ML20010B552

From kanterella
Jump to navigation Jump to search
Thermal Stress Calculations on Fort St Vrain Core Support Structures
ML20010B552
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 08/25/1980
From:
LOS ALAMOS NATIONAL LABORATORY
To:
Shared Package
ML19263D739 List:
References
FOIA-81-127 NUDOCS 8108170224
Download: ML20010B552 (40)


Text

____ ___

ENCLOSURE 2

.e.

m THERMAL ST.RESS CALCUL'TIONS ON FORT ST, VRAIN CORE SUPPORT STRUCTURES

~1 LASL AueusT 25, 1980

<g ~t.

}c d

4

^

h i

x 2

0 M

7h 7.

?

y g _ - '~

m..

.

'9

}-

M.

Nis.s a crecrint of a racer intefWec 'or suolication n a p

7,

.oureas ar moceecirgs. Beause rev ges mav ce ace ce*ere suoincation, inis woorint.s mace aveniacie men Pe ncer.

stancing : Pat t mil mot De stec of recrocuceo etnout ;"e wmiss.on of t9e autaor.

s ws w a.r es s -.....

8108170224 810529 PDR FOIA MULLEN 81-127 PDR

FORT ST, VRAIN CORE SUPPORT 3 LOCK THERMAL STRESS ANALYSIS THE PURPOSE OF THIS STUDY IS TO INVESTIGATE THE MAGNITUDE OF THERMAL STRESSES INDUCED IN FORT ST, VRAIN GRAPHITE CORE COMPONENTS BY THE COOLING AVAILABLE DURING A FIREWATER C00LDOWN

ACCIDENT, THE STRESS ANALYSIS USES CORE TEMPERATURE DATA PROVIDED BY SID BALL OF ORNL, THE WORK TO 3E PRESENTED INCLUDES:

e A 2-D STEADY STATE THERMAL STRESS ANALYSIS OF THE CORE SUPPORT BLOCK WITHOUT COOLANT HOLE AND WITH WORST CASE ADJACENT 3 LOCK TEMPERATURES, e

A 3-D STEADY STATE THERMAL STRESS ANALYSIS OF THE CORE SUPPORT BLOCK ASSUMING PERIODIC SYMMETRY.

BOUNDARY CONDITIONS ARE BEST ESTIMATES BASED ON AVAILABLE DATA, e

A 2-D ANALYSIS OF THE CORE SUPPORT BLOCK KEYWAY AREA TO ASSESS HIGH STRESS GRADIENTS IN MORE DETAIL, I

lI i. ;

/

C.

8 Ni[

4 0

5 7

t n q2 3

o p.nso t e rcd oae pl c ppa u

p S5s i'

_s 3

.2 s'

g s

04 e

57

~

50 l

h o C.

gh 70 u

b ol

ra h cd s s ti eii

/(t cxx paaa i p 0l s rr 5l oo 5 e nj qi a 16EHt I

0 5

9s, 5

7 3

llll

1LMI'ERAIUllE AT AX1AL STAT 10N 8 AND 200 PLOT'0F CORE TI:MPERAllll(ES MINilII:S INIO IllE FWC ACCIDENT s

,,,,y,y,,,,e,2 4,,

1030,039 008 }946 556 1003

,014 673 773 1936 1778 1558 570 1006 F

,e e

,2e,

,>9,

,,ee

,5,

,,4 e,e,eez ie3.

1 1

4 e

1025 870 662 828 1915 690 1014 1007 1029 496 1677 1718 1039 997 1046 l

l l

t

00 500 g

w y

7 j

e e

e/

'N e

?ROBLEM 1 PROBLEM 2

\\

\\

\\

2000 2000 f

S h

/'}.

I 5g

00 500 500

/

\\

/

\\

e g

300 500 500 g

/

\\

2000 2c00 @

ggggl g

g pag 3tg3 3 500

?Ro3 TEM 4 500 l

\\

2000 2000

\\

\\

2000@

l g

@ 2000 1

00 500 l

/

N

/

,g

\\

e 500

\\

/

\\ &/

J N

g

/

y os mee 05:

PRC3LEM 3 f'

?RC3LEM 6

\\

2008

/

\\

/

/

l

- s ms g

/

\\

I'

/

(D s

i:

,i 3::

{:

4 i.

