ML20035H351

From kanterella
Jump to navigation Jump to search
Evaluation of Upper Shelf Energy Behavior of Two Nozzle Shell Plates in Connecticut Yankee Reactor Vessel
ML20035H351
Person / Time
Site: Haddam Neck File:Connecticut Yankee Atomic Power Co icon.png
Issue date: 02/28/1993
From: Meyer T, Munoz Frances Ramirez, Terek E
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20035H350 List:
References
WCAP-13630, NUDOCS 9305040285
Download: ML20035H351 (93)


Text

{{#Wiki_filter:_. t r i WESTINGliOUSE NON-PROPRIETARY CLASS 3 i ' TCAP-13630 - -l i i 'I EVALUATION OFTIIE UPPER SHELF ENERGY BEllAVIOR f OF TWO NOZZLE SHELL PLATES IN THE l CONNECTICUT YANKEE REACTOR VESSEL .;s, FEBRUARY 1993 i / e i M.A.Ramirez J.E Williams i Work Performed Under Shop Order CZFP-106. J Prepared by Westinghouse Electric Corporation l for the Northeast Utilities Service Company C Reviewed by: MA E. Terek i

  • b ' b% M Approved by:

T.A. Meyer, Mahager i Structural Reliability & l Plant Life Optimization 1 l .i WESTINGHOUSE ELECTRIC CORPORATION J.[ l Nuclear and Advanced Technology Division b[, > RO. Box 355 Pittsburgh, Pennsylvania 15230-0355 _ l .i @ 1993 Westinghouse Electric Corporation j All Rights Reserved lj 9305040285 930423 '~ hDR.ADOCK 05000213 PDR i c;

4 l s l ABSTRACT An evaluation was pedormed to determine the uninadiated upper shelf energy for two nozzle shell plates from the Connecticut Yankee reactor vessel, plates W9807-1 and W9807-8, in both the transverse and longitudinal orientations. This evaluation is based on the results obtained from the Charpy V-notch impact testing of 84 specimens, fabricated from archive nozzle shell plate material W9807-1 and W9807-8. !48 T 9 + I i i \\

TABLE OF CONTENTS Section Title hac ABSTRACT i

1.0 INTRODUCTION

1-1 2.0 EVALUATION OF UNIRRADIATED UPPER SHELF ENERGY FOR NOZZLE SHELL PLATES W9807-1 AND W9807-8 2-1 2.1 Pedigree of Nozzle Shell Plate Materials 2-1 2.2 Fabrication and Charpy Testing of the Nozzle Shell Plate Materials 2-7 2.2.1 Heat Treatment of Nozzle Shell Plate Material 2-5 2.2.2 Fabrication of Chamy Specimens 2-8 2.2.3 Testing of Chagy Specimens 2-12 'Mit 2.2.4 Detennination of the Upper Shelf Energy 2-38

3.0 REFERENCES

2-41 APPENDLX A 2-42 A ' l ii )

LIST OF TABLES Table Talle Eage 2.1-1 Chemical Composition of Four Samples Removed From Connecticut Yankee Norzte Shell Plates W9807-1 and W9807-8 2-3 i 2.1-2 Chemistry Results From the NBS Certified Reference Standards 2-4 2.2-1 Heat Treatment History of the Connecticut Yankee Reactor Vessel Nozzle Shell Plates Performed by Combustion Engineering 2-7 2.2-2 Additional Stress-Relief Performed on the Connecticut Yankee Reactor Vessel Nozzle Shell Archive Material 2-7 E 2.2-3 Charpy V-Notch Impact Test Results for Longitudinal Oriented Specimens from Plate W9807-1 (Specimens DT301 to DT321) 2-14 2.2-4 Charpy V-Notch Impact Test Results for Transvene Oriented Specimens from Plate U9807-1 (Specimens DIA31 to DLO51) 2-15 g 2.2-5 Charpy V-Notch Impact Test Results for Longitudinal Oriented Specimens from Plate W9807-8 (Specimens CT101 to CT121) 2-16 I 2.2-6 Chalpy V-Notch Impact Test Results for Transverse Oriented Specimens from Plate W9807-8 (Specimens CIA 01 to CLO21) 2-17 2.2-7 Instrumented Charpy V-Notch Impact Test Results for Transverse Oriented Specimens from Plate W9807-1 (Specimens DT301 to DT321) 2-18 2.2-8 Instrumented Charpy V-Notch Impact Test Results for Longitudinal Oriented Specimens from Plate W9807-1 (Specimens DLO311 to DLO511) 2-19 2.2-9 Instrumented Charpy V-Notch Impact Test Results for Transverse Oriented Specimens from Plate W9807-8 (Specimens CL001 to CLO21) 2-20 2.2-10 Instrumented Chaipy V-Notch Impact Test Results for Longitudinal Oriented Specimens from Plate W9807-8 (Specimens CTICI to CT121) 2-21 iii i h 1

i LIST OF TABLES (con't) Table Title Eagt 2.2-11 Calculated USE for Nozzle Shell Plates W9807-1 & W9807-8 in the Transverse Direction 2-39 [ 2.2-12 Calculated USE for Nozzle Shell Plates W9807-1 & W9807-8 i in the Longitudinal Direction 2-40 2.2-13 Summary of Highest Average Upper Shelf Energy Values for Nozzle Shell Plates W9807-1 and W9807-8 2-40 A e F i i 5 C; $V I

LIST OF FIGURES Eigure Tttic Eage i 2.1-1 Identification and Location of the Beltline Region Materials in I the Connecticut Yankee Reactor Vessel 2-2 2.1-2 Location of Slabs B and D Cut From Connecticut Yankee Nozzle Shell Plate Archive Material W9807-1 2-5 2.1-3 Location of Slabs A and C Cut From Connecticut Yankee Nozzle Shell Plate Archive Material W9807-8 2-6 2.2-1 Arrangement of Chagy V-Notch Specimens in Nozzle Shell Plate W9807-1 2-9 2.2-2 Arrangement of Charpy V-Notch Spaimens in Nozzle Shell Plate W9807-8 2-10 2.2-3 Inadiation Sample Capsule Charpy V-Notch Impact Specimen 2-11 [$Ei 2.2-4 Chamy V-Notch Unirradiated Impact Propenies for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-1 (Longitudinal Orientation) 2-22 2.2-5 Charpy V-Notch Unirradiated Impact Propenies for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-1 (Transverse Orientat.s) 2-23 2.2-6 Chagy V-Notch Unirradiated Impact Propenies for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-8 (Longitudinal Orientation) 2-24 2.2-7 Charpy V-Notch Unirradiated Impact Propenies for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-8 (Transverse Orientation) 2-25 2.2-8a to Fracture Surfaces of Tested Charpy Impact Specimens from 2.2-8c Plate W9807-1 (Specimens DT301 to DT321 - Longitudinal Orientation) 2-26 "J. 2.2-9a to Fracture Surfaces of Tested Chagy Impact Specimens from 2.2-9c Plate W9807-1 (Specimens DLO31 to DLO51 - Transverse Orientation) 2-29 y

+ 5 4 i t LIST OF FIGURES (con't) Figure T4e P_ age 2.2-10a to Fracture Surfaces of Tested Charpy Impact Specimens from 2.2-10c Plate W9807-8 (Specimens CT101 to CT121 - Longitudinal Orientation) 2-32 l 2.2-11a to Fracture Surfaces of Tested Charpy Impact Specimens from 2.2-1Ic Plate W9807-8 (Specimens CT101 to CT121 - Transverse Orientation) 2-35 k

  • 1 biFi$ '

t 4-

i SECTION

1.0 INTRODUCTION

Northeast Utilities requested Westinghouse to perform an upper shelf energy evaluation for two nozzle shell plates from the Connecticut Yankee reactor vessel, plates W9807-1 and W9807-8. l This evaluation included the following: (1) Pedigree of the nozzle shell plate matenals; and (2) Charpy testing of 42 specimens from each plate. The testing material was supplied by Northeast Utilities and consisted of two slabs cut at 1/4T thickness from the Connecticut Yankee nozzle shell archive material plates identified as W9807-1 and W9807-8. A total of eighty-four Charpy specimens were fabricated, forty-two from each plate. Out of the forty-two specimens, twenty-one were cut parallel to the major rolling direction of the plate (longitudinal orientation) and twenty-one were cut perpendicular to the major rolling direction of the plate (transverse orientation). The specimens were fabricated in accordance with ASTM Specification E 23-91Ill. The Charpy V-notch tests were performed by the Nuclear Services and Materials Testing Depart-ment at the Nuclear services Division of Westinghouse,in acconiance with 10CFR50 Appendix G[21, ASTM E23-91Ill and RMF Procedure 8103, Revision 1. This data was used to determine the lis unirradiated upper shelf energy of nozzle shell plates W9807-1 and W9807-8 in accordance with ASTM E 185-82I33 1equirements. The results of this evaluation are summarized in the following sections. t All work involving the fabrication and impact testing of the charpy specimens was performed in accordance with NATD Quality Assurance Manual WCAP-9565, which meets the requirements of the Code of Federal Regulations,10 CFR Part 50 Appendix B.

