ML20010A181
| ML20010A181 | |
| Person / Time | |
|---|---|
| Site: | 07105795 |
| Issue date: | 08/27/1969 |
| From: | John Thomas, Thomsa J UNION CARBIDE CORP. |
| To: | |
| Shared Package | |
| ML20010A176 | List: |
| References | |
| 19433, W-7405-ENG-26, Y-DR-20, NUDOCS 8108110152 | |
| Download: ML20010A181 (21) | |
Text
..-.
s Y-DR-20 c'y I l
1 - i i. ;j. h w. '..,
RE00iiD GSfY l
NUCLEAR CRITICALITY SAFETY ANALYSIS OF A l
55-GALLON-DELE FOAMGLAS COHTAINER l
l J. T. Thomas l
t
.s I
I l
U N IONkCARBIDE; CORPO RATIOC.
MUCLEAR DIVISION 1
O A K RIOk3 E Y-12 P ANT
.'.'I operated for the ATOMIC ENERGY COMMISSION under U. S. GOVERNMENT Contract W.7405 eng 26
@ OAK RIDGE Y.12 PL ANT P. O. Box Y O AK RIDGE, TENNESSEE 37830
[b E 1a
- ' +9
..~J
-)
8108110152 810724 PDR ADOCK 07105795 C
w q
9 -) 9 - h )
Report Number: Y-DR-20 Date Issued:
4 UNION CARBIDE CORPORATION Nuclear Division Y-12 Plant Contract W-7 05-eng-26 4
With the U.S. Atomic Energy Commission NUCLEAR CRITICALITY SAFETY ANALYSIS OF A 55-GALLON-DRIM FOAMGTAS CONTAINER J. T. Thomas Oak Ridge, Tennessee 1
l
->e-9, y,
--.9,,
, - -. - -,,.. w y~-,--v,y-.,,,~
_....s-
.__,y,,
r-wv-weme----
w -'
r~'=
iii CONTENTS
- page, ABSTRACT.......................................,...........
1 INTRODUCTION...............................................
2 PACKAGE DESCRIPTION........................................
2 Package Materials.....................................
3 Fissile Materials.....................................
3 MONTE CARLO CAICULATIONS...................................
6 Metals and Oxides.....................................
6 Aqueous Solutions.....................................
7 DETERMINArION OF MASS LIMI'IS...............................
11 RECOMMENDED MASS LIMIIS....................................
12 REMARKS....................................................
17 ACKNOWLEDGDIENTS...........................................
17 REFERENCES.................................................
18 I
y
1 NUCLEAR CRITICALITY SAFETY ANALYSIS OF A 55-GALLON-DRIE FOAMGIAS CONTAINER J. T. Thomas ABSTRACT eas y, asa, and * 'Pu have Mass limits for the fissile isotopes U
been detemined for a proposed 55-gal-drum shipping container having Foam 6 as as a thermal insulator.
'Ihe physicel forms of the fissile 1
materials considered were metal, oxides at an H/X atomic ratio of 0.1+
and 3, and aqueous nitrate solutions having no excess nitrate. Rec-o= mended mass limits corresponding to transport indices from 0.1 to 2.0 are given.
i e
l
g r
INTRODUCTION
~
Nuclear criticality safety evaluation of a 55-gal drum having 1
Foam 6 as as an insulating material was requested by the Oak Ridge National Laboratory Chemical Technology Division as part of a container ass, 888U, and evaluation program. Materials to be considered were U
' 888 Pu ac metals, oxides, and aqueous solutions. In order to comply U) with Federal Regulations governing the transpcrt of fissile materials, it is necessary to determiw the mass loadings for water-reflected 4
arrays of the containers. The many parameters involved in this request normally would require en inordinate amount of computer time. Fortu-nately, judicious use is made of infomation concerning the criticality of uncontained fissile materials and,of a technique for reducing the amount of machine time required for water-reflected systems.
No evaluation is made of the effect of water moderation of damaged packages because the integrity of the container and the number of con-l tainers concerned in such an evaluation vould lead to larger mass limits than established herein.
The KEN 0(8) Monte Carlo code is used to determine the multiplica-tion factor of reflected arrays of the containers. A description of code input data is given, followed by the results of the' calculations. These d n are then translated into mass loadings which correspond to assigned transport indices. A few remarks are made concerning the general appli-l cability of the survey and areas where further study is needed.
PACK!GE DESCRIPTION The package is composed of two coaxial cylindrical containers with the region between filled with an insulating material. The outer con-tainer is a standsrd 55-gal-steel drum. The dimensions of the drum are 22 94-in.-o.d. ly 35 0o in. height having a vall thickness of 0.041 in.
The rolling hoops en the drum result in a void region between the drums when in a close-packed array.
This causes the effective lattice spacing in such an array to be equivalent to a 23 78-in.-o.a. drum.
i The inner container is a 5-in.-schedule 40 pipe having a 5 05-in.-
i 1.d. and a usable height of 17 95 in. The bottom was assumed to have a velded closure and the top a standard bolted finnge closure. The pipe
~
vas located in the outer container to provide a 7 5 and 6 in. space at the top and bottom, respectively, between the inner and cuter containers.
.-,.,,m_,,
,,-.m_,_,m
-,,.o
_...c.,,._.,
..m
.._.,,,,,,..__,..,_,.,_.-...,,,-~..-..m
3 Package Materials A description of the materials used in the calculations is con-tained in Table 1.
The Foamglas represents a typical anaksis of average pyrex cc:rposition.
Table 1.
Material ~Atcp 'i.:mber Densities Densi y Material (g/cm )
Atom Number Densities
- Steel Outer Drum 7 82 Fe = 8 3'+91E22 C = 3 921E21 Steel inner container 7 88 Fe = 6.036E22 C = 1.1884E22 Cr = 1.6471E22 Mn = 1 7321E21 Ni = 6.4834E21 Si = 1.694cE21 Foamglas 0.144 B = 1.120E20 (voids are H = 5 16E19 assumed filled Na = 5 50E20 with H S at STP)
O = 2.62E21 2
S = 2 58E19 Si = 1.091F21 Polyethylene 0 92 H = 7 9433E22 C = 3 9716E22 a.
The exponent of powers of 10 is given by EXX following the number.
I I
Fissile Materials The oxides and metals of the fissile isotopes are described in Table 2 and the nitrate solutions in Table 3 l
se
4 Table 2.
Metals and oxides of Fissile Materials.
