ML20035C377

From kanterella
Jump to navigation Jump to search
Forwards Responce to NRC Request for Addl Info Re 930108 Application for Amend to Licenses DPR-77 & DPR-79 Re Deletion of TS Surveillance Requirement 4.4.10.b, Supplemental Exam of Reactor Vessel Nozzles
ML20035C377
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 04/01/1993
From: Fenech R
TENNESSEE VALLEY AUTHORITY
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NUDOCS 9304070137
Download: ML20035C377 (37)


Text

..

i A

-.a..-

~

z.-.-

--~.-.-.-

TenneEhee Va!!ey Authority, Post Offee Box 2003. Loady-Dinisy, Te innsee 37379 2000 Robert A. Fenech V(.e fhesdent. Sequoyah Nuclear Plant April 1, 1993 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555 Gentlemen:

In the Matter of

)

Docket'Nos. 50-327 Tennessee Valley Authority

)

50-328 SEQUOYAH NUCLEAR PLANT (SQN) - ADDITIONAL INFORMATION FOR TECHNICAL SPECIFICATION (TS) CHANGE 92-16 DELETION OF TS SURVEILLANCE REQUIREMENT (SR) 4.4.10.b - SUPPLEMENTAL EXAM OF REACTOR VESSEL N0ZZLES '

Reference:

TVA letter to NRC dated January 8,'1993, "Sequoyah Nuclear Plant (SQN) - Technical Specification (TS) Change 92 Deletion of TS Surveillance Requirement (SR) 4.4.10.b -

Supplemental Exam of Reactor Vessel Nozzles" A meeting between TVA and NRC staff representatives was held in l

December 1992 to discuss TVA's TS-Change 92-16 that would contain.

justification for deleting an SR associated with examination of SQN's reactor vessel nozzles'for underclad cracking. TVA submitted to NRC TS Change 92-16 by the referenced letter.

Information was subsequently-requested by NRC that was provided by TVA to assist and support the NRC l

evaluation of TS Change 92-16.

In an effort to resolve additional NRC staff questions regarding proposed j

TS Change 92-16, a demonstration of current ultrasonic testing (UT) technology and sensitivities for detection of reactor pressure vessel (RPV) nozzle bore underclad cold cracking was conducted at Southwest j

Research Institute's (TVA's contractor) facilities in San Antonio, Texas, i

on March 23, 1993.. NRC's Nuclear Reactor Regulation (NRR), Materials and Chemistry Branch Metallurgical Engineer, Donald Naujack, and NRR Contractor, John Gieske, were in attendance at the subject meeting. The

nformation presented at the meeting is enclosed.

l 1

l 060067 I

U q

9304070137 9304o1

}.

'yDR: ADOCK'05000327

~

PDR.

L U.S. Nuclear Regulatory Commission Page 2 April 1, 1993

- With the demonstrated UT detection capability and its ability to meet the-sensitivity requirements of SR 4.4.10.b, the following exam scope of the -

SQN Unit 1 RPV nozzles is being planned for the Unit l' Cycle 6 refueling outage. The scope of the exam will be the standard 10-year American Society of Mechanical EngineersSection XI scope of the nozzle inside radius of all eight reactor nozzles. Additional examinations are planned for the Unit 1, Loop 1, outlet nozzle adjacent to'the safe-end region, where four indications of underclad cold cracks were-identified during the 1980 exam, and the Unit 1 Loop 2, inlet nozzle bore-region, where 21 indications of underciad cold cracks were identified during the 1980 exam.

Indications of underclad cold cracks with amplitudes 20 percent of the distance amplitude curve (DAC) and greater will be further examined for size and length.

Indications of underclad cold cracks with amplitudes less than 20 percent of the DAC will be assessed for disposition. The ultrasonic test sensitivity being applied during the Unit 1 Cycle 6 refueling outage will have the equivalent ability to discriminate underclad cold cracks at 20 percent of the DAC limits based on the demonstrated received signal from the 2-millimeter flat-bottom hole used for calibration in 1980.

