ML20037B464
| ML20037B464 | |
| Person / Time | |
|---|---|
| Site: | Dresden |
| Issue date: | 03/10/1975 |
| From: | Abel J COMMONWEALTH EDISON CO. |
| To: | Youngblood B Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML20037B462 | List: |
| References | |
| NUDOCS 8010011015 | |
| Download: ML20037B464 (18) | |
Text
{{#Wiki_filter:9 m,, e (._. c Comm:nw0cith Edi:on a. C One First National Plaza. Chicago. tilinois N Acdress Reply to: Post Ottice Box 767 Chicago. Illinois 60690 9 g
- f. - !- I/^
March 10,1975(ElMA - c.> lQ R.o.
- 4. r.?.? Nl5 x tl'L'[,.;4 9
,QI L'EG., jl -Mr. B. J. Youngblood, Chief sl1.f. Environmental Projects Branch 3 Division of Reactor Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555 . _.. s.--... : L--- - -- -- - ~
Subject:
- Dresden Station Envir'onmental Technical Specification NRC Dkts. 50-237 and 50-249
Dear Mr. Youngblood:
~ In response to your letter dated February._4, 1975 con'cerning this subject, attached is the additional information requested in your letter. One (1) signed original and 39 copies are . submitted. Very truly yours, l< ~ "J. S. Abel l Nuclear Licensing Administrator Boiling Watar Reactors t l Att. I i .801001107f
) (= (- i
Subject:
Response to NRC Requests (dated Feb. 4, 1975) re. Dresden Environmental Technical Specifications 1. An explanation of the assumptions, theory, model and measurements involved in the derivation of the closed cycle curve in Figure 2.1.1 of the November 18, 1974 report is given in the attached Appendix. Similar arguments can be made for the open cycle curve appearing in the same figure. 2. The downstream temperature TL is measu ed by a.Foxboro recorder on the tailwater side of the Dresden Island Lock anLDam. The location was selected by Mr. Robert R. Jaske formerly of-Battelle Northwest in cooperation with the USGS in 1967. The USGS owns and maintains the recorder. Data was used by Mr. Jaske in his COLHEAT model for determining thermal load on the upper Illinois River. The temperatures are considered repre-santative of downstream mixed conditions. When plume studies are performed in the field, the TL is determined by making an average of temperature measured horizontally and vertically across the headwater face of the dam. A study is being per-formed to validate the method described on page.3 with current field data. 3. Enclosed are draN ngs of four thermal plume measurements. "wo were performed on August 10, 1974 and the remainder on October 17 and' October 21, 1974. The flow of the Illinois River was determined by using gate openings at the Dresden Island ( Lock and Dam and a discharge rating curve. TL was determined by making an average of the headwater temperatures at the dam. Study of August 10, 1974 (morning): The plant load w.s 1246 MWe (Unit 1=75, Unit 2=650, Unit 3=500). F3ow from the Unit 1 discharge canal was 378 cfs. Unit 2/3 ' discharge was zero. Flow in the river was about 5,450 efs and ~ the ambient water temperature was 28.1*C. The area contained l within the excess 2.8*C isoline was 0.35 acres. Study of August 10, 1974 (afternoon): The plant load was 1480 MWe (Unit 1 = 128, Unit 2 - 615, Unit 3 - 737). Flow from the Unit 1 discharge canal was 378 cfs and from the Unit 2, 3 canal was 111 cfs. The river flow we.s about 5,450 cfs and the ambient water temperature was 28.1*C, The area contained within the excess 2.8aC contour was 0.29 acres. Study of October 17, 1974: The plant load was 1475 MWe (Unit 1 = 75, Unit 2 = 650, Unit 3 = 750). Flow from the Unit 1 discharge canal was 378 cfs l and the ambient water temperature was 19,6*C. There war no
~l ~ i_.d _..m. (i...... C.... F 'g, 2
- . :--u
.2 *- H . Y..~~ T
- C I
'~ \\ discernable area 2.8'C above ambient. Study of October 21.-1974: The plant load was 819 MWe (Unit 1-10O, Unit 2-0, Unit 3 719). Flow from the Unit 1 discharge was 285 cfs and from the Unit 2,3 discharge was 117 cfs. The river flow was 2800 cfs and the ambient water tempernture was 16.~4*C. There was no dis-cdrnable area 2.8'C above-ambient. ~ 4. Con'struction of the modification to the Unit 1 discharge canal outfall has been co=pleted. The modification consisted of the removal of an existing rock jetty (see drawing no. B-27 and B-28 attached) and the installation of a slot jet outfall. The new outfall consists of two circular cells twenty feet in diameter. The cells are separated by about eight feet. This separation forms the slot which creates the high velocity discharge necessary for rapid mixing. The cells are formed of sheet metal piling, filled with rubble obtained when the jetty was removed and are capped with con-crete. The cells are tied back to the shore with rock filled dikes. The Unit 2, 3 canal was not modified. The mode of operation is for Unit 2, 3 blowdown and the Unit 1 circulating water to be discharged from their respective canals. s 5. The chlorine data is att psE/g e e i
'F ([ Dresden Station Condenser Chlorination Data Unit 1 ppm ~ ~ Date Free Chlorine Total Residual 1-3-75 0.1 0.4 1-8-75 0.2 0.5 ~ Chlorinator out of Service - ::d 1-28-75 O1 0 3-to Date No Chlorination in February Notes .1. 2
- 1. Analysis"is ' conducted immediately after samples are collected.
