ML20010B552
| ML20010B552 | |
| Person / Time | |
|---|---|
| Site: | Fort Saint Vrain |
| Issue date: | 08/25/1980 |
| From: | LOS ALAMOS NATIONAL LABORATORY |
| To: | |
| Shared Package | |
| ML19263D739 | List: |
| References | |
| FOIA-81-127 NUDOCS 8108170224 | |
| Download: ML20010B552 (40) | |
Text
____ ___
ENCLOSURE 2
.e.
m THERMAL ST.RESS CALCUL'TIONS ON FORT ST, VRAIN CORE SUPPORT STRUCTURES
~1 LASL AueusT 25, 1980
<g ~t.
}c d
4
^
h i
x 2
0 M
7h 7.
?
y g _ - '~
m..
.
'9
}-
M.
Nis.s a crecrint of a racer intefWec 'or suolication n a p
7,
.oureas ar moceecirgs. Beause rev ges mav ce ace ce*ere suoincation, inis woorint.s mace aveniacie men Pe ncer.
stancing : Pat t mil mot De stec of recrocuceo etnout ;"e wmiss.on of t9e autaor.
- s ws w a.r es s -.....
8108170224 810529 PDR FOIA MULLEN 81-127 PDR
FORT ST, VRAIN CORE SUPPORT 3 LOCK THERMAL STRESS ANALYSIS THE PURPOSE OF THIS STUDY IS TO INVESTIGATE THE MAGNITUDE OF THERMAL STRESSES INDUCED IN FORT ST, VRAIN GRAPHITE CORE COMPONENTS BY THE COOLING AVAILABLE DURING A FIREWATER C00LDOWN
- ACCIDENT, THE STRESS ANALYSIS USES CORE TEMPERATURE DATA PROVIDED BY SID BALL OF ORNL, THE WORK TO 3E PRESENTED INCLUDES:
e A 2-D STEADY STATE THERMAL STRESS ANALYSIS OF THE CORE SUPPORT BLOCK WITHOUT COOLANT HOLE AND WITH WORST CASE ADJACENT 3 LOCK TEMPERATURES, e
A 3-D STEADY STATE THERMAL STRESS ANALYSIS OF THE CORE SUPPORT BLOCK ASSUMING PERIODIC SYMMETRY.
BOUNDARY CONDITIONS ARE BEST ESTIMATES BASED ON AVAILABLE DATA, e
A 2-D ANALYSIS OF THE CORE SUPPORT BLOCK KEYWAY AREA TO ASSESS HIGH STRESS GRADIENTS IN MORE DETAIL, I
lI i. ;
/
C.
8 Ni[
4 0
5 7
t n q2 3
o p.nso t e rcd oae pl c ppa u
p S5s i'
_s 3
.2 s'
g s
04 e
57
~
50 l
h o C.
gh 70 u
b ol
ra h cd s s ti eii
/(t cxx paaa i p 0l s rr 5l oo 5 e nj qi a 16EHt I
0 5
9s, 5
7 3
llll
1LMI'ERAIUllE AT AX1AL STAT 10N 8 AND 200 PLOT'0F CORE TI:MPERAllll(ES MINilII:S INIO IllE FWC ACCIDENT s
,,,,y,y,,,,e,2 4,,
1030,039 008 }946 556 1003
,014 673 773 1936 1778 1558 570 1006 F
,e e
,2e,
,>9,
,,ee
,5,
,,4 e,e,eez ie3.
1 1
4 e
1025 870 662 828 1915 690 1014 1007 1029 496 1677 1718 1039 997 1046 l
l l
t
- 00 500 g
w y
7 j
e e
e/
'N e
?ROBLEM 1 PROBLEM 2
\\
\\
\\
2000 2000 f
S h
/'}.
I 5g
- 00 500 500
/
\\
/
\\
e g
300 500 500 g
/
\\
2000 2c00 @
ggggl g
g pag 3tg3 3 500
?Ro3 TEM 4 500 l
\\
2000 2000
\\
\\
2000@
l g
@ 2000 1
- 00 500 l
/
N
/
,g
\\
e 500
\\
/
\\ &/
J N
- g
/
y os mee 05:
PRC3LEM 3 f'
?RC3LEM 6
\\
2008
/
\\
/
/
l
- - s ms g
/
\\
I'
/
(D s
i:
,i 3::
{:
4 i.
