ML20042C076
| ML20042C076 | |
| Person / Time | |
|---|---|
| Site: | Davis Besse |
| Issue date: | 03/25/1980 |
| From: | Crouse R TOLEDO EDISON CO. |
| To: | Stolz J Office of Nuclear Reactor Regulation |
| References | |
| 801, 820325, NUDOCS 8203300154 | |
| Download: ML20042C076 (75) | |
Text
{{#Wiki_filter:l ~A Y l TOLEDO %ms EDISON RCHAw, P. CnouSE Vu Pnisent Docket No. 50-346 [$313 m3 License No. NPF-3 Serial No. 801 N March 25, 1982 g g 8 9 RECEIVED Director of Nuclear Reactor Regulation AR2 91gg y IO
- irm umm e7 Attention:
Mr. John F. Stolz / 842dium7 Operating Reactors Branch No. 4 Division of Operating Reactors United States Nuclear Regulatory Commission g g Washington, D.C. 20555
Dear Mr. Stolz:
Per Toledo Edison's discussion with your staff, this letter is to provide requested information concerning Containment Purge / Isolation Valve. Attached is a copy of the Henry Pratt Containment Purge / Isolation Valve Analysis for Davis-Besse Nuclear Power Station Unit 1. Should questions concerning this analysis arise, please feel free to contact Toledo Edison for further discussion. Very truly yours, RPC: CAB:rs Attachment cc: DB-1 Resident Inspector oh i so THE TOLEDO EDISON COMPANY EDfSON PLAZA 300 MADISON AVENUE TOLEDO, OHIO 43652 8203300154 820325 PDR ADOCK 05000346 P PDR
/ Docket No. 50-346 License No. NPF-3 Serial.No. 801 March'25, 1982 I!.BtDEI HENRY PRATT COMPANY creative engineeri'ng for fluid systems 40150UllililGilLAND AVENUE
- AURORA,ILLNOIS 60507 Containment Isolation / Purge Valve Analysis David-Besse Nuclear Power Station Unit 1 48" NRIA Valve w/Bettis T520-SR2 Actuator' Customer P.O.:
0-1545 Pratt Order No. : D-028341 774 9-m-@3-7-/ l
e ~~ ~~ ~ ~ (~.' ISOLATIO:;/PURC VALVE ANALYSIS FOR s 48" NRIA BUTTERFLY Vh N 1 Y Project Site L bavic-Besse Nuclear Power Station Unit #1 The Toledo Edison Co., and Customer The Cleveland Electric Illuminating Co. Engineer Bechtel Associates ~ Original Specification 7749-M-403 Original P.O. No. 0-1545 Original Pratt Job No. D-0004-1 Valve Tag Nos. HV-5005 HV-5006 'Ht7-5 0 0 7 HV-5008 Rev. 5. General Arrangement Drawing E-2769 Rev. 1 Cross Section Drawing E-2767 IM Prepared By: U W l ~ l$$l Date: Reviewed By: M[ MA/}fA- "g'[,"[('j', r Date: C-/-// 5 M 'd. REG., ;r, 3 k Certified By: p- / =
- pro?CSSIONAL
- v f
/h) .,..ENG JEER ~ Date: ~~ s i j/
- <<,, <<),un*dh. !
E o og in s:c...a 5 '[LF L U ( t (Mt 161981 D m ne: w,n .m
9 i i g. CONTENTS i A n' r Page I. Introduction 1 II. Considerations 2' 4
- III, Method of Analysis 6
A. Torque Calculation B. Valve Stress Analysis 7 [ 8 C. Operator Evaluation [ I IV. Conclusion 9 I V. Additional Information 10 Attachments (1) Input Documents (A) Pressure vs. time graph l ( l (B) Pratt letter regarding additional information [ (C) Customer / engineer response to request for information (2) Valve Assembly Stress Report (3) Bettis Operator Certification (A) Bettis seismic analysis report (4) Supplemental Torque Calculations 4 (5) General arrangement and Cross-Section Drawings O
- b o
4 O G
i 1_ g. .( I. Introduction This investigation has been made in response to a request by l l the customer / engineer for evaluation of containment isolation / purge t valves during a faulted condition arising from a loss of coolant accident (LOCA). The analysis of the structural and' operational adequacy of the valve assembly under such conditions is based principally upon containment pressure vs. time data, system response (delay) time, piping geometry upstream of the valve, back pressure due to ventilation i components downstream of the valve, valve orientation and direction of l valve closure. The above data as furnished by the customer / engineer forms the k basis for the analysis. Worst case conditions have bee'n applied in, the absence of definitive input. 9 O O S 4 Q e* O A
? ,(; II. Considerations The NRC, guidelines for demonstration of cperability of purge and vent valves, dated 9/27/79, have been incorporated in this evaluation as follows: A.l. Valve closure time during a LOCA will be less than or equal to the no-flow time demonstrated during shop tests, since fluid dynamic effects tend to close a butterfly valve. Valve closure rate vs. time is based on a sinusoidal function. 2. Flow direction through valve contributing to highest torque; namely, flow toward the hub side of disc if asymmetric, is used in this analysis. Pressure on upstream side of valve as furnished by customer / engineer is utilized in calculations. ( loca time is furnished by customer / Downstream pressure vs. engineer or assumed to be 19.7 psia throughout closure cycle. 3. Worst case is determined as a single valve closure of the inside containment valve, with the outside containment valve fixed at the fully open position. 4. Containment back pressure will have no effect on cylinder cper-ation since the same back pressure will also be present at the inlet side of the cylinder and differential pr' essure will be the same during operation. 5. Purge valves supplied by Henry Pratt Company do not normally include accumulators. Accumulators, when used, are for opening the valve rather than closing. .k~ 6. Torque limiting devices apply only to electric motor operators which were not furnished with purge valves evaluated in this report.
e f 7&8. Drawings or written description of valve orientation with respect to piping bnmediately upstream, as well as direction of valve closure, are furnished by customer / engineer. In lieu of input, worst case conditions have been applied to the analysis; namely, 90 elbow (upstream) oriented 900 out-of-plane with 0 ~ respect to valve shaft, and leading edge of disc closing toward outer wall of elbow. Effects of downstream piping on system back pressure have been covered in paragraph A.2. (above). B. This analysis consists of a static analysis of the valve components indicating if the stress levels under combined seismic and LOCA conditions are less than 90% of yield strength of the materials used. A valve operator evaluation is presented based on the operators ,( ability to resist the reaction of LOCA induced fluid dynamic torques. C. Sealing integrity can be evaluated as follows: Decontamination chemicals have very little effect on EPT and stainless steel seats. Molded EPT seats are generically known to have a cumulative radiation resistance of 1 x 108 rads at a 0 maximum inciden'ce temperature of 350 F. It is recommended that seats be visually inspected every 18 months and be replaced periodically as required. 0 Valves at outside ambient temperatures below 0 F, if not properly adjusted, may have leakage due to thermal contraction of the elastomer, however, during a LOCA, the valve internal temperature would be expected to be higher than ambient which tends to increase sealing capability after valve closure. The presence of debris or damage to the seats would obviously impair sealing. m c
_4
- b III.
Method of Analysis Determination of the structural and operational adequacy of the t valve assembly is based on the calculation of LOCA-induced torque, f valve stress analysis and operator evaluation. l A. Torque calculation The torque of any open butterfly valve is the summation of fluid dynamic torque and bearing friction torque at any given disc angle. Bearing friction torque is calculated from the following equation: TB = AP x A x U x d2 where AP = pressure differential, psia ( A = projected disc area normal to flow, in2 U = bearing coefficient of friction. i d.= shaft diameter,.in. Fluid dynamic torque is calculated from the.following equations: For subsonic flow (P )M 3 TD=D xC1xFRE x 1 (P ) (M-1) 2 (note: in worst cases, M is in the range of 2.1 to 3) For sonic flow To=D xC2xFRE x (P2)(L+l) 3 (P )b 1 where k-D = disc diameter, in. C1 = subsonic torque constant
l l -S-1 b C2 = sonic torque constant FRE = Reynolds number sizing factor P1 = Upstream static pressure at flow condition, psia P2 = Downstream static pressure at flow condition, psia M = Subsonic exponential factors, function of oc L = sonic exponential factors, function of oc fully closed oc = disc angle, such that 900= fully open; 00 = Torque coefficients and exponential factors are derived from analysis of experimental test data and correlated with. analytically predicted behavior of airfoils in compressible media. Empirical and analytical findings confirm that subsonic and sonic flow conditions across the valve disc have an unequal and opposite effect on dynamic torque. Specifically, increases in upstream ( pressure in the subsonic range result in higher torque values, while in the sonic range results in lower torques Therefore, increasing Pi the poin,t of greatest concern is.the condition of initial sonic flow, which occurs at a critical pressure ratio. The effect of valve closure during the transition from subsonic to sonic flow is to greatly amplify the resulting torques. In fact, the maximum dynamic torque occurs when initial sonic flow occurs coincident with a disc angle of 72 (symmetric) or 680 (asymmetric) 0 from the fully close'd position. The following computer output summarizes calculation data and 0 to 00 torque results for valve opening angles of 90 k 9 9
._-..~.-__._:... -- ---- - 4 _._ - - _* --- -.. ~ -~ ~, . - ~. .....m. _.._~_~_._....a.__.._. o_.. ...... _. _........ _..... ~ _ _. -. - _ - ~ -. ......a D-28341-1 TOROUE TABLE 1 4 / 21 / 81 MAX.PDSSIBLE TDROUE MAY BE AT THE EAPLIEST P.R. (.585)CPITIC. SONIC
- - o ABSDL. MAX. TOPOUEAFIRST SONIC) AT 72-68 DG.VLV. ANG.= 431607 IN-LES & 68 DEG.
MAX.TOROUES IllCLUDE SIZE EFFECT(REYliDLDS NO.ETC) APPX. X 1.27 FOR 48 INCH VAL \\ '~ VALVE TYPE: 48"-R1A-2.5/6.5 CLASS 75 DISC SIZE: 46.718 INCHES OFFSET ASYMMETRIC DISC SHAFT DIA.: 4.75 INCHES BRG. CDEF. OF FRCTN.: 5.00000E-03 SEATItiG FACTOR: 15 INLET PRESS. VAR. MAX.: 42.7 PSIA DUTLET PRESSUPE(P2): 19.7 PSIA
- - ~
MAX.ANG. FLOW PATE: 505763. CFMi 733804. SCFMi 56020.6 LB/ MIN CRIT.SDrilC FLOW-90DG: 52269.9 LB/ MIN AT 27.7465 INLET PSIA VALVE INLET DEff!ITY: .110765 LB/FT^3-MIN..159247 LB/FT^3-MAX. ] __n FULL DPEN DELTA P: 10 PSI 1 SYSTEM CuriDITIONS: PIPE IN-PIPE-DUT -Arid-AIR SERVICE & 264 DEG.F MINIMUM 0.75 DIAM. PIPE DOWNSTREAM FROM CENT LINE SHAFT. ABS. PPESSURE(ADJ.)FDLLOWS TIME /PPESS. TRANSIENT CURVE. ABSOLUTE MAX.TOROUE IS DEPENDENT Off DELAY TIME (NOT PRESSURE) AfiD CUBE TD 2.5-1 POWER OF (P1/P2)IN WDRST RAfiGE X LItiEAR CONSTANT TIMES P2-ABS. (75-60DEG.) IN SUBSDNIC RANGE LIMITS-DNLYiSEE FORMULATIDriS..-PER TESTS H.PRATT THIS TO. AT 72 DEG.SYMM. DISC (68=DFFSET SHAFT) CT=T/D^3/P2 (ABS) / ANGLE P1 DELP PRESS. FLOW FLOW TD TB+TH TD+TB+TH TIME (LOC -( APPRX. PSIA PSI RATIO (SCFM) (LB/ MIN)
ItiCHLES--------
SEC. 90 29.7 10.00 0.663 733804 56020 128646 118 128765 2.50 85 30.6 10.87 0.644 788489 60195 121204 112 121316 2.85 80 31.4 11.71 0.627 780258 59567 181511 167 181678 3.18 75 32.2 12.50 0.612 759201 57959 315717 291 316009 3.50 72 32.6 12.94 0.604 709873 54193 392974 363 393337 3.68 70 32.9 13.21 0.599 672367 51330 343558 317 343876 3.79 65 33.5 13.03 0.588 600146 45816 312040 288 312328 4.03 60 34.0 14.33 0.579 507947 38778 205774 190 205964 4.23 55 34.4 14.70 0.573 426073 32527 124047-205 124252 4.38 L-50 34.6 14.92 0.569 346604 26460 84697 234 84931 4.47 43 34.7 15.00 0.568 359772 27466 70153 259 70412 4.50 40 34.8 15.12 0.566 258254 19715 52200 282 52483 4.53. 35 35.2 15.48 0.560 175389 13389 33505 309 33815 4.62 ~~ 30 35.8 16.07 0.551 135872 10372 21514 339 21854 4.77 25 36.6 16.87 0.539 106291 8114 16398 373 16772 4.97 20 37.6 17.86 0.525 64986 4961 13809 409 14218 5.21 "-~ ~[Z 15 38.7 19.00 0.509 36118 2757 8401 448 8849 5.50 10 40.0 20.26 0.493 17642 1346 6244 487 6731 5.82 5 41.3 21.61 0.477 5034 384 5012 525 5538 6.15 0 42.7 23.00 0.461 0 0 34560 468 35028 6.50 _. l. SEATING + BEARING + HUB SEAL TDRQUE (M/M)= 35028 IN-LBS & 0 DEG. H __. MAX.DY.N. + BEA.R.ING + HUB SEAL TDROUE (M/M) 392974 IN-LBS & 72 DEG. = 4.. .a .f 9: .m_ .m._ __ _ _... -. _.. ._7 l ... _.. y. .-.a_,_. r. \\ l ~~ 4--*'-*^-'-*-'-*--*-*
- -~'+P'*-~*
7 _.t r_. f _....,..
- ~ * ~
- TOPS F0PM 3309
- '+.
.a.. i .-..-~~. -_$ "Y 2 .s _#. $. - ~.. ~ a i ,I o --.t_.a i.- y-,3_ ,j. .s 4
7 ( B. Valve Stress Analysis The Pratt butterfly valve furnished was specifically designed for the requirements of the original order which did not include specific LOCA conditions. The valve stress analysis consists of two major sections:
- 1) the body analysis, and 2) all other components.
The body is analyzed per rules and equations given in paragraph NB 3545 of Section III of the ASME Boiler and Pressure Vessel Code. The other components are analyzed per a basic strength.of materials type of approach. For each component of interest, tensile and shear stress levels are calculated. They are then combined using the formula: (T +T ) + 4(S +S2) f. S = 1(T +T ) +1, 1 2 l max 1 2 2 2 r where S = maximum combined. stress, psi max T = direct tensile stress, psi 1 T2 = tensile stress due to bending, psi S1 = direct shear stress, psi S2 = shear stress due to torsion, psi The calculated maximum valve torgne resulting from LOCA conditions l is used in t'he seismic stress analysis, attachment #2, along witn "G" loads per design specification. The calculated stress values are compared to code allowables if possible, or LOCA allowables of 90% of the yield strength of the material used. i 1
_ _ _ _ _ - - _ _ _ _ ) ~ t [ [, C. Operator Analysis 1 Model: Bettis T-520-SR2 -l Rating: 225,000 in-lbs (at full open and clcsed po -itions only) Max. valve torque: 431,607 in-lbs. The Bettis spring-opposed cylinder furnished was specifically designed for the requirements of the original order which did not include specific LOCA conditions. The maximum torque generated during a LOCA induces reactive forces in the load carrying components of the actuator. The Bettis model furnished has a rating which exceeds the calculated valve torque for the following valve angles: ,( 55 degrees open to O degrees (fully closed) Listed in the attachments section of this report are the following documents verifying the structural and operational adequacy of the actuator. - Bettis operator certification letter (attachment #3) 7.. - Bettis seismic analysis report (attachment #3a) i s s O e .:( ye e i o-oo*.