As currently required in SR 4.4.10.b, the results of these Unit 1 exams will be reported to the NRC.

Additional underclad cold crack exams are not applicable to SQN Unit 2 because no underclad cold cracks were identified during the 1980 exams as a result of the manufacturing differences.- IVA plans to conduct Section XI required exams of the SQN Unit 2 vessel nozzles. Results of the Unit 2 exams will be provided with the normal Unit 2 Cycle 6 inservice inspection report.

TVA requests confirmation from NRC as to the acceptability of the approach outlined above, as soon as possible, to support the ongoing Unit 1 Cycle 6 refueling outage.

Please direct questions concerning this issue to D. V. Goodin at (615) 843-7734.

Sincerely, Robert A. Fenech Enclosure cc: See page 3

P U.S. Nucidar Regulatory Commission Page 3-

' April 1 1993 cc (Enclosure):

Mr. D. E.-LaBarge, Project Manager U.S. Nuclear Regulatory Commission One White Flint, North 11555 Rockville Pike Rockville, Maryland-20852-2739 r

NRC Resident Inspector

_t Sequoyah Nuclear Plant' 2600 Igou Ferry Road Soddy-Daisy Tennessee 37379-3624 t

Regional Administrator I

U.S. Nuclear Regulatory Commission f

Region II i

101 Marietta Street, NW, Suite 2900

.i Atlanta, Georgia 30323-0199 6

F h

i I

I

~

i f

4 n

4 P

ENCLOSURE-t

.i

. TENNESSEE VALLEY AUTHORITY INFORMATION PRESENTED TO NRC

.[

AT THE SOUTHWEST RESEARCH-

.)

INSTITUTE FACILITY l

SAN ANTONIO, TEXAS t

i i

MARCH 23, 1993 e

i 2

i F

}

f

i l

AGENDA D. Goetcheus, TVA Opening Remarks / Background Discussion Program introduction G. Lagleder, SwRI Review of Current SwRI Techniques C. Barrera, SwRI Results of Parametric Study G. Lagleder, SwRI par Device Demonstration

.C. Barrera, SwRI

- EDAS Demonstration H. Diaz, SwRI Technical Approach R. Bentley, TVA Closing Remarks D. Goetcheus, TVA O

9 h

m-m_,-

_--m._m--w____m-_m_m_,~_-

-.sw+-e-+i-.

_w,e

  • w

..m

--.,m v---

-w,-~~_

vm.--

e-.wwa--,wev__.

_--------_.-n-v*w-m-_,-_

-- a m-m--

m - m.m -

9 PROGRAM INTRODUCTION Underclad flaws detected preservice and determined to be-acceptable per ASME standards-Baseline calibration procedures much more sensitive than typical ASME/RG1.150l procedures TVA has committed to determine if the flaws have grown under

. service conditions-r e -

V

-w--me

- e we w-wars e v*

,wv w

e w-in W twt w

-m-vwet-sw+iww-e seeiw w-e 1e wwwwer ea sem=m*use

=er-+>1w-weww-we tre e 1*e 1w-ww e ~w-vs

_.-,vm__e w

.+6--w-'

e we

--ma e-

-a-

,- i,w,*

ww-w-wewe---a - ve wme

-i--++am

-we-- w+ tw w w-me w w+

w-

  • mas-vhim-er a er r-www

PROGRAM -OBJECTIVES With a set of actual underciad crack specimens:

Evaluate flaw response differences between baseline procedures:

-and ASME/RG1.150 procedures Determine whether ASME/RG1.150 procedures._can detect underclad flaws similar to.those detected preservice identify the differences'in flaw sizing capabilities between the

=

baseline procedures and current procedures

r

~

m g

n E

~

i g

s n

u i

t s

e u

s t

e w

s a

l w

f

~

a no l

f n

a t

o a

a d

t S

a g

K d

n i

S g

z i

~

A n

s T

z d

i i

s n

M a

A dn n s R

a.

