ML20038A962

From kanterella
Jump to navigation Jump to search
Forwards Sketch of Purge Valve Arrangement & Closure Analysis & Actuator Sizing Calculations for 811202-03 Audit of Valve Operability
ML20038A962
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 11/18/1981
From: Tauber H
DETROIT EDISON CO.
To: Eisenhut D
Office of Nuclear Reactor Regulation
References
EF2-55-538, NUDOCS 8111240529
Download: ML20038A962 (48)


Text

  • '

H:rry Truber fk $Ye c c rece r Detroit Ecison RME=4~

November 18, 1981 EF2 - 55,538 Mr. Darrell G.

Eisenhut, Director

[

fk Division of Licensing S

Office of Nuclear Reactor Regulation 8 pg h'1 0

U. S. Nuclear Regulatory Commission w

Washington, D. C. 20555 fg %,

/gg b

Dear Mr. Eisenhut:

o ig \\s /

'>r

Reference:

Enrico Fermi Atomic Power Plant, Unit 2 NRC Docket No. 50-341

Subject:

Purge l'alve Operability Audit An NRC audit of the purge and vent valve operability is scheduled for December 2 and 3, 1981 at the Fermi 2 Site.

Preliminary to this audit, Detroit Edison was requested to submit data on the valves and their clo-sure.

The attached submittals, listed below, provide this information.

1.

Sketch of purge valve arrangement 2.

Purge valve closure analysis 3

Actuator sizing calcuations.

Sincerely,

'V

.. /'

$$f///

~_ ht/ <%

8ooi 5

kO cc:

L. L. Kintner

/

B. Little Attachments 8111240529 811115

PDR ADOCK 05000341 A

PDR

/

grfAcH )

PURGE y VENT VALVES e2-ss,s38 a e v

g g

50 STAND-BY 8

ri l

? ?

@/

  • m~o-- a

@\\l a

6E5T b

T D /l e

Se R

012 Soli f;

vr N'

gj M

NRS,

y "M /

oc<

% LW a

jT DRYWELL r

a'

/1 7-4) 4fves D

Net 92LW T

)

(

(

H = HIGH PRESSURE END L = LOW PRESSURE END DETROIT EDISON ENRICO FEPMI 2 l

7

$77Acd Z DEIROIT EDISON ENRICO FERMI 2 EF2-55,538 i

PURGE VALVI CIDSURE ANALYSIS Jamesbury 6" Wafer Sphere with Jamesbury ST290MS Actuator Jamesbury 10" Wafer Sphere with Jamesbury ST880MS Actuator Jamesbury 20" Wafer Sphere with Bettis T316SR1 Actuator Jamesbury 24" Wafer Sphere with Bettis T416SR2 Actuator by William W. Durgin Sponsored by Jamesbury Corporation e

l l

George E. Hecker, Director ALDEN RESEARCH LABORATORY WORCESTER POLYTECHNIC INSTITUTE HOLDEN, MASSACHUSETTS October 1981 l

-n

w -, - -,

my wy,-

m_

w e

e S

e 4

e i

TABLE OF CONTENTS o

Page No.

TABIZ OF CONTENTS i

INTRODUCTION 1

MATHEMATICAL M) DEL 3

'IORQUE COEFFICIENTS 8

RESULTS 11 APPENDIX A 17 APPENDIX B 19 WYLE IABORATORIES REPORT 24 8

O O

s.

INTRODUCTION Purge valves, which connect piping through containment, are required to close within five seconds of signal when subjec*.ed to a prescribed contain-ment pressure transient. Typically, butterfly valve shafts are connected to an actuator which contains a mechanism to convert rotary shaft motion to Mnear actuator motion. Both scotr..t yokes and slider-crank acchanisms are used. The actuator consists of a pneumatic cylinder with piston and piston rod. A coil spring acts on the piston rod, tending to close the attached valve. Pressurization of the pneumatic cylinder compresses the spring t.nd opens the valve.

An exhaust valve is located on the pressure side of the pneumati'c cylinder.

It is held closed by pilot valve pressure which is provided in re'sponse to an electrical signal.

i Removal of the electrical signal causes relief of the pilot pressure, allowing the exhaust valve to open. As air escapes through the exhaust valve, the spring tends to close the butterfly valve. Both dynamic torque due to the im-posed containment pressure transient causing flow through the butterfly valve, and torque due to seal and bearing friction must, in net, be small enough, if opposing motion, that the spring can close the butterfly valve within five sec-onds. In addition, the dynamic torque may, at times, be in such direction a:vi have such magnititude to assist closure.

The pre: scribed containment pressure transient is shown in Figure 1.

The valves analyzed were Size M

Actuator Linkage 6"

Jamesbury Wafer Sphere Jamesbury ST290MS slider-crank 10" Jamesbury Wafer Sphere Jamesbury ST880MS slider-crank

  • 20" Jamesbury Wafer Sphere Bettis T316SR1 scotch yoke 24" Jamesbury Wafer Sphere Bettis T416SR2 scotch yoke

l t

4.

e S

e t

=-4 e

d AW M

JP m.

M' M

I +

+

CL E'E

,.s' E

' [

N

-w I

W em E

a 10 i l++

F 2

0 1

2 3

4 5

t (SEC)

FIGURE 1 PRESCRIBED CONTAINMENT PRESSURE TRANSIFNT M

3

~

i Additional data supplied by Jamesbury Corporation for the various valve and actuator combinations are given in Appendix A.

In order to predict thn closure time-history for each valve, the equation of notion was solved numerically, considering the torques due to I

i) spring force ii) gas pressure, pressure ride lii) gas pressure, vent side iv) dynamic torque v) friction force The solution was effected using the FORTRAN code shown in Appendix B.

For each valve / actuator combination, the appropriate parameters, including torque coefficient curves and torque factor curves, were input as data The computer code then simulated the closure process, giving valve position vs. time es output.

MATHDiATICAL Pl.OEL The valve and actuator constitute a pneumatic / mechanical system, Figure 2.

The The air pressure on the pressure side of the cylinder compresses the spring and holds the valve open. On opening of the quick exhaust valve, this pressure is reduced and the spring moves the piston, closing the valve through the connect-ing linkage. valve torque due to the flowing fluid (dynamic torque) and due to friction transmit force to the piston through the linkage.

l l

During the closure process, the spring force acts to close the valve, while the net of the gas pressures (pressure side - vent side) retards closure.

Valve friction force resists closure but the force due to valve torque may aid or retard closure. By convention, negative torque coefficients hinder closure while positive ones assist closure.

The valve closure process was modeled using three differential equations: one conservation of mass equation for the pressure side, one for the vent side, and the dynamic equation, Newton's second law.

i 4

i

+--X-UNKAGE F = T/F ( 6) r----

m i i g - -! x = f(6 )

Ml 8

I

\\

L._

_ J

'=

\\

SUPPLY

\\

QUICK EXHAUST r

n

\\ st 6 = o I

i k

[/

6 = 90 3

TV = CT( 6 ) op D TF = Ap op fg d/2 e

i FIGURE 2 VALVE AND ACTUATOR MECHANISM SCHEMATIC e

- ---+.

.-,,--,.m.

,_m,

.m

_y

5 d(p V ) = m rate of mass loss, pressure side

.2.2 P

dt d(p V ) = E rate of mass gain, vent side rr y

dt 2

dx M

=F

-F

-F

- FV + FF dynamic equation 2

p v

s dt p = density, pressure side p = density, vent side v = volume, pressure side P

V = volume, vent side

.V m = mass flux through quick exhaust valve

.P m = mass flux through vent valve M = equivalent mass of moving parts F = pressure force, pressure side P

F = pressure force, vent side F,-= spring force FV = force due to valve torque FF = force due to valve friction i

The gas in the pneumatic cylinder was assumed to undergo an isothermal process so that.

