ML20043B192
| ML20043B192 | |
| Person / Time | |
|---|---|
| Site: | Beaver Valley |
| Issue date: | 05/11/1990 |
| From: | Sieber J DUQUESNE LIGHT CO. |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| NUDOCS 9005250051 | |
| Download: ML20043B192 (13) | |
Text
.
i a
~ #
g',
Shippingport PA 16077-0004 l
JOHN D <eth faib 8PM22 i.
Veco Pre.ent. Nucles' Group i
l May 11, 1990 f
U. S. Nuclear Regulatory Commission L
Attnt Document Control Desk Washington, DC 20555 L
Reference Beaver Valley Power Station, Unit No. 1 and No. 2 BV-1 Docket.No. 50-334, License No. DPR-66 BV-2 Docket No. 50-412, License No. NPF-73 Core operating Limits Report Gentlemen Attached is a
copy of the BV-1 Cycle 8 and BV-2 Cycle 2 Core operating-Limits Report (COLR) provided in accordance. with
-Technical Specification 6.9.1.14.
Each page has been identified
?
with.the applicable cycle number and issue date.
These limits are consistent with those parameters provided in the Technical Specifications prior to BV-1 and BV-2 Amendments 154 and 31, respectively.
Very truly yours, I
OAVJAuf
. D. Sieber b ice President Nuclear Group cc Mr. J.
Beall, Sr. Resident Inspector-Mr. T. T. Martin, NRC Region'I Administrator Mr. A. W. DeAgazio, Project Manager e
i l
I 9005250051 900511 A$'
PLR ADOCK 05000334 F
P PDC l((
-. J
BEAVER VALLEY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT This Core Operating Limits Report provides the cycle specific parameter limits developed in accordance with the NRC approved methodologies specified in Technical Specification Administrative control 6.9.1.14.
Soecification 3.1.3.5 Shutdown Rod Insertion Limits 1
The shutdown rods shall be withdrawn at least 228 steps or above.
Snecification 3.1.3.6 Control Rod Insertion Limits Control banks A
and B
shall be withdrawn at least 228 steps or above.
Control banks C and D shall be limited in physical insertion as shown in Figure 1.
Soecification 3.2.1 Axial Flux Difference NOTE:
The target band is 17%
about the target flux from 0% to 100% RATED THERMAL POWER.
The indicated Axial Flux Differences a.
Above 90%
RATED THERMAL POWER shall be maintained within the i 7% target band about the target flux difference, b.
Between 50%
and 90%
RATED THERMAL POWER is within the limits shown on Figure 2.
c.
Below 50%
RATED THERMAL POWER may deviate outside the target band.
Soecification 3.2.2 FO(Z) and Fxv Limits FQ(Z) $ EfE*K(Z) for P > 0.5 FQ(Z) $ ffE
- K(Z) for P 5 0.5 Where CFQ = 2.4 P=
THERMAL POWER RATED THERMAL POWER 1
K(Z) = the function obtained from Figure 3.
BEAVER VALLEY.- UNIT 1 1 OF 6 COLR 8 4/26/90 1
i
'The Fxy limits (Fxy(L)) for RATED THERMAL POWER within specific core planes shall bei Fxy(L) = Fxy(RTP) (1 + PFXY * (1-P))
Where For all core planes containing D-BANK:
Fxy (RTP) 5 1. 71 4
For unrodded core planes:
Fxy(RTP) 5 1.69 from 1.8 f t. elevation to 2.5 f t. elevation Fxy(RTP) 51.75 from. 2.5 ft, elevation to 10.2 ft. elevation PFXY = 0.2 THERMAL POWER p, RATED THERMAL POWER 1
j Figure 4 provides the maximum total peaking factor times relative T
power (Fg.prel) as a function of axial core height during normal core operation.
t Snecification 3.2.3 FNDH FNDH $ CFDH * (1 + PFDH * (1-P) )
f L
Where:
CFDH = 1.62 PFDH = 0.3 THERMAL POWER p, RATED THERMAL POWER BEAVER VALLEY - UNIT 1 2 OF 6 COLR 8 4/26/90
l t
i i
t 220 If56, 228)I 200 t
I(100,'187)
+
BANK C
..c 160 j
l f
/
{ /
/
5, l (0, 114)l 25 BANK D
~ 100
[
G 80
/
60 8x 40
/
20
~
8, 0) l 0
1 0
10 20 30 40 50 60 70 80 90 100 t
RELATIVE POWER (percent)
FIGURE 1 CONYROL ROD INSERTION LIMITS AS A FUNCTION OF POWER LEVEL l'
BEAVER VALLEY - UNIT 1 3 of 6 COLR 8 4/26/90
4 4
... u.:==.: =.:.
== : --.....
.. :L; =..: :. :.. :e= _ :._t.__.:--._;).
- * :.g
--.= ::.:.:-
~:-!-.
r. -.:
. =_=._ p.. =j ' ;. q._ _=_._
1
.= : =
w
-Q
==: - -
l
=-
8.[
100.-
- g flw:: _
EUNACCEPTAB Lli(.11,90).
