ML20044C347
| ML20044C347 | |
| Person / Time | |
|---|---|
| Site: | Beaver Valley |
| Issue date: | 01/31/1990 |
| From: | Begley J, Houtman J WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20044C332 | List: |
| References | |
| WCAP-12522, NUDOCS 9303220273 | |
| Download: ML20044C347 (66) | |
Text
- .. * ^ '.^
n.%-
,. '[ ' [ I.~;
-1;^. '. _ *.. L. ': f..u.j..
. " ;.;... }. ' a K.. \\ ;.. ' '_...,,
l ?. ;n
.....,...:,,..\\*:,',,,'.i'.,';.;*._,'.,_';....-a...[ 7.. ~,. l -
- v
- ?. +> :..ak.. ;
.. -..j' a.
.w..u.....,'.a,
..g'.,...:
- ..,..'1
. ~, > e. '
c.
.-..a
." Wf.G * $..: ^. ' *. l ' :}l:i :l:f1,Q.f).&{.'f*.}.'..},:,'..I
.vi
- a f '. _ ~.l '.. ' '.
f..
' I '. ; i, ;
,.p
- r=~
f
- - ": 1
- L ' * :. 3, ',;.'
l~. ' l...
~:
- ; *. : _. ",. l ' *.'.
..'. -l'..: [ ? - :. l
.?.'~
- *.. f.., ' :.
- :[]
[-
4.
1
'-[' -.,
.. ' f ' ; pf@ Why: 3,q.t.
.g.w., ; ~... g 8.,..
m.z...,, - :a s
-, n c. ;. 7 :-;b ME.;.,
..,*~.7.g
..s..
.{
',, ',}..... '
- ne M1 w.
., ;.' -,.t..' { ','.., -
,, ' l7.'i 1. ' ~
'.,/
.1,...
, '
- w,
s.-'
.q a
1 '.{
,5 e.
- 7... '[,f h.
. h. 5 S. ~.f',,...
~
.. ' '- . 4.,
- s. - ;.-
. ',. ' ' Y y :k.. ? ' %.:..
~
9
' '..., WR 4
4
. '.2blh....,
$y ' ' '
' 4. w^.;Y"'v'.~"Y,.'..'.-
- 7 L.# :. Q%,$,)5%:., y Qtgllty'; w:;.'.h..!-.) % ;..'. ^ > -
>c."^
.~.,,,o p
.... ;. 1 G.
.' ~,;...n_
/_
. ', 2 i * -.
..): e, nc t...., '>. '. ' l '..,,,,. ;;., 2 '.;.
n, r., <
s.,y m
2.
q-.
n
.... ;.p.4
.s.
u,.
n:.
y.
<G,.o yp, u, A. Q 3 Jyj.,. :.Q. g'. ?....,".,m...,. g...l., e, ;. ;
...n
,,s.. t :. p..,.......
l i ]
- s; ~
.7.. y.sm,, y y.
- 3..;.. y. _
w.
..,s,
,.n;
... + -
- s. : ;.. *..
! w 3.. + f.
. a:
%y
.v
-R.y,..,.7 :.f.g.,Q..i,f,.i. : ;;...... n v. ;..,
s-
......y :. _. ; >; 7<; =.._ '
.4 :
..r.>
...- Y :. " * ': [...-
. '.3
- 3.,.,
^m g.. 9.',.'. [.~,f... '.,; ? j., - } ; *. f....' : :.
.u.m.. _ i..p,.
..y ' p,..... y<w. f. ',.,$.,.. % Wgygg;.. '
n yg ;y. -
- 3
.......,., c n.
.%,,'.'u.- [,:[,,Q.:. ".. ;
_g:. c..;g. ;:,.:g. .[,......,.__,,_.;; _. :. :. g.. + ..e- .y-y. 3 [,. [. k .,. n.. t q_%;.. f. ;2,. : :>l,' ..y. },. y.*:,';G .. + , ; :... sn
- *L.
.r., .. ) 4- .....,. ; y',3 :..].q.c/n.,
- n. g...,.
...... ;. 3 ...;;;;;.a ; -.,,.1 ;..,,: ;., ; < .~'w-lu:;;epl n::;..~. ' -. ~ .. ~..... n ,., -.. c.m m.
- .. 3 ;.i.].";.;.
P.,. #... ;...'.. cy. {..{,[.../.v:W..s' i i @ 7.....; ' -aM... 3:, -. ~.., s. y,s.. ~. ;,. j,.. 9., l 9. )
- p. -
w c t .' l . 4. 4.:.;;.;,. g.. : g ! : ...:.(y.}.c-ff 4.; I 'b '. f,[, _..s.. 3 as,, < g p- :.a.,, ,w.. . j. f., o.,af g 7;,1 g>. ..o-....'.-,,.. a.,.,- .e. .., >. ?y w: . m L c:.t. _* y ,..y, . b. LJ, - t 'y'. ,g'.
- s :7 ;; ', ;
9: g og., j.,.g...,. y .s . y. ..- i y,. :;J K [ g;l1 l,l %,ly.. g ; ' M..k.. f.',W Q.,.. ;;.'.[. ...,'.".:..e. r;;W ',y a.,.) ' [.,. w.:?c,.., .:)_.,, us. w' w i a%. n > t.o.. <;.-.,,.?, n.;. . +.. c ..g...P,.r...q. ; w...m. m.d.. ..;4 . o..
- d. - w,n e
.- t, 5..,f.,,...'.,.S~)9,,.V. r.^' .. ).,b. + ?
- e'
, %;*.*p..;.y f u :,'; %p;*,,..: y,, - l ivi?:':lY A... -. ..~ .n.,.., ,I... f:., ..'.,k;. b l. ide'~ U. g.4 ' ( a.. :... ' y lr.mc...':l N '.%y'!:#.* (G..A.,.'Q '*%.;.^:g.&y. w... I n.... Q;;t,R.C. s .v. 1cs....,.. .r ; ; .;u.. .-n ': ....j *.~: a . gk
- .1
.,*.t ..hjy '.,' ;.h '** Q...'. 2. A p'M. p;@M ^ q
- d. v, - ^';; ::%.. :; -
. ;,.f* % T:._ < 4.. -' y % :'.. ,.; M,3.m 4 .,. '.... ; ; pe r, 3 ? ,s
- t,,
.4_ e. <~ Q: ',4..% a.. .. g. -....-.---; y7-u...--_-.-a.,m.-.7.. - 4 _, ;,m.'... - ..... n f, _.,,,, y %,.g f. n %m.y?:,m. 7 k gQi u : n.7, g_g, g;.p@+ sh A.. yL,a.,,..,.,,. ,n 4 9 'y \\ ;;.3 :,. 4.';. ' ;. :.. k.. 2 a.. ) -: V}<f., yWVw :),V. _; ~ :. ~ e .., m. e ::;p.x.,:. >f.,,...,v .; ; ^ q:.f
- .I) f
'ffp.f. fh 4.,g .m b ((. d ih -(. .hh. . -[ [,. p.':: 9 < ! W' r. ;.$r >.:. Giv :c '- 4
- hQ,
k..b [.. - l[ ' { " f,,. ,( J g ?<
- 1 ~. ;,.. ' A.r.
- ::;. 7; 4.n./ -.. ? ' O > '.x _. '...M -%htk,. ) Q,. b ~ ~t h... !* * ^ V:
- L.*
. j} [., i.
- (..
. ? '; .s *y D. ;i. %.^[ '.: ;Gf f;, Q, k L.l L.j-f.*- Q;';{(l,Q.M., f,;j, l^ } _W$? k, j:t: n ". : y ;?. ' "'. l ;.. ,,,;.,.'l ", ' - l M i., : ', M.:' ,. '. '...[. ' ;.7,. 3 ,r,q ;..,'f.i
- % %'gg'{,,Q
- <% g.,,
,c- ; ';q.. ;(. J {.,r*.. ;.. u; ef 17., ;.. ;.7 . m, 4*...4 .]...',h, ",_:.[, if, s....( '... [ f- ?;y ; 7.;.Q<.;;] Z,..., y B. (gl-l -].,:: [ '.[,] ; -.;. '... D. : ...k[,3 . :> g 9 ~. ;;, ;;s..,, q::..., f..e. -,-.... ~.
- t.,1,', ;,
c y v i '-. ... e.9. >. .; y, )...-._ _1. '. '.. s. ..:.......n.-... w.... c . ' :.....s.... .....,t; y.s ...'3*;... .)::- a,
- -... y. ; !
.:.A. i. ':.... !. -.s..,._ _ %..;t.... ....'.....:..a. ....:..~...: -., ~, a....,.,.'..:.:. .p.
- d. e,
- 3....N
.',*".,p...'....r....: v . *. = < .I. y, ,,,4;..4 ,s...... - .,,. - 6, .k..., a':- c d; 1 4 wa."'.;4,...- e-.,, ".... +... '. '..