Material" Density Atomic Number Densities X
(gX/cm)
N N
N y
o H
assu Metal 18 76 4.8096E22 835U oxide, H/U = o.4 8.09 2.0755E22 4.5661122 8 302E21 assUoxide,H/U=3 4.48 1.1492E22 4.0220E22 3 4475E22 23'Pu Metal 19 7 k.9661E22
- 'Puoxide,H/Pu=o.4 8 73 2.2011E22 4.8424E22 8.804E21
'Puoxide,H/Pu=3 4 71 1.1866E22 4.1533E22 3 56ooE2E 8
U Metal 18.4 4 7578E22 Uoxide,H/U=0.4 8.08 2.0892E22 4 5962E22 8 357E21
- 83Uoxide,H/U=3 4.46 1.1534E22 4.0367E22 3 46ooE22 The oxide densities were assumed as 10 5 g/cm* for uranium and 11.4 4.
g/cm* for plutonium, each as dioxides.
Table 3 Fissile Material as Aqueoua Nitrate Solutions
N N
o x
H N
o
- U 200 5 126E20 6.1506E22 1.025E21 3.4854E22 9R 300 7 690E20 5 8878E2 1 538E21 3 559E22 8R 400 1.0253E21 5 6251E22 2.oS1E21 3 6328E22 8R 500 1.2816E21 5 3624E22 2 563E21 3 7065E22 7R 600 1 5379E21 5.o997E22 3 076E21 3 7802E22 7R 700 1 7942E21 4.8370E22 3 588E21 3 8539E22 7R
- U 100 2 585E20 6.411E22 5 17E20
'3.4123E22 lo 200 5 170E20 6.1460E22 1.034E21 3.4867E22 9
300 7 756E20 5 8811E22 1 551E21 3 561oE22 8
400 1.0341E21 5 6161E22 2.068E21 3 6353E22 8
500 1.2926E21 5 3511E22 2 585E21 3 7096E22 7
600 1 5511E21 5 0861E22 3 102E21 3 7840E22 7
Pu loo 2 520E20 6.3727E22 1.co8E21 3.4888E22 10 200 5 041E20 6.0694E22 2.ol6E21 3 6396E22 9
300 7 561E20 5 7661E22 3 024E21 3 79o4E22 8
400 1.co81E21 5 4629E22 4.032E21 3 941?EPP 8
500 1.2601E21 5 1596E22 5 041E21 4.0920E22 7
a.
No excess nitrate is present.
b.
Hansen-Roach cross-section set, see Ref. 4.
~
I
5 The 1050 Monte Carlo code was used to detemine the multiplication factor of cubic arrays of the 55-gal containers. The drum as a package is described in the code as follows:
55-Gal Package Coometry Material Radius
+Z
-Z Cylinder Void 6.410 22.803 22.803 Cylinder Steel 7 065 22.803 23.438 Cylinder Void 7 383 22.803 23 438 Cylinder Insulation 12 700 22.803 23.438 Cylinder Steel 12 700 25 184 23 438 Cylinder Void 12 700 27 020 23 438 Cylinder Insulation 28.673 46.020 38.438 o
Cylinder Steel 29 131 46.447 38 547 Cuboid Void 30.213 48.479 40 579 where the dimensions are given in centimeters.
In an effort to reduce the computer time required to calculate arrays reflected by water, G. E. Whitesxdes(8) has provided a means whereby neutron tracking in the reflector is unnecessary. The fraction of neutrons, their energy and direction, and their crossin6 of the core-reflector boundary are determined for a number of critical systems.
This representative condition is then replaced by a spectral albedo in the Monte Carlo code which provides f ar returning the proper fraction of neutrons to the core with the correct neutron energy spectrum iso-l tropically distributed. Arrays that Md been previously computed by tracking neutrons in the reflector vere recalculated with the spectral albedo boundary condition and resuJted in excellent agreement. As a consequence, there is little difference in computing time between cal-etlations of reflected and unreflected arrays.
l The Hansen-Roach cross section data") were used with a 16-group structure. The specific set used with the solutions of fissile material are indicated in Table 3 l
Water, equivalent to 'an 8-in. thickness, was taken as the reflector material surrounding the arrays.
no
~
y.w
6 MOIG CARID CAICULATIOIS Metals and Oxides The container loadi.7g, i.e., the mass of fissile material, per drum and the number of drums were determined to satisfy the condition that, when assembled in a three dimensional array in a cuboidal pattern and reflected by water, the resulting multiplication factor would be 0 97 + 0.01.
Three arrays, of 125, 512, and 1000 drums, were computed for oach physical form of each of the three fissile isotopes. No further containment of the fissile materials other than that of the package was considered. Add 1'.ional containment materials inside the inner container would result in lower values of the multiplication factor since these vould cause a reduction in the dimensions of the fissile materials.
The data of mars values satisfying the s'ove conditions are sum-mari d in Table 4.
Table 4.
Cass of Fissile Material per Container Necessary to.
Provide a Multiplication Factor of 0 97 + 0.01 in Water-Reflected Arrays.
Number Foa=glas Insulation
- 85 8
8 ' Pu
- U of U
Units (kg )
(kg)
(kg)
Metal 125 31.04 10 99 7 73 512 25 08 9 56 6 92 1000 22.06 8.87 6.28 0xideH/X=0.4 125 59 86*
20.80 17 52 512 36.02 15 98 14.10 1000 29 90 14.08 12 76 0xideH/X=3 125 3498) 21.04 19 27 512 24 58 13 98 14.15 1000 20 51 11.47 11 92 a.
Estimated muss corresponding to k = 0 97 Array multiplication factor was 0 95 when container was filled to capacity (57 83 kg of **5U).
b.
Estimated mass correspcading to k = 0 97 Array multiplication facp*or was 0 90 when container was filled to capacity (32.03 kg 5
of U).
~
7 Aqueous Solutions A series of survey calculations was performed for each of the fis-sile isotopes to determine the multiplication factor for a single re-flected container as a function of solution concentration and height.
The multiplication factor as a function of concentration is shown in Fig.1 for each of the three isotopes. These data show that mass limits established on the basis of the 400 g/l concentration would be satisfactory for all aqueous solution concentrations. Typical data for the multiplication factor as a function of solution height, centered in the container, is given in Fig. 2 for the 400 g/f concentration.
In this series and in the array calculations to be described, the solution was assumed to have a radius equal to that of the inside radius of the inner container. Th3 use of any additional containment for the fissile solutions vould result in a negative reactivity effect on the array because of a required reduction in the solution radius. This as3 point is de=onstrated with one of the U solution arrays.
A su= mary of the array calculations is given in Fig. 3 Shown in the fi ure are the multiplication factors obtained for veter-reflected 6
cuboidal arrays of the containers as a function of a solution height para =eter, h/2n, where n is the number of containers along an edge of the array and h is the solution height per container in centimeters.
Since regulations provide that the lowest assignable transport index is 0.1, which corresponds to 2500 packages based on a 30-unit transport rule, it is evident from the data that criticality need be considered only for the * *U solution. The lines joining the ** U data represent arrays having the same multiplication factor.