  • N a$l l

l 1-1 J

~ ~ ?. SECTION 2.0 EVALUATION OF UNIRRADIATED UPPER SHELF ENERGY I FOR NOZZLE SHELL PLATES W9807-1 AND W9807-8 -l 2.1 Pedigree of Nonle Shell Plate Materials I The objective of this task was to establish the pedigree of the nonle shell plates in the Connecti-cut Yankee reactor vessel to determine if the unirradiated archive materials are of the same pedi- { gree as the reactor vessel nonle shell plate materials W9807-1 Heat No. A5887 and W9807-8 a W Heat No. B0716. Figure 2.1-1 shows the location of these plates within the beltline region i In order to perfonn this task, Westinghouse conducted a record searth within the Nuclear and - Advanced Technology Division (NATD). The information found in the record search indicated additional material representing the nonle shell plates W9807-1 (Heat No. A5887) and W9807-8 (Heat No. B0716) was obtained from Combustion Engineering and was shipped to Connecticut Yankee. In addition, dimensions of the slabs shipped to the customer and material test cenificates from the Lukens Steel Company indicating the copper composition of each plate were also found f in the record search, In order to verify the archive material at the Nonheast Utility site was the same matedal referred to in the transmittal letters found in the record search, Westinghouse personnel from NATD vis-agR l ited the Nonheast Utility site to examine the archive materials for identification markings and to j measure the dimensions of the slabs. The results of this visitindicated the identification markings j found stamped on the archive materials were W9807-1 and W9807-8 and the dimensions of the slabs were the same as those found in the record search. In addition, Westinghouse performed a chemical analysis on the archive material which showed the copper composition of each plate was exactly the same as that reponed in the matedal test certificates from the Lukens Steel Company. ' -l The nickel composition of each plate was never reponed in the material test cenificates. Tables 2.1-1 and 2.1-2 show the results of the chemical analysis for nonle shell plates W9807-1 and l W9807-8. Upon verification of the archive material, Nonheast Utilities cut slabs A and B from plates W9807-8 and W9807-1,inspectively, encompassing the 1/4T centerline as shown in Figures 2.1-2 and 2.1-3. These slabs were shipped to Westinghouse, which cut slabs C and D from plates W9807-8 and W9807-1, respectively, to fabricate and test fony-two specimens from each plate,in 7 both the longitudinal and transverse directions. ? h 2-1 I t vc

0 _y' 160 5-373C 5-W Y " C ~ 0 d 90 2700 x v 5 ss = R W3307-8 q ~ 2-373 5-373B O o 0 bW 1s0 d W3807-7 W9807-2 5 ~ y j + m s 90" 2700 E Y g @~ q 373 g373c g 5375B 5 W9807-4 ,o K 0 1s0 W9807-5 g 7-373C 7-373A g s.# w 0 90 2700 W9807-3 o W3307-9~ 7-3733 o } 6 Figure 2.1-1 Identification and Location of the Beltline Region Materials in the Connecticut Yankee Reactor Vessel 2-2

t t Table 2.1-1: Chemical Composition of Four Samples Removed from the Connecticut Yankee Nozzle Shell Plates W9807-1 and W9807-8 Concentation in Weight Percent Element 1 Plate W9807-1 (Heat No. A5887) Plate W9807-8 (Heat No. B0716) Fe matrix matnx matrix matrix t Co 0.008 0.008 0.009 0.009 Cr 0.104 0.105 0.057 0.057 Cu 0.103 0.102 0.115 0.114 Mn 1.417 1.402 1.491 1.483 Mo 0.488 0.486 0.486 0.483 Ni 0.134 0.133 0.081 0.081 P 0.007 0.006 0.010 0.009 Ti 0.005 0.005 0.005 0.005 g; V 0.001 0.001 0.001 0.001 Al 0.014 0.014 0.016 0.016 As 0.013 0.011 0.015 0.016 i B 0.007 0.007 0.006 0.007 Nb 0.001 0.001 0.001 0.001 Sn 0.019 0.019 0.011 0.010 W 0.000 0.000 0.001 0.001 Zr 0.001 0.001 0.001 0.001 i C 0.203 0.207 0.222 0.218 i S 0.012 0.006 0.019 0.017 Si 0.183 0.175 0.189 0.177 Analyses Method of Analysis '. 3 Metals ICPS, Inductevely Coupled Plasma Spectrometry Carbon LECO Carbon Analyzer Sulfur Combustion /Etration Silicon Gravimetric 2-3

i Table 2.1-2: Chemistry Results From the NBS Certified Reference Standards Low Alloy Steel: NIST Control Standards Element NBS 363 NBS 364 l Certified Reported Certified Reported Fe 94.4000 94.768 96.7000 96.963 Co 0.0489 0.041 0.1500 0.147 Cr 1.3100 1.183 0.0630 0.060 i Cu 0.1000 0.094 0.2490 0.242 Mn 1.5000 1.382 0.2550 0.238 Mo 0.0280 0.026 0.4900 0.468 [ Ni 0.3000 0.277 0.1440 0.128 l P 0.0290 0.030 0.0100 0.008 Esf i Ti 0.0500 0.044 0.2400 0.251 V 0.3100 0.295 0.1050 0.105 Al 0.2400 0.227 0.0080 0.015 As 0.0100 0.009 0.0520 0.042 B 0.0008 0.000 0.0106 0.016 Nb 0.0490 0.049 0.1570 0.057 i Sn 0.1040 0.103 0.0080 0.005 W 0.0460 0.020 0.1000 0.020 1 Zr 0.0490 0.024 0.0680 0.044 C 0.6200 NA 0.8700 NA S 0.0068 NA 0.0250 0.030 Si 0.7400 NA 0.0650 NA .bk ^ 2-4

10 1/2" \\ V \\ 24 7/8" \\ \\ \\ ~1/4T CL 8 'Ns tl .g g2p. o .? _I ~2 A i A iSLAB j B s1 L. ^ II 3/4" Slab B: 51/2" x 2.63" x 113/4" 3 Slab D: 51/2" x 1/2" x 113/4" 4 D 51/2" Y l-->

  • - 1/2" 2.63" 9

Figure 2.1-2 Location of Slabs B and D Cut From Connecticut Yankee Nozzle Shell Plate Archive Material W9807-1 2-5

10 1/2" l y V y 24 7/8" \\\\\\ ~1/4T 'CL \\g 5 \\ 51 \\ E i ~ 14R ' c 5Y i e A ! SLAB A j A g Slab A: 51/2" x 2.63" x 13 3/8" r 13 3/8" Slab C: 51/2"x 1/2" x 13 3/8" V c: 51/2" Y gl t <- 1/2" 2.63" Figure 2.1-3 Location of Slabs A and C Cut Rom Connecticut Yankee Nozzle Shell Plate Archive Material W9807-8 2-6

r 1 2.2 Fabrication and Charpy Testing of the Nozzle Shell Plate Materials 2.2.1 IIcal Treatment of the Nozzle Shell Plate Material Historical records show that the nozzle shell plates were odginally heat treated by Combustion Engineering as shown in Table 2.2-1. However, the information found in the record searth indi-cated the archive material was not post weld heat treated. 'Ihus, upon receipt of the archive mate-rial, Westinghouse had the slabs stress-relieved as shown in Table 2.2-2 to simulate all fabrication interstages and final stress relief of the actual reactor vessel materials. 1 Table 2.2-1: IIeat Weatment IIistory of the Connecticut Yankee Reactor Vessel Nozzle Shell Plates Performed by Combustion Engineering ""7) " Coolant Material (F (hrs) W9807-1 (Heat No. A5887) 1550-1600 4 Dip Quenched g' 1225 25 4 Fumace cooled W9807-8 (Heat No. B0716) Table 2.2-2: Additional Stress-Relief Performed on the Connecticut Yankee Reactor Vessel Nozzle Shell Archive Material Temperature Time Coolant Material (,F) (hrs) W9807-1 (Heat No. A5887) 1150 25 24 Furnace Cooled at 100 F/hr to 600 F W9807-8 (Heat No. B0716) T_- e a t 2-7 i

2.2.2 Fabrication of Charpy Specimens Westinghouse received two slabs, B and A, removed from the 1/4T thickness locatian from archive Connecticut Yankee nozzle shell plates W9807-1 (Heat No. A5887) and W9807-8 (Heat No. B0716), respectively. Slabs B and A had dimensions of 51/2" x 113/4" x 2.63" and 51/2" x 13 3/8" x 2.63" for plates. i From these slabs, slabs D and C were removed from plates W9807-1 and W9807-8, respectively, to cut the specimens. For each plate, twenty-one charpy specimens were onented so that the major j axis of the specimen is parallel to the surface and parallel to the principal rolling direction of the plate (longitudinal orientation), and twenty-one specimens were oriented so that the major axis of the specimen is also parallel to the surface but normal to the principal rolling direction of the plate l (tmnsverse orientation). Figures 2.2-1 and 2.2-2 show the anangement of how the specimens were cut from each slab. Specimens labeled DT301 - DT321 and DIA31 - DLO51 represent the specimens from nozzle shell plate W9807-1, oriented in the longitudinal and transverse direc-l tions, respectively. Similarly, specimens labeled CT101 - CT121 and CL001 - CLO21 represent j the specimens from nozzle shell plate W9807-8, onented in the longitudinal and tansverse direc-tions, respectively. The Chamy V-notch impact specimens were fabricated in accordance with the requirements of l ASTM E 23-91 Type A SpecimenUl. Figure 2.2-3 shows the specific dimensions used to machine l the specimens. A total of eighty-four (84) Chagy V-notch impact specimens were fabricated, forty-two from each plate. i l I i I l t i S.. t. i 2-8

O 51/2" i A / 6' DLO31 i DLO32 / E b b S 54I DLO33 p p p P P DLO34 o o o o o DLO35 DLO36 DLO37 / 9 8 8 5 8 </ DLO38 p p p p p DLO39 O O O C O DLO40 ~ DLO41 DLO42 0 1 O U C p p p p 11 3/4" m DLO43 o o o o o DLO44 S DLO45 DW6 g g g e g g DLO47 p p p p p p O O O O O O DLO48 DLO49 DLO50 DLO51 A8 li .,E eo SLAB D

5 N

Y / / 1/2= # 3 c:- Note: Per ASTM E-399, DL spaimen orientation corresponds to T-L reference direction. Similarly, DT specimen orientation correponds to L-T reference directim. Figure 2.2-1 Arrangement of Charpy V-notch Specimens in Nozzle Shell Plate W9807-1 (Transverse Specimens DLO31 to DLO51 & Longitudinal Specimens DT301 to DT321) 2-9

21 8.2 E [N ,a m, P 84 hp 88 Y Qp < tJ 3> $oP a4

  • E

?$ N n a n n n n n n n n s s s @ @ @ s s s @ @ s s g g s @ l g @ g n n n ^ ga 9 m n,, EB h E$ G G E G G G 5 M = u M u ~ ~ ~ <h o 8~ w w gn d O E S B. g6 BE -B CT121 u n 's< 8-g h hg' Crl20 CT115 CT110 CT105 g 4 ~$ rolling direction CTl19 CTI14 CT109 CT104 y g 5 {$ g. CTil8 CT113 CT108 CT103

d. 3-6 9

CTl17 CTil2 CT107 CT102 N CTil6 CTl11 CT106 CT101 g x x A A A A x V 9' j, s s. e a R w o0f k a= = m 83 E: -a g. 6* Y QG Q e. B e 4 h /' g

n 4 I J l i 'i .i i f 111.0021A 11.OOzlAl I 'I R.010*.001 4 3,,,, .079*.001 - l-A-l 1i e .i .. I N D.394*.OO3 xx i xfx I//l.OO21 AI. i ' -I STAMP IDENT. I.0825*.0390 3/32"'HIGH BOTH ENDS 2.Iss+ 000 j .100 I i

i l'!