TABLE I

SUMMARY

OF 2-D STEADY STATE TilERMAL STRESS ANALYSES CONVECTION PEAK IEMP. DROP FEAK MAX 1 HUM PHOBLEM NO.

COEFFICIENT IEMeERATURE -

IllROUGil CSB PRiNCleAL STRESS 1

30 btu /FT ' ll. 0F 2499 F

1182 F

929 est 2

15 2298 F

715 F

568 esi 3

6 2136 F

307 F

251 est 11 30 2155 F

873 F

248 esi 5

30 2366 F

1151 F

560 esi G

30 2244 F

762 F

56ft esi 1

e 4

A..

.m.._

A.

A tj0DAL3REAKDOWNINVERTICALDIRECTICN i

FOR ORECA DATA 46.3 in.

1 g-f TOP RE: LECTOR I

i

]

2 e l

1 l

3 O

l l

i 4

O 1a7.2 in.

ACTIVE CORE 5

6 6

' e 9

39 6 in.

e e 20ii0M..::,::L:r. TOR s.c in.

1[s.0in.

9 e CORE SU.::CRT 3LCCX I

ORECA CONDITIONS USED FOR THER?AL STRESS CALCULATIONS

( J B

= 'M) e TIP.E = 200.0 Min T;n = 162.1 F

e e

10 % 3YPASS FLOW e

AVERAGE FLOW. RATE OVER 37 REGIONS - 50.75 t.s/ MIN o

FUEL REGION NO 19 NODE 8:

T

= 2008 cp CORE T

  • N oAs N0DE 9:

TcoRE " N D ToAs " N 9 a

. A?PROXIMATION OF INTERMEDIATE TEMPERAT'JRE USING LINEAR INTERPOLATION r

BOTTOM J

REFLECTOR 9

2cos F

(n0DE 8)

19. 4 in.

l 1942 F

(TCP OF 3 LOCK)

U 1307 F

(AVERAGE FOR TOP 8 IN, 8 in.

1773 F

OF BLOCK)

[

CSB q

7,.3 in.

U 1709 F

(NODE 9)

W -

,-2,

~

1 1

ACTIVE C0F.!

1 FUEL Coluxx FUEL COLUrti o

00' '

REPLAblE

/ / Q M j,f

$d

.i

/ / * s 50TTCM M.

p

/

{

REFLE,CTOR h.

gyAgE e

SaiEu g

g-PENS o

y 4

$lh<

h COCLANT k

Q FLC' '

l'

~

s q

?

g V "di

'I lT[

P E.V.ANENT r

N 80TTOM s

r s

.y lf 1

s}

a

'N COCL1,Pli N

CMA ::t E!.

, C F.T SLOCX

' ~

II N\\

g*

k~a 00AI CORE EXIT f2E0EI THERr.0 C OU P. E l

FO ST w

, g((

w l

30T :x x!rt:: Tea.x: :=E sure:7.T :Em t I

a L

e 7

t C>

m U

a C

J A

Q M

O W

Z C

M W

M U

=

C 1

7 3

O C

l1 4

C W

'0

=

W Z

ZC Z

.O.

o-H

+

H U

V O

W Q

3

=

C C

Z Z

C J

O O

M w

=

U V

UW W

I I

I J

w C

w H

w W

O O

O 3

O O

C O

Z C

O C

0 W

J b

b b

o o

O M

Q x

U 3

C C

6 W

\\ '<

w Z

Z Z

K M

M C

=

O

=

=

H H

O

\\

N C

U o

=

m U

x x

c Z

z Z

i

(-

<a a

o s

J U

Z o

N O

t:

I C

1 l

V

<:l" Z

~

I y

Z

=

0 W

s y

.s s

\\

i I

l l

1

,^

PGX GRAPHITE MATERIAL PROPERTIES USED ?0R THERMAL-STRESS ANALYSIS e

THERMAL CONDUCTI'/ITY RADIAL:

k = 12.3 sTu/sa FT 0F LONGITUDINAL:

x = 13. 9 sTu/sa =T.0=

6 YOUNG'S MODULUS E = 10 Psi POISSON'S RATIO v = 0.15 THERMAL EXPANSION COEFFICIENT 1.13 x 10-6 AT 500 F

1.38 x 10-6 U

AT 1000 F

1,63 x 10-6 AT 1500 op 1.87 x 10-0 0

Ar 2000 F

2.11 x 10-6 U

AT 2500 F

t

l 1

..ni:: n"u :xC,c::- :-.._......:_ :..:,

..u -.-

. r. a e h^.: u..t i :m

,v -

n t. eu,- av' L-s-i x:sc ad.a i.v. s. s-


4 THERMAL CONDUCTIVITY RADIAL:

x = 12.3 sTu/sa FT 0.=

LONGITUDINAL:

x = 13. 9 3Tu/sa =T.O=

6 YOUNG'S MODULUS E = 10

?st POISSON'S RATIO v,= 0.15 THERMAL EXPANSION COEFFICIENT 1.13 x 10-6 U

AT 500 F

1.38 x 10-6 0

AT 1000 F

1,63 x 10-6 A-1500 0F 1.87 x 10-6 C

A-2000 F

2.11 x 10-6 0

AT 2500 F

CONVECTIVE HEAT TRANSFER COEFFICIENT FOR 5Y? ASS FLI.'

N u.4 :<

s "c

26 FOR HE AT 20 3AR AT 700 F

x = 0.155 sTu/sa.FT.07 U

0 AT 1200 F

k = 0.198 CF x = 0.252 AT 2000 l

Nu RANGES FROM 8.5 FOR A'0,5 IN. GAP AND LAMINAR FLOW a

l.

TO 7.5 FOR A 0.125 IN GAF AND LAMINAR FLOW ASSUME 0.125 1 3 1 0.50 IN.

THEN 15.8 1 h 1 94.3 aTu/sa.0.FT F

c 2

FOR A 0.25 IN. GAP h

= 29.b sTu/sa.07 7T c

I I~ c 6

Wy M

. s-O

+

s - t.q A.n d,: :.:, C r. ~.: : f r. 7 :'",

^ :

..i; y :. r... y. u.: s i N u., :<

"c 24 FOR Hs AT 20 3AR Ar 700 U:

k = 0.155 3Tu/sa.=T.0-UF k = 0.193 AT 1200 U

AT 2000 F

k = 0.252 blu RANGES FROM 8.5 FOR A 0.5 IN. GAP AND LAMINAR.: LOW g

TO 7.5 FOR A 0.125 IN GAP AND LAMINAR FLOW 0.50 IN.

ASSUME 0.125 s

94.3 aTu/Ha 0=.=T2 THEN 15.8 h

c FOR A 0.25 IN. GAP h

= 29.8 sTu/sa 0

.=T2 e

.k 9

CO':VECTIVE HEAT TRANS.:ER CCE.:?ICIENT 20R CCOLANT HOLES AND CAVITY 4

e' COOLANT H0LES FOR TUR30 LENT FLOW IN A TU3E Nug<

a

=

c D

0.023 (R.)0 8 (P=)0 4 Nu

=

n 9.37 BTU /HR'FT.0F h

=

e-CAVITY d.c 2xh FOR C00 LENT HOLES

=

e

/

^

)

.s I

s Y

/'