Different multiplication factors appear to result in parallel displacements of the lines. The one-thousand-container array shown as the darkened triangle in the figure respresents a * *U array with the solution contained in a O.64-cm-thick polyethylene bottle. The introduction of polyethylene caused a reduction in the array multiplication f actor of about 4 percent. The dashed line appearing in the figure represents the condition of con-tainers filled to capacity with solution; the individual points on this lini. are labeled with the array multiplication factors obtained.
e e.
,..,7_._
8 i
- l::
4
..'!' ;;. l'.;....,.1..
- . f..;
14 *
- '. 14
!..t
.i '.:.:
.t.. l.. !'. I..,
U::
i :'. !.
- 1:;
- .;P;;
- .....L.
..l
.!:1
. 1
.I,
..t. f.t...
..l.
..t.
..I
.g..
1..
gl[.
lit!
.t..
!!!! !!!;. ::g:
't' l t !;.
t.. 1..
- 1..
I..f g.g
- l:*
- l!'
lt!:
.3 1...
l..i...!
..p,.,.
l.
..l.
..E..
...,... l.I
- 1...!
.6
. il.
11
!!. !..11 l...
..l.
- f....
t...
...I........
4
. l.. 1..
..1
......I..l...
.1 !
I.
. 1..
- l.....
.:....6..
..g...y...
g...{....
.g..
. g..
. g..
....g.
- l::...
m
" :m
- f[::
":;1:
t r "..
... ". i:
+
j 3.:.:
- m
+
- tu un ni::
~ :
1..,.,
,.1
. 1..
.1.......
...... 1..
. 1..
..t.....
- i...
..l..
..f..
..p.........
........t.....
..l...
..l......
. %... h :
"t:.-
- 1::i N ;*.....
- d...g...............
! :t
.. l..
Mi..n
.d.... V r
........g....
yQ
- j:ti: ::: ::::.m:
nt::
...,...:=..u. :. _.: ::.w::a.:..:a.. :
- M.:...N.. v u.: _....n.. u..
.i: r.. e.. t..
.. a.: a. a.. :..::
.........m
...m..
c,
...i...
....t..
2:
........t...........
......2.....
....1..
.a.....
... [~..
t _..
n
.. t.........
r....
..3.._
.. y..
s m
o
.......r.....
..z...
....r O
....,.... r.
... r..........
.t..
........ r.
Q
. n.. ~.
a.
....t....2
... c m
. _.... r_
n....t..._.-t.....
....n p.....
..t i.
I* #~
~.
...m.-
..r.....
"q..
- t..
c
"'~I ~"I"2 M" t.,# Up; !*"I 1**I.I'I'
~
...I
"" ""U"
.:. : e
.O m.. :.:;..
- - -,.nt::
- = n.._np.:n. m.. ann..m.....:=...
re
- y. ::{: =.
... a.
. N.....
.., ~...
g!...
43
.. ~ '
...t.
Q
..{.
._. ~.......
' '..9..
......3..
....t.............. ~.
y M
. -)...,.,.,m..e,=...ne.n..,.:.".
.,a......-4......
_..L.
..,..../..
.h...............
.._.. :...2, g
... ~...
- . l,....%........
are
......$... l.
....l~..
- 1.... !........
..N.
.. m...
M ng r=4 ye)
...t.
t..
4.
....g.
..}..
1.
.......T....
-- g..
~
u.......3.....
..g y
=
_.......r
....t..
.,m.......
...g..
... -..t...,...
.m
.. n....-.....
.e.
m n*:I A..a *. ~.t.n..=..
t :* ** *"*""**'*********"t*
O
.' *1::....i... :....::* r::::'*.::...
..t.
G. !.r,:~:; m...J. n...;n. :t M
.,.,. ~.
. *t..
239
.3
....t.~
.........+....t..
^
.*l.....t.*.*.'.......*. * * *
- . * *. *. '. *. *. '. * *. * *.}...J....
...j.
U gg A
....n..
,. n.......
.....,..... $. L..........
..... ~
..,..t.
g,,1 O
.:**t.
V U
233
....2_..
Q
.....~.
..~.t._._t....._.
~
.. {*.
.y..
..y
- .:4....
....n:...q.
....I.
........t.,..
.....1
- *:* gg..**r
- t!! ~; t*::: int.n*!
- n)n*'
..... ~.
- ." 1 _-..
J*:n..... ~..
4...
! **.* t* ': ':::.'jm'
.1:
... f.
- n!
...t........g..............
....1
._.g:_-._...
...f....
........*t..
. ~
....1._..,.
..... I. 1.......
..1 g.
...,g......
...*t'..,
.... _...~.. _.
............e.
.. n..
...t.,.
....:.1
. _....n.... t....
.n.t.
.......i.
.t, 1..... 4... 20...t_._.,._....,_.. - - -. _
..~. _.... _
............._.z
- n..
~......:
.....t O,
o loo 200 300 400 500 600 700 Fissile Isotope Concentration, g X/f FiS. 1.
Conputed Multiplication Factor for Single Reflected Container Filled to Capacity as a Function of Fissile Material Concentration.
.e
~
9
.. : d..a an:
an
- in d: i:{.n::n:.
!;. i ni:
- n; :n: n:
e: nn
- jli
..::ln nIa
- =
_.... :.. n..=..t.:.:..
.. n.4.: :
- p:: :.n i - : -
itu :.
it. ::
-t
- r.r ita :::4 n.:
nn 4-
- n
- =
"al::-
n::;.:
- i
- n;: ;n.
- o t=ir!::
t;.j ::i:
t h:!::n 2
" m! n "
- in
- nn a
m::- "nin" nn :-
j::n :In. +
- ut: r" n.n
=
=
- n
- n np I.n n
na
- . : n.:.n-ni.:
.i
- un rn
.=:
- nn=
!!Iik.. '
illii II!!
!!d iiii i!!ilili !!!! ii!! h,' !!!! :"'
' iiiilii i !!!!! - !=i " E":i 5 i
.=..:
nja n.n
.....:.jn un :n:
1 nun:
n+
- n ut
n!:n:
un V
...e m:r :: -
0.6 ::
- m r.n 2
- .=
- !.. ~
<;.. n =n===
m.:
an}u a
i;nin
......m n:: n::l=nln um
..ns::
nl::
- t. : n::
":: n r
n.
- .::i;:
- ==: = r--==
+
u
- Etn n
ui
,h:
,;n4 nn
- ni=
.nn "n.,nin np!y4p,i=I=:,nt 7-
- un;
,==- n,a=:en:=
- nn ni. n" nl n
n m
r-n=t - n
r ;::.
n;a 1
aina nin=:
m
..r-n;=n..
