ML20003H509
| ML20003H509 | |
| Person / Time | |
|---|---|
| Site: | Vogtle |
| Issue date: | 05/01/1981 |
| From: | GEORGIA POWER CO. |
| To: | |
| Shared Package | |
| ML20003H507 | List: |
| References | |
| NUDOCS 8105060215 | |
| Download: ML20003H509 (56) | |
Text
.
4 ATTACHMENT 2 Ehrensperger to Eisenhut Dated:
h 1,1981 Re: Discharge Strutture h
GM-tw V0GTLE NUCLEAR PLANT UNITS 1 and 2 WASTEWATER EFFLUENT DISCHARGE STRUCTURE PL.UME ANALYSIS e
8105000 1
Vogtle Nuclear Plant Units 1 & 2 Wastewater Effluent Discharge Structure.
Plume Analysis t
CONTENTS I.
Introduction II.
The Analytical Model III. Site Conditions IV.
Description of River 0utfall Structure V.
Thermal Effects VI.
Concentration Effects 1
VII. Jet Velocity Effects VIII.
Discussions p
r L
r.
e LIST OF TABLES Table III-1 Observed River Flow Velocities and Flow Directions at Wastewater Effluent Table IV-1 Comparison of Thermal Plume Characteristics under Various Outfall Conditions for Case 2A Table IV-2 Comparison of Thermal Plume Characteristics Under Various Outfall Conditions for Case 7A Table V-1 Possible Discharge Flow Conditions Table V-2 Thermal Plume Characteristics for River Flow = 5,800 cfs, Pipe Diameter: 24 inches Discharge Angle = 20 degrees J
Table VII-1 Velocity Distributions in Discharge Plume at Various Distances for Case 6A Table VII-2 Velocity Distributions in Discharge Plume at Various Distances for Case 7A Table VII-3 Velocity Distributions in Discharge Plume at Various Distances for Case 4A
LIST OF FIGURES Figure III-1 Soundings at Savannah River Centerline Blowdown Diffuser Pipe (9/26/79)
Figure III-2 Topo Map of Savannah River in the Vicinity of Vogtle Nuclear Plant Figure IV-1 Sketch of Waste Water Effluent Discharge Structure Figure V-1 Plan and Elevation Views of 50F Temperature Rise Isotherm for Case 1A.
Figure V-2 Plan and Elevation Views of 50F Temperature Rise Isotherm for Case 2A.
Figure V-3 Plan and Elevation Views of 50F Temperature Rise Isotherm for Case 4A.
Figure V-4 Plan and Elevation Views of 50F Temperature Rise Isotherm for Case 6A.
0 Figure V-5 Plan and Elevation Views of 5 F Temperature Rise Isotherm for Case 7A.
0 Figure V-6 Plan View of 10F through 5 F Temperature Rise Isotherms for Case 4A.
0 0
Figure V-7 Plan View of 1 F through 5 F Temperature Rise Isotherms for Case 6A.
0 Figure V-8 Plan View of 10F through 5 F Temperature Rise Isotherms for Case 7A.
Figure VI-1 Decay of Constituent Concentration along Centerline of Jet Trajectory for Various Cases, j
Figure VI-2 Concentration Distributions for Case IA.
Figure VI-3 Concentration Distributions for Case 18.
Figure VI-4 Concentration Distributions for Case 2A.
Figure VI-5 Concentration Distributions for Case 28.
l Figure VI-6 Concentration Distributions for Case 3A.
t Figure VI-7 Concentration Distributions for Case 38.
Figure VI-8 Concentration Distributions for Case 3-1A.
Figure VI-9 Concentration Distributions for Case 3-18.
~
LIST OF FIGURES (CON'T)
Figure VI-10 Concentration Distributions for Case 4A.
Figure VI-11 Concentration Distributions for Case 4B.
Figure VI-12 Concentration Distributions for Case SA.
Figure VI-13. Concentration Distributions for Case SB.
Figure VI-14 Concentration Distributions for Case 6A.
Figure VI-15 Concentration Distributions for Case 6B.
Figure VI-16 Concentration Distributions for Case 7A.
Figure VI-17 Concentration Distributions for Case 78.
f Figure VII-1 Decay of Velocity along det Centerline Trajectory for Various Cases.
i
V0GTLE NUCLEAR PLANT UNITS 1 & 2 Wastewater Effluent Discharge Structure Plume Analysis By:
C. S. Chiou - Revised April 1981 I.
INTRODUCTION The original design of the wastewater effluent structure at Savannah River at Vogtle Nuclear Plant was a 48-inch diameter diffuser pipe half buried in the riverbed with 25 6-inch diameter ports to discharge the plant waste-water back into the river at 20 degrees above horizontal plane.
Now, this diffuser type design will be replaced by a shoreline single outlet structure because of the following reasons:
a) The 6-inch diffuser ports might be clogged when the system does not operate for a prolonged period, b) A shoreline discharge structure will have minimum effects on the navigation channel and, c) The construction costs and maintenance costs are less for a shoreline structure than for a diffuser pipe structure.
The new discharge structure is a single point, submerged jet type. The structure consists of one 24 inch diameter pipe extending into the river approximately 20 feet from the near-shore bank low water line.
The pipe is angled across the river at 20 degrees toward the downstream from a line perpendicular to the river bank and a 5 degree dip from the horizontal plane.
The centerline of the pipe outlet is at elevation 74 MSL.
The structure has been designed to comply with the following state and federal requirements: -
1.
State of Georgia - Georgia Water Quality Control Regulations and Standards, Paragraph 391-3-6.03(10).
Mixing Zone - Effluents released to streams or impounded waters shall be fully and homogeneously dispersed and mixed insofar as practical with the main flow or water body by appropriate methods at the discharge point.
Use of a reasonable and limited mixing zone may be pennitted on receipt of satisfactory evidence that such a zone is necessary and that it will not create an objectionable or damaging condition.
~~
2.
Department of the Anny, Corps of Engineers, Savannah District, letter dated November 14, 1980, Osvald to Byerley, (Paraphrased).
To avoid conflicting with operation and maintenance of the Savannah River Below Augusta Navigation Project, the structure should extend no further than 50 feet from the river bank and if so no higher than 68.0 MSL.
With the design change the thermal plume behaviers were re-analyzed.
It is considered that a three dimensional mathematical model* developed by Eric Hirst for a round jet discharging into a flowing ambient water could be applied to this site.
The results of this analytical study and recomended discharge structure configuration are presented in this report.
II. THE ANALYTICAL MODEL The mathematical model developed by Eric Hirst is concerned with the behavior of a momentum jet discharged to an infinite ambient through a single circular
- " Analysis of Round, Turbulent, Buoyant Jets Discharged to Flowing Stratified Ambients." by E.A. Hirst, Oak Ridge National Laboratory June 1971. ORNL-4685.
_2_
submerged pipe subjected to buoyancy forces, ambient cross flows, ambient turbulence, and ambient density stratification. Six basic equations, the conservation of mass, energy, chemical concentration and momentum (3 components),
are derived and solved to obtain values for the six parameters that describes the jet properties along its centerline path. A seventh equation, the jet entrainment function, is introduced by using about 100 experimental data for estimation of jet entrainment. Three more equations are introduced to compute the three Cartesian coordinates of a point along the jet centerline. The following assumptions are made in solving the problem.
1.
Steady Flow, in the mean, 2.
Fully turbulent flow; molecular diffusion is neglected, 3.
Incompressible flow; the density variation appears only in the buoyancy term of the momentum equation.
4.
Constant fluid properties.
5.
Small flow velocity; frictional heating is neglected in the energy equation.
6.
The velocity and density (temperature and concentration) difference profiles in the zone of established flow in the jet are Gaussian distribtuion.
7.
Absence of shallow water effects.
A computer program was written to solve the six basic ordinary differential equations and to compute those values required for presenting the results.
The Hirst model is a deep-water model.
However, because of the initial jet orientation and the ambient flow that helps to prevent quick surfacing of the plume, it was used to estimate the size of the mixing zone. -
There are some boundary effects on the plumes at very high discharge rates because the river is not deep enough at the end of mixing zone, which may deviate somewhat from assumption 6 listed above, and they will be discussed in a 1 ster section.
III.
SITE CONDITIONS The Savannah River at Vogtle Nuclear Plant waste water discharge area is about 300 feet wide with depth at low water level ranging from 9 feet to 15 feet (see Fig. III-1). The river reach upstream of the discharge point is fairly straight for about a mile (See Figure III-2) preceded by many meanderings further upstream. Therefore, the flow in the vicinity of the discharge point is quite mild having an average velocity of 1.7 feet per second at minimum flow of 5800 cfs which is guaranteed by releasing water from upstream dams and reservoirs for maintaining a navigation channel.
River flow velocity distributions and flow directions were measured on October 30, 1980, to check for the field conditions with the assumptions made in applying the mathematical model. The velocity distributions in the thermal plume mixing area were quite uniform as expected, and the flow directions were also quite unidirectional with slow chance in direction of no more than 15 degrees in all observed points.
(see Table III-1).
Thus, it is considered that the ambient conditions fit quite well with the assumptions made in deriving the mathematical equations of the model if the plume boundary will not reach the water surface and riverbed.
(See Section VIII Discussions for these boundary effects.)
