ML20004D402
| ML20004D402 | |
| Person / Time | |
|---|---|
| Site: | Fermi |
| Issue date: | 06/08/1981 |
| From: | Colbert W DETROIT EDISON CO. |
| To: | Kintner L Office of Nuclear Reactor Regulation |
| References | |
| EF2-53477, NUDOCS 8106090354 | |
| Download: ML20004D402 (15) | |
Text
Detroit ENRICO FERMI UNIT 2 PROJECT ENGINEERING
' I ! ! "J, N
s 9
-: une 8, 1981
((83q/EDU2-534U u
l-] JUN 0 S 1981
- 7; g,
U 3 waran arawces ' i:!
- *88 "
jQ Mr. L. L. Kintner C
Division of Proj ect Management
' 'g gy Office Of Nuclear Regulation y
, y'd,gg U. S. Nuclear Regulatory Commission
_I Washington, D. C.
20555
Dear Mr. Kintner:
Reference:
Enrico Fermi Atomic Power Plant, Unit 2 NRC Docket No. 50-341 Subj ect:
Supplemental Information on the Design of the Safety Relief Valve (SRV) Discharge Piping.
Attached please find the responses to the questions from the Mechanical Engineering Branch on the design of the 'AV discharge piping inside the wetwell.
Should you have any additional questions, please contact Mr. D. F. Lehnert (313-649-7583).
Sincerely,
/
WY f
W. F. Colbert Tecimical Director Fermi 2 Proj ect DFL/sim N
o%g Attachment 8106 0 0o 35tf
/)
i i
Mr. L. L. Kintner June 8, 1981 EF2-53477 Page 2 bec:
(with attachments) l T. A. Alessi E. L. Alexanderson
(
R.-M. Berg J. H. Casiglia W. J. Fahrner i
F. E. Gregor E. P. Grif fing i
J. W. Honkala W. H. Jens A. K. Lim E.
Lusis i
P. A. Marquardt L. E. Schuerman i
H.
Tauber j
R. A. Vance
~
A. E. Wegele D. F. Lehnert J. W. Nunley
. Doc. Control i
T. Martin (NUTECH)
J l
i 1
i j
4
M RESPONSES TO NRC QUESTIONS ON SRV PIPING Question 1:
Provide the following information used in the design of the Fermi 2 safety relief valve (SRV) piping:
a)
The latest SRV hydraulic transient time history loads generated in the SRV piping due to the imbalanced pressure waves resulting from an SRV actuation.
Also, include the latest time history loads due to the discharge of the water column from the submerged piping and quencher device.
Response: provides the requested time history load infor-mation.
The latest (LTP) SRV loads provided are the tran-sient wave loads (obtained using the RVFOR04 code) for each pipe segment.
Loads due to discharge of the water column from the submerged piping are included in these time histories.
Loads have been provided for all SRV segments between the drywell penetration and the T-quencher discharge device.
Alco provided in Attachment 1 are sketches comparing how the loads are currently applied to the method of appli-cation used in the interim analysis.
Question lb:
Provide a tabulation of the loads (forces) used in the in-terim design of the supports of the SRV piping inside the torus wetwell.
Response
The attached Table 2 provides the requested support load information.
Individual loads as well as the critical load combination used for the support design are provided.
Question ic:
Re-e/aluate the adequacy of the SRV piping and supports inside the torus wetwell for the latest SRV hydraulic pressure transient and water slug loads.
The re-evaluation l
shpuld consider the combination of normal, SRV, LOCA, and l
seismic loads using the response combination method provided in NUREG-0484, Revision 1.
Response
i A complete re-evaluation of the wetwell SRV piping and supports has not been completed at this time.
However, an evaluation has been performed to assess the effects of current SRV discharge loads on the wetwell piping supports.
The attached Table 1 provides a summary of the wetwell support reactions resulting from the discharge (RVFOR04) loads.
A preliminary assessment of other loads acting on the piping a.3d supports has also been performed.
Based on the preliminary assessment it is expected that final stresses from these loads will be within acceptable limits.
Work on the final SRV piping PUA for Fermi is now underway.
._,_c
LTP SRV PIPING LOADS AND LOAD APPLICATION SKETCHES
4 6
i0 6
5 i0 8
4
)
i0 1
F T
(
NE 1
IS T 0
N N 4
A E i.
R M 0
T G
)
E C
T S N
E E R S
M O
(
G F 2
E 3
S S
.E D
i 0 E A M
P O I
I L
~
T P
E P V T A N
4 L W 2
i 0 1
^-
2 E
R 6
U 1
G I
i0 F
8 0
=-
i0 0
0 o.~
o o o. T' oo N'O oo d a o d' o a * "o ~
- o J_ ~
u o O u.
c _
t w
iIl
4 6
I0 6
5 i0 8
4
)
e0 2
F T
(
NE 2 IS T 0
N N 4
A E R M i0 T G
)
E T S C
N E
E R S
M O G F
(
2 E
3 S SD
.E i0 E A M
P O I
I L P
T E
P V T A 4
L W 2
i0 2
2 ER 6
UG 1
I i0 F
8 0
i0 0
0
~
0 oa.
oo W oa=
oO O0 1
oa i
oo U0oL
^ DJ-
~
t 0
i i
C w
l,!