P /p

= const P'

P P/p

= const The exhaust valve mass flowrate was calculated using a

m = 1360 Cv p P Y /X/T

.P STP p where Cv = discharge coefficient of quick exhaust valve p = standard air density

- -, _ _... -... _ _ _. _.,,...., _ _ _ _.. _,. _ _, _... _. ~ _, _. -..

_..___....__..,____l.__

2:

6 X = (p - 14.7) / P P

P Y = 1 - X/ 3X, S

.75, X < XT

=

9 T

The vent side mass flowrate was similarly calculated using the vent side pressure, P, and vent discharge coefficient.

Manufacturer's data for valve actuators usually consist of torque vs. O and torque factor F (0} = T/F due to the spring force and mechanical linkage.

The force due to the dynamic torque on the valve disk was calculated es, FV = TV/F(0) where TV = CT(0) Ap D and CT = torque coefficient Ap = containment pressure drop across valve D = nominal valve diameter The axial force due to bearing friction was similarly calculated using TF = Ap Ap f d/2 f

and FF = TF/F(0) where i

TF = torque due to friction Ap = projected disk area f = friction factor f

d = shaft diameter The rpring force was evaluated using

i 7

FS = Kx + F0 where K = spring constant F = spring preload o

Using this relation in conjunction with the torque f;: tor, and torque data vs. 6, the relationship between displacement, x, and angular position, 0, was found, viz: '

Kx + F = TV(0)/F(0) o or x = f(0) i as was the spring constant and preload.

The forces on the piston due to the pressures in the pneumatic cylinder were evaluated as:

F

=P A

P P

F

=P A

v v

where P = pressure, pressure side P

P = pressure, vent side A = piston area

...,. _.. ~... _...

8

'Ibrque ' Coefficients Figure 3 shows torque coefficients vs. O for the Jamesbury Wafer Sphere valves as measured using water flow test facilities. The valve shaft is lo-cated on the downstream flow side, zero degrees is fully closed, and posi-tive coefficients indicate that the torque tends to close the valve.

Figure 4, curve A, show torque coefficients for an 18 inch valve operating in compressible flow. These coefficients were determined from an analysis of test data obtained at Wyle Laboratories using a nitrogen blow-down facility. The pressure ramp and valve closure history are given in Wyle Laboratories Report 55210. Simulation of the closure of this valve with the achieved pressure transient (greater than that prescribed) resulted in a closure time of 3.0 seconds as compared to 3.4 seconds as measured. Since the 20 and 24 inch valves have the same aspect ratio as the 18 inch valves, this curve (A) is applicable to them as well.

4.

No ing that CT(90) = 0.0083 for the compressible flow ca.e is less than CT(90)

= 0.0100 for the incompressible flow case and interpolating between the 8 inch and 12 inch CT(90) valves, we use CT(90) = 0.0140 for the 10 inch valve and do not take any credit for the incompressible flow. Since the more negative value will tend to cause longer vent time before the mechanism begins to move, this is a worst case.

For incompressible flow, the torque coefficients quickly rise to zero in the 70-80 degree range, as the valve begins to close.

In order to be conservative, for the 10 inch valve, we only allow the coefficients to rise as far as curve A and then follow curve A.

Although Cr(90) ought to be smaller in magnitude for the 6 inch valve than for the 10 inch valve, we, nevertheless, use the same torque coefficient curve B, fo'r both valves, again using the argument that more negative values tend to resist valve closure. Thus, for straight pipe runs, the curves were used as:

1

.010 f

.ig g

i

,iig i.

.. j a

FI~

":0 i,

.006 4

.2 5.

--u:I l L

-h.

i

-g-_

n 5.in s u

_p-CT 4

.y i.,

I l N

.I6d3 0

10 20 30

4. 0...-

50 80-70 '

I l

i

'pT 3

.},

VALVE POSITION, DEGREES:

1 l

y n -:

. i--

i.,

(--

U i

n h

.005

'8iALVE SIZE-'

4 L

l l-.:

h j

~

H,

auuumuuumu I

. 12" VALVE SIZE

  • 4

- ~4-F

-ititttfin*4f t++4tH44t :

24" VALVE SIZE 4

.-r-t

jt '

~

+

_y

_i l

' +

~3 i

.010

-i-

- p

'l.

...p t

.i

'j,

.t TL L

g2.*.

i-tpt tHi i

a 4

di M ":l r.

l M

' ~!

~

I

.016 ll

-l

..{t i

.j

.1 4

I FIGURE 3 TORQUE cot:.TICIENT VS. VALVE POSITION MEASURED - INCOMPRESSIBLE' FLOW N

L i

e

h!! I! ! Nl k}-LI } !.ll l!ll l ll llll il!! N!

l l

l :

4! @! !W; i ll i!!!

ti 'ii!

"i 1

i J 5

!i !'

l i

.00s.

j..

.,10 l--.

.l ll B

ll J

h' VE POSITION,. m(DEGREES)

~

,,90 VA Lt t

r L.

.}

wa.

m.

20 30 1

40

.,50 :

60

...70._

.80 11 l i f.

1 g

.a 1

T T

T.

T'

-. s --

006

~

,,k

A,'

)

A DEDUCED FROM WYLC TEST RUNS ON 18 INCH VALVE,

~,.

g, USED FOR 20 INCH AND 24 INCH VALVES

-a;

'.I8

[ B MODIFIED CURVE A FOR 6 INCH AND 10 INCH VALVES g

l C

1 150% CURVE A TO ACCOUNT FOR ELBOWS, 20 INCH AND C

24 INCH VALVES c

Il y

.010

' $4 D

150% CURVE B TO ACCOUNT FOR ELBOWS,6 INCH AND 1t i

10 INCH VALVES V

.t :

' rb, H

l i

o

~!I;

[] i!}' !l! lll! y .015 l i =: n:t::

k
~

.020 ..g l

f::

E .I l -kii FIGURE.: TORQUE COEFFICIENT VS. VALVE POSITION - COMPRESSIBLE FLOW M

11 Torque coefficient Curve Torque Coefficient curve Valve Size (inches) Straight Approach Elbows 6 ~B -D 10 B D 20 A C 24 A C ror those cases where elbows are located inunediately upstream of the valves with the valve stem in the plane of the elbow, it would be expected that the torque coifficients would r.ot differ substantially from those for straight runs. Although the velocity profile _at the valve location is upset with high-er velocities near the outer elbow radius, the valve disk, nevertheless, sees similar profiles at sections through the stem. Each section would see a pressure distribution similar to that for a straight run. If the velve stems are perpendicular to the plane of the elbow, the effects of the upset velocity profile will be translated into differing torque coeffi-cient curves. Because data were not available for these cases, the torque co-efficient curves were arbitrarily increased by 50s in magnitude, curves C and D. It should be noted that within approximately 0.5 seconds, the pressure drop across the valve is sufficiently high that sonic flow conditions exist within the valve. Under these circumstances, the velocity profile will tend to be more uniform, causing the torque coefficient curve to be like that for a straight run near the fully open position. RESULTS The closure curves for the valve / actuator combinations subjected to the prescribed pressure transient, Figure 1, are shown in Figures 5-8, for the torque coefficients curves A, B, C, and D as appropriate. Torque Initial Torque Initial Closure valve Coefficient Vent Time Closure Coefficient vent Time Time Actuator Curve (sec) Time (sec) Curve (sec) (sec) 6"/ST280MS B 0.22 0.43 D 0.23 0.44 10"/ST880MS B 0.30 0.64 D 0.34 0.65 20"/T314SR1 A 0.52 1.19 C 0.82 1.30 24"/T416SR2 A O.38 1.27 C 0.70 1.48 - - - ~

~ _ _. l 12 In all cases, the pneumatic cylinders were initially pressurized to 100 psig at 70'F. The initial vent time shown in the table ir the time

  • required for the pressure to drop sufficiently that the valve actuator begins moving. Once this point is reached, the valves close quickly owing to the negative slope of the coefficient curves. The initial vent time is directly related to the CT(90) values. As this value in magnitude increases, the increasing torque to open due to the containment pressure transient causes longer hold-off H mm before the actuator moves.

