION OR CONVECTION LOSSES ARE INCORPORATED IN THE ANALYSIS.

l t 2. UNCERTAINTIES UTILIZED ARE CONSISTENT WITH MAXIMUM VALUES SUPPLIED BY THE MANUFACTURER OVER THE ENVIRONMENTAL CONDITIONS CONSIDERED IN THE ANALYSIS.

3. THE THERMAL RESISTANCE OF THE ENCLOSUR OUTSIDE THE CIRCulT B0X IS NOT INCORPORATED.
4. THE THERMAL CAPACITANCE OF THE STRUCTURE TO WHICH THE COMPONENT ENCLOSURE BOX IS ATTACHED IS NOT INCORPORATED.
5. THE THERMAL CAPACITANCE OF THE I

CONFORMABLE C0ATING AND THE RESISTANCE TO HEAT FLOW ARE CONSIDERED NEGLIGIBL

O CONTAINMENT q ACTUAL TEST TEMPERATURE, 15.F MARGIN I SPRAY ON ,,3 400.

hu, --ADEQUATE TEST I TEMPERATURE .

CONSERVATIVE PREDICTION OF CONTAINMENT VAPOR TEMPERATURE

]

300 . CONSERVATIVE MODEL l OF EQUIPMENT SUR* ACE TEMPERATUME USED FOR TIME FOLL0t81tlG CONTAINMENT SrPAy

. INITIATION

$P ACTUALEquiPMENT -

r.
  • 200 . I

. SURFACE TEMPERATURE AFTER CONTAINt9ENT SPRAY INITIATION ,

!  ! THERMAL EQUIVALENCE PREDICTION ,

l h 0F EQUIPMENT SURFACE TEMPERATURE 100 .:

i I I 10 100 1000 1

. . t. SECONDS , .

FICURE 2 TYPICAL TEMPERATURE PROFILES FOR ENVIRONMENTAL QUALIFICATION TESTS

9 M0ISTURE EFFECTS ON CIRCUIT OPERATION MODEL INFORMATION FAILURE CRITERION CIRCUIT BOARD TEMPERATURE DROPS BENEATH DEW POINT TEMPERATURE IN CAVITY.

CONSERVATIVE ASSUMPTIONS 1. FAILED OUTER SEAL ASSUMED ON COMPONENT ENCLOSURE B0X.

2. ALL M0ISTURE DIFFUSION THROUGH CONFORMABLE C0ATING BARRIER GOES INTO CIRCUIT BOARD CAVITY.
3. NO BENEFIT FOR THE OUTER ENCLOSURE l

AROUND THE COMPONENT ENCLOSURE B0X WAS INCORPORATED.

r l

1 l-

1

\

OUTER PERMEA8LE BARRIER X 9 L

= IMPERMEA8LE WALLS  :

INNER PERMEABLE BARRIER D1 \\\\\\\\\\\\\\\\\\\\\\N l -

[ EQUIPMENT l l

l FIGURE 3 SIMPLIFsED MODEL OF EQUIPMENT PROTECTION

. .,. - AGA!Mri MOISTURE DIFFUSION l

l

' ' ' y_.- ._ , ___ __,,_

TEMPERATURE EFFECTS ON INDUCED MECHANICAL STRAIN,MODEL INFORMATION FAILURE CRITERION A STRAIN LEVEL 0F 1%

l

CONSERVATIVE ASSUMPTIONS 1. ANY STRAIN OVER THE FAILURE STRAIN i CAUSES CIRCUIT FAILURE, IN REALITY EVEN IF CIRCUIT BOARD TEARS AT l

STAND 0FFS - NO CIRCUIT FAILURE IS ANTICIPATED.

2. STAND 0FFS ARE ASSUMED NOT TO BEND OR DEFORM.

A

3. TOLERANCE ON CIRCUIT BOARD PENETRATIONS FOR STAND 0FFS ARE ASSUMED NOT TO EXIST.

! 4. CREDIT IS NOT TAKEN FOR THE THERMAL

' CAPACITANCE OF THE STRUCTURE TO WHICH THE COMPONENT ENCLOSURE IS i FIXED.

I i

i I

4 1

l

. I.

t i

g, i

t t

l!

[! hMW\WW\WWxW\WWW\W\\\W\']7

/ ,T 7l/ - -

f ciRCuir ARD l

/

/ _

n,.

Q CIRCUlT BOARD ,

/

151

/ I I ALUMINUM '////M///

f////) V//////

CIRCUlT ENCLOSURE 9

l3 y = L, (1 + aC8 6T) AT'(g ToC8TId ;

i

'/////////////////////// '

\q L. (1 +.,t an ar ITo Tsuto

'f+

. I.

FIGURE 5 SitAPLIFIED THERMAL STRAIN SCHEMATIC l l l

1

4 l,

' STOCHASTIC SIMULATION TECHNIQUES EMPLOYED

' Y=X+Z

= +A BENEFITS l

1

1. REALISTIC RESULTS
2. N0 SENSITIVITY ASSUMPTIONS ARE REQUIRED
3. NO LIMITATIONS ON FUNCTION FORM APPLICATIONS TO LICENSED UNCERTAINTY ANALYSES-
1. CALVERT CLIFFS RELOAD FUEL SAFETY ANALYSIS

(

2. ST. LUCIE RELOAD FUEL SAFETY ANALYSIS

'l

3. ARKANSAS RELOAD FUEL SAFETY ANALYSIS i:
11. R0D B0W TOPICAL REPORT l

- _ _ _ _~ _ _ _ _ . ._ _ - - . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _

---____[---_ _ ;- - - _ -

-- -- ~ -

y _ _ _ _ }_...-. . . . .