- 2. Method of analysis - orthotolidine
- 3. Colh.c_ tion _of_s g es at dis _ charge of con.d_e_nser immediately after injection of chlorine.
- 4. Future samples will be collected at 4, 8, 12,'16 and 20 minutes after injection begins.
The average of samples-will be the composite of the chlorination period. Units 2-3 No chlorine monitoring has been conducteC in 1975 Monthly monitoring was conducted during 1974. Samples were collected at the condenser discharge and in the tail. water o M he._ spill way at thb~ discharge of the cooling lake. The ~ samples were analyzed using the orthotolidine technique. The condenser discharge sar.ples averaged approximately 0.3 ppm residual chlorine (free chlorine plus chlorimines), and the maximum residual chlorine measured at the condenser discharge was 0.7 ppm. The lake discharge samples were all below the lower limit of residual chlorine detectability using the orthotolidine measuring technique. This lower limit is some-thing less than 0.1 ppm residual chlorine.
A~L k,**h.?<%s?';5.'," k L
- j. -i 4 r APPENDIX Surunary and Interpretation of IIHR Laboratory Data for Compliance-Test Diagrams _.
f.f. ' The laboratory experiments on which the ccmpliance-test diagrams are
- 7.," '. *
- based were conducted in a thermal-hydraulic model at the Iowa Institute of
' Hydraulic Research with a 1:36 vertical scale and a 1:108 horizontal scale. hding from a cross t -'. '.-.. The s.odel includes a 2500-f t reach of the Illinois River exte
- i ' '. i
- sect; ion 400 ft upstream from the discharge flumes to a section 2100 ft down-
'. lt . '\\ The 3 to 1 vertical. distortion was dictated by the available space streah. t I ~~. for the model together with the requirement that depth of flow in the model be sufficiently large to ensure turbulent ambient river flow in the model. Flow velocities and discharges were scaled according to the densimetric ) Froude similarity law according to which there is dynamic similarity between a gebmetrically sinilar medel and prototype if the densimetric,Froude number, 1- . ~. g (A1) F = h. O c., j{bo gL J -1... _ y., I. has the same value in both model and prototype. In Eq. Al, U = a represent-ative velocity; L = a representive length dimension; g = acceleration of grav-L- s *_ itys #o = ratio of density difference between ambient and heated water to l p l density of a=hient water. In a distorted model, L is defined as a representative vertical dim-U Due to the relaxation of the geo-ension, usually a represent.ative depth. .? metrical similarity requirement, dynamic similarity in the transverse direction l l is not preserved so that compensating adjustments are required. In the present i case, the rate of transverse turbulent mixing and the outward displacement of l a .. - the plume trajectory tend to be overpredicted in the model. _ As compensating I.' adjustments, the bed of the model was roughened, and the slot width of the discharge structure was doubled in order to reduce the tu:balcnc mixing and the n.- c. coutward displacement of the plume by reducing the initial jot velocity at the .~ ~ . 7,. ~ _' - . discharge structure. The factor of two was arrived at through a calibration
--.... - ~ ~ e...t. A2
- ]t.-j.Y-- p r., '...
g = , -... :. _ i i -h,, ' proce6re in an earlier phase of the investigation, wherein results from an undistorted near-field model were compared with results from the distorted ~.:. 24>.;... This has bodel for a similar though not identical outfall.configuratica. g-,, - ~ ' ' been recommended also by Neale and !!ecker (2) m Altho gh increasing the slot lb vidth and reducing the initial jet velocity in the distorted model by a factor o,f two produced the best overall match betwoon rocults in the dis- .'.n. a,~:. In part-torted and undistorted models, differences in detail were observed. y,, ~,*- , @:g,,1cular there was an increased tendency for vertical density and temperatute, .. 7.'. - stratification to occur in the distorted model, arising.'from the reduction in _.s. a -i,..