{:
l l
46
'0 6
5
'0 8
4
)
'0 3F T
(
NE 3 IS T 0
N N 4
A E R M
'0 T GE
)
C T S N
E E R S
M O
(
G F 2
E 3
S S
.E D
'0 E A A
M P O I
I L T
P E
P V T A 4
L W 2
'0 3
A 2
ER 6
UG 1
I
'0 F
8 0
'0 0
0 oo J oo d' oa*
O~
Sd oo.?
oo
'0 o*
m J. -
uo%2 w
t
4 6
'0 6
5
'0 8
4
)
'0 4
F T
(
NE 4 I
S T 0
N N 4
A E R M
'0 T GE
)
T S C
N E
E R S
M O G F
(
2 E
3 S SD
.E
'0 E A M
P O I
I L P
T E
P V T A 4
L W 2
'0 4
2 ER 6
U 1
G I
'0 F
0 l
8 1
0
'0 00 0
8d 8d 8.m ~
8.o" S.~m o
8iu'
,o~*
n J. _
u o MO u.
J c
4 6
'0 6
5
'0 8
4
)
'0 5F T
(
NE 5 IS T 0
N N A E 4
R M
'0 T GE
)
T S C
N E
E R M O S
G F
(
2 ES S 3
D
.E E A
'0 M P O I L I
P T
E P V T A L W i
4 2
'0 5
2 E
l R
U 6
G 1
I
'0 F
^
Ijl 8
0
'0 0
0 SN 8a oo d 8N o
8i oo J'0 "g
- D J_ ~
ot U O u_
(
l i
i
4 6
'0 6
5
'0 8
4
)
'0 6F T
(
NE 6 I
S T 0
N N 4
A E R M
'0 T GE
)
T S C
N E
E R S
M O G F
(
2 E
3 S SD
.E
'0 E A M
P O I
I L P
T E
P V T A 4
L W 2
'0 6
2 E
R 6
U 1
G I
'0 F
8 0
'0 0
0 aO o*.NI oo.rI o o. m'O o o * "o
- oo 6 oo J
=
~ D J_ -
ouMOL t
(
t a
\\,'
Elbow #11 F= Pipe transient wave loads due to SRV blowdown applied at each elbow.
s:
11
[
)
N (Elbow lt
.- in interim report are
\\
in 3 direct tonal components.)
{
Drywell i
l g
/
s l
m Elbow #12 l
F 12 F 1 Elbow #13 y16
( Vent Pipe Penetration Elbow #16 Elbow #15 Elbow #14
\\
F 14 Ramshead k
y Figure 1-Interim Analysis Piping
~
g p
15 N
Discharge Load Application s N I
. T-Quencher Arms
,o F=
Pipe transient wave loads due to Drywell SRV blowdown applied to each pipe 7
J) N
/'~ Penetration
\\
segment.
Forces as shown are in positive direction.
k\\k
/
s
% /
Vent line
,_j ', _
Penetration d i 4
L d'#
af-Discharge Load Application r
-3' I
Ramshead 4
t~
s s
s s %g h
s( s
-Quencher Arms
TABLE - 1 WETWELL SRV PIPING SUPPORT REACTIONS DUE TO LTP SRV DISCHARGE LOADS SUPPORT SUPPORT REACTION LOADS F
M M
M LOCATION x
7 z
x y
z (kip)
(kip)
(kip)
(in-kip)
(in-kip)
(in-kip)
Vent Pipe Lateral Support 8.8 N/A N/A N/A N/A N/A Vent Pipe Suo;oyt N/A 9.9 16.8 N/A N/A N/A Ramshead
.Supoore 9.2 64.9 11.5 170.2 25.4 204.7 w
TABLE - 2 LOADS USED FOR INTERIM DESIGN OF THE SUPPORTS FOR THE SRV PIPING INSIDE ThE TORUS l
INTERIM ANALYSIS LOADS l
SF.ISMIC Critical Condensa-Design Support Load Dead SRV SRV Bubble tion Pool Swell Load For Location Direction Weight Blowdown OBE DBE DecillatlorOscillation Chugging Impact Support (kip)
(kip)
(kip)
(kip)
(kip)
(kip)
(kip)
(kip)
(kip)
(t}
Vent Pipe Support FX II}
Vent F
2.85 22.62 3.89 3.69 5.59 2.04 3.28 61.95 87.72 y
Ileader F
.22 26.98
.64
.66 13.77 2.89 7.37 23.96 51.17 Support.
g I}
F
.01 3.37
.62
.60 7.02 1.66 4.22 6.32 13.38 X
142.42(I}
F
.76 61.20 2.37 2.25 3.62 1.15 1.12 80.42 Ramshead y
Support I
24.47(
F
.24 6.35
.42 41 15.73 1.43 4.09 8.49 7
(1) Combination 1: Dead Weight +
fSRVBlowdown + DBE + Pool Swell (2) Combination 2: Dead Weight +
SRV Bubble OSC + DBE + Pool Swell i
f
_