=:
nl:..
ni..::
.ngn.y; n:
j, i=a >==..
= t= l=== :. n... n== = l=.
..n l= =n. :a -
t:r-n.
x n... = j==jn=r:n=
n j a.a....
nin aj;;n n;n
=l=.. nlJ;--
n n
..m m.
- n==t=n ajnnn=-
.= =:===na.n==
nn:
- .rn n...
a n.
. : nun "n..
n sn.=n=
an:
mn....wa
= ta. :,,.e. m :
.::t::
n t = n....
.mn
............n:=
- ,n. a== -- : nhn..:=:..
.n =.
"rn un: : in:In en y. nial:
~~
+
+
~~
=
m==n =:= = n =
.=::
+
4 n.:n
=t..
nln: g =:n==w.
n r;;... n.:
- = ::.
n...: = n = r==
tn
.. ",t a.. = n..n l=u.=:
..n w
=:
nnr "um
= - - - -
=
=
- =
:rnt-- n
b
=-
n
..:n:; : n #.. :.
=-
nn
- tn :
ugg;:
O "nin::
nIn np: - "ul::
ufn::
- n:: :f.. =n
.. : r
=n
= in
...?"'..
n u t.= := ta= ~: - :==;n.n = s u n f=: =:=
t=
n
n
nn
==n_..-
..n:= = =
....... _ =...
X r.
y.........._.._.
._.....a
...=...
n~.*=. =. :. =.r..=Ar y=... : t.==.. :. =..=M,.= ?- -
un.::.
- n.. t =....n. u.. n...:: ::...::r..n..' m.:. t =... :n.. :]:.:."-=.....n- =...n.~. m:
~..
k un
.n..
. ::::.V
=l:= = rn.: =:.... n :In.. =g:n =::=.,i.,, eQIw n n.. ;g;;, - . :: =..
"- =.j a..
O
- /.:....nta.: =tu.:
n=pn;l 33.a=n ni== Munt"q; =;..: -KlE:;j=r:=ju& h=: :tr.unf---
= =:nn-n inn =t=:
t
- =..
.=r;;.
...:n-s.
y nl=:n:ln:;
nn:=
m mr n -" --
- /.:i=
- n t = -" t u " "".r:1. n t
unn. =.n a._
==
gN O.5 =i. n en nin
=~
r
,<n -
. n ; ". a =-: + n::'un =U==n=r'tnut=:=t rb,,,,.. '
ut:6 a
=m"-"=n====== =.==...==..=.v..
nl::
M :r
~+
="
- r t: = j*= t = t= =: =
C ED.
n.s. :
- . l:. :.
- i..n. ;.
n_r.,.:.
.....= u. ~;: ;;.d....
_= t.n._..=.....r =_n.
._:._.n. ;._=. n.j.=._..=
- ...... n.. n.,..
. ; t u.
.=...n._-:="2 =._.;.i t:............
J O
..t.
j
~; :.
ns..
..l::
.:/. :m '4 -
- n:l=::a :=L.
m t=rm
.=t==
.nin at:. ;
ru
==
=
- ==
.n:t -- -t--+==
=;nn =.j.= t =tx=}::..
=
..:t ===..
oo
=t=t=tn n{f:-
6.
n
..n+= a
=
g== unj-=.~i
n In::
=. 4=:.ln==n:== n: =:;=="" :=-".
n
- =ln" ='re
.a
= nt n ""
un t=
==
t
- m..
un.=
H A
rin"t"::t::
n f =: /':, m nnlun ::l::
- of,...n.:nt:j;;. nf: ::
n:r := 1.......
wu
l:.n u
- =
1
~"...f".~.-
...: =
nlnn unf=u = = * * = =.= n:n...
.t===h=
= =n
- n: un :nt r
.r [. :=ln
.n n
..n n:..
= = =i =I:n
.::i n njn..
a=:n: = * " -
- II
~~'
m.=:nra
-1:ti- =::
t==t
.22"* "'~ "'"Et*..a- =n."_"~ ".. ' '
- =rnt= :
n.n"
J
g f
=l====t= ' 0
- Put =
-5
= :..
..n
.n
- r,;:-
=":: :
Z mn -
"; :..:jn n[n
- nF 7.nt:n
- r t= n :
=t===:==.
n
- a. :=
.. - - =j=n[==jnn " - -=
.=
un = n==
.=
=
235
~
a U==
t
- .a=t
n
.... r nn:
4 :
- f. :.: =t
=.. - =n m
nut =~ :
- ni =n -
tn f *m:..= tu: =hn: =n.===t=:
233
'O
=t:
- cf
. n t" r..=
=
nn.= =
inn =:=
=-=_t..__._
v U
3
==n a.
f.:tn
..:nt=... u *n. :. =."
- t u a;.=}'un
- jn.. = h:n :
.=
j.m 22..,==
- l. n..
. Inj
=2:=:
u nn =t=
=hr
- s
==n
- n
."~.7.....
nin
- ==",=
_=:= :==t. ~.-.... _
g
.. = =.. j n..
..g.~...... -
....g=.... " n.. g n.. :::..: j m..
=... l n. -
f. 7,:"
~g }...n.. ::::
n... :.=..=...:. ;3...-.. i. ~n. j =-.. t n. j.-.. -=....;..=~=--:=..=.._..._
-. =...:.=.=
- n..,
e Q
=..._.n..=...
w u.
- a.. :. a. a. a. :.=...t=..... -
.n..=....=g..,r=..
=. = c:
- ,*..=..=... tn==. =
.=.{"..=..=.n=... t:.. n.....
.a.._=o..=. ~. = +. = ~ _ =
~=.==_=4,....-
. t.....
,.:....=..... n.. l =.
._......n.. j.=....n.j =~.. :.t:f =. = =....
= -..=.. g: =..===j = =g j=..=g==t =g.=. 3 =.7
.n.=...-.
=.
g.
g.
.g t
- n:====g =f- --
.n
= " =.
..... n : '. ;..... 31 n..
.ntu OnO:luj ::.
. J:' O
... n:n. ing:in "utn= =a
- t==:
n= n. n= ' n,,,._: nr : n t. nt =tn nh:njn tn L =ln;:;: = t. *-
n:
- nn===
=;;t=. 1n*n O C: ~.===n*C
==:=4~.,-
'n.d
n
n [: O l. ' '- * - " l==
N
=*
l=
=:- " ~~'="~}.=_.."~~_ ~
n=: =
- n :
= 3
8=
n t "i"=;"i"
=?="" =""*t= = ii.=* C'l = =;": r...1.
.._.:.---. =
a
=
n-
==
=
=
==:
4 n wan =:
nen....=t= nat=n angun u..z-
="t 0- - -==j =~
p=t " : -. - *=
=: -
=="h.!" j
"."t""
a=
..n= m i=n..