-i.: i ~t L i F (?, ! I I Figure 2.2-3 Irradiation Sample Cap:ule Charpy V-Notch Impact Specimen 1 1 2-11 i i i i I ..r

l 2.2.3 Testing of Charpy Specimens The mechanical testing of the eighty-four charpy V-notch specimens was conducted at the West-inghouse Science and Technology Center. The testing was performed in accordance with 10CFR50 Appendix GM, ASTM Specification E23-91Ul, and RMF Procedure 8103, Revision I with modifications for instrumentation. Instrumented charpy tests were performed using a Tinius-Olsen M odel 74,358 J machine with General Research Instmments Model 8301 (Dynatup) instru-mentation system, feeding information into an IBM XT Computer. t With this instrumentation system, load-tin e and energy-time signais can be recorded in addition to the standard measurement of Charpy e, gy (Ep). From the load-time curve, the load to gen-eral yielding (PGY), time to general yieldmg (toy), maximum load (Pg), and time to maximum load (tu) can be determined from the load-time curve. Under certain test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (Pp), and the load at which fast fracture terminated is identified as the arrest load (P )- A The energy at maximum load (Ey) was determined by comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Ep) is the dif-ference between the total energy to fracture (Ep) and the energy at maximum load. U_ The yield stress (cy) was calculated from the threee-point bend formula having the following expression: l Oy=Po L (1) i B(W-a)2C i where L = distance between the specimen supports in the impact testing machine; B = the width of the specimen measured parallel to the notch; W = height of the specimen, measured perpendicularly to the notch; and l a = notch depth. The constant C is dependent on the notch flank angle ($), notch root radius (p), and the type of loading (i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which $ = 45 and p = 0.010", Equation 1 is valid with C =1.21. Therefore, for L = 4W, oy=Po L = 33 PayW (2) l 8 (W-a)2 (1.21) B (W-a)# For the charpy specimen, B = 0.394", W = 0.394", and a = 0.079", Equation 2 then reduces to: s s oy = 33.3 x P y (3) G i r 2-12 l

r where cry is in units of psi and Pay is in units oflbs. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula. The percent shear was determined from postfracture hotographs using the ratio-of-areas methods in compliance with ASTM Specification A370-89D. l The lateral expansion was measured using a dial gage rig similar to that shown in the same speci-fication. t The results of the Charpy V-notch impact tests performed on the umrradiated specimens from l nozzle shell plates W9807-1 (Heat No. A5887) and W9807-8 (Heat No. B0716) are shown in Tables 2.2-3 through 2.2-10. The Charpy V-Notch impact properties for each plate are manually fitted as shown in Figures 2.2-4 through 2.2-7. In addition, the fracture appearance of each unitra-diated Charpy specimen is shown in Figures 2.2-8 through 2.2-11. The load-time records for the individual instmmented Charpy specimens are presented in Appen-dix A. E r 9 u? ll + 2-13

c l Thble 2.2-3: Charpy V-Notch Impact Test Results for Longitudinal Oriented l Specimens from Plate W9807-1 (Specimens DT301 to DT321) t Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-lbs .loules mils mm. DT303 320 160 119 161 77 1.M 100 DT320 320 160 129 175 90 2.29 100 DT315 320 160 128 1 74 86 2.18 100 t DT306 250 121 128 1 74 85 2.16 100 DT310 250 121 124 168 89 2.26 100 DT307 250 121 129 175 90 2.29 100 DT321 150 66 133 180 88 2.24 100 DT309 150 66 126 1 71 90 2.29 100 Y-DT305 150 66 112 152 84 2 13 100 DT301 75 24 110 149 79 2.01 75 DT312 75 24 139 188 84 2.13 95 DT304 75 24 93 125 73 1.85 75 DT316 50 10 116 157 83 2.11 70 DT311 50 10 91 123 66 1.68 55 DT318 0 -18 48 65 43 1.09 15 DT308 0 -18 82 111 68 1.73 20 DT317 -40 -40 57 77 47 1.19 10 DT319 -40 -40 60 81 50 1.27 10 DT313 -75 -59 10 14 11 0.28 5 DT314 -100 -73 3 4 2 0 05 3 l DT302 -100- -73 6 8 6 0IS 3 f i e h ,~ f l +~_; i i f 2-14 i e

G i Table 2.2-4: Charpy V-Notch Impact Test Results forTransverse Oriented Specimens from Plate W9807-1 (Specimens DLO31 to DLO51) i Sample Temperatum Impact Energy Latem! Expansion Shear j Number F C ft-Ibs Joules mils mm l DLO37 320 160 98 133 78 1.98 100 l DLO41 320 160 107 145 81 2.06 100 DIA50 320 160 110 149 79 2 01 100 DLO34 250 121 104 141 85 2.16 100 -{ DLO35 250 121 98 133 81 2.06 -100 ? DLO39 250 121 -100 136 78 1.98 100 i DLO49 250 121 107 145 85 2.16 100 l DLO38 150 66 109-148 80 2.03 100 DLO42 150 66 95 129 76 1.93 100 DLO45 150 66 110 149 86 238-100 [ DLO46 75 24 87 118 67-1.70 - 70 DLO48 75 24 81 1I0 67 1.70 75 ( DLO31 50 10 58 79 54 1.37 55 DLO51 50 10 84 114 66 1.68 60-I DLO43 25 -4 53 72 46 1.17 40 i DLO44 25 -4 50 68 45 1.14 40 i DLO32 0 -18 43 58 38 a97 20 j DLO36 0 -18 35 47 31 a79 25 i DLO33 -40 -40 12 16 13 a33 5 DLO40 -40 -40 29 39 24 0.61 10 l DLO47 -100 -73 14 19-11 0.28 5 i e t f >j 2-15 j i i i

4 Table 2.2-5: Charpy V-Notch Impact Test Results for Longitudinal Oriented Specimens from Plate W9807-8 { Specimens CT101 to CT121) i Sample Temperature impact Energy Lateral Expansion Shear Number F C ft-lbs Joules mils mm CT117 320 160 112 152 82 2.08 100 CT109 320 160 107 145 85 2.16 100 CT110 320 160 111 150 82 2.08 -100' CT114 250 121 98 133 80 2.03 W9 CTI12 250 121 106 144 86 2.18 rw CT113-250 121 97 132 73 1.85 100 CT115 150 66 104 14I 79 2.01 100 CT119 150 66 112 152 83 2.11 100 . ip[e. CT108 150 66 108 146 79 2.01 100 t CTI11 100 38 96 130 74 1.88 85 CF102 100 38 113 153 84 2.13 100 CT105 100 38 100 136 76 1.93 90 l CT107 75 24 91 123 70 1.78 80 CT103 50 10 55 75 49 ' ?4 55 CT106 50 10 77 1(M 62 1.57 40 CT120 0 -18 48 65 40 1.02 25 Crl21 0 -18 38 52 33 0.84 20 I CT118 -40 -40 34 46 33 0.84 15 CT116 -40 -40 28 38 27 069 10 j CT101 -100 -73 3 4 4 0.10 3 CT104 -100 -73 5 7 4 G IO - 3 i l [ t i i 2-16 i

~' Table 2.2-6: Charpy V-Notch Impact Test Results for Transverse Oriented Specimens from Plate W9807-8 (Specimens CL001 to CLO21) l "3 ample Temperamre Impact Energy Lateral Expansion Shear i Number F C-ft-lbs Joules mils mm i CLOOM 320 160 77 104 67 1.70 100 CL014 320 160 89 121 73 1.85 100 CLOO6 32.0 160 78 /M 70 1.78 100 l CLOO3 250 121 79 107 73 1.85 100 CLO10 250 121 91 123 74 1.88 100 CLOO5 250 121 90 122 77 1.M 100 CLO18 150 66 - 98 133 76 1.93 100 CLO11 150 66 80 109 65 1.65 100 CLOO7 150 66 92 125 -74 I.88 100 g CLO01 100 38 62 84 58 1.47 80 CLOO4 100 38 78 IM 67 1.70 90 CLO20 50 10 58 79 52 132 75 CLO15 50 10 53 72 50 1.27 75 CLO21 25 -4 50 69 43 1.09 35 CL017 25 -4 48 65 44 1.12 35 CL013 0 -18 38 52 34 0.86 25 i CLO12 0 -18 23 31 25 0.64 30 CLOl9 -40 -40 23 31 21 0.53 10 l CLOO9 -40 -40 23 31 23 0.58 10 CL016 -75 -59 11 15 14 0.36 5 CLOO2 -100 -73 8 11 7 0.18 5 2-17 i w . m

a Table 2.2-7: Iristrumented Charpy V-Notch Impact Test Results for Transverse Oriented Specimens from Plate W9807-1 (Specimens DT301 to DT321) Normalized Energies Sample Test Charpy ft lbs/if2 Yield Time to Max. Time to Fracture Arrest Yield Flow Number Temp Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress (F) (ft-lbs) Ed/A Em/A En/A (Ibs) (msec) (Ibs) (msec) Obs) fibs) (ksi) (ksi) 'DT303 320 119 958 293 666 2219 0.14 3414 0 R2 74 94 DT320 320 129 1039 302 737 2265 0.14 3471 0.83 75 95 DT315 320 128 1031 202 738 2223 0.14 3403 0.82 74 93 DT106 250 12R 1031 294 717 211R 0.14 197R O_ RO 77 97 DT310 250 124 998 309 689 2357 0.14 3538 0.84 78 98 DT307 250 129 1039 300 739 2369 0.14 3521 0.81 79 98 Y D'I721 150 111 1071 116 715 26R2 0 16 1R22 0 R1 R9 10R 5 DT309 150 126 1015 322 692 2582 0.14 3764 0.82 86 105 DT305 150 117 902 260 642 2598 0.14 1742 0.69 R6 105 DT301 75 110 886 348 538 2920 0.21 3911 0.87 2900 1704 97 113 DT312 75 139 1119 348 771 2912 0.24 3951 0.89 97 114 DT305 75 91 749 271 478 2846 0.16 3R39 0 60 3117 1415 95 til DT316 50 116 934 362 572 3066 0.18 4082 0.85 2471 945 102 119 DT311 50 91 733 349 334 2961 0.16 40(M 0.82 3465 938 98 116 DT11R 0 4R 387 2R9 97 1762 0.17 4129 0 67 4129 61R 10R 121 DT308 0 82 660 362 298 3206 0.17 4099 0.82 3579 236 106 121 DT317 -40 57 459 316 141 3450 0 18 4297 0.70 4173 115 129 DT319 -40 60 483 312 171 3478 0.17 4310 0.69 4074 116 129 l DT313 -75 10 81 62 19 3521 0.17 3610 0.21 3610 117 118 l DT114 -100 1 24 6 1R 976 0.07 1052 0 00 1052 12 14 l DT302 100 6 4R 26 22 3136 0.12 3251 0 13 3251 Int 106 L i 4 4 l q