TABLE I
SUMMARY
OF 2-D STEADY STATE TilERMAL STRESS ANALYSES CONVECTION PEAK IEMP. DROP FEAK MAX 1 HUM PHOBLEM NO.
COEFFICIENT IEMeERATURE -
IllROUGil CSB PRiNCleAL STRESS 1
30 btu /FT ' ll. 0F 2499 F
1182 F
929 est 2
15 2298 F
715 F
568 esi 3
6 2136 F
307 F
251 est 11 30 2155 F
873 F
248 esi 5
30 2366 F
1151 F
560 esi G
30 2244 F
762 F
56ft esi 1
e 4
A..
.m.._
A.
A tj0DAL3REAKDOWNINVERTICALDIRECTICN i
FOR ORECA DATA 46.3 in.
1 g-f TOP RE: LECTOR I
i
]
2 e l
1 l
3 O
l l
i 4
O 1a7.2 in.
ACTIVE CORE 5
6 6
' e 9
39 6 in.
e e 20ii0M..::,::L:r. TOR s.c in.
1[s.0in.
9 e CORE SU.::CRT 3LCCX I
ORECA CONDITIONS USED FOR THER?AL STRESS CALCULATIONS
( J B
= 'M) e TIP.E = 200.0 Min T;n = 162.1 F
e e
10 % 3YPASS FLOW e
AVERAGE FLOW. RATE OVER 37 REGIONS - 50.75 t.s/ MIN o
FUEL REGION NO 19 NODE 8:
T
= 2008 cp CORE T
- N oAs N0DE 9:
TcoRE " N D ToAs " N 9 a
. A?PROXIMATION OF INTERMEDIATE TEMPERAT'JRE USING LINEAR INTERPOLATION r
BOTTOM J
REFLECTOR 9
2cos F
(n0DE 8)
- 19. 4 in.
l 1942 F
(TCP OF 3 LOCK)
U 1307 F
(AVERAGE FOR TOP 8 IN, 8 in.
1773 F
OF BLOCK)
[
CSB q
7,.3 in.
U 1709 F
(NODE 9)
W -
,-2,
~
1 1
ACTIVE C0F.!
1 FUEL Coluxx FUEL COLUrti o
00' '
REPLAblE
/ / Q M j,f
$d
.i
/ / * s 50TTCM M.
p
/
{
REFLE,CTOR h.
gyAgE e
SaiEu g
g-PENS o
y 4
$lh<
h COCLANT k
Q FLC' '
l'
~
s q
?
g V "di
'I lT[
P E.V.ANENT r
N 80TTOM s
r s
.y lf 1
s}
a
'N COCL1,Pli N
CMA ::t E!.
, C F.T SLOCX
' ~
II N\\
g*
k~a 00AI CORE EXIT f2E0EI THERr.0 C OU P. E l
, g((
w l
30T :x x!rt:: Tea.x: :=E sure:7.T :Em t I
a L
e 7
t C>
m U
a C
J A
Q M
O W
Z C
M W
M U
=
C 1
7 3
O C
- l1 4
C W
'0
=
W Z
ZC Z
.O.