~

C0i!VECTIVE HEAT TRANS?ER COEFFICIENT FOR C00Li.NT HOLES AND CAVITY e

COOLANT HOLES FOR TUREULENT FLOW IN A TU3E Nus<

h

=

c 9

0.023 (Re)0 3 (?a0 4 Nu

=

,3 2

9,37 S T U /,q R.,: 7, 9 h

=

e e

CAVITY 2xh FOR C00 LENT HOLES h

=

c c

f 9

e e-

w#

e\\

  • s 1\\

~

$(

G\\

3 p%

\\

N NI b

~~~

g

^

y k

/

it

/

/

/

\\

/

\\

/

, ' =,

/

g

\\

,fs

\\

\\

\\

\\

N s

t t.1

\\

~

Y f

\\

\\

u_

g

\\ C, s Y~~,-

9 w

d J

/

2ll f

g

~

u M

\\

/

V f

O

\\

a

\\

/

=

\\

/

/

h *' =~.,

g

/

a

~~

,4 i

E

=3 M

/

\\

g

\\

e c:r.'

/

\\

O

/

\\

/

\\

i

/

\\

\\

%~%.

l O

\\

i H

U

\\

\\

w

\\

a

\\

ud

\\

~

\\

hm,

h g

/

~

s

/

5

\\

/

\\

/

\\

j N

/

/ ~~~,~

/

,,~s/

7

/

/

/

/

\\

e

...mm

-am

NET 'dEAT FI'JX INTO TOP OF BLOCK l

4 1

e CONDUCTION d

g.- x/L AT 1

2 Q=

0.17 sTu/ Min'13

.I e

CONVECTION b

(ASSUME 1/5 0F AREA IS INVOLVED)

Q=

1/5(h AT) c i

Q

=

0.10 sTu/ MIN'IN '

2 30 sTu/sa

.=T,o=)

(FOR h

=

c i

i e

TOTAL FLUX 2

0.27 sTu/ MIN IN Q

=

t a

4 1

l l

r

,.,..,.~s

,,,,,..,,J i,w l 10." U.

OL OCMI "WA Ilt l e

CONDUCTION

_ x/L AT g

2 0.17 sTu/stn : N Q

=

CONVECTICN (ASSUME 1/5 0F AREA IS INVOL'!ED) 1/5 0s.c AT) 0

=

?

0,10 sTu/ Min :n-Q

=

2 30 sTu/sa FT,c-)

(FOR h-

=

u e

TOTAL FLUX 0.27 sTu/st e :.2 Q

=

ESTIMATED HEAT FLOW FRCM SIDEWAL'_ (:.5 I.'!. G.A.::.

/ g c ; ff ( 1 1 ' N AVERAGE SIDEWALL TEMPERATURE

=

150C 2F

. ?. m :,p W-0F F

'g 3YPASS GAS TEMPERATURE

=

1200 j

CF ~'

ADJACE.1T SIDEWALL TEMPERATURE

=

1000 2

CONVECTION 3,750 sTu/sa :T 2

RADIATION 17,500 sTu/Ha =T CONDUCTION 2,400 sTu/Ha = 2 2

(12.5 sTu/HR,0,77 )(500 0=) = 57Ei sTu/HR.FT2 7

=

CONV 0

=

(1.713 x 10 o~ sTu/HR '.:T". R*.) (1. C) (1. 0) 9 r

333 (1960.04 - 1460 ) g4 = 17,50C sTu/HR':-

4

[

O COND

?

2,400 sTu/HR*.:T"

=

^4

.c$;;t~Q,WA &'l' Y( Y ^

,. lb

-ces s-o A.

CALCULATION OF 3YPASS GAS TEP:IRATURE

[n

i s '?,

,4 y- =42 ~

l& ' -

u-y PERFORM fiEAT SALANCE ON FLOWING GAS.::R DISTANCE REPRESENTED BY EACH NCDE.

a Ecp (T

- T -)

=

hA AT 3

ou E

=

330 L3/HR 13 BTU /HR,o,FT h

=

p c

1.24 sTu/La.0F e

=

p ITERATED TO OBTAIN AT

/ TIN + Tout)

I AT

=

CORE

(

2

/

CALCULATION OF 3Y? ASS GAS E7:E?.;T.:i 1

(

PERFORM HEAT 3ALANCE ON FLOWING GAS ::?. ::STA"CE REPRESENTED BY EACH NODE.

P (T

-TJ hA AT me

=

IN CU:

330 L3/HR m

=

13 BTU /HR*0 ':T h

=

?.

c 1.24 sTu/ts.0F c

=

p ITERATED TO OBTAIN AT CUT)

/s

+i ai T

IN Con--:

(

2

/

l L.

'10 0 0 W