_4_
~
IV. DESCRIPTION OF RIVER OUTFALL STRUCTURE The outfall structure is a circular pipe on shoreline with the discharge point near the toe of the near-shore bank, extending approximately 20 feet from the low water edge line. The design is optimized to have the following design configuration:
Pipe Size:
24-inch diameter Discharge Angle:
Directly across the river at 20 degrees toward downstream from the line perpendicular to the river bank and 5 degrees dip from horizontdl plane.
J Centerlir.e elevation at pipe outlet: El. 74' msl.
The recommended design configurations (See Fig. IV-1) was selected by comparing the thermal plume characteristics having discharge pipe sizes of 20", 24", 30",
36", 42" and 48" and having discharge angles of 0, 20, 30, 45 and 60 degrees toward downstream from a line perpendicular to the river bank.
(See Tables IV-1 and IV-2)
The volume of a mixing zone is smaller for a smaller discharge pipe, and it is also smaller for a larger cross flow, i.e., discharge at right angle to ambient flow direction or even at an angle against the ambient flow.
Since the volume of the mixing zone only increases slightly by changing the discharge angle from zero degree (perpendicular to ambient flow) to 30 degrees, a discharge angle of 20 degrees toward downstream is recommended to eliminate a horizontal bend that is required otherwise for the discharge structure...
~
o' The selection of a 24-inch diameter pipe is also optimized by considering the size of the mixing zone and maximum discharging jet velocity.
A larger -
discharge pipe will have larger mixing zone because of less ambient water entrainment at smaller jet velocity. A smaller pipe cannot be used because it not only gives a too high jet velocity at high discharge rate but also-requires very high head to produce such a high velocity. The dimensionless parameter X/D (D = jet diameter, X = distance along jet centerline) also effects the mixing zone size.
In other words, mixing zone is in part determined by scale effect whereby, in. general, the zone since will increase as jet diameter increases.
V.
THERMAL EFFECTS A.
Basic Data The basic data used in the analysis are summarized as follows:
1.
The worst case river conditions for thermal mixing:
River bottom = 64' to 71' MSL Low Water Surface El. = 80' MSL River Width = 300' Minimum River Flow = 5,800 cfs Average River Velocity = 1.7 fps The statistics of various low flow conditions are listed as follows:
Flow Rate Stage Average Velocity Percent of time flows equal Q, cfs Ft. MSL V, fps to or less than Q 5,800 80 1.7
~0 7,000 81 1.8 35 8,000 82 1.9 50 10,000 84 2.1 63 14,000 87 2.4 80
~ _
2.
Waste Water Discharge Conditions Eight possible discharge flow conditions were used in the analysis (See Table V-1).
(The expected frequency and duration of the discharge conditions have not been established at this time.)
B.
Ar.elytical Results The analytical results presented herein do not consider the boundary effects that exist for those cases with high effluent discharge flows; these effects will be discussed in a later section.
The thermal plume characteristics at the end of 5-degree rise and 1
2-degree rise isotherms for the 8 discharge flow conditions are listed in Table V-2.
The largest mixing volume within 5-degree isotherm for the recommended design configuration is 1300 cubic feet for case 7A which has large temperature difference (43 degrees) and fairly large discharge rate (31,000 gpm).
This mixing zone extends 41 feet along the plume centerline having maximum width of 8.6' in diameter.
The plan and elevation views of the 50F isotherm for those cases having large initial temperature differences and flow rates are shown in Figures V-1 through V-5.
The volume of each mixing mone is also given.
Figures V-6 through V-8 are the computer plots of the thermal plumes for 0
cases 4A, 6A and 7A, showing the 10 through 5 F isotherms. Please note that the plots are mirror images of actual conditions.
VI.
CONCENTRATION EFFECTS The distribution of concentration for any constituent in the plume or mixing zone of the effluent discharge is similar to the distribution of temperature,
rise in tne plume. Thus, the temperature rise isotherms are indications of concentration rises. The decay of concentration along the jet centerline path for each case is shown in Figure VI-1.
The particle or fluid traveling time along the jet centerline is also shown.
It can be calculated that any high concentration in the discharge water will be reduced to low concentration' within a small distance from the discharge point.
The plumes of concentration distributions for various cases are shown in Figures VI-2 through VI-17.
VII.
JET VELOCITY EFFECTS The stream velocity affected by a high discharge jet flow should have negligible effects on the environment.
For the highest discharge rate of 55,000 gpm the jet initial velocity is 39 fps (feet per second). This high velocity will reduce to 10 fps in 30 feet and to 5 fps in 50 feet.
However, since the water depth in the vicinity of distance 30' to 50' from the discharge point is only about 12', the jet boundary at this maximum discharge rate will reach both the water surface and riverbed at distance 30' from discharge point, but the jet velocity within 4 feet from water surface will be in the order of 4 fps or less. The jet will cause only minor local scouring on the river bottom, which should be tolerable since the river is alluvial. The navigation channel is greater than 50 feet away from west low water edge line. The high velocity jet should not cause river bottom scouring at the discharge point since the jet is at some 7 feet above riverbed.
The velocity distribution for the highest discharge condition is listed in Table VII-1. The next highest velocity is obtained in Case 5 and Case 7 (31,000 gpm discharge flow.) The jet velocity distribution for Case 7A is tabulated in Table VII-2. The initial jet velocity is 22 fps, but the jet velocity decreases to 4 fps or less at distance 30' from discharge point. The jet stream may not be visible at water surface, and it will not cause scouring at river bottom.
The velocity distribution for Case 4A with discharge rate 15,500 gpm is shown in Table VII-3.
The jet initial velocity is 11 fps, and it decreases to less than 3 fps in 20 feet from discharge point.
~ '
VIII.
DISCUSSIONS A.
Boundary Effects on Plume Characteristics As previously mentioned the jet or plume boundary at and beyond certain distance from the discharge point will reach both the free water surface and the river bottom at very high effluent discharge rates, such as 55,000 gpm and 31,000 gpm.
This is in violation of one of the assumptions in deriving the mathematical equations of this analytical model. The worst case for thermal plume is Case 7A, but the worst case for jet velocity field is Cases 6A and 6B.
For all other cases, cases 1A through 5B both the predicted thermal plumes and velocity fields that need to be concerned about are well within the ambient water depth range. The boundary effects for these cases should be minimal.
Considering the thermal plume for Case 7A; the river water depth is about 14' at a distance 25' from the discharge point. At this point the radius of 10F temperature rise isotherm is 7 feet.
The initial temperature rise at discharge point is 430F for this case.
It means that the thermal plume will start to have boundary effects beyond this point for this case. The end of 50F rise isotherm extends 41' from discharge point without considering the boundary
_g_
effects. Therefore, the actual volume of 50F isotherm will be larger than the predicted 1300 cubic feet.
However, it is believed that the actual 0
volume of the 5 F rise mixing zone will not exceed 150% of the predicted value of 1300 cubic feet because colder water is still available from the lateral sides for mixing.
The size of 150% mixing zone is approximately double the length of the 50F rise isothern in the region where the plume will be affected by the water surface and the river bottom boundaries.
Considering the jet velocity field for Case 6A or 6B; the thermal plume for this case is not a problem because of small initial temperature rise. The jet initial velocity is 39 fps which requires at least 24 feet of head without considering other minor head losses; this is not a problem since the plant is situated on top of a hill with ground grade at El. 220'.
The high velocity stream of water createo by the high effluent flow in the river will reach water surface and become visible at a distance about 30' from the discharge point.
But this high velocity jet stream will decrease to less than 4 fps at a distance 50 ft. from the discharge point.
The high velocity jet may cause minor local scouring at river bottom along the jet centerline trajectory starting from a distance approximately 25' from the discharge point for about 30' long. This possible minor scouring will stabilize after prolonged discharge at this high discharge rate.
This minor scouring should not create any problem to river morphology in the middle of a wide alluvial river.
The effects of the plume on benthic organisms will not be significant due to the relatively small plume mixing zone in a 300 ft. wide river...-
B.
River Flow Turbulence Effects-As mentioned before the river flows gently at low flow condition.
- However, a careful observation of the flow patterns near the water surface reveals some sporatic " boiling" water spots that can be seen occasionally.
It means that some local large scale turbulent eddies exist in the flowing water.
The observed flow direction oscillations at many velocity measuring points also indicate that these large turbulent eddies are prevailing. These turbulent eddies will most probably speed up the mixing process of the ambien.t water with the plant effluent water resulting in having smaller mixing zones.
C.
High River Flow Effects This plume analysis was carried out under the condition of minimum river flow rate of 5,800 cfs with an average river flow velocity of 1.7 fps.
At higher river flows the average ambient flow velocities will be higher and the sizes of plume mixing zones will be smaller.
Since the water depth is larger at higher river flow, the boundary effects will be less significant for those high effluent discharge rates cases.
D.
Riverbed Degradation Effects An alluvial river is subjected to aggradation or degradation because of change of flow characteristics or sediment content during a long period of time.
It is expected that the Savannah River at Vogtle Nuclear Plant sites may gradually degrade slightly in the life of plant operation because of reduced sediment loads in the river.
The reduction of sediment loads was the result of completion of high dams upstream of Augusta trapping most of the sediment loads in the large reservoirs behind the dams. The river degradation process in this river reach will be slow and take years to observe I
measurable changes.
