ML20040A169

From kanterella
Jump to navigation Jump to search
Forwards Responses to Action Items Identified at 811201-04 Meeting of Structural Engineering Branch Re Consideration Given to Variations of Soil Properties & Steel Yield Strength.Two Oversized Drawings Encl.Aperture Card in PDR
ML20040A169
Person / Time
Site: Perry  FirstEnergy icon.png
Issue date: 01/04/1982
From: Davidson D
CLEVELAND ELECTRIC ILLUMINATING CO.
To: Schwencer A
Office of Nuclear Reactor Regulation
Shared Package
ML20040A170 List:
References
NUDOCS 8201200462
Download: ML20040A169 (41)


Text

{{#Wiki_filter:. i.

a..

c _ t . t P O DOX 5000 m CLEVELAND. oHlo 44101 e TELEPHONE (216) 622-9800 e ILLUMINATING BLOG e 55 PUBLIC SoVARE emng e Best owion in the Nation Datwyn R. Davidson ^ viCE PPE51 DENT i sysTE M ENGINEERING AND CONSTRUCilON / / ge k/ ./- L '2 ~j c[iVd,, r. _ ,1 /cg ~ n,,. s January 4, 1982 \\ i yJ Q 't Mr. A. Schwencer, Chief / h, y-Licensing Branch No. 2 w Division of Licensing U. S. Nuclear Regulator'/ cocaission Washington, D. C. 20555

Dear Mr. Schwencer:

As a result of a meeting held with members of the Structural Engineering Branch on December 1 thru 4 several action items were identified. The purpose of this letter is to provide responses to several of these action items. Remaining action items will be add.ressed in future correspondence as agreed upon with the Structural Engineering Branch. Very Truly Yours, f kk# Dalwyn R. Davidson Vice President System Engineering and Construction DRD: mlb cc: Li Yang M. D. Houston G. Charnoff, Esq. NRC Resident Inspector I 30 0 ) / / B201200462 820104 DR ADOCK 0500044o PDR

1 ITEM 1 Provide technical basis for stating that artificial time history are j statistically independent. i

Response

i a S ta tis tifal independence is achieved when cross-correlation coefficients are less than 0.16.( ) The Perry ground motion input time history components, Horiz. 1, Horiz. 2, and the following cross correlations:(2) vertical have i Components Cross-correlation coefficients l Horiz 1, Horiz 2 -0.028 Horiz 1, Vert. -0.113 Horiz 2, Vert. -0.036 l This provides the technical basis to3: considering the ground motion components j to be statistically independent.

References:

1. USNRC Reg. 1.92 Rev. 1, Feb, 1976, Reference 6, " Definition of Statistically Independent Time Histories." f 2. Design Calculations 2:01-2 i 1 1 l n

i 4 ITEM 2 Provide discussion of consideration given to variations of soil properties, i concrete modulus, and steel yield strength, f, on seismic response. j Y l

Response

SOIL PROPERTIES Variation of soil properties (Shear Modulus, e.g.) is provided in the soils report by Woodward-Gardner.II) Seismic soil springs used in the final seismic analyses use averaged soil values. The stiffness variation, based on shear modulus variations provided, range 1 20-25% of the average value. The maximum frequency variation that could occur (for rigid body modes) is 1 5%. Equipment response spectra are broadened by a maximum of 1 15% and provide I suf ficient conservatism to account for soil property variations. i ] CONCRETE MODULUS The concrete modulus is calculated by the ACI formula 57 (f'c) 1/2 This means that a design strength variation of 1 40% would, as a maximum, have a I resultant frequency variation proportional to the 4th root of the concrete strength, or less than 9%. 2 STEEL YIELD STRENGTH i The seismic analysis is linearly elastic and does not utilize any non-linear effects due to steel yielding. The steel is designed to assure the expectant stresses are within the elastic range. Therefore, modeling of steel yielding variations are not required. In all cases, the fundamental natural frequencies of the Category I structures ( ) fall on the maximum response plateau region of the USNRC

t l Rg. 1.60 design response spectrum. This means that any variation in frequency 4 shif t of the actual response of the structure can not increase the inagnitude of the seismic response, assuring a conservative design. i i

References:

1. Foundation Design Report, Perry Nuclear Power Plant by Woodward-Gardner & i l Assoc., Inc. j 2. Perry Nuclear Power Plant Final Safety Analysis Report, Section 3.7.2. 4 \\ l l 1 I l e I r ( l l

  • O

-,,,-n

4. ITEM 3 Discuss and justify Perry specific embedment situation and its effect on seismic analysis for the Reactor Building, i.e., khe 45 soil pressure effects.

Response

The Shield Building is in contact with soil in a local area. The attached figure shows that the ; oil area is located in pian at approximately the i 90 azimuth of the structure. The grade elevation is 620'-0" and the bottom of the Shield Building mat is at elevatiou 562'-4". A spring, which could be used to represent the soil, has a value of 5k K= 5.0x 10 /FT. This spring is based upon tne undrained soil modulus for k 2 the Lower Till (used for Class B fill) of 5100 /FT, a soil region which is 57'-8" in height and 47'-6" in width, and a length of soil in plan of 28'-0" (located between the Auxiliary Building and the Intermediate Building). This spring is approximately 1.3% of the horizontal spring at the bottom of the Reactor Building. Considering the magnitude of the spring constant, the soil should not have a significant effect on the seismic response of the structure. The static soil pressure and the dynamic soil pressure due to seismic events 3 I were taken into account in the Shield Building design. 1 i l l 6 i

GILBERT ASSOCIATES, lHC. CLEVELAND ELECTRIC ILLUMINATING CO. ENGINEERS AND CONSULTANT 5 no paog pp p g g p pg pp p g RE ADING, PENHA. 044549-3:o2.1-4S """C'""E C O enici>4a r on oArc nav Y HIELD ouitorpG p g ettgy 34 g,73.,,,.