v.0 0
VO*b, FA*wnb i

aR 1 w...

w. t w,,_

yl 3a,u-i (c,

r.c a t.

t rs er r:

7 :m.r.nne n_. e T:9:c:

n::_ _, c) e,b:

c.7 r.ny, c.:)

ge,s s

m l. r _:

103

_3 :/

2e,tu t.

3.40

234,

-7 30)-

)

7.60 32 4

10.40 498 223 3

13.u,0 ca 3c-9, 80 a.00

/.

3 o

7 18.20 1012 903 3

2.1. 0 18 J.23o 3

9 24.00 1490 4

f a

me ns

a 3YPASS GAS TEMPERAT'J?.E CORE AVERAGE T (0 )

?

REEE STATION (FIl FOR 7 REGIONS ils E" E7ATURE 'O;

1 1.95 159 157 2

5.20 254 220 3

7.80 357 303

'23 4

10.40 498 2

5 13.00 552 554

~

5 15.50 830 728 7

18.20 1012 903 8

21.50 1282 1235 9

24.00 1490 4

b I

e l

VIEWS OF THE 3-D CO.:5 SU:. 0.:.-

EL cs

- n,- - C ".,. U Y..y I I 151 4 t

.";10 *

\\

N,',

\\

h*

/

/

1 V

s

/

l r

,w i \\ $ ll lf

.. ~

l W

,; /,,

=. a

, i

),

/ il

)

K'

' ?,

N'

MAXIMUM PillNCIPAL SIllESSES NEAit KEYWAY i_

i i

i i

i i

i_

is.

r 211 287 295 1161 is. -

299 303 is.

389 111 1 2 11 'l is. =

fill 9 211 358 N 62'g l

N a.t

,/_

661 is.

731 12 Y - 2,,,,,

1111 0 518 558

'Y > gpI>I

^

X is.

~

585 d

ls.9

/

/l15 igtl [

521

,./

93 668

-n y- -

/9i 2 i

.i....

g

/

S'I'l y

111i 5

/

/ lfi 816

f.. _. _ _,

['_..

/9__,._

s.<..

s.

s....

s....

s.2..

X-R l

THREE-DIMENSIONAL THERMAL-STRESS ANALYSIS ADINAT - STEADY STATE THERMAL-SOLUTION ADINA - STRESS SOLUTION MESH - 847 NODE POINTS 126 20 N0DE IS0 PARAMETRIC ELE.9ENTS FOR ADINAT AN ADDITIONAL 92 3 NCDE ISC?ARAMETR!C ELEMENTS SIMULATE CONVECTIVE SCU'EARY FLOW J

,1 1

1 1

e f

I i

F$

w 3

m Z

2$

H E

)

x 1--

+

=

l

-s htd z

=

r l

u d

i 2

~

-=

a G

/

u W

/

g E

/

O

~

G 2

1

/

/

I-i N

}

/

/

g z

~5 n

w X

,n

/

5 E

/

$/

/

3

!!//////

7

-lll///////j-

-4

!ll/!///////J Q,/

G it-

///////// / / / 7

// ///////////

N

(<A '.

=

\\ ul A

Z

/////// //////

r m

%=s O

h

,n

=

r--

\\

< (A a

=

=-<

Z LJZZ 5

^ '

.4 <
",

-2 w

a

.~

Q g

E' ;

m.- -

g

?

x :,a O OM N

I>

e 4

e e

..I.

O I

F.-

a 6

YM l

m l

t.2.J 42 t.d t:

>M O

I

-Z i

b W-f

).

M.

I Z

f V

C E >=

~

O<

l s

-2

/

/ /

l h=

\\

l.

,-a y -

I

(<N(d h2 i

Ea j

=

EE

/i l.

/

==

/

E Or l

's g

s s

=

C

=T

/

\\

I I

~

=N 1

L!M e

= = = -

= C pZ 0W r-- W dN

/

/

/

wm Wu O<M

/

/

/

EJ >-

WCJ

,'l*

r=== CD <

-Z OO<

l m3 W

I l

<C XOO t

C t._J J

-Z i

Z=W W<M 4

~d 2

2 2

g' I

6 9

e 9

8 es e

O I

e 7r, O

t i

h N

f.

2 i

m l"

\\

t

~

5 OW r

i I

i I J E

2 L

4 4

w W

M M

N Y

~

+%~

e m

_~

c 6'

N N

t t

6 i