P Table 2.2-8: Instrumented Charpy V-Notch Impact Test Results for Longitudinal Oriented Specimens from Plate W9807-1 (Specimens DLO31 to DLO51) Normalized Energies Sample Test Charpy ft-lbs/ie2 Yield Time to Max. Time to Fracture Arrest Yield Flow Number Temp Energy Cha:py Max. Prop. Load Yield Load Max. Load Load Stress Stress (F) (ft-lbs) Ed/A Em1A Ec/A Obs) (msec) Obs) (msec) Obs) (lbs) (ksi) Otsil DI 037 320 9R 789 200 499 2248 0.14 3423 0.81 75 94 DLO41 320 107 862 279 583 2256 0.15 3355 0.80 75 93 DLD50 320 110 886 306 580 24,22 0.21 3473 0.86 82 99 D1034 250 1M R37 297 541 2344 0 16 1449 0 R2 7R 96 DLO35 250 98 789 281 508 2374 0.16 3471 0.78 79 97 DLO39 250 100 805 285 520 2314 0.14 3416 0.R0 77 95 DLO49 250 107 862 294 568 .2472 0.16 3525 0.80 82 100 g 'O DLO38 150 109 878 257 62L L 2558 0.14 3679 0.69 85 IN DLO42 150 95 765 246 519 ' 2631 0.15 3673 0 65 87 105 DLO45 150 110 886 326 560 2607 0.14 3756 0.82 87 106 DLN6 75 87 701 279 421 2930 0.16 3898 0.69 2809 1063 97 113 DLO48 75 R1 657 277 375 3027 0.17 1968 OA9 3259 1850 101 116 DLO31 50 58 467 281 186 3011 0.17 3929 0.69 3847 1306 100 115 DLO51 50 84 676 303 373 3154 0.21 4068 0.73 3680 1508 105 120 DLO43 25 53 427 284 143 3108 0.16 3978 0.68 3945 984 103 118 DLO44 25 50 403 275 128 3111 0.16 4000 0.66 3944 1943 103 118 DLO32 0 43 346 205 141 3224 0.17 3930 0.52 3901 504 107 119 DLO36 0 35 282 209 73 3206 0.17 3903 0.53 3903 504 106 118 DLO33 -40 12 97 58 39 3273 0.15 3470 0.21 M70 164 109 112 DLO40 40 29 234 171 62 3614 0 25 4063 0.44 4061 til 120 12R DLO47 -100 14 113 82 31 3666 0 17 3R46 0.25 3846 122 125 l l l I .h ^3

Table 2.2-9: Instrumented Charpy V-Notch Impact Test Results for Transverse Oriented Specimens from Plate W9807-8 (Specimens CL001 to CLO21) Normalized Energies Sample Test Charpy ft-lbs/i ' ' Yield Time to Max. Time to Fracture Arrest Yield Flow l Number Temp Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress (ft-lbs) Ed/A Em/A En/A fibs) (msec) Obs) (msec) (Ibs) Obs) Orsil (ksi) CLOOM 320 77 620 225 395 2301 0.16 3343 0.67 76 94 CL014 320 89 717 226 491 2312 0.14 3362 0.66 77 94 CLOO6 320 78 628 222 406 2301 0.14 3234 0.65 76 92 CLOO1 250 79 616 214 402 2429 0 14 1416 0 66 R1 97 CLO10 250 91 733 269 463 2602 0.28 3527 0.79 86 102 CLOO5 250 90 725 235 489 2471 0.32 3403 0.82 82 98 FT OIR 150 9R 7R9 2M 525 26R2 0.14 1774 0 69 R9 107 y .CLO11 150 80 644 254 390 27M 0.15 3702 0.67 90 106 y CLOO7 150 92 741 256 485 2729 0.16 3713 0.67 91 107 CL001 100 62 499 211 288 2967 0.17 3730 0.55 3553 1855 99 11I CLOO4 100 78 628 273 355 2870 0.15 3840 0.68 95 111 CLO20 50 58 467 26R 199 3120 0 16 3839 0.65 3711 1467 IN I16 CLO15 50 53 . 427 300 127 3088 0.16 3728 0.47 3953 1769 103 113 CLO21 25 50 403 222 180 3187 0.17 3979 0.55 3920 1326 106 119 FT 017 25 4R 1R7 2fM 1R2 176 0 15 1855 0 52 1R12 1111 102 115 CL013 0 38 306 214 92 3 45 0.16 3980 0.53 3970 667 108 120 CLO12 0 23 1R5 91 95 3304 0 18 3546 0 2R 3546 928 110 114 CL019 -40 23 185 145 40 3498 0.17 3957 0.38 3957 266 116 124 CLOO9 40 23 185 123 62 3469 0.17 3866 0.34 3866 M8 115 122 rf016 -75 11 R9 56 12 1472 0 15 166R 0 20 166R 115 119 CLOO2 -100 8 64 36 2R 3571 0 14 3639 0 16 3639 119 120 i 6 i ^h g

f Tabic 2.210: Instrumented Charpy V-Notch Impact Test Results for Longitudinal Oriented Specimens frum Plate W9807 8 (Specimens CT101 to CT121) Normalized Energies Sample Test Charpy ft-lbs/if2 Yield Time to Max. Time to Fracture Anest Yield Flow Number Temp Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress (F) (ft-Ibs) Ed/A Em/A En/A Ubs) (msec) (Ibs) (msec) Obs) (Ibs) (ksi) Otsi) CT117 320 112 902 206 606 2151 0.16 3447 0.82 78 96 CT109 320 107 862 281 580 2321 0.14 3398 0.78 77 95 CT110 320 111 894 287 606 2304 0.14 3479 0.80 - 77 96 CT114 250 9R 7R9 219 550 2451 0 16 1494 0 67 R1 99 CT112 250 106 854 291 563 2403 0.14 3543 0.78 80 99 CT113 250 97 781 284 497 2428 0.17 3560 0.78 81 99 CT115 150 104 R17 262 576 2746 0.16 3721 0 6R 91 1(r1 CT119 150 112 902 333 569 2727 0.14 3882 0.81 91 110 CTIOR 150 108 870 317 553 2697 0.16 3825 0 80 90 108 CT111 100 96 773 281. 492 2811 0.32 3736 0.84 93 109 CT102 100 113 910 275 635 2922 0.16 3954 0.68 97 114 i CT105 100 100 805 27R 52R 2R90 0.15 3955 0.69 2765 1776 96 114 CT107 75 91-733 270 463 2976 0.16 3899 0.67 99 7'4 CT103 50 55 443 259 184 3022 0.19 3918 0.65 3918 1432 100 115 CT106 50 77 620 2R9 111 314R 0 17 4063 0 69 1606 1744 105 120 Cr120 0 48 387 288 99 3328 0.17 4093 0.67 4085 592 111 123 CT121 0 38 306 165 141 3272 0.17 3R87 0.44 3887 899 109 119 CT118 40 34 274 222 51 3537 0.19 4209 0.52 4209 308 117 129 CT116 -40 28 225 192 34 3522 0.17 4174 0.47 4174 167 117 128 CT101 -100 3 24 10 14 1613 0.09 1764 'O 10 1764 54 56 CT104 -100 5 40 26 14-3160 0.12 3258 0.13 3258 105 107 l r I'j

t C) -150 -100 -50 0 50 100 150 200 1, l3 l I l l l l 3 ,3 \\ 100 o O O C' .-^ 80 2 5E 60 Wm 40 20 A( i W t f i i i 0 100 2.5 h 30 { 2.0 o o a-60 1.5 70 40 0 1.0 ? / 2 20 / 0.5 1 (0 1 0 0 ^ I I I i 0 UN1RRADMTED 160 200 N 140 o g o 160 120 o 0 5 100 y 0 120 0 q g3 o G y 60 9 80 u o 40 40 20 I I I 0 0 -200 -100 0 100 200 300 400 TEMPERATURE ( F) ~ Figure 2.2-4 Charpy V-Notch Unirradiated Impact Properties for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-1 (Longitudinal Orientation) 2-22

CD -150 -100 -50 0 50 100 150 200 I I I I 3 I 4 I 3 l f f f 100 3 0 .Q 80 E 60 N 40 20 I 0 100 2.5 o 2.0 o 3 n v e y 80 p 60 [2 1.5 7 S " 40 c/ 1.0 0.5 20 l I I I 1 1 0 0 o wumAin 160 120 ,N 0 8 o o 100 g 120 e 80 e O ~ m3 i 60 o 80 D 5$ 5 40 o 40 20 O I 0 O -200 -100 0 100 200 300 400 500 TEMPERATURE ("O + Figure 2.2-5 Charpy V-Notch Unirradiated Impact Properties for Connecticut Yankee Reactor Vessel Nor21e Shell Plate W9807-1 ( Transverse Orientation) 2-23

(oE) -150 -100 -50 0 50 100 150 200 O' d 00 o 80 ^ "d, 60 G 40 o I i 1 1 1 0 100 2.5 ^ o o o a 80 g s, g x 2.0 3 g a: 60 W 1.5 5 fo 1'0 [ 40 0 p o,,o ?x 0.5 0 0 o UNIRRAD:ATED 120 160 o o e 100 0 120 g 80 g r 60 80 5 Ei 5 40 o S 40 20 0 0 - 200 -100 0 100 200 300 400 500 TEMPERATURE (*F) h.li _ $ ~~.r Figure 2.2-6 Charpy V-Notch Unirradiated Impact Properties for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-8 (Longitudinal Orientation) 2-24

(D -150 -100 -50 0 50 100 150 200 l I I I I I I i 103 hN 'O .$- 80 'N o o % 60 Y" 40 2' o 20 Ps 0 100 2.5 y 80 o a 0 2.0 Yo o g 60 go 1.5 70 F 1.0 " 40 o J $20 0.5 0 0 o umAKAu 120 160 N 100 o 0 0 12D g 80 o e o o I C 9 0

  • 60 o

80 ~ S 0 $ 40 c 2 40 20 / o 0 i l l l I i I 0 -200 -100 0 100 200 300 400 500 TEMPERATURE (*F) p- .:.e Figure 2.2-7 Charpy V-Notch Unirradiated Impact Properties for Connecticut Yankee Reactor Vessel Nozzle Shell Plate W9807-8 (Transverse Orientation) 2-25

~ .-mm; e 9.w#..:*. i G.,., . D r As s. s. \\ ~ J G }g2.~ a 4 't 4 i Y '# Y&,,e.r-b' ww DT303 DT320 DT315 Tested at 320* F f y.<. &WY -[f'dk 'J ij).4f ) ' Th, ') h. 1 y! 7*9 v;<, l $..- mlk 3 4- -) 'Qt;j\\g ..a f N i 1 P-js > k l$

m..;.

