ML20010G644
| ML20010G644 | |
| Person / Time | |
|---|---|
| Site: | 05000447, 05000531 |
| Issue date: | 09/18/1981 |
| From: | Fox J GENERAL ELECTRIC CO. |
| To: | Su N Office of Nuclear Reactor Regulation |
| References | |
| JNF-24-81, MFN-170-81, NUDOCS 8109220347 | |
| Download: ML20010G644 (25) | |
Text
.
GENERAL h ELECTRIC uuctuan 90 wen SYSTEMS DIVISION GENERAL ELEOTRIC COMPANY.175 CURTNER AVE., SAN JOSE. CALIFORN!A 95125 MFN 170-81 M/C 682 Ext. (408) 925-5039 JNF 24-81 September 18, 1981 g
/-[/*'
' 'b g C
8 d
U.S. Nuclear Regulatory Conmission c.,, g,
3 Division of Systems Integration dg /Sg7,(f ;7' I
Office of Nuclear Reactor Regulation Washington, D.C.
20555 A
48 y
d Attention:
Mr. Nelson Su N
Containment Systems Branch N St\\
Gentlemen:
SUBJECT:
SRV P00L DYNAMIC LOADS Enclosed are GE's responses to the NRC questions on the SRV Poci dynamic loads in f1r. Kniel's !!ay 21, 1981 letter. These responses will be used as the basis for the pending GESSAR II amendment.
Only minor editorial changes are expected; however, there will be no technical differences betwtan these responses and the formal responses in the amendment.
kA
, Vt. Jy J.N. Fox BWR Standardization Nuclear Safety & Licensing Operation cc:
G.G. Sherwood (w/o enclosure)
W.M. Davis D.S. Braden l
H.C. Pfefferlen g3 Is {
ADDI sic ts.~ S" 8109220347 810918 PDR ADOCK 05000447 A
'e 3P.O.3.3.1 QUESTION / RESPONSE 3BA.1
.0 QUESTION 3BA.1 The strategy outlined in GESSAR II (Section 3BA.12.5) for the calculation of the maximum positive pressure (MPP) design value does not provide suf ficient justifi-cation or documentation in support of the multiplication factor (NACT) for load amplitude (see Equation 3BA-14). The methodoiogy is shoen in Figure 38A-58 to overpredict the first actuation and subsequent action MPP values and thus it is asserted that a multiplication factor is warranted. However, this is probably a consequence of the additional conservatism associated with large air volumes as discussed in GESSAR II and not necessarily a constant conservative factor for all plant conditions.
To illustrate this factor, consider the shape of the air volume term of the. pre-diction equation as given in Figure 3BA-65 of GESSAR II.
The Caorso air volume /
quencher area value (VAAQ). as given in Appendix C of Reference 1, is sufficiently large to place it is the plateau region where a constant value is used. for the VAAQ term of the prediction eq ation. The constant value is used to conservatively bound the VAAQ contribution to the maximum positive pressure in a region where it is known to decrease asymptotically toward zero.
Since the VAAQ term contributes approximately 37% to the magnitude of MPP at Caorso plant conditions, we believe that this conservatism is primarily responsible for the high Caorso, prediction values.
However, the standard Mark III 238 plant VAAQ value places it in the ramp portion of the curve where the highest values of positive pressure were observed. As a consequence, no conservatism of the type discussed above is anticipated and there-fore the use of a multiplicatinn factor appears not to be justified.
In order to continue our review of the quencher methodology, the following items are requested:
l Question 3BA.1(A)
Provide any additional justification for the use of the multiplication factor for Mark III plants.
- 1. "Caorso SRV Discharge Tests Phase I Test Report", NEDE-25100-P, May 1979.
j k
k
no RESPONSE TO 3BA.l(A)
- l The justification for the use of the multiplication factor for the Mark III Stan-dard Plant is provided with the comparisons of the Caorso test data to the CESSAR II safety / relief valve (SRV) load definition. The applicable Caor,so test data used in this comparison includes both phase I and phase II tests of valves A, E, and U.
The measured maximum and minimum (negative) pressure c nplitudes of these tests were taken from the recordings of pressure sensors P19, P13, P15, P50, P51, and P57.