~ 10 I V. Additional Information The following items are presented to describe how system factors affect torques developed in this analysis for your consideration.and are informational only. Further analysis,by the customer / engineer is recommended prior to implementation. 1. An important factor governing the magnitude of the dynamic torque is delay time from the start of a LOCA incident to activation of the pressure sen~ sing mechanism, which in turn initiates valve closure. Careful re-evaluation by the customer / engineer of the pressure sensing / timing sequence may render the present valve assembly functional through a significantly greater range of .:( angles. h. Installation of a convergent-divergent section downstream of the outside containment valve with a throat area sufficient to allow unrestricted ventilation during normal operation, but which will choke LOCA-induce d flow while the valve is closing, through the critical range of 800-600 open, could resultantly reduce the flow through the valve to subsonic levels. 3. An orifice plate installed similar to #2 above can also choke the system downstream and reduce flow through the valve to ~ subsonic levels. 4. Mechanically restrict or block the valve disc to a maximum disc opening angle. (See attachment #4 for further illustration). 'S 9
l (:D IV. Conclusion 4 It is concluded that neither the valve structure (with present materials) nor the valve actuator are adequate to withstand the defined LOCA-induced loads based on the calculated torques developed in this analysis except for restricted valve opening as described t below: Specifically, the valve top stub shaft and top disc hub blocks or are shown to be overstressed except at valve disc angles of 55 less (see attachment 2). In addition, the calculated torques exceed the manufacturers rating for the actuator except at valve disc angles of.55.or less l (see attachment 3). / 3 / i O l
f t (f. ATTACHMENT lA PRESSURE vs. TIME GRAPHS 6 O
- J l
l l
.4 d e (- s f as.e h., sa en mm M C2 m .cm" 9 "J
== ts. Md 2 a=e SE ad c g g W sa: m m -. ew.z: ag - tr* s e *e*.a. c G
- a. =
= N. e ".t s g e- ,e = *- r' 88 . n e c z. o. ua m w. . c:: 2 3 m w L:, e
- .-w*
O tm
=
.,. = U*** een =,p
- sa.f a
a, a: h e= c2 >= - D.g cm 5 S e meC E m e A h 2 O -t e "8 e t t e i f O a se e e e e P ft gig T 59 si
- 353WJ 3Dftv0 q
1 1 I l j.e 1 ..../ ..j . m-g i
s (- e ATTACHMENT 1B PRATT LETTER REGARDING ,( ADDITIONAL INFORMATION S 9 4 ,0** i \\
U 'l1.I J.I'Ile s%I. :taJ n. e ee# 00.00 g F40 o og U- - IFRATT u. 6 HENRY PRN1'T COM LRNY . ii iu :..i ie ii i.... i, m ri,i r ii ii, i .o.:..i i i- .st a A r7 508 MOL~l'Il til(;lll A.NI).\\\\*KNt'll *.AL*ltult.\\. IlJ J Ns 31% December 3, 1980 Toledo Edison Company Edison Plaza 300 Madison Avenue Toledo, OH 43652 Attention: Mr. C.R. Domeck, Project En J.neer
Subject:
Davis Besse Nuclear Power Station l 48" Purge Valve Analysis 7 P.O. - Q47689
Dear Mr. Domeck:
Recent findings in the general analysis of purge valves-sub-( jected to LOCA conditions have necessitated a request for additional technical data from the customer / engineer. system back pressure and valve orientation have Delay time, a significant impact upon maximum torque and resultant stresses in the valve assembly. To properly complete the purge valve analysis referenced above, the following information is re-quired: The combined resistance coefficient for all ventilatien 1. system components downstream of the valve (one for each valve size), g A graph of back pressure vs. LOCA time at a distance 10-12 l Consider also the diameters downstream of the valve. filter and duct work to resist capacity of the piping, increases in back pressure. Maximum and minimum delay times from LOCA to initiation 2. of valve rotation. ~ .:( -- -- @=.*!?.4 0
h,b ) (. Mr. Dome:k Page 2 December 3, 1980 3. Drawing's or written description of valve orientation with respact to elbow immediately upstream of valve (within 6 diameters), as well as direction of valve closure (clock-wise or counterclockwise) as viewed from operator end. In the absence of the above information, the following assump-tions will apply to the purge valve analysis: 1. Back pressure of 19.7 psia throughout valve closing cycle. Higher back pressure increases maximum dynamic torque and valve stresses. 2. Delay time from LOCA to initiation of valve rotation shall be chosen to permit initial sonic flow condition and critical valve disc angle to coincide, resulting in maximum possible l dynamic torque. 3. 90 elbow immediately upstfeam, oriented 90 out-of-plane ' \\ 0 with respect to valve shaft, with leading edge of disc ( closing away from outside radius of elbow. Such orien-tation and closure will increase torque values by 20% or more. } Your prompt resp'onse within 30 days would be appreciated. I Very truly yours HENRY PRATT COMPANY _-474 .4t'4t<9<at_ l l T.J. Wronaj Manager Contract and Proposal Engineering /sw CC: R.D. Nelson 6 6 "( ~ - S.'?.Mc.4
Bechtel Associates f~ Professional Corporation (Ohio) 15740 Shady Grove Road Gaithersburg, Maryland 20760 / Mr. T. J. Wrona, Manager 09 M Henry Pratt Company 401 South Highland Avenue Aurora, Illinois 60507 l
Dear Mr. Wrona:
The Toledo Edison Company Davis-Besse Nuclear Power Station Bechtel Job 12501 48" PURGE VALVE ANALYSIS File: 0272, M-403Q, Study 51500 l BV1-306 { The following is in response to your letter of December 3,1980 (copy attached) requesting additional information from the Toledo Edison Company regarding the Henry Pratt Company ( valves installed in the containment purge system at the Davis-Besse Nuclear Power Station. I 1. As agreed to in our telecon of January 6,1981, you are to use in your analysis a backpressure of 19.7 psia throughout the valve closing cycle. Should this conservative assumption yield unacceptable results in terms of valve closure capability, you are to contact Mr. T. K. Ram of the Toledo Edison Company (TECo) for further direction regarding this assumed backpressure. 2. The delay time from the beginning of the LOCA to the start of actuator initiated valve disc rotation ranges from a minimum of 2.4 seconds to a maximum of 6.0 seconds. 3. The locations.of the purge valves (HV 5005, 6, 7,and 8) are shown on the attached sketches 1 through 4. The valves' shafts are oriented in the horizontal plane. Valve rotation is in the clockwise direction when viewed from the operator end. l Should your analysis show that the valves' open pcsit' ion must be limited to something l less than 900, you are requested tc provide the maximum permissible degree of opening. i
'JAN 0 91981 2-BV1-306 Mr. T. J. Wrona (* Should you have any questions, please contact Mr. Ram at TECo. ~ Very truly yours, W. ay, Project Engineer i j JWF/PBK/cpt Attachments: H. Pratt Letter dated December 3,1980 Sketches 1 through 4 l cc: C. R. Domeck w/1 J. Helle w/1 l C. T. Daft w/o i R. Rosenthal w/o I j l i L( (7.. d e N 1 j z e 1 o O l.. l s o I e
8 9 t O ATTACHMENT 1C CUSTOMER / ENGINEER RESPONSE I TO REQUEST FOR INFORMATION e b O e
l i 8 ,l' 2 0" & c. E L 640'-8" i 4" REG. 'D' ~ 'CFM 8 '- O " ~ ~l g \\ 24 24"x24" ACCJ lA [ FOR INSPEC ~ K= ISOLATION VS = n r " 23 E. I c8 Y .m + "M -437 2-E~~~ / h h-3) Hv5006 = l d-I M / H 48"4 t. EL. 646'-6" .. i7 \\ ' ~ SEE6 e l6"D \\ .-M (, y ~ BACKDRAf:T / c. DAM PER / 34'-4 h32' 11 , = I' S DOORS w %,',; g o x S o d Y ', a-, 3UVE R 'l l ll. ] i1 'E " 'EI (G 2 8 / x j_ s E AIR SUPPLY _/ \\ 1, j SURGE AIR Suppty _] CTMT. PURGE l >ll. E S S,N o I-1 , D, < supeuv gun M 431 (K-8) C2 NO. l-l h PdR TI A L PLAN E L. 6 4 3'- 0" ~ = S K E T C ?' I I"DIA HOLE T6Ru R., DUCT 4 GASKET. -- NEOPRENE SPONGE GASKET - N-r-B~* B'*h" 6 ALV. El
8 SHIELD BUILDING -CONTAIN M ENT VESSEL i % ~v., f t n 24'x 24" ACCESS DOOR (y~ ./J., t ISOLATIOh! VALVES I -~ ~go,m~ ..l f BY OTH ERS, l /. , ~ ' '7 . INSTAs L.ED BY 774 # "64 / y / m FL.EL. 65 3'- 7,4 / 'g ..i i, i.11 .i y (m LU .A .A 6_ @c,, 9 l u, O PLEAJC M rb "[ 48- H B B-17 [ t EL.64G'! L.i y L_j CTMT. PEN.; 'i. _k I i - V' ' ] F.D.(thHR)V i.n c~.. / ..] ,k g r1 t EL. 640' e,, ,z.,,,,e
- y. s f
,, g - b Q24'x 3-* RE ~ n{ w-Q 4g 4 17000 CFt. p [ LOW PitE55. c cy7nAcv 42 9 SEAL-SEE 77ag _ 37, 's Duc.r SPEC. M-255 A-t t EL G28' w'= ISOLATIOha VALVE ~~ 5-w p.\\ ~~ l \\- 36"x 36' RE c ' / ,$4 E ~
- 7. c ; (-
.e g 6.*, 22'@ 3000 CFh: ache 42*& * / s .s. a,0-4'
- 2..
t EL. 618'- ). 42'4 I SHIELD E e Ii '-
- 2. /*'
l! CONTAINk I: , 1.,._@ .C '%.. *- ' ' ' l Y ~t'= s 1 ~.. 3. g I
- { ~
g GO"x36" REG. 15,000 C FM s - 30'& R c *.' S'/_ETC23 A2 .h. "I' SE'Il00 1-D a ;."? .u:. .v..., ,,, m.. xes.n...e " ' 4 :, .. si.M. o'. - ka. . :p.s
HV5oal , yi3 93'06 g ~ T j' '\\ 30"x SG" F:oR l l A2C ACCESS D cou riuuATiou 3 e' i w y.437 FOR INSPECTION al l i '\\ 9-1i SEE M-4tO (C-fo) 7 a = As f I SOLATI ON VALVE l A / "'4 'G 9 i Ib 4 H L. 6 30'- O '.] I e i 5 T 3 G"4 4.G17'-o" 90 l f ~T er -gjwsoos -22"o t si7'- / f 1 gi y...a -mm / esus' ~ i L 48" x 3rd REG. b - gv 7000 CFM x Tumuc, VANES 48'94 EL. G l l'-O .\\, psf N O 2O"+ 4. E L. G l 7'-O" 7 "#P 7 H r 304 \\ /'_9 'J h, [.00.E(G,24* O" '{22'x C [y -(y e, N ,g' ^ 9 c 'f / j# L'- y, i - v. c o 7,. s., g is 4 p w A g r+ ~g Q, ~ - - - jefc9 N e 30" ,A A 4 7 FG'fi.?J \\ N /' y/ e IG4 t EL. Gl7'-O" +- b \\ \\s PRESSURIZER I-T - GRT4. EL. 603'-d i 'A' M-437 i=h (-f ST M. ' GEN. f I ~ 4p\\ ' t-a) + 4- \\ Foi r.(w. ....E f l ~ \\ t.} y i n x wn e,., ;.... oc (. i i N \\ "S t l t E L. 614' -O" s i \\ 1- ' = 4 s t 2 L t
,i v i..; u d FL. EL. 653'-O' w3.n g " " > p (. rq ~ i FL.EL.G43'-O t . ~.., -. a M t .w
- '*"#d
- 3 A
oW PRESS SEAL A L o e& o \\ en .sG*x30" 1 EL. 630'- O' R S, /- A v-V - n. A 4 j l 3G"4 - 48"& p~r FL.EL.G23'O' hy \\ g - e ~;;;.,:.es s n..g gb MM[.. -HV5002MI c. 1 ^ g j%- 4e[' HBB.is I /N7 [ !T EL.G17 O e V 1 h0 / CTMT. PEN. 34 h s ( gg/ T' I 48 4-h A isotArlohJ VALVES !C d A Q w> '2 42"4 Y2 / FL. EL. GO3-0" u .L l 3 y &'.'. [ =
- 4" n
-g-n 594'-2" / 1 > ' !Sditi! '. EL. 595' 6" SDOOR / $[ 3
- g1:1!w p acc.
/ I / A scagan JgFM r / / EL. 58G - O" g) h \\ [/ / FL. EL. 585'- O' . g. ...:;1Ed .s.,t. r.,. I A EL.725 i LD . E L. 5 7 9,- 4, m l l 4 51L'~TC U ' 36"s F,O" -- l. TR AN5f EF ~- h / SU TIDW C-C-gGRILLE -s \\ A
o 4) 4> 4) o 4> 4, i > <) 4) 9E "5 4, i 4I 4i e 4) 4I <) 4) 4) 4) 4) 4) i > 4) 4) 5 4,. kk 4 > U. 3*[/ o V-
1.D-t.cri:. ( .D e,.c. v is ~ ~TCLEDC c.D:5* (' I SEISMIC ANALYSIS FOR 48 INCH NUCLEAR PURGE VALVE e ((. l O ] i O t \\ ( , i.
(~ Summarized in the following two tables are valve stress inten-sities of primary concern. Essentially, Table I identifies body stresses and how they relate to the " Draft ASME Code for Pumps and Valves for Nuclear Power" dated November 1968 and the March 1970 Addendum. Table II identifies stresses in other elements of the butterfly valve assembly for which the pump and valve code provides no specific analysis procedure. Depending upon the nature of the stress being considered, the allowable stress level is defined as one of the following: 1. For calculations based on code procedures, allowable stresses as specified in the code. 2. For calculations not based on code' procedures, stress levels are kept below Sm for tensile stresses and.5 Sm for shear -s 1( Sm is allowable stress level as specified in Tables. stresses. \\, A.1 and A.2 of the Pump and Valve Cod,e for 3000F. Where nece'ssary, str. esses will be compar'ed to.9 of.the yield strength'of the materials used fcr LOCA allowables. ~ .O -l . r.