- q. d...,the value of the initial jet densimetric Froude number -
,g. r'; r E*.;, l. ' h./., ( C g ~ (A2) ^ .,, s. ?. l. -5.'., DO F =- . 4' ~ 00 ' ). '. ... * ,{.%,e i ". ' o Qh p o ...g...~-.se, " #? '.,;by a factor of two. In Eq. A2 U = initial jet velocity, and h, = Mtial, o . f 6. - 9.... jet Seight = 7 ft in the prototype. The slot width in the prototype is b,
- - 2 f
. t. 2 '-. s. = E 67 ft.
- .J**e.:. N..
dC A typical set of surface isotherms of the normalized *.emperattire ri'se Values of ATg/ATD fr ~ beecved in'the model, is shown in Fig. A1. -{'; r ',- 6T/AT, D "]-h.-
- constructing the compliance-test diagrams wer'e obtained from the surface iso-
.-z . ::., 3... thern data by planimetering the areas enclosed by the different ieotherms and '*e ' '.. ;; ' ..i,;. . Plotting the AT/AT values against the enclosed areas in acres. The point
- ~
D at which the curve connecting the points crosses the line A = 26 acres defihes ~ '- the value of AT /AT.- 26 D ,.. - r. ~ ~ To construct the compliance-test diagrams the resulting values of ,;ll Were P otted against Q as shown in Fig. A2 foil the mixed-discharge l "...-c'} ., AT /AT 26 D operating mode. Two curves cire shown in Fig. A2. The solid curve simulates , y,,b '. ~
- t-
= 19'F, c.T = 28'F, AT = 0, T = 85'F for .$,9<... '- full plant load with ATD1 D2,3 Il ILL ~ = 55'T for the months when the ice-melting system is in summer, and T .r .........' operaticn. For these conditions :P Do y 5 in the model (10 in the prototypo).
- I oither individually or collectively, i Any reduction in ATD1' AID 2,3' IllJ
^ .....- e n- .... :... ~:. : L i v. A-3 .. f *. *.*. .[- ~ ~ - -
- v., *.. +
-l1i-( gwould increase the value of F DO, c nsequently reducing the tendency for s' I;
- vertical tc=perature stratification to occur, which in turn vould reduce This tr.ndency is verifie'd in the da.shed curve for
,P i the Value of AT !A D. 26 DO,vas increased to about 10 in the model (20 in the prototype) I' f which 7 '.3 and AT Note that each of the curves .J *.1 by red 4cing the values of ATD1 D2,3 1 .J kapresen!:.s both su==er and vinter conditions. Apparently tha reductions for the vinter conditions have mutually offsbeting effects. g.,.dng and T y J.- I '.' ..,..,.g'. Due to the tendency of the distorted model to accentuate strat- . @r. l.2 * <s....2.:.: r - ., ; f, p. .c .3,.l'.T.hicationeffects,itisquitepossiblethatthedashedcurvesimulatesfull However, the ~ lid curve. .fy',,,foadconditionsintheprototypebetterthantheso v h was followed in adepting the solid curve for use in the J.,C. ; .. conservative approac 4.;; ly,.. s. ProvisionD,co=pliance-test diagram in Fig. 3. .g r .n
- un "
'. (.'.., *. *y r.[. Y Fig. A3 shows the labora*.ory data used in constructing the com-1
- 5 {.
- i.e. y' #
..]fif.$ :,,. p11ance-test diagram for the unmixed-discharge operating mode. Only-the summer-t,. The third variable F is -, time conditions were simulated in the laboratory. DO
- hl.t g. :.,.
.w.......- = initial Ti 'i 'I, in this case a hybrid initial jet densimet:ic Froude number wherein Uo t,: J[*,l. , velocity of,the Unit 1 discharge through the slot, and op, = density difference ,r and the temperature of the ec=bined heated ..i.'-J ?'., . based on the ambient te=perattre T l ILL . v.., = 10.- For the unner one, .....dishharges T. Two data points are shown for which F DO i g..3 c.. ". C D t .* I 3F vas increased by halving the slot vidth and' doubling U,. For the lover one, ,,.}g.}.' :*
- s:
DO F was increased by reducing AT. It apparently makes lii.tle differene'e which ~ D g ..vay F is increased. In comparison vith Fic. A2, there neems to be relatively ~ - u. : : in Fig. I.3. This result was sonevhat unexpected. ,.p ,,,, little sensitivity to F DO The model data used in constructing the compliance-test diagram is
- 2... J ~,.,. ',,.
.{,p-.",., au=narized in Table A1. Backgrcund information on discharcos, temperatures l l " '43 '.r and initial conditions is presented in Cols, h-11. The parameter blo/b in , :.>...a o
- ?.