- ,. _;,., 3..... '., :
'e ,s -..';.,. . _,,,, -g; ;, -,, c: s,.,-
- ., c.
... 'q. a. ....._..o.. .., _ y ...f. -..4...... ~. r. .v. v ~ ', x... * ..s.....-..,,,, :., ; a.., ; - ....v -,-.. M&. a_. r'. ;;; ', I. [ s.; };.*j, ', 8,' j.f U *. -s *.g,.,.. c ! q
- .?
,-[*=
- u-e'
- ;.- Q. '...'.;:b,.., ; _gb ' < .._.tr v. .'4 . n. -., ' ' '. ' '.'p. .'f~ '. p l
- y..,... e ' : -*', -
.,..~e
- ,,. l ' ; p.
,,'p,
- .n.
e ..e., y,'.-,. _-.,.
- 7' '._ -
T_ Q .. <.. ~- '
- e ;,...'..s.,...
-._f ',s - f.. _.. _.: -..; p,..... 7 *. !,: .- f .1 '.;'.;;,".,,'....'.,,.,..t... ',4.- o s.. . u l. - (,.,;.. i ( ,' c. p"l, .,f.'. S+
- .,jr* ~
0 ': - ' ' j., ..;.. - '*;.s 4..,
- ., m!
-,.,. +. : -' ~^ -.... -.i, b' (< s. . ql O ': - -.~ l. s- ..,:~. y;, M ;.. g-r. -.s.- 7......,,... f v:j,. f... *.. 's. - ..a.. O - -....f. ,, '_. y. .;T.'.- -., - s - '... i ^$ . f,. r...n. f..& '-5 ,.: v 4 'l,_. :-,.'. '. ' ' '.. .Y' n' . ', '.,,O....' ',. - .m. "... * : : J,.,.. .p,' s,......; :. '.,- ..,t ..p;. -.- <... 7....._.g.. (. _.,.,.,,. ' ..; -..Q..,,._.,.; -.< - ~
- ,,__ 3
- ..3
.t ^'. C. '47 g. :.. - * .8 l' ; *..-' ya eo g 3 -., 4 r-s..
- s. :
,. -. -.. 91,.;,. _.- -.- d.. - - 4 ' t. .a i..',;.../... .,-{- ..1 ..7 c.n,'.......j...,,. .. ;:..s.&-i; - ,.,...g.. - > 7 '. ' f, - 4 ,y;- ..g. >g,-..; -.,.. -.,. g.
- s..
7.w...-...;, . --.,,,.,.... c e, .f.. ,.4 e...,. - 9.s..- 1,. -...... -. -,,-... '. .f .s i- - .,o...., r,.:.. ' a .,e. ,.-,, er :..4.ll...' ..s _ l
- 's.' *. l- _ l..
- ..w4
- 3...
~ ) '; !, '.l. l l _._. _.".,;-, ', '- -\\ I- ' '. ' ' ' ' ' ^., ':; -.. *;,, : ; _ _ '.; ;y_<,:';,; ... ;;^. ~, _. - .;* s
- r.,-*
r - ,Q q. :.V.;p. ..:._....,.,n . S.c. d'., ,,,,. u ; f.,4 /..,, y:.,*.. -..' ;;&yQ. -.J, 'r ,.,,,',,.,.,,;i.,, n s - ~.. ,1 g. _j j. 3....;g .s.. a 7'.-.'....; '.5.' n,:',.., e s ..4 ','w. -.y'.~. e .~.%,.. ?.. *- / y a,r, -a.r-Lg ": H!,. k...
- ma ;;.,;3"_."..,.., s.a;,
.' ";..... ~...* *.... .s
- s::,' ;: -
s. 3..,,. ?.,f ew._ _. -'... l r- . ~ ....y ..4 ..g r .,,s s ,;.z,c.,.. ;-. -.....::. 3., s 2 ....n.. _._. g, s _ ~, ',.g.,-
- V
_,e.,;. ~
- ., t..,....
- - '.,,,..;..-'
^. .. '.. r y _ y.:y.., :g ; 9:, p.q,:, .e, '.g,.._ ',4',. :. . -....,; n, fj.. ~, p ;, .,, g q., y.. . - u... n _e. ,'-...s..... a. c... ? '.. .v......~c..,. :; < :, q ; :::; :..,., g.;;,;;gy:..+,,. (u .3.~r.. ;.. _,'.'..,' 4 , p ::c..su. sf' ..x o ; V.'.S ..l Mh N::(.,; 7..%g _ p,;':.
- a. 7.,.... y. q:
. ~.. ;... a '... ; ,. j.;;,. <-c. (_, .,...u. m.:r-2'.. '.L..;.3::.... .3.
- s.*%.
s. y ; r,....,. 2. i.w .,,n.: L. " q,. .. ~.. %hh.$ y a,h' q s.v.l5 '....,' ~.:.. ^ ,.jf.. '.. '.; y, U., ' -. - '\\'(... .( '. [.;;,' (, ', ".. ' ' ', ',. g,.. '.' ].. . h 'fNh J.7 C 9. = ~ - ?,.,,. '.. ' 9, w. 5:.,7.; ' -M V.. '. ~P.C. : .N + r~ 9303220273 930312 3: 9_ p pyg ..p,a. . ;p _ W 3 s, ; ; g __ _ ^ _ _ "_ 7 ' ~ ~ " ,..~1S -~ V ' ~ PDR ADOCK 05000334 l ^ m Ti. U E.. . ".M '
WESTINGHOUSE CLASS 3 i' -WCAP-12522 SG-90-02-021: i ts t 4.. -i I INCONEL ALLOY 600 TUBING-MATERIAL BURST AND STRENGTH PROPERTIES
- i
,) ~g J. A. Begley J. L. Houtman. o ? January, 1990 ? i i Work Performed Under Shop Order No. SGRZ-90506 WESTINGHOUSE ELECTRIC CORPORATION NUCLEAR SERVICE DIVISION P.O. BOX 355 - PITTSBURGH, PENNSYLVANIA 15230 ) 8 1990 Westinghouse' Electric Corporation I
a ABSTRACT Material strength properties and burst capabilities of Westinghouse produced Inconel 600 steam generator tubing.is evaluated and summarized to provide a consistent material property base for evaluation of tube integrity. Westinghouse evaluations of tube integrity per Regulatory Guide 1.121 (RG 1.121) utilize material yield strength and ultimate strength properties and utilize an empirically derived relationship between non-dimensionalized, burst pressure and through wall, axial crack length. The non-dimensionalized, burst pressure (PBAR) is a function of tube geometry and flow stress (1/2 of.the sum of the yield and ultimate strengths) and the non-dimensionalized through wall, axial crack length (LAMBDA) is a function of the axial crack length tested and tube geometry. The yield and ultimate strengths are the properties that represent 95% probability with 95% confidence, the lower bound tolerance a limit (LTL) properties. m, i
I Q -t TABLE OF CONTENTS Section Title Page 1. Introduction..................................... 1-1 2. Material Strength Properties..................... 2-1 2.1 Method of Testing........................... 2-1 2.2 Summary of Results.......................... 2-2 2.2.1 Lower Bound Tolerance Limit Properties.... 2-2 2.2.2 Distribution Plots........................ 2 3. Burst Capability................................. 3-1 c 3.1 Method of Testing........................... 3-1 I 3.2 Summary of Results.......................... 3-5 3.2.1 Burst Pressure Versus Crack Length........ 3-5 3.2.2 Non-Dimensionalized Burst Properties...... 3-5 f ) ) N f i i i u ii
1 NOMENCIATURE Symbol Denniticm ( h Depth of thinning, inch i K Tolerance factor K,K, Normal deviates a L Total axial crack length, inch N Sample size p PBAR, non-dimensionalized burst pressure, ksi pB Burst pressure, ksi ph Burst pressure for a locally thinned tube, ksi Ri Tube inside radius, inch R Tube mean radius, inch m s Standard deviation of the sample ~ Sf Flow stress or (S +Su), ksi y S Yield Strength, ksi y S Ultimate Strength, ksi u t Tube wall thickness, inch w Length of thinning, inch x Mean or average value of the sample t The portion of the population is (1-a) a y The probability A LAMBDA, non-dimensionalized crack length I I iii
LIST OF TABLES Table Title Pace i ~ 2.2-1 Inconel 600 LTL Strength Properties _2-4 i Summary By Tube Size And Heat Treatment t 2.2-2 Inconel 600 LTL Strength Properties 2-5 11/16 X 0.040 Inch Thermally Treated Tubing { 2.2-3 Inconel 600 LTL Strength Properties 2-6 l 3/4 X 0.043 Inch Thermally Treated Tubing 2.2-4 Inconel 600 LTL Strength Properties. 2-7 7/8 X 0.050 Inch Thermally Treated Tubing ~! l 2.2-5 Inconel 600 LTL Strength Properties 2-8 3/4 X 0.043 Inch Mill Annealed Tubing 2.2-6 Inconel 600 LTL Strength Properties 2-9 7/8 X 0.050 Inch Mill Annealed Tubing 3.2-1 Inconel 600 Burst Test Data 3-8 3/4 Inch Diameter MA Tubing i e 3.2-2 Inconel 600 Burst Test Data 3-9 7/8 Inch Diameter MA Tubing-l 3.2-3 Inconel 600 Burst Test Data 3-12 11/16 Inch Diameter TT Tubing h b b i b t t h I b -i iv f .i
.i i i LIST OF FIGURES I Ficure Title Pace ~ 2.2-1 RT Yield Strength Distribution 2-10 11/16 Inch TT Tubing 2.2-2 RT Ultimate Strength Distribution 2-11 11/16 Inch TT Tubing l 2.2-3 RT 2* Flow Stress Distribution 2-12 11/16 Inch TT Tubing i i 2.2-4 RT Yield Strength Distribution 2-13 3/4 Inch TT Tubing 2.2-5 RT Ultimate Strength Distribution 2-14 { 3/4 Inch TT Tubing i 2.2-6 RT 2* Flow Stress Distribution 2-15 3/4 Inch TT Tubing 2.2-7 650*F Yield Strength Distribution 2-16 i 3/4 Inch TT Tubing 2.2-8 650*F Ultimate Strength Distribution 2-17 3/4 Inch TT Tubing i 2.2-9 650*F 2* Flow Stress Distribution. 2-18 3/4 Inch TT Tubing 2.2-10 RT Yield Strength Distribution 2-19 7/8 Inch TT Tubing 2.2-11 RT Ultimate Strength Distribution 2-20 7/8 Inch TT Tubing 2.2-12 RT 2* Flow Stress Distribution 2-21 7/8 Inch TT Tubing } f 2.2-13 RT Yield-Strength Distribution 2-22 3/4 Inch MA Tubing ] 2.2-14 RT Ultimate Strength Distribution '2-23 3/4 Inch MA Tubing i 2.2-15 RT 2* Flow Stress Distribution 2-24 i 3/4 Inch MA Tubing f ti f V m
i i L l i LIST OF FIGURES (Continued) l l I Fieure Title Pace i ~ 2.2-16 650*F Yield Strength Distribution 2-25 3/4 Inch MA Tubing 2.2-17 650*F Ultimate Strength Distribution 2-26 3/4 Inch MA Tubing 2.2-18 650*F 2* Flow Stress Distribution 2-27 3/4 Inch MA Tubing I 2.2-3P RT Yield Strength Distribution 2-28 7/8 Inch MA Tubing i 2. '.-2 0 RT Ultimate Strength Distribution 2-29 7/8 Inch MA Tubing 2.2-21 RT 2* Flow Stress Distribution 2-30 7/8 Inch MA Tubing 2.2-22 650*F Yield Strength Distribution 2-31 7/8 Inch MA Tubing 2.2-23 650*F Ultimate Strength Distribution 2-32 ~ 7/8 Inch MA Tubing 2.2-24 650*F 2* Flow Stress Distribution 2-33 7/8 Inch MA Tubing j 3.1-1 Pressure Versus Crack Mouth Opening 3-3 f I600 Tubing, 3/4 Inch Diameter 3.1-2 Illustration Of Crack Bulging and Tearing 3-4 3.2-1 Burst Pressure Vs. Crack Length 3-13 ( I600 MA & TT Tubing (Data Only) [ 3.2-2 Burst Pressure Vs. Crack Length 3-14 3/4 X O.043 Inch MA (Data Only) 1 -[ 3.2-3 Burst Pressure Vs. Crack Length 3-15 7/8 X 0.050 Inch MA (Data Only) { 3.2-4 Burst Pressure Vs. Crack Length 3-16 11/16 X 0.040 Inch TT (Data Only) { ~ vi