The computer code allows input of all pertinent data and subsequently simulates the dynamic process of valve closure including position vs. time. Input data consisted of physical paranieters, manufacturer's torque factor curves, the pre-scribed containment pressure transient, and torque coe,fficient curves. Inas-auch as experimental data were not available for all valve sizes and install - tion configurations, every effort was made to be conservative with regard to r the torque factor curves. Since negative coefficients retard closure, argu-ments were always biased toward more negative values. Under these conditions, all four valves closed within the required five sec-onds. The longest closure time for straight pipe runs was approximately 25% of the limit, while for upstream elbows, it was approximately 32% of the limit. e t f w. ,m_. ,__..,,,.c- ,_,,,....-.,,_.._,._m ,,_,.r.._m

13 ~ 80 I is4 80 E 70 =. ^~ 80 ?. 5 5 5 j CTis)="ti' g e =: 40 -- cT( 0) ~B-i 30 5: = = 20 i e 10 i 0 0 0.5 1.0 1.5 2.0 t t (SEC) l t t i l l FIGURE 5 CLOSURE OF 6 INCH VALVE FOR TORQUE l COEFFICIENT CURVES B AND D D i

14 ~ -5Y gD-N M 80 70 2 CT( 6' ~ = _"D"1 ) E-O 60 g .j _ ~ CT(0 ) = 8" ' ' ~ .+ N y-.

h ir 10 u w

.1 K JW 0 0 0.5 1.0 1.5 2.0 t (SEC) FIGURE 6 CLOSURE OF 10 INCH VALVE FOR TORQUE COEFFICIENT CURVES B AND D M

15 E 8

7..

g M M g ! CT(8) = "C" ~ -7 w . l '_ J .4 -- L-gg h - [ O i i,. ..i ,ct(8 ).= "A" q = 50 M E w 20 E 10 i Wl . ;;u 0 0.5 1.0 1.E 2.0 i t (SEC) I FIGURE 7 CLOSURE OF 20 INCH VALVE FOR TOROUE COEFFICIENT CURVES A AND C l i l

16 90 80 70 _o w O so f. cT(8 ) = " A" ' CT(8 ) = "C"- 50 M A",, 40 l g g. l .:..m_a l 10 .1 M. emme p<4 h i MO' O 0.5 1.0 1.5 2.0 t (SEC) FIGURE 8 CLOSURE OF 24 INCH VALVE FOR TORQUE COEFFICIENT CURVES A AND C

4, b O v e 4 *

==est - 9 9 6 e S O O APPENDIX A DATA 4 I I 1 1 I e e G

-~ 6,312. 301.8,50.3.115. 10.9.1 5,45. .0u23,.0023p5,.00231,.00215..00205 .002..001965,.00195,.001939..00216 .0J2337..0027..00295,.0033,.00385,.0047..0064,.0093,.0140 .22. 26,.295, 315. 315 61,.295,.27. 245,.22 1227. 68 2 0 0,65. 14.7 01,.01,I.. 675. 01 10 o24.,603.6.100.6,115. 10.9.1.5,90. .0023,.002325,.00231..00215,.00205,.002,.001955,.00195,.001939 .00216 .002337,.00;7, c00295,.0033 .00365,.0047,.0064,.0093,-.0140 .22,.26,.295, 315. 315,.310. 295,.27 245. 22 3909. 219.,0.c,130.,14.7. 01,.01,1. 1.375. 01 20,632. 1055.25,187.6 115. 10.9,1.5.175 .0023 .002325,.00231..00215,.00205,.002,.001955,.00195,.001939..00216 .002337,.0027 .00295,.0033,.00385 .0047,.0057,.0063.-.0083 3.93,3.00.2.47,2.23.2.17,2.19.2.33,2.45,2.84,3.50 7000.,792.9,0,0,380.,14.7 01,.01.12. 2.375,.01 24,389. 1500.4 187.6.115.,10.9,1.5 200. .0023,.002325,.00231,.00215,.00205,.002,.001955,.00195,.001939..00216 .002337..0027,.00295,.0033,.00385,.0047 .0057,.0069 .0083 5.20,4.10.3.35.3.00.2.90,2.95,3.10,3.50,4.20,5.25 7870.,692.5,0,0.380.,14.7,.01,.01.12. 2.75,.01 OATS FORMAT ASI4E VO.VO Ap,P1,CV.CB.WT C1(1),I:1,10 CT(a).I:11,19 TF(1),I:1,10 F0.sK BV.BVD,gP,0T,0X,Co.1ST.SDI.SFC IS14E=NOMIhAL VALVE DIAMETER INCH VD=uEAD VOLUME PRLSSURE SIDE INCH **3 V0:JISPLACED VOLUME INCHe*3 AP= PISTON AREA INCH **2 Pl= INITIAL PR SSUME PRESSURE SIDE PSIA E t CV=txdAUST VALVE COEFICILNT l C8= VENT VALVE COEFICIENT uT=dEIGHT OF EGUIVALEhT AXIALLY MOVING PARTS L8F i CT=iORQUE COEFICILNT 5 GEGREE INCRthENTS 0-90 3EGREES l TF= TORQUE FACTOR 10 LLGREE INCdLMENTS 0-90 DL3 DEES l FO= SPRING FORC E VALVE CLOSED LBF SK= SPRING CONSTANT LBF/ INCH I SV=i.0T USEU j BVO= DEAD VOLUwE VtNT SIDE INCH **o dP=1NITIAL PRESSUME VENT SIDE PSAA OT=PROGR AM-CONTROL DX=Pn0 GRAM C0yiROL CONsT=12 FUR gETTIS ACTUATOR, =1FOR JAMESBURY ACTUATOR SDI=SHAF T UI AMETEH I t.C H SFC= FRICTION C EFICIENT O

O O O d i 4 I S O e APPENDIX B FORTRAN LISTING .I P i O I e ..AWM

C ALDEN RESEARCH LABORATORY WORCESTER POLYTECHNIC INSTITUTE C PROGRcf TITLE CIV.FTN C, PRC GR r, s FbNCTION CALCULATE POSITIch VS TIML FOR VALVE CLOSURE C CONSI3ERING INERTIA. SPRIi4G. FRICTION. AND C PNEUAATIC CYLINDER BY SIMULTANEOUSLY C SOLVII.G THE DYNA >IC EQUATION PLUS TWO C MASS C0f.SERVATIO! EGJATIOr.S ASSUMING PERFECT C GAS C PRDGRet ORIGIN ARL PROJECT FILE 121A (OCTOBER 1981) LOCATED C ON USER 1C DISK I:NCER ACCOUNT E21.113WWD C EhVIRn!.e EUT RSX-11M V3.1 OATA FROM K60 Ar.D CHARACT.0AT C WRITTch BY WILLIAM W. OURGIt. BYTE nFILE(40) REAL wO.L DIFENcION CT(19). PRES (15).TORG(10) DATA cFES/4. 10. 17. 21.5.25. 28.,31. 35. 35. 37. 39. 40. 41.. 1 42.5 43.5/ C ALL r.551 Gis ( 1. ' CH AR AC T. D A T ' ) CALL e:5SLT(1.'R') TYFE sr. 10 F0FFAT(/* OUTPUT FILE NAME (FILENAME OR TI: OR LP:): '.$) REAC(s.20) OFILL 20 FORMAT (*0A1) CALL tSSIGN(4,0 FILE) TYPE st 33 F0FhAT(/' NOREINAL SIZE OF VALVE (It.TEGER ONLY): '.51 REED (c.50) NV 6 +0 READ (i.50.EN0=130) ISIZE.VD.VD.AP.P1.CV.CB.WT IF(ISTIE.EC.0) GO TO 130 53 FGFPAT(IS 7F10.3) READ (s.61)( CT(I).I=1 10) READ (1 61)(CT(I).1=11 19) READ (s.60) TORG 61 FOREAT(19F) RtAC(1.60) FO.SK.BV.BVO.BP.DT.0X.C0;ST.SOI.SFC 63 FORMAT (16F) IF(ISTZE .EQ. NV) GO TO 70 GO TO 40 70 CALL rLOSE(1) CALL c5 SIGN (3.'XTPLOT.DAT') M=0 DIA=FiLAT(ISIZE) T E F P : s ?,0. BRh0=c F

  • 144. / ( 53. 3* T E'4P )

3Rhov::RHG*(BV+bvD)/1726. BPRG==F/9 RHO XO=VOfLP WRITEsk.110) FO.5K.VD VO.AP.CV.C3.BVD.X3 .dRITEs u.111)( CTtI).I=1 10) WAITEss.111)(CTtI).I:11 19) 111 FORMAT (' '.10F9.5) WRITES u.80) SC F0P. FAT ('O') RHC=Ps.144./(53.64* TEEP) RHOV=ce.0*(VD+VO)/1726. PRG=Ps/(Rn0) X=X0 X0=0. T=0.