o e r

G it u n

O o

cd R

a e e i

t t

t P

a cs ec d

ee do t r r

e eu dp n

dd e

e t0 i

a l

le ac 5

s uo m1 a

nr o

1 b

ap tuG me aR e

n n/

z ni iE y

ilae atM la t s n

ba bS A

Ob OA

=

m s

?p SwRICURRENT APPROACH TO DETECTION OF NEAR-SURFACE FLAWS l

v-rc%_,---,

w e,v e ww,,1---- +,.

.g w e+ et r w..v w.- w w e eer,

-t ww g -esy me w w---w vw ev.gg#

-gw-mar : n

-wi* m = --

,----*~,vec-,pse eg, y

--g%--ws, m e s-w.

-m.,%,

ar-r aev, - wsw w w +rw e ew re-w wm e--w w

s-wwwe+,--w-+*, -

w, e-ea -o w-rw

=

s.

1 Y

50/70 EXAMINATION METHOD NRC Regulatory Guide.1.150 requires the capability to effectively detect e

near-surface defects / flaws Prior to the 50/70, SwRI utilized a 70-degree refracted longitudinal, dual-I e

element search unit As multibeam technology advanced, the 70-degree longitudinal dual e-search units were replaced by the 50/70 search units

50/70

_ X SCANNING _

I I

TO TRANSMtTTER is Z=0 8

A e

CLADOtNG 2 1

- W-Le

'j BASE MATERIAL Z

h Crack Tio r X:

X=0 INTERACTION OF THE TRANSMITTED L WAVE WITH AN UNDERCLAD CRACK (A)

X=X, X=Xg

/

?

2 is i,

is L,

I,W 4

II L. Woroocting t, et ttw L eteroseting 14 et the upper crock outremW

- lowet erock entromer

-THE TWO MOST READILY OBSERVED PULSES (B) -

... - _ -... _ _ - _. _ _ _. - _. _.. _ _. _ _ _. _... __..-._--_-_.__..-__.,.-..,-..-..--._...~,_,-.._.,.-...,___._......-_,-~.__,~,~__.;_______

50/70 DESCRIPTION e

Tandem search unit e-Multibeam/multimode uses the longitudinal modes for performing examinations e

e Used to examine in four directions o.

Used for vessel wall (inner 1/4t) and nozzle bore near-surface examinations Used.for nozzle butt weld (lower 1/3). examinations from the inside surface e

e Used in video mode for detection 1

f 31-s_.....-w,

...w,-..

e...-.,--,,,.

,n%..e

%,v.,%.%,.,

m

.--..,-..u-,.,,*ee,w

,..,e...

.w

-w.w s--

-vew..

,..-s.-

.-#s.

.,o.-,w,m,

..c......-,,--_e.-

..~.-. _,

.s.wm

,va..,ut.

m,__

b l

50/70 ADVANTAGES Relatively easy to perform distance amplitude calbrations e

Distance (depth) calibration allows for easy location of flaw depth -

e Amplitude ca!!bration is no more complicated than " standard" ASME DAC e

e i

calibrations-Due to the echo-dynamics, when scanning is performed in " beam o

component" direction, small flaws.can be. easily observed on a CRT even when " noise" or " lift-off' is present -

i The 50/70 tandem search unit allows examination of a longer beam path e

than the " side by side" conventional 70-degree longitudinal dual search units Scan overlap with a 50/70 search unit is not as small as with a 70-degree.-

e i

longitudinal dual search unit When using the same calibration sensitivity, the 50/70 search unit will e

detect flaws at a higher amplitude than the 70-degree-longitudinal dual i

L search unit m5._s..mw-v..--,Ew,,..=-e--,e.,--


+~-,-v..,-.--%--

.-...--,%,r,v-w-..,.,.-,,v,-*.ewwe,--rir er--m-r,-,--+.-+,,,,-

-v%-,wwwww,-,--

-r--

-. -e r-<-.--.=%v-=-

--i-ewi.---.