%;},,.., WW$ ~ ,... q ; ?,.85l:N,., "). ". n* 5%.5 ;).- L ~ .,Q .f JL -l..., 4,. . sy v - < m.. '; ,..y w DT306 DT310 DT307 Tested at 250* 1 s's.'~.~. ,n 'M. q.4-v. !.it'y( ) ", di,, .- [ ?.. s.n~;ga. ~v ~s{} .c w;. 12 41 s ~C wwm: e-we u ' r$,NJ!i 5F ' ardtr ~ ..h.=sQ M~ ,yArc4 DT321 DT309 DT305 Tested at 150* F 1 F Figure 2.2-Sa Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-1 (Specimens DT301 to DT321 - Longitudinal Orientation) 2-26

i J, ,p, W r:3ed. W???;vg;lE;. 'i Qfjlf.,: 'Y*# ? 4d: ' w r$f a A..s-s 4 y

7. _ _

ij F 4 s eu 12 o, ~ 'h .i ..k; & Dg [ bW . C 4 %y d. 4.wds. " y12 y pM*: g.

n;,

1 ^ 2_. DT301 DT312 DT304 Tested at 75'F t y~- ,__c _ -_.. ' ;La siG39;Q .pp*g ' '*t f* .w4( 4 1s-i Q;M..L 9 c $P W; 5-h M i y lI M, 3 i a <s ..j Qg$,., f ll*l,jilW.~Ei ^ Q W '4 ,fa%g; <. N? F }.m.!.3be;. ,_. c .:-,d.e 4 ,y _n.- DT316 DT311 Tested at 50*F a Q ..p af.a.S ' %{lh, ffkk .n w r i X ..jd$ tis s. WiMqi 0y:;u, y...& y f c ::.sv - 3 p, m

A DT318 DT308 Tested at 0* F t

Figure 2.2-8b Fracture Surfaces of Tested Charpy Impact Specimens from Plate W98071 (Specimens DT301 to DT321 - Longitudinal Orientation) l 2 27

e ,O v, 7. =,.- + pkSDy$ &,.?'l i:j C.a yo%. Vf5: ^ 93 i I j mp;"w% 2 vmwm >.. ; i . g. " 'g ' ' < g.' k . :' 3 ", i s i ..{ ..,,.p. t j... .s 3 _. __ 3 .a g i DT317 DT319 Tested at-40 F 1 i . e, g, %:se<;;-3 g l [ L DT313 Tested at -75

  • F 4

'y '( 4 1 . [u_* * ',j '; b .y t .c.- W mens wm .g 45; j , h Qi y, '). 4

7. -
p.
v.

DT314 DT302 i Tested at-40 F t Figure 2.2-8c Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-1 (Specimens DT301 to DT321 - Longitudinal Orientation) 1 2-28 )

i l l l l l B 18 E DLO37 DLO41 DLO50 Tested at 320* F i ? I N W3 _ .,. 4y gj -+ + h M9 [$7*5N hf, 7;,%; .m y,ec<- DLO34 DLO35 DLO39 DLO49 I Tested at 250* F a i i (! !' [7 g. ,.'[f

\\

,Q@l.9 j i ,if ,i a A 4'4'h I \\ ? ?& f..; W ga +~ DLO38 DLO42 DLO45 ~ Tested at 150* F l i Figure 2.2-9a Fracture Surfaces of Tested Charpy Impact Specimens fmm Plate W9807-1 J (Specimens DLO31 to DLO51 - Transverse Orientation) 2-29

(N:.,' ? ~ ' Vi %g;;*J ~ g?4m.?: as q m f, o a w l _ g + al.t&."2 .j +4

  • *fgp g.

%mry:%,q DLO46 DLO48 Tested at 75 F r 7.y

q.,

1

, N,[

Yf,: ~_~fij v ~.

. u

,,.s ad;;;y W 7-~jn%-% 4 f fc.V V '%jf Ef F ?d

p. _r.

. z ,s,. .? z t n -+lj_ as

j. A : E N ~* A _T' x3 DLO31 DLO51 i

Tested at 50 F

  • ). 3{a; M C ~:.,y

.-. 4.- f ' y ng?g 1

r. P;id.
c t o.

WM24;%9 N 4 m k} w n m, @: 6J: sm+jpg,l n F. 3 .. y cq., -- -. x ;;;A .Aga:::': .l??'-% jSQQ$ ._. u-DLO43 DLCM4 ~ Tested at 25 F i I'igure 2.2-9b Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-1 (Specimens DLO31 to DLO51 - Transverse Orientation) 2-30 )

%{n'

9f.y' nv ~

Ryu epsu y I gt# W.;, %;x g g w .~s WB i i . - Wm- ;, 1 DLO32 DLO36 Tested at O'F OW# lig.?:Oid Q,iWhi A m n... f p y y%, g.,,- 3 ,,..;;., y h '"[, i , - J 4 ),,t;cmy,y.1 . j , c.; AL 1:- -.3 gggg;t DLO33 DLO40 Tested at -40* F W I?,9 ?

  1. g w~ M M-

,g ) Sm- --, f i l -..feV.f.63; ...n.. . w. DLO47 Tested at -100* F Figure 2.2-9c Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-1 (Specimens DLO31 to DLO51 - Transverse Orientation) 2-31

i 'd j i j l i i 1 ~. g Mi, ' f ,.ps v s. l CT117 CT109 CT110 Tested at 320 F l i a j -w- - a V y e, L u.. ..-7., ' e fb 7: Y f; ** i j h, E!Br 4illE J ~ 7,-;:,.?f[; "f'Xg a g.,y l f .i ' M,.f *L, Q g%$n.if, 'v K j h+,f.m'd;.'* * , k,, k $s, ',j,F,*yi.$1 s. s J-n o, q 1 CT114 CT112 CT113 Tested at 250 F i i %i r-r w. - yf, '3 ;i 4 y;g l 6dit4 4 L i j gimangeiliin A4 "" w%.c f, f. d/T M, I .( w4h" xf 't pr w-CT115 CT119 CT108 l Tested at 150'F ] I J l Figure 2.2-10a Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-8 (Specimens CT101 to CT121 -Longitudinal Orientation) 1 I 2-32 ll 1

4 l 4 -~. 4__Al/

  • 9 f*

y?1 rap s. ;> R,y@ Q..,m*,ei ! r c 'e v yi. '( Y.,y y~: '..<v. s - g:gfrgp f s g - @. y ,g i a ^:g p as M; g 'd u Mg 4. CT111 CT102 CT105 Tested at 100* F i I B t _s.-,

  • y.;+:: e,.

. ~ kg }! 9.4h,IN* h'

k -

t ) k i CT107 Tested at 75'F t 5 -rc T~- 4 IN2Nks y#e.l :.,'.Jii. f fD T 9,gn.u

  • - p
; g@.j th.;f,w!'i'* >.

n- ..w e.A M @ I j ' I~;16.- QggQ"2 1 h t s

c xmw 3

CT103 CT106 Tested at 50* F Figure 2.2-10b Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-8 (Specimens CT101 to CT121 - Longitudinal Orientation) J 2-33

.w. 1 'e .,ang .? e 9-& Qfg;Qg 'r ?. ,Y' s Q ; *4 -j[g7 Q y!$[?g:y f.?hi';} W i %K %::2;~.)

  • m.
+ e -; -

e-CT120 CT121 Tested at 0*F I t .79 _._x., z },.,eds 2.' dl

r,

. r,j;,:r:.,. ; n ag ..,v,, ,1 s .e 1 " ) t. . j /,f.l1 p,.,ewa 4 -l . ~. M h I

,.x

-x3 1 [y a_.y (. , [ lf.G ~:, g- -4 \\ ,g CT118 CT116 Tested at -40* F ) y. f '" ' '#l* ,I , [ d, - 'Y.h p, r*

k[ifl%l

'; Vf '% p,q 6g y;ss t .:::ws wars .$, W. m,( T q.mJ w, z.pfa:t t 'k'7 Y(i,p/;1

  • ; ;, -ap a gre

... t3 I i'.. * ?# - wicelg*sw,.1, l t-t 4( t CT101 CT104 1, Tested at -100

  • F 4

i ) Figure 2.2-10c Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-8 (Specimens CT101 to CT121 - Longitudinal Orientation) 2-34

~ Tgg;. ] . 7,r; r 7:o l ( l ?f ~ i 'is; .t%. ' _}z 2 CLOO8 CLO14 CIh06 Tested at 320'F i .i y,:{k. .w p,. Wie A , ym.,,7 ?$ i IJ'!kv: ' l.. ) };'Ef6iN 5 I' L .e.u.M g s t w- ~ CLOO3 CIA 10 CIh05 Tested at 250*F "hll5'l t 'cz .,g,]~ m g LT wam . s wac-A i i 4 pp.11= l i r ~ ..dQ3,w $ T CLO18 C1411 CIA 07 Tested at 150 F Figure 2.2-11a Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-8 (Specimens CL001 to CLO21 - Transverse Orientation) 2-35

W 'R T. 4W r,- -, _ r tp; %:r; z +* w<s-L.r W gy...,. -- :.: sre s~ i r 3 9 ,,a / ;

e., e y e,'gg:.g i:y Mg M..-

7 n.. ,, s --t w -CL001 Ckh04 Tested at 100* F 4 -~ . R D_'7.W's: ' 1 %x_ws?;;.Q

  • ci; - iQ
5. :n

,,w. >YY .* [} f'j h 5 f g, rww: Ly e. ' ch.- / g {1.. i,' r1.) .ez;y) ,r:.t fC p*,m e4 w y -: 's: ;-;..m. CI420 CLO15 Tested at 50'F u,o. .r . ~c--; ; .my e Pp ig.C3.. y f h;...: g, ' t ' ' y

  • A#a;.

.k2

  • >/3
  • w%

bS1 1pyy;- p;.gcyy s Q:.,, _a.: I. rg a:. y a..