O U

O C

h

0 4

0 9

4 1

e.

/

I ss%

N

_i i

l 8

.J L

.s T-t I

1 e

I

\\

A 1'

D' 1

T.

O O O O

C N ~- O IN C-*

C OC 00 O O

.~ ~~

'S N

~ ~ ~

m - - - -

1 I

I I

I O

V O

O

=

w 7

RESULTS OF 3-D STEADY STATE ANALYS!$-

.. A t

/

1759 F

(1307 C AVERAGE T FL

=-

UPPER

^

M9 N%

AVERAGE T

=

eowg, i

2009 0F MAXIMUM T

=

U MINIMUM.T 1405 F

=

852 PSI MAXIMUM STRESS

=

t i-l l

l I

l i

I

[

SUMMARY

OF-3-D STEADY STATE..!;A'_YSIS t

1200 0?

BYPASS GAS TEMPERATURE

=

0 1980

?

(ORECA)

C00 LAND GAS TEMPERATURE

=

HEAT FLUX INTO TOP 0F 3 LOCK 1

?

Q = 2592 sTu/FT*'HR GAP BETWEEN 3 LOCKS 0.5 IN.

12.5 sTu/=:2,_y,o h

FOR B.YPASS FLOW

=

e 9.4 s u/FT2,33,g l

h FOR COOLANT CHANNELS

=

C 1

2 sTu/.=T sa U=

h FOR CAVITY 18.8

=

C

SUMMARY

OF 3-D STEADY STATE A.':A>_YSIS 1200 C BYPASS GAS TEMFERATURE F

=

1980 C:

CORECA)

C00 LAND GAS TEMPERATURE

=

HEAT FLUX INTO TOP OF 3 LOCK Q = 2592 aTu/FT HR GAP 3ETWEEN BLOCKS 0.5 IN.

12.5 sTu/=Ti sa.3=

h FC9. 3YPASS FLOW

=

c 2

9.4 aru/=T,gg,o h

FOR COOLANT CHANNELS

=

c 2

sTu/=T.sa 0=

h FOR CAVITY 18.8

=

e

SU3 STRUCTURING METHOD o

DEVELOP 2-D MESH FOR USE IN COMPUTER CODE TSAAS OF XEYWAY REGION EXCLUDING KEYWAY FOR COMPARISCN WITH 3-D RESULTS, A

e APPLY 3OUNDARY TEMPERATURES AND DISPLACEMENTS FROM 3-D RESULTS, e

ADJUST CONVECTION COEFFICIENT TO GET SAME TEMPERATURE DISTRI30 TION AS 3-D ANALYSIS, e

USE SAME 300NDARY CONDITIONS SUT INTRODUCE XEYWAY.

e FROM NEW TEMPERATURE DISTRI30 TION GENERATE TEERMAL

STRESSES, o

i i ii ssi i

TWO-DIMENSIONAL MODEL OF XEYWAY 2-D THERMAL AND STRESS ANALYSIS CODE TSAAS 324 NODE FOINTS MESH 46 CONSTANT STRAIN TRIANGULAR ELEMENTS 297 QUADRILATERAL ELEMENTS 2

CONVECTIVE HE'AT TRANSFER COEFFICIENT h

= 10.4 sTu/sa 7

07 l

l

REVIEW 0F CRITICAL ASSUMPTIONS S

NEGLECT RADIATION TO ADJACENT SLCCK NEGLECT CONDUCTION THROUGH HELIUM 8

ASSUME SIMPLE GECMETRY FOR CON'/ECTION CALCULATIONS 8

3-D EFFECTS AT KEYWAY ARE 10T INCLUDED t

'2-D ANALYSIS ASSUMED PLANE-STRESS AND NEGLECTED CORE WEIGHT AND PRESSURE GRADIENT EFFECTS

OTHER CONSIDERATIONS THAT ?.IGHT CHANGE RESULTS 8

TRANSIENT EFFECTS 8

ASYMMETRIES GEOMETRICAL THERMAL l

o DATA NEEDED FOR FRACT'JRE ANALYSIS ASSUME ANALYSIS IS 2-D AND DYNMIC C?ACK ?ROPAGATION IS CONSIDERED I

MAGNITUDE AND DIRECTION OF MAXIMUM PRINCI?AL STRESSES (CALCULATED) 0 STRESS INTENSITY FACTOR XI (CALC'JLATED) t I

CRITICAL STRESS INTENSITY FACTOR K c (MEASURED) 1 0

STRESS INTENSITY FACTOR FOR CRACK ARREST Ktg (MEASURED) h I

L j