The maximum and minimum pressure values of each Caorso measurement were adjusted to the Mark 7" S* sndard Plant conditions. The test parameters adjusted were steam flow rate, pool temperature, valve opening time, water leg, and SRV discharge line air volume. All parameters were adjusted with the relationships presented in Table i
3BA-21 except for air volume. The least square best fit shown in Figure 3BA.l(A)-1 was used for the air volume adjustment of 1.6 psid for first actuation and 2.8 psid for subsequent actuations. The relationship used to adjust the Caorso pressure data to the Mark III design condition is as follows:
w Padjusted " measured +
P
+
~
~~~
Std plant Caorso modified Caorso prediction prediction air volume cffect or using the GESSAR II nomenclature:( }
PPAC = PPMC +
PRED
~ ~
Caorso +
^^9)~~~~~(
f Std plant
)
where for fi: st actuations)
PRED = PRD1gy
= 1.744 x PRDI r subsequent actuations)
CVA i
(
PRDICVA "
SVA +
CVA~
SVA t
PVAAQ = 1.6 psid (forfirstactuations)
= 1.744 x 1.6 psid = 2.8 psid (for subsequent actuations)
Note 1: See nomenclature at end of response.
-c ren--,n.
-,,,r...-er---,-,,
---,v..
-v e - s e,
,-,..n
-ww.--....,m-...v,---
---.----v-w-r---
,r, e
e-5,-
,ww y
,.e
- ~ - -,w-,,.
RESPONSE TO 3BA.l(A) - Continued O
Figure 3BA.l(A)-2 presents a comparison of the adjusted Caorso maximum positive pressure for valves A, E,and U versus the GESSAR II design values. This figure demonstrates the conservatism in the current GESSAR II design value which bounds both the maximum positive pressure and the 95-95 limit of the adjusted Caorso data for both first and subsequent actuations. Figures 3BA.l(A)-3 and 3BA. l(A)-4 demonstrate the additional margin in the GESSAR II design values of approximately 50% for first actuations and 40% for subsequent actuatiens considering the Caorso data for values A, E, and U.
~
o.O i
N001FIED AIR V0WNE EFFECT.
e i.6 Psio (o.n2 s m )
o.4 I
~
8 Qi o
O H
I
'- Q'$ Ah6ESSAR II. COR l
O
!s
[g O [7 o.2 3:
l z e O
QI O
9$
0l LEAST SGUARE BEST FIT O
Ci I
or a
a s
i
$o$
%g' ' "
l y MEAN OF CAORSO DATA o1
.mm l ' W 4.2 g
m LAP GE scat!E VALUE OF VAAQ l
=
i a
i E
l III
-o.4 O
6635ARI. STANDARD l
P(ANT DESIGNGWDITION i
I I
I I
I I
I i
-o.s 0'D 0
0.05 0.10 0.15 0 20 0.25 o.27 0 30 0.35 0.40 VAAQ j
Figure 3rv. ~ -! Shell Residual (VAAQ Omitted) and Effect of VAAQ Term on Prediction
l yj-j!
mE :
. N-i
_..t....
i i
l
- t, MAYlMUM POSITlVE BUBBLE PRESSURE i
-- i :
i l
i
- . n. _
i SENSOR P50 FCR ALL VALVE E TESTS 1
i
' SENSOR Pl9 FOR ALL APPLICABLE VALVE A rests
__$i SENSORS PSI AND P57 FOR ALL VALVE U TESTSP -!
~ '~
y 22 3
j
_._ f _.._.
i l
t:t I
h
/
Ig o eiftstTct0AfioN l
l L_ g
. A JUBSEQUENT ACNM10N.
I i
l l
/i 8
~
9 I
[
/i i
at f6-y i
l h
I Y
a
,w
.g_
. _______ _ O d
I oH Q
fS-95 hbil-
,4 v
<c u
W I
M
_h h.
0
\\
il l q5fq5 l l
5 I
/
A l._.
i i
/;
~
l i-i
~}.
o 1
i irme4N -
J
'?
I f
M l'
.l:
i i
i 6
8 l
fo 12 M.
/6 g
4 i
(PSID)
-- 4
_6hsS8RJIMI6 E(INCIURES.LO D_
Oll)
I I
I
., _ t..._ j.. t r
(
+
RGURE 3BA.lM)-2 COMPARISON OF CA0RSO TEST ADJUSTED TO STANDARD PLANT DESIGN :. r CONDITIONS AND GESSAR II DESIGN VALUES.
i
!._4._.
.r.
4..r.
4 q.__;;.
l l
i
_.L i
4 e
t
.., _ _ q _ _._...
i i
~
i I~
1 6ESSAR H FIRST ACTUArlot4,]
l POSITIVE DESIGN VALUE
_! - gg _
~
fo-q_ _
B^8~
~
AD30STED 9_
95-95 v
N MEASURED CAORSO 6-
-ME/W PATA b
95-95
.5 A
ygg o
OO 4-
--MEAN A
3 3-o i
8
-.2 j$ENSOR P(9; FOR VALVE A TESTS PLUS CATA FROM
- 1.. a._._jVALVeS _ E AND U i
l I
j i
1 OTE b ADJ STEDLA0kSO. TESTTA
)JOST 0 TO
, 6ESSAR E DESIGN CONDIT(O'N.
3 f
l i
i
- _.._..._. _ SENSOR P50 WAS USED FOR VALVE, E TESTS.