However, a channel degradation of a couple feet in the life of plant operation should not be a surprise. Assuming the river might degrade two feet in the foreseeable future the effluent i
i discharge structure can still be' operated with only slightly affecting the plume characteristics for those having larger effluent discharge rates.
4 1
i 1
TABLE III-l FLOW VELOCITIES AND FLOW OIRECTIONS AT WASTEWATER EFFLUENT SAVANNAH RIVER AT V0GTLE NUCLEAR PLANT DATE OF MEASUREMENT: OCTOBER 30, 1980 WATER SURFACE EL. 80.2' MSL d
Location Along' 01 stance from West Bank Water Edge Line the River 20' I
50' I
80' l
150' l
225' Depth Below Water Surface
}
2' 5'
8' 2'
5' 8'
2' 5'
8' I
2' 5'
8' 2'
5' 8'
150' V
2.2 2.0 1.6 2.4 2.0 2.0 2.4 2.2
' 2.2 2.4 2.4 1.4 Upstream 9
+10
+10 0
0 0
0 0
0/+5 0/+5 0
0 0/+5 V
1.2 J.5 1.6 2.3 2.0 1.8 2.4 2.4 2.0 2.6 2.4 1.8 2.4 2.3 2.1 50, 0
0 5
0/ +10 0
0 0
0 0
0 0/+5 0
+5/-10 0
0 0/-10 e
e e
cL Y
0,2/1.8 1.2 1.8 2.4 2.2 1.8 2.4 2.4 2.4 2.6 2.6 2.2 2.4 2.4 2
Effluent 0
0/-5 0/-10 0/-15 0/+10 0/-10
+5/-10 0
0/+5 0
0/+5 0/+5 0/+5 0
0 0
V 1.8 1.6 1.2 2.6 2.2 2.2 2.4 2.2 2$0 2.2 2.2 2I2
-50, 0
0/+5 0
0/-5 0
0/-5 0/-10 0/-10 0
0/-5 0
0/-5 0
i
~
V 2.2 2.0 1.8 2.2 2.0 2.0 2.4 2.2 2.0 2.4 2.4 2.0
-100, 0
0 0
0/+5 0/+5 0
0 0/+5 0/+5 0
+5/+15 5
0 V
2.2 2.0 1.8 2.8 2.6 2.2 2.6 2.6 2.4 2.6 2.4 2.2
-200, 0
0/+10
+10 0
10 5/10
+5/+15 0
0 0/45
+5
-0/+5 0/ +14 '"'
i V
2.4 2.3 2.2 2.6 2.4 2.4 2.6 2.6 2.2 2.6 2.4 2.2 Down!khe,am 0 0/+10 0/+5 0/10
+10/+15 0/+10 0/+10 5/10 0/5 0/10 5/10 0/5 0/10 1
- These points were measured at 40' from the bank because of a small eddy zone within approximately 30' from the bank.
- The measurements were at 6 feet depth due to shallow water depth, a
NOTES:
1.
Flow velncities are in feet per second. Flow directions are in degrees relative to main flow direction, counter clockwise indicated by positive angle, and clockwise by negative. Flow directions at some points iere not ca*ntant.
- 2.
Some planned measuring points were canceled because of rainy and chilly weather.
3.
The width of the river is 300' approximately.
1 CSC/SWK/b1 11-4-80
TABLE 7V-1 COMPARIS0N OF THERMAL PLUME CHARACTERISTICS UNDER VARIOUS OUTFALL CONDITIONS FOR CASE 2-A U
0 OUTFALL CONDITION PLUME WITHIN S F. RISE IS0 THERM PLUME WITHIN 2 F. RISE ISOTHERM PIPE ANGLEFROMj_ BANK LENGTH DISTANCE VELOCITY MAXIMUM LENGTH DISTANCE VELOCITY MAXIMUM DIA.
ALONG q, OFF BANK WIDTH ALONG q.
OFF BANK WIDTH INCH DEGREE FT.
FT.
FPS FT.
FT.
FT.
FPS FT.
- 0...
20 0
24 19 2.1 6.6 62 30 1.7 11.8 24 0
28 19 1.8 7.0 80 30 1.7 12.0 24 20 Downstream 32 19 2.2 6.4 89 30 1.9 11.4 g
24 30 35 18 2.4 6.4 98 29 1.9 11.2 24 45 45 17 2.6 6.2 122 27 2.1 11.0 24 60 62 12 2.8 6.0 172 20 2.1 10.8 30 0
34 19 1.6 7.6 108 30 1.6 12.2 30 30 43 17 2.1 6.8 128 28 1.8 11.6 30 45 56 15 2.2 6.6 163 25 1.9 11.4 30 60 81 10 2.3 6.6 224 15 2.0 11.2 36 0
36 17 1.6 8.0 130 28 1.6 12.4 36 30 Downstream 48 16 1.9 7.2 158 26 1.8 11.8 36 45 Downstream 66 14 2.0 7.0 203 21 1.8 11.6 36 60 89 6
2.1 6.8 11.5
(~
42 3
41 16 1.5 8.0 143
'25 1.6 12.4 42 30 Downstream 56 14 1.8 7.4 197 24 1.7 12.0 42 45 74 10 1.9 7.2 11.8 0
42 60 48 0
43 14 1.5 8.1 1 51 22 1.6 12.4' 0
48 30 64 12 1.7 7.6 12.0 48 45 79 5
1.8 7.4 12.0 48 60
- Beyond computation end point.
- No results because of too small initial jet velocity: plume leans against shoreline.
L..
TABLE IV-2 COMPARISON OF THERMAL PLUME CHARACTERISTICS UNDER VARIOUS OUTFALL CONDITIONS FOR CASE 7-A OUTFALL CONDITION PLUME WITHIN 5 RISE ISOTHERM PLUME WITHIN 2 RISE IS0 THERM 0
FIPE ANGLE FROM J, BANK LENGTH DISTANCE VELOCITY MAXIMUM LENGTH DISTANCE VELOCITY MAX.
DIA.
ALONG q, OFF BANK WIDTH ALONG q.
OFF BANK WIDTH INCH DEGREE FT.
FT.
FPS FT.
FT.
FT.
FPS FT.
20 0
34 32 4.7 8.0 64 52 2.4 16.8 24 0
37 34 3.3 9.2 73 52 2.0 18.2-24 20 Downstream 41 33 4.0 8.6 85 52 2.4 16.8 24 30 Downstream 45 32 4,3 8.2 94 51 2.6 16.4/ s 24 45 Downstream 55 30 4.5 8.0 115 47 2.8 15.8 24 60 Downstream 64 23 4.8 7.8 147 38 3.0 15.4 30 0
38 32 2.5 10.4 90 51 1.8 19.4 30 30 Downstream 51 32 3.1 9.4 114 50 2.2 17.6 30 4
Downstream 61 30 3.4 9.0 141 47 2.4 17.0 30 6
Downstream 77 23 3.7 8.8 187 38 2.5 16.6 36 0
41 31 2.0 11.4 115 51 1.7 20.0 36 30 Downstream 54 31 2.7 10.2 139 49 2.0 18.4 36 45 Downstream 66 28 2.9 9.8 171 45 2.2 17.8 36 60 Downstream 90 22 3.0 9.6 233 36 2.2 17.6 42 0
46 31 1.8 12.1 142 50 1.7 20.2 42 30 Downstream 63 31 2.3 10.8 170 48 1.9 19.0 g
42 45 Downstream 78 27 2.5 10.4 213 44 2.0 19.4 42 60 Downstream 108 20 2.7 10.2
- 18. 2,,
48 0
52 30 1.7 12.5 164 48 1.7 20.4 I
48 30 Downstream 68 29 2.1 11.4 194 46 1.9 19.2 48 4
Downstream 86 25 2.3 11.0 254 41 1.9 18.8 48 6
Downstream 118 17 2.4 10.8 18.6
- Beyond computation end point.
4
(
u n i,t.
v-i 7
7 POSSIBLE DISCHARGE FLOW CONDITIONS
/
Y Case 1 - One unit operating, no radwaste discharge 5,500 gpm a.
Plant discharge
=
410 F River temperature
=
840 F Plant discharge temperature
=
5,500 gpm
- 82;C '
b.
Plant discharge
=
790 F River temperature'
=
920 F Plant discharge temperature
=
Case 2 - Two units operating, no radwaste discharge es t A 5-c 11,000 gpm' a.
Plant discharge
=
(lo F River temperature
=
840 F Plant discharge temperature
=
11,000 gpm b.
Plant discharge
=
790 F
=
River temperature.
920 F Plant discharge temperature
=
Case 3 - One unit operating with 1 unit radwaste discharge I I t
15,500 gpm a.
Plant discharge
=
(dilution flow 10,000 gpm)
'}
410 F f
River temperature 560 F l
Plant discharge temperature
=
15,500 gpm b.
Plant discharge
=
790 F
=
River temperature 840 F Plant discharge temperature
=
. Case 3 One unit operating with 1 unit radwaste discharge n'
d
25,500 gpm a.
Plant discharge
= (dilution flow 20,000 gpm) l 410 F River temperature
=
500 F.
Plant discharge temperature
=
i I
25,500 gpm l
b.