(- t Body Stress Levels TABLE I a Code Code Analysis S tr es s Allor. Strecs Nare Ref. Par. Syn. Ref. Pg. Level S t r e::s NB-3545.1 Pm 5 1,020 Sn i Primary Me.nbranc S tress 17,300 Intensity Primary & Secondary NB-3545.2 Qp 5 2,940 1.5 S T 25,950 ! Stress due to internal (a) pressure 1.5 S= Secondsry Stresses Due NB-3545.2 25,950 < to Pipe R.: action (b) Ped 6 2,324 Peb 8,224 Pet 4,907 5 NB-3545.2 ' Sn 6 11,260 3S ~ 'g Valvo Eudy Secondary 51,900 Stress ~ NB-3545.3 Sp 7 8,952 '65,000 Fatigue S tress (Na = 2,000) Primary' & Secondary Non-Sa 7 1,821 1.5 Sti 25,950 Stresses due. to f isu ge,- Codified pressure, 'and scismic loads are 5 g's simultaneously applied in g Seismic accelerationc NOTES: 1.- s'ach of three mutually perpendicular directions. t 2. Analysis pressure is 65 psig. r 3. Allowable stresses are at 5000F. t 60. Body material is carbon steel per ASTM A516-Cr. 4. S i { l 1 l e i
i TABLE II - NON-CODIFIED' STRESS LEVELS '(. ~ , VALVE STRESS REF. STRESS ALLOWABLE COMPONENT NAME PAGE' MATERIAL LEVEL STRESS Combined trunnion 9. ASTM A-350 2806 .5Sm weld shear stress GR. LF-1 8,100 fe# Combined tensile 12 ASTM A-350 2350 Sm stress in trunnion GR. LF-1 16,200 n Assemlby Combined tensile 12 ASTM A-350 2350 Sm stress in trunnion GR. LF-1 16,200 base weld Local stress at 12 ASTM A-516 5468 Sm base of trunnion GR. 60 17,300' Disc Maximum disc stress 14 ASTM A-516 8064 Sm GR. 60 17,300 Shaft Max. shear stress 20,511 St torsion ASTM A-479 15,000 20 Type 304 i
- v. S Maximum shaf t stress 20,850 Sm 27,000 Retainer shear ASTM A-240 6500
.5Sm stress 21 Type 304 8,700 Shaft ' Retainer Retainer bearing 21 ASTM A-240 13,200 Sm Assembly-stress Type 304 17,400-Bolt tensile stress 21 ASTM A-540 38,700 Sm C1. 1 43,400 GR. B21 Shaft groove shear 21 ASTM A-479 3400 .5Sm stress Type 304 8,700 Hub Block Assembly Max. combined bolt 22 ASTM A-540 33,850 Sm stress C1. 1 43,400 GR. B21 Thrust T. Washer normal 25 Silicon 415 Bearing bearing stress Lub Bronze 1,200 i l Assembly T.. Washer seismic 25 Silicon 2075 -r( bearing stress lub bronze 8,000 4 0 g 9 ..w. s n .-n
TABLE II - NON-CODIFIED STRESS LEVELS ALLOWABLE VALVE STRESS REF. STRESS COMPONENT NAME PAGE. MATERIAL LEVEL STRESS l Thrust Adjusting screw 25 ASTM A-479 6150 .5Sm Bearing shear stress Type 316 10,000 Assembly Cont'd Adjusting screw 25 ASTM A-479 11,200 Sm tensile stress Type 316 20,000 Retaining screw 25 ASTM A-540 21,100 Sm tensile stress C1. 1 43,400 GR. B21 Cover shear stress 25 ASTM A-516 2300 .5Sm GR. 60 8,650 O (
- Not specified in code, f'y NOTES:
1. Seismic accelerations are 5 g's simultaneously applied in each of three mutually perpendicular directions. f 2. Analysis pressure is 65 psig. 3. Allowable stresses are at 500 F. .;___.,~ ~~c ,,.;~......
V i INTRODUCTION Described briefly in the following pages is th'e analysis used in verifying the structural adequacy of the main eldsents of the butterfly velve. Each element is described separately in its own, appropriately titled section. Seismic loads were mado en integral part of the analysis by Should the inclusion of the acceleration constants gg, gy, gg. they not be present in any of the directions of interest, simply set the appropriate value of gi to zero. The symbols gx, gy, and g,, represent accelerations in the x, y, and z directions re5pectively. These directions are defined with respect to the valve body centered c.oordinate sy. stem illus-trated in the figure 1. Specifically, x is along the' pipe anis.. z is along the shaf t axis. y is perpendicular to a & 2 and in the direction forcing a right hand triad with them. Falve orientation with respect to gravity is taken into account by adding the appropriate quantity to the seismic loads. The justi-fication for doing this is that a gravitational load is completely f.s equivalent to a 1 "g" seismic load. ( As 'an example of including gravitational loads, consider a valve oriented so that z is vertical and subjected to seicnic loads would be: y, and gg Gx, Gy, and G The appropriate values for gx, g z. G 8x x G S y y 1+G gz z Throughout the analysis, reference is made to a " banjo" as s emb'ly. This is the assembly consisting of th e disc, the stub shafts, the hub blocks, and the mounting hardware. It is termed a "bdujo" assetbiv simply because it resembles a banjo in appearance, and this is e, 22 r way to refer to it. The main elements of the banjo assenbly arc idac-tified in figure 2. b 4 g t* <-( s. O
FIGU:: 1 Vfit.VE UCPY CC"ll't;[0 C00dDillA:E SYSTOi 4 a D ., I.. 'l x f p / / = p? % f,....=, m,* % W$ ( g g', / \\/ .1 .-(m,H ... y lx 4 / u,'.l N \\ /y.+l.;.u / n: N. / l J: 9:y: p- ' c:::- y cu .e t /* \\ vv / -s p y v' La g; - + -;'. a M 2
FIGURE 2 - r:ATL'?,ds ;S ClO LY \\ c. \\ ~ .m SHAFT RETAltiER SLIPS INTO GROOVE AND IS BOLTED TO HUB BLOCK TOP STUC SHdFT OPERATOR VIYk'AY - HUS BLOCK KEY'v.'AY IS ON BORE OF TOP HUB DETAll 0F SHAFT GROOVE C Q ( .4 [ .C T W HUB i .ETAINER SHAFT BLOCKS ( b RETAINEP,5 DISC l g L l l L Y __ BOTTOM STUD SHAFT 7 r X ' Jg 11/ 4
g. i -j \\ ((.* FLANCE ANALYSIS S. ~ in 'accordance with Appendix II, The flan,ge anclysia is Para. VA-56 of Section VIII, Division I, of tite AS11E Codes for Pressure Vessels and AUtTA C-207. .o 9 e G e 0 e 9 4 ee e 5 e j O i t 4 9 4-q O 4 9 e 9 I .) r ' f.4. i q i . 4 --s,x,,-.-
~ page 5 of 2a 9 (' BOLY ANALYSIS 1 of calculations in accordance with The body analysis consicts Article UL-3000 of the AS?!E Boiler and Pressure Vesse'l Code Sec-tion III, 1971 Edition including current addenda, plus one additional calculation. This additional calculation was included in order to take into account the effect of seismic loads on body principle stresc levels. The specific formulas used-in analyzing the body are detailed belou. Note that the nomenclature on all code specified calculations is identical to that used in Article NB-3000 of the code. Primary membrane stress - Sub-article NB-3545.1 of Section III 1. of the code specifics the most highly stressed portion of the ~ the neck to flou body under internal pressure as being at passage junction. It also s tatec ' rules for calculating the primary membrane stresses 'in thic region based on proj ected arens'of body metal and fluid. In a butterfly valve, this region corresponds to the junction of the trunnion with the body shell. If the code rules are applied in this area, the resulting value of mecbrane stress is considerably less than if a section of body not containing the trunnion were con-c{- sido, red. For such a body section, Ag/An < Em/h; where Af and Am are respectively the proj ected crea of fluid and metal as specified in the code. Rm and h are defined below. Thereforc., replacing A f/ A 'with Rm/h will result in a higher calculatcd m value. The specific formula used to calculate primary membrane stress was: Pm = (Rm/h + 1/2) p where: Rm = shell mean radius - inches p = internal pressure - psig h = shell thickness - inches g due to internal pressure - This 2. Primary plus secondary stress formula specified in NB-3545.2 stress is calculated using the of the Code. The formula is: Qp = Cp (ri/te +.5) p 3 where: Cp = p = internal preanure - psig inches te = body wall thici: ness r1 = inner radius of body - inches '(
eage u os 4i 3. Secondary stresses due to pipe reaction - These are calculated h. using the equationc of NB-3545.2(b). of the code. More specifi-cally..these are: Ped = FdS Gd I.. Peb = CbFhS Gb Pet = 2FbS Gt where: Ped = direct, or axial, load effect - psi Peb = b,ending load effect - psi torsional load effect - psi Pet = Eb = bending modulus of standard connected pipe per figures NB-3545.2 of the code in.3 Fd = 1/2 the cross sectional area of standard 2 ~ connecte pipe - inches Cb = stress index for body bending secondary stress per section MB-3545.2(b) S = 30,000 per section NB-3545.2(b) 2 Gd = valve body section area - inches Gt = valve body section torsional modulus - inches 3 (( Gb = valve body section bending modulus - inches 3 4. Thernal Secondary Stress - This stress is calculated per scetion NB-3545.2(c) of.the code. More specifically, the fornulas used were: 2 for austenetic steel Qy = 375 h QT = 120 h2 for ferritic steel where: QT = thermal secondary stress h = thickness.of valve body 5. Combined st.ress intensity - This quantity, as specified in section NB-3545.2 of the code is given by the formula: t Sn = Qp + Pe + 2QT visere: Sn = combined stress intensity Qp is given under number 2, above QT is given under number 4, above Pe is the largest of Ped, Peb, Pet as given in number 3, above i t S Y. 9 \\
Page 7 of'2G i (~ - 6. Patigue stresses - The value taken for conparinon with finurec I-9.1 and I-9.2 of the code is the larger of the followind, et given in section NE-3545.3: Spl.= 2Qp/3 + Peb/2 + 1.3 QT ~ Sp2 =.4Qp + Peb where all terms are as prevleusiv defined Valve body prinnry plus secondary stresses due to internal 7. and inertial loads - This is the extra pressure, flange nonents, non-codified, body stress calculation. Principle strcsces re-sulting from cor.bined loads of internal pressure, flange moments, and seismic accelcrations are calculated at tuo sections of the body. The sections are where the flange joins the body and ac the centerline of the valve shaft. The larger of the calculcted values is then taken as Sa.. The formula used for calculating is.the result of cn analysis where the valve body was the strees the above-considered to be a ring stif f ened shcIl subj ected to mentioned loadings. Details of this analysis are not included i here because of their length. However, the results are sun =ari:ed in the following equations: 2 Sa = 1/2 P + 1/2 (Qpl + Qp2) + 1/2 N/(Qpl - Qp2) 2 + 4 y ,g where: Y = sum of shear stresses due to inertia torque and inertia transverse shear - psi Qpl* = axial s tresses - psi Qp2 = circumferential stresses - psi P = internal pressure - psi f ollot. in g The quantities, Y, Qpl, and Qp2 are calculated from the formulas: Y = 2WRo Ec gx + L (gy2 + gz2)b ~~ w (Ro4-Ri4) ~ 1 + n 234 + p,x ~ 2 Qpl = PRm/2h + 6H/h2+W Rot (g2 y _ Ro4 - R14 2Ruh. w Qp2 = PRm/h + Gl/ M/h2 - wE/Rm ~ G 9 9 0 O 4 ,h
i t where: P = internal prensure - pai (~ W = valve weight - pounds Ro = outside radiuc of valve body - inches Ri = inside radius of valve body - inches L = valve length - inches Ec = valve body eccentricity - inches Rm = mean radius of valve body
- inches'-
inches h = valve body thickness E = young's modulus --psi V = poicson's ratio gx gy,gz = acceleration constants w = deficction of valve body - inches M = local bending moment per unit circumference - pounds calculated in a separate analysis,,the details of NOTE: w and M are which are not' included here. e 1 e ( t 9 e e + t e 4 G e e 9 9 9 9 0 0 _ (. 8 9 ee 9 e O
s p TRUNN10N UCLDMCliT ASSEMBLY s. For convenience in discussion, the trunnion we, dment assembly 1 is considered to consict of the top trunnion plate, the top trun-nion, the velds, and the body material immediately adjacent to the trunnien. Figure 3 illustrates the elements of the assembly and defin'es come of the nomenclature used in the analysis. Each element of the ass embly was analy=cd, and the results of the analyses are briefly deceribed below. Note that the trunnion stresses are defined in terms o,f applied forces Fx, Fy, and Fz and applied moments Mx, My, and Mz. These are the forces and moments l which are experienced on the top surface of the trunnion plate as a result of operator extended mass and sei'smic accelerations. Figure 4 defines these forces and the geometry of the-operator extended mass with respect to the valva. 1. Combined shear stress in trunnion plate welds - The most severe loading in the top trunnion plate occurs in the veld region and is the result of combined torsional plus seismic loads. The combined shear stress in the weld can be calculated using the following equations: es '( a - (y 2 + e,231/2 where: y =2.Mz r0ZF as = SMO. F2 2FI +2EUF M.= (H x + H y j i / 2 2 2 4 I = area moment of inertia of trunnion-in y = torsional she:- stress-Pd/in2 g 2 s = shear stress-PA/In a F: is defined in fiwire 4 Mx,My,Mz are defined in figure 4 S.O.F are defined in figure 3 I
- l-e
[
ifel E.,c v *) c i ; )
- ? a )
FICU."E 3 TOP TRut:10:1 ASSEllDLY F s \\ I ~ i -l 'Trunion Plate h Weld ^ S B f/ L Trunion Plate ( ABearing \\ Bore Trunion H g Trunion Base 6, ( I ) /MEMEMZ4 WMbM \\ 7 J// cP L i Body Shelf e i D ~ e . ( m rs
.;Page 10 of 10 F I GL,.1E 4 FCRCES AND CC0!1ETRY OF y' TRutil0ti L0liDING ._j ,s ( l E3 .7 gf% A .ch M d '- li \\/ M l ._/ / N (~; g / / /, Where: Fx=Wgx W= Weight of operator and Fy-Wgy mounting-Pds. Fz-Ugz Mx=U(gyZ+gzY) S=Sesting f actor-Pd/in. Hy-W(r.xZ+gzV) Hz-W(tyX+gxY)+ SD2 D= Valve diameter-inches. k ~ gx, gy, gr.-S c i s nil e c e c e 1 < r.,- tion count.nnt s. e
vngw7n e s 2. Combined equivalent !cnsile stress in trunnion - The most (- severe trunnion loading occurs at the base of the trunnion and is the resi.it of cerained torsional plus seicuic loads. In thic arca, the highest icvel of equivalent to.nsile stress can be calcuisted using the following formulas:. CE " (oT2 + 4o,2)1/2 where: c3 = Me A or=M[+ Fe 21 (. 7 85 ) (p 2-B Z) 1/2 M= (Mx + F H)2 + (My + FxH)2 y 4 of inertia of trunnion-in I = area moment 4 Fx,Fy,Fz are defined in Figure Mx My,M: cre, defined in Figure 4 H,,B are defined in Figure 3 a high in trunnion base veld - The trunnion base weld is of full penetration weld which is accomplished by use 3. Stress
- quality, Joint a backing strip which is subsecuencly machined of f.
efficiency is, therefore, considered to bc 100%, and the results of the previous calculation apply here also. l'~- base of trunnion - The local stresses 4. Local body s tress at the base of the trunnion are cal-induced in the valve body at described in Bulletin 107 of the culated using the procedures Welding Res earch Council. This bulletin was authored-by K. R. Wichman, A. G. Hopper, and J. L. Mcrshon in order to concis ely present the work of Prof. P. P. BISaard of Cornell Univ e rsi ty. Uork was performed under the sponsorship of the of the Welding Research Pressure Vessel Research Committee Council. f its - -No explanation of the nethod is provided here beccuse o length and the f act that Bulletin 107 describes it in detail. Attached, houcver, is the calculation sheet used d5 davelop the following table re-the actual s tress levels. Als o, _ no t e garding notations in Bulletin 107 and this report. Nomenclature Nomencia:ure In Applied This Report Load In PR C Bull. 107 Radial Load P Fz Mx Me, Cire. Moment My ML Long. Momento M: Torsion Homent MI /5y ./' Vc Shc'ar Load fx VL Shear Load e O pee ge
i Pago 13 of 26 j e e Tibta 5-C:mpxtetites shret fir Local stresses,in CylloJ,ic.si Sh2fis 2 P i . n,9-i
- l d -
..Q,,, V a s . r .e.. J
- s. 4 s.n.a..
r.../ $.. T,/I.' D o,,' v '.m J
- L/2
- m. 7.d t
ami i.. L 4 c iV.~ e6. 7 s o. ROUtlD at J1,JJ/.= th. D ~WW.M. E,. as T .a u.. a. m,.h t.a.% :6. fg, gg733.'.a-gu no v. 44eb.A w, ss t 4 ab L d. vt l S's s. e .w.. ., f g , ---v n y 7 .. t, c i t a Q.A L c }cg t Q,j) {*
- 3. s
.i. 6. i.a. s. - r.%)!L sa s."..e i a. #s - m v u.,,.s.. asent e
- e..
s .esot ta E.e .tl is... l.. 3a y s CYt.1MDRIC AL S!!TLL 'f d..eem e. n %. 4 d..., n.. 4 5 T R L 1M 5 -. 8 4..d....e a... e e hoe.5. , e.. c......,...h... 1 F.*. n a.... c,. 6 ...i....a F8,. s .... J .....t e. a. I sit u. LL c., c6 o.. ra. a..$ sa e. P sc 2 F/.. .p. ..T ie 7 ,g " (-) j90 + + + .a + "(..,",,).."L, -/.ovi @#.3.._.W--.._.$,..:.M.....i + + .."'!..,m a go,.; c:V. : q g.q, + s. ~ ...n)...uss.-1,1l4 ,,s,,. s:s::.,s:.. ..~. e. n.'1 yp,. 'm rrrr-- @,c$,.i'"ag:35d4 ,o. .w,..:<=l:) "( u...a) *...o, = 170. 7 + + ,n.: N % i N.k dT4 A C *i U n '. 0 ;i "(...T., ) ..'T,',. =/ E. ; + + a .4 o (,3y,,1 3,47) .u ....a. r;, :lll u ( ;;-) , ~ sic. h.. <c 9 ,0'il " 's 7 ) T; - 137 + + +
- +
.E sc bpopp:qijg ofg.g .. mg. mu Im77'.% "(.,...g) ...n, - I38 + gy.qq.-y%bd%@,, ..,. ;I' est ' ' (,.s ) *..u r. -l,3$7 IM..:.C p c '~ s' W. %a::.s:.,V. @W*'**,.T s. +,'y&.z...:...., ,,,l
- ,,
- . j v.. v)... ". ',. b'] ~f
+ + ~- - - -u..o.,. m-n. .,:u. - e. n & Lg :Q; g, y. & '! %.. w,s., wu ".*{ m.zii-lti; ..a ..us. ~),2 % + + 1,W3 1,(-05 .u..m.......- ..e...,.. e. + + + + + + + + u.., . d ,o. ,.o. n..,,.= yrg %* W?/,' b,l 5,i: :m:. : r, '.. A- !%. .,...;f.;<:.,. /,, ,, s. 1 '.t.7.- ' " = ' ~ ' ' * + + em ~././.s
- d. v.
