ML19351G234
| ML19351G234 | |
| Person / Time | |
|---|---|
| Site: | Farley |
| Issue date: | 02/02/1981 |
| From: | ALABAMA POWER CO. |
| To: | |
| Shared Package | |
| ML19351G229 | List: |
| References | |
| RTR-NUREG-0737, RTR-NUREG-737 FNP--M-7, FNP-0-M-007, NUDOCS 8102230327 | |
| Download: ML19351G234 (34) | |
Text
{{#Wiki_filter:. FNP-0-M-007 ALABAMA PCWER CCMPANY JOSEPH M. FARLEY NUCLEAR PLAN" FNP-0-M-007 S A F E T Y EMERGENCY DOSE CALCULATICNAL MANUAL (EDCM) R E L A T E D Approvec: I ,s W,.:. X Q. W \\u.h:.u Tecnnical Superintenden Date Approved: 2 /c /9 3 1 Date of Implementation: a h /'4 List of Effective Page Pace Rev. 4 1,11 0 1-11 0 12 0 13-15 0 l 16-19 0 20-23 0 'fj Disk CEP3 -~ S e me 8102230997 l l
FNP-0->1-007 TABLE OF CCNTENTS Section Page 3 Table of Contents i Class A Dose Calculational Method ii ~ Preface 1 x/Q Model 2 Plume Model 4 Dose Model 6 Perfor: nance 9 Bases 11 Limitations 15 Figures 16 Class 3 Dose Calculational Method (later) 1 ~ i I I. f l I I 1 i l i i i i i Rev. O l i l t l L - -...,_. _.. _....,... _,.,. _.,.._..,_ ~
FNP-0-M-007 ALABAMA PCWER CCbEAXI JOSEPH M. FARLEY NUCLEAR PLANT CLASS A DCSE CALCULATIONAL METECD A February 2, 1981 ii Rev. 0
FNP-0-M-007 PREFACE The Class A Dose Calculational Method (DCM) for emergency assessment and dose projection within the plume exposure emergency planning zone (EPZ) will use a segmented plume model. This model will predict plume movement, size and shape by initiating every 15 minutes during effluent release the tracking of a plume segment released from the plant vent stack or other release point as defined by the circumstance of the emergency. Each segment will be tracked by moving its centroid along the mean wind velocity vector. Every fifteen minutes the position of the centroid of each segment, the time of flight, horizontal standard deviation coefficient and vertical standard deviation coefficient will be updated. This will yield position and size of each element. Time of arrival predictions for selected points within the EPZ will be calculated based on current meteorological conditions. The release rate, Ci/sec, will be determined by installed plant monitors and confirmed by a grab sample. Concentration of selected points within the plume will be calculated by applying the appropriate x/Q equation (considering stability classification, release elevation, building wake effects and real time wind speed) to the release concentration. Appropriate corrections for radioactive decay and deposition are applied to these concentrations to obtain accurate dose rates and dose rate predictions at these points. l - l 1 Rev. 0
nr?-0-M-007 y/Q Model X/Q (relative concentration) calculations will account for release elevation, building wake effects and existing meteorological conditions. Release locations are: Unit #1 and Unit #2 plant vent stacks, Unit #1 and Unit #2 turbine building vents during primary to secondary leakage, and Unit
- 1 and Unit #2 steam generator safety and relief valve vents during steam over pressure transients.
A single virtual ~ release point (see Figure 8) located between the release points listed above is assumed but the distances between assumed release point and actual release points are not significant (<58m) and do not introduce significant errors at radial distances of interest. Equations used to estimate x/Q are based on the general Gaussian plume diffusion equation: Q exp(-0.5(y/o )2) {exp(-0.5((:-H)/a )2) x(x, y,.,,, H), y 2na a U 7* + exp(-0.5((:+H)/o )2)} (15)
- where, n = 3.14159 3
x(x,y,,E) = plume concentration (Ci/m ) y. x = downwind distance from the source (n) y = crosswind distance from the plume centerline (m)
- = vertical distance from the plume centerline (m)
H = plume centerline height (release height) (m) ~ 0 = mean wind velocity (m/sec) o,o = plume dispersion coefficients (m) 7 g i Q = release rate see Bases) is greater than tim $s(effective plume height, When H the height of either the Unit #1 or Unit #2 containment 2 l building the release will considered to be an elevated release, the release heigh (H) will be considered to be equal to E and 6 will be obtained at the 46 meter height of the plant 8eteorological tower. Thus equation (1) will reduce to: q exp (-0.5 (y/a,I)2) {exp(-0.5(( -E,)/a,)2). x(x,7 z), Q 2n o c S6 exp (-0.5((:+H )/c,)2)} (2) 7 2 Rev. 0 l l
FN?-0-M-007 1 where 0 is the 15 minute average windspeed at 46 meters 46 above plant grade, in m/sec, at the time that the segment leaves the release point and o and c are shown on Figures 7 1 and 2 (see discussion of o, and a; calculations under I ?LUME MCDEL). Figure 3 shows plume dispersion based on the Gaussian diffusion model for elevated releases. For ground level releases, E= =o and the plume dispersion coefficients must be adjusted for building wake effects. Thus equation (1) is rewritten as: X/Q = exp -v2 (3) 22; 0 81 I: 10 y where 0, 0 is the is minute average windspeed at lo meters Coove plant grade, in m/sec, at the time the segment leaves the release point. I horizontal dispersion coefficient corrected for Y + A/2n )4 2 building wake effect = (aY Z = vertical disuersion coefficient cor ected for + A/2n)b Z ~ (o 2 building wake effect = g A is the smallest vertical-plane cross-sectional area of the containment building or turbine building, ~ as acpropriate according to the downwind sector, l in m. The Gaussian diffusion equation with building wake t effects has been shown to be conservative (Meteorology ~ and Atomic Energy 1968, pg. 112). The plume tracking methodology proposed, however, reduces I this conservati since the o and a calculations ( Y Z take into account maander caused by changes in the j 15 minute average wind directions. The results of this equation are further reduced by radioactive decay ~and deposition corrections thus minimiring l the magnitude of the conservatism. (see discussion of correction factors under DCSE RATE MCDEL) I i 3 Rev. 0 l t i
FNP-0-M-007 PLUME MODEL Plume path, dimensions and transit times will be calculated + by tracking representative segments released from the source at the start of each 15 minute update interval. At the start of each interval a segment is formed a't the assumed release point and at ground elevation or at the effective ~ height (H,, see Bases) of the release point. At the end of each interval, existing segments are moved to revised locations defined by the following equations:
- j, k * *j, k-1
- Yx,k (4)
AT Yj,k
- Yj,k-1 + Yy,k (5)
AT where j,k = x c rdinate of segment j ' at end of interval k x j, k-1 = x coordinate of segment j at start of interval k x i Vx'k = orior to the end of interval kx component of 15 minute average wind velo AT = time duration of interval k = 15 minutes yj,k = y coordinate of segment j at end of interval k I ~ yI'k-1 = y coordinate of segment j at the start of interval k y ccmponent.of 15 minute average wind velocity Vy,k = prior to the end of interval k Site historical data (a monthly wind rose for wind direction when G is <l.5m/sec) is used to estimate wind direction and wind velocity is assumed to be 0.5 meters per second when indicated velocity is less than the minimum starting speed for the vane or anemometer (0.5 meters /sec). Segments are tracked unti gthey move outside the EPZ. Flume dimensions at the location of each segment are calculated based on the linear distance traveled by each segment, the atmospheric stability classification, and equations which reproduce the correlations shown in Figure 1 (c vs Distance 7 i - (Rev. 0 4-e -m-r,