o-H
+
H U
V O
W Q
3
=
C C
Z Z
C J
O O
M w
=
U V
UW W
I I
I J
w C
w H
w W
O O
O 3
O O
C O
Z C
O C
0 W
J b
b b
o o
O M
Q x
U 3
C C
6 W
\\ '<
w Z
Z Z
K M
M C
=
O
=
=
H H
O
\\
N C
U o
=
m U
x x
c Z
z Z
i
(-
<a a
o s
J U
Z o
N O
t:
I C
1 l
V
<:l" Z
~
I y
Z
=
0 W
s y
.s s
\\
i I
l l
1
,^
PGX GRAPHITE MATERIAL PROPERTIES USED ?0R THERMAL-STRESS ANALYSIS e
THERMAL CONDUCTI'/ITY RADIAL:
k = 12.3 sTu/sa FT 0F LONGITUDINAL:
x = 13. 9 sTu/sa =T.0=
6 YOUNG'S MODULUS E = 10 Psi POISSON'S RATIO v = 0.15 THERMAL EXPANSION COEFFICIENT 1.13 x 10-6 AT 500 F
1.38 x 10-6 U
AT 1000 F
1,63 x 10-6 AT 1500 op 1.87 x 10-0 0
Ar 2000 F
2.11 x 10-6 U
AT 2500 F
t
l 1
..ni:: n"u :xC,c::- :-.._......:_ :..:,
..u -.-
. r. a e h^.: u..t i :m
- ,v -
n t. eu,- av' L-s-i x:sc ad.a i.v. s. s-
4 THERMAL CONDUCTIVITY RADIAL:
x = 12.3 sTu/sa FT 0.=
LONGITUDINAL:
x = 13. 9 3Tu/sa =T.O=
6 YOUNG'S MODULUS E = 10
?st POISSON'S RATIO v,= 0.15 THERMAL EXPANSION COEFFICIENT 1.13 x 10-6 U
AT 500 F
1.38 x 10-6 0
AT 1000 F
1,63 x 10-6 A-1500 0F 1.87 x 10-6 C
A-2000 F
2.11 x 10-6 0
AT 2500 F
CONVECTIVE HEAT TRANSFER COEFFICIENT FOR 5Y? ASS FLI.'
N u.4 :<
s "c
26 FOR HE AT 20 3AR AT 700 F
x = 0.155 sTu/sa.FT.07 U
0 AT 1200 F
k = 0.198 CF x = 0.252 AT 2000 l
Nu RANGES FROM 8.5 FOR A'0,5 IN. GAP AND LAMINAR FLOW a
l.
TO 7.5 FOR A 0.125 IN GAF AND LAMINAR FLOW ASSUME 0.125 1 3 1 0.50 IN.
THEN 15.8 1 h 1 94.3 aTu/sa.0.FT F
c 2
FOR A 0.25 IN. GAP h
= 29.b sTu/sa.07 7T c
I I~ c 6
Wy M
. s-O
+
s - t.q A.n d,: :.:, C r. ~.: : f r. 7 :'",
- ^ :
..i; y :. r... y. u.: s i N u., :<
"c 24 FOR Hs AT 20 3AR Ar 700 U:
k = 0.155 3Tu/sa.=T.0-UF k = 0.193 AT 1200 U
AT 2000 F
k = 0.252 blu RANGES FROM 8.5 FOR A 0.5 IN. GAP AND LAMINAR.: LOW g
TO 7.5 FOR A 0.125 IN GAP AND LAMINAR FLOW 0.50 IN.
ASSUME 0.125 s
94.3 aTu/Ha 0=.=T2 THEN 15.8 h
c FOR A 0.25 IN. GAP h
= 29.8 sTu/sa 0
.=T2 e
.k 9
CO':VECTIVE HEAT TRANS.:ER CCE.:?ICIENT 20R CCOLANT HOLES AND CAVITY 4
e' COOLANT H0LES FOR TUR30 LENT FLOW IN A TU3E Nug<
a
=
c D
0.023 (R.)0 8 (P=)0 4 Nu
=
n 9.37 BTU /HR'FT.0F h
=
e-CAVITY d.c 2xh FOR C00 LENT HOLES
=
e
/
^
)
.s I
s Y
/'
~
C0i!VECTIVE HEAT TRANS?ER COEFFICIENT FOR C00Li.NT HOLES AND CAVITY e
COOLANT HOLES FOR TUREULENT FLOW IN A TU3E Nus<
h
=
c 9
0.023 (Re)0 3 (?a0 4 Nu
=
,3 2
9,37 S T U /,q R.,: 7, 9 h
=
e e
CAVITY 2xh FOR C00 LENT HOLES h
=
c c
f 9
e e-
w#
e\\
- s 1\\
~
$(
G\\
3 p%
\\
N NI b
~~~
g
^
y k
/
it
/
/
/
\\
/
\\
/
, ' =,
/
g
\\
,fs
\\
\\
\\
\\
N s
t t.1
\\
~
Y f
\\
\\
u_
g
\\ C, s Y~~,-
9 w
d J
/
2ll f
g
~
u M
\\
/
V f
O
\\
a
\\
/
=
\\
/
/
h *' =~.,
g
/
a
~~
,4 i
E
=3 M
/
\\
g
\\
e c:r.'
