ML20024B327
| ML20024B327 | |
| Person / Time | |
|---|---|
| Site: | Crane, Bellefonte |
| Issue date: | 01/23/1979 |
| From: | Mcfarland J BABCOCK & WILCOX CO. |
| To: | Patterson D TENNESSEE VALLEY AUTHORITY |
| References | |
| TASK-*, TASK-06, TASK-6, TASK-GB GPU-2448, K-5020-4-27-78, NUDOCS 8307080438 | |
| Download: ML20024B327 (3) | |
Text
..h_,
..~...++--..y,__s
. -.. ~.
w..
L,. L,.... -.~w.. best C09y b k ;.D i b :
.,O d V Z 9,% %
J:?. :
.. g e=.
nw
.s
.c g
~
BabcockONilcox
?
Pcwer Gemerat>ce Grous y
p..
P.O. 2:a 1250. Lm:vrg. Ya. 241:5 J*
Tele:ac.,e:(604)354 5111
['..
g.
_.m.
~
January 23, 1979 f
. '.~
r.
x Letter so. D-3132 p[-
r W
File Ref: :;l.M-2/12311.
.d.,-
Ref Ltr:
K-SC20/L27-TB g,1 g--
T b'
y p
Tennessee Valley Authority T.,
kC0 C==erce Avenua
'.'..u
"'I.
. U: ?). -
c Enerville ::: 379C2 ~
D g
.. ~.
~;
Attentien: Mr. D. R. Pattersen S
gee. ::ss 15/16 S. 2 J
Cnief Mechanical Engineer R C Jcces
~C B M Dunn E
Bellefente Hueles.r Plant Units 1-& 2 g
Contract No. 71062-$h11 6 2 y
Reference:
3::S-15 & -16 i
Subject:
S-=" Break LCCA Analysis
?-
- a. -
,,...a Gentlenen:
i.
k The attached report is in respense to yeur reference letter. Please let r
us kne.r if further d.iscussien is ret;.:1 red.
t.
3f Very truly yours, t.1
- [
s:
Ja=es M:Farland l
K Senic: Project !*.aneser h
hfa 1 n
7 Robert I. Lightle F.
Assceiate ?r: Ject 'anager
~
REL:dc Attachsent cc:
V. 3 rent *.*aie J. L. Atchisen E. L. Legan
.r 4
J, i *s*4 mas e: 1357 The Bs: ;:n!..'.a::s G:-:
t N
--N-g i
8307080438 790123 PDR ADOCK 05000289
=
P HOL m
, g g\\
W-b__-
,_,--i
. 2.!.-W 0126 M, 'f" 4 '.'
3
_ -. _ _... _ _ _ _. ~..
w-~ -~~ ~~~~*
,7.* --m ~~7. ~. -~' ~ ~ ' 'y
,.. =.. _, -- -m w. -~ -- n. = 7 -r --,v
~ w.
v
,,. ~ -
.m..,
..s
,. p. e.,,
4
.~, A... c v[ % ;.w i best copy R v O N^ w w-m on...
. p r
x -
^ ~ -
- '~-
At cch-en:
7 D-213p f
\\
J
- ~
c.:.
n Response to 7/A le::er K-50:0, Sce:;ency Core Cooling Syste: -
$'I F
ses11 tres> t.ccA A.s!. sis :: F-2-14 U2.1. As:(1 27.1973
- f. '.:-
p-u;
..:t.
$((.
'~
Via r/A let:4r K-3020. TIA :;2:ssisted to 3*.*=* a repor en:1: led, '* Decay Hes:
Rc= oval Durin-a 'lery 5:211 *0CA for a 3:/* 205-yuel-Assc=517 F:.7.." by C.
}itchelson, a.:cd.!anuary, 1U 3.
This repor: presen:s a si=mlified, hand
-?
~
calculation review of the r=all bre:k transient and potential consequences
?f.
for very s=all breaks net eclici:17 ex:=ined vi:hin :he s=all break topical BI,,
for the 205 7A plant, 3rt-1007!.A. Rev. 1.
Wi:hin :his paper, the fo11 cuing F-;
- T concerns were espressed icr :ne very==all breaks:
Rt m'
1.