= FN?-0-H-007 + From Source) and Figure 2 (a vs Distance From Source). The correlations used to calculate o,j and c vill be in the forn: Logx + C I 9 *) Log a = C3+C2 3 When using these correlations the " distance from source" value (x) used for segment j at the end of interval k is defined as: AT ) 2 + (V AT)2]h (6) d7J,k = DI],k-1 + [(Vx,k y,k where DY is the virtual distance from the source ],k-1 necessary to obtain the a existing at the start interval y k using the o. curve for the stability class at the end j of interval k, i.e., D{, k-1 = C'{ + C{ Log o. j, k-1 + C[ (log ey j,k-1)* (7) f C{,C{andC{arepolynomialcoefficientsreproducing the curves shown in Figure 1 in the forn Log x = f(o.) j and as AT)2 + (V aT)2]h - (8) ~ 3,k D],k-1 + [(Vx,k y,k d = where D*3,k-1 is the virtual distance from the source necessary to obtain the a existing at the start of z interval k using the e, for the stability class at the end o f interval k. i. e., + og cz j,k-1
- Ib09 #z j,k-1)
(9) D k-1 = C ~ 2 Z C,C and C are polyncmial coefficients reproducing the curves shown in Figure 2 in the form Lcgx = f(a,) 5 Rev. 0
FNP-0-M-007 Note that unless stability class changes during interval k, thenD{,k-1=df,k-1 andDf,k-1* ,k-1 If stability class does not change following segment release dY and d are both equal to the distance traveled by the parcel. If stability class changes during interval k, the segment is diffused from its size at the start of interval k using the new stability class without creating a discontiruity in the plume. Transit times are calculated using plume path, dimensions and average wind velocity. Time of plume arrival at selected points is predicted based on current plume path, dimensions and average wind velocity. Real time plume tracking will be performed using time intervals of 15 minutes. Predictions of future plume characteristics will be made using existing plume characteristics, existing meteorological conditions averaged over an interval >15 minutes and appropriately selected time interval (s). The plume centerline is defined by line segments connecting the centroid coordinates of each segment to the following segment and, in the case of the last segment released; to the release point. The width of the plume at each segment will be defined as 4.28ay (4.28I7 for ground level releases) (the width corresponding to 90% of a normal distribution). The outer dimension of the plume will then be defined by tangential lines connecting the arc of each segment (defined by the segment centroid location and a radius of 2.14aY (2.14I for ground level releases)) and' the arc of the 7 following segment. If the first segment released is inside the EPZ, the leading edge % 11 be defined by the arc of the first segment. For a constant source' term, the peak will be the centroid of the first segment. If the source term increases during the event, the peak is then redefined as the centroid of the first segment released with the increased 6 Rev. 0
FNP-0-M-007 source term. Thus the peak is the first maximum of a series of discrete points. Receptor points are fixed radially at the exclusion area boundary and at 1, 2, 3, 5, 7 and 10 miles. They are variable in a:muth, which is determined by current wind direction and current segment locations. For a current wind direction receptor points are (r, 0) where r is fixed as above and the a values indicate the a:muth at which each segment will cross the arc defined by r. Prespecified confirmatory points are included for use when the plume path is within 22%* of the point (see Figure 4). Arrival time and dose rate are calculated for the centroid of each segment and the segment representing peak dose rate is indicated. See Figure 5 for a graphical presentation of plume tracking and definition. The following plume data will be output for real time plume tracking and future plume characteristic results: 1. Plume position 2. Plume dimensions 3. Location of peak relative concentration 4. Arrival time of plume 5. Arrival time of peak relative concentration I - 6. Magnitude of peak relative concentration 7. The relative concentrations at each segment 8. The arrival times of each segment at the specified arcs. The output format is shown in Figures 6 and 7. 1 Rev. 0
J FN?-0-M-007 DOSE RATE MCDEL Once relative concentrations are calculated and the effluent concentration has been determined, via plant monitors or grab sample analysis, dose rates (predictive or assessive) for each segment of the plume will be calculated. The gamma dose rate from a semi-infinite cloud is: ~ N (10) YD =,I M.g (X/Qg) Qfi i=1
- where, YD
= the gamma dose rate (mrad /hr) N = Number of isotopes in release contributing to gamma dose rate. M. = y dose factor for the ith isotope Yl (mrad /hr)/(pCi/m ) 3 Q4 = the actual effluent release rate of radionuclide i in pCi/sec 3 (X/Q ) = dispersion coefficients in sec/m y and similarly the organ dose rate is N (11) D=IR i (X/9 ) Q71 7 where ~ D = The cumulative dose rate from gaseous effluents 7 to organ I N = Number of isotopes in release contributing to the organ dose rate. th R i = dose factor for i isotope 3 (X/Q ) = uispersion Sggfficient in sec/m 7 th Qzi = release rate for i isotope in pCi/sec Three correction factors are applied to equations (10) and (11); they are: 8 Rev. 0
L'?-0 -M-0 0 7 1. Correction factor f?" adioactive decay (R) enroute: {g.) (A)Tj (12) x1 = exp f 9 -) g ol 6 where: th Q = release rate at release source for the i isotope el Q*1. = effective release rate fch-distance x from release source for the i" isotope. g = decay constant for ith-isotope in cloud A T = Travel time of segment to point where x/Q is assessed (x) This correction factor is applied to only those isotopes whose half-life is significantly short relative to the rime that a segment would normally remain La the I?Z. 2. Correction factor for deposition (D) enroute: )2 O d
- P ~IEe /2c=2)
Qxi = exo x (13 ) (90il l Ab D where
- k Q
= release rate at release source for the i"" isotope el Q*4 = effective release rate f q distance x from release source for the i" isotope. d = deposition velocity = 0.01 m/sec V 6= mean wind speed during plume travel to x, m/sec H, = release height, m a, = vertical standard deviation of material in the plume, m x = linear distance 51kveled from release point, m The correction factor is applied only for iodine isotopes since deposition for other isotopes is negligible. 9 Rev. 0 -V y-e~ a w' M
nr?-0-M-007 3. Correction factor for air: ratio of density of air at STP to density of air p = at the receptor location. This will be assumed P to be 1 at all times. Thus equation (19) for tne same dose rate becomes D =, M g (X/Q ) (%i)l@Ki X (14) 1 * *, 7 oi)D Ooi)R and similarly the organ dose rate (equation (11)) becomes D=I Rd (X/Q ) (Qg) bi Si (15) z z i*1 doi)D (9oi)R ..g 10 Rev. 0