==:== = =: =nn c
- i
=tn uf::"
.nl=n =t=
l
- . nam *= t:*=
=~ t.
- t u--
- n
.=
1
- j n..
nj: : artn n
. n'n
=;n:. ::n'n
- =n:. :...=
=:=.
nln n: In
=}a:nt
= t== t 4.=.t= t= t=_hm :=.rn...t.._
t--
==
==:= t ----t r
- n t=:: = h:
- nit =*4**1= =
:
n n.=
n.=
'n u n
= -
ns.= =
.== jn=t e n. untd:
=m,=:l==rna
.j=
=
=
r.
= = unin- =l=un= t=g.=n"._. 4.._= ant
---T---"----
=
n
- =
:
- =
- urnu cu n
=
=n
u
n
- l=t:nn=}=n
- n -fn..=t=
t ni
=-
..nnu: = :n:j== n:n: unf==n =n=c==.2.=r - -=+Er..-
=:= in * :: n"t=:
=.
=
- =
- nt=
t *:
=t =:
.. -+ = i==
nt=t=n= =
=
t;:..
tnja :=n= =:nn =;=tu::;nn
- a;jnnin = =;
- ::==r= ta = 4 = : = =.j=:=1=
- n. n " =t u**
-r--
-- :==:=====n
..=.g.....;gn 4 4.=..=. g $.*=t=t
= t=n ::::=rm:::
. =.
~ *==t.=
..~
-...!........g..3.=...........3.r........ =.. 2 u..
- v,--
g
.... gy.
l=. ~=.- t: ::n.
t*.
c.... n..::t=.e- -
....n:t..=...
..=..t.=..r.=......
=".:=.,
.a.r
.....+
0310 20 30 40 Solution Height in Container, em Fig. 2.
Computed Multiplication Factor for Single Reflected Container as a Function of Aqueous Solution Height at 400 g/f Concentration.
se
-+
10 10%.. g q 4. n 4
.m
, jg;; g gggy g
gp gi g g
ii !i!.
!!I#r iHl!!ii :
i I
!ii!ii!!!!h! t!!!!.!! ':!!s
- Ul' '!O 5
.' !. j j j iii;!iH Humi:m:
p !!, j;;
,g pi-
.:E..i.!4.._!4.i!.ii.
....,...' Containers :, ajn tu.
i..
~
- l..,
e
.g.
...l...
m..
o h.4 j
gjg ;
gggg.,,
%. 4..g;.
g
. g j,.
g u.
, rray,g =..;;3; g i.p
- g; j,g g.
3,
i a HF
- g iii e
1 a a:.nu m. 1,co jp !.$p jy l !!.g!
i !
. i i
- ii
-: i:
y.9.:qp n
0, n.
... n
- =.. p..:.
e4.2.: t ;......-: : :: :; :.;q. j;g"g" ru.:n..g.:
. :i :.
- ::=.....:.
=..l.ar.:
+
ii!l! '..'!WEiii!!d!ll liI! :.. S,iI!Ui@ F ! d@r* !!iiiiiii" 4fiili Mi!!fiI E55 i
...t
... h. -.i um b
U
.'i h N ll?
si O i l ;i U !!!i1. In!...ll
' ' I!
I ::;;j!N,U!!5!:
y!:
' N I
!!"il 4! 03:
m:
@: cl.
- r. y-
. ;- -l c3 a
n,.
- . ;. p
- :.a
.e
....,;; a
.:t n, =1 riu. "..
~
.........n b
b.
- ne ti
. !: n...::
.: un n:
. M.
.n
. tr
==:
yy-+.1:
- ~
- h:: : +,.0 -}
g
- C
- 4
. e n:;
r.+t 4,'
g:-
..i.:
- :\\.\\
- t L. -
lr :..:.:r nIn.
8-t ::. g: :......a : ::::. :u. r:!
.+
a 80 2 :1
+:
- . t[t
- . ":n:::
nMn=
- :3:t nu".: ;
=[
O
- .: :::..:m :::: ~ :::1-tut :.:::
41 ::n : :~.1 ui Q:...::;jj:::.a.=: u*:- :::: h:: :::: ;::1
.:==
.::1.:... ::::: /..+.:1::::
- a..'."; ::~...:'..v / '. *:r: : =.."n:.n.: _.'_...A.
r o
t 1..,.........
.1....
. +
c
.4...4 o.,...
...n.,.......,.z.
4...o. 4... -.. ~- - - :I l.
+
r.t
.u.
.z.
t y
.u
.. ~.
o
.....4
..... +,.
., I,.
.. l.m.,u,*
..q.......,.
C'e
...... m,,
4.
. j.
~.....
y,
,.. +.
..p...
.6 n
- e
.4,
.t
-,= 4..
- 4...
g
.9 9...
w+
4, i
w
- o..,u..,. -,1
..,. %.-u
.. a..
.m...
. +..
z::
g 14
+ -.
Am, f; ;; - -
me 6
o as m,l m..
s o 4
h e *++ - -.... " -
.7 n
e
-t-m }.:;.
- j.:
. j n, tg1 :...
- t rrn :
s.
- 1..:. un. gn q:n; :::.p....n =.3 nz.:.t *m* u -
m
..n
- .r
- .a
-e
- =:
r.
.n
nny me
..n t.
n:.n : are t: dun
....-&:.n.n N..==:.:m l.u.c unj=unl=-"j:--
- = det::
..ma.
q:. :.
.. u: n-ut; :::
nmun. m u ern:
n 2:mun, : m nu
.n :n.. :
lilililid: :: L ilii 9 li'id;.:..n1:"n:fn..w -
~r.:.:::nn[:.
- )' =n}: mp=.. -... r~
- r.
.... ::an: + -
m U
H iWiElli i
%+1' T-T' : M C - L-d 4
- ...::. t.
.N...* :.: n. - :n. :: 13::::+
..t asa Q
......1......
4 jly.... @..
. E N
T jA 83*U in Polyethylene Containel i e g
==
4 o.64-em-thick wil WW
' E
- .d=uti T=:
~
10' Array Multiplication Factorn = nn an=M
=. m
.::=a
- nnunr =w !:.. =
=
= n=3
=
i 0 95
=
- nn= =g:==I p )unIn... l=n!=.;.
nn ass
..n
:r: a
?
...... =. i......
....b.....
239
...:~~.......
X
.s..n.
III!.
!!! EI
..j..
y:. hn - ! Ej5dO{f. iii@.!
. Hiyi is-N-
! $, :ip=.:.nn
.. H: : -.:1. m ai..
tt n:.n
!=
t-in win
- n a
L
. =..
a.- y..
n...n4 t..,, : ti. :.
- n...e.n..