4. c.d:, e g

,. + r-

  • sc i a-vg

'O . Gu ~ CLO21 CLO17 Tested at 25'F 1 Figure 2.2-11b Fracture Surfaces of Tested Charpy Impact Specimens from Plate W9807-8 (Specimens CL001 to CLO21 - Transverse Orientation) 2-36

i .i

  1. e;AW pi cy,v.# c i;,&p

%5f %6&ry at< r n$a sf.fs;. ,c4 t p.'?$ lgg.- g bbM,M l. f cn

  • ':L'

,s1.?i'A 4 yJ i: 9' o r-37 yMr.Aidf'.. 4 % / *.'o M.~, h' JO di f3.,,.. L /. $$,.. M...wlO4 m# ( Ph L % L._. 3 . :co1 ;..:.m ~ CLO13 CI512 ~ Tested at 0* F i ,.- : 9<

1.. - r,
1. ;,M, p, lp +

,71 l V. *.:+y.g* :,.n,j 7,< g ' ;; u - n <. s e,,.,,., i ~s,., 4:2 "*""' Lm!2,524 r-

  • ;$y :_. ~%..,
i' t i, &'jt

+ y. . j > b . k $**?.'?( ' ^ [ "l]; n j gg% ff ~CLO19 CIh09 Tested at -40* F F b h p:pla-w,. c+} r ' l qf]'77. ' ~ ^ 1 ..sv_ ,5 > ~n r64 j'q:tf < j: \\ p. : p:5 - c , :. q. : n..,3. -, m.re.. a, l h' Y ', i .f,'C ~ i 1 :';.f{454?Of;,;W,:,,: ily?fy,$$ df547 T .nS+3 4 .e

r w

2 ^l -. ;.r. -;. ; mb. e th wM L0l6 CLOO2 Tested at -75

  • F Tested at -100
  • F Figure 2.2-11c Fracture Surfaces of Tested Charpy Impact Specimens f cm P

'.e W9807-8 (Specimens CLOO1 to CLO21 - TWnsverse Orienfr.1rm 2-37

4 2.2.4 Determination of the Upper Shelf Energy ASTM E 185-82[3] defines the upper shelf energy as "the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region" In addition,"for specimens tested in sets of three at each test temperatum, the set having the highest average may be regarded as defining the upper shelf energy". l Using the Charpy impact test results shown in Tables 2.2-3 through 2.2-10, the upper shelf energy values for nozzle shell plates W9807-1 (Heat No. A5887) and W9807-8 (Heat No. B0716) were determined per ASTM E 185-82 requirements and are shown in Tables 2.2-11 and 2.2-12. The highest USE values for each plate are shown in these tables with an

  • and are listed as 105 and 90 ft-lb in the transverse orientation and 127 and 110 ft-lb in the longitudinal orientation, for plates W9807-1 and W9807-8, respectively. These results are summanzed in Table 2.2-13 and show the upper shelf energy in the transverse direction is about 82% of the upper shelf energy in the longi-tudinal direction. This is seen consistently in both plates.

s ?k. ; 2-38

Table 1.2-11: Calculated USE for Nozzle Shell Plates W9807-1 & W9807-8 in the Transverse Direction PLATE W9807-1 PLATE W9807-8 (lleat No. A5887) (Heat No. B0716) Transverse Orientation Transverse Orientation Impact Impact Energy Test Avera Energy Test Average @ 100 % Temperature ge @ 100 % Temperature USE Shear (F) USE Shear (F) (ft-lb) (ft-Ib) 98 320 105

  • 77 320 81 107 320 89 320 r

110 320 78 320 104 250 102 79 250 87 98 250 91 250 100 250 90 250 107 250 98 150 90

  • 109 150 105
  • 80 150 95 150 92 150 110 150 M.

-Ag 2-39

i I Table 2.2-12: Calculated USE for Nozzle Shell Plates W9807-1 & W9807-8 in the Longitudinal Direction ~ PLATE W9807-1 PLATE W9807-8 ) (Heat No. A5887) (Heat No. B0716) Longitudinal Orientation Longitudinal Orientation i Impact Impact Energy Test Energy Test hg @ 100 % Temperature

    • E*****

USE USE Shear (F) Shear (F) (ft-lb) (ft-lb) 119 320 125 112 320 110

  • 129 320 107 320 128 320 111 320 128 250 127
  • 98 250 100 124 250 106 250 lR$i 129 250 97 250 133 150 124 104 150 108 126 150 112 150 112 150 108 150 Table 2.2-13: Summary of Highest Average Upper Shelf Energy Values for Nozzle Shell Plates W9807-1 and W9807-8 e n nt Highest USE Highest USE ransvem USE Plate Transverse Orientation Longitudinal Orientation (ft-lb)

(ft-lb) Longitudinal USE W9807-1 105 127 82.7 (Heat No. A5887) W9807-8 90 110 81.8 (Heat No. B0716) 2-40

t ~

3.0 REFERENCES

1. ASTM E 23-91," Standard Test Methods for Notched Bar Impact Testing of Metallic Mate-rials" 2. Code of Federal Regulations,10 CFR Part 50, Appendix G," Fracture Toughness Require-ments", and Appendix H," Reactor Vessel Material Surveillance Program Requirements", Vol. 48, No.104, May 27,1983. 3. ASTM E 185-82,"Standani Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF)". 4. WCAP-12532,"A Review of the Upper Shef Charpy Energy Behavir of the Materials in theHaddam Neck reactor Vessel", by E. Terek, February 1990. 5. ASTM A370-89," Standard Test Methods and Definitions for Mechanical Testing of Steel Products". h o 2-41

I m l i e p.. APPENDIX A q~~ Instrumented Charpy Load-Time Curves 1 ,) ', 1 2-42 I I l i i i

i I i t APPENDIX A jgig Instrumented Charpy Load-Time Curves h J s i l b P 1 s p 2-G ?

tm TW.AST UTILITIE3 DT301 DT301 a 4 a a g

=_

h 3 *- n v y-o .D .8 1.6 2.4 3.2 4.0 TIPC C #CEO > Figure A-1. Load-time curve for Charpy Specimen DT301 M PORTT.AST UTILITIES DT302 DT302 s a a a j h S *. - n v ew =_ I k .8 1.6 2.4 3.2 4.0 .S TIME C PCEC ) Figum A-2. Load-time curve for Charpy Specimen DT302 - A.1 i

e e rmTEAST tJfit.! TIES 07303 DT303 4 4 4 5 0-E4 9 *- n v e- .a u-o e i i i .D .8 1.6 2.4 3.2 4.0 TIME ( fCEC > Figum A-3. Ioad-time curve for Charpy Specimen DT303 6 t m THCAST (ff!LITIES DT304 Df304 a 4 a i j ?.- a4 lii n S *- n w Tj: u_ E o .D .8 1.6 2,4 3.2 4.0 T!!C C PCEC ) Figure A-4. Load-time curve for Charpy Specimen DT304 A-2

4 L t t DT305 fMTWAST UTILITICS DT305 4 4 4 4 y f 9-o e

    • a A

S *- n v J .a N- .D .8 1.6 2.4 3.2 4.0 TitC ( tcCC ) i Figure A-5. Ioad-time curve for Charpy Specimen DT305 WI ' DT3% OT3M NtRTKAST UTIL1 TICS i a i 4 e t 7m E ** 7 F S *.- n e, (IA e y-4 t .g .3 1.6 2.4 3.2 4.0 s o TIPC C PCCC ) Figure A-6. Load-time curve for Charpy Specimen DT306 4 A.3

._m.m. .m. 4 e. o-i i retTEAST UTILITIES OT307 DT307 i o. e i e i i e [ s *- 17 A l a *- 'i t 9 m,- f i g s t j N-I 1 h e i .9 .8 1.6 2.4 3.2 4.0-TIPC C PtSEC ) l Figum A-7. Ioad. time curve for Charpy Specimen DT307 r h,.; f f

  • I I

i t .. j t tOtTEAST UTILITIES 07308 0T308 i a i f 'f-f 7.- i i4 -s i a a e-i 9 .e g w

3

~ e g ai i 5 'l t N-E i .,4 3 1 ~t ,g ' 1.6' 2.4

3. 2 -

4.0 I y T1tt ( ftSEC 3 t 1 i T I o Figum A-8. Ioad. time curve for Charpy S,Wan DT308 .l =1 'i A4 f r ~, +, - -,

rGtTTAST UTILITICS DT309 DT309 i E4 e 5 t-n v =_ ~ l i o .D .8 1.6

2. 4 3.2 4.0 TIPC

( FCCC ) Figure A-9. Ioad-time curve for Charpy Specunen DT309 N' tGtTHEAST UTILITICS DT310 DT310 a a s n E4 7 n 3._ .n w w_ h ". a ,.c. m_ 5 l l e s a .D .8 1.6 2.4 3.2 4.0 i TIMC C PCCC ) Figure A-10. Ioad-time curve for Charpy Specimen DT310 j 1 A-5 l

~ O o ~ tmTEAST UTILITIES 0T311 DT311 i e a e g 7 e- $ t-m v w_ .1 .N. - o .1 .8 1.6 2.4 3.2 4.0 TIPC ( # CEC > Figure A-11. Load-time curve for Charpy Specimen DT311 r >Y tGTHEAST UTILITIES 07312 07312 a a a e j 7-E4 if e 51-m w e-1 .a c. N-

p

= u;; e .D .8 1.6 2.4 3.2 4.0 TIPE C PCEC > 1 Figure A-12. Ioad-time curve for Charpy Specimen DT312 A-6

.. = _. n i i e .p 1 I .I fMTEAST UTILITICS 'DT313-DT313 a a a a i 7 e- [ .S. 4 t 1[ ~ i 3_ n w i i g l e af-t I t t Q .D .8 1.6 2.4 3.2 4.0. o TIE C nsEC > 1, i Figure A-13. Ioad-time curve for Charpy Specimen DT313 -1 i f l .I -I i i tmTEAST UTILITICS DT314 DT314 i e a e g I ? o_ .i L4 = ..l t S *- a w v., A 4 i f N

  • 1 ~,j

< (14$ i e e i .9 .8 1.6 2.4 3.2 4.0 1 TIE C ftSEC > l 3 i Figum A-14. Inad-time curve for Charpy Specimen DT314 ~ A7 j i

t + n - L r

  1. 0RTEAST UTILITIES DT315 DT315 a

s a e j ?.- ~ 54 ~ A S 9-e r ~ 9-f o .D .8 1.6 2.4 3.2 4.0 TIPC ( PCEC > 5 Figure A-15. Ioad-time curve for Charpy Specmen DT315 W DT316 PGtTEAST UTILITIES DT316 a a a a j h S t-e w v. .n q_ ) .D .8 1.6 2.4 3.2 4.0 TIPC ( FCEC ) Figure A-16. Load. time curve for Charpy Speemen DT316 A4

e w e tm THCAST UTILITIES OT317 DT317 4 e i e 7 m. h 3*- n w w N. - a a e a s .D .8 16 2.4 3.2 4.0 TIME ( ICCC ) Figure A-17. Load-tirne curve for Charpy Specunen DT317 PWI NORTHEAST UTILITIES DT318 0T318 a a e i g ?._ a4 5 *- M v 1 . C' - q -_m_ .D .8 1.6 2.4 3.2 4.0 TIFE ( PCCC ) Figure A-18. Ioad-time curve for Charpy Specimen DT318 A-9