FN?-0-M-007 PERFORMANCE The class A dose calculational method will have two functional modes of operation. The first mode requires little operator input. Data for this mode is taken from stored tables and current monitor inputs. Execution of the tracking code will be initiated by the operator when a high level is exhibited by radiation monitors at the defined release points. Initial estimates and projections will be based on predefined correlations between detectar values and source concentration assuming a source isetcpic composition corresponding to 1% fuel failure. Using current 15 minute average meteorological data, the plume arrival time at the exclusion area boundary and at 1, 2, 3, 5, 7 and 10 mile radius is calculated. The (X/Q)'s are calculated along the plume path at these points. The dose rates at the selected intervals are then calculated. At the direction of the Emergency Director, samples will be taken initially and at any subsequent time when a change in source isotopic composition is suspected and the correlations used by the release point monitor (s) will be updated to reflect the true source composition. Cutput will be hourly or upon demand and will include current plume location and dimensions, current receptor dose rates, predicted arrival time of each segment at each arc boundary and predicted dose rates. The segment representing peak dose rate is indicated. This same output for an operator entered wind direction can be obtained on demand. Predications of future plume shape and dimensions at a specified future time using either current average wind direction or an operator entered wind direction may be obtained on demand. l l The second mode of operation allows manual data ent:y. l Manual ent.y of data is required only in the event that a portions of the automatic data aquisition system is inoperable. All automatic projections are based on the assumption that current meteorological conditicas will continue. This assumption should be valid for the projection time interval involved in Class A model % quirements. I l l 11 Rev. 0
FNP-0-M-007 i I 1 BASES t The equations in this document represent meteorological conditions surrounding the Farley Plant site which has no unusual geophysical constraints affecting the wind and weather. There are no mountains, canyons, troughs or large bodies of water within the emergency planning zone (EPZ). The terrain is smoothly varying, intermittently forrested and cleared for farming. Thus the meteorological parameters measured at the site meteorological tower are representative of local parameters. The following site specific factors have been deternined. 1. The turbine building stea jet air ejector vents and the main steam relief valve vents are considered ground level release points at all times. The plant vent stacks may be either elevated or ground level. For ground level releases equation (3) contains wake effects, conse.dsring the cross-sectional area A of surrounding structures. i
Reference:
- Stuart, G.E.,
et al., " Rancho Seco Building Wake Effects on Atmospheric Diffusion," NCAA Technical Memorandum IRL ARL-69, Air Resources Laboratory, Idaho Falls, Idaho, November 1977, and Slade, D.H., "Meterology and Atomic Energy - 1968," p. 112. 2. Since the height of each plant vent stack is only slightly more th n the surrounding buildings the release mode is always considered ground level except when H is more than 2 times the height of the reactor b8ilding (40 meters). 3. All plume diffusion equations for ground level releases use wind speed and direction data taken at 10 meters above terrain elevation. The 10 meter level is considered representative of the depth through which the plume is mixed with building wake effects. 4. The stability class for the various calculations will be derived from at in accordance with Table 1 of Reg. Guide 1.23 except for the case where plant 12 Rev. 0
FNP-0-M-007 meteorological data is not available in which case
- wind speed and direction will be obtained through the local weather service and the stability class will be determined according to Tab 12 3.3, Relation of Turbulence Types of Weather Conditions.
Reference:
Slade, D.H., " Meteorology and Atomic Energy - 1968," p. 101.
- This is a compensatory action in accordance with NUREG 0654.
Following installation of a backup meteorological tower, wind speed, wind direction and o (an indicator of atmospheric stability g allowed by Regulatory Guide 1.23) will be obtained from the backup instrumentation. 5. o will be derived from the equations producing y the graphs in Fig. 3.10, Lateral diffusion, o vs. y downwind distance from source for Pasquill's turbulence types.
Reference:
- Slade, D.H.,
" Meteorology and Atomic Energy - 1968," p. 102. 6. a will be derived from the equations producing the graphs in Figure 3.11, vertical diffusion, oz vs. downwind distance from source for Pasquill's turbulence types.
Reference:
- Slade, D.H.,
" Meteorology and Atomic Energy - 1968," p. 103. The effective plume height, H,, is defined as follows: H, = h, v h -h - c where (16) pr g is the physical height of the release point (height hs of stack above the base) in meters, h is the height o (the plume rise, based on Briggs P# Jet equation, in %eters, h is the maximum height of terrain (relative to 9 plant grade) between the release point and the receptor in meters, c is the correction for low relative exit. velocity, from Regulatory Guide 1.111. If w, is >1.5 0,, then c = o. Otherwise c is calculated as: 13 Rev. 0
FNP-0-M-007 c = 3(1.5 - w M,)d where (17, g d is the effective stack diameter = 1.8 meters, O* is the average windspeed determined during the time period AT at the 46 meter meteorology tower elevation in m/sec, ~ is the vertical effluent velocity in m/sec. wo The Briggs Jet equation is defined as follows: [*o / h h = 1.44 d x (18) PC g ( e) i) \\ subject to the liaits hpr i 3.0 I
- o, d
(19) (Ue/ / \\ f T 7 1 1/3 1/6 r h,. 1 1.5 _m S (20) P-( 0, ) \\ where: d= effective plant stack diameter = 1.8 m x = linear distance traveled by segment centroid I F, = [w 2 d 2 (21) g ?)t 2s) l h = ratio of ambient air density co effluent p air density, 1 l S= stability parameter (sec 2) I [aT + 9.8 x 10 =[9.81m/sec ~3 O 2 K/m (22) al g / T j g ( OK T= ambient air temperature, AT = differential temperature between upper and lower elevations OK a = vertical displacement between upper and lower temperature sensors (m). This d_ stance is normally 512 but will be 20.5 m during senser calibration 14 Rev. 0
7._._- ....--m ] FNP-0-M-007 i I t 9.81 m/sec2 = acceleration due to gravity near the surface of the earth. i -3 O 9.8 x 10 K/m = adiabatic lapse rate. l 4 i i l V, the deposition velocity is set equal to 0.01. d J J i 1 ( f 4 i. s 4 4 i 1 i I l 1 i 4 e z I i I 1 l 15 Rev. 0
- .._..-._..~.,_-,._--...,.-...;...--_..
FNP-0-H-007 LIMITATICNS The Class A CCM is limited in the following manner: 1. The x/Q predictions are based on theoretical calculations tempered with corrective factors which are in turn based on empirical data. ~ 2. All meteorological data is based on statistical averages rather than a continuous mean. Therefore all calculations based on meteorological data are subject to the statistical deviations of finite incremental time periods. 3. The plume path is updated with average data. Therefore the actual path of the plume may be longer than is estimated. The magnitude of this error is minimized by using 15 minute averages. Meander caused by long term wind variation is accounted for by the use of linear distance traveled rather than distance from the source. l 1 16 Rev. 0 m
.T.O.. Q = ? 0.