-(11,90)E UNACCEPTABLE
. OPERATION
- h.,_
' OPERATICN m
- st: -
+
t
~
80
-~ ~
4..
=~: _
t t
_ EACCEPTA8LEliOPE R ATION f
60 r
(.31.50)
(31.5 0) '
+
~
l
~
E 6=
20
- +
..=1-.
i
.. = - -
. _ =
l
~
0 50 40 30 20 10 0
to 20 30 40 50 FLUX DIFFER' ' 'E ( A I)%
i t.
FIGUE: 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED l-THERMAL POWER 1
i l
l I
1 1
I BEAVER VALLE*l --UNIT 1 4 of 6 COLR 8 4/26/90 l
3:
-3 f
I I
l-1.2 c
\\
I (0,
- 1. 00) l l (6,
- 1. 00) l l
1.0 l^R l ( 10. 8,
.94) i i
.80 i
I Q
l l(12,.640)}
v.60 x
I I
i l
l
.40 l
i f
I i
I
.20 l
I I
i 0,00 0
2 4
6 8
10 12 i
CORE HEIGHT (feet)
FIGURE 3 FoT NORMAll2ED OPERATING ENVELOPE, K(Z)
- BEAVER VALLEY - UNIT 1 5 of 6 COLR 8 4/26/90 4>'
[.
k I
f i
l 10.0. 2.40 16.0. 2.40l 24
~...
.. h.......
i10.8, 2.256 I t
5 i
i 4
I:
2.0
+
t u
CL i
i l
1.6 3
f
,+
~
! 12.0. 1.5361 m
I I
BASIS FXY Q 1. 2 FROM 1.8 ft. TO 2.05 FT.
1.700 ABOVE 2.05 FT. TO 3.25 FT.
1.740 ABOVE 3.25 FT. TO 3.65 FT.
1.720 AB0VE 3.65 FT. TO 3.85 FT.
1.7135 ABOVE 3.85 FT. TO 5 85 FI, 1.710 l
ABOVE 5.85 FT. TO 9.65 FT.
1.770 I
.80 AB0VE 9.65 FT. TO 10.2 FT.
1.710 I
1 i
i 0
2 4
6 8
10 12 CORE HEIGHT (feet) 4 FIGURE 4 T
MAXIMUM (f o. pAEL) VS. AXIAL CORE HElGHT DURING NORMAL CORE OPERATION BEAVER VALLEY = UNIT 1 6 of 6 COLR 8 4/26/90
BEAVER VALLEY UNIT 2 CYCLE 2 CORE OPERATING LIMITS REPORT This Core Operating Limits Report provides the cycle specific i
parameter limits developed in accordance with the NRC approved methodologies specified in Technical Epecification Administrative j
Control 6.9.1.14.
Soecification 3.1.3.5 Shutdown Rod Insertion Limits The shutdown rods shall be withdrawn at least 228 steps or above.
Soecification 3.1.3.6 control Rod Insertion Limits control banks A
and B
shall be withdrawn at least 228 steps or above.
Control banks C and D shall be limited in physical insertion as shown in Figure 1.
SDecification 3.2.1 Axial Flux Difference NOTE The target band is 17%
about the target flux from 0% to 100% RATED THERMAL POWER.
The indicated Axial Flux Difference:
a.
Above 90%
RATED THERMAL POWER shall be maintained within the i 7% target band about the target flux difference, b.
Between 50%
and 90%
RATED THERMAL POWER is within the limits shown on Figure 2.
c.
Below 50%
RATED THERMAL POWER may deviate outside the target band.
SDecification 3.2.2 FO(Z) and Fxv Limits FQ(Z) s f0
- K(Z)
E for P > 0.5 FQ(Z) $ ffE
- K(Z) for P $ 0.5 Where:
CFQ = 2.32 P=
THERMAL POWER RATED THERMAL POWER K(Z) = the function obtained from Figure 3.
BEAVER VALLEY - UNIT 2 1 OF 6 COLR 2 4/26/90 l
o i
L
'The Fxy limits (Fxy(L)) for RATED THERMAL POWER within specific core planes shall be:
Fxy(L) = Fxy(RTP) (1 + PFXY
- il-P))
Where For all core planes containing.D-BANK:
Fxy(RTP) s 1.71 For unrodded core planes:
Fxy(RTP) 51.69 from 1.8 ft. elevation to 2.5 ft. elevation Fxy(RTP) s 1.75 from 2.5 ft, elevatiott to 10.2 ft. elevation PFXY = 0.2 THERMAL POWER p, RATED THERMAL POWER Figure 4 provides the maximum total peaking factor times relative T
power (Fg.prel) as a function of axial core height during normal core operation.