=... -. _.. 90 FS=F0+5h*A V=VD+cF*X 100 RHC=Ruiv*1728./V Pi=PResRNC FC=(PS)*AP BV=BVn+(XO-X)*AP BRh0==RNOV*1728./BV BP=BPaG=5 RHO FB=BP.AP C C CALCd LTE FORCE C IF(ISTZE.EQ.6)GO TO 101 IF(IST2E.EQ.10)GO TO 102 THETA-45.0-57.29578 SATAN (1.0-2*X/XO) GO T0105 101 THETA =57.29576*ASINIX/6.) GC TO 105 102 THLTA=50.+57.29578*ASIN(X/6.-l.) GO TO 105 105 P=FUNrT.15 0.25. PRES) CTV=37tTHETA.19.s.0.CT) TV:CO :ST*CTV*P*DI A**3 FA=Fu -( THET A.10 10..TORQ ) FO=TV/ A F LPJ=.7E*01A*01A*COSITHETA/57.29578) TF=P*cFJ*.5*SDI*SFC F F = TF. t ci.S T / F A C .6 C GET NrT FORCE C FSCC=rt-FS-FO-FB+FF 110 FORMAT (loF10.3) WRITER 4 110) X.T. THETA.P.CTV.FSOC,FS.FF.FD.FC.FB.BP.P1 C C C CALCU ATE DISCHAKGE RATE C CALL rXHAUS(P1 14.7. TEMP.1..CV.MO) DRHOV=-FD*0T RHCV=or0V+0RHOV IF(ABctbP-14.7).LT. 01)GO TO 113 CALL exnAJS(14.7.BP. TEMP,1.0.CB.3M01 BRh0V=ERh0V+0T*BdD 113 XOP=Xn XG=XO+FSuC*DT=32.2/wl XP=X X=X+Xn=01 IF(X.iT.xG)GO TO 98 X=XP XC=X0o 93 T=T+0T IF(X.iE.O.0) GO TO 130 GO TO 90 150 STCP Er.0

FufsCTTCf AT(X) TYPE sex. 1 FOPMAT(1x.F12.5) AT=k RETURA EtsC C C lit.EAo Ir1ERPOLATION FUNCTION C FUNCTror4 BI(X.N.OX.Yl DIMEidc10N Y(1) I=A/Ov+1 D=X/0v-I+1. BI=Y(T) + (Y(I+11-Ytl)l*D RETURea EtJD C C FuriCTTCN ASIN(X) IF(X.rC.1.)GO TO 10 ASIN=aTAN(X/ SORT (1.-X*XI) RETUR*; 10 ASIN=i.5706 RETURe Et4D 4 e e o h --.-e--, y.- - - - -,,, +.-rw, .,,-,.n, ,c,,,-, .-.w~,v ,y-aw,, ..--..,--e.- g ---..w-v-..- e,-- ,w---,

a.. v l Su6R00TIhE EXHAus (P1.P2.T.G.CV.RATF) i X=(P1.P2)/P1 C CHLCK TO SEE IF CRITICAL Flow IF(X. E.O.75) GG TO 10 C-

  • IF CRT TIC AL SET A=XT=0.75 X=0.7c CALCuiATE EXPAhSIOh F. ACTOR C

30 .Y=1.-v/(3.*0.75) C CALCuiATE FLOW IN SCFh Q:136n.*CV*Pl*Y*SQRT(X/(G*T)) C CALCuiATE FLOh In SCFS Q=G/3cu0. C CALCU ATE FLO. Id L6M/SEC RATE =ce0.0763 RETURv EhD C C PARABqLIC INTERPOLATION FUhCTION C FutCTTON FUN (X.t..DX.Y) DIPE4cIO:. Y(1) I=X/Ov+1 IF(I. E.2) I:2 IF(1.sE.N) I=h-1 D=X/Ov-I+1.0 Fbf=YtI)+0 5*L*(f(I+1)-Y(I-11+0*(Y(I+1)+Y(I-1)-Y(I)-Y(Ill) RETUR E r.C o 4

s. -~ RTTAce 3 EF2-55,538 7. f p,.g,.g ~ 0L ~ /-n6 m-f ~ SET 0 1981 ID'0 2 STATUS 8 C Ji9/r;q _ u;, se l f f8 co-f ~ Actuator Sizing Calculations Detroit Edison - Enrico Fermi Unit 2 P.O. lE-86782 Change Order 22 d By: T. G. Therkildsen Project Engineer Date: August 6, 1981 Checked By: B'.'C / annini Chi Er.gineer - Projects Date: Aug t 6, 1981 m' D'C / $ /9 D V n=: cs: piMo9 ./ 1 f o I .,gswg ~ nnaan - a rn > _

1. Tag Nos. VR3-3019 & 3026 Jamesbury Item No. NC-34252-07 6" 8126EA @ 62 psig air Torque required = 160 ft. lbs. Use ST-290MS - 290 ft, lbs. available (Reference Note 1) 2. Tag Nos. VR3-3014 & 3016 Jhmesbury Item No. NC-46261-22 20" 8222EA @ 62 psig air Torque required = 1700 ft. Ibs. Use Bettis T316-SR1 - 2400 ft. Ibs. available (Reference Note 2) 3. Tag Nos. V4-2061 & 2063 Jamesbury Item No. NC-46261-20 6" 8226EA @ 62 psig air Torque required = 160 ft. lbs. Use ST-290MS - 290 ft. Ibs. available (Reference Note 1) j 4. Tag Nos. VR3-3013 & 3015 l Jamesbury Order Mo. NC-46231-23 20" 8222EA @ 62 psig air Torque required = 1700 ft. lbs. Use Bettis T316-SR1 - 2400 ft. lbs. available (Re'erence Note 2) l i i 1 d

?..,-_--,,-....___.----,_ _ _.._ D j ..._-3.- --.,=w--m-.-------c....;.u--:---.-..-.. -a-I 2-5. Tag No. V4-2060 Jamesbury Order No. NC-46261-21 10".8226EA @ 62 psig air Torque required - 690 ft. lbs. Use ST-880MS - 880 ft. lbs. available (Reference Note 3) 6. Tag Nos. VR3-3012 & 3023 Jamesbury Order No. NC46261-25 24" 8222EA @ 62 psig air Torque required = 3200 ft. lbs. Use T416-SR2 - 3400 ft. Ibs. available (Reference Note 4) 7. Tag Nos. VR3-3011 & 3024 Jamesbury Order No. NC-46261-26 24" 8222EX @ 62 psig air Torque required = 3200 ft. lbs. Limitorque Sizing for 80% Reduced Voltage: 40, Efficiency =.35 Use H3BC with high speed gears - RHBC = Max. Rated Torque = 5650 ft. lbs. 60 x. / u n) x SMBRPM " HBC time in sec. J.SMB = 40 x.25 x 60 = 120 gpg 5 U E** SMB = Ratio SMBRPM 3400 use 27.20