- 0..? '/
i w e' S U l i i -= s = 10' s _s e f // I // fl 3 I // /* l ! l l i i!:! l i l i i#..i i [/ /, /1 ,l I ! i i!!!il l ! ! !liill //h' //l i ii i ij j i lip! if-1 / .f, g s / / / / y // / / /f a' f / / // / = t I l . / / /./ / / a .t a y l 1 ! i ! .iiI _// </ !/i/. / ! i
- l l
l I ! !i l! 5' t ! j j i' " f. mi i i.
- Lh i
.iih i I !t t / 1 !. io 1 ./, = s ? < / / e /- < e .e a.ExM ENr.? us:Ta3LI r.5a 8 -' /
- 3. wc:E?arILY uss att.2 E
~l / // -/ / / t . SL;c,qy gas;;.at,I ~ l-l /// // / i ' a -
- turns t i-t E-!LG W 513G 2 (([ (([' ' '
4 i j l ie, ? - McCE?a7T.? 5713LI 7 ' l t I!) l l l ii i! l!l lI
- i I
l'lij i ii t i ,i IC
- / /
/ / 4 / + -/ A IC 1 3 1C' - 5 10' 2 1 'C 'l$ CZ 7'CM 5C'48CZ t Til Ii.f.1. , t..:::.1 "'s:cs. :,, vs. =cwnwt:ut ::s:asce f.:= set;.::s !se Pssc di's .2: 24.ce t ; pes. ( l .9 L .J f ~~
- i 17 -
i , av. L.. r. i -. - - - -..,,,, -,. -,. - -.,,,,.. _. _..,,. --..-,..- -,,..-.,,,.,,-,...,,,--- ~-+.,.,,,.,,.-..,-,.,.-.
T.,*?-c-n-w i -^ Dh h 1 I 3 3 s tC I I 111111 /l i I1Aitil I I I Il!!il 2
- l. l..
ll l,l6 I .l to I / .f .f ,,f .o..p ,1 s ,.s ../ .s,.y l ; i i i f. ! / I l l 1/' I i i Mil i l i l l)1l} /i i I/ii!!! I f i I11ll 2 - a 3 i / .ii ,i, t l t/ I{le u g 'I 5 l-Z l/t 'O ^ l l l1 i s ( - s i s / / s Q 5 ,s t / /- s / / y s. f: _f. 1 *
- f. f.
/ = o E '/ f/i / 1it / f ' i j /.'i i i i !!!!! h?! IlIilll l ! !!Ikl!! .l f [' l'i lI ll. l .I h gg' a - ONDE1.7 '.NSia2LI 5 - *:0EMa*!L? UNSTASLI ~ 3' O - SusuT.7 uN57aaL.I f f l ,6/ / / 3 - NOTM AL = I
- f/
/ E - $U GHT(7 5";.3LI / f. .l liilli ! 7 'dCCE?ait'.? Sta3LI! I f 1 Ieil / I i ill!ll l ! l ! !!!!.i l ! l I lll!l 2, l ll i l l i 8 i t I +. ~ E 4 8 tC 1 IC 2, S 10' 1 S IC Osi:.N&nCM scuRCL t.18 ig. 2 '.*e
- =a1 ::ii^..: sten. e,.' vs. :cw:wu.d f.2:.scs 5=m sour:s 'ca P.sq4's
- ula::= :rges.
v a 18 h ',. 0 * ~~ .-e
J J j L a +/- / 1 / / / i / / / .:7 Y i h-H ^ n i _(- b N 4 Figure 3 C::rdinate system :hcwing Giuszian distrWuti:ns in te hcri :ntal and ver&:1.
- .9 t
N =~ ~~.*W*,== . d :; *..',,,.:,/ 2.**
- ./ '..,....
.N.,.,,%,, ,,.,a. '. g o, 4 -,,,..r
- 1.
..-,.==,=; '*m4_..
- * =ie s,
e. 9 --? w---,' aa N,,, * //. e v .= .a.
- /
.r. c:..' P r y
- s. * -
.. [ , mt: V- .: m ; 3 -y,4
- s
- ~ : =.., -.. - -.~ .~:...- . s :.: --m a r s c i. . l ' c'* ~. _ _1 .' "'4;;. a,;;5. -. _, ' " -L y,. 5 * - A
- '~
'*'E"'h. ,/ / t . _ / ' e.. -- i M-f -- ( ~. a --- '-.;4 t,' ,, @!. N,*.'n. iz '.~_'l i ), f ';. ':= -- ~ \\ :;-N ; .s s .f.. ~ .' { } }. './,% ';. e ,.1.. i '- w A-p m=. - ? ,. m a.f: ~s- .y. =~~. . -r ~ <
- 's
, 7 -:.=,.=1-- s r__/'~\\ n_: f
- i, J.
',, s, .e- - Q:. n
- t
~:. -..~ . s.' '".3.. T ---".== 2'_ .-,4 ec:c. ..,5 F s--- _. .-,..M ' *:=.'.,\\ q,.,.,_::,. r w L 's' QjQ,.fg.a ;,g ; y...-,. g* e- ..p - 1 ,a\\,.~, -,/ !,- d ',
- 1,
.-. p 'A ss T w;- , r,e _--=..3.,-<* '.,. \\. ;. :. g/ =e,,,,,, (.. A r ,. a -,.c=. 1 4,. c
- 'g s s;...,,<.,
z j e.+ r .~. . a ~ p - _ }- (. a
- v..
s*a" 4 *
- ,,/
!.9~% s. g. s p.. " .: = .. L - (.* : ;+. g :.a:.:'.. ,5..~ '.g..c ** ~ ..n' 7 .,*-~""#.
- ?., ;=.,%.y,,,.t _..'.._..,.r-~~.-.w ~,q.,,. -
,- '.. %;, s %l g, ,,, ' WZ - ..,:.<;. -: ~r, b ' NY ',,2'" g q ; :[:,...., ':..., -{ "'.,, g,y{n r e -- g g, - 7 - "'-", j y' ,f"
- f. - N
..f.*;. ..~- g . A g:.- b_- ' *.*"". ~h.'l.,, %./ s. :7.-'. Q. :. ;' J r/ s;'. a,'. ) A,, ,,,l 3. a ...s -..,t ,,,,x;.: -- - ;~- - -- _ y. )..::h;. :,;: x - ~,- .... !.. A. _'-*- ;r a~ V. y s ..,,, a.,;,p.. '\\ l, .t - .4 s a -1. ::..... -.s i .6 .. N _. A,,(. .4. 3 r Ny N 6 ~Y ,,)__. 5% 2 a 2 '.*i ' o*..f s'%., w,g. Y ),,e'.