How is decay heat re=oved?
S
.~
p,
\\
2.
L'ill sys:e= repressuri:stion occur? If so, could a e =tter case be a g*f>
I, vorst break?
m m
If the operator isolates the break, vill system repressuri:stion occur?
4 3.
If so, vill tha pressure relief valves be subjected to slug or two-phase fabi flow?
L
=
V Rasponses to these c=ncerns are developed in the subsequent paragraphs.
- e. j.-
E Before discussing these concerns, a general overview of the s=2).1 break tran-h.:
sient in a 352 205 plan: seeds to be briefly discussed. 5:211 LCCAs es: be viewed as a slow transien: during which the RCS can be described as a sealed
[.i q
Because of the i= ernals ven: valves, no extensive stes= bubble F
=anc=eter.
vill form within the rea :or vessel while any significa== liquid inventore re= sins in the loop. Y.asy experi=ents have been run which show that so Iceg C.
as a fluid, -ith quali:1es less than 70: or so, covers the cere, no adverse p' ~
core te=persture excursien vill occur at decsy hes: pever levels. Thus, any 1
proble=s with s=c11 breaks vill only occur af:e: the RCs loops have depleted k
{L thnir inventcry, r
E Decay bea: re= oval f::= the core region is no proble= as sta:ed above. 2:v-C ever, decay hes: re== val f:c= the syste= as a whole needs to be exa=ined furcht. There are :vo vays cf re=cving decay heat from the sys:e=; ria che i
break and/or via the stem: geners:::. So:h of these ite=s are discussed i=
r detail in the rtA le::er. T:: :he very s=.11 LOCAs cf interes: in this dis-E cussion, it vss shown :hs: the break 21:ne is no: c:psble of re=ovin; all :he decay heat and hes: re=cval via the stes= geners:ar is necessary. Lnile the L
T7A-predic:ed break size ::.:: this oc:; s s: vas no: checked quants:ively.
the actu:1 break size :ha: it occurs at is ine:: sequential. Such a break
[
si:e does exist where the s:e:: geners:c:s ::e necessary.
3 The role of :he s:e = ceners:or.ss a hea: re=ovs1 source is basical?y as
^
described in :he 1e::ar. bi:is11y, n :ur:1 circulation vill be ::in::ined in the syste= and :he ne:ess::y he:: re eval is easily s:cca:lished. C ce a s:c:= bubbic cf sufficien: si:e necessary to fill :he C-bend at the cep of the h:: Ic:s is for cd, n::ur:1 cir:u12:1:n vill cease. The inter =1::an:
, natur:1 circuis:ica di::usse: in c.c le::e: vill ne: :::ur due :: :he 41:2 osture ef :he s all bru k ::.nsicn. 0.:e n..:u::1:1 :uis:i:= cesses, :he l'
syste vili re;;e: sura:c senevns: until the 50 ;; :ary side licuid icvel 4;;;s L
j l
r 1
r
~ -
e-
- s. i.y. - -:..,
w.
.c 1 <-l G' W L ~ N.E'sc.
W H 3 u:Sih 37.,2i..7J.._...r..
h 0 1 2_6 E
",4 i.
nm m
e.,-
m._
m.m.m wn~.
..- w _g.r e..:.-.~
e n...+
.-.. m
~
~ v 6 pf 7,..~
i -
. -.. ;..,,, y.. -
y93{
gggy w w. m m%-: -
v :.,
~
s
,, T vQQ(
&: m*RD W -i.
S N.,:.Hi..
W: o ;.
,w
/
.C
/..
w 1
/'
below the SC tecondary side icyc1 s=d ceniense: ion he:: c :nsfer is estahli:hed.
g--
re-
' [,
During this pcried be:vecn :he ns: ursi cir:uls: ion and conden:s:ica hes:
[
- oval codes, the 1.::c; unp;csses conec ns ths: the liquid inventor / vithin the sys:c vill bu dc;.le::d 1c s s:e in excess of :he :stes for the bresks y
analyzed by 311.* be:suse of the par: :1 :e::assuri:s: ion of the sys:es.