-2.w,.n.--,- -... -."

1 1

50/70 CAllBRATION r

e -

Distance calibration performed in depth rather than metal l path Depth calibration is performed using side-drilled holes at varicas depths e

starting at the clad-base metal interface

- Depth of calibration is usually limited to 3-1/2 inches e

DAC curves for amplitude calibration are constructed the same way as any.

e angle-beam DAC curve 1

Side-drilled hole reflectors should be in accordance with Figure IWA-2232-e 1 of ASME Section XI

- 1986 Edition GENERAL REQUIREMENTS Fig. IWA 2232-1

{

?

r t

t r'

t' j

W 4. 7 b

o

'y ' h.y $.

I y

't if U

l I

W (10 in. men.)

I k

4 + G m 41 3

3 *-

aAA

?

hi F o

.6 a

Lett ede r

Reght sde W/2 minus 1 in.

T/4 min.

w e-2 in.

l Notes (2) and (51)

+

f [ Note (1) and 1511

{1in.-

. [(Note (3))

f 4

3

~ M*!D t

g, I

T (Note 1911

-f n wL 4tG-l 8+

- 2 in.

n:+.

1 in d

fj 4*

[I r Scribe lme G-2 s:.ge I

e,

1

.. p.

-4

\\ l*dd*9 if Qu"ed

((Notet311 -

1 in +

~I/4 **-

C 2 in. men.

I" I3II I

4T r

e NOTES:

4 (1) Holes shall be dritied and reamed to 5/16 in, dameter and positioned at 1 in, intervals through the cahbration block thickness as shown on the lef t see of Fig. fWA.22321. The five sdedrilled holes I

positioned below center thickness are located ore the near side; the (we hots positioned above center thickness are located on the far sde.

I (2) Hotes shall be dritied and reamed as shown en the reght sede of draweng but located on a scribe line i

'{

at 1 in. snterrats positioned through the thickness. TN holes shall be afternated sde to see as i

shown so that the distance between any two holes as 2 in ftop and bottom holes are 1 in, from the

{

surfsce).

(3) One notch on top and one on the bottom as shown, nach 2 en. long by 1/4 in, wde by 2%Tdeep. If the block is cladded, the through cted notch shall be 2% deep mto the base metal. Notches shall be i

installed using flat end malls or other suitable means schsevang the same notch profile.

(4) The tolerance for hole diameters shall be a 1/32 in. Notch depth tolerance shall be +10 and -20A The

'i tolerance on hole location through the thickness and on depth shall be 1 1/S en.

(5) For cahbration blocks 4 in, and less in thickness, the dimensions shown are changed to:

f tal width Wshaft be 2T or 6 in., whichever is less;

.. j (b' three sidedrilled holes imm.) shall be anstalled at T/4 Iman.) locatsons with hole diameter

{

at 3/16 in.1 1/2 in. deep.

(6) Calebration at DAC curves obtained using the block shaft melude all sidedrelled holes representeng f

the e. eld thickness to be exammed.

}

D) The surface notches and surface notch response caubration are opteonal.

')

(8) Inner near surface (etad base metal interface) eeflectors shall be installed as follows:

fa) a 1/8 m. Imax.) diameter sidedrilled hole (SDH) shall be plated at the clad base metal enterface j

to estabissh the reference levef; i

(b) at least two addstional in. Imaa.) SDH shall be snstalled at 1/2 m. encrements ima's) t., estabbsh metal path calibrateon, and; (c) alternatevely, for enemmations conducted from the clad sosiace, a separate clad block may be used

.[

~

- contammg the reflectors in thes Note. (a) and (b). Block thickness shall be 2 an. Imsn.l.

l

19) Caubration block thickness shall equal or exceed the mamamum werd thickness to be examined.