=
,:. u. n.:.: r..:....:
- p. :
n
=. : :=.
~
.3.
t.y1
- 2.I~"-
-.:.; ;. n*.: ::
4 i
.q j::
I... Q
'-+r' n:._
..n n
u"
... n::
- u.::
- n.
n
- t:: m -
nrtun==:
tm: a "n
- .p:f:::.n
- u"n31r
+:n
- a:
m.....
- nu ::n h.
..n
~ ~ -
g-m. :nd:' n:::n..n:.
.n n...n
%r
= =n._
u:. :...,... -
...;=...
r
. a
.. ;n..=....u. n..u...n.=_
u..p.
.g.
p-++~".n' m =: :n----
- unp*=n : n;nn :-
- ....n r.. m..
.3....
a:: :.
- n
+-
- c
.4."*
xn
.d..:.e..
.t:n. n:.:
- 9"
+ - - -
n_.::nn+._.i.
+
.e...
4.,.,
.o.. -
._.-4._
...i.
+
~
+
..4
. -.n
.s
.4.
++-..
- o..
m..+
......v...
- n. +.
- x n..
e,.
.4..
.+,..
- p. r. n.,,,..
. t.
m:,
+,. % -..,
pm u 10 m.
8 03 05 07 1.0 2.0 30 4.0 5 0 6.0 Solution Height Para =eteri h/2n Fig. 3 Array Multiplication factors of Aqueous Nitrate Solutions of Fissile Materials at a Concentration of 400 g X/f as a Function of Solution Height in 55-gal Foamglas Containers.
11 DETEEMIIATION OF MASS LIMITS l
A reasonable representation of critical array data is obtained by plotting the number of units in the array es a function of the ratio of the array surface-to-volume ratio to that of a unit in the array.
The resulting linear relation provides an adequate guide to extension of the data in Table 4 to the range of interest required by the trans-a port index. Dere remains, however, the need for a safety factor which vill sufficiently compensate for the contingent possibility of stacking triangular patterns instead of the computed square patterns of cuboidal arrays.
It can be demonstrated that the array surface-to-volume ratio of j
a triangular arrangement of N units may be taken to be the same as that for the N units in a cubic array. 21s implies the array neutron leak-age fractions vill be approximately the same for equal array multipli-cation factors; however, if the unit size is not changed, the fissile material density in the array vin be greater for the triangular pattern and there vin be an increase in the multiplication factor. Monte Carlo calculations of unreflected uraniu=-metal cylinders in 819-and 2197-I unit arrays of triangular patterna, based on criticality defined by cubic arrays, indicated an increase in the multiplication factor by about 4 percent as a result of changing the pattern from square to triangular. It was also determired that either a reduction in mass 1
per unit of about 7 percent or an increase in the package volume by the factor 2//7 would properly return the systems to criticality. Se magnitude of such corrections can be expected to be conservative when applied to reflected arrays. Withdrawal of support for continued study of this point permits only the application of a safety factor which will produce conservative values.
This vill te, therefore, the only point of arbitrariness introduced into the present analyses, that is, it vill not be possible to transfer the known multiplication factor for cuboidal arreys to triangular patterned arrays when a safety factor is employed except to say it most likely would be less than unity.
Se factors adopted and applied to the data of Table 4 are a 9 per-cent reduction in the 'nass values for metals and a 6 percent reduction of the oxides. Application of these factors to the determined mass D
-e
-,,-9
,.r-- - -
...w.
,.m-,-w-
,-..-p.4.-
-m._w,%
v--
r
-,wwe--
+ -
- .m--
s.-
v-
12 values for an array multiplication factor of 0 97 results in the mass limits given in Fig. 4 for the metals and Figs. 5 and 6 for the oxides.
Shown near the right-hand margin of these figures is the transport index corresponding to the indicated number of units.
The mass limits for the solutions of fissile materials may be taken directly from Fig. 3 provided the following condition is met:
i ass The U solution is placed in an insert container of common materials not having an inside radius in excess of 5 8 cm to compensate for the possibility of triangular stackin6. (The ***U and Pu solu-mas tion radii should not exceed 6.4 cm.)
RECOGENDED MA98 LIMITS The allowable fissile material mass per container is determined for Class II shipments based on a 50-unit transport rule. The con-tainer is a standard 55-gal-steel drum having Foamglas as a thermal insulator and an inner container of 5-in.-schedule 40 pipe with a maximum useable inside height of 17 95 in.
There are no restrictions o
on the shape of the fissile materials within the inner container except ass in the cace of U solutions where the solution radius should not i
exceed 5 8 cm.
The 2ecommended limits are given in Table 5 The mass values are stated in kilograms of the fissile isotope and are applicable to l
materials which do not exceed the given densities. In the case cf 808 U, the limits are for any enrichment because of the limited capacity of the inner container. The values for solution are for any aqueous nitrate solution concentration.
1 i
r -
!!O!!N.!ikNE!llI !!fl !!I! !!!!M!,!-bkIl !!llll!!! !!!!N'......^.
TRANSPORT 3.
3
- .'u:n::
g..!: :11:
-2 ass -
4 t.i:: I::
- Sag
- : 233 t w -.
a an T 1 pg ".
w INDEX
...w"i.v:
11
- g.--
~
-.i,-..::
TT 2
j m.
t
.U 'z..*T
- 1. 4 p) i n
i c
,.o e
h.
i in t
I t
0.1
-E4h. d
!!! i! ' 4
- l i! !
- .p.
- . :~
- .=
i i;i.. ::;.:
-p...: g.
h,
- ::a..p.
- a..
N
- l -:
q.
.r g
_. y++.3 y
...t m..:3.:....
- t...
u 1.:,:. c...n. m.a.
... t.
u
.,1..
... 6,..
..I
.,.,.,....~
1 s.
f.
"- n' ::r+tr : n' t.;i':
- +*
+
'l.::' :
- u..+ 1
- 1 e
o
...., o -.- e
.....,i.
.h.....
.+
4 o
6
.,.4
.m.
.~.p..,.
...,.]**.
.. + -
.q a
.4 O.2
.,,. 1..
m,,.
..1
. e.
g
.,. s...
,.u.
g
.1
.i y
. m.
1 -
hu-+; M,~
. t, * '
.n.
, o.. n.,
....,.. ~
+
, e 1
n
- r. M
..,..m
.a.
, n.,
o fj.
. * = *. ~
i A- : t+ t bt * +.
t t 8
?
4 M
8 t, t
.,., t 10 13
~
2-.n
- n.u
!.n td..' l;f.i k
-htstr aM.u4_:
It. Mili
.!m..
i:t C
.j p:
. ; pt 3
- nn 2
..,.... =....
- 1 4
- t tu:
n.
'r4
- 31. :. :
- : : +n4. ~... %......