Plant discharge
=
j 790 F River temperature
=
0 82 F
Plant discharge temperature
=
Case 4 - Two units operating with 1 radwaste discharge c ?] '
15,500 gpm r I 4. E 2 l
a.
Plant discharge
=
410 F l
River temperature
=
0 72 F
Plant discharge temperature
=
15,500 gpm b.
Plant discharge
=
790 F River temperature
=
88 F
Plant discharge temperature
=
Table V-I l
k
p 'ABLE V-I (CON'T)
Case 5 - Two units operating with two unit radwaste discharge 61
5 a.
Plant discharge
= 31,000 gpm River temperature
= 410 F 560 F Plant discharge temperature
=
31,000 gpm b.
Plant discharge
=
790 F
=
River temperature 840 F Plant discharge temperature
=
Case 6 - Two units operating with two unit radwaste and two pump dilution i2*
t 5 5,00 0 gp:-
=
a.
Plant discharge 410 F
=
River temperature 500 F Plant discharge temperature
=
55,000 gpm b.
Plant discharge
=
0 79 F
=
River temperature 820 F Plant discharge temperature
=
Case 7 - Two units operating with two unit radwaste discharge (dilution flow from cooling tower blowdown) bi #
31 000 gpm n
a.
Plant discharge
=
6 41 F
O.
=
S, River temperature 840 F Plant discharge temperature
=
31,000 gpm b.
Plant discharge
=
790 F
=
River temoerature
~
92 F
Plant discharge temperature
=
d O
O P00R ORIGIM e,
v-1
TABLE V-2 THERMAL PLUME CHARACTERISTICS FOR RIVER FLOW = 5,800 CFS PIPE DIAMETER:
24 INCHES: DISCHARGE ANGLE: 9
= 20 DEGREES 10 CASE TEMPERATURES FLOW PLUME WITHIN 5 F RISE IS_0TH.ERM
.j PLUME WITHIN 2 F. RISE IS0 THERM T
T tT RATE LENGTH END OF JET 0_
TRAVELING MAX.
VOLUME END OF JET Q.
' TRAVEL-MAX.
o a
o GPM ALONG q.
DISTANCE VELOCITY TIME WIDTH
.ttHGIH IR577 HCL VtLOGITY ING WIDTH O
O F
F F
0FF BANK 0FF BANK TIME FT.
FT.
FPS SEC FT.
FT.3 FT.
FT.
FPS SEC.
FT.
la 84 41 43 5,500 29 12 1.8 13 5.2 370 98 20 1.7 52 12.0 Ib 92 79 13 5,500 1'd 7
2.3 3
2.4 30 21 10 1.9 8
4.f
2a 84 41 43 11,000 32 19 2.2 9
6.4 620 89 30 1.9 38 11.4 2b 92 79 13 11,000 12 10 4.0 2
2.6 50 26 17 2.4 6
5.4 3a 56 41 15 15,500 16 14 4.7 2
3.0 80 30 21 2.7 6
6.6 3b 84 79 5
15,500 8
7 11.0 1
2.0 10 14 12 5.8 1
2.6 3-la 50 41 9
25,500 13 12 13.2 1
2.0 40 26 22 5.1 2
4.8 3-lb 82 79 3
25,500 10 9
18.0 1
2.0 20 13 12 13.2 1
2.0 4a 72 41 31 l 15,500 -
27 20 2.9 5
5.6 380 60 31 2.1 19 10.8 4b 88 79 9
15,500 11 10 7.6 1
2.0 30 22 17 3.5 3
4.4 Sa 56 41 15 31,000 22 19 8.7 1
3.2 120 38 31 4.3 4
7.2 Sb 84 79 5
31,000 11 10 22.0 1
2.0 20 19 17 10.4 1
2.6 Ca 50 41 9
55 000 17 16 24.5 1
2.0-50 34 30 10.4 1
5.0 3
6b 82 79 3
55,000 12 11 39.0 1
2.0 20 15 14 30.3 1
2.0 7a 84 41 43 31,000 41 33 4.0 4
8.6 1300 85 52 2.4 20 16.J
7b 92 79 13 31,000 19 17 10.4 1
2.8 90 35 29 4.7 3
6.6 4
e M
SouthemCompanyServices A Design calculations Project Prepared By Date
~ ~ '
Waste Water Effluent Calculation Numoer Sheet Thermal Plume Analysis of TA B LE Vl! - l VELOCITY DISTRIBUTIONS IN DISCHARGE PLUME AT VARIOUS DISTANCES FROM 2'p DISCHARGE OUTLET FOR CASE 6A :
River flow rate
= 5,800 cfs River temperature
= 410 F Plant discharge
= 55,000 gpm Plant discharge temperature = 500 F DISTANCE VELOCITY AT DISTANCE r FROM JET CErlTERLINE IN FPS FEET r=0' r=l' r=2' r=3' r=4' r=5'
.0 3 0. :T) 14.35
.71
.n)
.00
.no 10.7 3'e. 0 )
25.01 6.50
.71 03
. O')
13.4 22.7 22. 5,*
. i2
- 2. U
.33
.33 16.2 23.63
- 10. R i 11.3.1 4.06 1.A7
.3!
i v. 3.
i ~/. I a iz. ;
. A.,
2.,
.JJ Jl.7 1.). I 14.02 11.6
/.77 J.3?
1.Il d..a 13.76 12.07 13.95 c.c-5.31 3.11 e: 7. 2 11.
I1.33
- 7. N 7.-
5.74 3.r2 de.o I :;. 3 2 9.oc u.01 7. 5 's 5.97 4.34 22.7 0.0 3
N
.15 7.13 5.01
.64 n.J
.s-7.?
7.30
.c3 5. 7 ')
.6>
31.2 7.21 7.0-5.72 n.1.
5.43
./2 49.9 6.5-)
6.41 c.13 5. 7P, 5.I5
.52 u3.7 5.30 5.82 5.61 5.27 4.63 4.33 46.a 5.3-5.32 5.16 4. 0 ')
4.55 4.15 I
1 I
- u..
T
<N X
s
'N X
3 4*'
2'p o
~
39J" h
' 9 M J a'
_/
_/
4 a.!
~
/
/
V f
4
%~
I h
P00R OR M A O
5 to l5 20 Dm > c x r w.;
ci c e w.,. t. :
o v u c <~
-- I' T
SouthemCompanyServices A Design calculations V0GTLE NUCLEAR PLANT S. L. Huang 11/14/80 Waste Water Effluent
~ ~~
Calculation Number Sheet Thermal Plume Analysis of TA B I.E VII - 2 VELOCITY DISTRIBUTIONS IN DISCHARGE PLUME AT VARIOUS DISTANCES FROM 2'p DISCHARGE OUTLET FOR CASE 7A :
River flow rate
= 5,800 cfs River temperature
= 410 F Plant discharge
" 31 000 SPm Flant discharge temperature = 84 F
DISTANCE VELOCITY AT DISTANCE r FROM JET CErlTERLINE IN FPS FEET r=0' r=1' r=2' r=3' r=4' r=5'
.0 21.06 a.0" 40
.nh
.00 00 21.06 13.l?
1.15
.22
.01 09 J.5 12.3 15.7' 12.20 5.dl 1.66
.29
.C3 15.0 11.03 10.20 n.63 3.15 1.12
.30 17.
9.35
. 53
- i. ri J. C '-
2.15
.(-
2'. 5 7.;l 7.10 5.04
.'l 2.91 1.7D 2a.3 6.23 5.07 5.2d 4.22 3.13 2.17 de.0 5.2 i 5.09 4.63 3.05 3.16 2.37 2,. i?
4.51 43 J.12 3.ca 3.07 2.47 31.5 A.n.
3.os 3.50 3.35 2.91
- 1. ~ 4
.3 2.5 3.52
. 33 3.N 2.75 1.37 J7.
- 3. ?:
.5.22
- .'ri 2.c-2.61 2.31 3c.4
- 3. H 2.09
- 2. %
2.71 2.40 2.23 A2.5 2.a2 1.70 2.71 2.50 2.34 2.16 45.3
- 2. 6 i 2.44
.f.66 2.4A 2.20 2.10
.1 i.1 4
i-z.
1 i
\\
39 g _I
\\
a e. 9 5. bs _
2 46du i t.93 k.
!7.sti 4
l Y
1' I
/
/
t
/
r,
- /
4 P00ROR8W1 7
O 5
to l5 20 D*:;7h n:L~
FP M ca c 4Ma c Cuit E T --
SouthemCompanyServices A Design calculations Prcject Prepared By Date V0GTLE NUCLEAR PLANT S. L. Huang 11/14/80 Waste Water Effluent
~~
Thermal Plume Analysis TA6LE Vil - 3 VELOCITY DISTRIBUTIONS IN DISCHARGE PLUME AT VARIOUS DISTANCES FROM 2'p DISCHARGE OUTLET FOR CASE 4A :
River flow rate
= 5,800 cfs River temperature
= 41 F Plant discharge
= 15.500 SPm 0 F Plant discharge temperature = 72 DISTANCE VELOCITY AT DISTANCE r FROM JET CENTERLINE IN FPS FEET r=0' r=l' r=2' r=3' r=4' r=5' 1
10.0-
.n'
.27
. P?
0'.i
.M
- i. 3 1 ;. ".i u.6h 1.42
.I1 l..1 5.o
- 5. e:,
J. n.-
1.