A-VALVE E DATA i
i i
i i
i i 51450R PS'l. WAS USED FOR.VALV6..U..TE6T5 { _
! J - VALVE U OATA i
L~
I _ _._ _..
_.C0HPARISON OF CA0R50 FIRST ACTUATION TE5T Ff(djRE7!6A.l(0-3
_ _ _ _.J
_ _ _ _2 _. _
DATA WITH 6655AR 1. LOADL DEFINITION.
___i a
GESSAR I SUBSEGUENT ACTUATION R15tTIVE DEstGM PRESSURE a
(8-16-(+-
ADJUSTED p-
+
$ 12-h __95-95 AD3USTED M
U 95-95 HEASURED
=>
cAcaso
$ to-DATA C
!!EASURED E
MEAN CAoRso
-NEAN 95-95 g.
95-95
\\
g.
\\
~
~
N
-MMN MEAN 4
SENSOR Pl9 FOR VALVE A TEST,5 ONLY SENSORS Pli AND PSI ItR VALVE A AND 0 TEST,3 NOTE: ADJOSTED== ACUUSTED TO GESSAR Il DEStGN CONDITlON.
FIGURE 3BA.lCA)-t COMPARISON OF CAoRSO, TEST DATA WITH &ESSAR E LOAD DEFINITION SUBSEQDENT ACTUATICN
QUESTION 3BA.1(B)
Identify which Ctorso data points were used in Figure 3BA-3 (i.e., test and transducer numbers) and tabulate the various parameters used to generate the prediction values.
RESPONSE 3BA.l(B) 4 The measured and predicted Caorso positive pressure data were incorrectly plottel in Figure 3B-58.
Fi&ure 3BA.1(B)-1 represents the ;orrect Caorso data and now includes all applicable phase I and II data. The rtlationship presented in Table 3BA-21 was used to predict the Caorso test pressures. The predicted pressures I
and the various parameters used to generate the predicted values are summarized in Table 3BA.1(B)-1. A tabulation of the measured and predicted Caorso positive pressures is presented in Table 3BA.l(B)-2.
i i
i f
i e
h l
l
{
l l
l 4
b l
I L
i TAPLE 38A. I(B)-l CMR50 TEST PARANEM25 AND PREOrciyogzz yg ALL SEALSoRs I
l TEST CONDITION : SVA,CP,NUL; VAAQs.255 I
i STEAM POOL I
TEST TEST FLOW RT MNAQ TCMP. LNTW WCL VOT PRED NUMBER PHASE (LBM/S)
(MT/S)
(F)
(Fil (M)
(MS) (BAR) (PSID) l I
1 1
238.
9.4 76.
3.2 17.7 5.4 45.
0.583 8.5 I
2 1
238.
9.4 76.
3.2 17.7 5.4 45.
0.583 8.5 3
1 238.
9.4 76.
3.2 17.7 5.4 45.
0.583 J.5 4
1 238.
9.4 76.
3.2 17.7 5.4 45.
0.583 S.;
8 501 1
238 9.4 76.
3.2 17.7 5.4 45.
0.583 8.5 i
601 F 1
23E 9.4 77 3.2 17.7 5.4 45.
0.586 8.5 i
601 1
- 236, 9.4 76.
3.2 17.7 5.4 45.
0.583 8.5 l
7 1
239.
9.4 77.
3.2 17.7 5.4 45.
0.t86 8.5 8
1 238.
9.4 78.
3.2 17.7 5.4 45.
0.589 8.5 l
9 1
238.
9.4 79.
3.3 17.7 5.4 45.
0.592 8.6 10 1
241 9.5 79.
3.3 17.7 5.4 45.
0.593 8.6
(
1101 1
241 9.5 79.
3.3 17.7 5.4 45.
0.593 8.6 1201 1
240.
9.4 81.
3.3 17.7 5.4 45.
0.598 8.7 1301 1
237.
9.3 83.
3.3 17.7 5.4 45.
0.603 8.7 1401 1
238.
9.4 80.
3.3 17.7 5.4 45.
0.595 8.6 21 1
242.
9.5 79.
3.3 17.7 5.4 45.
0.593 8.6 2201 1
- 240, 9.4
- 80. 3.3 17.7 5.4 45.
0.596 8.6 2301 2
238.
9.4 84.
3.4 17.7 5.4 56.
0.605 8.8 2311 2
238.
9.4 79.
3.3 17.7 5.4 45.
0.592 8.6 l
2321 2
235.
9.3 86.
3.4 17.7 5.4 43.
0.611 8.9 j
39 2
238.
9.4 80.
3.3 17.7 5.1 39.
0.596 8.6 i
40 2
237.
9.3 59.
2.7 17.7 5.4 30.