Specification 3.2.3 FNDH FNDH $ CFDH * (1 + PFDH * (1-P) )
s Where CFDH = 1.55 PFDH = 0.3 THERMAL _ POWER p, RATED THERMAL POWER
<z BEAVER VALLEY - UNIT 2 2 OF 6 COLR 2 4/26/90
- s. <
3.1 220 I(56, 228)I 7
200
/
[
l(100, 187) )
7 180 8w BANK C m
/
34o
/
1 z
$.120
/
7 l (0, 114)1 zo BANK 0 0100
/
/
Cn S 80
/
/
60 8
[
a:
l-e 40 l'-
20
/
- 8. 0) i 0
O 10 20 30 40 50 60 70 80 90 100 RELATIVE POWER (percent) 1' FIGURE 1 5
l CONTROL ROD INSERTION LIMITS AS A FUNCTION OF POWER LEVEL 1
l l-BEAVER VALLEY -' UNIT 2 3 of 6 COLR 2 4/26/90
..~. _
~ -. -.. -
i 1
9' I
l l
)
i i
1 5
h
. l,,,
j. : [.". J. -
.(
,.3 1."" l..j *1
- j.,
j.7
.*..[ 4 W 4-.
9
- .p.
...p::.t. g..
s
.. c.
..,... J..
- Gn.
- r.--
. al s,a,a
'l.,...:_. -
. r r:. - M.
a
.a u.s r.n.:.-. :-
....5" ":g C
.I.-
- t. s
-.::r r
3r4Famr". a a
s dWN p":r.d.'.-.-. ; 5..: '. '-
i '
e? ' ' -
... u :irjps'su3an
.. E-Ii'.". '. " '.
'I'i' #* fi
=
" ' * ' ' #5i 5h'
-'" Ik M0
.m".'-"
- 6g.....==.__.
. l :.:..: L...L..
. J.s e
1 UNACCTFEASL2 (*IIe90)
(11J0) NWTAM:
i
.ui'WTMit_0PERAT10g,_'
, OPttATI0ll l " ",,,r..f-r:.
+:
/'
1,:T4'L*j i;;; pr.;
,p d:
60
-l
.. u. :. r-3' a.:.u.. "3
. s.. -. ;.-..:
.i.r i
['1' a
.4
- ..q
.1
- 4.JJ] u1 J-e....
. v.
se ijj :*t"
.L
.: '.".gQ tee""' ;'r.:G 60 J: s;;.
e.;
M. : :..::
i w
i
/j.. ACCTFTA31.2OPERATIONi.
". 'I
<;u
/:I-l' i
l MitTi M.i -;! r.. ' 0
~'
4 v1-J I"(+31.$.0).
-: l M(31.50) M e
5 r.
"' g :
~. :g
'.r. :i.
J'
'ur'i' 40 hi, :;; 0
.:.. :-. :; e.:::
- "sj r;: A
=-.:
- j.: c.::
- e. :.
..,er.
".:.a.lf..
- s
~
e :.s :.
-~
- .ii.1LU h;; y:..;
":i-,, :.. @ FgrQ! :;j; 20
?.- Im4-.---
r.:
nr.:. ;--
E.
un"F.:
't::.
n
- r..
E; a
si. m j,1f'.i;i T $.,' - K:JH:
"k
. ".: ". i: r ::; :j'{ ;;jjn Qi,.g 5 I?$ I:.1YS
d-
. i:. L' t'Eh$:"?E I-T,,.;. :'i..:,
.."? ?.D :::
3
- f
- (- ha "f 'i-jR-h
.r-0 f.E
- y,ti:,-
- ",t-dFf..,. L.,
- T: a;.
50 40 30 20 10 0
10 20-30 40 50 FLUX DIFFERENCE ( AI)7.
{
4 FIGURE 2 1
l AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF 1
RATED THERMAL POWER L
i-(.
BEAVER. VALLEY - UNIT 2 4 of 6 COLR 2 4/26/90 l
.1
j.
?.
1 1.2
,o l
l I
i l
l(0, 1.00)l l(6 1.00)l t
1.0 l(10.8,.94) 7 i
.80 i
'l I(12,.647)l\\
R v.60 x
.40 l
I 20 0.00 0 2
4 6
6 to 12 l
CORE HEIGHT (feet)
FIGURE 3 q
T Fo NORMALIZED OPERATING ENVELOPE. K(Z)
BEAVER VALLEY - UNIT 2 5 of 6 COLR 2 4/26/90 l
p L
t i
I i
e i
2.4 416.0 2.321 i
i l
4
- ~*".. 4......++++}++++...M
] 10.8, 2.181
.{
2.0
[
i
+
t
+
t
+
^ 1.6
~
g l12.0,1.50lh l
W I
[1.2 I
~-
v
~
l x<a.80 BASIS Fxy
+
1,69 UP TO 2.5 FEET 1.75 ABOVE 2.5 FEET
.40 i
l l
0,00 0
2 4
6 8
10 12 CORE HEIGHT (feet) l FIGURE 4 T
MAXIMUM (Fo. pAEL) VS. AXIAL CORE HEIGHT DURING NORMAL OPERATION
' BEAVER VALLEY - UNIT 2 6 of 6 COLR 2 4/26/90
.. -.