.h
- ..h.... i.tt. b..j
.: t.:. t *
- 1. :. 3 j
+:::u..
- ;.::p.u.r....:.r O,3 t.
E U'
2 I ;;I; ; *-
- I rn
4+d**::+:1+f; I?I c
.g..
t.
in u
W
- .1 c:
4 cn :. ::l' 1;r,1. i.,.. t.
-. +.
!.. u.,.m,.,m...: n..i: :
nn +
i..
.E.*.,...
.t W UH illi fiF ili H
diNEl
' 4 :i id !!!
!@N g
. p Q j:44ngjp g4 4
pgl ci O
g;
- !j OI! i Ul I:N II!
i MINdIN: IN.-I:!N ::SkiI MIisd 3
t. ii _ri=:fd._igi.zi.i..ii.i.n.. in..i.i.ii.i =...
A.
1 i.gi. i.n g
=
. a.. ;:.
l.
E If!
Ikh i!. hj! !!! !!! h
'ilNIffff: h!!!! _:
.......]
t
.1 f
hi} Nh.
I.h.III.h liii:n
- i!i
. kI...
!l jb
. ".. *i ':
. t t l.n j.j.
}
i :a: n 1.MTE.g:- yl.n
- .3
- p
- :
a.:
.....?!
..L..::. :.:.
.L. n..u..
- 1. *.20.-f..4..
- 1. ?. i 1...
!EiMii-tid
- $.tii
- MEMwE UiNH ii
M ::=
~
rr.=--
a u
.i.
- r: :r
- =. =.~:::2..==..:-n......... + =.. =. =..
r u...
- '4
- .;' t'.4 I
- 0 -m * * *^"*1*:::*:.u.Cl: 'C:
. b..
. +.
.....[
nI.,..
4..,
4..
g._
. t..
x
. ~...,
...,,.... e ;
--p 1.,
..i..-..
c.
,,...t -:.;;;:
3
....i y
+i;; _
,......,........ m.,,t...
- p.7,*
u.
1 3
10 30 Allowed Mass per Container, kg of X Fig. 4 Reflected Three Dimensional Arrays of Metal Spheres of Fissile Materials.
I
~
14 5!!
N
- ih ttf II ll l!f!N !N!Ni!:f dNI.': l!!! !!!i II!3 i Chii I
I. f_ jl Ul ! d.. '::. Eih!.'!. 3 l t l55 3llil-ll ll
- i. f..ii..
- Si.'
t.
tl t.
I_
4-
.i...
t. !. i. :..Il I t' t '. : :. :",,
!._ "t_ tIi.
1:
- t
.l.
....!' !' ;.11.... !!
i !t. i. "!.
f..i::.
.;:!=
1 i : j' i ' :
' !
- i 'f ' 'I !.!
il.t:!:t:: ::
.u.......
.i l..!-
4.J.....
4 e.,.
13.
I i! fiF M N I,U H il'. i!'.
I i
i
' M
. d. W..
lU 'ih H it. D i:li in I !'
i '
- ent c
. h.
t; e
I i
- i. i f. f.i. t.i. ni:
l i!(ji.i,l.l.: :ih j
.i l t p.
'+
g
- h. s.. l...
. l. t. ya.,:.
.1,
- i. ;... g:.......:m...
...t..7:::a.t:
. i. l t
t
...y :....... g:... 4...
- g;
.:t l ": m..
t.p;.u.1l...p.
..g.
t.i.j. :p.:. ::.. _a.:...:. :
4 :
TMEPOW
.i.
- 7. t,h, }.
q.. g :...
- m..
- .;;:.: :.- ::::;r..::
INDEX p 1.y. j; :.l:.t.t.it:: :: ::. : [I"t l t
13 l
- 'h: ::.:. :.
m
- 1. ::
.t
.,. 4 5; in u m @--a
[;
g g a-s
... gag p
- assPu:,
U
. ass gi O.1 n
.t m g
,b m n: nyi.a 3
j p- :ja
. g l ;[.ij
'! ': qn ntrt n.. n.
F...
, p.3p..
tin.o. 4.::t:!a:
h3
- u un
- . n.n p:-
t H:
. a..t.:
.m
.:=u
.N
- p...
i;h. :....u l
1.==
y4.
.:1 :. 11.1 g..
3,
...r:
- i...
.t::.....
t.::.
m......
..t..n. t.
- ]::.
n,:t..t:
.t : n. r.
.~
.t 3.:'.:.:t.. t.
3.,
1.
.t
.t
_. t. t. L.
... :. i.
. t..
......... t t.
. t t.
. r..,..
..t...+....
.t.
t.:.
..t..
.t
..t.
e z,.
g)
.. TJ.
.m4..
.r.t
...... r 1
4>
1.1..,t.....
. 't.
,1..,,... t t.. u.....n..
p$,p.,.4.,oC..........
t.
..I.
o.
.o
.1.,.a. I.,t.
.i t.
o.n 1..
a c
H
- 7.,.4,
. 2,h.
++.
' +. t
.4
,.*. ; p o
4 tt, D.
+4 4+ t?t* *
....'ab.. M:++tt
.:.: ef.pt.*+ % *ik t N-b l~r"
.ev % 4 si:
- rt t-tHt+
t
- . : d'*t,t* ' y gn. o.g l.; g.m. i.:. c::.a.n...
'"~
!..:......._H.u.nN.T. =.... -
.. u..
...g..
m c
- m..
- - u. h. :
-.t.a_a.
.. m
- uIu udu==ul=x=
=.'\\=n
- n
- n-r.a?) i p
- r.hgu+uu It e
- ..v u:.
- n :n ::nt= = n=-
03
- m r -- e::
.n = :nnm: :=
e d
- N!
i;=! ? $5$hikhE555EE5ikINIlNili55M55.5 e
p
.m..
4o iu on mM M 4 "! i i de W;
' \\it i tUnb L! $ t!- ii i i4!! Whi ih i iHUp i a O.5 1 il fi; ini.Hi
.L M s.
u u.q ui.t an_. :.m.::hn:
c a.
2 : t.c 4
im 1.j ::p:ect. n.n n.p.;
a.cr
_...s t:! g.10. Int.
o na
.n
..t.
zu ah A
a r:i... n..r.L:.-
2.:. n..
.n.'f n... ~.. rt._:.:. : : l :. *;.n..u..*. n.:..:t..n. ::=... :m... t..a m
.n...n:'nt......zl;. _.}3 '\\:.. n n. _~-.*
._ =. -.f.+n+;._.
...,.r----
- : h. !.:n. ::.n.la...:
..__.r.=,:
- t. u.n..r..
- m.. -r.....: :.: :rntr:..:.i.:. +t.:.:. :.nnut.r
+.. :mnh ::_:t:.a
..i, _
L.