i I 1 LIST OF FIGURES (Continued) Ficure Title Pace 3.2-5 Normalized (2) Burst Pressure Vs. Crack Length 3-17 ~ I600 MA & TT Tubing (Data Only) 3.2-6 Normalized (2) Burst Pressure Vs. Crack Length 3-18 3/4 X 0.043 Inch MA (Data Only) 3.2-7 Normalized (2 ) Burst Pressure Vs. Crack Length 3-19 7/8 X 0.050 Inch MA (Data Only) i 3.2-8 Normalized (2) Burst Pressure Vs. Crack Length'3-20 11/16 X 0.040 Inch TT (Data Only) 3.2-9 Normalized (2 ) Burst Pressure Vs. Crack Length 3-21 I600 MA & TT Tubing (Data With Curve Fit) i 3.2-10 Normalized (2) Burst Pressure Vs. Crack Length 3-22 I600 MA & TT Tubing (Curve Only) 3.2-11 Burst Pressure Vs. Crack Length 3-23 I 3/4 X 0.043 Inch MA (Data With Curve Prediction) 3.2-12 Burst Pressure Vs. Crack Length 3-24 7/8 X 0.050 Inch MA (Data With Curve Prediction) 3.2-12 Burst Pressure vs. Crack Length 3-25 .i 11/16 X 0.040 Inch TT (Data With j Curve Prediction) l (2) " Normalized" is used synonymously with "non-dimensionalized". I t i vii
INCONEL ALLOY 600 TUBING. MATERIAL BURST AND STRENGTII PROPERTIES O
- l. Introduction This report provides the material strength and burst capability basis for the evaluation of tube integrity of Westinghouse produced Inconel 600 steam generator tubing per Regulatory Guide 1.121 (RG 1.121).
Both room temperature (RT) and high temperature (at 650 degrees Fahrenheit, 650'F) yield, ultimate and combined yield and ultimate strength material properties are evaluated and summarized by tube size and type of heat treatment. Tubing burst data for tubes with through wall, axial cracks is also evaluated and presented in a non-dimensionalized format. For tube integrity evaluations per RG 1.121, Westinghouse utilizes material strength properties that represent 95% probability with 95% confidence. These strength levels are designated the lower bound tolerance limit (LTL) properties. The properties presented in this report are tube size and heat treatment specific. Past evaluations of LTL properties used a single set of values for all tube sizes and type of heat treatment. 1 The empirically derived relationship between non-dimensionalized I i , burst pressure and through wall crack length applies to all tube sizes and types of heat treatment since tube geometry and material strength properties are used in formulating the [ relationship. The non-dimensional burst pressure PBAR is ~ presented as a ninth order function of the non-dimensional through wall crack length LAMBDA. PBAR versus LAMBDA is a nominal fit to the non-dimensionalized burst test data. i i l' f I f 1-1
I 1 j 2,51atedal Strength Pnapertie.s l 2.151ethod of Testing ~ Tensile tests were performed on full sections of tubing. Room temperature tests were conducted on 12 inch lengths of tubing. ~ Solid plugs were inserted into the ends of the specimen to permit loading in vise grips. The plugs did not extend into the central 2 inch gage length. An extensoneter was attached to the tubing in this gage length. The test was stopped at about 0.8% strain and the extensometer was removed. The test then continued to rupture. Elongation values were taken from length measurements between the initial 2 inch gage marks. Elevated temperature tensile tests were also performed on full sections of tubing. The test temperature was 650*F. In this case the specimen length was 30 inches to extend the grips beyond a wire wound resistance furnace. Solid plug inserts in the specimen ends again permitted loading in vise grips. The specimen was heated to temperature between 15 and 30 minutes. Four thermocouples were attached to the specimen, two at either end of the central 2 inch gage length and two on either side of the specimen at its midpoint. A soak time of 20 minutes at temperature was used. As in the room temperature tests, the early strain levels were obtained from extensometer readings and elogations were measured using a 2 inch gage length. L L i l 2-1 l 1 r
i 22 Summary of Results l Material certifications for Inconel 600 steam generator tubing produced by Westinghouse have been evaluated to obtain material strength properties. Yield strength (S ultimate strength y), data have been plotted (Su), and 2 times the flow stress (S +Su) y and analyzed to obtain mean values, Btandard-deviations and lower bound tolerance limit (LTL) strength properties. Thermally i treated (TT) tubing in three sizes (11/16 X 0.040 inch, 3/4 X 0.043 inch and 7/8 X 0.050 inch) and two sizes of mill annealed } (MA) tubing have been evaluated (3/4 X 0.043 inch and 7/8 X 0.050 inch). 2.2.1 Lower Bound Tolerance Limit Properties i Since RG 1.121 constitutes an operating basis rather than a l design basis, the allowable stress limits are based on expected lower bound material properties rather than the ASME Code minimum values. Lower bound tolerance limit (LTL) properties were computed such that there is a 95% probability that 95% of the tubes in the steam generators will have strength greater than the LTL values. The LTL values are given by x-Ks where: l i' 1 N Y" E *i i N i=t 4 1 N 2m { (xi _ g)2 j s N-1 i=1 The quantities x and s are the mean and the standard deviations, f respectively, of the sample size N. The tolerance factor K is a function of the sample size N, the desired probability 7, and i the portion of the population (1-a). For a sample size N greater I than 50, the K factor is obtained using the asymptotic normality property as follows: - ab)\\ 2 Ka + (Ea K= a I
- where, K2 7
a=1-2(N - 1) l l i 2-2 1
6 and y = q2 - y K and K are the normal deviates corresponding to the given a a y and y, respectively, and can be found in standard statistical tables. For 7 0.95 and a = 0.05, ~ = K2 -K = 1.645 = 7 Table 2.2-1 summarizes the LTL properties for Inconel 600 tubing [ for the three tube sizes in the TT condition and two tube sizes in the MA condition. The details of sample size, tolerance factor, mean value, standard deviation and LTL values are given in Tables 2.2-2 through 2.2-6 for the five cases evaluated. Data for 650*F are not available in large enough samples for TT [ tubing in the 11/16 inch or 7/8 inch diameter sizes. Therefore, the LTL values were obtained by scaling the RT properties by' a i factor equal to the ratio of the 650*F mean value to the RT mean value for the 3/4 inch diameter TT tubing. A ratio was used for each of the individual properties of yield strength, ultimate strength, and two times flow stress. 2.2.2 Distribution Plots ~ Figures 2.2-1 through 2.2-24 provide plots (bar charts) of the distribution of yield strength, ultimate strength and twice the l flow stress for the data evaluated. Each plot gives the number of test points in an incremental range of strength and covers the full range of data included in each sample. The distributions i resulting are approximately normal distributions with some skewing occurring in part due td the incremental range of '[ strength selected for plotting. Refer to the List of Illustrations to locate a specic plot of interest. Plots are not available at 650*F for 11/16 inch TT and 7/8 inch TT tubing as data were not available in a large enough sample, j i 2-3
Table 2.2-1 Inconel 600 LTL Strength Properties Summary By Tube Size And Heat Treatment Room Temperature 650'F Tubine Yield Ultimate 2* Flow Yield Ultimate 2* Flow 11/16 TT 45 100 145 37 91 128 3/4 TT 44 99 143 -35 89 125 7/8 TT 43 99 142 35 89 125 3/4 MA 45 94 140 39 90 131 7/8 MA 43 94 138 35 90 126 t v F f l [ t I w. 9 2-4
i Table 2.2-2 Inconel 600 LTL Strength Properties 11/16 X 0.040 Inch Thermally Treated Tubing l ~ Temperature.