0.518 7.5 f
I l
1 i
4 4
f i
)
{ Il')
9.c9 'o '
i'E-9 ~f \\ S/>I~O lOtl
. G t'i f
i i Jc*l t it9'O E 'E - C '!
_ l
'O ICH b.*ff Y
dH A
I Tl'! i f+9 C ff- ? 'E f:9'O
/07/
SCE/
^
jOl'i I?9'O
.5 i E99'2 lcfI
+GF/
l[O SbS'O I Q&l i
EO&l
~1 N 9
,. - 'I l i.: 'O 2'E - S'E ;
7b5 'C i/EY
?l E ?
?
~i
[0.i I[i 9'O 7 'c - G 'G
- a i70'l
[O9 'O G 'E- + 'l SbC'O lG +)
l ggp/
l JM
[]
' fV9'O 2 'E-9 'E Ec?'C lC {!
(C TI l
Y/0
~
l jrl
.: 19 'C
- 'E r &
Ec9'O lc; -
? F!
- 4. !
/ / ? 'S f - P 'E lif'C
(? r i
_f E r i
$ r. j p '.:-
- c r.
-c.
.t :.:-
- l, r !
l!?'c
!E rE lii'l l~f?
GZET I
i L 9'l
!!= C V E - + 'E '
IIF*O ITEE ZEEE
/
,< w
(
,(
?T ' ' ic?'O
- -G - f'f ; Sc;'O
.I C E ~
l tCE 7 l
,~ c 'I 0:9'C g g - pf '
9[5'O lc::
Sc:t l
~1l%Q dH
)
fr!
cl?'c
! r - er 557
/cr r bort t
9c c' c f 'E, - E!
s.. ; c
./ c r
- cIr V/1.7 i
[#
- l'
..T m3D p 4 jf>
h*#
/
g.'-
. meg
.ug-58D 9
- t. / L L s
s
_= l g.,
a s s
(=
L i
b c 'l It 9'c 7 'l-f g,
FSS c top Sc,9 bc 1 iWO C's - r'.
i q$5 o
!:9
+c9 i
..r c
r;- c 't 1oc s.; <
c(-c l
e
- ,i-
- 3 TC - E 'l 7 f. C lCS 505 l_
sc'l
_,c t
- E- + E fo9'c lci-Hit i
%c' l::C '
?$- #$
_2f'C
!C5:
E5
^
4 si je
.. - i ac: c sic 9 J-ci
~
din cc?'r
- '::^:
c
- $f a
l EC*'
?$5'C
'E 'b ~ Z 'G
?$ ~C lG5
$ Q.$
z: i mo ec-z s gas o
- c.;
zos
( a r q) ',<Dilh '!')tUl:V7) V.'l 2W9
-FAT-?;V2 iT2.L J 591 1521
'a cq)
(V'sr.ut. ~
U.a) cy3 cr;.5g;;
y;g,4pty t:qqpg (lc111GNc0 (rhLi i
' SOC 5N.95 77tt 3Cld I
SWot. DIG 2&l Ot@'.1 Val 9MtMe 1511 os;yoto (,.ttvo)) I-ce)I yag -3yggi.
O
r TANE 3BA. Ice)-! (cour') CAcco re5T PGAMETERS AND PREDICTION A LL S EMORs,
l TEST CONDITION : MVA(4 VALVE 3),CP,NWL; VAAQ=.255 AWAG=13.0 t
STEAM POOL TEST TEST FLOW RT MNAG TEMP. LRTW WCL VOT PRED NUMBER PHASE (LIM /S) (MT/S)
(F)
(FT) (M) (RS) (BAR) (PSIDI 27 2
228.
f.1 77.
3.2 17.7 5.4
- 53. 0.642 f.3 28 2
228.
9.1 80.
3.3 17.7 5.4 47 0.651 9.4 29 2
228.
9.1 80.
3.3 17.7 5.4 57 0.550 9.4 30 2
231.
9.2 80.
3,3 17.7 5.4 50.
0.652 f.4 451 2
229.
9.1 80 3.3 17.7 5,4 50.
0.651 9.4
(
452 2
231.
9.2 80.
3.3 17.7 5.4 43.
0.453 9.5
{
TEST CONDITION : MVA(8 VALVES),CP,NUL; VAAQ=.255 AWAG=6.50 STEAM POOL TEST TEST FLOW RT MNAQ IEMF. LMTW WCL VOT PRED NUMBER PHASE (L8M/S) (MT/S)
(Fe (FT) (R)
(MS) (BAR) (PSID) l 32 2
237.
f.3
- 80. 3.3 17.7 5.4 50.