/
\\
O
/
\\
/
\\
i
/
\\
\\
%~%.
l O
\\
i H
U
\\
\\
w
\\
a
\\
ud
\\
~
\\
hm,
h g
/
~
s
/
5
\\
/
\\
/
\\
j N
/
/ ~~~,~
/
,,~s/
7
/
/
/
/
\\
e
...mm
-am
NET 'dEAT FI'JX INTO TOP OF BLOCK l
4 1
e CONDUCTION d
g.- x/L AT 1
2 Q=
0.17 sTu/ Min'13
.I e
CONVECTION b
(ASSUME 1/5 0F AREA IS INVOLVED)
Q=
1/5(h AT) c i
Q
=
0.10 sTu/ MIN'IN '
2 30 sTu/sa
.=T,o=)
(FOR h
=
c i
i e
TOTAL FLUX 2
0.27 sTu/ MIN IN Q
=
t a
4 1
l l
r
,.,..,.~s
,,,,,..,,J i,w l 10." U.
OL OCMI "WA Ilt l e
CONDUCTION
_ x/L AT g
2 0.17 sTu/stn : N Q
=
CONVECTICN (ASSUME 1/5 0F AREA IS INVOL'!ED) 1/5 0s.c AT) 0
=
?
0,10 sTu/ Min :n-Q
=
2 30 sTu/sa FT,c-)
(FOR h-
=
u e
TOTAL FLUX 0.27 sTu/st e :.2 Q
=
ESTIMATED HEAT FLOW FRCM SIDEWAL'_ (:.5 I.'!. G.A.::.
/ g c ; ff ( 1 1 ' N AVERAGE SIDEWALL TEMPERATURE
=
150C 2F
. ?. m :,p W-0F F
'g 3YPASS GAS TEMPERATURE
=
1200 j
CF ~'
ADJACE.1T SIDEWALL TEMPERATURE
=
1000 2
CONVECTION 3,750 sTu/sa :T 2
RADIATION 17,500 sTu/Ha =T CONDUCTION 2,400 sTu/Ha = 2 2
(12.5 sTu/HR,0,77 )(500 0=) = 57Ei sTu/HR.FT2 7
=
CONV 0
=
(1.713 x 10 o~ sTu/HR '.:T". R*.) (1. C) (1. 0) 9 r
333 (1960.04 - 1460 ) g4 = 17,50C sTu/HR':-
4
[
O COND
?
2,400 sTu/HR*.:T"
=
^4
.c$;;t~Q,WA &'l' Y( Y ^
,. lb
-ces s-o A.
CALCULATION OF 3YPASS GAS TEP:IRATURE
[n
- i s '?,
,4 y- =42 ~
l& ' -
u-y PERFORM fiEAT SALANCE ON FLOWING GAS.::R DISTANCE REPRESENTED BY EACH NCDE.
a Ecp (T
- T -)
=
hA AT 3
ou E
=
330 L3/HR 13 BTU /HR,o,FT h
=
p c
1.24 sTu/La.0F e
=
p ITERATED TO OBTAIN AT
/ TIN + Tout)
I AT
=
CORE
(
2
/
CALCULATION OF 3Y? ASS GAS E7:E?.;T.:i 1
(
PERFORM HEAT 3ALANCE ON FLOWING GAS ::?. ::STA"CE REPRESENTED BY EACH NODE.
P (T
-TJ hA AT me
=
IN CU:
330 L3/HR m
=
13 BTU /HR*0 ':T h
=
?.
c 1.24 sTu/ts.0F c
=
p ITERATED TO OBTAIN AT CUT)
/s
+i ai T
IN Con--:
(
2
/
l L.
- '10 0 0 W
- v.0 0
- VO*b, FA*wnb i
aR 1 w...
w. t w,,_
yl 3a,u-i (c,
r.c a t.
t rs er r:
7 :m.r.nne n_. e T:9:c:
n::_ _, c) e,b:
c.7 r.ny, c.:)
- ge,s s
m l. r _:
103
_3 :/
2e,tu t.
3.40
- 234,
-7 30)-
)
7.60 32 4
10.40 498 223 3
13.u,0 ca 3c-9, 80 a.00
/.