- x. t,:. : u.,
.'):.i.(, %, a.? 5 l' : -\\ J.-.. .f,.
- ...,i. :..
- r;
.,,,. l;.- : ' l a, - -} r . y.;..t
- i
... M,.,.*.. .. s W
v i Y.. '-. yy ;.~... q.;.~:.. - (:= A-k . :r -. ' d.?- ..,';.*.'.e. ' a.,.*. .i ,-4 s-g. ....~..g.. . ?....-', : idth of the discharge structure, as modified .h..
- Col. '3 is the ratio of the slot v
. S ' W f,.c$mpensateforverticaldistortioneffectsinthem6 del,totheunmodified ~ '..' slot'vidth. The main results of the tests are listed in Cols.12-1k. ,..ie. The In Col. D. values in Col. 12 are the sa=e as those in Tigs. A2 and A3. v..... i AT /AT ..... 26 is the temperature rise f the er ss-sectional isotherm -[..". 13[ de numerator AT 25 .c - 1 1 '.. enclosing the 25 p<.rcent of the cross-se.ctional area within which the temp- . '.?,'
- . '?
The 1.. ; arature rise is highest, for the cross section identified in Col. Ik. .....:.: a:. n: :. . % :.'" ~ ) h in 7.5
- h..aect, ions listed in Col.14 (see Fis. Al for their loestions, are t e ones
..c..,,,, t . values in any i;iven run vere observed. The ratio
- d. 4 _! P ',.irhick the hi hest AT 1
6 25 .;.<-. s. - / i' th"* * ****""' # th* **=P*t""' ri"* ** th' P*ri"***" ' *h' *i*- [i fd25 ^T26 -Q<.',;, ing sone as defined by the zone-of-passa5e criterion, relative to the t,em n s ature tise at the perimeter of the mixing zone as defined by the 26-acre ~ ...s So long as this ratio is less than one, the 26-acre
- v,,
.., surface area criterion. ..t ...f*; 25 26 .- F, a.. .. surface ta ea criterion controls. Thus the AT /AT values in Col. 13 s. g f;, n. ; - i i is th'e controlling ~ ..y,...[',hiearlyindicatethatthe26-acresurfaceareacrteron n. ,4 The AT /0726 alues reach one only v 'c '.. ^ ^ -one over the range of condition tested. 25 . a(Qg = 23,000 cfs, when the temperature rise at the ci:itiris zone perimeter . 0. i. -.. F at most. -e...... ~. vottid be about 0.8o +. .c::.g:]a.Q.,. 4 5.,, 4, s r ,.? .C&,:. - ' . ?, .. ' T.y.. ^ l.W{.,.;
- ',,C e),'
- = -
.**..m*,,.. lv t .-.,.- -4.S.,-
- t.,
?,..,... *..,... c'y,:. ~ '. ;. - * .>.7, e . !.4.*. ..s:
.:w p 5y v. ;,-} ..;;;; g.;Q y.n.,. w.. un.:. :,J,.m_w.. ,,,. y
- s..,...
,.: ?.?.p ; . y y. ;:. m : .; m.x........,.. .......,q.. -. y $._.,,. 4, .. ;f,.. - ,,4, + a: 4 -. ~. ' : :. m e. ;. -y.... ,o... . o. .,e. ' Table A1.. Sunanary of Model Data for Compliance-Test Diagramus.,., [,'. J',; 'Y...* ' ? J.;.'.. -_'.. M, .s 3. . ; J.','*,. % U.. i. r; , ;,.y ' y. _. ' :fy,.. '. '+' *' " s Simulated.. Simulated :. Simulated J-P ' Simulated. _ sect. Y... E,3 ATD2,3 ' ' A? *- P ' AT AT Operating Run b'/b, Q .T Q AT 2 D . DO 26 25 1 D1 AT AT ~ ~ cfs
- F cfs
- F cfs
'F F Modo r O 26 (1) . (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (' 4) Mixed 4 2 4800
- 85 378 19
. 111 28 ..21.0 4.7 0.29 0,24 10W 5 2 4800 2.85 378 4.8. 111 7.0 5.3 9.5 0.23 0.39 18W O a; 7 2 7400 ~ B5 378 19 111 28 21.0 4.8 0.24 0.29 9W 7R 2 7400 0 85 378 19 111 28 21.0 4.9 0.24 '78 '19 ' 111 28 21.0 10.0 0.18
- 0. 2 ')
12W 3 7a 1 7400 85 8 2 7400 85 378 , 4.8 111 7.0 5.3 9.2 0.18 0.50 14W ~ 8R 2 7400 8 5 378 4.8 111 7.0 5.3 9.0 0.18 0.33 14W a, '. c c ?ol 19
- 111 28 21.5 4.7 0.24 0.38 9W
- - ~ ' i 7.6 9.4 0.15 0.07 12W 10 2 7300
- 55 291 6.7 111 9.9,
9.0 0.15 0.27 14W 10R 2 7300 2 55 291 6.7 111' 9.9 7.6 11 2 10,000 85 378 19 111 28 21.0 4.7 0.16' O.38 9W 12 2 14,500 85 378 19 111 28 21.0 5.0 0.08 .0.63 16W.p-13 2 23,500 ~ 85 378 19 111 28 21.0 4.9 0.04 1.0 14E'y 14 2 23,500 85 378 4.8 111 7.0 5.3 9.0 0.04 1.0 14W 15 2 23,400 ~ 55 291 19 111 28 21.5 4.5 0.035 1.0 12W-V 16 2 23,400 "' 55 291 6.7:
- 111, 9.9 *.