l

1 FIG. IWA-2232-1 ALTERNATIVE CALIBRATION BLOCK i

1 l

+

15 i

1 1

?

y y

e e

7 E

t Y

SwRICURRENT L

APPROACH TO SIZING OF

. NEAR-SURFACE FLAWS L

i I

I l

i-f '..

t 6

- l

~-,arww m.* =,e r ime ew ee-==m -

t =,a m e n+%w ww waw - v+e we e-me s

-e -w ww

+-e~ w ea v e e e w n-r e-e r--w-a w -= w we-e+

rwe-m --- w,e

---+-+rw++=-

- - -eeve==--+w=e=w--4=-*e=E*.-hw-*

ew=-

>a-ww=--

--++,eu e.r==- - - - - - ---m---- --wu m------ -

=

1 SHEAR LONGITUDINAL INVESTIGATION AND CHARACTERIZATION i,SLIC) METHODS i

More accurate than conventional ASME Code sizing e

Prior to the SLIC technology, SwRI utilized high angle shear or e

longitudinal, single element search units

.-e-v a--

4 s,

, -.,enw.w---eenn-me--e.-ie.-

er-, - -e e-ew r-

-v- <saw w e-m -, wre

-w, ur <

e--.

. w, en -w v

e.-

-e--.-pre--e wsimu w +

e-v a n wmems et s, e-sw r =

w,,,ew e -- gs wr w, w i: =

,.my-_

rr,.-,eu-,-

w

,,e-=--

e e w w.. e, + w e w.,,-ev,w.e. w-ww me.=.,,-w-

-w-<e-e

SLIC-30 SCANNING TO RECEIVER

"~

100 ALTO TRANSMITTER IS Z=0 A

B B

j!Z -

Le A

CLADDING Z2 d

Lb BASE MATERIAL l'

J_

L S.

CRACK Sb at X = 0 (a) Transmitted (Lb, S ) and received (L., S.) beams.

b X=Xi X=X2 PULSE h PULSE h y

IS IS g

L.

u l,

I g

Lb L, intersecting Lb at the L. intersecting Lb at the.

upper crack extremity lower crack extremity (b) Two pulses retumed by an undercled crack.

SLIC(S) DESCRIPTION L

o Tandem search units o.

Multibeam/multimodes e

Varying angles with each type of SLIC search unit e

SLIC search-units complement each other Applicable SLIC depth ranges overlap each other e

e Used in RF mode for sizing

L SLIC TYPES ND ADVANTAGES A

e SLIC 30 10L and 60L Narrow echo-dynamics i

Performs similar to zero degree 0" - 1.0" (applicable depth range) e SLIC 40 50L and 70L L

Broad. echo-dynamics Performs similar to 45 degrees 0" - 2.0"-(applicable depth range) o SLIC 50

.40S and.60L-

~ Broad echo-dynamics for lower flaw tip.

Narrow echo-dynamics for upper flaw tip

'0" - 1;0" (applicable depth range).-

Does not lend itself to small-radius Excellent for underclad. cracking

4 SLIC TYPES AND ADVANTAGES (CONT'D) e SLIC 45 1

10L and 60S

.-Broad echo-dynamics Performs similar to zero degree Excellent for surface connected flaws Applicable for top of flaw location.only -

l e

SLIC 25/35 and 15/20 1

Applicable for deeper flaws 2

_._--_.__...__.--..__..__.._...._.___.._._---.._-..--~.._._;-...-___..-.____...--_-...-_~..___.._

. ~.

k MULTIBEAM CALIBRATION Distance calibration performed in depth rather than metal path -

e Depth calibration is performed using side-drilled holes at various depths e

Depth of calibration is usually limited to type of SLIC e

f

' 'l

- d.

Underclad Cracking Test Block Actual Flaw Sizes l

l Block Flaw Flaw Aspect identification Length (in.)

Depth (in.)