V1. .[ EU h,l kl.t .{.f.. ' ' $$. 7 3 4 S '. ** / S.A.
- e... d f.O.*
O . 8
- d. vL A--
33].1 E3.1 .d4 Alg.4. ..el, e : .c.......,- Co.ti.tD ST.t$$ $NTEN%3TT. S
- * "o ' *
,4..,.. (e.g -. e e o' jiq3 yy$ ~ J s n is... u ... p.j-~ . ~.. . s.:.... = %,.4..a., s s *.c. -. ia..' . u esicuistion of struses 4 .N,/(M,./R.*a) no determined by (C,.) from Tab!c 4.3.1 Srnessi.s llr.sut.TtNo rnost RADIAt. LOAD, ,'J,,) 8 (sco para. 4.3). 4.2.2.5.2: When considering bending tuoment P. (M.): 0 - Ku.Umss where Ks. is given in Table .l.3.1.1 CirtwnferentialStivsses (.r ): 8. Step 1. Using the opplicable values of a and y ...,_.._.,,St_resack in Shells u 30 - ~ -- m.m .. m..-. ,. r g f
Pagc 118 oIC%6 s ( q.) ~ DISC AGLYSIS For an air purge valve, che worst load corbination which'cccurs on the disc is combin_d pressure plus scinnic loads. Since the disc is sutply a flat place, the scistic leading will 1:e unifornly distributed over the rur-This is equivalent to a hydrost tic type pressure face area of the disc. Thereferc, the effect of scistic loading is included in the analysis load. by the addition of an "cquivalent seit.nic pressure", Pc. Diac presourc load is uniform over the entire surface, suggesting a However, generally speaking, dice or circuldr plate or disc typa analycis. plate analyses dc not cpply to the structure beccusa of the support condi-The disc structure is essentially supported at two discrete points tions. Therefore, beam type rather than arcu:.d the periphery or at the center. analysis is more appropriate. The disc structure can be considered as a bes: in two plancs, one place being parallel to the chaf t rz.is cad one plcne perpendiculcr to the sh:f t Egressions can be developed for tending cc.. ants acrorc cach of these axis. For ccavenience in diccussien betuccn its cngineering persoccci, planes. H. Prctc had ad:pted the stand:.rd cf referring te bending cerces planc A as bending abcut the shaf t, cnd bending across planc B es benriing alens the ,( General cupre.sions are developed at the end of this sac.tica fcr shaft. each of these bending loads. The maxi =un bcuding rene.nts for cach directio: a are: } Mi =. 904 Fg3 Mb = 2/3 Fg3 1 = 16-M~n bending r.onent along shaft - in.-lb. Where: M Mb = Maximum bonding moment about shaft - in.-lb. 'I = Applied pressure - psi 4 R = Radius of disc - inches Note that bending along the shaf t is of higher magnitude than bending The actual caxittum ctress level in the disc will bc.at about the shaf t. least this lart,e, but not as large as the sum of the stresses from bending about the shaft sud bending along the chaf t. This sum would actually con-sider the entire applied Iced tuo times. An intere:diate approach is to take the square root of the sum of the cquares of the two stresses. e. ~1:g c. e$ 6
Pige 15 of 26 I To be conservative, the Fcading mercne. fnduced by the' disc preccurc 'b load act!n;- en the unnep; orted r naf t length is included in the unclysts. This morent takes the form of nn cud condit.lon applied to bending along the shnft. Therefore, it is added to beadin'c slung the shaft prior to combinir.:, vith bcuding about the nhcf t. The magnitude of this bending moment is calculated as 1/2 of the disc prescurc load times the unsupported shaft Icn;th. This ic equivalent to assuming ccch stub shaf ttr'to be cantilcvered for their uncupported length and loaded by 1/2 of the dise pressure lo:d each; a very ceas:rvative escu ption. e Noting that the bending in both pinnec occurs cerocs a rectangular cross,section of length, d, and depth, t, the exprecsion for co=bined stress is: Q= 1112 + 332 1/2 S where: S = dt2 ~ 6 M1 ".904 PR3 + 1/2 'T/I a = Yd2 (.113d +.125f// a) R Mb = 2 F.,3 = E23 3 12 P = P + Pe gj Pe = equivalent reismic pressure = utgx - poi W = weight dcncity of dice - Pd/in3 t = thichness of disc - inchas gx = accelarctica ccustant P = applied pressure - psis d = disreter of dice - inches a = unsupported sh:ft length - inches Combining the above tercs results in the final expression: ~ 1/2 (7" = (P + Pa)d 35(.125){~a +.113d)2 + djZ_ LL 4_ It usually occurc, however, that disc thickness is dictated'by deflec-tion requirements, cnd that disc strecscs are well below code allouable levels. Siuilar to the strccs cciculation, maximum dice deflection is calculated by censidering sinultaneous bending about the y and z axes. Seismic loeds are included by the addition of an equivalent scisnic pr~es-sure to tha hydroctntic pressure. Maxitum disc deflection is kept below a limit s.hich the valve is designed to be able to accommodate while main-taining bubble tightness. a _( G e Q
_.. _. -- _ w.._ _ Page 16 cf 26 DECIV/.TIO'! OF BENDT;:c M.0:*t: S:1 AFT r.01fATTO:t v f-' ~ * (, us ed f or calcult. ting stresses.due to b ending along The moment the shaf t is derived on the basis of a distributed lond applied to e the disc.d.iancter. The a ' simply supported bean of length equal to magnitude of the distributed load at any point along the icngth of ' the b e am is the produc't of. applied pr' essure times chord inneth. cituacion. geometry and the loading of the Figure D-4 illustrates the The derivation of the moment expression fs given b elou. W = 2P(R2-X)b 2 2 - X )h + PR2 arcSin +C1 2 4' V= idx = P)', (R From symmetry, know V(0)' = 0 $C1=0 M = fvdx = ,P_ (R2 - X2)3/2 + pg2X ArcSin T+ R k 3 PR3 1-Q + C2 i.g. From.end conditions, know that M(r) = O pC2 = - _v PR3 t 1 2 - I )3/2 + PR X ArcSin T+ 2 2 r f M = -y PR3 ,P, (R , R. 2 3 2 b .PR3 1-T ~ ~- qn; The maximite moment occurs at I = 0 and has the absolute value \\. 3 r-2 pg3=.90413PR M (0) ' w = 2 3 J J S' A e O e. ,4 /. q' b
F I G U.! ? F ' . D _1._ ,0.I GEC/AETRY AI.!D LOADil!G FO!? EEND!/:!S ALONG 6HM~T ~.. s R i 4 lCHO.GD LENSTM= ... :SH h i= T -
- .5 2 (R2 - XD)*
~ W== 2P.(R -X )#2 2 2 4 P= APPL!ED PRE 5SCURE, R 5./. f. \\/ .\\ / \\/ \\/ \\/ \\/ I i. l . ~ X.c -R .. ~ )(= 0 X= R x. e, e O / .i,= e i
m DEP.IVLTION OF Ib BE!!DT t:C AtollT S11 AFT rot!ATIO!1 u, l The moment used for calculating stresses due to bending about thcsha[t is dcrived on the basis of a distributed load applied to i a cantilever beam of length equal to 1/2 of the. disc diameter.- Because of symmetry, this is equivalent to a line support across the diameter of the disc along the shaf t axis. The magnitude of the distributed load at any; point along"the Icagth of the beam is the product "of applied pressure times chord length. Figure D-5 .l illustrates th e geometry and the loadins of the situation..The derivation of the coment. expression is given below. W = 2P(R2 _ x2)h l V=f?dx=PX(R2 - X )b + PR Arcsin QJ +C3 2 2 gRj { w PR2 0:';C3 = - Prom end conditions, kncu V(R) = 2 1 2 - X )% + pg2 ArcSin If Pn2 + PN(R 2 Y=- r 2 ,Rt
- s 2
2 2 - X )9 + PR X ArcSin 37 + M=fvdx=- 2 PR X - P,(R w 2 3 ,RJ { PR3 1_ q 2 h + C4 JR, J ~ OpC4 - 0 4-From end conditions, know M(R) = PR X - P,(R2 _ x2 )3/2 + pg2X ArcSin 'I + 2 M=- w 2 3 _R, b PR3 1- ,,Rs.) Maximum moment' occurs at X = 0 and has absolute value lM(0) = ,P. R3 + PR3 = 2/3 PR3 3 (m 4. e en G. e.44-6 .G e* O @e6
- 6. g e e. W.
O ew = g e /.
FIGURE.D .2' ,-(- 6EOML~TRY AND LOADl/~!S FOR YE^.bli/G A i 1 4 m a ~., l S R R
/ -mX / N / / s w.. g~ _<.> / s/ v st s/ v v
- f. v s/
v '/ 77 - y/
- /.. g
.( X.0 X= R ^
- X = -R X=0 X= R 9
P = APPLI$D ESSURE, R S. I. '.2. E?cBB@ s co m.. e 'f SUtJT M!ALYSIS Because,of the manner in uhich the purge valve is used, ' fluid dyne:-ic loadings canfLu neglected. Therefore, the worst loading condition en the shaf t will be either a ccnbinaticn of torsional plus seist.:ic loads or c cochination of pressure plus seismic loads. Eoth of these conditions ucre checked using the forr.ulas listed below. Colunnar tensile and comprcn::ive loads on the shaf t were not considered because of their obviously snall effect on stress levels. 1. Shaf t Strees due to torsion plus scismic loads. 2 + 47 2-1/2 O = 17 + 1 C3 1 3 2 2 where: Oh = tending stress = 161.'(cr2 + n )1/2 2 e Fd3 F = torsional stress = 16 % eh(. T ~fd'E g W = voight of bando assy. - Pds. a = unsupported ahe.f't length - inched . To mM = t4AL.DYd. TORGUE (wlas. ) d.=. shaft di:ncccr - inc,hus gx,gy = cecelere.tica conscents 2. Shaft Stresecs due to pressure plus seismic loads - Both shear and bending stresses are cniculated. P.cVever, they are not co=bined since their maxina occur at differcut locations on the cross scetion. ( 7/D P/4 + L'gn)2 + (yg )2 ~ U2 2 (Fs = _Z_ y 3A ~ 1/2 2 + g2 t where: &x = 32 ( 1257/ p2P +. 5 w e.-) a
- Ti di Oy = 16pe.a_
s W dJ 2 . q A = cross secticn 1 area of shaft - in P = applied pressure - psig D = dice dian ter - inchen d = shaft diexcret - inchun s s } '., W = weight of badjo - pounds a = unsupported shaft 1 canth - inches gx,cy = accelerat. ion constants 0 n o ,'(- SEATT RETAU'ER ASS
- n;LY d
I For purpoccs of convenf cnce in description, the shaft retainer cr.retbly is considered to consint of the chaft retainer, the shaft retainer bolta, and the grooved end of the stub sheft. The shaft retainer was checked for shear tent out and bearing ctresses. The thsft retainer holts were checked for tencile stresses assening all fcur retaincr bolts to be equally lended. The grooved cnd of the shaft was checked for shear tear out and bearing stress. Forr.ulas for calculating each of these stresses arc listed below: 1. Shcar stress in retainer CSr ". 2Ec,7,,, '7/dt 2. Bearing stress on retainer and groove 0~ = EUm 3 7/ (d2-dr') 3. Tensile stress in retainer bolts Fr = h ^ 4A 4. Shear tear out of sh-ft groove 0 s = 2Uw s '7/ drL weight of banjo - pounds shere: W = shaft dien:ter - inches d = dr = diancter of retainer bore - inches shaft retainer thickness - inches t = tensile arca of retainer bolts - in2 A = ..L. = length of shaft after groove - inches gz = acceleration constant -4 l-8 e D g%_ e p k- -1. g a 9 e e e s j . - * - =. Page 25 of 26 {.. ~ - ,) L"JB LLCCE ESCIDLY The hub block assembly is considered to consist of the hub block, the hub bicek retaining bolts, end' the hub bloch keyway. 'The tw'o stresses of primary concern in the hub block asser.bly are the h.:yttay stresses and the combined tensile plus shear stresses in the hub block bolts..The analysis of each of these is c::plained.balow. 1. Hub Bloch Kc'j: cay - The hub block hey::ay can be safely designed by keepins the cc:pressive bearing strces on the heyeay face below the allowsble stress level fcr the hub block material. The bearing stress is calculated using the following formula: (F = 47*o Aw 3 ~dKL e where: ~ %u = MA<.DYN4Mtc McX/E. (IMW.) d = shaft diar.eter - inches K = key height - inches L = key length - inches 2. Hub Block Belt Stress - The hub block bolts are sized and 1ccated such that the r~-irun corbined sheer plus tensile stress does not exceed the coda allevable value icr the bolting caterial. Stresses are combincd in acccrde.nce with the for=ula:- F. Fe2 + 47s where: & = combined stress level 0t,= tensile stress 0~s'= shear stress Combined strecres are calculated for both the top and botto= hub blocks. The reason fer this is simply that the hub blochs enper-- ienced different loadincs. The worst load cor.bination for the top ~ hub block is cor.bined tersion, plus pressure, plus scisnic loads with no seismic load in the z direction. The worst. load cctbinction for the lower hub block is combined pressure plus coismic loads. l, e -(... z., 7 s For the top hub block: ( e = E.v. s 9t.g .f _) 1 C'TDP+Urv. 2 1 +.(U+r.)C + WrsF + KD2 _r_!It Oi = 1 8 2 6 2(Ki+LJ+C ) 3 C '+ W+i.) ' 2 Ac a,r For the botton hub block: e (g y + 4g =)1/2 2 2 Fs = u 9AT '7/ 0 P + 1, + (U+E)C + Wg.,F(C+H) + g_I" 2 ct = 6(C +(C+11)2] ' 2(A -rs rc-)j 2 A S 2 .,6 2 ( A4+EZ+C '-) g where: Ac = bolt tensile crea - in2 D = dire dieneter - inches P.= cpplied pressure - psig W = benjo neight - pounds gx gy,ge = accelerati:.n constcnts U = unsupported shaft length - inches i K = senting factor - Fl/in A,B,C,E,F,C,F. = distences as defined in figure 5 - inches & m z-D e
- e g%