7.6 8.8 0.04 0.75 14W Ur=* bred - 4 2 4800
- 85 378
'19 111 28 ,21.0 5.0 0.33 0.16 16W 7 2 7400 ' 85 378
- 19
'111 28 21.0 5.0 0:29 0.09 10W 10.0 C.26 0.14 14W~ 28 , 21.0 7a 1 7400 2 85. 378 13 111 v 8 2 7400
- 85 378 4.8 111 7.0 5.3 "10.0. 0.24 0.22 16W c
11 2 10,000 ~ ; 85 378 19 111 28 21.0 5.0 0.W3 0.18 14W { v 12 2 14,500 85 ' 370 19 111 28 21.0
- 5.0 0.06 0.57 15W b
1....... :... e..:'.:. ; ...... ;.,',.. a<,.,.. '1pl. y ~, i'.M.. ' i : : ". 4.m.. g. :. :-).... . e.: e.. ;...p,;. -. 9... s :,., +.,., ':'? h.',; W. ;::.,......n.5., '. ; :.f * :. ..,.c. ....,.s,. ^- ,'r. s ..r. s too cu cu W,..,.,,,. cu ca cw so zeiw du 1 s 9 ~ ~ in imi - ian aca ca/ coa .. i.ca ..4 4 5 5 5
- .b
..t 5 3 5 b. L 4 .I. I r . C,...- ' ] s' ~~ ^'TY ? h
- S:1. y
..., h .l.
- s
.c f 0 h.go !N N N Q.s ~o O f i j Slot Jdt - i N St ructu r e. y s + r / m I o.2.0 < c, s-s lien 7 6 7 4 .. Unit 2,3
- h. M ccharge ILL = 90.5 *F Dischargo Fiume QiLL = 6900 cf s T
O = 409 cf s AY, = 22 F ] g Q2.3 ' 0 IF 0 =. 4.9 v AT Fig. A1. - Surface isothr:rms of normalized temperature rise f r mix d-discharr,e mode, ATD r f Qvtr = 6f)00 ers,
c.._. ,...... n. ~.,.,..>...?.,.g.,. 3., ,....,g w t<- .g.. s n.:. ..g.,....,. _. s. a.. . p... ?., w } f i.',;5 o s y. i....... 0.40 i i i i .. 9...op.. .s. r. 'f'.[-[i>.,'h g 2,3 IR [. - ~' Symbots Q Q cgs eqs F .:.'. m.
- n' e
,,q. <.p e o 378 til 85 (Summer).'-.' ~ A A 2 91 til 55 (Winter) .".x. .r - g. F is the third verloble. ..., ';-..'/J 0.30 D0 47 11 was vorled by ctionging A T'D. I' '~ S4 ..e .a en ?..'.s. * (.;?y*.. .,s.... ..".r., f;y 4S g *7 4. i ".T k ' *i *.. s.5 ,f.,* *,",.
- L \\
... k ya \\ ... V. r: %... '= 4. O.20 ~. k o.n I.N.$'. 7' AT26 s
- c... -
i#ND,l'#* 5 ' AT D 4.7 . '; u .<.T A 2 .c. ;.5 '. . a. n..- 4 ........e ) , m : y.: ,[.. .,. / - - lc 0.10 .s. /. ...c .s 5.0 N 4.9 4 8.8h 9.Q; -.' A 4.5 eg.:- .g 1 1 1 1 f OO 10,000 20,000 30.000 O in cfs .yf lL L Fig. A2. - Laboratory data for mixed-discharge mode compliance-test diagram. ,,.
- j:...