0.775 11.2 i
i I
l
,i I
TABLE 3BA.t(6)-2 CAOR$O DATA AND PREDICTIChls F6R SEAISCR Plf TEST TS$T TEST CAOR50 CliTA
. CAORSO ftMCICT!Qti CONDITIGH Ptth'E NUMEER (PSid)
(bar]
(Psid) char) l 34 C. 2 *
?. T o.70 2
3.0 f.5
- r. 7?
J.0
- p. ' I
?.5
- 0. C
- L J.1
- p. ? O
- l. T 9.'!
..,. S
- 1. T
- 9. N FCi s?
GoI
- d. S
- 2. 3 l 6'. S C. Q' L
6 91.=
3.1 G.z!!
- 2. 5
]. 5')
SvA 0
a,4 0 30 2.7 o.s1 CP
?
a.'
{
o.z '?
- i. T
- 0. T1 NWL 9
- 3. 3 i
S.26
'4
(,'1 i
/C
- 4. 6 0 3Z l
- f. 6 f.il llc I d.3 0.90 l.6
' 5 'l I2 Cl 43 0.30
?. ')
0.60 1
/301 4.?
o.93 I
d'.')
0.6o IdoI
- d. %
0.29 U.6 9.AD zI 4.5 0 30
?.6
- 0. s ]
- zol
- ?
l
'4 i
'. 4 a?o i
z;ol l J.a O.? 0 i?
../l i
\\
TT
,91I a. '1 C.Jo 7i
- c. ]
l esz(
.1, b 0.3%
4
- 0. 6 I 91 5o
!?.34-
- .6 0.46 1
to
+8 0, 3 i
'/. 5~
- 0. 52 2 '1
- 5. 0 034
- f. 5 0.64 IHVA 27
- 4. l 0.28
- 9. d-o.65 CF T1 2 '1
- 6. 2
- 0. a3
0.6 r l
45-2 5~0 o.34
- 9. 5 o.65' 2 fic lve Dz s-4
- o. a 9 (I..z 0.12 l
TABLE 36A. lCB)-2 (CONT'.) (hCRSO b4TA AAW AGEDICTICN FcR SEh!SCR Pl1
(
TEST TEST TE3T CACR$o OATA C/n0R30 PWDicTIQV Co@lTION PttASE'
^10MBER (Psid) cbor)
{ paid.)
Clur)
E 50%
4.0 0.48
.f4, ] ]
I.0L 503 E.b 0.b'1 14.79 l.02 c4 3
6CL 4.0 0 22 14,79 I.ol yyp 60x F 5o c.a4 1523
- 1. o5 Q
g 605 a.d 0.50 i CS2 f. o ')
T1 L50L 4L
- 0. 7
!E5'l I 0S 2?:D C. I O.35 iCall I.06
~
FC4 5.3
- 0. 5'1 lEc3 I. D'l 505 50 0.34 150T l.04
& cd-6.I 0,4z 73.52
- . o ']
45 54 0.56
-js5Z
. I, o 'l CVA 22c:
'). 5
- 0. 5L ISPl i.09 7 5']
_ j,_of 5
HP LZS
- b. L G.te I
DVIL 2204 58 o 50 (L A'l
/.06
=of 50 0.34 i5.90 I.06
%30+
6.4 D.dd jg3)
/.06 7
&D05
'/. 5
. D, 52s.
/L39 -
f.o. 6
@5:L L8 0.90 -
lESL I. 0'1
~
23 S 4, d-p,90
_ jf 5x.
j, o ')
23 d
[. L O.5']
/ESL 1.09 2 32 T
'). 4 0.5L 155Z t. n')
13 0 %
d.]
038
/ Cib I.00 GVA
}
po3 50 -.
_ 034.
._ (6,2 4
/,/z l -(
WP.
/M
. 4, b.
_0.34
/f 3'l I.0/
SWL-14-0D C3 0.39 15.81
/. 0 9 l
E c 5/z 4.c o.27
/g.,9g
/,03 cvA lh$
4.8 0 ^3 1575 l.10 HP
.1305 CI.
-._ e. 2 8 _. - 16.24 1./2
- . ~. _ -
._ _ & WL _. 5
- 1%$
.. - E I __ _.
1).65 _
ff?l-
- f. 0'i l_
/+0F
- d. 0 9.4 l 1 6 LO.
l 1I f
-...L.--..s 4
^ ~ _'
6 1.2 Q MINISCALE FIRST ACTUATION 5.MPF1 O SMALL4CALE FIRST ACTUATIONS. MPet
- g,,
d LARGE4CALE FIRST ACTUATION 8 MPP1 V LARGE4CALE MAxtMUM SUBSEQUENT l
. ACTUATIONS. MPPQ t.o
+ CACR$O PlRST ACTUATION 3 (SINGLE VALVEl I
$ CAORSO SUBSEQUENT ACTUATIONS o.s E CAcRso MuLTIVALVE ACTUATIONS (4 Ano a VALVEl l
O HoTE:cAceso DAmrtM mcR P19 OO O
o.s V
O V-O
- o.1 a-a b
o UO i
v 7
a os a
h Oy O YO O
g io.s a
6 O
O A a CD D
g aE o983 u a
a
^ a Wo.c 8 e*
d %
o2 O O O 9*T A
O CIJ aD o
A O
o.2 a
Av6 A
a l
vtt -A LA l
6 A
I I
I I
I-o.'9 l
o o.1 a2 a3 0.4 c.5 0.6 0.7 A8 4.1 o
- t. o s.#
s.2.
rREo:CTEo MPe it=1, PRED.