I 9" e** e S e m w j. /.. Par.c 17 cf 19 FIGURE 5 ~ HUB BLOCK DIMENSIONS (. \\ H r G r L L I i A 1 I Y i , 1. B I I c 1 1 I h h 1 I I 6' l l [/ 5 1 L t y r L F \\ I i i -r ig II I T( iII x il l 1 i' i ( ,vu 'F/ l 9 4 ,-m. e-((- THRUST ER.nI';G ASSRIEL'i i The thrust bearing assenbly provides restraint in the z direction for the baajo asse:':1'f. thus assuring the disc cdge rir., ins correct'ly posi-tioned to caiatein cealin;; cepability. Structur..1 cdequacy of the assetaly j i was checked usimg the six f r:.ulas list.ed belcu. Specific ele =ents of the thrust Learing as referred to belou are ide: tified in figure 6. t 1. Normal bearing stress on thrust washer. Ebn " U._. Al 2. Seismic bearing stress on thrust unsher. U~ s " Ji.E b ~ Al 3. Shear stress in adjusting screv he:d. O'n = p U a cg Dt 4. Tensile stress in adju: ting screu. O a " TE ' t A2 5. Shear stresses in cover. 0~ge = c~M .9 -7/ DT 6. Tensile stress in retaining screws. 0tt*EE s' .t 4A3 where: W = banjo weight - pounds-4 2 A1 = bearing area of thrust washer - in .~f. gg = acceluration constant D = diateter of adjusting cerew - inches = thickness of adjusting screw head - inches eA2 = tennile area of adjusting screw - in.2 = cover thickness - inches T3 = tensile arca.of retaining screws - in.2 A l 6 4, l l .x. Q r ..a FICt7tC G o O ESSEflTlf.L liliit.2CS OF Titi!UST CCI.~41%3 AS3Cli:LY ,(. 4 / val.VE DOnY b SMrT i 1 TmittY t'.e c.Pe r I ("(
- ~
/' jr, A 6.'1
- =
m j"' ./ ~q = .-X~.. ) '.ci a.-d-rj. 'I 9;= m ')'.l../ .} j;._ s. ,;.,,-'-. '7, K_. _ y . =- t . =. ~. d I r
- si
== = I LL_U = R- .U U s = n, ?>. =- = 7= - - _. = = =. = =. . g t
- 4.1 v,>
--... _a-5 ,,,,./., ,t. RET Ard t?'4 SCPEU_ CCVrq AD.itt T I ?'.'. C.~ n FU_ 8 6 t o e G e n o O / 6 ATTACHMENT 3 BETTIS OPERATOR CERTIFICATION (( O O
- e e***
q; 4 f p - --.- 7 m 3
- asio, 3.g
- ;.j.; \\
es e iem i gI 3Ju- -) m.r..,mi eiar.iin , w is [. _ A Gd.ntoahtoa Cm .A T7"ACHME A/7 3 January. 15, 1981 Henry Pratt Company 401 South Highland Ave. Aurora, Illinois. 60507 Attention: Mr. Ted Wrona
Subject:
T-5 Actuator oke Assembly Torque Absorbing Capabilities
Dear Mr. Wrona:
This is in response to our telephone conversation of Janu-ary 12,1981 concerning the torque absorbing capabilities _.. of T-5. actuators; specifically a Model T516B-SR3. ) Attached is a typical set of data for a Model T-520B double (, acting actuator. Please note that the yoke assembly mecha-nism for both double acting and spring return actuators is identical. Consequently, the torque absorbing capabiltiy of a spring return actuator is the same as a double acting unit (i.e., 225,000 lb-in at either the full open or full closed (0-900) positions). From the graph or tabulated data the per-centage of torque outputs at 150 and 750 positions with respect to 00 and 900 torques is 74.5 and 72.6 percent each, respective-ly. Based on this, the yoke assembly (rated ~at 225,000 lb-in)- should be capable of absorbing at least 163,350 lb-in at the _750 position. .c .c It /., 9 +
b e %s LL \\ ){ C CYLlHDER DIAMETER Cin)= 19.58 CENTER OR TIE BAR DIAMETER Can)= 1.000 1.750 i PIST0H ROD DidMETER Cin)= ) 1 HUMBER OF PIST0HS = ) 5.500 MOMENT ARM Cin)= ) 0 SPRlHG LOAD A (Ibs)= ~ ) 0. SPRING LOAD 8 Clbs)= ) 70 SREAK EFFICIEHCY (1)= ) ! 85 RUHHING EFFICIENCY (1) = ) 74 EHDlHG EFFICIEHCY (1) = ) 40 60 80 90 ) PRESSURES (psi) = ACTUATOR TYPE.CB-1,HD=2,T TR-3,'= '3 ' ) ~ - l ), 3-YOKE ARM SPRIHG PRESSURE PRESSURE PRESSURE PRESSURE EFFICIENCY 3 ANGLE TORQUE TORQUE TORQUE TORQUE TORQUE SPR. PRES. d (degrees) Cin Ib) ( 40) psi ( 60) psi (
- 80) psi
( '90)pst 1 1 3 9 0 91515 137273 183030 205909 74 70 3 5 0 81533 122299 163066 183449 77 73 10 0 73965* 110947 147929 166420 79 76 0 15 0 68195 102292 136389 153438 81 78 O' 20 0 S3811 95716 127621 143574 82 80 O 25 0 60533 90799 121065 136199 83 82 0 30 0 58170 87255 116340 130883 84 83 0 35 0 56595 84892 113190 127339 85 84 3 40 0 - 55727 83590 111454 125385 85 85 45 C 55523 83285 111047 124928 85 85 J 50 0 55975 83963 111951 125945 O.C[3 85 85 55 0 57106 85660 114213 128489 /*'"? 84 85 132693 '.'.7/f[ 83 84 5 J S0 0 58975 88462 117949 O G5 0 61681 92521 123361 138781 82 83 0 70 0 65379 98069 130759 147103 80 82 75 0 70301 405451 1,40602 158177 78 81 3 80 0 76785 115177 153570 172766 76 79 85 0 85340 128010 170680 192015 73 77 J 90 0 96745 145117 193489 217675 /0 74 J o
... '. s - c. ~ t. _TS200, p:go 2 .w: m. * ~. C q.- .g... _..g ... 7 .f.... f f 7. 7..._. g J C '.......4 4.mu.4-. o4.... 4.u 4 m. ................g.. g .t.u. ..p. p.... .p.... 4 t n Mnu,
- 4.. u s.
~.n ... m........ .e .,....... ~....,... U .......4...4.... EF* *" *" /. ............g.. } m.......i.. .i m g I s. ....... f.......~ *.... . l....
- 8..m...I.....j..
h fg 71 ..: ~..:....:.........:... g......g.... G g
- h.
..g.....6.*.m.**4.**.* * * *..:... .:..a... ..a. I I 5 5 5 5 U I. I. I. emus a nun esp uma. esa aus e.um. Cta Ert m
- e. n
(%J rra mm 6r) ada r e e 388888.......... .=__,. _._ i i j i i i i l i i l l i .h .j 4.m.. =h. l i i i i i i. . ~. 4 9 j
- 4. _
I l l 9.m o $$222. .i...m. ...i )m.g 4.m. Q i i e l l go 4 - .. r. I i i i i i .i i ~ i G I i-i i I =..im.- - -.---- - 4 h, g .......gm.m.o=4.mm-. 4-~ --gmm nm
4.-
.I G i i 8 1 I i 4 9.......li BP$ o .m. .4.. . 4 g.. ...~.........4...q.g..... i i i i. i i 3 ........i...4.......i.4..ug................m... n' Nr 218222. .( I o 5 g.......I.......t...4...................... s... 7 i( i l 1 q .m......g.... g.. ( ..4........g..... I I i. T 3 g -...g.... 4.. g. ....4. ........g.=.... i 7 .u.. 3 i j I ? e 1 i 3. ....4 ... 4... .....+. I. 9 i g .........g.. . 4.... m. g. 3 e ..........g....... I hh...........!................ ..g.m..........g...n........s. g 3 4.....m... ...g..... .4m ........g....m............ em i 4BPSI! hi! i i i i i 92222. .......i........:g..... ...i..............!......4.............! ........!............4......... ~ j j i .~1...~4... uma.. - ~ ~ e...~. g .....4.n.. 4. .q... i 1 uusJD.....4.... .. g....... ! I Saan g ........4 3 I e 1 - ~. -. i .p:...._:.. -. l 4...._.<- l i t g l 1 i l g m .I. p -..a. I. =.. -. N...........:. {.. g t..m g...==. i l I l . 4. m -p.... ~.. ~. .if g.. -. g... i l l i. .i i. i. i. I s. l
- s m
m m W P YDKE AM El.E
4 3 (. e e e e 9 4 ATTACHMENT 3A BETTIS SEISMIC ANALYSIS REPORT \\ ('.. ( t 9 e 9" e o e e e 0 O e e .) e
l .r.. ,, L', = [T I n.t.. o. L-i. ..r , (.- ..y ( ,s ? l p 4 ,r ;
- i.. g
- /*
J e 1 I SEISMIC AfiALYSIS Bettis Robotorm Actuator Spring Return Model.TS20-SR2 Y516-CR3 (( ' s.. .. s.. I. e.. ( .J ~ / S
- o O
U f. i . I.r 1.t.U' TON,1LX/.5 "-{t j LAST lir.V. N0 f 5"CCT f*!!TTIS COi:P. SEISMIC ANALYSIS .8 ~ T520-SR2 T516-SR3 <b INTRODUCTION This stross analysis of a Bettis T520-SR2 spelng roturn valvo actuator covers thrco areas motorially affected by seismic accelerations of Sg simultaneously applied in the three perpendicular axis. The dir ection of gravity for ,each particular analysis will be in the di roction producing the greatest stress on the member being analyzod and this direction is shown on the figuro describing 1his particular analysis. The axis of the unit being analyzed will be as shown l'n Fig. I. The maximum seismic load of 5g in three planes simultaneously wiII not affoct the operation of tho actuator nor wIII It cause a reduction in the rated output torques, since the 'e actual output torques are sufficiently higher to accomodato tho affoct of Sg on the spring, rod and piston assembly and no significant deformations will occur. The minimum for tho T-5 unit during seismic exitation rated output torques with tho two different spring cartridgos remain: SR2: 84,375 in. Ibs. ending/168,750 in.'Ibs. break SR3: 56,250 in. Ibs. ending/ll2,500 l'n. Ibs. break ~ ..g -t ] \\ s J s.. i r
- ". h _ Th'$ p'.'.I[.?
f, .s i.
-_ w ---- a -- e-. T 520-SR2 %~ ~m -" ' !.* m C11,17 U.0 .I 8 d 115 C'.".P.- t.i.<:r.rv.m STRE05 LEYELS Without Seismic Exitation While I' ro d u c i ng '4.s x. Ou tgiMgryp_,,__,_, j A r t u.. r o r l e. i' CG:/PO!!ENT STRESS REF. MATERI AL ALL0dADI.C STRESS' j 10 Fil T.. PG. STRFSS.. - 1 1; "5.' AST!.t Al93-07 S.9 o Sprino Tie Rods-31'*00 28026 i' Cartridoc Tensile l 2Sne o Connect. ion (Prelced 62800 36680 l 350 ft. Ib.) Tie Rods-5 ASTM Al93-B7 .6Sm t' tesco 8492 Max. Shosr T Hous I n;; 6 ASTM A536 .6Sm 10200 Esss j Thd. Stiaar 60-45-15 Housir.g Bcit S n is e r 8 ASTM A193-D7 .65m T* 16600 9839 in valve (Transvc eso Move. ting Bolt Tenslic S ASTM Al93-B7 2Sm o 62000 45000 (Proload i 150 ft. Ib.) I Housir. 9 AST': A53C Sm o 1/o00 3712 i ( Tensli.' Thru 60-45-15 Bolt Hole Housing 9 A5TM A.536 2 x.6Sm T 1263'- 1hd. SI. ear 60-45-15 20400 (Preto.3d 150 ft. Ib.) Cover Dowel Pin 12 AISI 0740 .65m T n000 2d00 Co., r:e c t i o n Shcar 45 Rc Piston Max. Plate 14 ASTM l.536 Sm-cr 7 7 8. C 17000 65-45-12 ASTM A53' Sin T Cylinder Hoop 14 20000
- 8613, 6RD NOTE:
(1) Allovoble Stress S,por ASME Ill /. USAS L31.7 I (2) T h e, housing is ductile I ron.. S, 1 s '. based on USAS B31.1.0 - 1967 300*.F. 1, (. 1 g g O m 4. ( e. 1*L '::.'" I 0 P"...
~ ' i!o :<.,10. :' Tm - T 520-Sil2 r.iirr.T.d. c-J.'.. C6: TIS L AST firV. ti4_..... l ~ STRESS LEVELS G Sg Selsnic Accoloration in 3 Planos Simultaneously Whlto Aciuntor is Producing Max. Output Torquo (- COMPO4EllT STRESS REF. MATERIAL STRESS YlELD SAFETY FACTO't IDEr1T. PG. Spring Tio Rods-5 ASTM Al93-07 a 1.5:1 71747 105000 Cartridge Tonsito Mounting Tie Rods-5 ASTM AI93-87 t' .6Sy I.7:t 3s020 63000 Max. Shear 1.8:1 Housing 6 ASTM A536 t 21 sos 4o000 Thd. Shoar 60-45-12 Housing Bolt Shear 8 ASTM Al94-07 T' .6Sy 4.5:1
- 13s50, 63000 To Volve (Transvorse)
Hounting 13:1 Bolt Tension 8 ASTM A194-87 o 3235 105000 Housing 9 ASTM A536 o 8:1 540s 45000 Tensile Thru 60-45-12 Bolt Hole I4:1 i Housing 9 ASTM A536 .T 2 EGG 40000 ( Thd. Shocr 60-45-12 j l 3.6:1 Cover Dowel Pin 12 AISI 8740 t 31035 112000 Connectior. Shear 45 R e 5.7:t Piston Max. Plato 14 ASTM A536 o 7864 45000 Stress 65-45-12 Cy l l tid o r Hoop Stress 14 Solsmic Effact Negilgiblo ~ ~ s s...
- i..
<lO 5 .. \\. :'.. -.... yo_qtu / it 7I E.**.(. U,. '.... -.
o a. FI". I C tlJTON, n u.5 'J " '
- T SE I Sf4i C Af. ALYS i S CC fil5 CO.7P.-
t r,sr rev - l T520-SR2 / T516-SR3 =' E / O 2 N g:~.' (. 7 s l / i ) \\ I 1 i-i Fig. I AXIS IDENTIFICATION ( i i e . a: b. ce>= ce.:01' V.,.,I'g * /... 8 l r
- __1, l'~l
/
l r, MaiJMC!!, TCAO ' ~ 0 I' " ' 7 ur.TTIS COP.?. SEI SMIC A'J ALYS1 S L.AUT f t**V. fiO.. T520-SR2 T516-SR3 .. = - -... -. -.. _. n - _.. - - -. StinJ FCT : SPRi fig Ct.RTRI DGE t OU::T lilG Ar:ALYS I S The two (2) spring cartridge. Involved in this analysis are: SR2 ( S/:4 19335) 52-9/16" long - 500 lbs. SR3 (8/M 18737) 40-l/4" long - 325 lbs. Inasmuch as the SR2 is the longor and heavice of the two spring cartridges and they both have tho same attachment to the body, it vill be used for the following analysis. The stressos resulting from the mass of the SR3 will bo less than that of the SR2. "The maximum moment on the connoction is when the spring is compressed and this moment is used below. Tie Bar (1) extends through the body, henco sees tho affact of pressuro load F which is 75% greator than the p affect of spring load F seen by Tio Bar (2), henco Tie 3 Bar (I) will be analyzod. Rofer to Figs. 2a & 2b, x, y & z denote direction. ,( Tie Rod Tensile: F g = Total Load on Tie Bar (I) 'A = Area Pres. Cyl. g p = Operatin Pres. - psig T " 7(F +Fgy) +F lx+Fgz= F W, = Weight o Spring Cartridge i p L = Dist. to c.g. of Spring' Ar Cartridge 0 Spring Comprc:soci c Fp = pA ,L g = Levor Arm of Tie F.od (I) W L2 = Lev r Arm of Tie Red (2) F y = 9y I l A = Root Area of Tie Bar Thd. r WLL F lx = gx I c lx 7, = Max. Shear in Tie Bar L2 +L2 1 2X. 1X T = Tranverse Shear Stress 2 59 are f orces result!. ; Iz z I e F lx-& F gg 2L from E moments around iz B or B' Tie Rod Max. Shear: 't = Tensito Stress in Tio Bar I 2 j,y = [(g) + j =5 T g (9. t 92)*5 W: g =5 l 2 1 = 2 Y ( 2A g=6 r 5 e I I _ __ _..._j. T.'_ cour'tt ~ *Le e
- 1 l
o .f'. /r CK'O. l
HC'?,TC.'t, KXAS sH C ET. _ Or.g a.