  • 6 h

em. bJ ALisle-(CotL T'RiE550cc14sTAssonoa Sgt "]'d N CA LC U L A T ION F C 84 ^'*% R,; ' TIM A L c P EF. C o : 3:02.4 i 270 ti 3 tilwT sereic-sce -~ s s e es o N ,Y ,.e / / f' / N, '/ N. ';.s : N 'x \\, - ~ ,/ '\\ ..\\,- c. /../

  • ,t

,f. .4 \\ \\ i i (Cof- -- ak.3 r.-V / l*- g. .. ) I t.y.J. e.- q 4, \\ s lr '\\

24. 3 -

) /,'/ / iti% s '\\ / .g I!.57 i // ~ 5 % _21.B7 5 - [ / t = 7 R 5 W t/,S 'Y ~ sId'. Yz,0? cfg.a212c m. ~, }'t 0 = 0. 3 617 R eo. ) ~ J' n-h [ 3 6 - D.7 /, M R A D.' 43.~15 * / // c 5-8e-cav.uss m m use,ere i-ecos. w3tt 3 g. - st.5b2' og sis i-L ' alo@lo7.5* f, g i E c",.yt - Sv Aru Any Suog W g l l Reoen sd-e" - c ! u ~ y wa n

Soil Pressure: EL. 562'-4" to EL. 626'-0" h = 57'-8" (soil elevation) d = 47'-6" (width of the soil area) L = 28'-0" (length of the walls bound'ng the soil area, in plan) E = 5100 KSF A=h P AE (57.67) (47.5) (5100) A L 28.0 5 K = 4.99 x 10 gjg

ITEM 4 Provide a discussion and justification of the effect of cracking of the concrete shield building on the response (frequency).

Response

1 The Reactor Shield Building is modeled using uncracked concrete material properties having 3,000 psi design strength. The seismic analysis utilizes linearly-elastic stiffness characteristics. This approach is justified because it results in maximum seismic forces (shear, moment, e.g.) to be used in the structure design. The Shield Building frequency, 3.8 Hz, is on the Regulatory Guide 1.60 plateau region near the low frequency end of the spectrum. Reduction of shield building frequency by modeling cracked properties could attenuate the seismic loads since the response would be obtained from the reduced low frequency region of the Regulatory Guide 1.60 design spectra. Additionally, by using maximum seismic loads, obtained from using uncracked section properties in the design, the actual extent of cracking expected to occur is minimized, thus the use of uncracked properties in the analysis becomes more realistic. A deeper discussieu is found in ACI Publication SP-63, by Freeman, et. al., on page 439, on the subject of modeling concrete in dynamic analyses, and, supports the above approach. I i l

ITEM 5 Verify that the number of masses or degrees of freedom in dynamics model is sufficient to satisfy the requirement of SRP Section 3.7.2.II.:.a.4.

Response

The Reactor Building seismic model has 42 lurped mass points having 2 (horizontal and vertical) degrees of freedom each, for a total of 84 mass degrees of freedom. The seismic analysis uses 21 modes having frequencies of 3.9 Hz to 33.3 Hz. This is sufficient to satisfy the requirement of SRP Section 3.7.2.II.1.a(4), wherein the number of degrees of freedom may be taken equal to twice the number of modes with frequencies less than 33 Hz. I

References:

1. Computer output C0:3:05-1.3, 14 July 1975. 2. USNRC SRP 3.7, Rev. 1, July 1981 (NUREG-0800).

ITEM 6 With respect to the addition of the concrete ring on the lower portion of the l steel containment vessel, provide the following information: (a) Evaluate the effect of the inclusion of the fix mass and stiffness on the j overall seismic response of the Reactor Building. (b) Indicate your intent to resolve the results of potential increase in response due to the analysis of item (a) above. (c) Provide best estimate of schedule of such analysis and why it should not be an open item from standpoint of safety margin considerations and (d) Provide an assessment on the impact of concrete fix on the acceptability i of the containment vessel design stresses.

Response

The total weight of the 23.5' high concrete annulus is about 6,900 and the I k total weight of the Reactor Building is 131,490. The increased weight is 4 about only 5%. Furthermore, the increased weight is at the bottom of the building and the response is dominated by lower modes which are sensitive to 1 large mass change at the top of the building. Thus, we can conclude that the filled concrete annulus will have no or little effect on the frequency and 1 acceleration responses. If results of the containment vessel evaluations indicate any increases in response, these increases will be evaluated for the affected equipment. However, the increased seismic load due to increased mass was taken into account in subsequent design and sliding calculations. The evaluation of filled concrete effect on the steel containment design is ongoing and will be completed by the end of 1982. We do not anticipate any problems on the containment vessel design stresses due to the containment fix.

ITEM 7 Assess the effect of higher than 7% soil damping (per Whitman formula) on potential frequency shift as well as response.

Response

High soil dampir.g, in excess of 7% of critical, as may be calculated for soil o i radiational damping, will not affect the frequency response of the structure during seismic excitation. Structural natural frequencies are inherent in the i mass and stiffness of its geometric and material configuration and are independent of damping. When subjected to seismic excitations, the structure responds in a composite of its natural frequencies and those of the input excitation. Damping which affects free vibration frequency response does not influence the frequency response of long time forced vibrations occurring through carthquakes, except for a short-lived transient effect at the outset of the earthquake, which is generally neglected in all seismic analyses. See, for example, Equation (4-20) in Clough and Penzien's text " Dynamics of Structures" for justification of the above. I liigher damping values reduce the magnitude of the seismic response. t l l

ITEM 8 Discuss criteria for decoupling for subsystems and verify compliance with SRP requirement 3.7.2.II.3.b.

Response

Subsystem decoupling is determined by consideration of the subsystem mass and stiffness contribution to the overall seismic analysis, following guidelines of SRP 3.7.2.II.3.b. The mass of decoupled systems is conservatively included in the seismic analysis. In all cases, decoupled systems are subsequently analyzed using seismic responses obtained from the overall seismic analysis. The reactor vessel, with internals, is coupled, as per referenced SRP. Also coupled is the refueling seal extending between the reactor vessel and drywell wall, since it can provide stiffness to the reactor vessel motion. l i

ITEM 9 Discuss and justify the way hydrodynamic effects of suppression pool is considered in seismic analysis.

Response

The mass of the suppression pool water inventory is lumped rigidly onto the seismic analysis model. Since during sloshing only part of the water mass 4 contributes toward an in phase seismic response (overturning, for example), rigid modeling of the water mass, providing a 100% in-phase response with the i r.eismic model, results in tha more conservative seismic response. Justification is provided by noting the Reactor Building fundamental frequencies are within the plateau (peak) response region as defined by Regulatory Guide 1.60 design spectrum. In such cases, the seismic response is proportional to the model mass, and, therefore, the greater mass associated with rigidly modeled water inventory results in the greater repsonse. e

ITEM 12 Provide sample calculations for inplane shear design of the drywell structure at base (vent region), at rebar transition, and at shield building base.