  • ..SMBRatio " ~17g =

i Ik m. . cr7rrh . r egpab] AE

l I 1, Check Speed M tor Speed, 3400 = 125 SMB M Ra tio 27.20 = RP Time = 4

  • {25

" 4*8 ** V8 V T = 228.57 SMB = = torque RHBC*" eff torque Motor Size = here SMB =.40 eff (SMBratio) (SMBef f) (.9) (Red. Volt) .. Motor Size = 228.57 = 36.47 use 40 ft. lbs. (27. 2) (.4 ) (. 9) (. 8) 4 (Reference Note 5) Use SMBl/40-H3BC $i$kh f

,= REFERENCE NOTES } 1 1. Required torque derived from seat torque curve attached (Attachment 1). Torque was derived from actual test. Actuator torque derived from torque chart attached (Attachment 2). Torque data derived from actual test. 2. Required torque derived as in Note 1. Actuator output torque derived from Bettis torque output chart (Attachaent 3). 3. Required torque derived as in Note 1. i Actuator output torque derived from torque chart attached (Attachment 2). ST880MS uses two ST440MS clyinders. Torque data derived by actual test. 4. Required torque derived as in Note 1. Actuator torque derived from Bettis torque output chart (Attachment 3). 5. Required torque derived as in Note 1. Sizing calculations are found in Limitorque docu-ment SEL-12, dated 11/10/75 (Attachment 4). A!NhLY 9

......:--. n nc.a rs:ar -- % Z ~5_ s:.M'.': '..a::.K T:;,-_ M " sv ' v.u - -- : w .w,:

2.- ts.m.

,e /" I d.*

  • o&d M,9
  • b w,0 A.

3 p M =f=-WWT5K=:Ps '-kQ= = +- -i - - -i=-N -?~5 ^' - hE~% -b-'-d.- --'~- -V= -W'^^S M ~ ~'-' - - - - - ~ ~~ F '1 E1 b .__. _ =. --[p xN . _ _ E:.'.--- 'E.:: - 2N.-A__E._2bh-' I5 ! _._ w g N-M-5 5i._ MEL U T

  • E.- Z.

,.1_ -:-._..--=.--,_-

==.:_.=--__,s.---:---~=--- - + -_ y -. - = _"'~ a._ =_,,.-_ n_ 6 .1_. - g g -, - U= a._ r1- - C-"_e mM M= =- =i+-' t=4E-."d_'_- '_=f= 4 __=v_~_- _a__& m_ _. _ _._ __ _H _m,w JI.. _i=,. _ - -- ~ _h_. z' M y .=_, _ _ m:: ____mm m,__ 7 _ _. - -. _=___-_. r= r _.___.=__.,=__--_c. -= = _ = _ _ _ - _ - _.-.n_..__ -- - - ,_._._-:._--.:= ~ - - ~ - ' -.=-----_:-_ 1--_.=-f = =. _-[:___--- _s - ::_. - - -: :q - ._.s-g 'c 1 i z' L- _.- -. ; - ;- -- s--- =.1 --ru ,,r ^> f r n 1 s .) g. s-innd) / / % 6 i i s ' ' '= /_= iM >r E ! '= -- -E-Wik'M==M--Ti-'.-'~~'=- k=! e:.1-1WM '._ ^_' ~ 2?-biI=' +5E& M E'L^t ~' ~ E W== Y2--'

=' -M= -. '--E~. ~ ~ = =i.._s 2== a=k--M -u-D= 2 -i :

W =EX--Lt=i:=-'E^ D M""D-_ :b=== ^=-- = e - - : t '= v D=M-. _ __f,=. _. _ _. _ -48L~'- _='_E==-==.i = =P _ ~ ---- ~- ~&2 ~si ~ME ~^ =- i tn _i h-n-WWEGu ~ _*h.---... f_-____,==.___:-.._ -- =.._-._:-~.n . -: : :.==..;.---- T_. -!.c_.- - ./.7.-_______--.i [ - --~f . =.- - _.wW -t m*- e - ' p-2.u - -4 M -.i; rG4=--i 4-te+.. %4 = * - 5 . =,,.;

  • q --- =.
s= - =1 = i=_=;# s s c.: - h

- -.={= art __:__: _;;.. __;;=w_== ; - "1 e-j W2% --^)=-~== =. __-W-=H-- -- +-=. L. ~ - EiE-^ J ? " - t $.-5':5h & *-__. [ ~'__~'5.'L - ? -_._ 3 'W $-?^;5~H :-. _: _* =- - g m _3 - - = -.- 5 y e N L_ - -.--._. 7. J.- c._'_ _ v [' ', y- ,iv i k s g ,' 3 7 g 8 #i i 1, _M' i - 1 /_ i 9 t ( Am.i pp . i e e i ,e Th. M._r' i ^==? EPE32_E E T=2-C r-*-E1- .=;--=. =r.-_--r_w a__ -2 =y M =' =. ..___.=__.=z__3__..,- =_._.n _ _. _,. - _ - _ _. _ = =.. _ = _ _ __. - _ _. _ __;~__e_--_- -_.n-v__-- g g. _ .. --i. .r__._____. _. _ _ _ _. _ _ _. _: ;___ ___c _1. __=__y q =.2----_=.;_._.- - - - - - - - - p___.-___.,-_.-.#;----._ __ _ _ _ _ -. _ _ - g=. T -w 2.:_z =_:.--_ _ =_=. _. _ =:u. r-- p g - -7 c; y - + -V._-:^^:=.2 &. :_:^:-;_;T_ _^ :'_~_._~___^.:_..-_=_5'T.F:i . - -ci+._j p g -- - 7 ; _:__. a --J :-, - - - - - - e._g =_=;:--;_._-_^=_-a _-- = =.isg_-4-;_; 6. d =c.=4_ c ;_ J.7 _. 5 i_:C__^__^_--_--- -==_=_~--'t.. -4 :-

C.
p. = -
  • 4

_w _ n ::. =. _ _.. _.. ____=:--~=_-._---. _. - - _ _. _ -. _,.._==..u_.__a._.-_m: g:;.:_._=_:=.-:_._--:_.._=_--:.==..- .s : _. 2 Fr_______.__ _ __ -: -. -... :.:.:r- -- - -w _f._..___;. . _..... ~ _._..__.._:==:--.s

-~
. __. _

-,p_...._...___-.__-.; ..a p z, -q ~, g [ _r I --I j-y 'i L_ M i 4 __ J t T e l t 1._ . -.' s#.s-' -i- :+ _ My=.._-J -. -E; 7 2 g ars y -~~ i T - -- : " iu.a m hl== --- C i g g & ^:

==L=5 5 ==E-t a.=**~~~~T = d ~1 -i-iit-#h :-' *. =2 : ; M- ^ TE V:M-:T'2-"-W M' w-_-- -- 9_- i '. ".; t 9i ~2._~~-I.--N'.l-^~- 2--( i-=~ ~ ~ ~

[_?__ _^I-

-- I':E;7--' ~~~7:r- -- - - T;i- - --' " ' ~ ~ 7 ~-- n.M - i s e ^- ^ __.----t. . ---_ =. _ _. - - - -.= _. u.:. -- :=. ._ a;. w i=- r s- -

-
: _.. n _f.