C i i 4 PCRTKAST UTILITIES DT319 DT319 a 6 s s 4 7 e-A4 7 A S t-l n I w s, - tha q-t o i i .D .B 1.6 2.4 3.2 4.0 TIMC ( Ft2r > Figure A-19. Ioad-time curve for Charpy Specimen DT319 M. i t PGTHCAST UTILITIES DT320 DT320 .g i i i a 6 7 e-E4 m a 5 *- n w

v. -

d QO. l .D .8 1.6 2.4 3.2 4.0 TIPC ( Pc:CC > Figure A-20. Ioad-time curve for Charpy Specimen DT320 A-10

i e o + tm THEAST UTILITICS DT323 0T321 4_.. .a-4 i j ?=_ S4 m S *- a w w-u w-o i i i .D .8

1. 6 2.4 3.2 4.0 TIPC '

( PCCC ) Figure A-21. Load. time curve for Charpy Spectmen DT321 g D tm TE AST UTILITIES DLD31 DLO31 i e 6 i e 7_ E4 e S*- n w i .gN a e f =_ I o i .D .8 1.6 E.4 3.2 4.0-TitC ( FCCC ) Figure A-22. Ioad-time curve for Charpy Specimen DLO31 i A-11

r s i i o i t m T E AST UTILITICS DLD32 DLC32 4 g L 0.- ~ S4 ~ S *- ,l n w l e_ l 3-j .D .8 1.6 2.4 3.2 4.0. TIFIC ( PCEC > Figure A-23. Load-time curve for Charpy Specimen DLO32 IGNIP 1 PMTEA T UTILITICS DLC33 DLC33 e 7 m_ ~ EJ ~ ~ s :- ~ w . 8" 'f- .2 .8

1. 6
2. 4 3.2 4.0 TIPC

( ICEC > Figure A-24. Load-time curve for Charpy Specimen DL433 l A-12

a O ttytTEAST UTILITIES DLs34 DLC34 9 i a a e 7 m-h S *- a v g4

9. -

O 3 4 e .5 .8 1.6 2.4 3.2 4.0 TIfC ( PCEC ) Figure A-25. Ioad-time curve for Charpy Specimen DLO34 g i PGtTHEAST UTILITIES LC35 3 DLC35 i a a a g 7m* S ~ e m e-w C N . is ~ a y-o ] .D .8 8.6 2.4 3.2 4.D TIMC ( PCEC > I l Figure A-26. Load-time curve for Charpy Specimen DLO35 A 13

r ~ 1 j ) j - I I ? s -s k ~ l IgrTWAST UTILITIES DLO36 E.036 a s s l Ie i f a S *- i i a r t an i 08 - I i I l f e .D .8 1.6 2.4 3.2 4.0 l TIIC ( MSEC 3 Figure A.27. Ioad-time curve for Charpy Specunen DLO36 gl 3 r -i s t I totTWJtST UTILITIES OLW CL W l 9 i

m.._

s4 -a 5 m 1 S *a-w i $4:

51. j t 4, A

h o 3.z' 4.o f i.6 e.4 5 TIfC ( HSCC ) i Figure A-28. Ioad. time curve for Charpy SHman D1437 '} t A 14. f u

o tmTEAST UTILITIES DLC39 DL M a a + 4 &4 + 7 S *- v 9 4 n_ i i i o i .3 .8 1.6 2.4 3.2 4.0 TIE ( tcEO ) Figure A-29. Load-time curve for Charpy Specimen DM38 em THEAST UTILITIES DLC39 OLc39 a e s s j 7 =- a4 7 S *- n v 9 u.-

  • 6 l.

.c r

9. -

.D .8 1.6 2.4 3.2 4.0 TIE < tccc 3 Figure A-30. Ioad-time curve for Charpy Spectmen DIA39 d A.15

U l + 1 totTHEAST UTILITIES DLO40 DLD40 s s s s g 7=_ S4 e S *- n P h. - w u_ I t m m- __- _ 7 __ _ _ .D .8 1.6 2.4 3.2

4. 0 TitC

( PCCC ) Figure A-31. Load-time. curve for Charpy Specimen DIA40 P6 t t OLD41 tm TW.AST UTILITits DLD41 e s s s 4 &4 m ^ S *m.- w r g. r, s a .D .8 1.6

2. 4 3.2 4.0 s

o T1tt ( ftSCC ) Figure A-32. Ioad-time curve for Charpy Specimen DLO41 ) A.16

_3_ totT> CAST UTILITICS DLO42 DLD42 i i a i j S *- m v 6.e y-o .D .8

1. 6 2.4 3.2 4.0 TIMC

( PCCC ) 1 Figitre A-33. Load-time curve for Charpy Specimen DIA42 g NORTHEAST UTILITICS DLD43 DLO43 i a 4 g 7.- 3.,- n w ?S

e:~;

g-o 1 .D .8 1.6 2.4 3.2 4.0 TIPC ( PCCC ) Figure A-34.- Ioad-time curve for Charpy Specimen DLO43 l A-17

y s CLD64 DLO44 totT) CAST UTILITIES s s s s 4 7e S 9-n w l q-l .D .8 1.6 2.4 3.2 4.0 TIPC ( FCCC > Figure A-35. Ioad-time curve for Charpy Specmen DLO44 iieii rarT> cast urzuftes ao4s a sas s 7 e-a4 7 31-a w b .n.- f .n .s 2.6 e.4 2.e 4.o TitC ( FCCC > Figure A-36. Load-time curve for Chazpy Specimen DLO45 A-18

l o j PGtTEAST UTILITIES DLD46 DLD46 i i 6 4 j 7m E4 7 = *- n w q-f o .D .8 1.6 2.4 3.2 4.0 Tirt ( PCEC ) Figure A-37. Load-time curve for Charpy Specimen DLO46 W -a tGtTEAST UTILITIES DLD47 DLO47 4 a 6 4 j ?_ E4 7 m n w 9 d 9-

4..;-s

~ q .3 .8 1.6

2. 4 3.2 4.0 T1!C

( PCEC > Figure A-38. Ioad-time curve for Charpy Spedmen DLO47 A.19

m_. -p-l i ?' totTEAST UTILITIE3 ' DLD48 DLO4B i 4 s a f I c.- S4 7 A ei z 1 u-f / .o .s t.6

a. 4 3.e 4.o l

Ttte c nsce > Figure A-39. Ioad. time curve for Chirpy Specimen D1448 IMS.. 1 9 i totTMAST UTILITIES DLDe9 DL O*9 ) a s e s s 1 t 7 e-e &4 a s *a-l c i I lN i y:. a si-- i EY / i .9 .8 1.6 P.4 3.2 4.0-71tC ( MSEC ) I Figure A-40. Ioad-time curve for Charpy SHmm DI449 I n=--

6 e 4 to m CAST UTILITICS DLD50 OLD50 4 i i e g i a E4 i 7 S t-a v 94 6 =, _ = o .0 .9 1.6 2.4 3.2 4.0 TIfC ( PCEC 3 Figure A.41. had-time curve for Charpy Specimen DLO50 g toRTHEAST UTILITICS DL21 OLD 1 i 4 e a j h 3 4-n v .,6 N_ i .D .8 1.6 2.4 3.2 4.0 TIPC C PCCC > Figurn A-42. Load-time curve for Charpy Specimen DLD51 A-21 i

g CT101 CT101 t0 RTE AST Iff!LITICS i a i j t O e_ L4 ~ $ *n. - w y. q_ ~ .D .0 1.6 2.4 3.2 4.0 o Tirc < este > Figure A-43. Load. time curve for Charpy Specimen CT101 g!y, CT102 PORTMAST UTILITICS CT102 4 a i i g i 7_ h S *a-w g '~.l 7' 3 R -J .5 .8 1.6 2.4 3.2 4.0 = TIPC ( PCCC > Figure A-44. Load. time curve for Charpy Specimen CT102 A.72

4 o PORTEAST tJT!LITICS CT103 CT103 a 6 s 4 g Ie A4 E A 5 *m-r w 1 e N-b o i .D .8 1.6 2.4 3.2 4.0 T!!T C PCCC ) Figure A-45. Imd. time curve for Charpy Speamen CT103 cts H FORTHCAST UTILITICS CTI D4 Er+4B a a i s j A4 S 4-n w w. a ici. 5,- .D .8

1. 6 2.4

- 3. 2

4. 0 o

TItC ( PCCC 3 Figure A-46. Load-time curve for Charpy Speamen CT104 A-23

.. -., _.. ~. ~....- b l +- g -p i f l totTEAst UTILITits CT105 CT195 g 4 ? P t i 14 se a e ' f. a [ L n w e,_ i } 'f.- ,g ' 1.6 2.4 3.2 4.0 ,g TIE ( ftSEC ) 1 Figure A-47. Load-time curve for Charpy Sgmen CT105 hT r I L r ? I 1 .I 3 2 I totTEAST UTILITIE3 CTim CT1% a s s 4 i f9e a_ ) &J I a ~ a w 4 f W L i -? .a. ii 8 s .3 ' 1.6 2.4 3.2 4.0 ,g TIE ( ftSEC ) i I Figure A-48. Load-time curve for Charpy Specimen CT106 -i i A-24 -l

?

t = w e +,

e [ [ C1" POtTEAST UTILITIES CT107 G3107 4 s a s s 7 e-h a S 9-M w as 9-O 4 4 6 .9 .8 1.6 2.4 3.2

4. 0 Titt

( PCEC ) Figure A-49. laad-time curve for Charpy Specunen CT107

  • ie s

P rotTEAST UTILITIES CT108 CT108 ~ i 6 i 6 j ? e_ i &4 s ~ m M S 9-m 1 w Li.:.,Y .a y-t i j en i .D .8

1. 6 2.4 3.2 4.0 TIPC

( PCCC > Figure A-50. Ioad-time curve for Chany Specimen CT108 A-25

e + s' PGtTT.AST UTILITIES CT109 CT109 i i a j t t 7e S4 e n S +- n w w s-w 1 o ,9 .8

1. 6 2.4 3.2 4.0 nec

< rerC > Figure K-51. Load-time curve for Charpy Specunen CT109 M,, ForTHCAST UTILITIES CT110 CT110 a s n s 7 m_ L4 7 S *. - n w w. w a .D .8 1.6 2.4 3.2 4.0 TirC ( PCCC ) Figure A-52 Load time curve for Charpy Specimen CT110 A-26

PGtTE ATT UTILITICS CT111 CTall E4 7 S 9-n w a ~_ n .D .8 1.6 2.4 3.2 4.0 o TifC ( PCCC > Figure A-53. Load time curve for Charpy Specimen CT111 g CT112 totTKAST UTILITIES CT113 i + i i j E4 7 = S t-M w L,' 5 J .D .9 1.6 2.4 3.2 4.0 T!?C C PCCC ) Figure A-54. Load time cune for Charpy Specimen CT112 A 27

e { s f(RTEAST UTILITICS CT113 CTl!3 a i a 6 g 0=- S4 7 a S t-n w w-a w-e a a .D .8