.L _ _ _ _

.-- -- ~

FAILURE V/ ### FAILURE ,

/ //

4 1

~ . , /// w ,

95%

l i CONFIDENCE l INTERNAL .

USING TEST TEMPERATURE PROFILE 4

SHAULATED

, SYSTEM 95%

VARIABLE CONFIDENCE

. INTERNAL S

i l

USING THERMAL EQUIVALENCE TEMPERATURE PROFILE

'4 i t l

PRE-ACCIDENT Go 1

~

CONDITIONS t, SECONDS FIGURE 9 PROFILES OF A TYPICAL EOUlPMENT CHARACTERISTIC FOR THERMAL EOUlVALENCE AND TEST TEMPERATURE PROFILES

e 4 t

1 2000 SIMULATmeds e

O

2 t
.

t um 4 MENE I

NNME a

100 -

s w

4 i IE is h

I.

g nu ah ,

4 IE lll

( I4 EE a m gg

i ,

\

1 Es eu I 4 l}

l

.P E

t I

N 4M FIGunt N TYPM:AL HtSTOGRAM OUTPUT FROM $4GMA l *

  • 1 l

l P"---w' v - -- . - , , __ _

. . - ' #*, r#

UPPER 95% CONFIDENCE LIMIT

' ~

h AGE 4 -

l'

\. LOWER 95Y. CONFIDENCE LIMIT 600 - .

400 -

FAILURE l j ,

l .

200 -

)

n n

n a

T,SECONC4 .

FIGURE 14 ,

SIMULATED OUTPUT VOLTAGE A3 A FUNCTION DF TIME e

e rw- w-- , - - - - -w-- --w-- s-gw, ,ww-,----_..-_.w-.w---.-,y--3,-----,,_% __- -.,-,e.m __y ,___, , . ______ _

150 - -

I

. 4' i

l 100 -

95% CONFIDENCE

, LIMITS 50 . 1 -

I 1

i f

I - .

l

& C, > 0 I

  • n a

g '"

" =

i g

NNNN t, SECONOS

\\ \\\

I 44.4 N\\\\\ FAILURE

~ .

FIGURE 16 l SIMULATED OtSTRNIUTION OF MOISTURE EFFECTS (AT) AS A FUNCTION (ONE MOISTURE BARRIER -THERMAL EOutVALENCE TEMMRATURE MO I

- - - - -  %= ,w.. -- _ - -,_ _- _ _ , _ , . _ _ _

4.

e 0

e 9

4 9 8

e h

e W

l i

I I

l l 95% CONFIDENCE l lI

! g LIMITS

j' , , ,

o n

- 1 I i I

.,' E. '~..c,'

j, i

I i -

90 - 1 I

I l-* c, > o ,

I I

I 1 I -

it I e _

, i 1000 1

- W \\\

l Nl sEconos

\\\

FAILURE i, -44.4

. NNNNNNN\ , ,

~E - FIGURE 17 .

SIedVLATED OtSTRIBUTION OF MOISTURE EFFECTS (AT) AS A FUNCTIO

$0NE WOtSTURE BARRIER -TEST TEMPERATURE.MODEL) t 0

N, N i \

N,sN N

s,

'N x

\

gN

\

- s . FAILURE

\ \,\ \ kN 100.0

'r i

5.0 -

E Z 95% CONFIDENCE LIMITS

{ -

S 5.0 MEAN f

4.0 -

2.0 -

t l

i 100 1000 1

10 t SECONDS FIGURE 22 SIMULATED CIFCUlT 30A?.D STRAIN AS A FUNCTION OF TIME C2000 S:WULATIOfiS - TEST TEMPERATURE PROFILE)

' " e- - - . _ , , _ . _ _ _ _

I N NNNNNNN N

N FAILURE

\ \

100.0 8.0 -

, 6.0 -

c::

- E n 95% CONFIDENCE LIMITS l S l 4.0 -

/

li I \

\ MEAN i 2.0 -

i E

I 1 # 1es too0

t. SECONOS FIGURE 21 SIMULATED CIRCUlT SOARD STRAIN AS A FUNCTION OF TIME (2000 SIMULATIONS - THERMAL EQUIVALENCE TEMPERATURE PROFILE)

-*=- - ~

_- - __ -..a w . -. _ _ _ , _ _ _ _ . --

l i

, l 9

4,104 s

3 y , s Y O '@ O O O

\ 1 t s 1

,i

\ $

\

s

\,

't O'

\

3 I '

/

1

}\ /

. 11 /,/ c se

/%i

~

i ,s; s.

! -/

9 0 C

  • /

s -

f 3+

  • i /

/ 1o5

' lo%, 4 Sh 96 BB me se 5 R en m8 r# 5 C s e

E 2% k g

I h

I

\

j e

.- = , ._ -

,J F , --.... . ._s.. .m.s I

i

.i l CONCLUSI0fn a

1. THE ANALYSIS FORMS THE BASIS FOR JUSTIFYING THE ENVIRONMENTAL TEST CONDITIONS AND THE TEST PERIOD UTILIZED.
2. EACH ANALYTICAL TEST RESULT WAS SUBSTANTIATED BY ACTUAL COMPONENT TEST DATA IN HARSH ENVIRONMENTAL CONDITIONS.
3. THE ANALYSIS ILLUSTRATED THE FACT THAT REALITY WAS ENVELOPED BY THE TEST CONDITIONS UTILIZED.
4. TEST CONDITIONS WERE MORE SEVERE THAN EVEN A CONSERVATIVE CALCULATION OF REALITY WOULD INDICATE.

I i

. . - - - - - , - , - _ _ . . . , .