== SCISMIC /.NALySI$ v.r.T nev. em._ A.. l CETTl3 CO2p-T520-SR2 T516-SR3 (: F = Total Load on Tie Bar (I) Housing Thd. Shoor: D = Thd. P.O. T = 2F m 3 I L = Length Engagement e v 0"L* Housing Thd. Shear Stress t = 3 S,is based on USAS B31.l.0 - Iron. The housing is ductile 1967 6 300 F.
SUBJECT:
PISTON ASSEMBLY TO BODY CONNECTION largest piston assembly covered by this analysis is a Tha 495 lbs. with 20" cylinder having an assembled weight of a maximum moment arm to the point of connection of 15 inches producing a bending moment at Ig of 7,425 in. Ibs. which is less than the bonding moment produced by tho spr.Ing cartridge (14,880 in. Ibs.) -( Inasmuch as the pressure load is the samo on tho tie rods of the spring cartridge and the pressura assembly and since the concnt for the pressuro assembly i s loss than that of the spring cartridgo, the tie rod stresses for the attachment of the pressure assembly to.tho body will be.less than that doscribed for tho' spring cartridgo c.1 analysis shown i n Pg. 5 e e 4 e g e e O e t i s. 4 e O I ,J" e m- ..e., cowm$.l.'i.'! l1 g i .. 7. .o e e/
===.. so.,- L
t i tec tra;O;t. v:n, ' or.L;.' suts:r- < SEIStilC ANALYSIS L Ar.1 ftLV. P80 _ h ! ' '; 7 T ; r, CO.:., 1 T520-SR2 T516-SR3 (- -_=._~i = TIE BAR I ~ TIE BAR 2 }} I ~ _ (-) y;)_rf.;- -t {4. _.y _) ( g \\\\ \\ Q \\ v Q . %,y m h 4 l-p z 4 21 l .X " ~' $xWg (' Fig', 2a I \\\\' ~h \\ h_. _ L 4 J Q Liy 4 55 unt 9 1 s \\ \\ g \\ \\\\ i \\[ i',.\\ \\ t.c
- a I
i i-l' / >"I i H y l nl' i -- k 'k $2W El I l I DE WO f1 9 2b g OC - (- r TIE BAR t.t!ALYSIS a 4 E
- 6.. *: -.-
i eo,EiG.' t.'...... - y '- ? ? o 1:, c.c o. = ,e a, t.,. ~
_ ___.. l " ~ ".'..'.!. 'I(c' Mott, 7: y. 5 Ch ITIS CC"I'. SElSMIC AllALYS!S L AGT fir.V.140. T520-SR2 T516-SR3 ( = =
SUBJECT:
HOUSING TO VALVE MOUNTitlG This analysis refors to tho T520-SR2 which is heavier longer than the T516-SR3, hence has the largor and mounting stresses. Refer to: Fig. I - Centor of gravity location Fig. 4 - Actuator mounting flange The various locations "L" and the dirocTion of the "G" forces aro sssumed as shown in Fig. 4. Tho sum of those forces produce the maximum tensito load in bolt "A". gx "'9z ",5 a, = F +F + F _3x ay 37 A =6 f gy a i F
- 9xNl l
'etc. 'Ll lx+f= L ax z 3x lx 2(L2 + L2 +t2+L2 } 1x 2x 3x 4x ,( F,y = g WL L 7 y 2(L2 +L2 +t2 +t2 } ty 2y 3y by F,, = g,WLg y,L,, 2(L2 +L2 +L2 + L2 3 IX 2X 3X 4X Shear in the mounting bolts is produced by the sum of the actuator output torque and seismic affects causing a ctu a t or rot at i o.r.a l load. Lateral shoor is absorbed by the cor.toring r:isoo faco. T = Actuator Output Torque gx y)W] l 2 [T + (g L + = yx In. Lb.. t D NA b r D = Dolt Ciccio Diam. 1 b T' = [(a)2 +y2] 7 5 Y N = No. of Bolts o, = Oolt TensIIe Stress ] i Shear Stress L T = g T 5 'E f.M :: I m u m Sheer i m -- ~* ,...p 'g, cc ewu .M..-- + m o
I U" "-, -[,. ~ . IIC iC10H, TT.U.'s SCISMIC At!ALYSIS 1.f.sT Rt;V. f.'O l l 147 TIS CO..r. 1920-SR2 T516-SR3 (.1. Nf-SUDJECT: HOUSitiG TENS I LE STr:E53 The housing tonsi10 stress (o ) through tho mounting is: b9lt hole at maximum output torque and sol:;r.;Ic of f acts o = 2 [T + (g L + 9x yl IN3 yx Stross D N^1 .Ag = (1.563 .75) = b Area of Housing 0 I" Engagomont ~ I l. I t 'SUDJECT: HOUSING THREAD SilEAR D,= Thread P.D. Ts = 2(Fax + fay + F z)_ a . wD,L L, = Length Engagement o ~ Ts.= Housing Throad Shocr Strass g e e. .e .8.. I..-. 8 ..B ~ l O $ e. . 0 $8 $ 0.* - !f ..... s er s 0d.. .8 '8 4.. g .t. l i I i I ,s., i.-..... _. L...
- * " h !.'. ' " '...
e t a
~ I, ,.i ' t.G.!".f 0:., K'/A, swirr_,.p.c..p.l SEISillC ANALYSIS i ; ( 73., C O *:i'. nA r m x..a..:.. T520-SR2 T516-SR3 [ = \\ I I d> p _ _t p,_ 4 t 5 i 3_q-v. 7_ \\\\ r K ( / (+ sy x J p LY cr2 u' \\\\ i b L. ( h_h l- ,1 [ .I l Iry ~ q ;-) \\\\ / s / N s s .,. y / / N g / \\ y / \\ I \\ a i + i, i. j / j \\ \\ / 7 t \\ \\ f N N.__- / N / ,N-I I-0 l L L U 3 x y z I., T520-SR2' lil 65 4.560 8.420 4.660 T516-SR3 870 4.380 7.280 4.630 .t Fig. 3
- g CENTR.
0." CR/.V I TY 7 counids.t ~... .!..L. ' '. ~
g S " #--",, C ' '-) e%u,1c:4. t ex t. 2' 3ETTIS Col:P. SElStalC At:ALYSIS l LAci nev no. T.5 20-5 R2 T516-SR3 ( -). -O A. N f 3 Gn 1l f j iJ N / _a = =. 1.563 0 'A ~7~ 3 I i I-ONC WITH MAX ~CHEAR G* i 4 l' ENGAGEi AEiG 4 I Ly -a ~' (( ~ / s 7 N sy--dD. i a + )/ T 4 h x +,, g (ty .i DipECrlON OF 4 -Y A GRAvlTY V V V Y_ .s v Fig. 4 3 g y. x l2y 5 va n j' [ a w MOUt! TING FLAl4GE x -a s 8 e ANALYSIS Lg, j i m Ley t y i -- L.vj i \\ co cu. o ee 3 l-6 e ewa. -l: : ::.- / a
i sH m .,t..oF,_,_l tGATON,7C:.; LAT n t'.V. t 'O h SEISl4lC AN ALYSI S LETilS CC;m. T520-SR2 T516-SR3 1-
SUBJECT:
COVER CONNECTION for The twolvo (12) hox head cap screws on the cover are tho tension only. Tho shear loads from tho piston and spring roactions are carried by the dowel pins. In the following analysis, the dowel pins are assumod to carry the entiro load without benefit of clamping force from the retaining screws. The maximum f orco nominal and equal to the thrust of the , piston occurs when the yoko is at O' or 90*. That is, 45' on either sido of the nominal centerline of the body. The maximum seismic ef f ect on the cover' connection will occur with 5g acceleration along 'the Y axis utlii zing the piston rod assembly mass of the spring, piston and combined with a Sg acceleration along the X axis utlitzing the cover and yoke. This analysis is shown in the following Fig. 5 and equations. The total pressure load is absorbed by the body and cover equally, hence the force food. Frictional (F ) in the following is half the pressure lossos are not considered in that they would reduce the t (( stress vatuos on the pins. in At 1.0g Y, = Shear stress normal operation
- By_EM, Ft= I/2 piston thrust
-Fl +FL] load. bx*h,[Fl R n3 n2 tg F = Normal load60* & 90*) Ft (F = R,x h R n bx A = Crossectional area T, [(R 3 2 + (Rhx) 3-of pin 3g 2 2 W = Combinod weight of A spring, pistons, piston ~'\\ rods, yoko &. cover. At 59 I T + g,2 ) 7y 7= Shear stress 6 2 7 = T, T + (g maximum seismic 4A S g s c. .y.. .# ' " ' ' s '.. l
- I
, cro. a
U --1 I l'r *J5 f 0?l,1 LX/.5 sur.tT_I 3_ <3r.I f - SEISMIC Ai! ALYSIS LAGT f t ~.V. NO i CI:TTIS CO.1P. T520-SR2 T516-SR3 f. Li L2 9 F~n g ~ L3 e
- 5.5
. r--4.75 + SMa Rax >GD 4d-Y Ry'o -e. Ry- +b f, P e, Rbt a g' 45 -+y (U \\ t Ft -p y X DIRECTION CF ((- GRAVITY Fig. 6 COVER CONNECTION ANALYSIS ( i i i. g l i i ) j e .\\ I 9 I I i t 1 or co...;i fi'./.Tl... /. /*,,***,,,l. l / CK'D. n ~ {
k --.. -
- - - -,-,- ?
8.. sY.':.1GM, ic//,5 LAST III:V. ido ![ ' U" 'l6...T3COR;'. SEISMIC A;4ALYS15 T520-SR2 ~ T516-5R3
SUBJECT:
P.lSTON PLATE STRESS (o ) 3 The maximum plato stress occurs at maximum oporating pressuro (100 psig) added to 6g acccioration. Plato has inner odgo fixod at hub and outor edgo froo - uniform prossuro.' 3= 3 ( p + po ) [4,., ( m+ 1 ) L o n,, h-a4(m+3)+b4(m-1)+4a 3 ] 2 2 ~ 4t 2 a2(m+1) + b2(m-1) 1 i = Plato thicknoss at hub g p = Equivalent seismic 8 pressuro = (wt)gy A .a = Oyter radius .{ ~ b = Hub. radius =. Reciprocal of Poisson's m . ratio
SUBJECT:
CYLINDER The hoop stress (o ) at maximum operating prossuro is 4 affected virtually nono by Sg solsmic oxitation. p(R +. 6 t_ ). R= Insido radius of Cylindor = g t t = Thickness of cylinder l p h 1
- 1
~ i \\ '~' a g O, C CMI<l.Y O * I~..i..' &b-.,i h
G S 6 e ATTACHMENT 4 SUPPLDiENTAL TORQUE CALCULATIONS O l 1 l i l
ATTACHMENT 4 The following pages illustrate the combined effects of disc 4 blockage and delay time on dynamic torque. In each case, the delay ime is fixed at that which produced the worst case torque for the full open, unblocked condition. The initial disc angle is reduced by blocking to illustrate the resultants of several different initial ~ angles of opening. 1 ~ i t O e O D e O I e i O
2.. u.-. _ _ = . - _... -.. ~ - - -...... 3, ____ _--~ - -- _ _u.:-
- =
.~ Pz - /9 7 Asa
SUMMARY
TDRQUE TABLE-VALVE BLOCKED TO: 65 DEG.AT 2.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 364235. CFMi 528463. SCFMi 40344.3 LB/ MIG ~ SEATING + BEARING + HUB SEAL TDROUE (M/M) = 35028 IN-LBS @ 0 DEG. 230193 IN-LBS & 65 DEG. MAX. DYti. + BEARING + HUB SEAL TDRQUE (M/M) =
SUMMARY
TOROUE TABLE-VALVE BLDCKED TD: 70 DEG.AT 2.5 SEC. DELAY TIME. t MAX.ANG. FLOW RATE: 414335. CFMi 601152. SCFMi 45893.6 LB/MID SEATING + BEARING + HUB SEAL TDROUE (M/M) = 35028 IN-LBS & 0 DEG. 257155 IN-LES & 70 DEG. MAX.DYN. + BEARIriG + HUB SEAL TDRQUE (M/N) =
SUMMARY
TORQUE TABLE-VALVE BLDCKED TO: 75 DEG.AT 2.5 SEC. DELAY TIME. 2 MAX.ANG. FLOW RATE: 481197. CFMi 698162. SCFMi 53299.5 LB/MID SEATING + BEARING + HUB SEAL TOROUE (M/M) = 35028 IN-LBS 9 0 DEG. '.l MAX.DYN. + BEARING + HUB SEAL TOROUE (M/M) 311999 IN-LBS & 72'DEG. = i r l l
SUMMARY
TDROUE TABLE-VALVE BLDCKED TD: 80 DEG.AT 2.5 SEC. DELAY TIME. l MAX.ANG. FLOW RATE: 505763. CFMi 733804. SCFMi 56020.6 LB/ MIG (M/M) = 35028 IN-LBS & O DEG. SEATING + BEARING + HUB SEAL TDROUE 339252 IN-LBS & 72 DEG. '-~ MAX.DYN. + BEARING + HUB SEAL TORQUE (M/M) =
SUMMARY
TORQUE TABLE-VALVE BLOCKED TD: 85 DEG.AT 2.5 SEC. DELAY TIME. i l u -- - i MAX.ANG.FLDW RATE: 505763. CFMi 733804. SCFMi 56020.6 LB/MI i! (M/M) = 35028 IN-LES @ 0 DEG. SEATING + BEARING + HUB SEAL TDRQUE 366603 IN-LBS & 72 DEG. MAX.DYN. + BEARING + HUB SEAL TDROUE (M/M) = _j.4. ' . i i r. -e .i % u 2 .,.+_A.s.1 s ia, Sn. 4 mai r a.a ...u.2 ............._..m. L_. - ._;c...... ! '.-.e.... w 1 4,. i,!. T-!,. -t-* i T-' M " --: T-- -r .+;.j4.. ' - - - * - * - - - + - TOPS FORM 3308 ? -* l ...i .4 1 1_ ..a_ . L.i._. J w.