- )-
. ~'. u. f*-$ ***. =. =* 0 4*:.,,s -3*~- c:.,,.e - - -< x ,q.. - < .c., ' N,- ;.._,,, -. -_y_ u, , n_ J<" t, ',,7%.. ~
- N
.- - + ;,. ,' ': ' i -;. D... ' - -. NC::bDr' 4,p-.*- *"- m~] ;, ;. - :I a
- ' 1%
""W* M '.r-5.2. s . "'Q 7. - Y i il I 4 "l4, G e~ ? 3.;'* /, - - 5. ' 5 #.:~ ",l" - - S.' - 5,
- .'IC.
1,.-,- -;. -.. : 4 4 2 P - yi r, S.;_ = L: 4 ,1 .... /, ' .--c,
- .::::- t y._ -,~
g a m . *-'c(8# / k..,.s.. %,, +. ---.,".,4* T. 72.;;4*'.', *2,,,.,.< "4,,. .1 - ~ - - - N..s
- g D
- ,e.
e g, ,,,, e* 3 y%,;'.4- & *,;#,\\, r, ' ,%.1 '.4 J. '.,:.,.:.;.$.;:._.,"- 4 ' *. 4;,,,- N e ,3 q '. s.. - -.=#:, a. u s. I-v....=. \\, %-, e' c , m~a.,;,,/f 1 ,/% i -*a -a.- .'"e ..a .s a / s r ^ -.
- -.'>- ?
,.::r- - -..,.,,w.,..,...,. ;--. ~; _.., _'.. - N.,. x, 2[,;,,:.-:-, ,e< f 3 /.r,,--,. g +:n.. * ~s- -. ~,. ~. ,j.,: ~ - - M... c.; Q,>,,,,p.=..-,,&.= m e ~ 2 s... ./.: -m-- = : :: ;,, -: 2 x.,. s. +. , :. ~. r,,.-- ~ .s
- n....
- - - ~ =. 4-j ', s -:. / . /. ~.
- ~
- ~. - e.,i)4 t',. *'.:.,. y - ' ~- '.., ^. /w -/ N. t '. i' -Y.' . - --./~ ' A: /. . = .u.. T/ .: C J 4 ;;- i. g/.2,' - = :,;.. -.c -.,: u. ; n,s --_.. x.: ".c.g 'y-j - ~ ~, - _ _ s,;- t.m... w,...,..~,..,,,,..,.,f. N< ,,....y* 1 ..,s s. ~ 1 z.s M, *./ : y ",".
- g.. f
'?-?...e F':c'2:, pc i' ~ : ;.%..;;:,,,, .q::2 - it. = r.-@'=cy.-- h,,,, p.g s y '^- -"~= i % ~ ~'2 n " 9. A & :- r '. W. = @ - s,. :,.; - -,.h. ..;..c 5 : &'. ? s..g,.'k;'6 T
- _ f Y,, m
....,. '. i. '~. d k . '%,1i.',,s k. [ '.,.l'" .-.. r,., /..,. :. : "f, g ; 'J, l 4:. ' * /
- _.*. ".'J. '*
~ Ta 1 , ~ * \\[, =. . / .. *.,. s - ., w. a c. n. 4,.:, .s. w.s;7 s -:,..... --i., ~..,. :.;., ... w.-- s% m< ,,...., / 4 - . _ $qh,S '?"'~~~~~ ~ ~ %:l 1... . -'l'-~ '-. hs,I l;.- \\- \\' b-, I h.?) " ?:..s& 'Q s:.~' ;=W' '
- i. ' ?. -
.i.- M-. ; N :.:..r/. 5[' R$,. -,.. %,,,,4,; ;,s.J, - a*~~ ~ ~~ h. n" ,,. ms- '-~.-: n, s =" m .:,- g =.., - - 1 .,.. %,, s.
- r
., ;: y :t 55 %
- ,j.,'.
.e . - L ] -c?' ~ s j,:,' .i1z W ' q,,,,s. )--'..,i.... 3, ~ +%
- .c w u..a. -,,
. _. j,,,,,,,;, ; _g,z. i -.. : n,.. _ _.. =,, 3s,.._ .A +.% r.,. p, \\.3
- m..
u
- s..ou.
.( ,,,,a ~';
- =,
t ._ --- 4;.i. .:~ t u.. s . ' ' ~ - = q a a r. a....m u. mu : ~.. s u .. 2 r. i z,
- 5. N.
r e""
- oam :x=.x=. r ar..z e
e r .ra: e.ia:.s ., fr.,y .y T, d 'a,:::- %,. t =c,r.x m. m ~1 ... =. - ? = ,. i e--v t' a. ~ = i 3 /* --". 3 m
- 37. t=.4 ev. z51a.
,i .a...{.~. 3 ***d-.N +e S ** w-1 1 w Q.- A= s..,.. .2, ,;;;.. ;. =,,. 37 s..,. ; 3 3.:..,, ;.3 7.. ;. E.- .L:a:..:a rietn:: s 2, r=
- 1. : -: :;24 Ins;s M
Ti'4. s2C ;2:a :: CH
- - h hu..:: a r:4:n::
R. 7-M. I b::.::a: sac n:. a:.... 24:.::a rt ae n:. i*. ".:::::4:n.:~..... .I .:.J4 ba.::2:see n.: t 4. 2
- E*
- aa: I ::. n
- JI. '.
- ::.: :m 4
i 1-1 .!:::: t.:ru;: s: CH '.J N ba:. :ars.c a:a 3s .444:. 3u a: a. a:... I !!" st bas.::a: sun;: '. i
- -M
.:::r.s L.2 sc.in b.
g g ~3' Y 1 ni on R kH1 INrttvAL. AVG. Vaik.co TY OtRutow 1 Y .1. 3 m /54.e. 5- } ^' i \\ s 2 4 mose. 5 i-) ~ 1 e e~ 3 4 m /te.c. h i / S \\ / \\ i, - l t { 9 2.5 ml:e.e. S- ~ l l s , s N \\ m ( s1 I $x / 3 s** cs. { ~ } L2 G EN D ' \\, / T4Gmc ) SQ fCO~Iace u ,s..s N Nm am - on en... m.m.~ u,.. c mm,., o ~ b-FIGURE 5 MODELING OF REAL TIME PLR!E G7.CWTH 21 -,e e w ww r-,, -e- --,-+e-a.
M M M w M M M M e W M Je M K3 M. J.e .M .M M.e M M M e
- =
m e e e
==
- os W
W W W W W M Cl? W W
- as W
ao. M. as. se. M. M. Jo. M. M. as. ae. 3e W M / M M M M M M M WWW ,f j a a e
- F S
== u.w.s e.a..=. w a a 1 1 i i l1 > s a gi '== ae e s 3 3
=
w.e =e a.=e a w= me > e =e e s w i D' , I .3
== 2 7 3== 3.a.* 2 4
- e 3
- a. - e e 3 J, -
]'l [ d U J.s W is 3 3 4 a cq 2 e C %= M M M M M M M M M M M M M M M M M M M .M. M 3.e.