- F RT 650' F Sample Size of Population, N 1135 l
Tolerance Factor, K 1.722 l Yield Strength, Sy, ksi' Sample Mean, E 51.40 Standard Deviation, s 3.850 Lower Tolerance Limit, 2-Ks 44.77 36.77(1) Ultimate Strength, Su, ksi Sample Mean, E 107.00 Standard Deviation, s 4.068 Lower Tolerance Limit, E-Ks 99.99 90.53(1) { 2* Flow Stress, S +S or 2*Sf, ksi y u Sample Mean, E 158.40 i Standard Deviation, s 7.647 Lower Tolerance Limit, E-Ks 145.23 127.54(1) b 4 h (1) By ratio of 650*F/RT average properties for 3/4 inch TT tubing. i i-2-5
Table 2.2-3 Inconel 600 LTL Strength Properties 3/4 X 0.043 Inch Thermally Treated Tubing Temperature.
- F RT 650'F Sample Size of Population, N 698 651-Tolerance Factor, K 1.744 1.748 Yield Strength, Sy, ksi Sample Mean, E.
50.54 41.50 Standard Deviation, s 3.911 3.443 Lower Tolerance Limit, x-Ks 43.72 35.48. Ultimate Strength, Su, ksi Sample Mean, E 105.89 95.87 t' Standard Deviation, s 4.219 4.214-Lower Tolerance Limit, E-Ks 98.53 ,88.51- .l .I 2* Flow Stress, S +S or 2*Sf, ksi y u Sample Mean, 3E 156.43 137'.37- ) Standard Deviation, s 7.880 7.242-Lower Tolerance Limit, E-Ks 142.69 124.72 I 4 8 e 2-6 ~--
~. i ~ Table 2.2. Inconel 600 LTLStrength Properties 7/8 X 0.050 Inch Thermally Treated Tubing. ~ Temperature.
- F RT 650' F Sample Size of Population, N 307 i
Tolerance Factor, K 1.797 i Yield Strength, Sy, ksi Sample Mean, E 48.67 Standard Deviation, s 3.386 Lower Tolerance Limit, 3i-Ks 42.58 34.97(1) Ultimate Strength, Su, ksi -j Sample Mean,.E 104.72 ~- Standard Deviation, s -3.366 Lower Tolerance Limit, Ic-Ks 98 67 89.33(1) [ 2* Flow Stress, S +S or 2*Sf, ksi j y u 1 Sample Mean, E 153.38 Standard Deviation, s 6.383 -t Lower Tolerance Limit, 2-Ks 141.91 124.63(1) .i i i .L i 6 e (1) By ratio of 650*F/RT average properties for 3/4 inch TT tubing.- j ~I [ F 2 '
j ~ l Table 2.2 5 Inconel 600 LTL Strength Properties 3/4 X 0.043 Inch Mill Annealed Tubing I* '~ TemDerature.
- F RT 650* F -
- Sample Size of Population, N 635 627 Tolerance Factor, K 1.7489 1.7496 1: Yield Strength, Sy, ksi Sample Mean, 5 53.05 45.78. Standard Deviation, s 4.8602 3.9081 Lower Tolerance Limit, 2-Ks 44.55 38.95 Ultimate Strength, Su, ksi Sample Mean, i 101.29. 97.'35 Standard Deviation, s 4.2173 -3.9676 Lower Tolerance Limit, E-Ks 93.92 90.40 2* Flow Stress, S +S or 2*Sf, ksi y u Sample Mean, i 154.34 143.13 Standard Deviation, s 8.2844 7.1336 Lower Tolerance Limit, E-Ks 139.85 130.65 e 9. 2-8
![ h Table 2.2-6 Inconel 690 LTL Strength Properties 7/8 X 0.050 Inch Mill Annealed Tubing ~ Temperature.
- F RT 650' F-Sample Size of Population, N 361 360 Tolerance Factor, K 1.7845 1.7847 Yield Strength, Sy, ksi Sample Mean, E 50.98 41.89 Standard Deviation, s 4.2068 3.5856 Lower Tolerance Limit, E-Ks 43.47 35.49 l
Ultimate Strength, S ksi u, Sample Mean, E 99.96 95.67 Standard Deviation, s3.6123 3.4196 -Lower Tolerance Limit, E-Ks 93.52-89.57 2* Flow Stress, S +S or 2*Sf, ksi y u Sample Mean, E 150.94 137.56 Standard Deviation, s' 7.0003 6.3449 Lower Tolerance Limit, E-Ks 138.45 .126.23. ' $- [ 2-9 i
RT Yield Strength Distribution 11/16 Inch TT Tubing 130 7 7 120 - / / / / r 110 - / / / / / / / 100 - / / / / A / / / / r 90 - / / / / / / / / / / m 80 - / / / / / / / / / / / / l 70 - ry /,/ / / / / / g [ / / / / / / / / / g y 60 - / i' /' i' / / / / / o / E / / / / / / / / l 3 50 - / / / /,/ / / /,, / / / / / / / / / / -r AO ~ / / / / / / / / / / / / / / / / / / / / / / / / 30 ~ / / / / / / / / / / / / re / / / / / / / / / / / / / / EO ~ / / / / / / / / / / / / / / r7 / / / / / / / / / / / / / / / / ~ / / / / / / / / / / / / / / / / ~7 7 O n m, p / / / / / / / / / / / / / / / / / / / fi} i i i i i i i i i i i i i i i i 363738394041424344454647484950515253545556575859606162636465656768 Yield Strength, ksi FIGURE 2.21
RT Ultimate Strength Distribution 11/16 Inch TT Tubing 240 'f 20 - ,/ p 200 - /l l, // 1 180 - / l 160 - /,' / /, f h ~ h 120 - ,/ ./ 3 100 - E / / / / ~ / /, / / / ~ / / % I I/ I ,/ / 40 - 7 / / / / /[/ / '/ ' /' / 20 - '/ '/ '/ '/ '/ / / '/ ' /, r~71 _ /n 0 i i i i i i i i i i i i i i i i 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 Ultimate Strength, ksi FIGURE 2.2-2 u
RT 2* Flow Stress Distribution 11/16 Inch TT Tubing 260 240 - // 220 - l / 200 - </ 180 - f/ ,/ /,/ /,/ // / } 160 - ./ /,/ // // // // w 140 - // // /,/ ~ ? // /l / 00 j{ ',/ / 2 '/. ~/, 80 - f 7 60 - // / i ) /; /,9; 9 /; / .v - / ~ lp/ f f l_ 20 - / // // / // // / / 0 i i i i i i i i i i i i i i 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 2* Flow Stress, ksi FIGURE 2.2-3
RT Yield Strength Distribution 3/4 TT Tubing 70 7~ / / / / / / / / 6 ~ / / / / / / / / / / f / / / / / r r 50 - / / / / / { / / r / / / / / / / / l / / ,/ / / / / / m i / / / / / / / / / ~ / / / / / / / / / 8 / / / / / / / / / '? / / / / / / / / u / C E / / / / / / / / / go _ E r / / / / / / / / / m E / / / / / / / / / / 7 / / / / / / / / / / / / / 20 - / / / / / / / / / / / / 7 / / / / / / / / / / / 7 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ~ / / / / / / / / / / / / / / r 7 / / / / / / / / / / / / / / 7 0 I/] m / / / / l / / /, l/ / / / / l/ 7/ / / / / '/ / / / / / r / /, / / / / / / / / / / [7 i i i i i i i i i i i i i i i i i i i i i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 Yield Strength, ksi ' FIGURE 2.2-4 .. ~. ~.