Response

Attached are typical calculations for the inplane shear design of the drywell ) structure at the base (vent region), at the rebar transition above the vent l plate structure, and at the shield building base. i I l Drywell Vent Structure at the Base of the Drvwell Wall As discussed in FSAR Section 3.8.3.1.3, the 1" thick steel cylinders of the drywell vent structure are designed to carry all membrane tensile forces in this region including those due to inplanc (tangential) shear loads. As described in Section 3.8.3.4.1.a (p. 3.8-113) stresses in the vent region are i investigated by detailed finite element models. A typical rodel is shown in Figure 3.8-46 and a model of the bottom vent is attached (p. 3:21.2-40). Stresses from the general NASTRAN finite element model as shown in FSAR Figure 3.8-42 are input into the model of the vent region and include the vertical membrane stress (o ), horizontal membrane streva (o ), and inplane (tangential) shear stress (o ). These membrane stresses are based on the gross section forces and moments assuming that the concrete estries no tension. The Hencky-Von Mises or distortion energy yield criterion stresses for several 1 l of the controlling accident conditions are presented below for elements at the base of the model. Load combinations and input stresses are also provided. i i

GILBERT ASSOCIATES, INC. CLEVELAND ELECTRIC ILLUMINATING CO.

    • . 2-40.

ENGINEERS AND CONSULTANT 3 PERRY NUCLEAR POWER PLANT UNITS 1 & 2 5:01 RE ADING, P ENN A. 044549-000 CRIGIN A T OR DATE REV , EA cToe 3UI LO t tJ 6, - C4;?Y W E LL M w L-e 5/c-/6 ST RUCT UNE REVIEWER OATE C A LCUL ATION F OR l . rc#a a T E SEc r.b N 5 Ei m r E E LE to c w r E rP Jc T U +:i A t_ M o o r L_ Sc, " [C f?: + R ) = i (.uo.d + 41.'s ) = 36 TYP1 CAL PenEL vaioTH C Av E R a s e,) = lbM N 7 E.5" = S ' = LD EL. 6 M'-I D" Tc-EL. 6'13 '-1_- 0 o TIo M VE NT Q. ~m - i, yu% M'M r,t E'T A I C A L fry.ts 'O ytrujse.f l PEN E D'# g y g g g. e g ll Zo ' E E a a E a s a a f'.

E %

30 q\\ Q 'd., \\ g o g I,-r _ s 31, B'- g ~ j% e-ew g 'G 'i t @g. l 48 ! 11 '5' q g g g in in) s se f IU' I 49 t r- [ "fi M '+ 62.-{. i 9 6' a" s N Gs1 8 d~ e g N o . ir: 70 @ E E .(p ~ m, ng w

19 S

..k, w "'* to c, sb2 C- %7 'iS (3 __so se_ g' j ,s es ~ s y ca 1 - '33 ro 31 g, E!: - lef-96 m ,c r r, j Aw gel.S'4-'o ice a E.a F-i e x = / // / //// / f // / / // / / / / // 62_ _ 4' i _ S" [ i 4" ~f 4" t 4" _ 4". ?' _ 4"_ t 8 I T_ ~l 3Ag"] l[ ~ C 8 6Tk/EEN f!N r.TR A7t oN: boc L h A N.D WEl.D SE A 4 1 N

LOAD COMBINATIONS: UNITS - (KSI 0.F. = OUTSIDE FACE I.F. = INSIDE FACE) 10 SR = D + L + G + F +P and D + L + G + 1.5 P ~ ^ "! "^b ey EXT EXT 11 SR = D + L + G + F +P rD+L+G+F +P - NORMAL OPERATING w/o THERMAL SRV SRV 12 SR = D + G + F + PINT

  • SWELL + SRV( ~

"^ ~ ^ egs 22 SR = D + G + F + PINT

  • SWELL + SRV( ~

} "! "^ " ^ ~ ^ 30 SR = D + G + F + PINT + PSWELL + PSRV(1-VALVE) + T, - DBA w/ THERMAL 3py(1-VALVE NEG.) + T, - SMALL BREAK ACCIDENT (SBA) w/ THERMAL 32 SR = D + L + G + F +P ep

  • 1 and *2 Load Input Stresses Stresses for Elements @ Base of Structure Rd m a Combination I

g o a 68 69 70 71 72 73 74 75 76 No. y x xy 10(I.F.) -10.583 -2.055 1.935 9.1 7.7 9.4 12.4 14.1 14.8 15.3 17.4 11.9

p. 3:21.2-33 11(I.F.)

-10.704 -1.960 1.913 9.0 7.7 9.6 12.6 14.3 15.0 15.5 17.7 12.1

p. 3:21.2-33 12(I.F.)

6.97 4.162 5.199 24.6 19.3 13.4 10.4 9.2 9.1 9.3 10.2 13.4

p. 3:21.2-33 22(0.F.)

21.75 6.02 3.095 17.4 17.3 20.6 24.8 27.4 28.4 28.6 28.7 29.6

p. 3:21.2-33 30(I.F.)

11.97 -4.438 5.268 26.2 23.1 22.2 23.4 23.8 23.2 22.4 23.4 23.4

p. 3:21.2-38 32(0.F.)

-16.565 -9.499 4.853 25.4 19.8 15.8 16.6 18.3 19.5 20.2 20.9 22.0

p. 3:21.2-38 NOTES:

xy] ! )

  • 1 Hencky-Von Mises Stresses (a = [o

+o -oo + 3r e x y xy These stresses must still be considered preliminary because of the evaluations underway to investigate new loads such as steam relief valve redefinition, condensation oscillation, and chugging. The Von Mises stresses are limited to 0.9 F for accident conditions, and to 0.6 F for normal operating

  • 2 conditions except for regions of discontinulties where the ASME criterion of 3S,w5s used.

v e w, 8 ~ ~ c. 't ; 5 L, ( - 1C $a ..t... 3 '!,2 iwE ) .a

$..:. r d;.

a. e$M r, 1 r. r: + u r,p n..vu e s ,s..., o ) ~ .f-4,}...* l.2 3-

- ~

(;) )W, '{. c ' ::.' :. l .-1 l.!,,. ij d. ?, .py e j,~ c' .q , ; 9 ,.4 ,, - s,-

i. '..,a_

t T -t.._.- ,9...