Ratio W-A-1 1.25

.23 5.4 : 1 W-A-2

.65

.11 6.0 : 1 W-A-3 1.63

.31 5.3 : 1 W-B-1 1.25

.23 5.4 : 1 W-B-2

.65

.11 6.0 : 1 W-B-3 1.63

.31 5.3 : 1 PS-1

.25

.11 2.3 : 1 PS-2

.58

.25 2.3 : 1 PS-3

.76

.33 2.3 : 1 AppendixVill

.1A 1.43

.14 10.2:1 Appendix Vill - 1B 1.95

.14 13.9 :1 Appendix Vill - 2A 1.93

.68 2.8 : 1 Appendix Vill - 2B 1.98

.68 2.9:1 r

---c e

AVERAGE MAXIMUM FLAW AMPLITUDE (PERCENT OF DAC)

FLAW MANUAL AUTOMATED BLOCK LENGTH / DEPTH PSI ASME/RG 1.150 IDENTIFICATION (IN.)

TECHNIQUE TECHNIQUE W-A-1 1.25/.23 566 35 W-A-2

.65/.11 631 37.5 W-A-3 1.63/.31 669 48.5 W-B-1 1.25/.23 318 25.5 W-B.65/.11 238 46 W-B-3 1.63/.31 355 37 PS.25/.11 596 24.5 PS-2

.58/.25 450 26

.PS-3

.76/.33 358 22.5

.-1 A 1.43/.14 312 28.5 1B 1.95/.14-362

.34 2A:

1.93/.68 197 39 2B 1.98/.68 262..

-28.5 SQ-54*

2 mm FBH 100-

-20

  • 2 mm end-drilled, flat-bottomed hole sensitivity compared to the ASME '1/8" diameter

- side-drilled hole sensitivity (manually). : Data acquired with a flat shoe on a curved surface.

_.._.._._._..._.__.__......-_...a_..,.____._....

. ~.u..

. 2.

Sheet No.:

g SwRI AUTOMATED INSTRUMENT CALIBRATION RECORD

/+5co z-

,5'mP/ - Seyo<7d A Dr/r, cs Date (Day Mo.Yr.)

Time: (24 Hr. Cbck)

SwRI Pauject No.: / ;p.533 g Site:

m nW/293

/ 'lA/ o ExaymL er([ gnat a EN

)

SNT Level:

Examiner.Mcah SNT Level:

Procedoro No.:

's a /2e o v?/2 4 (b, /m. (*

77--

Date: $t r%R Time: c't m

'3C.

Rev.:

Chg.:

ICN:

' Search UnitU n,, /u,,,) seg Search Unit Cables Serial No.

<f ogy Exam / Cal Number Type length Channel t ririn

,2/1-y

[f g gb}iyy 25 y k,"

3_

0 O

Stro

,_2 S X. 5 en N/A N/k N/A M /A Frequency (Mik)

A :2S 70 Nomind Angle yo - 7 C3 60 N hos O nomoto cabro calibration h',";*

Measured Angt*

e,, p 50

-a S'gnal Amplitude Distance Clic. D

    • ?$l"

/

Brand g_ pq 40

,n 30 i

Other O Examination j/

Instrumont Settings o

x cabte h

N TCG / Instrument Function Checks DAC Fine dB g

W Signal Amplitude Distance SC'.een Course Fine O

D rv.

Gain Gain Scan course dB ptA 0 1 2 3 4 5 6 7 8 9 10

/

Scan Fine dB M/A.

%-M""

10 Screen Dwisions

/)R inches or Metal'neri/

[/4 p,,q,,ncy Mode:

Longitudinal O Shear O uuni.neam g-g Transmission:Through 6 Normal O TcG settings Mat: rial Cal.

A y s."

DACirca uarker Marker DAC DAC Jach Used:

RO TO Both 3-Channel Gain Freq.