1. 6 2.4 3.2 4.0 o

n TIPC ( PCEC > Figure A-55. Load-time curve for Charpy Specimen CT113 D CT!!4 ftRTEAST trT!LITIES CT114 i a i i j 7m E4 7 S t-n w v u w x., J f .3 .8 1.6

2. 4 3.2 4.0 TIPC

( FCCC > Figure A-56. Load-time curve for Charpy Specimen CT114 A.28

.k. L; 4 t .? tetTWAST UTILITIE3 CT115 CT115 n s s t i h 9- ~ o w i 7 - 1 i A i e w_ d 'p w s o u-

i f

o i i 3 .8 1.6 2.4

3. 2
4. 0 -

i TIE C ftSEC ) i Figure A-57. Load-time curve for Charpy Specunen CT115 .g l A l t 5 i fGtTEAST UTILITICS CTil6 CT116 ) s s J i O e_ -} a4 e i a I S *- n w w d I u_

  1. {

h b Y; l I .8 1.6

2. 4 '

3.2 ' ' 4.0 TIE ( ptstC 3-l Figure A-58. Imd time curve for Charpy Specunen CT116 A-29 t

+ e e 1 i i l tatTE AST UTILITIES CT117 UII# l s s s I + e- -54 i 6 m ^ e e 4 b .h y I A e e g u, g l I f s ,g ' 1.6 2.4 3*g 4.0 i ,g T!!C ( HSEC ) l 5 M.,! Figure A-59. Imd-time curve for Charpy. Specimen CT117 1 l t \\' 1 totTEAST UTILI*1ES CT!!8 CT110 'I j s s s s "m_ ~ &4 \\ ~ 8 l ^ i 5 t-n w i u G - u_ ?tj$ ; ~

7q.

i .D .8

1. 6 2.4 3.2 4.0 T!!C

-( ftBEC ) Figure A-60. Imd-time curve for Charpy Specimen CT118 3 i I . A-30 ' i m,.. t

a PUtTW.ATT UTILITIES CT119 CT!!9 6 a i e j 0. _. &4 ~ n 59-a w .J iu _ s o n a 9 .8 1.6 2.4 3.2 4.0 TIPC ( RSEC ) Figure A-61. Ioad-time curve for Charpy Specunen CT119 .g l' PGtTHEAST UTILITIE3 CT120 CT120 j P ?_ f A 31-n v lA N: .D .8 1.6 2.4 3.2 4.0 o-I T!?C - ( PCCC > Figure A-62. Load time curve for Charpy Specimen CT120 A 31

h e .') L rotTEAST UTILITICS CT121 CT121 6 4 a g ?- L4 ~ S *- n w v 1 a

  • t -

1 .9 .8 1.6

2. 4 3.2
4. 0 TIE

( Pt:CC ) Figure A-63. Load-time curve for Charpy Specir.:en CT121 g,.1 PatTEAST UTILITIES CLD01 CL001 n. n a4 ~ S *- a v ,u O, g a u u. 1, ' e.4 ' 3.a' 4.o TIE C ft:CC ) Figure A-64. Load-time curve for Charpy Speczmen CLOO1 A-32

J totTEAST tJT!LITIES CLCO2 CLCO2 J &4 7 n w b, u, _ 1 1 k !.6'

2. 4 '

32'

  • 8

.e ' ~ n TINC C PCEC ) Figure A-65. Load-time curve for Charpy Speamen CLOO2 g CL003 CL003 im THEAST UTILITIES a n a 3 7 m_ P n* w e, _ u die u_ .D .8 !.6 2.4 3.2 4.0 TitC ( PCEC ) Figure A-66. Load time curve for Charpy Speamen CLOO3 A-33

=. s i f Y .-c a 'I e J l terTW AST UTILITIES CLOD 4 CLOD 4 ^ e i

  • =

_I e q A 3.- a v 1 w ,w u 5 i + e .D .3 1.6 2.4 3.2 4.O { T!K ( PtSEC > l t Figure A-67. Load. time curve for Charpy Specunen CLOO4 .g- 'i l 'l 5 I r S totTWAtt UTILITIES C2.005 CLOO5 4 i &,J m A 5 *- ) g. e3 3 - ll O.*r an - f 23: .t 4 l$' l t i A 't r .0 .8 1.6 2.4 3.2 4.0 TIE C PtSEC > - j I . Figure A-68. - Load. time curve for Charpy Specunen CLOO5 i + 6 A 34 I

6, 's. i f ~ t letTEAST UTILITIE3 CL906 CL006 m-1 e e i 6 4 . 7 e-l 54 .t ~ i' i 5 *- i e' t w I w- !i u-i g c a s s .9 .8 1.6 2.4 3.2 4.0 j T1tt ( ftSCC ) -l t i Figure A-69. Load-time curve for Charpy Specimen CLOO6 gl !'l I !'i e ^i i PGtTEAST UTILITIES CLOOP CLOO7 e e a i i 4 'l 1 l i ] 7 e-a4 i o = *- I n w i e-lA a.e:- /E'Il m-1 r j e i i e 5 .c .8 1.6 2.4 3.2

4. 0 l

T!!C : ( ttBEC ) I i Figure A-70.- load-time curve for Charpy Specimen CLOO7 A-36 I s+ ...-.l. L. i, -.,..

e b e d 4 PORTEAST UTILITIES CLODB CL008 i i j M. e 8v S *n-v s N- -^ .D .8 1.s 2.4 3.2 .0 s o TIE ( Pt:CC > Figure A-71. Ioad. time curve for Charpy Specimen CLOO8 g~: CL909 totTEAST UTILITICS CLOO9 6 i a e n ~ at-A 3., _ n w i N i I w n-cs; j 1

2..

2.2 ..o .o .e s.s TIE ( Pt:CC > Figure A-72. Load. time curve for Charpy Specimen CLOO9 A-36

m y... _. - -,y _m.._a__. 1 ____...,mm_ .m, j. m. i e i t 4 l ? 9.' r

b i

i fe m EAST UTILITIE3 CLC10 CLC10 g e 4 4 4. i e ?.- ^ 14 7 t 2 ae "d w ..j ? N t { n-I - l . y e .t .8 1.6 2.4-3.2 4.O Tift ( ftSEC ) Figure A-73. Load. time curve for Charpy Specimen CLO10 gl ) . t P - t l l t op oil l PetTEAST UTILITIES CLtet CLtte-4 a i i rj 4 7 e- &4 I t 3 e-n I ~ 'I w- .. 'i. J

= 3

l q 4 j S a a a 4 . 1 .2 .8 1.6 2.4 3.2 . 4. 0 a T!!C ( tt3EC ) j 1 i 1 . Figure A-74. Load-time curve for Charpy Specimen CLO11 l i 1 i . A-37 y., m,7-w.,,

,.\\ 4+ 0 'd~ _ w i I f(NmEAST UTILIT1[S Clott CLC12 a e i t i 7m A4 7 a 3._ e i i e, = l h .I f e a n 1 .9 9' 1.6 2.4 3.2

4. 0 g

TItC ( MSEC ) i k[ Figure A-75. Imd. time curve for Charpy Specimen CLO12 ? ? l \\ NtymEAST UTILITICS (1013 CLS13 4 i 54 i 7 n n l ~ 5-ce e.xi ; g 3-1.6'

2. 4 '

3.2'

4. 8 f

T!tt ( MSEC ) ? Figure A-76. Load-time curve for Charpy Specimen CLO13 1 A 38 -.g9 ya 3-,w-.-, r

F.- .f-A e ,. a 4 PUtTEAST UTILITIES CLC14 CL0t4 s a a s e .I I ) 7 e-l S4 1 i ^ F 3 *". - I w t a w E ",' i 3 .l f 9-t t 6 .D .8 1.6 2.4 3.2 4.0 .j i 4 T!PC ( MSEC ) t -+ t Figure A-77. Imd-time curve for Charpy Specimen CLO14

g. ;

-l t i 5 t i totTHCAST UTILITIES CLC15 CLC15 1 I l ) ) 7 e_ t &. 4 -i / s ^ f 3._ r o w al $$5 ' l ,9 - j M-r l 3 .9 .3 - 1.6 2.4 3.2 ..4. 0 e 1 T!!C ( ftSEC ) Figure A-78. Load-time curve for Charpy Specimen CLO15 } 5 A 39 li m. ...2 .g'-

\\ o. f <.A' I A e e j tmTEAST UTILITICS CL0l6 CLD16 a 6 O e-a4 I a 3-n. w i } .a i ~- A k o .D .8 1.6 2.4 3.2 4.0 TitC C PCCC ) Figure A-79. Load-time curve for Charpy. Specimen CL016 ~ M tm TE AST UTILITICS CLC17 CLC17 e a i J ?. ~ AJ 7 5 *- i ( 1 v v.:. - r qq _ ~ a r i

  • D

.8 1.6 2.4 3.2 4.O TIPC C ft CC ) s Figure A-80.. Ioad time curve for Charpy Specimen CLO17 A-40

e t ? t r e, I n g b ttstTEAST UTILITIES CLC18 CLD18 i a 6 e i A4 = a 8 5 *- as v v Q w, 5 r.~ 9-o .D .8 1.6 2.4 3.2 4.0 i T!PC ( fCCC ) i Figure A-81. Ioad-time curve for Charpy Specimen DLO18 . l!Gs. ! i k k i e. l r tt3tTE AST UTILITICS CLC19 CLS19 a i e e g i ' 7 e- [ &e a r .r a 3 *9-l 1 I w y w ei u ig; _v - r 6 e i 4 .D .8 1.6 2.4 3.2 4;0 T!st '( ttSEC ) i Figure A-82.' Ioad-time marve for Charpy Specimen CLO19 ~ A 41 - .i ..-.r. ..,.a

O . e- ? jf. y + PORT)CAIT UTILITIES CLO20 CLQ20 s s 1 a 7e S4 ~ 59-n w w ~ .D .8 1.6 2.4 3.2 4.0 TIPC C tcEC > Figure A-83. Load-time curve for Charpy Specimen CLO20 NCRTW.ATT UTILITIES CLO21 CLD21 i a a a g 7 e_ 5

  1. ~

-e l w e .,o ~ h,i,$ .--s .0 .8 1.6 E. 4 3.2 4.0 TIPC ( fcEC 3 i Figure A-84. I.oad-time curve for Charpy Specimen CLO21 A-42 s}}