a..I NG

@.. '5l.- (,:1 .l 1 l

..' G, G- ) ': '

='].), ~,'.k T 'F) .u r.-. u.., a l .I l I -,sw j l '= m T 1,'s ) @' ]ij ;l' @, ~. (?.j TJ g O T 9' @) C' Q)f. 7 *'d.5 5 )il C T1 4' ? ? 5 1 l 3.,n c @I Q) a '4 =-

m..
m. _

4 C1) o,,Y % ft

E
. 3_.)

i 'T 41,.,. e 4 7,; e

  • e

{ 1q 1. d

  • -;f

-3' f y , g... , );& ( "( $ h *J h s h' ) a.:4. '3 -. O)$ 8

  • 8 N
e. ]
  • I d

mg a, + . o s,a p . L l... ..I ~-.- F'. ..p LL, = h-. kb '. h E I S. . e ,_4 h).

    • {,,,

s-w ~. (, 7 ,.g q w b e h:., L. a Nn b :: l$.I A>. M 1 bl $1 r r-w.,.,. c asu .~ ,u, h., e .w,. <n... x ,3 f-f i i ,a ...f a. j r. S.

a e.

3 o m g m, .I,e'

==. o

8 7

e 3 y . y ca l r2 y sm . n n_), A e., %.e P..5 s. e e m) sx .u a Ghqf cC") ~.; @' w; $ [.I'-7 5 5 "5107 ) - @ 7 Q)$ II.;,.7N.,ih.. .m b' (3.8 ['\\ (I. ) /7 Q,) I h E O b ,m 5 b. (D hy @@ @ g e o O' 2: .) x sa to Ill j J 3 1 .-J F-% <3 0

2' i

OE J U" O m d + e w K x >~.Z o o n O O e O O O O O W e

r e
5

= = = = = = = y = = s = = a/1 e 3 0 0 0 6 'd E ? E C *? 9 s r s ,m @= @: @5 n = = r _ c 69t 0 0 BL d E d =I s 3 [i 3 i f I e.--.-w 0 Cla i 1 ? I

,t I i Ir [tt 1 p ( i s i: 3 ' j Y v 3 p, e, 4. s> s1,{o *ya 3 ) 3 3

  • e S

g 4, i c d 4 eI6 : 3 s t. l e 3 t I S0 i t f r I 7 7 e s o 5 s s l' l i o 9 8 ..a P e

e...}w.

9 _ e -s 4 _b ^ 3 ~

l5l7ir

{., e e O, 9 ' e4 C.. u wc 9 O e 3 . ~-..- 2 s, 9 g e si @ s_. m, a t 4 e e O O e e w s-e 9 e e S 6 e s 2 u i m~&4 J- .i e e @3 e e ef i9 7 e 9 O 1 s ~ 5 4 s. u ,? a '8 9p e s._e :._ e >? t t' M s =. g.wl,. e gg r 9 ( e,, e._ e. s N @i %,d v r.)g, e 9 Q U 4 l i i I e O,, e4 f

s.,v w 4,

.( 2. '8 e

  • f @L *'.,

s g-e e, Q e P v ,s [ { e.@, e

s. ss 3

)l I- 'g 3 a t e 9 Q t t. 6* 4 ,* '{. .T w. 6 6 t.i U *.m q I e Q s e., e.e? e, 'v' 't I i l e r: i2/ e O ?

t e,

e,. e s% 9 r-9. 9 Q _*t, 2_ r s - J, 9 8 u 4 2 re 4 m. ) e a, e, e (? , y. _.,m f E r-e Q f0 a - ? s M r t _ a ;.e g,.m9 r e J i t M ' I. e, a,, s., e ? (*-: 9 9,g 8 Q.W sd 1 l 1 e s i m m m '8 4 6 1 Y e,, g ,p,. yt. r-t. e,, e I 'r he Wg 3 g ,a 8 e 13 g ei s l .(. G h) ~ g- ? 0 o o O a o. o o 0 5 s o s o 0 s m. a t 1 1 4 t t s o. 1 5 s 5 s 4 7 1 i 1 7 1 t t 1 1 1 e s e 3 s o i a i t 3 s. a s I O G g nuv 4 1 1 8 r e 1 O u a s O O e g Q,3w i '1 !s = u w I O e f e g-n3v t t 1 1 1 r i s s O O g e g g 6 p 3 y 3 l x i b e s l !i

VERT. 0\\RECTtoM, 3 '- o SECT 10t4 ( S h ia.lel Be;\\Aing ) ga r o r-a n 3 23 5 EOi= L 9 ;-*-2 cs i CD 3 -' ) f?' mE$ (te c.t StiH.ancA Lood) gu-ptAME t" Boge)T. (F s.aA CRAc.EED T. <> w e n g g; j

y

_4 St C.7 IO N MECM A titC AL VM CR K.EEo 14 0. FORCE TA o ta.E MT FORCE InoM E NT F O 'r\\ C,E MO MErlT o y= a [; > 6 o Pg5 t lic; 153.51 + 0. *) 3 -15 4I 234.0 ~54,4T G4.35 44.55 f A9 0 F Q 1 gc -4

2. 14.%

T'5 5C - te.1 t te.e;G -5.16 GG.53 -10. )3 35.9A q m ~ 3 o& c 4.55' - st. 5 0 A1.tg -t1.GB G a) e 5 -25 37

35. Gs
yi
i-Ga.13

- 2G.53 35. '3*) 4 u 5 T. t t ' -13.1o3 50.3) -14.Go a O 5 n. r

51. t t'

- \\*). *> G SG. 6 - M 13 GO. l. t - 1C 14 35.01 C. i s. ' 4 5.oS' -?.7.31 59.0) - 16.5 \\ ro s. t t -14 c5 3 4,5g g 3 t 43.51' -11 G S S.le.) -\\9 31 GO. 6 4 - 1'/. 5 t 34.00 ( m n g l-6 tr -1

41. W

-24 2.5 5 4.15 - 16.eG M.41 - 15 G 1 3 4.o'l 3

  1. i fil ca
.b

& G. 6 c.' - 1G. 33 5 0.5't -10.31 43 1'I - \\1.95 ~5 5.O \\. o c n.ica GS l'L ' -16.0B AQ 15 - 5't.16