.py 1.f. -
~. U 4.32 a.10 1.7,
.P2
.31 1
3."/
l. :7 1.41 e.-'
... :. ~
1.h 1.3'
.: i. 1 J. 5.i a.5
- .23 l..,
1.41 0) c 2..
e.35 2.27
.:. ; O 1.7>
1./a i. :'
4
- 2. 2. '
2.iJ
- 1. F 1.73 1.43 1.14 z'.3
- 2. %
- 2. 'i 1.
l.69 1.J3 1.15
.1 2.01 1.07 1.
5
- 1. 'n 1.'l
- 1. i :-
1.0; 1.v1 1.
l
- 1. r - i 1.c3
- 1. k ',
f/. 6 1.01 1.7 1.73
- 1. nJ 1.4/
1.22 23.3 i. Ti 1.X+
1.75 1.nl 1.44 1.24
' J.1
- 1. M l.01 1.73
- 1. 6',
l..,3 1.25 I
i
+a i
u h
1
'\\
2-N
\\.
\\
\\
n...u q d m
,\\
I
=
,,.v.y s
u
/
/
/
i L
i i
l l
I 2-J i
--1 l
t I
l
+-
l 4,
J J.
j l
P00R OR8 0 o,
C 5
Ic 15 ac l
DIS TA t't C Fw.1 01:
si n aC cUTuE7
- f ;-
I i
- g. %.....M., k.. g-
.....................r F
4 8
.... = *
.==
e.... e...
...e.
....e.........g
.....,.....d
.e...
l
.....O....................e.
e.
g.e..
..e.
.s
....gd.........gg
.. a..
.g.
...e e.....
.g 8
.s..
....p4 e
.,-)
..........\\.........4...
.I.
3 c{.
......1......
.I I
........J
..a..
..l.
.N p
.=
.I..
g g........
.g 8
.F4,
.4.......
........g....
.g e.
e 9
...,w.
f
.~.
i.
.........I.........................
.... =...
.. 6......
g*
.+.
t 8
.. (l,.
e.
.f
.p.
. e..
g
.............................l..
=..
I g
Q) c, s
9.
A.
.L.
j
- 4
..N.
,e Q.
l,
.e.
L
,e 6..1, 4..
QJ
. -..a........
....... j.
,4 m
3
,s p..........
_3_..
......m.
As,.
.4.'.~.
.......... ~...
.....w..
..,s..............
q_
l c3
..... ~.........
...=_
..........~....
c
- =
3
........4 4
. p.. -...
P O
-o "O.
3
. e _...&.........
f gl O
m m
........ ~.7*-
.1,.
..o......... _... '..
l.._ _. __.. g..
. q)
_ +
.................j
=
I
...~...
_.,..)........o_.
s
.g
.. ~.
.. ~........
......1_...
.....+
GJ s
...l..............
p
... ~...
...... ~.
i g
.e.
s.
. GJ t
..........2...........
. y w
. ~..
.w g
..~......
..... I....
. t......
......... ~.-......
.....Z
..........".'I.....
.....~..........
cy
. 4............................... -
7....
m M.
.5.
-.. $~~.
..-g.
......p.
.c
...........I...
j' I
m
.4 s
..[.....,........
\\.....-
C C
.. Q
...(..
=.
.... ~....
~........,............
p m
.............s
.. 7
- e..
m
......&..... 4......U....
g 4........~....
. s.-..
+.......
.........4 M
....... ~
m
....e.
l e
.......I~..
4.........
.4..
.. ~.... -.......
.y.
t/)
g
.d l
.e..
C7)
W.
C
.g l
..a.
w.
......a.
.e
- t
~
C
.s...........
....s
..............e.........
.s
-.. ~
~3 l
e
(
o m
..n...
6
.......J...
. ~.
. ~..
...I.......
..-*....8.
...2....t****"..**
"I.
!j
../**
I
....g..**,~
.. e,p.
e s
.o n(_..
V H
........ ~.....
d"..I...............
I r*.......
CC l
W.
.4 w
g4..
g
.1....
..L.
l I
P,.....9 3
l.
g ei.D e
C
.(
. A r, O.e Q,a..
s..
. 3.l 6.t.-
4. A..
o.
4. -...
~...~...........i g
i S. p.......
,.g
- 2 -
g.......
. O.
j o: p.
.i c.0..
e..s.g.....
..U. 0..........
0....
..s.....,..
s..
Y Y
.+...............
J
~
J,
..s.
,.. %(4)...
iu.
- o......
..y v...
.......,..i
..g...
.s
.E
..v 6
8
.g.
g.
o.
no
- g..
p.
.g r.
O
(
FIGURE III-2 Topo Map of Savannah River in the Vicinity of Vogtle Nuclear Plant a
?
. _ _ - _ T
- _ _,-. - ~_
- g y- '
p < '~.
Q
~
~
- f
. _ ~ _ _ ~ -
. - a y ;..._. ~_
-z ; :
~
,I g
(s
~ ~
~-
f,, %
g :~-:~~ _-. [
~~
~~
~-
^
w
) \\t,
.x,
~-
.%.,__-~ _ - ~.
~ ~
~
_.~_g+..-
/x
_ _ - Z [_ - :-
~ ~ _ ~
_ _.. ~
~
t I_}- _~ - ~_
-.~
..~
~.
~.
~ ~
. ~ ~ _
3
_~ -
~_.~ _~_s
~~
_~_-
_~
}~~
~-
-~
~. _
~
{
~ _ -.-
~
_k. ~ -. -f.~~If
~~
~'
~ ~~
~
~
2 -[=
- ~. ~, ~
~_-
~ _., _ _ _ ~ _ ~ _ ~ ~
J.
. _ ~,
J
_ _~-
~. _ _. _ ~ ~
. ~ ~ -~ ~~~~
~
~~
.~
~ _ _ -l_*:_ ~~'x-fl_^ =.~-:-- y
~
=m
~ ~ ~ _
~
A-g
~_~;
~~~_: _-
~
~
. _ ~ _ ~
~ ~
~
~
- ~ ~ -D
~_~ : =.~
~. : r,
~~~ -
= -:
f
_~. ~.~ % -
~--
e s
__ ; T - r ~ _%.w ~1= =~~~,
o x \\'
y 7.~.. -
0:
s
~
~ _. - -
~~
AST*E WATER 5Q
?
"w
.),
- ', q
- - EFFL U ENT o u r F A L L '-.'Q M
- ~.~
_ ~-
~_%
h
['
,m
'N
~ _* --T -
~ ~
A-9 g\\
-_- y r
o i~>
V f.' s ' { * * * '. + # ',e L. ~1.
.( '
- -j.,
s
,. - g
...I
~;- K' i
~_
~ **
- l
- 9
~.
f 9.J h
[ r f '[ W p
\\
~
~
N
'N
% v s
s e
v.
I
[
't
.g
'\\.
NN
'A
..W SCALE 124000 g,
I h
0 l etE 10 2 0
1000 2000 3000 4000 5000 6000 7000 FEET l
5 0
i RtLOMEffe P00R OR'GINALi 1
1
=
- ~~
Z0
_ { ____E<is fin q G roues d Sue fore-
- 90 iieiy
[- - - ; -
l = ! O '
\\
J
\\
w Low Wa te r le ve l
\\ 4g" pian eler P:Pe
\\-
-..--- % # 4 s
-m
-.----r--.--.
4': Ei, 7 + '- o
N
.-..a,,_'~-_%
g I
t
~
_ ~~~
- r---- -- g 24 Dia m ef e r /
N
.g
^^
Future Bank Slope
~ #
b
~
\\
55 surro,t j H - Pile Pi e P
-.x S GC Tr oN A-A
- 6o y
+
'l Protec4;o., poipts n R
e 3
s.
Low Waler-
~
s h
Gh e Line
'c.
h (49"]
An
(
b ei i
q d
7 4f J Po/
=
1 i
PL A N FIGURE IV-1 Sketch of Waste Water Effluent Discharge Structure m
~
^ -
FEET 0
2 4
6 8
10 12 I
I I
I l
l l
GR=5800 CFS N
Ua=l.7 FPS To = 4lo F s\\
V 2-
\\
4-6-
8-5 F ISOTHERM 10 -
\\
GJ=12.3 CFS
' 12 -
(5500GPM)
Uo = 3.9 FP S 14 -
To = 84 F
16 -
\\
l8 -
PLAN 20 -
\\
22 -
W.S. ELEV. 80.0 J
tn 5
F ISOTH ERM La N
Fi c.-U R E V-1 V=3 FT3 VOGTLE NUCLEAR PLANT _
to 74 =---
J-1\\
THERMAL DISCHARGE ASED ON 3-
\\
DIMENSIONAL MODEL BY HIRST 70 _
\\
EL EVATION NOV. 24,19 B0 N
NN
FEET 0
2 4
6 8
10 12 14 16 18 i
I I
I l
l l
l l
l
- m..y
'N N0Q GR=sB00 CFS Ua = 1.7 FP S 2-Ta = 4 l o F p
4-N 6-N 6~
~
GJ =24.5 CFS r
(ll,000 GPM )
\\
g10-Uo =7.8 FP S u.