..5.,.- - - ~.. - - - -. -.. _. _, _,. _,,.,, _,
L ? .,..s......,.~... . ':*...p;- ?;. gy.....:. .s ~~ t,. eu
- ..,...........,...,., -.n
' y..;. t= =, . a ?,' g 0.40 i i .a . i..t. o....w.... .c. .e
- v.... -. s :...
.y ....:.--... n.~t.4
- s.
,.:..a ....,.w..,.. Ql = 378 ef s ..;p. ;. :.F ';.'. ': ~ . i. y .Y...,.,,. \\UU 4'~b INb. Q 2*3*III
- I" T
SD TILL = 85 *F (S u m m e r) '. ' ,.[," ';..,.: d *.:'. 0.30 is the ihird yorloble. ;.,.:,. ' 5.0 FD0 .. o. :., a ..i... '.. I..'. i. \\. >. r . d. ai,',' : 10.0 n'. . '?.r. o .n 10.0 +- bT gg ~ P.: . n... ' '. .'..e,.,- AT D 'U & '. ~ '{ 'l
- 5.o 0.20 c..
t.. .... s ...c..,,.. .., ~.. ,.). ~. . _.....,...,a.... .. c..e m o ...s .e....
- t l.,..,* 's... "...
' 'c.. c^,'. ~. - O.10 ' u. :,... .. ~. 1 5.0 ~..- g , M.,. i t I f J O 10,000 20,000 30,00@ O-o in ct s .-.d ILL Fig. A3. - Laboratory data for unmixed-discharge mode cornpliance- ..'.i test dia6 ram. .I ' A. 9 ,0
- e. g
.9.
o o. c. u ,e z f %1 (~ J.
- 7. m t.
- i.. s.
- t. r
...n i-t r t.1 Qv C ?; r ? I f. y;s .,m_ 3 fi'G..n',t. t( *. p a.. re. v n.,. sM. :.., i. .y l'. i v,. a. -- za
- a.,
. x. - x ~~e x v.. u- -:r ~ s. T.l ..a s i A -l i e 4* ? b. y o.,. - s., s' e %. R y. ". t "J t + .* v y = e, - kE. J. E. E..E. 4,I.
- t.
,,t. * .x
- s. a t.
a p .a v. t. J,. gt t m..g.t s w s -s et - e v 33 g2n ;. o r ;; ;4. p ( J.',. ..e- - e
- w. s.
w (
- 9. E.
P.- V? p x:P. p::E. i.g: < h ?., f.e 2: TE.TE. 93..
- i. :
2 r ,1 '.g ri. p. v, %,p.v P,, 9,, 9 e.:t. ph9 . t e. e. - 1 s - 4 $x. M y x. e. m s-.1 +e os. i. a- .o S x .xx j i 1 wc .s. 4 i h h d, I k' e
- 4. u
- e 3
jgn n ~a ~ I *t ttT s p As ~e
- 3. u E
.m ath d4* $$49 4 C3 ER G u ,f, 27 .s. r = > w [ ~ 2k% G. ,4 6 - p-a. U '4 si [ - S t N. '4 4M J - x 0 i.. ) gg 2g' s a .. e '. s 4 ns 3 y a 33 Y[% -4 i 3 '*1 s I ( I } D .) ".1 # :3 3 k b e,J'd.R t . g 3 g g D '., L, 9 s
- c. y R o t<4 e'
9 ~ .,,, i n cv. s 4 o c- } 3 B;l
- d' O P.*, e g
F'
- s. -
3,. ,, 4 4 3 *i..a. to .. e4 = +- N QG > t s, K e n.., 3. -@.'= " is 3 .r a 7 4q: 3 e.i *ng ~.* ..,2 0*e 1. s. -3
- H s.
3 : g -, 3 c .. d A,: O.,1 t.)- ". b C Q ,t. V a w s to _
- e 6,.
.e -s, . s. 3 d, [1d 5 t.f'[d-( $s - ~~ l f is d ,; 2 4 - ?.4 4 g !i.17 4 Q -I d i!;.M M ' I y y qg, 7-
..... --.._ ~ . :r ! '.... ~
- s
~ +,e e n ~ = ( *.. -. - f :.- t r ~
- .z t.e
%y :a t* (.'.I*\\ v.. !,: - n 1 t 1 . c. ':~.1 p. '.,7 ( j p<. ' "; * ,... f 7. {#. .I f
- e.y.".,.
s 4 n.6. 4 ,a W.. - m wg :! I hs$iE $i!M! .U:i$ e, s tj.O
- g. 1 "b
';l}s W Q;~ + .::H. . o. g.,4:, ~ t: ja,, . n., y ,eyo - 1 m 7-L - 04 f. E ., d. t.. 4 x-1 Q.k 'I.:t_,$ ' 's b, 87 U : t <>c.,. , e _ Jc. s-utt r~: s. 4~.%.d... tl h a
- p.+'
= sy e. ..,4., %. ,C t'a$ y - 3 .i, as. T.s!