3 o
7 18.20 1012 903 3
2.1. 0 18 J.23o 3
9 24.00 1490 4
f a
me ns
a 3YPASS GAS TEMPERAT'J?.E CORE AVERAGE T (0 )
?
REEE STATION (FIl FOR 7 REGIONS ils E" E7ATURE 'O;
1 1.95 159 157 2
5.20 254 220 3
7.80 357 303
'23 4
10.40 498 2
5 13.00 552 554
~
5 15.50 830 728 7
18.20 1012 903 8
21.50 1282 1235 9
24.00 1490 4
b I
e l
VIEWS OF THE 3-D CO.:5 SU:. 0.:.-
EL cs
- n,- - C ".,. U Y..y I I 151 4 t
.";10 *
\\
N,',
\\
h*
/
/
1 V
s
/
l r
,w i \\ $ ll lf
.. ~
l W
,; /,,
=. a
, i
),
/ il
)
K'
' ?,
N'
MAXIMUM PillNCIPAL SIllESSES NEAit KEYWAY i_
i i
i i
i i
i_
is.
r 211 287 295 1161 is. -
299 303 is.
389 111 1 2 11 'l is. =
fill 9 211 358 N 62'g l
N a.t
,/_
661 is.
731 12 Y - 2,,,,,
1111 0 518 558
'Y > gpI>I
^
X is.
~
585 d
ls.9
/
/l15 igtl [
521
,./
93 668
-n y- -
/9i 2 i
.i....
g
/
S'I'l y
111i 5
/
/ lfi 816
- f.. _. _ _,
['_..
/9__,._
s.<..
s.
s....
s....
s.2..
X-R l
THREE-DIMENSIONAL THERMAL-STRESS ANALYSIS ADINAT - STEADY STATE THERMAL-SOLUTION ADINA - STRESS SOLUTION MESH - 847 NODE POINTS 126 20 N0DE IS0 PARAMETRIC ELE.9ENTS FOR ADINAT AN ADDITIONAL 92 3 NCDE ISC?ARAMETR!C ELEMENTS SIMULATE CONVECTIVE SCU'EARY FLOW J
,1 1
1 1
e f
I i
F$
w 3
m Z
2$
H E
)
x 1--
+
=
l
-s htd z
=
r l
u d
i 2
~
-=
a G
/
u W
/
g E
/
O
~
G 2
1
/
/
I-i N
}
/
/
g z
~5 n
w X
,n
/
5 E
/
$/
/
3
!!//////
7
-lll///////j-
-4
!ll/!///////J Q,/
G it-
///////// / / / 7
// ///////////
N
(<A '.
=
\\ ul A
Z
/////// //////
r m
%=s O
h
- ,n
=
r--
\\
< (A a
=
=-<
Z LJZZ 5
^ '
- .4 <
- ",
-2 w
a
.~
Q g
E' ;
m.- -
g
?
x :,a O OM N
I>
e 4
e e
..I.
O I
F.-
a 6
YM l
m l
t.2.J 42 t.d t:
>M O
I
-Z i
b W-f
).
M.
I Z
f V
C E >=
~
O<
l s
-2
/
- y OM
/ /
l h=
\\
l.
,-a y -
I
(<N(d h2 i
Ea j
=
EE
/i l.
/
==
/
E Or l
's g
s s
=
C
=T
/
\\
I I
~
=N 1
L!M e
= = = -
= C pZ 0W r-- W dN
/
/
/
wm Wu O<M
/
/
/
EJ >-
WCJ
,'l*
r=== CD <
-Z OO<
l m3 W
I l
<C XOO t
C t._J J
-Z i
Z=W W<M 4
~d 2
2 2
g' I
6 9
e 9
8 es e
O I
e 7r, O
t i
h N
f.
2 i
m l"
\\
t
- ~
5 OW r
i I
i I J E
2 L
4 4
w W
M M
N Y
~
+%~
e m
_~
c 6'
N N
t t
6 i
O U
O C
h
0 4
0 9
4 1
e.
/
I ss%
N
_i i
l 8
.J L
.s T-t I
1 e
I
\\
A 1'
D' 1
T.