To = 84o F 12 -
14 - -
go F ISOTHERM
\\
\\
16 -
PLAN
\\
ig _
\\
20-W.S. ELEV. 8 0. 0 I
so F ISOTHERM 3
tu
_(,
[
\\
FIG UR E V-2
\\
OGTLE NUCLEAR PLANT THERMAL DISCHARGE 70-
\\
CASE 2A
\\
ELEVATION BASED ON 3 -
1 I
l\\ i I
l l DIMENSIONAL MODEL i
BY HIRST
\\
rws= sa seava
~
FEET 0
2 Lt 6
8 10 12 19 16 18 20 1
I I
I I
I l
l l
l l
No)
GR = 5800 CFS N
Ua = 1.7 FPS To - 4 lo F 2-g s
4-4 6-s H
y 8-GJ =3ys CFS Lt (15,500 GPM )
10 -
Uo = ll.0 FPS x
To = 72 o F 12 -
So F ISOTHERM PLAN ie_
g W.S. ELEV. 80.0 80-
=
d So F ISOTHERM r
CN E
'l v=380 FT3
- f. 74~ ((--
~
\\
FfGURg V-3 70-
\\
V0GTLE NUCLEAR PLANT N
ELEVATION THERM AL DISCH ARGE
\\
CASE 4A N
BASED ON 3 -
l l
[
[g l
l l
l t DIMENSIONAL MODEL x
BY HIRST w
M6n SJLKW.c
FEET 0
2 4
6 8
10 12 14 l
l l
1 I
i l
- 5o F ISOTHE RM 00 E NO]Q Uo = 1.7 F P S Tcr = 41 o F y
~
6-GJ= 122.5 CFS (55,000 GPM)
- Uo = 39.0 FPS To = 50 PLAN
- w. 5. EL E V. 80.0 80-
_[ -
a E
~
So F ISOTHE RM 74
_ _ v=s0 FTS d
\\
J
~~
\\
70 -
\\
ELEVATION Rcome V-4
\\
V0GTLE NUCL -I AR PLANT N
THERMAL DISCHARGE N
CASE 6A N
BASED ON 3-N DIMENSION AL MODEL
\\
BY HIRST NOV. 21,19 80 g
g
7 FEET -
=
0 4
8 ---.e l2
- 16. :2 0 224 28 32 j
3 y.
j j
g p
yqD GR=5800 CFS -
Ua = l.7 FPS 4-Ta =-4 l
- F y
8-12 --
p-
< - - - - " - - - - ~ - -
h;.
?
W w m> -
. G J =.6 9 ; 1.C ES. _' '. _._.
. u..
- - - - ( 31,0 0 0 G P. M. )..
i
.--- -;b - <"....?. U.o".=. 2 2 2 0 F. P. S :....
~
t
'\\...i..
... f. 4 v.
-.n.. J
- . 8 O. ;.- :- < ~.. +....;i..--..,...*
s...
t s.
. s.
s
~;
,r..
-.:t.
r-
+'
....... i
, :. e -
...,J
- *. y
... :.,r. -.
-~
s
.. e. _,_...,.
...i
- ........ ; 9 o p. :I SOT H E R M.
.# l --
2 y
...1._.
..... PLAN.~
i
.w. :.. L i
....i... ' :,...
^
i f W.Q. k
.._.i~.'..
>: [ :.,
.....g 6.
_s..
. i m..
I.. _...
... _:....W. 5. ELEV.' 80.0 w.:gd.
..c
..So F. ISOTHERM:-
W
.a
.-r Lt.3 '
,..... -- :-, -(. - -.- v - -
- t- -.
I..*
- '-.**.*.'.i.
- r w... ' a.- ~ n - -... - -
- - -^
Q.
5- -h. - "- - :::t.----.
.. l
+
3 W.7 A m.J F iV= 1282;. ET. 2....i..
-....u W. _.. :.,..
.._. r.-- - :
. - /. 2.
y..
.,... m, _ -
j
. - 7 0 _._._.....y :.3:. :,.,..... y:;.,y.
. ;...... n..
a.
p
..n.~.,
t,:N...
... - _p..
.. n._.-. :
~
......\\.-....,_..,...
. ~ ~
.... c...
g
. x:
.-2.;;-
. FIGURE V ',
~
_...:...._......... ; '2
- 4...
V0GTLE NUCLEAR Pl. ANT.
a
-- +:--,:....l. 3 :. 7-.=.. t 9. r THERMALE DISCHARGE i
-. 41: M EtiEVATIdg u. -
CASE '7AW 'c -
i 0.4 ~
BASED ON 3-DIMENSIONAL.MODEL.
n_
r-
- BY HIRST-i NOV. 24,1980-
.i
..y
.m.
1 l
g l
e...
5 5
Bi h
21 -- HORIZONTAL AXIS PERPENDICULAR TO AMBIENT FLOW 120.00 100.00 80.00 60.00 40.00 20.00 0.00
( jee()
o '*
OO
_o J m LL.
Z o L1J i
oH
_d O mI<
O H
oo l
o w a
J E
o<
o m
. o.
_o
~
(D
~,-
H X
v o
. _.J
_o <
- F-Z O
oN oH
_- O "I
I l
oI o
gcu
_m N w
e z 42.0 DEC A = 43.0 DEG
+ = 44.0 DEG X = 46.0 DEG e = 46.0 DEG l
V0GTLE-THERMAL PLUME-CONCENTRATION STUDY CASE 4 A.
GR:6800 CFS.
GJ=16600 GPM.
TR=41.00F.
TJz72.00F Fic,u R E V-6
.. ~..
21 -- H0RIZONTAL AXIS PERPENDICULAR TO AMBIENT FLOV 4,8.00 4,0.00 3,2.00 2,4.00 1,6.00 8.00
.00 Ikoet)
N oo
)
~ ' LL.
w H
Z o Lij oH
.Nr<
O o&
/
L13 J
-_J<
E o
- m. o<
_ e' CO b
H X
o
.J 8<
M H Z
O N
oH
_, o
- I I
I o
- N dN to e a 42.0 DEC A = 43.0 DEG
+ = 44.0 DES X = 46.0 DEC
- = 46.0 DEG V0GTLE-THERMAL PLUME-CONCENTRATION STUDY CASE 6 A.
0R:5800 CFS. OJz65000 GPM.
TR=41.00F.
TJs50.00F FIG uR E V-7
Z1 -- HORIZONTAL AXIS PERPENDICULAR TO AMBIENT FLOW 2,40.00 2,00,00 1,60.00 1,20.00 8,0.00 4,0.00 0.00 iteet) o2 oo
~
t L.
F--
Z oW oH O
.;co E<
O H
o da
- wa J
CC.<
qv o Q.
-Y ~$ m vv H
X d _;
.e <
Z O
oN i
l CH d2
.N O NI I
o J OJ
.co N N
O = 42.0 DEG A = 43.0 DEG
+ = 44.0 DEG X = 45.0 DEG e = 46.0 DEC V0GTLE-THERMAL PLUME-CONCENTRATION STUDY CASE 7 A.
GR=6800 CFS.
GJ=31000 GPM.
TR=41.00F.
TJ:84.00F F'G U R E V-E t
~2M F0
< G.
r H
-, r >
2r 2
l If' es#
l
.F Nqj a..
e r b' U Hfa
- jl
) 'n g
U.
O
$.$ 21<
e-
/
.l:i f
f W 9e q.
t%N m
-a 0
/f,g!"
a u
d e
, u# #
~
V* l U O y
f f*
h
. %I Ui3[ 7&. C S N
g
- l. I'
,h, r
2
~ c S
- g. tD
~.;,
l'-
l :: I e
L%
e' j a U
9: g.
o j f p d' 5(
.I
' f?!
' IN:
v 1
2
$3e f
O w Y
C 2
WJ o b V O R iL
,N m
,m
,o o
[N
/
v
, $,h loc l
/>f l-
/
'o I
L.
J y
?
4
~
C,l/
^ W, g
/ 9 l
.c 4
u (f'l/' d t'"'
/
~
s-S u
6 e.
!?
O ' p.,"
3r 5 L
a-n
?q
/
v D
./
V y
/
[
'I o L
/
=
/
L
/
d 8
t, % 2
/
n
/
/
g@
hll I
/
.=
l O
e-c e
e e
e c
f C QM M, d $. \\ C diVElh h0 [J q t Lyd1[f 35(gG f
~
P00RORIEE
f...!. b i
FICr E-I 8 V0G TLE Ni s(LE At* pt_tW T T 6tE P "1A L-D G Cn A 0/st?.
I'0 b ec Ay op t o.ssT n o s i T c.o.3 tst4TRM s o n/
As.onc, c.vi mvLuis ;IbT TA ^3 Er. rop 7 s,3. ;
ron VAsaiods en ss 5.
9
', "sJ flo v.
~2 5. 19 8o i
, b,i, g
t i. ',
. t.
i i
- b
', f ' y-Cast- (,4 lI i
CMn 7A i
casL 3-l A
']-
,}
rCM L il A
-CME 2A m
E CA5c l A a
.f -
t-
/
k 5-
~2
\\
?
'T -
I 3
r 0
F
- ) -
3 7
1 g
f)
\\
3 z-1 1
o 1
lo
,i vs.c.
ti,ser (Ase 4A) 51 S.<. (Case "/A)
~2
- l - --
,77 N.(Os ag)
- 5" t we in) n y-O in 2o 3a llo Jo 6o 70 p
90 foo llo 120 13o 14o 15o 14 0 LE AICrTil F tio r i t*
- P E
- FT.
f
s V
~
C o
i
- ev f\\a i
I O
~$
?