I.._
.... ml*.'.
4
+.+.
o r..
{p' j -! j :. 4!S.i EE d
5!
.i p.
-In m..-:. i.f.:
-j!
.j idi.E qiEE i @-. O.
i t
p
, n.
m-i n:
-n n.:=
,! l"iF a t
- =.... :r....)
. :. ;t :p.:
10
. yI::
l: i us:
r-m:ui e!m-
!:P.m!o
- 1 t.i.i*
ti F..
- iP. -
Qj: :::p :a -
"n::u r2 14un :2.H.M::
Ut m:
~ N..=....
.: n:n=..;!n..==.=.n r
t.i:
=m
.=..t-
=..
~w a.n.
u:
~
au w..:=..rn+
n.-.t tw e.
W J.i@.......
- lli i.i.E.!.!E..::5E=2.H$..*il:"i.i.
5..i.53E1 ::55 !!!!
.. =.. _
t.,.
. -....t.......
r
..... nm:
..r...
~
..... _.t..
m..
4 m,.
t.c m
.%~.. 1. -
2.0
- .....,'+t
._+.
L..
.. m.o
.,.4 4
F....+1
.t.4.
..~....w+
o 4,
.:.; t.
.g
... l.r.,., %e c
f
. +.,
6 10 60 Allowed Mass per Container, kg of X Fig. 5 Reflected Three Dimensional Arrays of Fissile Material Oxides at H/x = 0.4 $ n 55-gal Foamglas Containers Arranged in Triangular Pattern, k < 1.
4 6
n
.-1
15 10* -
~l
- l:
L.
- 1.. ! :
i:
1-
- .. t.il;..
- .... f. --- !----*
l.. j.9 :.
6
.l.
..l.. ' '
...-l i:.' !
I
.... ~
C 7.
- r.
i l-
.4.
';4,H -..
44 e..
, i:;ii.!l:,
.y4 4.; ; - 3.pg:.
- i
- ..
4.:p 1:_
- 1, 1.
i
-l-
- t:.
l-
- ]
TRAIEPORT i.
t.
g l.
' Pu i:!ill
- U
.?
iii f233
- 8 U-g
- n
. q:-
0.1
-t; :i
..-4 tt:
h
- -l.
- : 1..!.
- .g::
e
,a. : :.
g
?
n e,
1:.
t
.a
. =. ::.:
o
...1:. J.
'..'" :'. D.
g 0.2 e
.._ 4.,
.+...
m
.....1.
..i.
6..
4 8
.c 1C e4 r
.....:t -
t.
i!L ! ! ;$i :i;i"
~
i 03 i
e
- l:..
- .i.:
w
- i g
ili'!!!!! :li~!k ili~.!il:
itiEf !ll:
9
_.j;
- i;
.-}'-
i;:
g 05
.t.
se;
~i
...'\\
- .Ii.
i.li...
= i:: !\\\\ ~
!!\\gli ii!:=
~
=
ip iihi ii!
!!!. !!H i
r s
l.0
- m.
. 8. :
[j:i iii
.i!!
iii i ji-i 'l:!
iri:
i
.....).
.t..
.t..
2.0 6
10 40 Allowed Mass per Container, kg of X Fig. 6.
Reflected Three Dimensional Arrays of Fissile Meterial Oxides at H/x = 3 in 55-gal Foamglas Containers Arranged in Triangular Pattern, k < l.
~
y
16 Tabic 5 Reco:: mended liass Limits of the Fissile Isotopes U, 8'8U, ass and 8"Pu for the 55-gal Drum with Teamglas Insulation.
Mass in kg X Mueous xide W oxide T ansport 2
2 Solution (Any Index Metal H:X < 0.4 H:x 5 3 conce' ntration)
!!ranium-235 p=/cm1876 o=8.op p = 4.k8 gU g U/cm
- gU/cm*
o.1 17 2 18.8 15 4 2 35 0.2 19 5 24.1 18.4 03 20.8 28.2 20.4 05 23.o 33 8 23 0 1.o 25 6 43 7 27 4 2.0 28.8 56.1 32.8 Plutonium-239 p=87 p = 4 71 p = 19 7*
gPu/cm}
gPu/cm*
gPu/cm o.1 53 10 5 92 2 35 0.2 56 n.6 10 7 o.3 58 12.4 n.8 05 6.2 13 5 13 3 1.0 65 14 9 15 6 2.o 70 16.5 18 3 Uranium-233*
l p = 18.4 o = 8.08 p = 4.46 gU/cm*
gU/cm*
gU/cm*
O.1 75 n.1 83 1 58 0.2 8.0 12.6 10.1 2.06 03 83 13 7 n.5 2 35 05 8.8 15 0 13 3 1.0 92 17 1 16.2 2.0 99 19 3 19 8 a.
Solution radius should not exceed 5 8 cm.
e me w.
p.,, -,
,--..m y3--
e.
s
~
17 RD4 ARKS The limits established herein for the metals and oxidea may be applied to any 55-gal drum with Foanglas insulation having an inner container with a minimum vall thickness of 0.18 in. of steel and a usable inside radius and height not in excess of 5 2.4 in. and 17 95 in.,
respectively.
It is tacitly assumed that the nuclear criticality safety of handling single '2 nits would have been properly evaluated before loading the container to the recommended limits.
It is unfortunate that insufficient funds were available to con-tinue this study since it would have been desirable to remove the arbitrary factor applied to compensate for the possible reflected arrays in triangular arrangements. It also would have been beneficial to complete the comparative study', begun only -Ath ***U, of other insulators commonly used, such as Vermiculite, Celotex, wood, and expanded foam.
ACKNOWLEDGEETIS It is a pleasure to recognize the contribution of G. E. Whitesides and Mrs. Nancy Cross of the Computing Technology Center whose ingenuity and efficaious use of the KENO Monte Carlo code mede this study possible.
O O
e w
+
g-p -, -
e
~
?
18 FIFERENCES 1.
Federal Register, Vol. 33, No.194, part II, pp. 14918-14936 (oct.4,1968).
G. E. Whitesides, " KENO - A Multigroup Monte Carlo Criticality c
Program," CTC-5, Computing Technology Center (to be published).
3 G. E. Whitesides and J. T. Thomas, "The Use of a Differential Current Albedos in Monte Carlo Criticality Calculations," (to be published in Trans. Am. Nucl. Soc. 12, No. 2 (1969).
4.
G. E. Hansen and W. H. Roach, "Six and Sixteen Group Cross Sections for Fast and Intermediate Critical Assemblies" LAMS-2543, Ios Alamos Scientific Laboratory (1961).
e 4 5 1
9 1
,.i...>,3
.$.u '. '. % +2 i
. -,