'I.' A 3
is cencerned :hs: this ui:1==:cly vill resul: in : ore core uncevery ::an ::a:
g.;
sheva in the s=all b e n :opical repor: 2A*.-100NA.
nis is not :he esse.
E~. I.
During the ns: ural circuls: ion phase, it is obvious : hat the s=:11er the bre:k, the slower the loss of sys:e= inven:ory and the longer the period of naturs1 g-circula:1on. Af:e na: ursi :1::uls: ion ceases, sys:e= pressure vill be cen-p l
trolled by a "volu=e balance." nat is, the syste: pressure vill balance at p,
a point where the vole =e of fluid discharged :h cugh the break equals the R
volt =e 4f s:cas being crea:ed in the en:e. Since the cold le;; fluid enthalpy pi a
re=ains unchsr.ged durin:; a==all break transien:, the volu=e relief out d.
the break incresses vi:h ine: easing syste: pressure and break size. n e vol-if t=ne of stea= being genera:ed in the core decreases with increasi:3 pressure.
J As the break decresses in si:a, the F4: syste= will repressuri:e :o a higher E
value; thus the volu=e relief out the break necessary to =atch the volu=e y
of stea= being crea:cd decreases. nerefore, the system inven: cry vill be p
lost at a slower ra:e as break si:e decreases. Once the 50 beco=es available
[
7 for condensa:1:n heat re= oval, the pri=ary syste= pressure vill depressurize i
]
to approd-'tely the 50 see:ndary side pressure. Since the secondary side
{l of the SG vill respe d in a si=ilar canne; to tha: of the 0.05 f:2 break p
analy:ed in the topi:al, the pri=ary side pressure response, fc11cring :he c.
advent of cendensation hea: re= oval, vill be si=ilar to that of the 0.05 f:*,
}
break. S us, for the s=sile; breaks, the system inventory vill always be f
greater than tha: for the 0.05 f:2 break and the core vill always re=ain p.,
covered and v111 not undergo a te=perature excursion.
p E.
- In the paper cer.cerns are raised relative to isolation of the break after y:
nstural cir:ulatics is los:. n e scenario presented in the 1e::er is :eason-y-
([
able. Should the break be isolated at tha: ti=e, systes repressuri:stion to the pressurizer safe:y valve setpdin: is probable. ?.o-phase or liquid flev through the safe:y valves vill also probably occur. Once the systa= depletes y
sufficient inve=tery to es ablish condensation heat ::ansfer across the SG, T
the syste: vill depressuri:eend :o further loss of inven:::f vill occur. Se I
core vill re=ain cevered fer :his secensrio and no te=peratu:e excursica occurs. Sh:uld :hs pressuri:ar safety valves beco=e ds=sged because of the two-phase flev cut the valves, :he response of :he sy::es would then be si=ila: to :hst presen:cd in :he FSA?. for the pressuri:er safety valve s:uck
~
open acciden: and no core uncovery occurs.
As far as the appr:pris:eness of :he opera:or using pressuri:e level indien-tion to trip the E?I pu=ps, 31*.' agices ths: the level indi s:ica is nec a reliable indies:1:n of :he sta:e cf the ICS. however, use of :he pressuri:e level indi ::len. 1:n; vi:h syste te=: era:ure and pressure =casurc=cacs :o ensure :h.: the sys:e= is s:ill in a subs:en:ially subcooled s:a:e, vill pro-vide sufficient guid nce f:: operator action.
e
- In su=-dry, while :he
.'A ; :.: ::ises valid ccaccins and gives a det:iled k
exs= inn:1on of the s=sil b:c:k :::nsien:, the s=:11 bien ::d:ie:1 re::::
provides suffief n: :n:1yset :o ensure the 2b111:y of the 3
- 05pihn: I :S sysec= ta ec:.:::; s=:11 b:c:k in :ne ROS.
=-
.. a.
.m #w.
.n mw%=y 4.r;.a.g3. s --..&o.
+
m-.
- m.e,;e.
... %e.
a
=
L 4:9 9 g,4_
H 3 M.. M M F-. J.. G..
_. _ _4..
012s u