T + - ..u 4 .i-k_ _ _-. ' :..-

~. :...=..--. - -_-r

- :._. :.. T _:_.=.=.-. - - a .f-.--- ._..--.s --;= --..;_ _.:U.a y. -. 4 =.= = L=_-.::=.::;. ' -.555_ _.... - .-. - i--- @ - ~ -. = _ = - ". - ~ - - - ~ ~ - - . : ;-. :...:..:_: u _. - - u;;....--- 3 -- =.. _. =. - = = = - : ::. t _ = _ _. _..__... _. : __. :.--- - __._-_4 = : u. -l p .--e.- = =' ..w gw. ,E 5 ** h h 'M:(NY%ve.- , u r We r-_M PI i s. 4 i 1 I l 5 ! -4_ . _. _ _{~- -~ - i 2 f l 4 I f I O

  • * * ^ ~ ' ~ '
  • I

. / _s m 9 4 I e .. -n i,- v. f.- l l

"a m e l P1 f MCL L JAmas 8k Y 0neH. l......._:. .. _.a .. i. vunix-tx 14ug_Arork l Fae I. _ ST 290 MS l S7~820M$ i %'r- .-..._im . r n / gg . _. a _.. /s'C eA/ ..._.e = n n.. 9 etav l ,$.$ A -A A Ne o ..?4 I ~ I ....._ _ :::729bES / o wi F _ c. < -.L t -,s _ t +' 7pu 1}.- i .A N i D m vg g gp ,e ..a._. ~ - e B*'1 I-M MEi ."o _... -- -.. - -. -.... ~. i - .:I n, e n .__....__.___t i . 12 90 M5 250 / ? <( __..._.a____.__.4 1_ sa i w amer > c =, raeow nem ~. .< u e ~~~~ c e f Ar.iA/- LAB n {L R l,\\. ; I

Afinabad y'A.n

- - s - n ,-w g i i 'l . ;l ' -,j. ,j: 1 1 n i 'O {f' h$3 h h .f( 8{ ' O ~ Ik . [ Vd....

h '[1Tfei) * = E P^".T

.. _...O 1 ...... :2. 'l' i' $ $- WV. . :i: 3 j g js%.;;_....k..- j, L somme6 AD#fh

-+-_..--.-.......,..._--

I ' A bcfn meoE 3 h C S n c e o E te. @g l i ,j.__..._, _;..q_..._..................;....;.-._.....;.._.._..__,. i

n. _...

I . ___ j i ~1 i u j i g _Q L... % y [ 1 L ._ 3.... _.. i y i \\ b ( 'v i R k N u i\\ m \\- ... \\ i\\ . \\i 4 \\t ! :V \\ l _. -4_ . g .:... -..i. - i n s e s I A NS 'N

l

-\\ g( s u qi E t d i. V U ~ i i !E s _9 'N i -4 T 1 i

y v

mi- -t -- A \\ g; i e ~ _. m k i h,N Q d_ D,l i } I a 1 m ww Ai tN b a g 3 s w p. !r .s._ _ _a.. _9 i 4 7 7 h Y ji y' W ~ K E s / / i. Ri \\/ ,/ ) =. I ] i: . i\\ / l\\/ i" /! n _.._.L_ i 1 l t 2 I D D 1 8 uj. e3 a 4 M i t e /% A

7 f

I l l I .[, [. l .[.[.... ' h

[.:;.
[

j j. g- ;,-@iil: :[; j ~~_:! p h .f. [:[. =

)
.,,; M....!7

_ b... g . h_ _3...

.
C.-

.b;.._..\\r 'O ,.. -. p. _. gN' 4 n: . :.w- - t.; : ?.^% ?:: -- - ---- :A : ::- :t- - 1.... g syys *r 4 ---t 1 : - -t - - A -l.. : / f p :.::.t -- '* - ~ ~ l\\ E?.crig2.;y _f'!X ' > 9 ? ' ) ~ F f " 4 j~l' 'f'_ j-j p l: e ::

_.._a._a g n --- - = 1-vz. i= =~ = -;~~~#~' " " ~ ' " ~ .. ~ S. ( ATTAcWMEtJ T 4 0 90 ROTATION VALVE SELEC" ON PROCEDURE c All 90 turn valves can be described in terms of two distinct cenditions - dynamic (hydrodynamic) tcrque and seating torque. When selecting an operator for a 900 turn valve, betr. conditions should De taken into consideration. The maximum torque value be it dynamic er seating, must be used in determining the motor and cperater pullout scrque rating. The dynamic torque condition should then be examined to determine the work icad en beth the actuater and meter tc streke the valve through the dynamic cendat:.cn during the.ime interval this dynamic cendation exists. The following procedure will allow f or the selectien cf the actuate: for it' pullout torque requirements and yield scme insight into the evaluation of dynamic tcrque conditions. NMI: DO NOT USE BUTTEPJLY VALVE SELECTION CEART IF OYNAMIC TCRQUE EXCEEOS 50% CT SEATING / UNSEATING TORQUE. The rollowing ef f'.ciencies should be used in selecting meter operators. All HBC sizes (standard r; u e).. ... 30% Spur & bevel attachments 2.86, 4. 6, 8.25, 12:1. 90% Spur & bevel attacbents 19 and 3 E :1... ......854 !9TORM.ATION REOt.'IREO: Valve Seating Torque (ft Its ) Valve Dynamic Torque (ft lbs) Valve Stem 01ameter and Keyway 5:2e Desired Operating Time (0.T.) - seconds Type of Application (e.g., modulating, steel mill, coal handling) l SEL (12J ( Page 1 of 12 11/10/75 l I 1 l i 1 l l

t PROCEDURE: Using the maximum torque vk2ue (seating or 'ynanic) SteS 1 Select the HBC manual operator size (Ensure stem capacity and service f ector fcund on page 3 are adequate. ) Step 2 Max. Torcue (ft lbs) Input torque to HtC te yield HBC Ratio x Eff. required valve tcrg.:e (Output of SMB af ne spur gear is used) Step 2A If additive spur attacnnent is used with M:C (see note 1, page 2) Input Torque to HBC (ft lbs) Input torque to spur attachment Spur Ratio x Spur Eff. to yield re uared valve ter ue (Output cf 3P2 when spur gear; as used) Step 3 C HBC Ratio x % (turn) nput turns te EBC f er SO rotation = Step 3A If additive spur attachment is used with HEC - Input turns to BBC x Spur Gear Ratic = Input turns to spur f or 90 ' rotation Stee 4 0 I put turns for 90 x 50 Cutpet RPM of SM2 0.T. (secs) Step 5 Select Motor Speed from page 4. Motor Desien Soeed Gear Ratic in S!!3 = Output RPM of SMS Step 6 Obtain unit pullout eff.cie.cy frem page 6 and application factor fren page 5 by estimating SMB size knewing the required torcue found in Step 2 compared to the SMB torcue ratings fcund on pages 8A and 8B. SEL (12) Page 2 of 12 11/10/75 il =m.

f. Step 7 Output Tc Mue of SMB (from Steo 2 er 2A) Torque at Meter SP2 7stao x Pu11 cut Eff. x Appl. Factor (see ricte 2) Steo S Select next larger motor. Recheck to ensure that operater has sufficient running capacity to handle the dynamic torque requirement withcut overheating. NOTES: (1) Spur gear attachments may se used whenever additional gear ratic is required tc maintain a nominal gear ratic in the meter operater er to reduce the torque at the motor operaper. Please note that the fewer the parts, the better the app lication ; therefere, dc nct use spur attachments unless they are required. (2) Motor operators selected using the pullout efficiency from page 6 and " Application Fatter" frcm page 5 will have a momentary overload capability cf 150% of the required valse torque per AWA-C504. GEAR SERVICE FACTOPS (HBC Manuals) FOR MOOULATING SERV!CI: All HBC-type manual ratingc MUST be de-rated by 304. (e.g., HlBC sta.dard rat:ng is.30C ft lb s. Fc modulating service, 1300 x 7= 910 ft its is the maximum rating.) FOR STEEL MILL SERCCE: Recommend Steel Mill Bearings en wcrm snaf t and de-rate standard unit 50%. FOR COAL HA.' CLING (TLOP ANO SPLIMER CA*"ES ) De-rate units by 50% SEL (12) Page 3 cf 12 11/10/?5 '? TY Y S R