- .4 W
= e, se .e w
=
.e 4 >= W W W at W W W W W W W W 4! M-M A M M* M M-JE M+ Jo-M as = + M. >= M M M M M M M M M M
== taa g 3Q = M*
- .& 3 9
M u sa M as a= a e.=e== 3
- 3.=
- 3e M
== 3 a .a. e s M 3 e eo 36 m M 3 W =s a a w w e3 =e se 2 ee u.o S es
- =-s see as e g me e m
o.u. W 2 w t. =s W e.o *F. = ne - e es 3 3= as u .3 w =s 3 l~3 '5' " * ' ' = . = v = Jo W2 i 3 & M M M M M M
- 1 M
M M 'e 4 e se
== %m M M N M M 3e he M M Je M.e j U 3 ee =e .e .e .o se =e se we U ** 3W W W W
- sa W
- .4 W
W W lal ina 9 e.3 d.*e #.=C + M M* M M M M M M M M N es + M = M M+ M M+ M+ M* Je j se M + + u u 23 M 3e 2 a .ns 3e
==. 3 44 W 1a4 2 33 .e me es w d 5 u 3 "3 es e se
==
-
3 2 e 2 O2
- 39 e
i u e
==
- 7 87 m.e
, as e 9 a 3 4 4 =8
- T
>= =2 e e.9 3 u w g 33. p a== 9 mG = W .a .o J 7 9 7 3 e .4
- p o 3 e
C G
- T es fe
&as as Jim e 3 3e *3 e 3 .m e e e.m te e 3 fu to 6 u i 4 g -. S .a. .c eM a b I. .e M M M M M M M M M M M .3 C A .4.e M M M M M M M M M M M e 4 9 M M M M M M M as M M M .e 2 > us M M M M M M M M Je M M 3 y j "N u ( l Y 6 M 3 <W = %e e 4= .2 W f e g 'r "S to 3 7 3em me we
- e 3,
i 3 W ee d* f M 7 O C'3 .U U es m -o ~ k &a 3 to 4
== a ne = sa Jet .e== an e as %.s
==r 3 GB A
- 2 as
.e M. M. M. M. M. M. M. M. 3e. M. M. G 3 5 M 3e M M M M M M 3e M M
==w.=o se M M M M M 2e - as M M M O M M M M M M M M M M 5: -s T en .C Cs .U a e g "5 W 3 e 'J.2.==e .3 4 .==a=aG w a. 9 a ee
== 3 g me e ega w me e SW
- 7 O eW lL ** 3 M 3.e
- no M 3.8
= em e3 hem J M e W o M
== M 3g Je. )le. M = g M w M se M M 3s M M M 3e M M M 2 3e 3e M M M M M M M M M W \\ / 2 \\ = \\ e u i I is a3 \\ 1 1
- .3
,D- ~ n\\ m 3.e .h .e** 3 i \\, 3...ee.3 * /.s n. 4 1 . e w u e e = 2x .- e .6 W
- ~?
s
- f *3
.e 3 .".2 e 3 ed 3 # e $ e p M 3 'd Q" M 4 === 3 3% k=%., =-
- j J8 '
us# 1.9 L
S In$ u a _I, %.. -.: .e i i. N.. 4 1-t i i. .t I ! \\X ' ',Ny I ( - l' ~ f' / ; 4 t ' - -- 'i ) n i i ) 'i i. .i c' x. 7..s / i s_ m .= ;=.y s-q N. ...,N ... t i N i i 1 / [
- e i
I i i i s t l 1 i N' N w / s E :i l f V :n } l l 'N ' s I / l e. L p.!,. M,.t... ' i t .i i ,i I i i ' .i N ,i j n/ j .r [ a g w 7 = i =. r -i m; -i a, i n .g t ,'s - in : .t
- =.
(.i sj . ^ 1 i i t-t 'dd,. -,i 1 4 i t i N, l t [ i c. i =. i i s { ...p a I i = _. m.- i ....s.. 1 i L M i I i f.' ,/ f I x [ ,\\ ! s g 1 I \\ --=. a = 6 - ;q. 6_.,'c. ?, i r-su. i t i 8 l-l l . \\- ' y h_,. - t .[ i. .s 1 .N.cL. t: t. e + i = j g ,8 5 i k 3 I l ~ ~ .. t r[ ', s v s,. a .x i
== s 1 .t s b* ? 4 i i x ? i 5 t .t { .,e i si . _.s __ _ y O I i ! I !g-l 'j d , i. i A u i t s, a==. = f3 .e i. e i ""7* l ....I ./ i v' p 6 + .{., a y I m t \\ c,\\ jl l l t i 6 e l M l
- 3
. *..[ t [. m M l \\ [l 8 s x .. =. _... i = a I,
- .. A..-%,..a**
l 'N. i s n _s '.w',, S C9 L. g I y. _ = =.,. N t I s-~.. l j i 1 23
f)[ edda D f'l D
- D
~ N ' il i -J .lbb i i r \\ v i. :. - =. ~~ m y ) Q. - v s .m.. .w..
- 1
- ,,,,,,,j,
,o \\. .n ...r.i '.1 ......s I w.n, V. y,.,. f i.;i ,; } ap-i.i ' y i3.IlMAINST'EflM .k'~f.h6 ~ ~ ~ ' ' i.yy.) R ElilE ' VA LVE S v.7 ' 0: ':W ~, /
- ~.;uh
/, / * ~., * ,: r ) ,*m.( ^ l~i .'\\.. a p r -p r.w-s, i j_ r :..l--{il J; %. J.' N 'f, h. n c-g . t v, T~./Is' 3 tNE M.;Ce '( - [ g i. G* *,3'-- -i l o i ..T '/ I U.V;""- NC. ?. M,... '~ ' s .i i m,. UNIT 2-
- 's
).w, '. ' / I... y_ - p PV5-) w i. T8V$ ... -. -n .. & C.= 6 ~ i s, /'i,.. 'l g 6;'~ [ A Ux t f.,1J.t.Y -i Q. i,~. U.'J lT. SG, ; i c,- .,.d s s t. .v 3 4 9 d% p.,,
- $. ;.',:N.1 '..~ '..'.',= N.b.y w/ Q P **
~. .,$ U'.OLl.L KY.,'& L U Gr. \\ I -' Q '. -j q p ;,;:: Gln.,II N.,,,. <- ], t ' ;.j p-.. 6 ::-V4 U N I.,,, t . _; ' y N i 7 t < ~ -.. e.3 ) ..s fV ii....
- <, c._
w . l. .x L U gIMC: CLn. rN y U N l'i' N C. " .i c.i.c
- w4 3.G.
.,,j / -). ps I'".! f-4 6 -w. - 1 t , ::da.,. UN17 'Nt:7. $ i p -S.q?? I .3. - 1 r. t r x
- ~1 :
TV .. q~c.':.... 7.,; m:.a l
- i
... *:: w 1 E,
- 4.,,
.N -t -%.',... aN**
- . ?!