RT Ultimate Strength Distribution 3/4 TT Tubing 140 130 - ,f p ll 100 - 90 - ? 80' - // / $, $ f f d f z SO - / 7 0-p/ ,,ll / // // ,/ / , i i / // m, 'V/ O i i i i i i i i i 93 95 97 99 101 103 105 107 109 111 113 115 117 119 Ultimale Strengthe ksi FIGURE 2.2-5 l
/ 0 /, 8 1 I 6 7 1 2 7 1 no 7z 8 i 6 t 1 u b j fy 4 i r 6 1 t s i sb ' )p g D 0 is 6 g k 1 in 6 -2 s u s 2 sT p p e 6 r E eT t 5 S R rT 1 U t 4 w G o / l I S3 F F p 2 5 2 w 1 o l 4 8 F 4 1 2 4 4 T 1 R l f 0 4 /. 1 6 ( 3 1 0 0 3 7 1 i! u-
-0 650F Yield Strength Distribution 3/4 TT Tubing 80 7 p 7 70 - / / / / / / Y / r/ / / 60 - / / / / / / r / / / 7 / / / / / / / / / / r 50 - / / / / / / / / / / / / / / ~ 5 r / / / / / / / ~ / / / / / / / / ?' 2 / / / / / / / / = / r/ / / / / / / / / E
- E 30 ~
/ / / / / /,/ / / / / / / / / / / / / / '/ / / / / / / ^ / / / 20 - / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / r/ / / / / / / / / / / / / / 7 10 - // / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /. , / /, ~/ / / / / / '/ '/ '/ '/ / / / / T71rrmT7~ /l 0 i i i i i i i i i i i i i i i i i i i i i 32 33 34.35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 Yield Strength, ksi FIGURE 2.2-7
650F Ultimate Strength Distribution 3/4 TT Tubing 130 120 - 110 - 100 - '// j
- [# v rs i8
~i }j#f 3sslllslslt L'i!! s s s ~ 0 i i i i i i i i i i i i 86 88 90 92 94 96 98 100 102 104 106 108 Ultimate Strength, ksi FIGURE 2.2-8 t
650F 2* Flow Stress Distribution 3/4 TT Tubing 150 140 - // 130 - 120 - 90 - / . /,/ f/ / f 80 - p' V 4 f / _ f,/, / / i 7o - // l // l k 7 7pg, g//p p f s ,/ / // / / '/ / // i/ / i .O i i i i i i i i i i i i i 116 120 124 128 132 136 140 144 148 152 156 160 164 2* Flow Stress, ksi FIGURE 2.2-9
RT Yield Strength Distribution 7/8 TT Tubing 40 ,/ / r 35 - / / / / 7 / / / r / / / / 30 - / / / / j/ 7 y y/ y/ j / /
- ~
i / / / / / / r/ / / / / / / ~ b / / / / / / / \\ 20 - f y / / / 7 L~ 1L s / / / / / / y/ / E / / / / / / / / ] 15 - ,/ / / / / / / / / / / / / / / / / / / 7- / / / / / / / / / / / 10 - / / / / / / / / / / / / / / / / / / / / / / / / / / /,/ /,/,/ / / / / / / / / / / / / / 5-m 7 / m/ / ]/ ,/,/ / ,/,/ / / / / / / / / / / / / / / ,/ ',/ ,/ / y / l/,/ ] '/ / ] '/,./ / ,/,/ ] ] / 7 / 7 g, O i i i i i i i i i 1 i i i i i i i i i i i i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 Yield Strength, ksi FIGURE 2.2-10
6 i 1 1 _i 1 4 1 n ./i 12 o / /, 1 i tu a b / 0 i1 ir /, / 1 t s / ,ni 0 g i 8 D i0 1 is k h g . / / / h 1 t i / / n 6 1 t gb n 2 / Y !< /, u 1 e 2 nT e r E t T eT a i S R ,!l/j / I U r 4 e 8 G t / t i0 a IF S7 / m 1 t l U e / / t /, 2 t i0 a 1 Y m u / i 0 t i0 l 1 U /,ai 9 T 8 R / 6 i 9 ~ 0 0 0 0 0 O 0 8 7 5 4 3 E z f
e RT 2* Flow Stress Distribution 7/8 TT Tubing 40 /,< /- 35 - / /, /,, /. / /. / / / 7 30 - / / / '/. / / '/ / / /- / r; / 7-7 / -7,77 p- / ,5- / 3 7 7 7 / /. / / /p / / / / / / / / / ~ /( '/; / / / / / / 5 / / t ~ /,' /,7 /,/ /,/ /,, / / ,/. / /- / / / b n E ,/ / E '5 ~ , / / / (/ '/ / ~/ / / / / 7 / / / / / / / '/ / / / / / / / / / / / 10 - / /,,/ / / / / / / / / n/.,/ / / '/, / / / / / /, / /. /. / / / / / / / / / / ,/ 5- /. / / / / / / /,/ / / / / / / /. '/ / / / / / / / / / / / ~/ /,,/ ' / / / ' / ' /, '/ ~/ / '/ / '/ / f/\\ \\/ /, / '/ 0 i i i i i i 3 i i i i i i i i i 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 2* Flow Stress, ksi FIGURE 2.212
b l RT Yield Strength Distribution 3/4 MA Tubing 110 i 100 - // 3 I,/. ll / 60 - '// '/ '/ 30 20 - / / 10 - [ 0 (' ( '( ',I l V ( 40' 42 44 46 48 50 52 54 56 58 60 62 64 66 Yield Strength, ksi FIGURE 2.2-13
I RT Ultimate Strength Distribution 3/4 MA Tubing l 140 /,/ 130 - 120 - ,/ '/ 110 - // 7 100 - f 9 % f e ? 80 - / '/ / ~ 8 // /'/ 7/ l/ n 70 - / l 7 ~ u b 60 - '/ %' / f 4 % a h h m sn)s s s,/ / r ! (' O i '"i ( i 88 90 92 94 96 98 100 102 104 106 108 110 112 114 Ultimate Strength, ksi FIGURE 2.2-14
a RT 2* Flow Stress Distribution 3/4 MA Tubing 150 140 - ,/ / 7 130 - // 120 - 110 - 100 - f j ) 90 - / /,/ I 80 - / A '/$ /' / '/' / 1 50 - / /,/ 'f 40 - '/ j // / / 20 ~ / / / / m 4 4 (4 4 4 % 4 4 L 128 132 S 140 144 148 152 156 160 164 168 172 176 2* Flow Stress, ksi l FIGURE 2.2-15
650F Yield Strength Distribution 3/4 MA Tubing 120 / '/ ',/,' 110 - 7 .. / // / 100 - p. p /,< /-,/- /, /,/,.,/, / 90 - ,e, ,/ // /,- /,/ 80 - / - // // ,/ / 70 - // 'l / ~ 60 - ./ / // f/ ,/ ' // // / E 50 - // 3 // ,/./ !/ I,/.l 40 - .,/ / / / ,/ ,/ -ll '/ / l 30 - /,/ ll/ / ./ / i,/ / / // ./ // '/ p/ l 29 _ / / p 'O~ ,/ /' // // /,/ f/ // // // / // ' Q y,,/ I I I .I l-t i i l I i i i i i I 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 Yield Strength, ksi FIGURE 2.2-16 1
~ - 2 '~ g N ._ o A s -+-) \\' \\\\~o t S 'sh \\\\ L \\ -o C ~ E 3 ^ N N m N '\\ \\\\ \\ O \\ s w g L 4 G g ( N\\\\ \\ \\s s m E g \\\\.. - .,'\\'\\\\h\\'\\x\\x(\\'\\ \\s 5 \\ '\\ xxNx(\\ss\\x\\ +- N _m N s x\\xxxxx o xx = c- \\ a 'N 'N 'N'N'N'N'\\ g NNNNNNN_= O to ('NN_m \\ 'N \\., _. be Y .( l I i i i I i I i i l i 8 8 2 8 8 8 R 8 8 ? 8 R S o n s4sel jo saqwnN 2-26
8 .i 6 1 ,/i 6 4 ,/ 1 l / 0 n /i 6 1 o ( i ,/ t 6 u /, 5 1 b i r $/ , 5 hl j 2 ts 1 / i b p/l//h/ ///h /.,/p - d/ / 8 i / s 4 sg ,1 k n 8 i / sb 1 ss 2 u eT , // 7 ', /j,h// / ///// - /, e 2 4 r r E t A 4 ,1 S R 7 t M w U S 4 o G / l I d/ w '/l / [/ F F 3 ,0 f/ 4 2
- /',//'
/ 1 o l F , /@/ / 6 i3 1 2 /s/ F 2 / /i 3 0 1 ill 5 6 8 i2 1 4 i 2 1 0 0 0 0 $0 0 0 0 0 O 5 4 3 2 9 8 7 6 5 1 1 1 1 l n)* o e ~ ~
~. RT Yield Strength Distribution 7/8 MA Tubing 35 7 7 7 / / / / / r 30 ~ / / 7 / / / / / / / / / / / / / / 7 2s - / / / / / / / -/ / / / / / / / r/ / / / / / / / / m T, / / / / / / / / / ? 20 - / / / / / / / / / 6 / / / / / / / / / / / / / / / / / / u r ? E / / / / / / / / / / '5 ~ E E / / / / / / / / / / 7 5 / / / / / / / / / / / / / / / / / / / / / / / / to - / / / / / / / / / / / / r / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / n 5- / 7 /,/ / / / / / /,/ / ,/,/,/,/ ,/ / / / / / / / / / / / / / / / / 7 / / / / / / / / / / / / / / / / / / / / r r 7] / [71[71 / / / / / / / ! / / / / / / / / / / / / [7\\ 0 i i i i i i i i i i i e i i i i i i i i i i i i i i i 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62'63 64 Yield Strength, ksi FIGURE 2.219