SYMBOL CONCENTRATION v
o C = 0.025 DO+C
+
1 a
E 4
a C = 0.0 5 DO+
~
2 a
s
+
C = o.o75 D0+C 3
3 a
- p r
x C = 0.lo D0+C to 3
4 a
O C = 0 12$D0+C 3
5 A
a A
o v
e s
3 l
0 Where:
C
~
O 7
C C
Ambient water concentration
=
v i
Q 2
O D
- Concentration above ambient
~
~
O 0
a
~:
\\
~
W a
s s
.o fu. b ~S VOGTLE NUCLEAR PLANT Concentration Distributions for Case IA.
River Flow = 5800 cfs o
Effluent Discharge = IS oo gpm h
~rv
\\\\i'\\\\
2'$
240 20o 16o 12 0 80 40 N
s Dist=, c <, ' - f4 311o:4, s 9, o '}
C. *y E 1284 f 278) 3 h
_ 3ee !
': f. I I l.'/4s/Pn
t]
_ SYMBOL CONCENTRATION o
C1 = 0.05 D0+C
'E v
a a
C =01 DO+
p 4
g 2
a
+
C = 0.15 DO+c
~
3 a
o N
X C = 0.20 D0+C m
4 a
s o
C
=0.
DO+U 9
5 a
j e
o Where:
C
~
O I
C = Ambient water concentration C'
S o
,DO O
a
=C
- Concentration above ambient d
~
.x f
a 4
g H
y.b" y
VOGTLE NUCLEAR PLANT
\\
g Concentration Distributions for, Case l B l
River Flow - 5800 cfs
\\
t Effluent Disgharge = $500 spa
,o Wf zho 7on I&o l20 80 40 D;s h a ce fA nicq t gs.n o )
e, qq 30.,
E /24 + 25 43 }
=
S L VI I2 /3s /B o
~
~
(
.i
/
o
- a, j
1 4
Ch i
i l
-Eo
~
(%
SYMBOL CONCENTRATION g
o C = 0.025 DO+
j g
a j
a C =0.YDO + C,'
2 g
+
C - 0.075 DO + C, 3
v 3
n L
j g
X C = 0.10 D 4
O a
C.a O
C = 0.l2$ D0+C Ct y
5 a
3 "o
Where: C
~
3 0
D r
~
~4 C = Ambient water concentration 3
r 7
a 4
4 D0" O
a
~
2 V
s M
j
= Concentration above ambient e
o fiI, E - Y
(
'O N
E m
VOGTLE NUCLEAR PLANT
{g Concentr.stion Distributions for Case 2 A, River Flow - 580b'~c'fs
{i.
_o Effluent Disgharge S I 100 o'apa
\\
tv
~
Yf 14o 200 160 120 Po 9o N5S"'" I'I N io4 + P+.o o [
Ff Elzy+25.'l3j
=
- 3oo, SL il l 2 h of8o '
SYMBOL CONCENTRATION 5
o C = o.oS DO+
3 a
v 4
A C =010DO+
2 a
h
+
C = 0 15 D0+C r*e 3
a X
C = o.7.o DO+
4 a
/j/
u
+
4 0
C = 0.25 DO+
5 a
O I
a c
Where:
C
~
O
- C
= Ambient water concentration 3
CA 3
W
,o n
.e n
2 D
~
O 0 ~
= Concentration above ambient a
.a s
a s
d d
4 R. a -5
\\
-a w
+
0 2
V0GTLE NUCLEAR PLANT d
g 1
Concer.tration Distributions for Case 2 8 River Flow = 5800 cfs
. Elfluent Discharge = ll 00 e cpu
,o N
k l
r s -
2't o 20o l6o 12 o Fo 40 Dista.uc
/j k lo4 4 24. 00 ?
y'.
E w p es.93 3
- 3oo, 5LH l2/Jo/g.
g, y
sC 5 ga u -
c
'2 4 oG o4 j
o\\
o l
f
~
9 N
)
N 0
,c
- s. 5 0
C
,3 4
2 2'
vt yU-t o
I NE i \\
0
,6
{
0
,9 u ~> g f~s" > 4 j
~
tne i
o b
,2 m
1 a
e n.
v 0
0 o n o A
i o b 3
t i a 3
a t
oA r a n
_S /
e t
r o s
n t
i
)
a e n t
C c e a n c r e
r t
c o n c o n
o m
n c e f
p r
c g
a e r n s
0 l a a a a m t
e o
n 0
,2 s
U a
t C
o 0
i 1
i D
w a t
N
+ +
+ +
w u
=
O t
b s o
I O O O O O n t
a T
i f
=
R T
D D D D D e n 6 N r c
/
A u e A
t e
R 7 0 o
l i ~
- L s 0 g o
T o.
1 1
2 a
f b P
i 0 r
,i
/
N f
m 0
D 8 a
_ 2
- n E
0 0 0 0 0 E A ER C
5 h A
n g
N
=
=
=
=
=
=
~
E o -
a O
L i
i C
3 2 3 4 S 0
O 3C C C C C C C
C, D t
w D A
U a o FN r l t
L t
F n n
t E
n e
,t e
O e
L e r u i
B 0 a + X 0 r
T c e l
?
t M
e Y
G n v f h
O o i f S
W V
C R E
. o N
,ty
]
3 Aos
% nG
_2
,7 s
.i I
i
- d
- i, 5
)
I 1(
SYMBOL CONCENTRATION e
C = 0.1 D0+C 1
a r
I A
C = 0. 2. D0+C' U
2 a
1
+
C = 0.3 DO+
3 a
d M-C = 0. to D 4
O a
'J..
4-C = 0. 5 DO+
III
.$ C A Where C
~
O d
S O.
C - Ambient water concentration s
a 3
I
^
D o
~
~
- Concentration above ambie' nt j
O 0
a d
+
3
_o
-v-
~
A E
~1 Fi W -7 k,
VOCTLE NUCLEAR PLANT T
r, Concentration Distributions for Case 3 B-n.
_o E
River Flov = 5800 cfs p
.in Effluent Diagharge =l3yoo spa 6
h' 2$
2 Jo ayo 280 l80 iso llo 90 60 30 Okda *. < c, d N lo4 -t &4. oo q.
q')
E 12 51 i 2's.4 ',
g......._
. yo 7, L II
/2 /le/p o
f'p u?
~}"
c, SIJ v 2,*$ 3 "
+
%' /
N
- ~
g)
~
5 "1
n4 2
o C.
~
,9 p2 1
S
~
g9 Y
"Q n ?
i I nE
~
~
A 6
2 I~1
~
c2 pN v
~
~
~'y
~
tn o
e g
i g
b ma e
A l/-
v I
- f n
o l'
0 7l
' o b 0
i a
3 3
t
- a n
e e
r o
sa v.
t i
t
- n C
3 4
" e a
r i6 I c
r l
a "n
t o
a n
- o f
p D
e c
s c
s n
- r n
0 o
a a a a a e C o
0
- t C
C t
i 5
g i
" a t
9 N
+ + + + +
w u
I 2
O b s I
0 O 0 0 O "
t a
T i f
=
T D D D D D
- n N
r c o
A
" e A
t e
f R
i -
3L s 0 g 6
/
TI 2 3 4 $
b P
i 0 r
- 2 j
i1 o
m 0
h D 8 a R
5 h E
0 o o 0 0 A
/
C A
n c
E o =
s 2
E' N
=
=
=
=
=
~
=
~
O L
i i
/
C 1
2 3 4 5 O a O C
t w D C C C C C C C D U
a o 1N r l t
- 0 4
t F n fg E n
e 1
H L
O e
L e r u B
O A + X O r
T c e l L
M e
G n v f S
Y h
0 o i f S
W V
C R E f
rt6
- 2 m
p ]3
.p) 0 _ss-7O e_ :f -
l
,'s
,qd i
l l:'
i
i i
l l
SYMBOL CONCENTRATION P
o C = o. 2 Do + C, y
1
}
A C = 0. 84 DO+
8 2
a i
+
C =0.6 DO+
3 a
f X
C
=0.& DO+
4 a
4 C
=l.
DO+
g 5
a i
~
A
-}
Where:
C = Effluent water concentration i
0 t
3 j
C,= Ambient water concentration
,5 J
a.
+
D
= Concentration above ambient
% Ca
-v
~
~
O 0
a l
i '
i w
g 4
f:7. E - 9 N
M n, s,
Ji 3
UI VOCTLE NUCLEAR PLANT
}
-g Concentration Distributions for Case 3 -I B.
I River Flow - 5800 efs
^
Effluent Disgharge = 2 $500 gpa s
N 2'
\\p j i...
g 2(S 240 216 l'p l(3 ny tan 16
'N 48 24 x
Dista.,ec, il g jo n gg,og) 9, 300 E t vp d's 43 j r
m I
S.l,tl I?/h/so j
s.