-..n_: -_----m--- - li-i-L L-,.-- -l-m.. ..- :- r. ; s. ----, m am w.- mx ( 9 MOTOR DESIGN SPEEDS 350 Motor design speed = 1700 UM for 3 phase A.C. motors wath 60 cycle service 3400) 7003 1425[ RPM for 3 phase A.C. meters wit.=: 5* eycle service 2000 1425 RPM for 3 phase A.C. actors wit.a. 25 eycle service 2100 RPM fer Modutrenze meters 1700 RPM for 1 pnase motors with 60 eycle service 1900 U w. fcr D.C. motors NOTI: D.C. and 1 phase noters are load sens;tave and therefore the design speeds are only approximate. When using D.C. and 1 phase meters where.attle er no running to rq ue is req uired (hagh gear ratao's fer long operatang *.;mes), actual motor speed may Ar. crease 50 to 100%. l l l SEL (12) Page 4 ef 12 11/10/75 (* J i ~ ~ < x4 - < ... m,a

Sr.B SELECCION CCNSTANTS

n. 3.. -... o.. v. n. c.,. P _e

....n.. .9 Standard Units .5 900 rpm Meters Air Meters .i C =pcund Mot r Gear Appi;catiens .75 Coal Handling Iquipment .75 Modutrenic Meters j . 75 H -L Applicatzens 1 i If tvc c:.0:e applicat; n fact :s are recuired. te.g., SCO rpt 20ter witn c mpound gearing and a H 14,, use as fcilews: I .2 ' 9 C O rpm =cter) x .2 f eerp. ;;;.' x 75 'Hi;c' I .9 iste., x .9 (5 d., i Where tw facters are required -1 Standard Tacter i.9) Where three facters are required -I Standard Ta=ters .5)

  • GEA7 RACING SIRY:CE TAC"tRS :

(SMB CNLY) 1.0 All other Va?.ve Applica:iot;s 1.25 Coa; Handling Equipment

2. 0 Moculating Serrice (:or ue :nly) en....s e.

Cita:n a::11:stien re,ulrerents and mult ;1y Oy " Gear Ert:ng Serva:e Tactor" and ensure -he product is less tnan :ne unit ra 'es sne'n :n at. 2.. i i I e.g., Mcdurrenic Application: l l C :que required per calculatzen 40 ft it ! LYC 20 ft 1b s l 40 ft it x 2.0 (gear service f acter) = smallest unit witn suff;c:ent torque rat ng is -CCC w :n 90 ft ib sting. I SE. ( m.s l Pace 5 cf 12 11210/75 1 meg)('

LIMITORGUE )i 90 ROTATION EFFICi2NCY CHART l UNIT EFFICIENCIES l UNIT EFFICIENCIES UNIT RATIO l 1500/1800 MOTOR SPEEDS l 3000/3600 MOTOR SPEEDS gm. T,: R'UN T.RUN 1 12.50 - 30.60

.~60 70

'gi - 65, -... -:75 } 000 33.50 - 100.00 50 50

c. 50 -

455., 45 45 g

-50)
jp0$

102.00 - 136.00 ~., l 23 CD-41.00 ~ ', ' '60 70 i" 9.70 - 22.04 c'65'; ?t80_.. ~ 60 ' ' 60 v. 50 55 ..k(.'50 50 00 43 60 - 109.00 5].). 50 50 '55 55 114 00 - 183.90 0 L. 45 40 1 t.

- 26.10 "il..

65 75 0[. 70 85 11 40 - 17.50 '.5 5 ;. 65}}'. 70 80 65 76 26 42 - 41.33

  • j 55 55 Op31:

55 ; 60 0 47 69 - 96.20 50 50 bly: 50 .55 a 50 -50 102.60 - 150.80 y 45 45 155.30 - 247.00 40 40 J 45 3 45 11.60 - 17.12 2 65 75 ~.2) 70 N 90 18.13 - 25.65 65 75 5 -65'?ld.5. 85 d '50 55 ^? i. 60

9-> 65 27.20 - 40.15 3

42.50 - 88.40 50 50 55 i.t-60 92.40 - 171.60 45 45 5L 50 '- 55 191.70 - 234.00 40 40 33 - 45 '50 5 65 75 4660 70 90 5 10 60 - 17.77 18.85 - 25.55 60 75 rid.l.55 - 65 90 ~ {Vgi40 60 60 26.24 - 41.51 j 55 55 2 5' 55 55 43.99 - 82.50 5' 50 50 84.84 - 150.00 4 45 45 E. 5' 50 50 153.00 - 212.50 p 40 40 '.,,,39, 45 45 ~ 11.05 - 24.11 .70 80 ".I.5 .75-7 90 l 25.76 - 37.28 T '70 80

  • [h/0]...ui90

,k:f 60f z 60, 43.57 - 57.40 / .60 55 3 61 50 - 95.53 "60 50 1 ' 60 Y ' 55 ' 98 61 - 132.81 ,50 45 h - 55' - '50 5 50Y " 50 l 138 40 - 136 40 [;, 50 45 10.13 - 32.30 5 70 80 'I '75 80 l 33.60 - 48.45 ~ 60 75 70 '80 4 51 79 - 124.95 ,7-55 55 60 - J 60 131.75 - 147.90 50 50 D .55 l 152.13 - 219.30 j 45 ,45 50 f;j dO.. 61.42 - 96.40 60 W436-hY: 101.12 - 230.17 Y SG [. ry5 55 l NON LOCKING GIARING $tt C CDr.08 '74 Fare E e' 1:


r-=-=--

m, - = = ;;....c. z =; :.==.. -.-. = -.:.= --- =--- - -- - -.,m - _2~--_-- - - _ _ = - - ga - --- - . o REDUCED VOLTAGE REQUIREMENTS, (GREATER THAN + 10%) + 3-Phase = Calculated Motor Torque = Revised Motor Tc:que ('4 of voltage available) 2 Calculated Motor Torcue = Revised Motcr Tcrque D.C. = (% of voltage available NOTE: Above re-rating of cotors for reduced voltage requirecents dees not imply that customer vill have the sa=e operating time at reduced voltage as he does at full voltage. This can only be verified by the f actcry once a load curve;fer the application is available. TO ENSURE ?ROFEB SE1.ECTION: Torque, motor size, overall ratio, HBC size, and stem, size must not exceed maximu= values of unit size selected',' including appropriate service factors; otherwise, larger unit must be used TO COMPUTE UNIT STALL TOROUE: (at 100*; voltage) *** Motor size x 0.A. Gear Ratio

  • x Stall Efficiencies (page 7) x HBC Ratio x.3 x 1.1 - Stall Terque**

+ The standard procedure covers voltage variations of + 10% and no special considerations need to be made. Must not exceed ratio for motor size / stall on pages 8A and BB.

    • Must not exceed 2x standard rating of HBC.

Stall torque varies as the voltage varies by the same equation as above for voltages over 100%. SEL (12) Page 7 of 12 11/10/75

LIMITOROUE ~ RATING SHEET 4 SMB/HMB DESIGN IOR 90" ROT AllON APPI ICA TlONS IBMB 00 llMB 0 IIMB 1 IIM B-2 IIM B 3 SMB 000 SMil-00 SMBo SMB 1 SMB-2 SMB 3 2 PC. NUT MAXIMUM BORE 1%" I%" I%" 2A" 2%" 4%" i, KEYWAY %" x Vu" %"x %" %"x %" x N" %"x%" I"x %" 1 PC. NUT MAXIMUM BORE 1%" I%" 2 %" 2%" 3%" 4%" l KEYWAY %"x%" %" x L" %x N" %"xN" I % " x N" RATIO RANGE AND 33 5 136 21 0 109 26 4 1508 71.7 I71 6 267 825 43.9 955 MAX. TORQllE RAIING 90'# 250'# 500'# H50' # 1800'# 4200'# l (Self-Locking) I 14 I f14 158.3 24/ 191 / 234 84 8 150 98 6 132 8 190'# 340'# 625'# I250*# 3300'A 153 212 5 138.4 186 4 950's 2800*# RATIO RANGE AND 12.5 306 9 / 22 0 ll.? 26 I 116 256 10 6 25 5 11.1 37.3 MAX. TORQUE RAllNG 90' # 750'# 500'# H50'# 1800'# 4200'# (Non-l ocking) SEATING TilRUST ~~ MOTOIT RANGE 2'# / tl 5' A /tl ,/ %'# /tl 10'# / U 15'# /tl 40'# /U (Max. Ratio For Stall) 5'#/6H / %'# /U 1 0'# / 11 15'# /U 25'# / tl 60'# /U 10'#/102 15'# / I SO 25'N / I 71 40'#/150 80's /tl 15'#/65 25'# / I i 4 40'#/106 60*# / I 1/ 100*#/143 25'N /44 40'# /6.1 60'#/19 80'# /8? I 50's / I I8 N0ltS SM1100,6W tierque us stPAlff %UppIfFd Wilb $ II I bAni$WbffI (FAf IdhO