1'1 f. ' t(/8.:.-:-j;%,..A /c '. x ~ D ';f.; g l:e,,,, ' %.~.l V. v',, '.;. <. ' '.= ',.: g.,.,t.- : -j.,.4. %E - l -. -~ -%, q 2x \\ - .._..,s t 1 f. ~ e..n.,, ..a. 'h n ~ / ! 9 ! '(. A.'. 7 T*-_,F ~ ~ ~ i g ( l +.. ,i, i u., ! ?a,.a. a; J w-,_- t t. -[ .64 i u i !
- ["'l I
S c..,. a n,/ fCc.,4,.- . l l ' I'- i - l t i ;,-. ,~el. 'T
- il i
t ( ._,4 ;i f. i I 4 ~~.-es 1 [
- . j
- g. - l-T'I 5 ::: M:. 3 g
l l t-i') ,e t ; i .I .i 6 ,.d. ( (,N e e, -c'- ~.s I s s ~~: =-c t t '" 1 --+ a.3 i 4 a *6 '. .e-i a i i iT -.
- % 8 l 4
i J hI t r l I = Va# 1 M= g .=.-.".me.'."" p h *,.
- g 4"*
g4 [ r = g s .. u t... 3
e OQ O \\ DD] e D O .. g, *, =* _ p e..*....o,. y .e n.. y3 (. .,.%./ e s..... r..:.c..., $....., t== i 6 3 w.. s.. A-I.t: t=siy us:::le ::-da=.s
- - teu=:1 ::c=f=:.s*
3-ikcen:aiy us:=ie ::::n:::: I-314 :iy sucis ::cciu: s C414::1y n::=1e ::::ia:::s T 'kcsn: sty s:=1e ::::::::s Nig-- a ::::ic:cs Dav '.== '.: sci.:: n ~~~~ *ve la.' as* 3
- 3.,.m,.3 2
3z 1 1 sues. =/ sec d.nnT LIcce n:a 5:1 p :
- M :ssst
- !*.dsess
.<2 A A-3 3 F Cs A-3 3 C I T 4 3 3-C C D E i C C-0 0 0 3 >d C D D 3 0
- Acci!==le *. 1 :v7 Oven ::. :Sy er 4-_:.
?D.e Ctq se ci !=uciasts is =ggiane,,. :: :=-g h= c;*,g
- ( ;23 sky 12 v, tis (CC 1 :::annt *.:nt:n vtu
- s
- venc 07 :::uCs.
m J 4 I l I t' 25 g -,4, y en n a--- o-
93 III.D.1.1 INTEGRITY OF SYSTEMS OUT5IDE CONTAINMENT LIKELY TO CONTAIN RADI0 ACTIVE MATERIAL FOR PRESSURIZED-WATER REACTORS AND BOILING WATER REACTORS Previous Response By letters dated August 20, 1980 and June 20, 1980 for Unit 2, and October 24, 1979, November 21, 1979, December 31, 1979, and March 19,1980 for Unit 1, Alabara Power Company has addressed this item for the Farley Nuclear Plant. Clarification Response Alabama Power Company has instituted a program for Units 1 and 2 to maintain leakage rates of systems outside containment to as low as practical as described in the referenced letters. Leakage measurements results for Unit 1 were subnitted in our December 31, 1979 letter. Such leakage rates for Unit 2 will be determined prior to receipt of a full pcwer license. The results will be submitted to the NRC. A walkdown of scoped systems described in I&E Circular 79-21 has been completed for Unit 1. A similar walkdown will be completed on Unit 2 as soon as plant conditions permit. The containment air sample system will be added to the systems included in the above program. enum=sm l l l
'T ~ O' (D ()- w. ~ DATE WM/ME/XX last Avssage Wind illsestion (Jegassa is,omi N) XIX.E ' WisiJ Dis as sines unsJ ier psulscLissa MEE.E LOCATION SLGttEN T S (Jesseum AHklVAl.18 tit; CkN S EllElHE Cl4ITICAl' ORGAN g tillttistu N(miles) i s u.a N) (Ceutsel Time) IMhhE HA1E (mJtem/les) 1MASE RATE (eJtc=/l.s ) Q critical eg kX.XE XXX.X XXMX I.kEAME os assa M.NESIX E.1ElkE XX s.Jiel a anut ta ti a of yJams an a Jose sete salativs seutsatsats[ M.3E1XE lus t ic.i XX locattua XXX.X lent upJete XXXX at lent M.XEthX at la.t X.NEtIE .t iaat ...l. t. .I, t. at i..t ...t y .t MX u* Jane MEX.X XXXX X.ME8EE M.EEtME us.Jete E.EESEX '( s.p:lat e j j {e n.a s u 7 3m sJ E.3EtEE XXXX psujsticJ y X.XEIME paujectsJ M.3EtIX ests MK .'XXX.X [,psejectcJ [siut et) ^ j \\ assiwal Joac sats cattical scletiwu / a amut ta cesit cas t s e t a s unse. XX locaties EE.Y time an. XIMM at time M.ME!MM org.se Jess ,,X.3E!EE ui,-. -. (it.o ., c. .al. s.t..t Lim. at t. Xi 11 lee XMM.E XXXK M.XEtXX of csonnis g E.XE8EE of csomaisig X.XEthX s.a..J EE XX.MX MEY.X X3ME, X.XE1XX E.XEtXX X.XE!XX XX XXI.X XXXX X.3EtEE X.gEtti g.3Etag MI XXX.M XIME I.XEtXX X.XEtEM K.NEttu i X.X' TEE IM XEE.E XXXX X.NESIX Y.EEtII ME EXX.I XXXX X.MEttX X.NE11E I.EEIEE 6=-3 02 (Etc. for secta seg= cut 4. cans tradeJ 1simiJa 44.e El'Z) L_D W Ecr3 W FIGutiE 6 TAltillAll OUTIUT FOllilAT EED w e 99
VA P rq- 'OJ uu ) . j \\. O C' a u .n ., ~ s i.' 7.:% 6l t, 'I i e t ? Lb.N, i t .i i
- %!l r
s. e t r j s ( \\ ' }' Ng l 's'- /t ~"" -- l; l -- t ) t s g &,,. N.N.,..j... sNI %l j' i li ) /- ,\\ g I m r .!,j I '=j - y i: i g ' h, i l i *
- M.
i g i M., \\_ ', ..i i l [N,g l l F E l ,k. - N .,/ i N' t mt i ~ i g- } j i t 'l l / a i .:c,.- N,,, i l t ~;. s n. .s + i ' \\ i / t f ..s I 3; ! \\.' ? .w 1 .I i !\\ f r t g i ...$0.. l i a/ 4 l a 't i 8 f c 'e=' j i4 '"/" 3 ./ 4. 3 i m f g
- [
t. I
- - P..