Span Detsy Range /Sec)Div.

g Damping 4

Ultrasonic Instrument:

/

3O a.2 5 5 y, 5 O

Rep. Rate f, o Sonic MK II O SwRI MK11 A @ - Other O Reforences Fm:r N/d 8i'I #

Basic C.1, Block (s) 3 g,9g

/ 7 //a 3 Trim

. 7f)c, Putser GaltvCan No./ Strap No.

gg Aux Cal. Block (s) 4 Pr: cmp / Norm pg7,,p inhial Basic Cat Bbck Tentp. *F unearity Sht. No. (s).

4A r

,,j Couplant k6 Pyrometer Serial No.

/4 Beam Spread Sht. No.

Mth 3

hwed Dr Qg % dugg SNT Level:, fti Date:13 Myr q 3 EDAS Cet Sht./ Set

\\ 39 OO g SwRI FORM No. ibTR 17-145 (Fbv. 3/92)

.--.r.

ea

-e.,

-.,e

+,

=

u

-.m

4 A

I 56 4

i g

b

+

e i

4 I

^

i

)

i E

c h

y 1

=

)

I.

I i

O

,j 8

2 v.

e 5

8 6L Q>

d c

J o=

y O

6

-5 e

e

.O 5

0 N -f 1

@b A

e e a6 h

$ 3 t>

.e' J g

,e g

o

?

V1 0

a a

o s

x k

e4 3

r4 d

I s4 o

s 0

C J

$ k h

8 1

e 4

c o

z e

x s T q

e a s a

s m

C in 7

-Q y' C

i 4

0 h

i 4 j

W u to

.n

't ;o f

3 5

J M

vi t

,t-4 x

g s

a y o q 6

F M J

?>

5 i

o

_8 o

e 2

e b

E U

G h

d a

o m o t

v.

g u.

S O

h c

3

=

e

~

G S

N

~

i a

3 u m 5

V 2

o 9

m o

Q t

._E j

E

.E u

E 5

2 o

to E

c x

e E

f

MANUAL -VS-AUTOMATED FLAW LENGTH SIZING BLOCK ACTUAL PSI TECHNIQUE

  • SwRI TECHNIQUE **

IDENTIFICATION LENGTH (IN.)

ERROR ERROR W-A- 1 1.25

- 0.22

-0.23 W-A-2 0.65 0.82 0.55 W-A-3 1.63 0.86

- 0.13 W-B- 1 1.25

- 0.35

- 0.55 W-B-2 0.65 0.82 0.45 W-B-3 1.63

- 0.03

- 0.24 PS-1 0.25 0.25 0.10 PS-2 0.58 0.48 0.32 PS-3 0.76 0.64 0.14 1A 1.43

- 0.06

- 0.26 j

1B 1.95

- 0.02

- 0.35 2A 1.93

- 0.43

- 0.83 2B 1.98 0.20 0.02 MEAN ERROR 0.23-

- 0.08 VARIANCE 0.193 0.144

  • Lengths taken at 1/4 max. amplitude.
    • Lengths taken at 1/2 max. amplitude.

6 b

MANUAL ESTIMATED -VS-AUTOMATED FLAW DEPTH (THRU-WALL) SIZING BLOCK ACTUAL PSI TECHNIQUE

  • SLIC TECHNIQUE IDENTIFICATION DEPTH (IN.)

ERROR ERROR W-A-1 0.23 0.11 0.01 W-A-2 0.11 0.38 0.08 W-A-3 0.31 0.52 0.05 W-B- 1 0.23 0.00 0.02 W-B-2 0.11 0.19 0.23 W-B-3 0.31 0.02 0.09 PS-1 0.11 0.05 0.03 PS-2 0.25 0.10 0.10 PS-3 0.33 0.13 0.09 1A 0.14 0.31 0.05 18 0.14 0.50 0.03 2A 0.68

- 0.18 0.06 2B 0.68 0.04

- 0.05 MEAN ERROR 0.17 0.06 VARIANCE 0.039 0.004

  • Estimated by using length divided by three.