  • 1800 IIPM nwiti,e nals All uruts to he pos6 tion seatral when used with HilC enasural operator, without exception

$ll l? U Unlimited satsen PAGI 8A 17/l/15

yj LIMITOROUE RATING SHEET SMB/HMB DESIGN IOil 90 ROTATION APPIICAllONS [ t SMB.4 T SMB 5T SMB-5XT t 2 PC. NUT j MAXIMUM BORE t s KEYWAY 1 PC. NUT i MAXIMUM BORE 7" 8" 10" KEYWAY 1 %"x %" 2"x %" 1%"x%" RATIO RANGE AND 51.8 124 9 (7500'# MAX.) til 4 MIN 1114 MIN MAX. TORQUE RATING 131.8 14 /.9 (5100*# MAX ) (Self-l.oc king) 157 1 219.3 (1900*# MAX ) ? 10 M AX 690 M AX RATIO RANGE AND MAX. TORQUE RAllNG 13 4 4114 (7500'# MAX ) (Non-l ocking) OUTPill TORQllE RATING ?O.000** 60.000's ] SEATING THRUST NONI NONI NONI MOTOR RANGE 60's /II 150'#/147 100's Ali MOTORS 300's (Max. Ratio for Slaill 8 0'# /11 200'#/140 150*# llNi lMlil D 350** 100'# /ll 250'#/124 200's RAllO 400's

  • 100'#/I74 750'#

U Unlemeled Petics

  • 1800 RI M me.tur ernly All einets to tse gemition seated wfien used w6th tillC enanual operator, witbout eueptmn su tr par.I sit l?ll115

4 l' I,IMIT0HQllE CORPORATION [ [ King of Prussfa, Pa. b a 90" Rotation Selection Procedure E X A M P I.F. I SEATING DYNAMIC OPER. RPM TORQUF 0.A. UNIT CAI.C. l. f.VE TORQUE TORQUE STEM STEM TIME IIBC llBC SPilR RATIO Pt!!,IAAIT

APPI, HOTOR HTR.

UNIT 2 /E (FT LBS) (FT LDS? SIZE KEYWAY (SECS) S1ZE RATIO RATIO SMR SHM SMB EFF. FACTOR TORQUE SIZE SIZE s 'l "8 18,000 16,000 4 1x13 30 5 65 32.5 923 52 .35 .9 56 60 SMB2 si l 1 s 240 5 65 12 49 85.5 .34.5 . 'l5 .9 7.9 10 (l i -y l-V h . 'l8 .9 7.2 7!$ SMn00 ilI E \\MPLE: A 48" butterfly requires 18,000 ft lbs seatini; torque and 16,000 f t. lbs 10* SMB00 l I dynamic torque is required to operate in 'l0 seconds with an alternate at 4 minutes. Stem tilameter is 4 luches wit h Ix!3 keyway. (A) Using IISBC wit h stan lard rat io of 65:1. (B) Using IISBC with standard ratio of 65:1 plus 1,.1 addt'tive spur gear attachment for 240 seconds 0.T. .] Due to running load 1 NOTE: For nominal operator select ions wit h dynamic torques less than 50% of seating torque see Chart A for UN-OFF Service and Chart B for modulating service. h SEL (17) li Page 9 of 12 8: i s s i n ric.

  • 1 e

s e o 900 ROTATION SE*.EC* ION PROCEDURE EXAMP1.E Step 1 For 19,000 ft lbs use H5BC rated 19,563 ft lbs Step 2 26,000 ft lbs = 923 ft lbs input to HBC 65 x.3 Steo 2A (a lt e rnate ) 923 25.5 ft its input to spur = 12 x.90 Step 3 65 7 16.25 turns of input c f NB C Step 3A (alternates 657 x 12 = 195 turns of input of spur attachment s Step 4 16.25 turns x 60 = 32. 5 rpm c f SM5 30 secs 0.2. Step 4A falternate) 195 turns x 60 49 rpm cf SM3 = g Ste; 5 Try 1800 rpm meters 17CO $2:1 ratto in SMS = J4.3 Step 5A falternate) 1700 34.5:1 ratic in SMS = 49 SEL (121 Page 10 cf 12 11/10/75

~ o. i ) s s. Ster 6 Frc:n terque requirements at SM3 estimated sizes frem page SA. 923 ft lbs - SM32 efficienev 9 52:1

  • 35%

354,{= frem page (. = 85.5 ft lbs-SM3000 ef ficiency 9 34.5 :1 * = Applicatien facter is.9 (frcm page 5} Ster 7 For 30 seconds: 922 ft ib s 56 ft lbs recuired 52 x.35 x .9 i Ster 7A (alternate) Fer 240 seconds: ES.f ft lb s . ft bs required - =.: a4.. x.;s x .7 Step e Use 60 ft lb meter for 56 ft lbs required. 1800 ft ib rating f er SMS 2 - 923 ft ibs required Selection: SM32-6C 9 160C/H52C Step GA (alternate) Use 10 ft 15 meter fer 7.9 ft lbs required. 90 ft lb rating for SMB000 - 85.5 ft ibs required Selection: A 10 f: lb ?cter is net allowed en St*B000. Unit s:2e must be SMBOC. A recheck cf unit efficiency is mace te ensure larger unit is at least as efficient as smaller unit.

  • Pullout ef ficiency SEL (12)

Page 11 of 12 11/10/75

L . ca._ww.w m. fe e. =. SPECIAL CONSIDERATICNS: l r The running load en the SMB actuate as ccmputed using the v.alve dynamic scrque and the EBC and spur ef ficiencies noted en page 1. The running lead on the meter is computed using the running e:ficiency cf the SM3 without the use of an application facter. Ter 30 sec. O.T. 220 f-lbs frunnine Icad) 31.5 ft lbs er 534 run 54 x.sv l (Terque # meter? Ter 240 secs O.T.

  • s ft lbs frunnine 1 cad)

E l a n,. 3 x.sv 4.,.... s c., 44%.u. (Terque ! meter: ine standard 20% run motor would have sufficient heat handle 53% rur. fer a 30-se cond operating time. capacity to In the amove example, however. a 4C% running tery;e acter would be the 20-second appiccation due te very h.tgh running load even thcugh considered fer it is for a short dura tion. THis censaderation is due primarily to the custcmer acceptance cf the high meter currents even though they would exist fer a very shcrt pericd - e.g., Nuclear Class II appi:catien. For the 240 second operating time, a 40 % running terque motor should be cons:dcred due to the high running leads for the long operating tir9 - Reco=mendation: For 30 seconds, use a (C ft it. 40t run meter (alt. 90 ft ib, 20% run me cr For 240 seconds, use a 10 f Ir

  • * % run meter (alt. 15 ft 1b,20% run meter Tcr reduced vcitage cperatien see page Please note that the meter pullout tcrque potential is all that should be voltage conditien unless the operating time is censidered in a reduced icnger snan five minute s.

SPECIAL APPLICATION CONSIOERATIONS : A. Applicatiens requiring 10-secend operating tire er less shculd be referred to the f actory. -,[am."#;nine time /runn:ng terque shculd me reviewed when the I y;.c. ve is amove ,-Og -f .%.e me.,r starting torque rating. i 1 \\ I 1 1 1 I i l 1 SEL (12) Page 12 of 12 11/10/75 i l P i 1 L I}}