36. Bro tl.15 A G C'(

I I EE } n a s to *. 5 - tt. oO ' -51.41 1 *). 6 G -ST.35 to;, G $ - q 3.S9 5 *). Gaj ' 5 g 6 Q %? to.50 ' - v. 0 1 -1.e1 - t'2.l. 5 0 - t. GC - t o c3.o;1 tL.c3 } it '.c E C m 11 a 71.c o .1-( to. 5*) 16 t l.06 n 05 -33 11 .\\4 - A*). 0 5 0, .b F E$ a - i 2 E5 13 - - t. \\1 - 1A.BG r 14 r-g- ) c P z r flo7 [ T hlSL LO ADS hi, T. "T h[ 11 Ax iM 'Jt'. F O 9,Lt i 's h IC.l* P:$ f OU '/ 4 Q M,U>DnjG 50 t t ) d a e

n. n un met. = t u..

u n.- g U 8 1 m n 6 P O w ~4 O C3

  • w m

Q O s es X' CE A ?- P, 7' onhi " 12 s

s
  1. 3a 8

W S T I L.t N G

F6 LING CODE GILBERT ASSOCIATES, INC. CLEVELAND ELECTRIC ILLUMINATING CO. g c q,c - g3G U" ^"" "\\g PERRY NUCLEAR POWER PLANT UNITS I & 2 044549 32C gg pggg h ORIGIN ATOR DATE REV. f n n k ralnme n t F, S4ateco o,c o m e 6 4 A rc

n. < so. o, s te, ST RUC T u f4 E u

oATE gvi[w c A str,,.7 f MWRu 6/NI Lo n r. hrm LOCA C. e.. e, k h e. Anc.Iv. sh cmLcutATioNron s v E RT sc, A L. w\\EhR R E\\uPo nc.En tt4T (. in - P LA nt. swEkR) ST nT 10N " \\ Ay f, M Vs: EQ. ni-35 M.)-3tt-1T 3 s

  1. L s G th 5s gjd'.

/ 601.) : oj. G IN g / if e t G V c. s s Av 5 .4G LM c ?.5 C in) ~ G O O.C) R e.g' r) She.m r Re.in6ce.t. M :.46 \\M ' N. 'q,A From P. Y.5G. 4 - l't 3, t he. shl a re.a pr*vid eM gg 7,8 2 5 G IN ' > 4G IN ' OK 1 is (iO ) STATtON*7. g f' - 140.O' Sis M5 %. '2. ' K ASS V nt,. THAT THE sc.G t io M s5 CR A tht.D Tuo0Gu ThL T mLK N E % AND D ETER MittE 7HE 1 m.O S 39.1(n.)(15 ) 33

  • 49 Mi 11.14 K51 BVAllhBLE RLtMu

= g l5$ j / 1(1.sG ) I.5(, (5 4 - 33. 4') ) 7.. F G ( f 4 - 2.4,14 ) 2.5 3 t tu a vail a b le. A: 4 4 fer :h c.e r r e in f a rt.a. toe.91 Y.a c.c. th e, s b a.r. r ot s ot.t i o n 7. it i et *, T h e. S h ec.r at g e.. t i te n 1, th e cA a t i$0 i5 0% 57 M ICt1

  • ll Ps TE.S4 F M: its.c34's

-1 d LI

  • lO P_, f. '<4

- 5 E. 4 Kc4 4 '6~ 17 0).1 IB.3 0 ' Ra(. P* '6*SC.G-\\"h7. - G K *.t YS.LS Ed. t G3T.4 4 i l

  • ) = - 1. V. 'cl 3 2.'7 7, b n 'el '
  • CJO3 4 'l 6d -3960.3F

+ 0s A'd' - l'5E.c) E',1* - 45 l, t i v..r{ + 4330,i7 r ( 't r.ci ) - 3 t 'd ' - t 7 7.o V d - 4 71. r i ("(w,J )- G t.I - 17 7. g, 0 0 !t y x f r.. ) ( (r i f (- ) acc -n. i n

GILBERT ASSOCIATES, INC. CLEVELAND ELECTRIC ILLUMINATING CO. S fs. Gi I37 PERRY HUCLEAR POWER PLANT UNITS 1 & 2 b44549-32f/ NGIN E" gEA PENN ORIGIN A T OR DATE REV SH t ELD IIu:comG @ <ASc STRUCTURE p.3.s % n c,to:~ d Fh REVIEWER DATE

  1. EW'TH R "'!MAY 4/4/71 l

CA LCUL ATION FOR Lon3 krr LOCA f: 1033 P5l { 3 :. 45.yG K51 f. .17 K S I 5 4 - 45.E G (.2 5 C ) 5 & .17 (.1 5 G ) s 2 35 m P rov tA-hs' 4 v 54 gy l l cv .B lt/ R e. rA. GO C) = i o i m ' ' 1.es m ' l v, = e2.o s w, ALL. 11E.P.1D n o t t A L SLGi lot > b h F. C 06 I I - led

8..

m

'nm

      • AGE suustcr )',tU P - (.rr,....:.

,,,.d.. ~:ur,-. P.:.ed.

3. ? 6 -

2N -or r 3 GilbIrt Arsicitt22,Inc. j j - J nrv.l o n.,.....,... ' pacts 7j uic.ir it o..o ANALYSIS / CALCULATION ,,,,,,,,,, y o,,.. f, p p,,, s s DATE 19 - la -81 bRY h/ ELL /rf R ES A 8 ( A A /d dlT(c N, c tope : a =

s. -

a d4 'or a. c_o f z u lchon r is ? n u e. The . Purpose i g -,- c i c 3,3 r 1 ;. r e e r. o r.a_ re c -,'.". ~ Fro o geo,. :s 1 h e. c ri::.n T r.c Tnt s ' e5.Tr:^. h or'.- ~ r o S R F F. 6. ' ~, SuEta.eri Eo rr e e t 'r ir. p,i ce.e CC. - 320 0 -( J naar stret:, 1 SPD 3. 6.1 limi h 'n e cor..ra ? i 'e 40

40. p s; ior 1000 corn e naTior-f,1 )

too o-for I3 e, d

. ore 'b'. n r,n I o 'j cnd G O.

esi s

  • s w.

e g S .A M \\ .4 \\ s, .t y g\\ \\ r s 4 \\ _-gsere A 4. } k %g O ^ wwp s o A s** , ( [ p W \\ ,f i. 5 .r 9 %% 9-g 6 / + j s,_ 'd h s .r* a t , 4 g' 9 A .m.