- C 5' O C N- ; O n '\\ \\ ~ N \\s N' ) N s _C cn ?! 88SSSS'A'%'%% N'S'r ei! <a i g4 \\ N ' O \\ g x s @N E -t N \\. \\ 'N [' NN N s O \\' \\ s I ) \\\\ s' ' I x\\x N's N \\ - y b Z 'N_ cs, -- g i i i t i i i b k O O k O O 3 0 S 4581 J O.J e q w n N 2-29
RT 2* Flow Stress Distribution 7/8 MA Tubing 35 - 30 - l/ // i // /, / 25 - %,A 4 /'/ E // //
- f. // //
~ /,/ f/l //, // /,/ / ? k f // V/ / i % f /': V,/, // / 10 - f ll l/ $ f2% F /,/ // / l / / 3. i i ~ ! !,/ / '/ / l I # !I I/,' 0 l 130 134 138 142 146 150 154 158 162 166 170 174 2* Flow Stress, ksi l FIGURE 2.2-21 l
650F Yield Strength Distribution 7/8 MA Tubing 40 ? / / <] 35'- [ [ / n/ / / / / / / '/ 30 - [ ! [ / [ [r r/ / / / / / / / / / / / / / / / / / / / / / m
- ~
i / / / / / / / / ~ / / / / / / / / g / / ,/,/ ;,- , 7 '/ 20 - / ,/,/ / / ,/,/ / ,/ E / / / / / / / / / E 7 / / / / / / / / / E 15 - / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 10 - / / / / / / / / / / / r / / / / / / / / / / / / / / / / / / / / / / / / r 5-f / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 7 r 0 . /// / / / / / / / / / / / / / [D (7') (D, / TD i i i i i i i i i i i i i i i i i i i i i i i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 l Yield Strength, ksi FIGURE 2.2-22
'_ 3 C ~ g O '- 3 X v D y\\'-o L '\\_$ \\s s s. s ss\\N. -g E .\\ ~ ] ~ \\ N N 1 ,a L 4 N ,\\ \\, 'x s s E A ~ N \\s s s rC a R-R '8 8 8 x' k 3 N. 'N\\ \\ \\s\\,\\g' \\,' *o x s o O O m e W xx <- g 7 i i i i i i i b O k O O O k O 3 0 54S81 JO JaqwnN 2-32
4 e 650F 2* Flow Stress Distribution 7/8 MA Tubing 100 9 0 -- ' /,- / 80 - ',/ / / / f/ /) 60 - 5 '4 !$ [ f l 7, 5 f 40 - p d g A 6 p e g e s,p I/ /} / / //i 121 125 129 133 137 141 145 149 153 157 161 165 2* Flow Stress, ksi FIGURE 2.2 24 s h I A
i
- 3. Ikirst Capability l
3.1 Method of Testing Test specimens for measuring the burst properties of Alloy 600 i tubing containing axial through wall flaws were typically 8 to 10 inches in length. Axial through wall slits were l electro-discharge machined (EDM) in the specimens at the mid length location. The slit width was maintained at less than i 0.008 inch. Pressurization was accomplished by first sealing the tube with a soft plastic bladder. This bladder is clear plastic laboratory tubing with a wall thickness of 0.125 inch. The outer diameter of the bladder is selected to be slightly larger than the inner diameter of the test specimen. The bladder is i stretched axially, which reduces its diameter, and is then i slipped into the test specimen. As the stretching force is released, the bladder expands radially and seals the test l specimen. Swagelok fittings are then attached to the ends of the tube and connected to a air driven differential piston water l pump. The pump throttle is adjusted to develop a tube burst within several seconds. Pressure versus time is plotted on an x-y recorder. An indicating dial pressure gage is used as a backup pressure readout device. Because of the high toughness of Alloy 600 tubing, the narrow ( EDM slit is an adequate simulant of natural stress corrosion or i fatigue cracks in terms of affecting the tube burst properties. The burst pressure ~is dependent on the plastic flow properties of the tubing rather than the fracture toughness. Plastic collapse is reached before the onset of crack tearing. Yielding of the tube in the vicinity of the crack or slit limits the pressure bearing capacity of the tube. If this limit or collapse pressure is maintained, the crack opening will continue to increase until at some point crack tearing develops. The point where crack tearing develops does depend on the fracture toughness of the material but in the geometries of interest here, the maximum pressure capacity of the cracked tube is dominated by plastic response. Figure 3.1-1 shows a plot of mid point crack mouth opening versus pressure. The opening is first elastic and then deviates from linearity as plasticity develops. As more widespread plastic flow occurs, the point of plastic collapse, a limiting pressure plateau, is reached. Crack tearing develops somewhere on this pressure plateau. Figure 3.1-2 illustrates two test specimens l with identical slit lengths. One slit plastica 11y bulged open at1680 psi to release or burst the bladder seal. The opening is O sufficient to indicate that a plateau pressure had been reached. The other slit exhibited over 0.20 inch of crack growth at 1580 psi before test termination. This indicates that the plastic i collapse pressure was reached. A comparison of these two I 1 [ 3-1 i
nominally identical specimens shows that a plateau or limit pressure can be based on a large plastic bulge opening without requiring crack tearing. Without bladder reinforcement, bladder thickness and quick pressurization are key factors in obtaining large plastic openings and/or tearing. The viscoplastic nature of the bladder leads to extrusion of the bladder through small openings if the' pressurization rate is at all leisurely. About one third of the test specimens exhibited crack tearing. There was no systematic pattern about the normalized burst curve developed in the following section of the report. I I e 4 9 4 3-2
i + PRESSURE VERSUS CRACK MOUTH OPENING 2000 I l l l l l l l l l l l l }__- l 1800-- .-e isoo-- 3 1400-- H m E 1200-- td 1000-- w e, m soo-- I600 TUBING, 3/4" DIA. a
- 1. 0" AXIAL TliRU-WALL SLIT
~~ E O. 600-- 400-- 200-~ o l l l l l l i i i i i o 10 20 so 40 so so yo so go sfo 3 s'n sfo 3jo 3jo 1$o ido 1$o seo ~ CRACK MOUTH OPENING. MILS FIGURE 3.1-1 k-
? i I ? ILLUSTRATION OF CRACK BULGING AND CRACK TEARING 5 0 4 p r. ke . Oer .$. Owe A. %+w g , ~ ^ r R$gks5b h h b _.;xmp ar c ;.;m. =%..w, - + J2 m . _ kn _yx _., _w u;a w _ .......w wz.. - ' y ri _ __. s A. b -- (.p& y,..--.. r i i 5 e m a f 'A+dti -L W*f sk +%%.~ Nc.m'79+ s+c _. ,,m,., . _ _ _.,Ej -r,. y%-%~ wp.0 7 -w.-~..._,.._,,,,,, ~ s-p I YE h 4,;,,_g*g.Q a4.~-,x.n..dy-. u. - ' 95;jo+14: ,j k,s MT;,: V' ? p,f pa n. ~ f A i ..j w. o Q ggs\\ s">pv..V*memuy-m m_m hMI _ . f +p. -~~k
- o. z '.y--
J '_',, g (
- _.. ~ ~
. n % ~- qW' m ~., y 4.s. J D4 -ap. p 1 3 FIGURE 3.1-2 i 4 t J 1 l 3-4 1