FIG (RE 3EA./CS)-I MPP OBSERVED vs. PREDICTED VALUES.
1 l
t l
QUESTION 3BA.l(C)
Describe the rationale behind multiplying the confidence coefficient and standard deviation by the multiplication factor in Equation 3BA-14.
I RESPONSE TO 3BA.l(C)
As shown below, a multiplication factor (FACT) was applied to the maximum positive pressure design value (MPPDV) as a convenience in determining a load reduction factor from the Caorso data.
EQUATION 3BA-14 MPPDV =* FACT (PRED + CONF X SIFV) is equivalent to MPPDV = FACT X (MPPDV)unreduced Justification of the load reduction factor (FACT) based on Caorso data was presented in the response to question lA.
QUESTION 3BA.2 The correlation of the positive and negative pressure peaks as presented in Section 3BA.12.4.1 of GESSAR II is a vital part of the quencher design calculation methodology.
Therefore, since the Caorso test data are being used to establish design load ampli-1 l
tudes, the staff requests that the following additional information be provided.
QUESTION 3BA.2(A)
It is stated in Section 3BA.12.4.2 that the Caorso tests also confirmed the counarison which utilized the small-scale and large-scale test data as illustrated in Figure I
3BA-53, i.e., a comparison of minimum absolute pressures predic ted by Equations 3BA-12 and the actual measured values. Provide a sLsilar figure using the Caorso data along with a tabulation of the measured values.
Include, as part of the tabulation, the test number and transducer number of the various pressure neasures used in the com-parison.
RESPONSE TO 3BA.2(A)
The requested figure and tabulations are provided in Figure 3BA.2(A)-1 and Table 3BA.2(A)-1. Equation 3BA-12 was used to determine the predicted minimum pressure of Figure 3BA.2(A)-1. This figure confirms the GESSAR II absolute minimum pres-sure prediction of equation 3BA-12, and it also shows that the GESSAR 11 correlation provides a margin of approximately 20% based on a best fit of the prediction of the Caorso data.
~ -
(
?
6.
TAFLE 36A.2(A)-l COMPARlf]Il 0F PREDICTI0ft vs. CA0R50 DATA FOR Mitill1Ui' PRESSURE I
CAORSO TEST DATA, SENSOR (P19)
TEST TEST OB;LRVED FRES.
PREDICTED NUMBER PHASE POS.(PSID) NEI.
NES. PR:5.
g 23er 2
4.4 3.9 3.7 2 502 2
4.2 2.4 3.5 1303 2
5.1 4.1 4.2 e
23C+
2 6.4 3.0 5.0
(
j 23c5 2
7.5 3.2 5.6 2 311 2
4.4 4.0 3.7 I
23t2 2
4.2 3.5 3.5 l
2.313 2
5.1 5.0 4.2 1 314 2
1.7 1.1 1.6 1
1385 2
3.4 2.7 3.0 2321 2
4.6 3.7 3.8 2322 2
5.8 4.0 4.6 2323 2
4.4 3.0 3.7 232+
2 8.2 3.0 4.0 232S 2
7.6 4.3 5.7 2.4 2
5.2 2.9 4.2 25 2
3.7 2.0 3.2 l
21 2
4.2 2.5 3.5 1
27 2
5.0 s
2.0 4.1-28 2
4.1 3.4 3.5
(
2.4 2
6.2 4.5 4.9 Jo 2
5.0 1.9 4.4 4f-l 2
4.0 2.1 3.4 1
44~-2 2
5.0 5.3 4.1 l
31 2
1.0 1:1 1.0 l
31 2
5.4 4.4 4.5 l
39 2
5.0 2.4 4.1 l
4o 2
3.8 1.9 3.3 k
---..e
r-
.7, r,
l
(< Cur' )
74865 FB4.2cA)-/
C0flPARIS0ft OF PREDICTI0fl vs. CAOR50 DATA FOR MINIMUM PRESSURE CA0RSO TEST DATA SENSOR (Pl9)
TEST TEST OBSERVED PRES.
PREDICTED NUMBER PHASE POS.(PSID) NEG.