M j
SYMBOL CONCENTRATION
-t q
O C1 = 0.0)) D0+C
'C a
.3 A
C, = 0.0(,) D9 + C,'
+
+
C 0.l00D0+C
. ~ '
2 Y
=
p 3
a 0.8 3] D0+C g
b x
C
=
4 a
}
O C5 o.lGD0*C
=
g
.i a
Effluent water concentration f
Where: C
=
2 C
C, = Ambient water concentration dA o
D
- Concentration above ambient
~
~
O 0
a 1
5 E
r I
d o
f,
[i[
I o q
e,
'*I V0GTLE NUCLEAR PLANT 5
3 Concentration Distributions for Case 4 A
- 0 River Flow = 5800 cfs
\\
Effluent Disgharge = l$500 spa
,o
.O %,
..__..g._.._-
.y-7-.
- g-----g----
g
-.~
.j
- d.,
190 2ao 16o l2n 80 afo D 's f W e,
[Y -
g j o M pit., o n C.
9'y Givi-12543
,,o n 5 Lil l?/i=[Fo e
'A 4
di J, gw+
}4 4rn1 b0>#
R 4'2
- +- o4
.m i-
)
o%
o
- 0 it9
,3 R2 t4 5
p a2-y l 1 pE o
e 6
a (p
l
' f. Q 4
- E S $
4 0
,9 t
_ 0 n
2 e
l i
b m
a O
a,c 3
e v
S n o 0
8
' o b
/
_ 5 c-1 i
a t
l e
a n
e w
r o s
a t
i a
l 9
- n t
C s
" e a i
" c r r
D n
t o
a o
- o n f
p
, 3 t
c e g
c s
e l
0
- r n n
a',
a a a e o o
0 C C C C t C i
5 e
i
" a t
5 8
9 N
+ + + + +
w =
u
/
l O
b a I
0 O O 0 0 " t a
T i f
=
n t
T D D D D D
- n C N
r c o
3 A
" e A
t e
]
, 1 R
i -
L s 0 g
1 3 4 5 b
P i 0 r 2
T 1
i N
m O
l D 8 a
I E
0 0 0 0 0 A C R
5 h C
- A n
c N
=
=
=
=
=
=
=
E o =
s O
7[ L i
i C
1 2 3 4 5 O
O 3C t
w D o
C C C C C C C D U
a o i
I
,. N r l t 7t t
_. 2 L
t F n 5
L E
n e
[
O e
L e r u B
O a + X 4 r
T c e l M
e C
n v f Y
h O
o i f S
W V
C R E p
,2 73 x
4'c1,td nj-
- 6 8
l
]
P c
SYMBOL CONCENTRATION J'
o C = 0.05 D0+C e
1 a
a C
.l DO+
=
2 a
(
+
C = o.6 DO+
'b 3
a x
C - 0.10 DO+
4 a
1 0
C = 0.25 DO+
3, 5
a o
Where: C = Effluent water concentration i
C = Ambient water concentration h
a o
4 g
,,)
3 D
- Concentration above ambient di
~
~
O 0
a rn c
o
~
q l
- O I' *g. E -12 y
\\,
~
e,'
t:
VOGTLE NUCLEAR PLANT 3
9 Concentration Distributions for Case $ A
\\
\\
River Flow = 5800 cfs x
,\\
o Effluent Disgharge = 31000 spa
~ n
's
..sq NN g --
--~3 7-. _ --.. g _.
glg 210 Ego 2to leo Iso 12 So 60 3o N
0, d.,,,ce.,.p N io* + Ro o o c
Vf E129iLT.%
s------
~ --- 3no!
Tful 1 > l30/ So
%e e
t 9
e a
'I SYMBOL CONCENTRATION 5
c.
4
.1 0
C
. 0.1 D0+C
,E
,6 1
a a
a C = 0. 2 DO+
2 a
/
w
+
C =e.)
D 3
O a
ll' X
.C
= o.4 DO+
4 a
A j
O C = o.7 DO + C,
/f' O
5 i
-d Wheret C
~
O 3
C = Ambient water concentration o
a j
u
'8 D
~
~
= Concentration above ambient
,T
-N O
0 a
d 1
1" j
e F.3. E - I3 7
y
.m
.T V0GTI.E NUCLEAR PLANT E
S i.
'O Concentration Distributions for Case.%8, River Flow - 5800 cfs
. o-
'N
<N Effluent Discharge = J/000 spa
- r.,
N T f24
..c.________,.
r - - - - -,
2g no 116 192.
16 2 14 4 llo 96 7z
'ig 24 0.stwcc 4A sy n y +gy.o 3 C.
Vf L: IPs i n.is j go.'
~
s Lil I.tf3s/Ea s.
I SYMBOL CONCENTRATION
-J O
Cg = 0.1 DO+
0 a
?-
l A
C = 0. 7. DO+
2 a
's
+
..C
=0.3 DO+
3 a
q X
C = o. 't DO+
4 a
~)
Cj = 0. 5 DO+
e a
3 p
I Where:
CO" 3
C, = Ambient water concentration
]
k 9
D
= Concentration above ambient 5
~
~
-R U
O 0
a 4
to
.t E
Vtg.
V1 - 19 h,
4 c
_g g
vocn.s nuctria etinr a
y Concentration Distributions for Case 6A.
River Flow - 5800 cfs
. o-s Effluent Disgharge = M oeo spa
\\
=
n u
24,9 we 216 I9 s 163 ist 120 72 4P 14 y
D.da-c c tx tJ 10 4 r 89,0o 7 /
'C. Yf 3 s a, e nms.o \\
$ Lti I 2 l3"lS e t
b, 1
SYMBOL CONCENTRATION p,
M O
C
=0.2 D
A g
O a
'J C, = 0. 4 DO+C*
a
-J
+
C =o.6 D0+C 6
{D 3
a x
C = o.8 DO + C, 4
3 0
"C5 " I *U DO + c, t
+
Where: C
~
O C - Ambient water concentration Q
3 d
L D
- Concentration above ambient e
_N
~
~
O 0
a
.t N
.s o
% [3
..s m
Fig. 5 -15 p
VOCTLE NUCLEAR PLANT
'N 3
Concentration Distributions for Case 68, k
+
a a
d River Flow - 5800 cfs Effluent Disgharge = $F000sym e,,
l
.%y l
164 140 lib 19 1.
16%
149 l?o 96 72 43 24 Dis b e (l
N 1014 34.0 0 C. Ih E np 7t;.V 4
___ g o c /.____.-. _ _
_.___________.3 S til i2.[30/3,
e N
SYMBOL CONCENTRATION s
Ja o
C = 0.025 D g
O a
.3D a
C
=
2 O
a o'
.o t
3,= 0.o15 D0 + C, 4
g g
+
C K
C = o. 8 0 D
+C i
4
__0 a
u (3 y s
w 4
C DO+
=
5 i
a o
3 Where: C = Effluent water concentration o
3 0
-4 3
J C = Ambient water concentration
\\
e j
a t
i i
0" 0 - C, j
_g d
d
= Concentration above ambient F:g vt - i t, A
y b
VOGILE NUCLEAR PLANT l
S
\\.
1 Concentration Distributions for Case 74, River Flow - 5800 cfs o
j Effluent Disgharge = 3l000 spa x
N
('s
= = = ~
uo 26 ica 12 o ao 4o D'. f u c a iL N lo4+ 94.o" }.
C "Y
E 114 + 15.O )
3oo'
, _ _ _ _ ~. _ _.... _.. _ _
.s t l 12/3of9a
e e
{s 4
SYMBOL CONCENTRATION g
')
o C = 0.05 D0+C I
9 1
a l
e e
a C
=0./
DO + C, j
2
+
C - o.I5 D0+C
!D 3
g a
g/
f x
C = 0.20 D0+C
.J 4
a t
O C
$DO + C,
=
S 43 Where:
C
~
O 7
C = Ambient water concentration o
.I a
q a,
= Concentration above ambient (A
g D
~
~
O 0
a 4
i M
1 4
o c
2 e
(*
.T e
e Fi9 la -17 2
a i
i VOCTLE NUCLEAR PLANT M
y 3
$)
Concentration Distributions for Case 'T8 h
River Flow = $800 cfa
(,
Effluent Diagharse -3/ooo :Pm
' S8 1-N 2'd
. __...r
--- i 1 70 2fo 210 13 o 150 (20 9e 60 30 951 ht+
f A.
bI lo 'H ? 'f. c o )
C. S '/
4
_ __3 %.
_.... e nv. o s.p 1 s
si.ti I?/'4n/Fo s.
e y
g e
T w
4 6
LL d,
I I
'm N
=
'l p
oJ O
.'l fm 0
(
'g
{Y O
Q l
a l<
h
) bW D
J? &h a
W
&T
~
I < ri o2W (N
z a
et
.3 L0 4
l d-c.1 I
I M'3
>e e
t:: U i
i i 7m
. 3 g3 s'
i I
ca*
w
&O
.4 5 hw 0 i
3 A
t-- x xk' l ! '.
'm O W U 2 T r.
I O h 8D
.y "N
/
e e fK c.
,/
/
/
i
.e
/
1 w
/
(
s 2-4 C
a
.N 1
~
u
=
m D
l 2w
.x' l
e I
-C i
g.
~I q
v.
m
~
m o
d:
a 2
e a
nl e
e t
c
- k..
n 5
(i U
V.
'J '
V
' J;
- r) t
-i i
g
-- o M
S b
re d - aa.imaa l
P00R ORGINAL