.2 -

  • -.m.

billsJL E T } '! A t j' - {,,,, 3 =, \\ \\ (].,,,,, g,., ' P'8 D I'W ,j. v .e-9 . ~, -.. 1.,..,,, 1. . + (' E. Gilber l. Ass:cihtss,INc.' ~ or a r.v.) j j j e

V

"'"5 yeaonuco AHRYstS/CALCULATILN c g,y,,,, o,, p g 7,, ; b '% 5 s lO ' 4..< S l a ~1 . __ T E f* A J b' g s M y y_

~; x. _ - -----

s %s% g a I, '4

  • h, A

I f ! S f' S w.- ~ D ') p* C' i gr. t r', '2l's-x, 'J O. ') ' O 8 ~.- s x 9' \\ 9g \\ x

== s i w w_ b 's yJ 4e-N NP c / (.Is %,m i har s ~ / e x .s s s< -,s ) gr. r. s .- /* C^. h. g e. v, p., / - P,13 /, %,. a w f c rGer* ., s N 7 0 3 -- N r* w l R

  • j

/ a%- s g .. 9 g .__m ,"gr-s\\ s. \\ l ~ u l. ( b 4 5 gt b l m OQ_ g i 'd I ~0 A C310 *, Q3 0., ? ,o x,

O

--c' ~ s fs -. - 6" ee M c<o A r c, =. % - l,_-,, [ 3 i,L* ~5 .,L . O """* ~ .3 m, f s s r s i n o _..D e. p a-n d +3 [ 'an . d 3 j P, O og/' 0, lO k c /. 19 =

d.,-.. f*. A:. n

') 0,, m. . i s. s v.. ' [,. = k,+'{ t ir@ [

2., O r, cv'. 9 3
5., S h S t r'.

I ET-3D ? '? E h $;H ! ~ = c. I s m. 7f g: - O Z... 0 -[.*; i

  • M pug A M

M M e 5 4 s ,s \\ h h (-- l, h' [,, , h a g_ 3 a +_ x A \\ s ~ m,. N 4 g v 4 6 9 e n," d8 db \\ . *,. S%

'5'u eact

  • ;r 1, r.. ". l ;

suunct .., i'r r r. 2 e - ; t ne t

  • e

,4_3 or Gilbsrt Ars:citt22. Inc. R,>.1 W W 2J _d PAGE5 WlC ROF ILMI D ANALY515/CALCULAT10N e OHIGIN A T O R. l,. OATE I #) - * * -F* O )e m r> o 22 o. 2 I_ c) D:c nr.,i Ps.r4c eme c m ' gj M e er (Z.5cc<.ms)(.r'. E,i s l U) C. ". ( '. I bO ( u s s '. 'Pr. !*.r q;! bo / m} h 3r ( O T., - r r, r T",, - f}', ~

h. t.

,2 5 r* F ".Sf. " !.'F] i - 1. L. L w - 0.) For Ir.d h F.: (!=.,=1.o>'"- ~ q 9') O [., ** c I,

  • 3 d

n ,3 ({.~ p.- (: ', F-r 0 >i-u %: (A=

1. 07 ?

/ s m (cr, - c r, ; = 1.on[: (. wees (.:43.,'j; a (,2'c i t x. n 18.(o c, e = 4= .e i - + =

  • i f O.)

",Q Q Q C i y ?.All O 'C , f*3 0 ~ !O 6OCO der >..tior) 6f.~ + 16,1 p = I GO. 3 pi = _ _ _ _ _}

isio pacc P ! t c. r. T 4,,,.u,t- ,..,,3., suuJccT O> e i, - ;.,, i. . or r-Gilb rt Accocirt:2,Inc. a r v.j j d j aw:, ~ - - -- ..ots ,, c,, e,, < <, ANALYSIS / CALCULATION o,,,,,,,, o,,,, f,,,,. o.,e , r> _ w. s - 3 aliosa bla nr.,

b. ')

Calculo h trav.im un (l.) tor loci corr 'e'n aT:ori ( 1 ) -5 ' n. l '. CC - 32C D - l 4 O. e,- rtr,. = 07,, l(oO. 3 psi + rr,., = = LOO.:,. cv -s f c.' u : 1:. T ri.. n - r s ' i l,,, _. ' /' ,over = s o-Ice 2 C C - 5 2 0 0 (9 ) i (2.') for loco com oir cTior. G O. c :.. = ore rr., = \\ (3 0. 3 + 05. 220.3 wp:.- = I g ( o,er 5 in !! r. . re:: j 15 8. 'b = C.') S R C' 3. 6. I ctrrm h the con-re, a h carry

40. psi 8

i ,1 ,r. *. Q Cnor re '] : s-/tre e r' /' r o rs r r 3,( To : 10 C d ':.o rr C i n 0T 10fl e Tor n .,,r- ., n.- m 7-m+ ..o y t. (,-- E' r -i.O y e L' w ,a Oi t P T + '/. + Y '(r s + erv sr, a re Our 54 omom rhon 54-U = D + G + 1. 2 5 F + t. 25 E,., ) i gi. I,, s 2 tr. w.irr r<

n p,ce.s sntar s re

( p. 3 : 10. 3 - 3. ' ) @ Ele.m. M8 r,, !O. I O ssr = 5R'/ T'r.e in - p! a rs e shear .ir.>s1 d ;e rr.c x.. m.,rr o i X (, t v o'. s e -

rst co;; Tion ) cre.-- >r e l oa a, r:.