NEG. PRES.
i l
t 1
3.4 1.8 3.0 I
1 3.7 2.0 3.2 3
1 4.0 2.5 3.4 i
4 1
4.4 3.4 3.7 Sol 1
3.8 1.9 3.3 502 '
1 4.0 3.7 3.4 Sc3 1
5.3 2.9 4.3 l.
Sc+
1 5.3
'3.4 4.3 Foi 1
5.0 2.0 4.1 60tF 1
3.9 2.3 3.3 602F 1
5.0 2.0 4.1 6 03 1
4.5 3.0 3.8 I
6o2 1
4.0 2.3 3.4 6o3 1
4.4 2.8 3.7 6C+
1 6.1 3.4 4.8 6c5 1
5.2 2.4 4.2 1
1 4,4 2.4 3.7 8
1 3.9 2.1 3.3 q
1 3.8 4.3 3.3 to 1
4.6 2.6 3.8 liol 1
4.3 2.5 3.6 1201 1
4.3 2.5 3.4
- 301 1
4.0 3.3 4.0 l
13c2 1
4.1 3.9 33
- 833 1
5.0 3.4 4.1 8204 I
4.8 3.U 4.0 6305 1
4.1 1.6 3.5 r4cl 1
4.2 2.1 3.5 i4c2 1
4.6 3.4 3.8 g+o) 1 5.3 4.8 4.3 14o4 1
5.1 3.4 4.2 i+05 1
4.0 3.3 4.7 11 1
4.3 2.4 I.&
l l
2101 1
3.0 2.4 3.3 l
l 1201 1
7.5 5.2 5.6,
j 1103 1
6.2 3.1 4.9 JLzo4 1
5.8 3.1 4.6
(
22c5 1
5.0 3.0 4.1 l
l
--.-.m.v-.
~
~
.c i
SENSOR P 19, TEST PHASE I ANDI SINGLE VALVE, FIRST AND SUBSEGUENT F
- AND MULTIVALVE ACTUATIONS -
O FIRST CORRELATION A SUBSEGUENT BEST FIT.
O MULTIVALVE
'/
6
/
e a
A
/
c.
C O
- 8, a
i b
c A
y 3
ft A
b Gb E
Z g
- A 2
e
/
l
~~
0 h
/
Z.
3 4
8 C
I
.. __ _ _ _ _.._ _ _ _ __ __.___PEDICTED P -@ BIO 1 -
d i
Psme 3ea.200-( COMPARISONOFPREDICTIONvs.CAORSODATAh0R MINIMUM PRESSURE.
!(
h & MB ~
w' wM y
_<wwaww e
eee =
'-W#
-W-
=.
_p.
I QUESTION 3BA.2(B)
Section 3BA.12.5.14 presents the equation for the maximum negative pressure design value (MNPDV). This equation is based on the correlation of the positive and negative pressure peaks as discussed above. However, an additional term (FACT),
which is based on the Caorso data, has been added in the denominator of the equation.
Provide the justification and rationale behind the addition of this term which reducco the magnitude of the design value.
RESPONSE TO 3BA.2(B)
(
v The equation of the maximum negative pressure design value (MNPDV) pre',ented in Section #BA.12.5.14 is:
4 MNPDV =
--(1)
PINF + MPPDV FACT l
This equation is equivalent to:
I MNPDV=FACTX(MNPDV)unreduccu, i
MPPDV=FACTX(MPPDV) for duced where the " FACT" term is applied to the final design value as a convenience.
In Figures 3BA.2(B)-1 through 3BA.2(B)-3 the adjusted Caorso maximum negative (mini-l mum) pressures are plotted versus the current GESSAR II design value obtained with I
Equation (1). The adjusted pressure data were obtained with Equation (2) below sing the GESSAR 11 equation 3BA-12 and the same adjustment procedure as for positive pressures:
NF X L*S + PRED PNAC = PNNC +
Caorno NF X PREDCaorso
(2)
I PINF + (6P + PREDCaorso)
PINF + PREDCaorso where AP = IE.ZD
- PRED
^^9 S d plant Caorso PNIF = 1.557 bar = 22.5 psi f
The comparisons shown in these figures reveals that both the maximum and 95-95 limits of the adjusted Caroso data are bounded by the GESSAR II design value. Therefore, the use of the multiplication factor is justified.
i i
- - ~ ~, + ~ -
f V
u.
5_
.=
WIMUM NEGATlV6 B0BeLE pre 5SURE '
I Ei!~~3 i
i 4.
JENSOR P50 FOR ALL VALVE e tests. ~
c__
SENSOR Pl4 FOR ALL APPLICABLE VALVE A TEST.S
~~
SEM50RS P5'l AND PS') FoR ALL VALVE U TESTS,
[N--
g j,,
l l
.._. ).. _
t; l i
i i
i o
i 2-8 l
i b
j m
q L
i O FIRST ACTUATIONS
-- _ A SUBSEQUENT ACTUATIONS i
t8 w
8 i
o i
i e ___ __
G I
i l
95]-75
[.