3.2 Summary of Results Burst capability of steam generator tubing with and without through wall, axial cracks is required in order to demonstrate adequate margins of safety and to demonstrate leak before break in satisfying RG 1.121. The results of 81 burst tests of MA and TT Inconel 600 tubing with various lengths of through wall, axial cracks have been evaluated to provide a non-dimensionalized relationship between burst capability and the length of through wall cracking. 3.2.1 Burst Pressure Versus Crack Length Tests were conducted with thinned and nominal thickness 11/16 X O.040 inch TT, 3/4 X 0.043 inch MA and 7/8 X 0.050 inch MA tubing with through wall, axial crack lengths varying from 0.05 inch to 2.0 inches and with the same tubing with no cracks. Tables 3.2-1 through Table 3.2-3 present the test data for the three tube sizes. The data from the 81 tests are shown plotted as burst pressure versus crack length in Figure 3.2-1. The wide scatter in the data reflect the variations in tube sample strengths (S and S ) and geometry. Plots of the burst pressure y u versus crack length for the individual tube sizes in Figures 3.2-2 and 3.2-3 for the 3/4 and 7/8 inch MA, nominal thickness tubing reflect scatter from material strength variations. Figure j 3.2-4 for thinned and unthinned 11/16 inch TT tubing contain both strength and geometry variations. Developing a burst versus crack length relationship based on only the raw data would permit only a lower bound approach to be used or would require extensive testing of each tube size with variations in thickness and strength. In lieu of either of these options, the burst data have been non-dimensionalized as discussed in the following section to permit the development of a single relationship that may be used to compute burst capability for various tube sizes and strengths, 3.2.2 Non-Dimensionalized Burst Properties A non-dimensional pressure, PBAR or p, is defined as: PB*Rm _p= (Sy+Su)*t I
- where, pB = burst pressure of the tube sample, ksi Rm = mean radius of the tube, inch t = tube thickness, inch and (S +Su) = 2*Sf = twice the flow stress, ksi.
y 3-5
In addition, a correction is made to the burst pressure to account for local thinning of length w and depth h over the total circumference. The following equation from NUREG/CR-0718 is utilized for this purpose: .1 /(Ri(t-h))\\ ph / PB = (1-h/t)l-e where Ri = inside radius of the tube. This equation has been shown to predict the effect of local thinning on the burst strength of tubing in NUREG/CR-0718 (2 ). The non-dimensional, through wall, axial crack length, LAMBDA or 1, is defined as: 1 =L/ (R *t)b m where L = the total through wall, axial crack length. The burst test result, the strength properties and the tube geometry for each of the 81 tube samples were input to the above equations and replotted as shown in Figure 3.2-5. The result is a much tighter grouping of the data that reflects a consistent relationship between burst capability and crack length. Figures 3.2-6 through 3.2-8 show the non-dimensionalized data for the 4 individual tube sizes. The tight grouping for the 11/16 inch thinned tubing illustrates the accuracy of the correction for local thinning prvided by the NUREG/CR-0718 equation for thinned tubes with through wall cracks as well as for uncracked tubing. Figure 3.2-9 shows the data plotted with a plot of the curve that is a ninth order plynomial, least squares fit to the data. The equation of the curve is: p = 0.60037 - 0.069789*1 - C.12266*12 + 0.07797*18 - 0.022441*14 + 0.0036852*15 3.6365E-04*18 + 2.1307E-05*17 - 6.8282E-07*la + 9.2137E-09*18 Figure 3.2-10 is a plot of the PBAR versus LAMBDA curve without the data superimposed. By applying this equation to the test samples, inputting the specific minimum and maximum radii, thicknesses, crack length and flow stress, a comparison of the predicted minimum and maximum burst pressures with the actual burst pressures may be made. This comparison is shown for the (2) NUREG/CR-0718, Steam Generator Tube Integrity Program Phase I Report, Batelle-Pacific Northwest Laboratory, September, 1979. 3-6
3/4 inch MA data in Figure 3.2-11, for the 7/8 inch MA data in Figure 3.2-12, and for the 11/16 inch TT data (thinned and unthinned) in Figure 3.2-13. The minimum and maximum bounding O curves for the 7/8 and 11/16 inch tubing show excellent agreement between test and prediction over the full range of crack length. The comparison for the 3/4 inch tubing results is also very good with the relative exception of four po!nts. These tests at 0.60 and 0.81 inch crack length are slightly overpredicted. The use of the LTL material, lower bound strength properties and the PBAR versus LAMBDA equation above is expected to provide realistic, conservative predictions of burst capability for Inconel 600 tubing manufactured by Westinghouse in the tube size and heat treatment conditions evaluated. l .t 3-7
Table 3.21 Inconel 600 Burst Test Data 3/4 Inch Diameter MA Tubing Heat 0.D. t 2*Sg L pB 1 P (in) (in) (ksi) (in) (ksi) 7735MA 0.752 0.044 159.8 0.000 11.600 00.000 0.5840 0.500 3.800 4.006 0.1913 0.500 4.140 4.006 0.2084 0.500 3.990 4.006 0.2009 0.500 3.910 4.006 0.1969 0.500 3.725 4.006 0.1875 0.196 7.900 1.570 0.3977 0.196 7.250 1.570 0.3650 0.401 4.680 3.213 0.2356 ~ 0.403 4.400 3.229 0.2215 0.609 2.520 4.880 0.1269 0.604 2.325 4.840 0.1171 0.813 1.620 6.514 0.0816 0.814 1.700 6.522 0.0856 xxxxMA ( 2 ) 0. 750 0.043 150.2 0.500 3.300 4.078 0.1829 0.500 3.307 4.078 0.1833 1.500 0.891 12.233 0.0494 1.500 0.943 12.233 0.0523 'I (1) From NUREG/CR-0718. 3-8
Table 3.2 2 Inconel 600 Burst Test Data 7/8 Inch Diameter MA Tubing i Heat 0.D. t 2*Sg L PB 1 P (in) (in) (ksi) (in) (ksi) 1991MA 0.875 0.050 156.0 0.150 8.505 1.045 0.450 0.200 8.475 1.393 0.448 O.050 9.930 0.343 0.525 0.150 8.895 1.045 0.470 O.200 7.740 1.393 0.409 0.200 7.995 1.393 0.423 O.100 10.065 0.696 0.532 0.150 8.880 1.045 0.470 8997MA 0.875 0.050 163.0 0.250 6.940 1.741 0.3513 O.250 7.070 1.741 0.3578 0.250 7.100 1.741 0.3594 t 0.250 7.200 1.741 0.3644 0.250 6.930 1.741 0.3508 0.250 6.900 1.741-0.3492 -0.500 4.290 3.482 0.2171 0.500 4.200 3.482 0.2126 0.500 4.520 3.482 0.2288 0.750 3.000 5.222 0.1518 0.750 2.970 5.222 0.1503-0.750 2.925-5.222 0.1480 t l 3-9 ~.