F,, -

1. 2
  • r.: 9 Y ;. o. 3 2. : - ?

e e ie rr. G50) s \\ - c. t : ( STrt 3 .o t To MV t t e, p(.c r..' 'r. s. rr.c x irc. ser. s l t f' O J ', *' G 9 C '3 5 ! v0 lv*. - Tir,T C C J '3T ?Sn ) 15 i M'_ ;s E rc.2 d t I T (2

2. 6 ro

= r e r, @ Elev. :t: (. c o,- G., 1 (

0"E su u J a.c r p;. .- [. r,,r. 'i '. * ' r 1*e t....' 9.. ". L t ) 3 i..,,. Gilbert Associates,Inc. or 1 nrv.l l oj j d j j ,,cg3 a.w, e.~.,i.... MIC RO F IL M E D ANALYSI5/CALCULATIOP c,,, c,,,,, o, p fg, i.,. cair to -F' So, hr U= D + c, +

1. 2 5 P, + L 15 F.,.,,

2-f,., F,.., P. io + t.zi 2. 6 ', = It..s o- = c c. 1 15. 9 ' ( o.,er 5. ,,;c u t'.c'er.e:3) = n ! M. ~ K/' l a ;!,,>= ' :e,; c OK d., SR= .6.' p.r rr. i n. b cor:rth to carr r GO. p: ,i i he t 'r. c 'c r. o r re e. / d re rc. t e r. i r'> r. rr' e r 3 '. M3 co rn conoTor. ot : U= D+L G r,f + %,., + e O. ~ c V.,.. 4 Y. n r-p, + s, v. + q,., = i Our :./o - c,rn e. r. n 3r. 62., 0=D+S+ C. 2. F.,, 3 .n.% i a tr. 2 t 'ec.2 m. m - oic re 's e: e : r

srus, i

i s f~ 23.19 v.? , =. 3 : : 3. 3 - 3. 8 '- ) @ Elem. (,55 ( ? \\ i r 0 fr. O '.J C TO O ' g i .I P F~ ~, =

t. 7 ;

+

. E,

4.07

r. : -

P., I 50 f U= D+G+ P, + F,.,. or 3r c,,, = 2 .10 4. 0~ t

27. 2 G sn

= c u' , O'/ T I y, lj) C. ; Y h ! '*. C&S$ ) l j h, C 'I 2 ( ~ d: s L \\56 6 ' '. 3. ora.:cs1) OK l

1 GIL2ERT ASECit.TE5. ISC. CLEVEL Ata9 2. i TRIC ILLt +NaTt'T. CC l' ~....ms. m,.s.a ~n lPERRYf4DCLEA3 '0=ER FL AN T UtilTS 1. : ,,,,.,m - l,}.q,j,gg. 3,g 3 y, %, g y,, UQYvJ ELL CXLND EQ fh3td CovipAQTP.1DJT }_4t.O LEE ;) ftBja3 ,1 - -- v.;....:.c r..c. i s-SLl4B 'a SE) C.'.1'U MOQ l C RL v)ALL sw tsi iso 30-4en as 4% e% M3 WL Ml n, .i:t, es 424 4t3 47.3 4-7L 47' c o ) 437 43 6 45 434 5'S ut, As 4.4 &a .%s h 477 46 475 4'14-410 %9 '%S l ca-soi rm 4e 4% toi 49o 469 I \\ h 49P) 498 49 7 4% g, g l ms c24 sc 622. sti 45 43 SG 4% 467 +w' 485 EL 52.) 520 5t9 sit [ ga sn sa 543 514 AT G t. c.44 -(o 44,:. 450 44G d.- 543 5 42. 5 41 cgo I' C ,o / c,i sw se e sa, {422. 419 44, 5 StoS %4 %3 54 2,. F S% %5 St. Set .sto '3j ,isi .47 u3 h 698 @? 9a f?S / 4t,3 42r 4i7 I u t. t.2s .'4:v tc.i

cn i

,16 6fi /5 4g 451 448 @blfo 7 ( g l-P P'3 . h" 4LS m y G C!4 4.'O 63"L. (cSl 4% 42.4 4s3 M i W m m. y! cs, ge, 4g u 5 '. 442 fo61 '.450 f 4-49 ' ' M3 . LgG. Lt!-::sts = fD EL %,~k / l'670 N9 IM. 4(7 6: 6'7 4'3 12 -lut 19-6% 'A6 1 g 2

.2 P. @r 4 07

&/. IAS ' 93o 567 564 LEI ho 9ty- ' T'! 2'7 t' -.% as: n>5 43 i A d 7:s y-yo. 7o 9o & 19 - 7s i*

73c, b' 4'4V' *!t3+

+WJ-ggl Q wm&r~1ss, -. 7,+s.w,s s;. (ate / G89 4'S y; MES _ _3 M @MES g3 N 0- (2 % N F' /,25 G2. 621 bT GL (oi?. - (2 f

l .e Fuz 2-7 o4 s 404 4m ut m 33o 314 ss3 3,9 ns vi s., not u E/4'-7'$ 3b 40 40 6 4c5 4c4 4c3 41 441 4to 393 39B 3e1 3% -4 441 ao 4e 43a en ut, 4as an es et 49 4% ns -!- 4Sl 450 449 M6 tA7 41/, 44 5 444,c.p3 442 441 44o 453 R6so,.g.g 4ao 4% og o, 4x, ce, c4 c3 2. 4,i no c3 4a c Et.4W-o,,i 491 430 43') 483 467 4% 4?/., i 4M i a'rb'5 4R. 461 4eo 473 M siv. sis si+ 93 sit en sm "se 1% 9.7 ses so4 .7 -s EG 5\\t 53 Sio 56 % W Sc6 Ec5 sc4-C2, so2. Bol G 637'd.'k 533 saa tn su. s33 isw sn s3t en saa sz9 sza sz, t v i E 630-o ?[ 555 SS4-623 5 62. 5 31 53o 92o) 62.S sz7 52/o 516 524 523 stt Sci sts tsa .ss, .ss ses s4 es - cat ssi se e a si ! sso ,,,) 55 7 556 555 554 g53 sst %3 s46 547 546 545 G 422e6 h %5 594 se sst sm sao sw 15 s s,, s,c s,s m+ su t w 513 578 577 57G B75 #1t 5G Sst 57 570 %9 sG7 /a I B 61 I-f pb Go7 4/4 Em epi __ pl g_tB ,5m 5 d, = l o'- o 6tL /I Ilo (o9 6,e8 (,87 6et. &c5 l> ort /,oS 6o2. (,o/ 6eo e I G fA22 H (40 A im.. _.. cn. Ly. as m y at al ya m pa g l 630 629 f,28 6t7 (42/o (,25 02's !GIS G'L7 bl.\\ Oo (,19 6tB C-L M, - (-m fr58 157___JE___ /4> 6E4 65 L.. # 5 z __ cs.L_. Asc.._ps fee. _../,uv.__ f ' * ' # ~[L E-44 3 u2. ! 64l L40 (&> 631 637 63 6 ( 646 /,47 t.% 64 5 6 ++yl-L-{-(co,-co, p (;-) 1% 15;s t.13 .toz 4,1 670 c,s u? (cs,7 c, t.;- y n u 3 % ?* k 'b>&p .b b, k(, Q { hh - &h f ELEn% b (b) ~ f*,K - G96--. ' '(?A "$3'Qa>G'(sf: !(h; ~ (kaf*'i' VAL l_41