I M -e6 c.
e h
__ # 9s' i
2N -..-.._...-...i__.._._/.
<A o
a s
9 4
MMN l 6
+
5 g
nw g
E I, lA i
a 8
1 A
g
/
l- "" :-
-t
{'
1 i
l
'j~
l j.
r 4
l 2
3 t
5 6
l
'(
8 T
j.
r.
j
+ c 10)__,l 7
,QESSAR,E DESI6M VALdE(INCLUDES LOAD RE04CTO!)
~#
T
!=
1r
.L
...l.
.I j
i i
FIGURE 3SA.2(8)- J COMPARISON OF CA0RSO TEST ADJUSTED TO STANDARD PLANT DESIGN; CONDITIONS AND GESSAR II DESIGN VALUES.
l - _. i _. I t
-i 3
i i._+.
i.
q
. ;.. ;... ; __ p. _.
i I
4 i
I
[ ___--_ i. _ _ _ _ _ _.
i i
I i
+
s I
_j q ____. _ _ _
l u
1
- GESSAR I FIRST ACTUATION I. - _.
NE&ATIVE.DESl6N VAujE i
L
-6
~
ADIUSTED 95-45 mo hj 5 ~
MAX.
PIEA50 RED a.
CAOR50 V
W A
DATA..
PiAX. AND A
45-95 01 + -
ww
--NEAN 0-
-A 8
a O
3_
- MEAN 8
~
i i
O i
2 l
lSENSORPI4FORNALVE A TEST 3 PIUS DATA FROM
. __. - __. - _._ -; VALVE 5 E AND Ui__...._._?
l l
i i
1 6
e i
e l
____ NOTE
- ADJdSTED== CAOR50. DATA ADJusrED_TO : _ !
i
! GE65AR K, DESIGN CONDITION.
i i
_j __1_ ___ jSEN50R. P50 B/AS.USED FORJALVE EJESTS l
lA f VALVE E DATA l l
l
_L_7i SENSOR. P51WA5 USED f0R YALVE f)_.TR5T5
}
l 0
- VALVE U NTA.
i i
i
! _...d.
L_
T___.$pATA WITtt 6essAR fr toad ossNrrion 2
0MPARl500]__0F Ch0RSOFIRST ACTLATION TCST FI643RC -3CA'.2(6.)
t i
i
8..
6ESSARIE SUBSEGUENT ACTUATION NEGATIVE DESL6N VALUE 2
]'AMOSTED N
MEASURED CAORSO 9-MTA 95
+
AD30STED
~
6-HEASURED CA" 95 5
95-95 v
e MEAN
-MEAN g'\\
N N
4-
~
-Mgpg MEAN N
N
~
N N
2-
~
\\
N I
SENSOR Pl9 FOR VALVE A TESTS ONLY SENSORS Pl9 AND P5 l FOR VALVE A AND U TESTS.
^
NOTE: AO:TUSTEO= ADIUSTSO TD 6ESS/W H CESl&M CMDITION.
~
FIGURE 3BA.2(BJ-3 COMPARISON OF CAOR50,, TEST DATA WITH 6E55AR H. LDAD DEFINITION SUEL'<GUEgr ACTUArt0N
~
Nomenclature:
AWAQ Effective pool surface area per quencher area 4
CONF Confidence coefficient for a given statistical tolerance limit CP Cold pipo CVA Subsequent single valve #ctuation DWL Depressed water level 1
EWL Elevated water level l
FACT Load reduction multiplication factor HP Hot pipe q
LNTW Natural log of suppression pool temperature ( C)
MNAQ SRV steam mass flux MNPDV Maximum predicted negative design pressure value MPPDV Maximum predicted positive design pressure value MVA Multiple valve actuation NWC Normal water level
~Pd Negative (minimum) differential pressure PINF Absolute pressure at the level of the quencher arm centerline PNAC Peak negative Caorso data adjusted to Mark III Standard Plant condition i
PNMC Measured p( k negative Caorso data l
PPAC Peak positive Caorso data adjusted to Mark III Standard Plant condition PPMC Measured peak positive Caorso data j.
PRDI Predicted first actuation peak positive pressure (50-50 confidence level)
PRED Predicted peak positive pressure (50-50 confidence level) j l
PVAAQ Pressure adjustment due to the effect of VAAQ term SIFV Standard deviation of data peak SVA Single valve first actuatica VAAQ SRV discharge line air volume per quencher area VOT SRV valve opening time NCL Water leg length from quencher arm centerline to the air water interf ace WP Warm pipe AP Pressure adjustment for maximum positive Caorso pressure f
l l
l l
l l
I l
t