- IO +'.'+.*
i 4- ..? ' I !.l..: 2_:a ;._2.T1'~1 +...,-,.4
- i - * *. !. L.LM. t.
i I I I ! L.L.L,, I I I I.. ! -t -t i Mia a.2 . t.i.2
........u.-.. .. - - ~..... ... _.............. +. _ ..... __...... _-....-. L...-. ~ e.........-. t....-.... -. -. ~.. _ l _l. ; .(.__....._. - ~ _ - - - - - _ ~ ~ _..... _. - T - m.., m- =.- w . -.- v : ---.: :- -.. 'II-28341-1 TDROUE TABLE 1 4 / 22 / 81 FAX.PDSSIBLE TOPOUE MAY BE AT THE EHPLIEST P.R. (.585) CRITIC. SONIC ABSDL. MAX.TOROUE(FIRST SDNIC) AT 72-68 DG.VLV. ANG.= 431607 IN-LE! 9 68 DEG. MAX.TDROUES ItiCLUDE SIZE EFFECT(REYNOLDS tiu.ETC) APPX. X 1.27 FOR 48 IriCH VAL'- VALVE TYPE: 48"-RIA-2.5/6.5 CLASS 75 DISC SIZE: 46.718 INCHES OFFSET ASYMMETRIC DISC SHAFT DIA.: 4.75 INCHES BRG. CDEF. OF FRCTN.: 5.00000E-03 SEATING FACTOR: 15 INLET PRESS.VAP. MAX.: 42.7 PSIA DUTLET PPESSURE(P2): 19.7 PSIA LE/ MIN MAX.ANG.FLOh! PATE: 303392. CFMi 440187 SCFMi 33605.1 CRIT.SDriiC FLOW-90DG: 52269.9 LB/MIti AT 27.7465 INLET PSIA VALVE IrlLET DEN!ITY: .110765 LB/FT^3-MIN..159247 LE/FT^3-MAX. FULL DPEN DELTA P: 10 PSI SYSTEM CONDITIONS: P1PE It-PIPE-DUT -AND-AIR SERVICE 9 264 DEG.F MINIMUM 0.75 DIAM. PIPE DDWNSTREAM FRDh CENT.LINE SHAFT. PPESSUPE(ADJ.)FDLLOWS TIME / PRESS. TRANSIENT CURVE. ABS. ABSDLUTE MAX.TOFOUE IS DEPENDENT Dri DELAY TIME (NOT PPESSUPE) AND CUBE TD 2.5 ~ POWER OF (P1/P2)Iti WDPST RANGE X LINEAR CONSTANT TIMES P2-ABS. (75-60DEG.) Iff SUBSONIC RANGE LIMITS-DNLYiSEE FORMULATIONS..-PER TESTS H.PRATT THIS TQ. AT 72 DEG.SYMM. DISC (68=DFFSET SHAFT)CT*T/D^3/P2 (ABS) ANGLE P1 DELP PRESS. FLOW FLOW TD TB+TH TD+TB+TH TIME (LDL -~~ APPRX. PSIA PSI RATID (SCFM) (LE/ MIN)
INCHLES-------------
.SEC. 60 29.7 10.00 0.663 440187 33605 155253 143 155396 2.50 55 31.0 11.29 0.636 382660 29213 100271 158 100430 5.02 50 32.2 12.50 0.612 321572 24549 73381 196 73578 3.50 ~~~~ 45 33.2 13.54 0.593 346649 26464 64502 233 64736 3.91 40 34.0 14.33 0.579 248858 18998 50082 268 50350 4.23 35 34.5 14.83 0.571 171716 13109 32444 296 32741 4.43 30 34.7 15.00 0.568 129445 9882 20537 317 20855 4.50 25 35.0 15.27 0.563 102602 7832 15414 338 15752 4.57 ~~" T-~ 20 35.8 16.07 0.551 62204 4748 12959 368 13328 4.77 15 37.0 17.34 0.532 34558 2638 8176 409 8585 5.09 10 38.7 19.00 0.509 17089 1304 6188 457 6645 5.50 ~ 5 40.6 20.93 0.485 4916 375 5002 509 5512 5.98 0 42.7 23.00 0.461 0 0 34560 468 35028 6.50 SEATING + BEARING + HUB SEAL TOROUE (M/M) = 35028 IN-LBS & O DEG. 155253 IN-LBS & 60 DEG. MAX.DYN. + BEARING + HUB SEAL _TOROUE (M/M) = .~~ . - - - ~.... - ~. _... _.w _
- w. _
a._. 4.._._._..........__.... a.._. ._-a._.-. >.--t u-d M-1 L ' .------+--.-.-.-.._l- .p. Tops, onu 33os ....e .r........,,.. u'!!j'L'l..1.Lt.:.;;_t..; ;
- ;.1.2 p...
- ..L2
e... o..... .l Q (, 3 Q^_ _ . = -. -. - - + - D-28341-7 TORQUE TABLE 2 5/ 5 / 81 MAX.PDSSIBLE TOPOUE MAY BE AT THE EARLIEST P.R. <.585) CRITIC. SONIC APSDL. MAX.TOROUE(FIRST SONIC) AT 72-68 DG.VLV. ANG.= 409079 IN-LES 9 68 DEG. MAX.TOROUES INCLUDE SIZE EFFECT(REYNDLDS NO.ETC) APPX. X 1.27 FOR' 48 INCH VALW I '. VALVE TYPE: 48"-R1A-2.5/6 CLASS 75 DISC SIZE 46.718 INCHES OFFSET ASYMMETRIC DISC SHAFT DIA.: 4.75 INCHES BRG. CDEF. OF FRCTN.: 5.00000E-03 SEATING FACTOR: 15 INLET PRESS. VAR. MAX.: 42.7 PSIA DUTLET PRESSURE (P2): 18.7 PSIA MAX.AtiG.FLOU PATE: 355291. CFMI 515486. SCFMi 39353.6 LB/ MIN CRIT.SDNIC FLOW-90DG: 49546.2 LB/ MIN AT 26.338 INLET PSIA VALVE IriLET DEffSITY: .110765 LB/FT^3-MIN..159247 LB/FT^3-MAX. FULL DPEN DELTA P: 11 PSI SYSTEM CDriDITIDriS: PIPE Iti-PIPE-GUT -AND-AIR SERVICE 9 264 DEG.F MINIMUM 0.75 DIAM. PIPE DOWNSTREAM FROM CENT.LINE SHAFT. [ AES. PRESSUPE(ADJ.)FDLLOWS TIME /PPESS.TRAriSIENT CURVE.. ABSCLUTE MAX.TOPOUE IS DEPENDENT DN DELAY TIME (NOT PRESSUPE) Af1D CUBE TO 2.5-T0 POWER OF (P1/P2)IN WDRST RANGE X LINEAR CONSTANT TIMES P2-ABS. (75-60DEG.) IN SUBSONIC RAfiGE LIMITS-DHLYiSEE FDPMULATIONS..-PER TESTS H.PRATT THIS TO. AT 72 DEG.SYMM. DISC (68=DFFSET SHAFT)CT=T/D^3/P2(ABS) ,.~- w ANGLE P1 DELP PRESS. FLDU FLDW TD .TB+TH TD+TB+TH TIME (LDC1 ~~ ~ APPRX. PSIA PSI RATIO (SCFM) (LB/ MIN)
INCHLES-------------
SEC. 65 29.7 11.00 0.630 515486 39353 248630 229 248859 2.50 60 30.9 12.20 0.605 447689 34177 177869 164 178033 2.92 55 32.0 13.32 0.584 385637 29440 113167 186 113354 3.31 50 33.0 14.32 0.566 321539 24547 81120 224 81344 3.66 45 33.8 15.11' O.553 339901 E5948 70087 261 70348 3.94 40 34.4 15.68 0.544 246153 18791 53176 293 53470 4.14 35 34.7 15.96 0.539 168858 12891 33905 319 34224 4.24 30 34.8 16.06 0.538 137221 10475 21163 339 21503 4.26 25 35.2 16.52 0.531 99290 7580 15880 365 16246 4.36 20 36.1 17.42 0.518 60714 4635 13331 399 13731 4.56 15 37.4 18.70 0.500 33955 2592 8063 441 8504 4.84 10 39.0 20.28 0.480 16736 1277 5972 487 6460 5.19 5 40.8 22.09 0.458 4912 375 4778 537 5315 5.58 0 42.7 24.00 0.438 0 0 33665 488 34154 6.00 +t SEATING + BEARING + HUB SEAL TOROUE (M/M) = 34154 IN-LES 9 0 DEG' MAX.DYN. + BEARING + HUB SEAL TDPOUE (M/M).=.- 48496.IN-LBS 9 65 DEG. 2 7.-- .-~...... ;.... - -. 3, -.-y_-.---t.......-..a..... .. a. ._,.n. _a.. i. L. -s ,. L - . L ~....- a. -.. . --...._--. ~....-.... --.. _ 'L1_.--..._. 1 L E.1-.,- -. . 4-.d p 4...,.-.--.---.- i i 4. e. -..s.~..... .-..a. .~~.-s_......_.... .....,..p.. .~- .,..64. -.. -.. I '.h. .w E. - : .--e.-
- e
- ---.....*4 e-.
'.1 4 -f.h b - k. . p -. 1-4 a d 7_.: -..,... d+... a ----- --- 1-.......... e... ! W . FORu 33p LL. .--....4-... ~.. 2.. c. f -e....? I '!!! * } l ' 1
_.__.c. ,.4 -.
- -~T'*"J."__..__
2 L.- ~ ~ ^ -..a...._......_...._,..__._... __(.._...._._.... i . : =c
- -- tm - -. rr_..
D-28341-7 TDROUE TABLE 3 5/ 5 / 81 2 MAX.PDSSIBLE TDROUE MAY BE AT THE EARLIEST P.R. (.585) CRITIC. SDNIC ABSOL. MAX.TDROUE(FIRST SONIC) AT 72-68 DG.VLV. ANG.= 387203 IN-LBS & 68 DEG. MAX.TOROUES INCLUDE SIZE, EFFECT(REYNDLDS NO.ETC) APPX. X 1.27 FDR 48 INCH VALt VALVE TYPE: 48"-R1A-2.5/6 CLASS 75 DISC SIZE: 46.718 INCHES DFFSET ASYMMETRIC DISC SHAFT DIA.: 4.75 INCHES BRG. CDEF. DF FRCTN.: 5.00000E-03 SEATING FACTOR: 15 INLET PRESS. VAR. MAX.: 42.7 PSIA DUTLET PPESSURE(P2): 17.7 PSIA MAX.ANG. FLOW RATE: 356191. CFMi 516W2. SCFMi 39453.3 LB/ MIN CRIT.SDNIC FLOW-90DG: 46896.7 LB/ MIN AT 24.9296 INLET PSIA VALVE INLET DENSITY: .110765 LB/FT^3-MIN..159247 LB/FT^3-MAX. FULL DPEN DELTA P: 12 PSI SYSTEM CDtfDITIONS: PIPE IN-PIPE-DUT -AND-AIR SERVICE & 264 DEG.F MINIMUM 0.75 DIAM. PIPE DOWNSTREAM FROM CENT.LINE SHAFT. ~~( ABS. PRESSUPE(ADJ.)FDLLOWS TIME / PRESS. TRANSIENT CURVE. ABSDLUTE MAX.TDROUE IS DEPENDENT DN DELAY TIME (NOT PRESSURE) AND CUBE TD 2.5 " POWER OF (P1/P2)IN WDRST PANGE X LINEAR CONSTANT TIMES P2-ABS. (75-60DEG.) IN SUBSONIC PANGE LIMITS-DNLYiSEE FORMULATIONS..-PER TESTS H.PRATT i THIS TQ. AT 72 DEG.SYMM. DISC (68= OFFSET SHAFT)CT=T/D^3eP2(ABS) ANGLE P1 DELP PRESS. FLOW FLOW TD TB+TH TD+TB+TH TIME (LDC 1 RPPRX. PSIA PSI RATID (SCFM) (LB/ MIN)
INCHLBS-------------
SEC. 65 29.7 12.00 0.596 516792 39453 270113 249 270363 2.50 60 30.9 13.20 0.573 448807 34263 188642 174 188816 2.92 55 32.0 14.32 0.553 386207 29484 119835' 200 120036 3.31 50 33.0 15.32 0.536 322033 24584 85589 240 85829 3.66 45 33.8 16.11 0.523 337730 25783 73834 278 74113 3.94 40 34.4 16.68 0.515 243023 18553 55572 312 55884 4.14 35 34.7 16.96 0.511 169887 12969 35269 339 35608 4.24 30 34.8 17.06 0.509 136189 10397 21784 360 22145 4.26 25 35.2 17.52 0.503 98296 7504 16220 387 16608 4.36 20 36.1 18.'42 0.490 60418 4612 13555 422 13978 4.56 15 37.4 19.70 0.473 33970 2593 7897 464 8362 4.84 10 39.0 21.28 0.454 16729 1277 5740 511 6252 5.19 - ~ ' ' 5 40.8 23.09 0.434 5013 382 4550 561 5111 5.58 ~ O 42.7 25.00 0.415 0 0 33665 508 34174 6.00 - * - * - * ~ (M/M) = 34174 IN-LBS & 0 DEG. i ! EATING + BEARING + HUB SEAL TDRQUE 269967 I.N-LE_S_ & 65. DEG. BEARING + HUB SEAL TORQUE (M/M) = L MAX.DYN. + + . a. _.._....... ' a: e. .s 4-s d + -. _ _ -.. i "'-- : - i
- r.. -..._..' - - - -
- +
i! .t y, ;, _.. _. - ~ _ _ - n.~.,-.. _.- -.-.... 1.a ..-..t .7_.___..a.+....._a..-.L_.., a.....- t J -!, . : a.._ p - t j ;,. _, I - i., i,. i i. ; -.. ~ -' t. - T~," ;,., j 4 -r. i i g Toes ronu 33os - g- *- - + - -+ - - - +. - - - m, $ 6j A + t f--i -h 7 f ~; ". y l l t--.M y -- 7" -" y :- ? : ..-f-+- + ---- + -+ r ' - 7, u........ 7O hii;iii N w i.l.t...Ii;g. g g..gjg.j,i.lg.].f E 7l.'O."!. [
__-___._...._. __-.-. n - _..- _ - -. _.__.__......_...._.__] _.. _ _ _ _ _ _. -.. _ ~
- u. :_ - '
.j_ f.. _. L_. ._ _1_. 1 ..m. - _2. D-28341-8 TORQUE TABLE 1 5/ 5 / 81 2 MAX.PDSSIBLE TOROUE MAY BE AT THE EAPLIEST P.R. (.585) CRITIC. SONIC _ 1-ABSOL. MAX. TOROUE(FIRST SONIC) AT 72-68 DG.VLV. ANG.= 365327 IN-LBS @ 68 DEG. MAX.TOROUES INCLUDE SIZE EFFECT(REYNOLDS NO.ETC) APPX. X 1.27 FOR 4.8 INCH VALVQ 2 VALVE TYPE: 48"-RIA-2.5/6 CLASS 75 DISC SIZE: 46.718 INCHES OFFSET ASYMMETRIC DISC SHAFT DIA.: 4.75 INCHES ~~ BRG. CDEF. OF FRCTN.: 5.00000E-03 2 SEATING FACTOR: 15' INLET PRESS. VAR. MAX.: 42.7 PSIA-DUTLET PRESSURE (P2): 16.7 PSIA MAX.ANG. FLOW PATE: 206195. CFMi 299166. SCFMi 22839.1 LB/ MIN Z CRIT. SONIC FLOW-90DG: 44247.2 LB/ MIN AT 23.5211 INLET PSIA VALVE IrlLET DENSITY: .110765 LB/FT^3-MIN..159247 LB/FT^3-MAX. FULL DPEN DELTA P: 13 PSI 7 SYSTEM CONDITIDriS: _d PIPE IN-PIPE-DUT -AND-AIR SERVICE & 264 DEG.F MINIMUM 0.75 DIAM. PIPE DOWNSTREAM FROM CENT.LINE SHAFT. Z ABS. PRES!URE(ADJ.)FOLLOWS TIME / PRESS. TRANSIENT CURVE. ABSOLUTE MAX.TOPOUE IS DEPENDENT DN DELAY TIME (NOT PRESSURE) AND CUBE TO 2.5-TC POWER OF (P1/P2)IN WDRST RANGE X LINEAR CONSTANT TIMES P2-ABS. (75-60DEG.) IN SUBSONIC.PANGE LIMITS-DNLYiSEE FDPMULATIONS..-PER TESTS H.PRATT THIS TQ. AT 72 DEG.SYMM. DISC (68=DFFSET SHAFT)CT=T/D^3/P2(ABS) ANGLE P1 DELP PRESS. FLOW FLOW TD TB+TH TD+TB+TH TIME (LOCI SEC. APPRX. PSIA PSI RATID (SCFM) (LB/ MIN) ----INCHLBS ~ 45 29.7 13.00 0.562 299165 22839 60595 224 60819 2.50 40 31.4 14.71 0.532 223684 17076 49491 275 49766 3.10 35 32.9 16.21 0.507 161419 12323 33642 324 33966 3.62 30 34.0 17.33 0.491 132721 10132 21748 366 22114 4.02 25 34.6 17.92 0.482 95976 7327 16200 396 16596 4.22 20 34.8 18.12 0.480 58148 4439 13156 415 13572 4.28 15 35.8 19.07 0.467 32499 2481 7515 449 7965 4.48 10 37.6 20.86 0.445 16115 1230 5448 501 5950 4.88 ~~ 5 40.0 23.26 0.418 4976 379 4311 566 4877 5.40 0 42.7 26.00 0.391 0 0 33665 529 34195 6.00 (M/M) = 34195 IN-LBS @ 0 DEG. ] SEATING + BEARING + HUB SEAL TORQUE 60436 IN-LBS & 45 DEG. MAX.DYN. + BEARING + HUB SEAL TDRQUE (M/M) = ,-e--4* -___-..-e-I j, ; ,hL-i [( -. l l I"" I.ili;. - - ~ + ._ u. L -.L._n. : _. t.,_, i ~. _7 -.,9 -. _._._,.. T _ g ,,..;. 4 _._e .7