O O O O
C N ~- O IN C-*
C OC 00 O O
.~ ~~
'S N
~ ~ ~
m - - - -
1 I
I I
I O
V O
O
=
w 7
RESULTS OF 3-D STEADY STATE ANALYS!$-
.. A t
/
1759 F
(1307 C AVERAGE T FL
=-
UPPER
^
M9 N%
AVERAGE T
=
- eowg, i
2009 0F MAXIMUM T
=
U MINIMUM.T 1405 F
=
852 PSI MAXIMUM STRESS
=
t i-l l
l I
l i
I
[
SUMMARY
OF-3-D STEADY STATE..!;A'_YSIS t
1200 0?
BYPASS GAS TEMPERATURE
=
0 1980
?
(ORECA)
C00 LAND GAS TEMPERATURE
=
HEAT FLUX INTO TOP 0F 3 LOCK 1
?
Q = 2592 sTu/FT*'HR GAP BETWEEN 3 LOCKS 0.5 IN.
12.5 sTu/=:2,_y,o h
FOR B.YPASS FLOW
=
e 9.4 s u/FT2,33,g l
h FOR COOLANT CHANNELS
=
C 1
2 sTu/.=T sa U=
h FOR CAVITY 18.8
=
C
SUMMARY
OF 3-D STEADY STATE A.':A>_YSIS 1200 C BYPASS GAS TEMFERATURE F
=
1980 C:
CORECA)
C00 LAND GAS TEMPERATURE
=
HEAT FLUX INTO TOP OF 3 LOCK Q = 2592 aTu/FT HR GAP 3ETWEEN BLOCKS 0.5 IN.
12.5 sTu/=Ti sa.3=
h FC9. 3YPASS FLOW
=
c 2
9.4 aru/=T,gg,o h
FOR COOLANT CHANNELS
=
c 2
sTu/=T.sa 0=
h FOR CAVITY 18.8
=
e
SU3 STRUCTURING METHOD o
DEVELOP 2-D MESH FOR USE IN COMPUTER CODE TSAAS OF XEYWAY REGION EXCLUDING KEYWAY FOR COMPARISCN WITH 3-D RESULTS, A
e APPLY 3OUNDARY TEMPERATURES AND DISPLACEMENTS FROM 3-D RESULTS, e
ADJUST CONVECTION COEFFICIENT TO GET SAME TEMPERATURE DISTRI30 TION AS 3-D ANALYSIS, e
USE SAME 300NDARY CONDITIONS SUT INTRODUCE XEYWAY.
e FROM NEW TEMPERATURE DISTRI30 TION GENERATE TEERMAL
- STRESSES, o
i i ii ssi i
TWO-DIMENSIONAL MODEL OF XEYWAY 2-D THERMAL AND STRESS ANALYSIS CODE TSAAS 324 NODE FOINTS MESH 46 CONSTANT STRAIN TRIANGULAR ELEMENTS 297 QUADRILATERAL ELEMENTS 2
CONVECTIVE HE'AT TRANSFER COEFFICIENT h
= 10.4 sTu/sa 7
07 l
l
REVIEW 0F CRITICAL ASSUMPTIONS S
NEGLECT RADIATION TO ADJACENT SLCCK NEGLECT CONDUCTION THROUGH HELIUM 8
ASSUME SIMPLE GECMETRY FOR CON'/ECTION CALCULATIONS 8
3-D EFFECTS AT KEYWAY ARE 10T INCLUDED t
'2-D ANALYSIS ASSUMED PLANE-STRESS AND NEGLECTED CORE WEIGHT AND PRESSURE GRADIENT EFFECTS
OTHER CONSIDERATIONS THAT ?.IGHT CHANGE RESULTS 8
TRANSIENT EFFECTS 8
ASYMMETRIES GEOMETRICAL THERMAL l
o DATA NEEDED FOR FRACT'JRE ANALYSIS ASSUME ANALYSIS IS 2-D AND DYNMIC C?ACK ?ROPAGATION IS CONSIDERED I
MAGNITUDE AND DIRECTION OF MAXIMUM PRINCI?AL STRESSES (CALCULATED) 0 STRESS INTENSITY FACTOR XI (CALC'JLATED) t I
CRITICAL STRESS INTENSITY FACTOR K c (MEASURED) 1 0
STRESS INTENSITY FACTOR FOR CRACK ARREST Ktg (MEASURED) h I
L j