J

s' 4

CONCLUSIONS i

ASME/RG1.150 techniques are capable of detecting underciad flaws as small as. 25 fong x.11 deep; Current sizing methods can' improve sizing ~ capabilities over estimates used during the baseline examinations

'l b

m-

.mmm-m

.-- m.

m-m.

m.

__m.,mo..,

ms.mm,...%.

,,,,,w.

,y,.

.._..s,

,.W-E 1

~

DATA CORRELATION.

A direct correlation between the-baseline data and upcoming ISI data

~

may prove to be.very difficult because:

-Manual: indication location methods are inherently-more error

=

prone than automated methods

' Manual search 1 unit manipulation allows optimization of-signal amplitude better.thari automated equipment E

9

i

-,-.,.,-......--4b.,---....A--r.'v.-rm--,~..d--.,m..mi~'..,, - - -

.--.,r

.,,_.m.--e 4-.--.--*---.-m+

.- -, ----..~..-, - -.. -, --,, *-....L

f I

FLAW DETECTION Flaw' detection / discrimination capabilities are enhanced with automated data acquisition equipment because:'

Signal patterns are more easily discerned o

=

Flaw location information can be easily integrated with signal a

. response information-

.)

_.,m___,

A NOZZLE BORE EXAMINATION GOAL Determine if any of the larger flaws have grown during service t

i 1

.b.:-

e _ &m _n-ww.-----<-m,

-r-:

. er -v m ni.t

  • n u,

>w6, z.=-

., w w - *e e-w,-

-.m sewe, vet--ww-,

a

.ee---,

-r-e

.,wme.

w e <-

e----

e-

-y w-

,ew w

,*.,-e3,v,3-t-g-

=

,,,ys.-

i-SS5NM31H.L s

'(OV3H HO)T13HS' to s'l zg o<

a u

'o w-e--

i

-lN 4

4

~

~

^

f A

E I DE >

h 32 N

a x

N e

~e u

ro r

.n u

I d

, 4 k{i+

m

-d u v o

z t

Y - __ f y

t, r,

f

<- r 7 3-0-3-9-V 3Wr170A "WVX3' O

m

$P 1

s

~~

m w

.E.-

i l

l

,b--M,

'w OJ a

O_.

0

(

- N

\\

,y

-o-b

--f

\\

P l

e e

s

[4 L

/

-I i-.

CL Lij i

s j

ZJ i

\\\\

j CO

\\

L o

o

/

O

@s

?"7 b

N i

=una IO61MDe=GI NODCD

=1xd

!NON=SS333Y OE*tl=3HIl C6/98/t =31YO 90'El 440c6=3"l13 ISV"I 41-21 TTVHS CD31"Id=QIMYt10 0001 0 =3"!V3s Otid3dS=dtfDens 9tVV=stotfD

=1N34HO3

i A \\\\\\\\ I JllllH %

m u m.s 1

5 r

1;isist;/s DMT!M WIT TT Tm ! /!T!f/ff I

\\

\\

~

(

~.

\\

\\

j 1i

^\\

a

~

s

~

s

-t N

o-l

=gg

~

g u

~

__. O

=-

gj D

o 2

c9-c.,n e

~

O llI Z __I V)

\\

~

.O3-O' O

l O

h e

r N

NNxx ee//

s i

vmu ui,1 i'

s r

r ; i IIIf/few

-MHm1 1T1 iT T T

! (U !I!7?F a_.

h J 1

u_

/

,23-r m

~

d 15 N-II IC 5

16.

6 4

.9 90*

270*

i SNP U-l i

COLD LEG LOOP 2 1

i

I-

. _ - - - - - - - - - - - ~ _. _ _ _ - - - - - - - - - - -

1 1

\\

f l

i

./

.\\

kJ

/

s I

w

/

i y:, e %

i,1

~ ' -

p 7

p,

\\

m s.

-g e

sx e

m O

-O i

__J D O Q Lt3 b

2

  • W O

__3 OO

-