fay,

.Qg y dio e 'E.',(fg - (,4 (A3 M l'~ W 'W 3'*I.., f... o v. fe76 f47/ -(47/o './415 GM 673 h I. EL590-c f 34. h.___.3A _ 7W +: n.. qqs > : 3ay yss. - n ey. Joy .ge: 7af q; o 7ot ~ lo[' ico-t,99. 6k((J697-WY iS5 i,90 '693 692.. 69/. 69o ( 8 L. R, SBB 7, 135 7_% m-731.-- w - na u ns r'7ze.- 722 az4. -12=> 724 7ts _7j ! "d_pcN $20 $9.. Q]J: g[Y }}a,g h7 SQ W.I @. @ ;](A..,P. 1 i 7 3 aeww, M*@W WP 5FJ8tn23EM* MtM 2MRJ _ sam s m we - : 6mwms saa e s.99 % ~ ech % e s.% % e c.6 Opyw E u_ cxuvoEQ

NRC AUDIT FINDING NO. 13 DECEMBER, 1981 PERRY NUCLEAR POWER PL ANT I J l Question: Provide the jt.r tif ication, including test data, if I

any, for using a

20 percent increase in bearing capacity for short duration loadings.

Response

Previous investigations on rate of strain effects on strength of clays and shales: It is well established that the undrained strength of cohesive materials is affected by the rate of shear strain. As part of the extensive strain rate research for soils available, Casagrande and Shannon (1949) and Casagrande and Wilson (1951) investigated the effect of rate of loading on both the strength of clays and clay shales. The results of these undrained investi-gations, summarized in Figure 1, demonstrate that the strength shale as well as cohesive soil increaces as the rate of loading increases. Taylor (1948) showed that the undrained strength of the remolded Boston 1 blue clay increases about 10 percent per log cycle of time increase in strain rate and Bjerrum (1972) showed about the same increase for Drammen clay. The strain rates imposed in foundation materials by short duration loadings such as wind and seismic loads, are very high as compared to the rate of static loading. Consequently, the allowable bearing capacity for loads which include a significant transient component can be substantially increased without a reduction in safety factor. The state-of-practice has for many years recognized this behavior. State of Practice and Codes: Prakash (1981) presents a table entitled " Permissible Increase in Allowable Bearing Pressure or Resistance of Soils", taken from the Indian Standard Criteria for Earthquake Resistant Design of Structures, 1975. For " rock or hard soils", which would include the snale and lower till at the Perry Nuclear Power Plant, this standard permits a 50 percent increase in allowable bearing pressure for raft foundations and reinforced concrete footings. Teng (1962) and Bowles (1975) recommend reducing the minimum factor of safety for ultimate bearing capacity from 3, for the combination j

~ of dead load plus live load, to 2, for the combination of dead load plus live load plus seismic or wind load. This is numerically equivant to increasing the allow-able bearing capacity by 50 percent.

== Conclusion:== Due to the increase in the strength of bearing materials as the rate of loading increases, there is significant precedent for an increase in bearing capacity for loads including transient stresses. This precedent suggests an increase in static load bearing capacity of as much as 50 percent. The allowable increase of 20 percent which was utilized includes an appreciable conservatism and will not effect a reduc-tion in the safety factor against bearing capacity failure realized for foundations proportioned for dead load plus sustained live load alone. REFERENCES 1. Bjerrum L. (1972) " Embankments on Soft Ground", Proceedings of the ASCE Specialty Conference on Performance of Earth and Earth Supported Structures, Purdue University Vol. II pp. 1-54. 2. Bowles, Joseph E., (1975), Chapters 15 and 16 of Foundation Engineering Handbook, Van Nostrand Rein-hold Company, edited by Hans F. Winterkorn and Hsai-Yang Fang, Page 505. 3. Casagrande A. and W. L. Shannon (1949), " Strength of Soils under Dynamic Loads", Transactions of the American Society of Civil Engineers Vol. 114, 1949 pp. 755-772. 4. Casagrande A. and S. D. Wilson (1951), " Effects of Race of Loading on the Strength of Clays and shales at Constant Water Content", Geotechnique, Vol. 2, No. 3 pp. 251-263. 5. Prakash, Shamsher (1981), Soil Dynamics, McGraw-Hill Book Company, Page 192. 6.

Taylor, D.

W. (1948) Fundamentals of Soil Mechanics, John Wiley & Sons, Inc., New York. 7. Teng, Wayne C. (1962), Foundation Design, Prentice Hall, Inc., Page 57.

e f (LapitD TM TO Fastwag t eseseg,ts a a s i, ..... -.. F m......,, I ,lI IIII\\ i I f I I1

u...<. c.,, e..,

4" l l l l M3%h;iy[("Y7h"~i']Tl i& ~ !.. $ lf I! b M7M,- l Il N I l lilli / W l 1 %4 '",5l*"'l N .s l l[ I T..

  • N

/ s o s,'t ,I

  • 8 l

FIGURE 1 Strength Ratio vs. Elapsed Time to Failure: Creep strength tests at constant water content on undisturbeQ clay and shale. After Casagrande & Wilson (1949). l

i* I t ITEM 21 1 Provide a typical stiffness calculation of the Auxiliary Building between El 568'-4" and El 559'-0" including a copy of the plan view. 1

Response

I Attached are typical stiffness calculations, which consolidate a series of i l structural walls and columns, and model them as a single prismatic beam having i i equivalent shear and flexural stiffness properties for input into the seismic model (floors between 568'-4" and 579'-0"). e L { ITEM 1. Drawings D-412-041 and D-412-042, concrete outlines of Auxiliary a Building at elevation 574'-10". i J l ITEM 2. Idealized outline for stiffness input (wall sizes and locations). 1 ITEM 3. Stiffness program input. 1 i 1 l ITEM 4. Equivalent prismatic beam properties and location. ) 1 4 5 4 s 4 4 i l 1 i 4 l i I .}}