- T F.
9 P. - ~ 3' .t t.,.,t, u,, 4,, #
- s M
c g 'yP.-*.; +q
- 1
. U-I 6-4 $t 7' r s i y y % ';'t. 5.t. 45;24' h.s f s sa > c,=s.. .s (ta i .27 ( e = x. l ?. t 50 -~ r Q.
- ,. f.n..
n- \\ li!;- D ~ ) eo. n. g, X. ,g s. .s 0 @h Dd i 300 -l .) e I p y.
- I b
$ -)' e. t ) =s e P P f f F P QQ )
- t te at 37
%u .T:r e S' e-3 [*, w 4 n l l 4. g. m l. 8,*: .~.r. l-ri
- s. eg 1
.'ar p . %o 4 9 } U U p s,e u o ,o, $o # e :6E t _c Li x o, wn l-l' w. g a n 4 n. st '* k s% = n.s ~ .,, r.a t.or.3 a a l F dM bl
- d O Pf b'-
3 %y b _st> w? s e.. 1, lP 4e-( Kg3t c, a Ie$ g O k b $ o n r uuG 's-is e . "t s
- 3. $.
O -b' a - s. 'I
- 3. x. c D' g 12' O. a 4
l M 4 > c. W a si =
- at u Cp a
= h( Ig 9 ' }'8 0 . L O *- < r. 3. W. 4 p 4 CC e. ~e
- s..
- 3.. :,
F .. ; E a*!
- *
- A 3 N t*
i
/ur' ( g \\...: -z 8 5 A- "t D Y i 8, N ,'l .p. e. c= ,g ~ 's E ( T,eT ... y 1_- ',', '.,a' p' *. y _",." p C e.
- ,s.
c: =
- .e..~ e.
v s [ d,- ( t C' J s e; .'l, q v = 9
- 8q; 0,. t.
g).g. 3l b,
- 6*
- g s'
7 a' 36 -.J , e* .9 y s c. i e 31 . w i. ' g e.
- =t 3
ep. k ...,I
- 3s3
- s}
4 e.. r te. V A L-y 9 ,9 4 a a e i g 2 4 4 .o. c+9 .,3 N .E. n. W 4 .e - s. x. sw 49; I D. o w ...s 'D '54-4 2 b ~ 1 .e 84 l t a-3, ; ~i e, f I i l R2P80yc2 3* g o. y ow e s
- a' 4. (I g g g -)V}
'o N
- s ef ~y~
f.* -1 6 2 Y a vehePeep.g 2e $4 s, s m g,, 3 w-i t;' ( a % oA s
- 3.., &
- d 4 s) Nk
!":3-$,
- Pg
- , 3. '=> i
- < (i. 'J e s e d'Q
"'6 *T g' -1., 3 s $ t:o,, u < 3 s
- \\ y' et X e
t ,3
- J\\aAA5M,.;
C________ ____ _ __ ___ _____.._______ ______j
.i , "L n ci v ss A e t-4 4 p'- C p .' g-I Y a 'O E T k g h. h t .@ Q 6 4;p3 .p?t*? il 5 s 9 . 'g.3 22-1 .s u ca 1,. s. .I I 7. t .) e".M.j . e 8 4,. y< l ( .I. M, c t.n ~~e 2 o l s e r De eo 4 4 *J Y g
- b.
g, ,,.e_.< m. t ud .a ' k.. '3% d . g, p 4 p <g I 1 [- t 9 ~ y n t.f > y .j3 g q. t O p g tt .mgy l t t I h I ~4 1 03} . =3E. 4 N< s V }
- g o.
.t 1%'9 la e g %n ~ ~ h l "E 'i t t 'E .2 s '? } ( *m3ye w .= x .y . re, E -- @ lu-h 2 e a es. e gi e -,I d 1 -8 3 e c e i e .t F p.p p 11,7>. 3 g .a s. F' v ..%b t :e 4a.nd w ( ?.s, ',2 -s .s 4 WGdG @ G9 5. o, y 33;t i .ee
- ".'. i s
- d,-3 s <. R 3 s
.. k.'. ~4 S. TI b I a s. I 3 ' ' ~aj p 4 D '> i.C ~ - e g %4 ?A g % ) tg h {e.
- I
{ ff I'* V T ../l; qt,V I., R p. t a. -... p i. 3. o i s > 4 c . N '
- ', E E n
"~ *
- - - ~
- $ $Uf.'