- .._e___._,.___._._
=; 1.. . i ,ii,ie i, i t-h i i i., i i_, 4. _. 1'_i. i i r..~. t.i +.q i p L+-+.+j-. :.y- + 4-*4 _ j. q_.4. ~. :.;..p.g. L.:...... i ^ -+ +.. -. - TOPS FORM 3308 ~ 7 7 2 . i LL L.;. L;.4_ a _! 4 j.g.4_j_.}. ;_ M---d.__t a,, L._, e,- , 2 -,, i i i ii: i i i _ ~t ' i i., i,... L.i.,. ~
_ ______- - -_____ _} . _ _.~.._.. _. _._-.-. __ ~... - _ _ iocc WHO.sLs01 --~ . s, _..._ _ f,z-6 7 M M
SUMMARY
TOPQUE TABLE-VALVE BLDCKED TO: 50 DEG.RT 2.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 199403. CFMi 289311. SCFMi 22086.8 LB/MIT SERTING + BERRING + HUB SEAL TDROUE (M /M) = 34195 IN-LBS & O DEG. 73335 IN-LES & 50 DEG. BEARING + HUB SEAL TORQUE (M/M) = MAX.DYN. +
SUMMARY
TDRQUE TABLE-VALVE BLDCKED TO: 55 DEG.AT 2'.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 246764. CFMi 358026 SCFMi 27332.7 LB/ MIN ~ SEATING + BEARING + HUB SEAL TORQUE (M/M) = 34195 IN-LES & 0 DEG. 109011 IN-LB3 & 55 DEG. BEARING + HUB SEAL TORQUE (M/M) = MAX.DYN. + .-4
SUMMARY
TORQUE TABLE-VALVE BLOCKED TO: 60 DEG.AT 2.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 297584. CFMi 431760. SCFMi 32961.7 LB/MIr SEATING + BEARING + HUB SEAL TORQUE (M/M) = 34195 IN-LBS & O DEG. 184834 IN-LBS & 60 DEG. MAX.DYN. + BEARING + HUB SEAL TORQUE (M/M) =
SUMMARY
TORQUE TABLE-VALVE BLOCKED TO: 65 DEG.AT 2.5 SEC. DELAY TIME. _1 MAX.ANG. FLOW RATE: 357021. CFMi 517996. SCFMi 39545.2 LB/MI i' SEATING + BEARING + HUB SEAL TORQUE (M/M) = 34195 IN-LBS & 0 DEG. 294712 IN-LBS & 65 DEG. T. MAX.DYN. + BEARING + HUB SEAL TORQUE (M/M) = t ..._ - -- - - _ ~ _ _. _ _, s e ,, + _._ i 1. g -.r_.-+ ,, _. _r_ -- - m ,,, 7 { -* 7 - ~~__, - -' (.,,,.h_ _. u.__...._. ._._e..-._.._._.._. .i I,i ' ; _ . u_. - _ _. . ! 'M.' t_ q y 8 I.i I t ! A .4_. ...-..7 J .,_._._:.._._2_._.....,+,;..:_..,- y... = ~,, i ~,ii;.il,. N ~,T.,_ii;:a.;,_... t 1 _: 3 WM' h -t Ii
, 9, ..1_.;..-..---.-.----.--- a._.-. -- - - d - -~~ -- P2 = /f- ? PSM SUMt1ARY TOROUE TABLE-VALVE BLDCKED TO: 70 DEG.AT 2.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 408614. CFMi 592852. SCFMi 45260. LB/ MIN SEATING + BEARING + HUB SEAL TDROUE (M/M)= 34195 IN-LBS &~ 0 DEG. MAX.DYN. + BEARING + HUB SEAL TORQUE (M/M) 330876 IN-LBS & 70 DEG. = I 1
SUMMARY
TDRQUE TABLE-VALVE BLDCKED TO: 75 DEG.AT 2.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 470675. CFMi 682895. SCFMi 52134.1 LB/ MIN SERTING + BEARING + HUB SEAL TDRQUE (M/M) = 34195 IN-LBS & 0 DEG MAX.DYN. + BEARING + HUB SEAL TDROUE (M/M) = 321736 IN-LES & 75 DEG. J t ~~~
SUMMARY
TOROUE TABLE-VALVE BLOCKED TD: 80 DEG.AT 2.5 SEC. DELAY TIME. MAX.AtlG. FLOW RATE: 497296. CFMi 721520. SCFMi 55082.8 LB/MIri SEATING + BEARItiG + HUB SEAL TDPOUE (M/M) = 34195 IN-LES & 0 DEG MAX.DYN. + BEARING + HUB SEAL TOROUE (M/N) 345512 IN-LES & 75 DEG = 1
SUMMARY
TDROUE TABLE-VALVE BLDCKED TO: 85 DEG.AT 2.5 SEC. DELAY TIME. MAX.ANG. FLOW RATE: 505046. CFMi 732763. SCFMi 55941.1 LB/ MIN L - SEATING + BEARING + HUB SEAL TOROUE (M/M) = 34195 Ill-LBS & 0 DEG' 4 MAX.DYN. + BEARING + HUB SEAL TORQUE (M/M) 308774 Irl-LES & 75 DEG. = -' i,_ }l-* -~ 2 _;__L2 [. % jl L. u . = L.. . a i.._ . u.. i 1.: -.L_ ._ L i _...-a 1 J.. f _.a_ ..a
- 7..r i
i .,.._.._.._.y_.. -.n M'! l I i ' i ! i 4 4- - - --- - L - ~. a
"--*---d--+-*-
'e..,.,,,m.. - TOPS FORM 3300 .- 4 .-44 . - - -,. -... + - J p Em1
- 4
. _.p. .._f. v..-. _. _.. _. _ _. _ _.... _. _ _ _ ~........ _ _ _ _.. _ _T. ._.-e _ __ _. ._...._=....m. _-...4 ..a. ... * ~. - *. -.. -. . ~.. - - - .(, ........... ~... - -. -. -d '~ D-28341-7 TORQUE TABLE 5 5/ 5 / 81 ~ MAX.PDSSIBLE TDPOUE MAY BE AT THE EARLIEST P.R. (.585) CRITIC. SDilIC __j RBSOL. MAX.TDPOUE(FIRST SDriIC) AT 72-68 DG.VLV. ANG.= 343451 7N-LES & 68 DEG. __j MAX.TOPOUES ItiCLUDE SIZE EFFECT(REYNOLDS NO.ETC) APPX. X 1.27 FOR 48 INCH VALV U VALVE TYPE: 48"-R1R-2.5/6 CLASS 75 DISC SIZE: 46.718 INCHES OFFSET ASYMMETRIC DISC SHAFT DIA.: 4.75 INCHES BRG. CDEF. OF FRCTN.: 5.00000E-03 SEATING FACTOR: 15 INLET PRESS. VAR. MAX.: 42.7 PSIA DUTLET PRESSUPE(P2): 15.7 PSIA MAX.ANG. FLOW RATE: 357791. CFMi 519113. SCFMi 39630.5 LB/ MIN CRIT.SDNIC FLDW-90DG: 41597.6 LB/ MIN AT 22.1127 INLET PSIA VALVE INLET DENSITY: .110765 LB/FT^3-MIN..159247 LB/FT^3-MAX. FULL DPEN DELTA P 14. PSI SYSTEM CONDITIONS: PIPE IN-PIPE-DUT -AND-AIR SERVICE 9 264 DEG.F MINIMUM 0.75 DIAM. PIPE DOWNSTREAM FROM CENT.LINE SHAFT. g ABS. PRESSURE (ADJ.)FDLLOWS TIME / PRESS. TRANSIENT CURVE. K ABSOLUTE MAX.TOPOUE IS DEPENDENT DN DELAY TIME (NOT PRESSURE) AND CUBE TO.2.5-T POWER OF (P1/P2)IN WORST RANGE X LINEAR CONSTANT TIMES P2-ABS. (75-60DEG.) IN SUBSDrilC RANGE LIMITS-DNLYiSEE FORMULATIDriS..-PER TESTS H.PRATT THIS TQ. AT 72 DEG.SYMM. DISC (68=DFFSET SHAFT) CT=T/D^3/P2 (ABS) ANGLE P1 DELP PRESS. FL'DW FLOW TD TB+TH TD+TB+TH TIME (LDC ~ APPRX. PSIA PSI RATIO (SCFM) (LB/ MIN)
INCHLBS-------------
SEC. 65 29.7 14.00 0.529 519113 39630 289098 267 289365 2.50 60 30.9 15.20 0.508 450815 34416 214466 198 214664 2.92 55 32.0 16.32 0.490 387238 29562 135778 228 136007 3.31 50 33.0 17.32 0.476 322932 24653 96212 271 96484 3.66 45 33.8 18.11 0.464 333802 25483 82721 312 83034 3.94 40 34.4 18.68 0.457 237394 18123 61181 349 61530 4.14 35 34.7 18.96 0.453 171791 13115 38438 -379 38818 4.24-Z 30 34.8 19.06 0.452 134314 10253 23205 403 23608 4.26 25 35.2 19.52 0.446 96495 7366 16986 432 17418 4.36 20 36.1 20.42 0.435 59875 4571 14058 468 14527 4.56 ~ '.. ~ 15 37.4 21.69 0.420 33998 2595 7546 511 8058 4.84 10 39.0 23.28 0.403 16716 1276 5266 560 5826 5.19 5 40.8 25.09 0.385 5209 397 4089 610 4700 5.58 0 42.7 27.00 0.368 0 0 33665 549 34215 6.00-SERTING + BEARING + HUB SEAL TOROUE (M/M) = 34215 IN-LBS 9 0 DEG. MAX.DY.N. + BEARING + HUB SEAL TORQUE (M/M).. _.. _ _ = 2_88928 IN-LBS & 65 DE_G_. t 9 r, - ..2.._...._... _6._. \\. _ _.._ 1 u t _.
- d,..
- _ : ' ; i', 'i q
...L._._4.....L ....__.L,'... -.... +., .s. .j .......-.~...-...-. i ....r-.............4m......... Wh-*----;***-*-*---*"------- 'l . $ *- I l!*.i.. ,!,il
- - ~,
-~~ 1 i
- -*--*---*I"-*
j l t j '[ * + ~ i r-4 i-j
- 1--'
i! t TOPS FORM 3308 -l t i- - j ; { +-i,
- - -i
- -
'1 . J.l_Lt LJ. !. ;.1 !2.! a ;.. i.a m ' i ! i UN.. ! ! i.1 i FN ! j. p.g !.;.; a L :.. i
i 1 -l .i I .l l i: -. ;t !~ l N l I 1i l l ll I i! ii
- i;'I'i t
f t I t-.Ii!.i ii L ! _. I _ L -_ I c l.._L llI 3 i t-ll u. 1 j1. !!i!!!!;! t g D-28341-7 TORQUE TAFLE 6 5/ 5 / 81 MAX.PDSSIBLE TOPOUE MAY BE AT THE EARLIEST P.R.<.585) CRITIC. SDNIC ABSOL. MAX.TOROUE(FIRST SONIC) AT 72-68 DG.VLV. ANG.= 321575 IN-LES 9 68 DEG. MAX.TDROUES INCLUDE SIZE EFFECT(REYNDLDS NO.ETC) APPX. X 1.27 FOR 48 INCH YALVi ~ VALVE TYPE: 48"-R1A-2.5/6 CLASS 75 DISC SIZE: 46.718 INCHES OFFSET ASYMMETRIC DISC SHAFT'DIA.: 4.75 INCHES ~ BRG. CDEF. OF FRCTN.: 5.00000E-03 SEATIriG FACTOR: 15 INLET PRESS. VAR. MAX.: 42.7 PSIA DUTLET PPESSUPE(P2): 14.7 PSIR* ~ MAX.AtlG. FLOW RATE: 358509. CFMi 520155.. SCFMi 39710.1 LB/ MIN CRIT.SOfflC FLOW-90DG: 38948.1 LB/ MIN AT 20.'7042 INLET PSIA , VALVE IriLET DENSITY: .110765 LB/FT^3-MIN..159247 LB/FT^3-MAX. FULL DPEN DELTA P: 15. PSI .l SYSTEM CONDITIONS: PIPE IN-PIPE-DUT -AND-AIR SERVICE 9 264 DEG.F MINIMUM 0.75 DIAM. PIPE DOWNSTREAM FROM CENT.LINE SHAFT. T ABS. PRESSURE (ADJ.> FDLLOWS TIME / PRESS. TRANSIENT CURVE. ABSOLUTE MAX.TOROUE IS DEPENDENT DN DELAY TIME (NOT PRESSURE)AND CUBE TO 2.5-T* POWER OF (P1/P2)IN l.lDRST RANGE X LINEAR CONSTANT TIMES P2-ABS. (75-60DEG.) j IN SUBSDNIC RANGE LIMITS-DNLYiSEE FORMULATIONS..-PER TESTS H.PRATT i. THIS TQ. AT 72 DEG.SYMM. DISC (68=DFFSET SHAFT) CT=T/D^3/P2 (ABS) ANGLE P1 DELP PRESS. FLOW FLOW TD TB+TH TD+TB+TH TIME (LOC-1. APPRX. PSIA PSI RATIO (SCFM) (LB/ MIN)
INCHLBS-------------
SEC. 65 29.7 15.00 0.495 520155 39710 227114 209 227324 2.50 60 30.9 16.20 0.476 45.1725 34485 230113 212 230326 2.92 55 32.0 17.32 0.459 387708 29598 145413 242 145656 3.31 50 33.0 18.32 0.445 323344 24685 102594 287 102882 3.66 45 33.8 19.11 0.435 332013 25346 88046 330 88376 3.94 I 40 34.4 19.68 0.428 234846 17928 64496 368 64865 4.14 l 35 34.7 19.96 0.424 172676 13182 40297 399 40697 4.24 30 34.8 20.06 0.423 133459 10188 24023 424 24447 4.26 25 35.2 20.52 0.417 95673 7303 17422 454 17876 4.36 20 36.1 21.42 0.407 59625 4551 14342 491 14834 4.56 l [- 15 37.4 .22.69 0.393 34011 2596 7360 535 7896 4.84 10 39.0 24.S8 0.377 16710 1275 5022 584 5606 5.19 Fe 5 40.8 26.09 0.360 5303 404 3856 634 4491 5.58 'F 0 42.7 28.00 0.344 0 0 33665 569 34235 6.00 SEATING + BEARING + HUB SEAL TORQUE (M/M) = 34235 IN-LES & 0 DEG. 229930 IN-LBS 9 60 DEG. MAX.DYN. + BEARING + HUB SEAL TORQUE (M/N) = i ; } i,. t i- - i j-i-l 3 t! t-9i 4 s. . _h j. L._ y .{, i j p g{;j. c- .t. .c .t. .,}. l . ! l, I i [ .jj 7-gg. 1 . j ~' .l 1 .~. ~ .1 1 ji-t 4.. y .I .. - }i. l l .I .r.jl; l: i,, 4 i ,}}