Table 3.2 2 Inconel 600 Burst Test Data 7/8 Inch Diameter MA Tubing (continued) Heat 0.D. t 2*Sg L pB A P (in) (in) (ksi) (in) (ksi) 8997MA 0.875 0.050 163.0 1.000 2.200 6.963 0.1113 1.000 2.200 6.963 0.1113 1.000 2.125 6.963 0.1076 xxxxMA ( 2 ) 0. 875 0.052 140.6 0.250 6.276 1.709 0.3532 0.250 6.435 1.709 0.3622 0.500 3.752 3.418 0.2112 1.500 1.036 10.254 0.0583 1.500 0.989 10.254 0.0557 3742MA 0.875 0.048 144.5 0.800 2.500 5.678 0.1490 1.000 1.910 7.098 0.1139 1.500 1.230 10.647 0.0733 2.000 0.870 14.196 0.0519 1.000 1.800 7.098 0.1073 1.500 1.200 10.647 0.715 2.000 0.770 14.196 0.0459 1.000 1.930 7.098 0.1151 1.500 1.230 10.647 0.073 2.000 0.895 14.196 0.0534 l 2.000 0.895 14.196 0.0477 (2) From NUREG/CR-0718, 3-10
Table 3.2 2 Inconel 600 Burst Test Data 7/8 Inch Diameter MA Tubing (Continued) Heat 0.D. t 2*Sg L pB 1 P (in) (in) (ksi) (in) (ksi) 3742PA 0.875 0.048 144.5 0.000 10.500 0.000 0.6260 0.000 10.500 0.000 0.6260 0.500 4.100 3.549 0.2444 0.500 3.900 3.549 0.2325 0.500 4.050 3.549 0.2414 0.750 2.700 5.324 0.1610 0.750 2.750 5.324 0.1639 g) 0.750 2.650 5.324 0.1580 ^ 1.500 1.060 10.647 0.0632 1.000 2.000 7.098 0.1192 3-11 )
Table 3.2-3 Inconel 600 Burst Test Data 11/16 Inch Diameter 1T Tubing Heat O.D. t 2*Sg L PD 1 P (in) (in) (ksi) (in) (ksi) 8786TT 0.688 0.040 160.0 0.000 11.300 0.000 0.5714 0.040 0.400 4.050 3.515 0.2048 0.040 0.600 2.600 5.272 0.1315 0.040 0.800 1.870 7.030 0.0946 0.036(2) 0.200 6.700 1.757 0.3703 0.036(2) 0.400 3.800 3.515 0.2100 0.036(2) 0.600 2.250 5.272 0.1244 0.032(2) 0.000 9.600 0.000 0.5884 l 0.032(2) 0.200 5.450 1.757 0.3340 l O.032(2) 0.400 3.150 3.515 0.1931 0.028(2) 0.000 8.650 0.000 0.5985 0.028(2) 0.200 5.200 1.757 0.3598 0.028(2) 0.400 2.700 3.515 0.1868 0.028(2) 0.000 7.550 0.000 0.6040 (2) Uniformly thinned, 1.5 inch long section over 360* of the circumference. 3-12 i
"A Su I l (O 10 - N / lll _ m 1 V ~ II rn (1 y Ww ~ ()z 5z -m m.- ~J o k N W to3 s >H l-w a J 9" LU m O cp e x U 00 O T 7 g- ) Z ioo - 5 mo (f) O 0:03 o H COc0 0 0 - 9o W R cO O3 O 0] O O CO - N 00 o 0 1 O 'EO-O O-O^O o c5 W 3 ~ o w a ~ ) ~} m Isx 'asnssasa leane 3-13
I I I o ( N / LLJ I ~ ~ o r ()x o (I I v (Y ~ x ()I N W, o z i C CD CD b O > v - Fu 5 O a s-D WO o - *d fY x E ) u O DJ o -(f) LO O (f) b ctoo l l l C$ co - } fY n N oo - g \\ I i Q l 'o v m o m o y m 00-45 y IS>i 'BBnSSBBd ISBnB h r 3-14
l I I .1 o (D Cb / b I ~ D Y ~ ()[ [Cl (I I v (Y c ()I W o N-z - ik 9b O [O] - -35 > to O a e x WO O - 920 DO O ct fY X O' ) U (_O b o to O 00 0 : 0 31 I, l O - d-l (Y O CO O] i cy O OJ 00 O i O (f) P o g y cu o m o y cu 00 m IS>i 'B8nSSB8d 19808 3-15
l i i o )J( P / lll W W m l m ZXo a A oooo~ i-mmmmr )(H Z Z Z Z H Z Z Z Z }l -- - - r A II I I D [1 i-- i-H I-- Z' 1 ) (O N N N N Z N Z O O O O O N ~7 - 0r J( A Z I H L o o> o w a o I u W^ <o _ oS 5 -T e I O o 3 llI 0 - 6x X o ( DC n y oo - g WQ o Wa mo OC > O -o JA U 0 >O o ig g o , >-o r-x JA E 5R 5E w a u m oo ( j C ISK,ERUSSERP TSRUB L E-t9
I + F-- C Z la - v LU __J b - N U EE c O U [0 g a oc Z J g H v > s E w W w Z d I b m$ J '-~ W on3 E co w 6g a W c a [ Z - o m o U g lo;Io o O O co uJ F-CD N (f) ~ ((Lo v E 0100 z D co' cc m 2 O (" LU 9E o o3 N oo H o j o [ 0 833 m y cu o y 6 6 6 o o h (888 d) BBnSSBBd ISBnB OBZIlBHBON 3-17
8L-E [ g NORMALIZED BURST PRESSURE (P BAR) o o o o o I oh o n H N aa m m g Z O W a3 E 7m N m rs a n a w xH M co O O T m 3 @o m I c D 3 5 o U oW ^ P W r C ~ @Q I e I T --i I I w nr-D DO 3W O 3 I v _. o N - a G ^ f~ m -^ Z O l l -1 l I l l
7 I-- C _Z 10 T ^ ~F 7 O ur m v 0-S )-( 30 J0 I 3 O eD Z -r W ^ I E-H m o o 0E oc@ y C F W o 0ff A w 4 W 10 o E f m o m s 4 - o h ,,3 g-
- gr O
X R H N g AF N y )X( O[O z D-C wa g Z o ur m Oti O OC N g O c O m O? t e = ~ P P P P P g [ )RAB P( ERUSSERP TSRUB DEZILAMRON E-L6
w n NORMALIZED BURST PRESSURE VS-CRACK LENGTH 0.6875 X O.040 INCH, TT 0.8 ng o 10% THINNE0 a3 A 20% THINNED 0 o 30% THINNED 0.6Y y b x 40Z THINNED 5 o NOMINAL THICKNESS E Y 0.4 B 8 5 ^ CD LU N 0.2 ._.J E 9 O Z 0.0 O 2 4 6 8 10 12 14 NORMALIZED CRACK LENGTH (LAMBDR) FIGUltE 3.2-8
l--- c_r) / Z ^ ID - v LU ~ _J M U ~ f- _N E ^ ) 5 TO a3 to 0 'O - OE Z + (f) H v I y w C LU ~ - md g g H D H J m W 03 y y oc w a o a LU E E 52 g y b D O_ to'ro g g O / Ea UJ f-(O / N IID - v] W ~ 1 a)6o E D co-x CD oZ O ~ W o.oF$ N /ga H O __J /0 E ago 4 y o g E s s s s 6 )- oZ C888 d) BBnSSBBd ISBnB OBZI1BNBON 3-21
F i i i I d-i- 7G / Z j-s nr l A i O ur m J v o o 4 y 52 W ~ ^ w i C I H H i m o 0-i- oe g
- i C i--
F w x m oc W o x m5 Bg 0-7 - *O m g-O O O m l-O N 4 - ^[ W m m C A DC o Z a or m t N ~r m o I o o o o o h )RAB P( ERUSSERP TSRUB DEZILAMRON o 4 t E-22 }
I i I } O ( i y i i lI m l c Y !~.* ()T h (I I v ~ 2 (Y c t 1 O ( ) o, z l m c 0 & l 5 T N O .I LO O yv i z = O l $8 C t lll O /0 - 9M / rr x ) / U jo3 (f) O LO / O (f) b troo 6 t liI O co / O y n cu O,0 ' O i t t .r 1 I f f I v cu o m o y m ao (Y V W ISM '28nSS28d IS8nB f D-3-23 h
i I i 7 i o f r) ip- <g / e lll m I J- ,I i I o V y~.* ( ) a-cdr (I I y 1 + W j x ~ + U ( ) oE - J e mE z ~ l 1 4 WO 10$ _ -65 95 E I > Lf) / a o / a e w LLJ O to' - "M Wx ) / u -( f ) [s) ,/ c f f o 't wD op" III o / o 1 7 j D DJ /pr' n i ,co ~ O y ob l 'm ,[o' q v m o o o m 00 I ) h m IS>l 'BBnSS38d 198n8 [ i i 3-24
r ) l 9 !!!l ljl' i C m li;l / m n w 4!).Il - w W Z E l M l u pllll O O O O ~ F-- wwwwI ,:;fl' - g Z Z Z Z I-- y p_._. Z Z Z Z r hl
- .I'
~~ ~ ~ .3 .l';,I' 11 1 1 C H H H H Z I (j_ o 7 i u n.m.~ x o u w O O O O O .Z (_) Z l'j!j,) ~~ OJ O V Z m lll! 3 o< o x o O
- !jl
?^ fi Da N i;!,j oZ a (f) O J G~ w e ll;jj >O 3 C li-l,l u z X O / OU Z l:,' ogT
- .:f/ull O
,/ o W LO ) b ( (_i) CO f./.j ' Z / ,ctf d > - g / i CD (f) O /.// m U ,././// I Y ,.- / 7' f-- Q ",$*, - / ~ g N o / o ,.,, -./.. / i ./"/,- t o. l -(f) O','d-6^M v cu o w co v w oo ) ISX 'BBnSSBBd ISBnB C \\ k 3-25 -.}}