Ip J 3 ~ E !;', A!},5 6 .p 4 ! !!. I',. 5.5 %
- 1.l. 4 2,
- .. -g.
g. j ,.e e. w -.:,; 'a
- l..
n.:.t. e
- r..l. t!.
i, i l..* S:j u y n: p.::,,e.a. r., .g r. .ii eI i -c '1 g. i. 2-- a a. t.- l.9:~1 ,3 e::.. t.
- ..,. :.n t
,il 1 ~ ..!it 2 L:.['lLk._! 4 ,71.._.., t jjjl !.).p .,..S 1 i. i e il g;_ m o ..4 )y c \\ { r.m, e } ~ j ,l ii 21 2 I i.s. i;. A ,,--}__.,4,%e.,., ..:. T a ~ ji j t ... j[jili 1 p '. _:c-- . j.__ gl il ? R' I J., N ,g C y-5 y vs i s. h l.i. fit 3 /ilJ. 'J [ g.g
- 1.,,
3._....__ 7 g, ,3. le d..I I iqs lq e n] m ?.C I t- \\. ! ! N .. s J .s s g 3I v, .i yl s,,. ~ j, 11 1 e ti <( l, - D,, 8 1 I
- %.J
'..... = $ : fr/ r,1 d i. ,1 j l g. LL,.. . b...i)e fl .i ); g l ~ 1 J p,u, lj r p ,1 u z., n L 1b i-p - 4 g. y 9 ; jig g As .s 41) i v-- l-t
- p,, tn.
z i g i \\.- su 9 1, 1, u .w i 1, 6 v e- .l:, 4-r. ..v, a ~ l 4 \\ .1.. ,[ /l 3 t if i I 4 l' i ../ 9 /l l f'V } l t 5 o I I II e t t I .., /_. - m.A sf -L t g . emas 9 t g i i
- i. 3
... T y.* lJ h
- ~
(' r, ~ 1 r h < i. d i i,s M
.......G ,.I. n;,.. .3, l i i ._..(...-. x g, yL. r / - lx j j
- i.9
'! i ~.!> t.i {' F= I;, I- ,d ; 7 g 3..- 1; I ir ',t 1 l
- t. l
}'. r.i.i! l t: R r..c -[,- 7 3 t n [ j .a f.: r-- a i l' 4 i I l-3l3 g 1 -t r t r A.. jil iI l10 (-, .i L g.i. ~,: ..,.1._4 -L l lip 't. J p V.. l. TI I: 1 ~ .k
- r-m
,h j' s t I ,) i ?Ti E, i. .---'-/f ? .I i g l ly / d I
- '/lp.
- t t
y I ./ i 4 i s., a-4 .a,: r 1 r o j yd t l If { ?!' Y' } } - i t .h .y l . n g 1 3 g - }. v[.' Il$ f-- 1 i %,,kI{3 s. rI'l 1 a 2; 'l!! i ~,,N d / <g e m.. -,nr" -4 1.:- N -J 9 3 -? .L's y ~ y q. , t
- _. 1
.] 7 ,5_,. '. c.- .g._ __..g n_.y q !1.'. . __.J_. .n s.; _ _.. s. ,i s-.,. ~- ss&'g., 3 - y} - --- y'fl 1
- {,. W..,
- f'/ / ' r
. y a:.:;., w - - m m* a m ; 'f I!i.f I. .: <, !p - T ~~"..~s*~~~~' i (
- 9 cn.
r ifii' g( l ?i - :L % fD-5~~~*.L-:-l -: ** 5 i!.'s _f.l./_.% Y'S.x'-. &' ? i
- JF<__191,_F..i..,,3.$,___f.'I.5,.L'-C:.-
t!! .ti l' *. i L "%..J r i!. T_.. 5ti v .- ) l ..,, _,.. l e.,,. J i.. _m,.__,_.__., __ y j '. L '.-i'L - n::.~ 4 ,, g: r, ~ 1 l' !.' Lt -- '. - / ...s. t f e:;'t ~ J'...:..u '._1
- , e..g -
&_ $;.. ?. ~k_ __ _, .....c i u w. :..
- . j
- g...
h l ' .!. f-<' ) 1l ( . h.s +'s_.% 77.. l... ,.. _ _..[ ,1 s t s.~ A 4,#' M 0 s.,i.-.,, -/ 1.. c,. ; / i : - t t .. s. '1 N, Q,.,s p. .c. ./..... ) 7 \\ j., f j mk .._2...__. l '*---e- ,*Nf ... f
- g. ;3
..._______7.. _L.......,,,, _... g.. p. J. _ '.. u ._ _. _ _. ; \\ t l t j / ].I, l s ,/ 1 g --,i. y / c 3}}