I ~ gi i t' l '.~i \\! 1 E k 5 -lddl i, 'N,4 l [ .q. g-t _ _... _ J I g ; 7..' 7 _.i .m. l i n i .i m i t. .\\ N t t .s.. n i
- wm
= r i i l 3 ' g- - l Ni tr t e' - -I t . \\. t s = ~ b j. N.. l t: g; n. sk. i i = i i i e 5 I N.:, l l. l-. I i 't i 1 i r i 'i j j / ! ' sr 5 -- 7 : 7 - 7 7 j- ; - -- - G 's l i N. . t, 1 +. i s. l~ si !\\. i '\\ ! - ! i i' 'i i -4 m e-N i i l t I i 1. i f ,4 /.N: -6 t m i I I 1 N t 7 l \\. I t / i e u p. i t.. y. W i(,\\ /( l 6 g t ( "m* p\\ g l l .. /,
- i. A m
4 [ ,s j 4 ..\\ -s i i l \\ ,e 6 1 a m s.- l =. b = f l- [ g".e. y \\. r s I, I I C'i. 8 i t C ?' L i s k g i \\ b l? F t. i. -s s. t I i e t / r. e I t t-i 23 l t
k / i f ( Q :. ;L. ~ :. ~ \\ = ./ _= 1.~-.. 3 x ) Q- - - h -- ...* m. - ..e s. i.
- '
- 7,3,
.. s}.; '.2 i ,. - ~ ~ ~ '... l w ;s
- s..,;.@.g ;
..,n,. r .9... i ~ .1.! -j I ;f' M AIN STE AM .s 7-p g g n ::: yA tve_. c_ v.< c. v. .,,,e. e /- J.3 / t .... w. ( 1 --. t . It is.". 3% a .;. t ,* l. ,;S.i. f a N. J.% \\ 's-u .r J.,. s .L' ? h a s ---C7'MT 3 LO G. s ,utt3(N,_. SL;Cr t.,,N I - - g,,-" -; i 1
- j m
j, V,,1,, Nc..,. .t ~;.. l 6 m *, 6 '5 ~? UNt*L ? - ' _-'~ ./ '%,,Wi F... e,,.f ? o r -. :.r O rVS=i-e e _t I i 1.ng1 se.V$ i / L '1' ( 1 i.- g C'- [ A ux t L t.'..t.'f O LOL -j p,:e-U.'J IT~.NG, :: ^ a a., .., -. s .. g! } ..e,...... .. s '.J
- g..
n. n_.-....
- I;.*:.(b$..~..'.'Olh....
yWh . Alr/lLl> 7.Y. &LD 4. 1 a m 4 -..g.. c.:.;: ym,,(a sy - ..'.9 T:v5T F .. . UNIT I H_, 8 \\ F., :. i pysT m i j ~.. .s ....~ =: TUR*5iN E 5 LO G. t'2 V N I T N 0* *.- .M C 7.'AT
- L)G.
~ 2 -'- f .D . N M e M * ^: *. W u.*
- t
,. :x:.: j U N i r bic. $ t
- .i W
( ..m:..c..: -1 x~/ c:
- l. d a ;***
I " *' : a -1 ' $ * '. M ~ 1 "A - Tv M. s..
- r..W., * :. 7 e
>==. lj .'c h I 'a .s s y~ ,'.... - +d L -N .E i. ~1<!Ep,it.% % x v ~::,;,; G m.e.es,,,,_J a...,,,, %..'.b*. v 2.'._; sv. :c.%. >.,.dt _a -2s.i.. u.,5-- . k. .s. _ :....f. 3 - s y. . - - ~ f. m,,..,_. '? nr l 1 - - IN!7. e- . ' 7' T 'f: t I i 1 i i, i . a=%=*..- Q .5 .g e. . t u. m.. n l e i (F. &.- ,. 3 .n. i i =.._: l SE;;vrcs. ci::q i -. i = "? " l
- g. j,.
- l l
i j,. i i l l
- l.,
g J1'L.}. l E.T'3.5 : 6. 5 i j s i i,. iI ..t i ,a =_,._ _.:. _=.,, i ,t. ( ;. e* , u tt 1 ,- - }. '. ] 1 l. .,l y w .=.:.= t. i y,! a i<.- i [ 4 l D f, ii 'd gg I f-( 1 s/ t - i U Ai n:L e,- (s/- -) c r,.; t Js i n a ne I
- e.. cr,.. e 3
1
s D970 "'D: 7b'y(n., 3 WLJ of 6.t ,.- _.,...,..-...._.....,...., n . 2..i...=. -.. c:...... 4-n:,=si? =s =.==1:=..s
- ._ 34u = 2.---.=..s.
3 '.kcs=:aiy us:::1a ::::n:::s I-31;;:::y ::::e ::re.-1:::ns C 311;=iy u *::le ::=a:: s T '::ce:.: sty st=ie ::.--*- s N!g--* s ::::1:::r.s U:: :ve ;22: *
- ,# C I'*"*" "
Iu:.::e wt..s 3 or a d, 2/3 ~ 1:eec. ::/ sec St::r:- 2keer=a 5:!g::
- !=usi sssi
- ! stistas 4
A A-3 3 Ca 2 A-3 3 C I T 4 3 3-C C 0 T. 1 C C-0 3 0 3 24 C 3 0 3 D
- Ac=11:=f e := ts:v r over::::. ::y or..:; :.
?O.e ce; se 1: :icusiness.s :sticec s :.:: i::::::n :l::: Akr ::cve
- ta Icesi ::::nnc ::r: :n vrue a ::venc :y :::ucs s
k d em I l l E' 23 1 .e- ,-g.,-w-y,y -i.-,, e- ---a y 1 -,v -y ~ ~w y
l d . a a 93 III.D.l.1 INTEGRITY OF SYSTEMS OUTSIDE CONTAINMENT LIKELY TO CONTAIN RADI0 ACTIVE MATERIAL FOR PRESSURIZED-WATER REACTORS AND BOILING WATER REACTORS 1 Previous Resconse i By letters dated August 20, 1980 and June 20, 1980 for Unit 2, and October 24, 1979, November 21, 1979, December 31, 1979, and March 19, 1980 for Unit 1, Alabama Power Ccepany has addressed this item for the Farley Nuclear Plant. Clarification Resocnse Alabama Pcwer Company has instituted a progran for Units 1 and 2 to caintain leakage rates of systems cutside containment to as low as practical as described in the referenced letters. Leakage measurements results for Unit 1 were submitted in our December 31, 1979 letter. Such leakage rates for Unit 2 will be determined pricr to receipt of a full pcwer license. The results will be submitted to the NRC. A walkdown of secped systems described in I&E Circular 79-21 has been completed for Unit 1. A ] similar walkdown will be completed on Unit 2 as seen as plant conditions permit. The containment air sample system will be added to the systems included in the above program. i e ,-v --T-y v v --- M w--et-z
- e-
-p&> g .9 e--- m e r-rm}}