ML19347E892
| ML19347E892 | |
| Person / Time | |
|---|---|
| Site: | Zimmer |
| Issue date: | 05/12/1981 |
| From: | Flynn J CINCINNATI GAS & ELECTRIC CO. |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 8105140188 | |
| Download: ML19347E892 (16) | |
Text
.
.. + ~.A,
. - -;.,. ? =
I TN', e n.c c z":,
THE CINCINNATI GAS & ELECTRIC COMPANY m esmar Docket No. 50-358 May 12, 1981
- l. '
Mr. Harold Denton, Director Office of Nuclear kaactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 RE:
WM. H. ZIMMER NUCLEAR POWER STATION -
UNIT 1 - JET PUMP HOLDDOWN BEAMS AND NRC Q130.29
Dear Mr. Denton:
Attached are two copies of additional information relating to jet pump holddown beams (FSAR Section 5.2.4.4. 4) and NRC Question 130.29, Soil Structure Interaction.
This supplemental information will be incorporated into a May revision of t.he FSAR.
Very truly yours, THE CINCINNATI GAS & ELECTRIC CdMPANY By JAMES D. FLYNN, Manager JDF: dew Enclosure cc:
Service List
)s i
l 8105140ST
JET PUMP 10LDD0hN BEAMS A comparison of the ESR 3 jet pump holddown beam, which has experienced failures, with the BhR 4-6 beam, used on Zimmer, indicates that the Zimer beam operates at a peak stress 14% lower than the BWR 3 beam at the present preload. Since time to failure is dependent on applied stress, the BhR 4-6 beams, as presently designed and installed, are predicted to have a longer life.
A reduction of the 30 kip preload currently specified for the BhR 4-6 beam will be initiated at Zimer. Tne preload will be reduced to 25 kip, which will yield a significant factor of improvement in predicted time to crack initiation. He operational acceptability of this reduced preload has been demonstrated by tests ir the G.E. high flow test facility.
Based on current test data, the preload reduction is expected to increase the beam operating time to crack initiation, at a 2.5% probability level, to a range of 19 to 40 years.
Periodic inspections of the Zimer holddown beams would be conducted as a part of the ISI Program. He inspection frequency will be detennined on the basis of results obtained from operating plants of the same design with surveillance programs currem.ly in place. Surveillance and inspections will be conducted using both visual and ultrasonic inspection techniques.
Any beams found to have crack indications will be replaced with X750 material with the improved heat treatment.
l 1
ZIMMER SOIL DAMPING SENSITIVITY STUDY On April 29, 1981, the NRC Staff informed CG&E iat they agree with the conclusions of our response to question 130.29 showing that the Zimmer seismic design is conservative; however, the staff requested that a sensitivity study be per-formed for the soil spring responses using a 5% soil material damping.
The requested 5% soil damping value for SSE excitation is inconsistent with soil tests conducted for the Zimmer soils and the use of the arbitrary 5% soil damping for the soil structure interaction analysis, in ef fect ignores this test data.
In addition, the suggested 5% soil damping value is less than the 7% value recommended in Regulatory Guide 1.61 for reinforced concrete structures under SSE conditions.
It is logical to assume that a highly nonlinear material like soil would have a higher damping than the relatively linear structural reinforced concrete elements during the SSE excitation.
The 10 to 12.2% soil damping used in our earlier responses is appropriate for Zimmer soils.
A new soil spring soil structure interaction analysis for the Zimmer soil structure system was performed using the soil properties suggested by the NRC Staff.
For the soil shear modulus, values presented in Table Q130.29-3 were used.
For soil material damping a 5% damping for all layers was used.
The soil impedance functions were computed using the layered visco-elastic half-space method proposed by Luco.
The soil structure system was analyzed employing the Regulatory Guide 1.60 and 1.61 critoria and using the frequency dependent impedance function approach.
The comparison of the impedance function and the design baais North-South (NS) and East-West (EW) floor spectra at key slabs (Slabs 2, 5, 6, and 11) of the reactor-auxiliary-turbine building complex and at key locations (Joints 17, 22, and 23) of the containment building for the safe shutdown earthquake are presented in Figure Q130.29-3 (Sheets 1 through 12).
The impedance function response spectra are denoted by solid lines; the design basis spectra, which were based on the finite element method, are shown by the dash-dot lines.
The schematic details of the Zimmer plant structure model are shown in Figure Q130.28-1.
The design basis spectra are for a 1% oscillator damping, whereas the new soil spring response spectra are for a 2% oscillator damping to account for the ('fference in SSE damping values being used for Zimmer piping design (1%) and those recommended in Regulatory Guide 1.61 (2%).
It can be observed that the Zimmer design spectra envelope those obtained using the visco-elastic half-space approach in the critical frequency range (5-50 cps), except for Slabs 2 and 11 in the EW direction, where the spectra obtained by the visco-elastic half-space method exceed the design spectra by 0.0 to In view of the conservative nature of the analysis 0.079 (over)
ZIMMER SOIL DAMPING SENSITIVITY STUDY (Cont'd) assumptions and the small magnitude and limited extent of the exceedance, it can be concluded that the present Zimmer design spectra are conservative.
9 i
e 0
l l
4 7
{
. 8 l I
l
.t CALC N6.
8 11 4-4 SARGENT 4 LUNDY rneacCT u r.sca sty a
- ES3thtr.As PR8JCCT N3 4130-02 04 t1AY 81 P90R DMmg 724NH FRcQUENCY IN CP8 50.0 20.'J 10.0 5.0 2.0 10 0.5 t
t itettt t t t t t I
f t t t * *
- 20 0.,9,,,,t
,f
,,f,,f,f,,,
t,t t t,t,t
,,t,
15 0
--104 2
ZI!NER DESIGN BASIS
-.-e 10 0 SOIL SPRING 5.
b.10*;
1
~
SOIL DAMPING 0 00 g C.
I a
. 00
- .c 5 00
%~~
b:.r
~
4 00 _
5 3.00
.J.M 4
. /
D R.00
\\
E E
/ [ \\
's
@20" g S.50 f
1.E*
e 5
j
\\
f,
- 1.C0 1 0*
2 E
/
/
\\
l 3
>- C.80 3.!;
=
x 4
F A/
\\A 3
5 4
i a 0 ee t!
Alit.,iV' 4\\
l
,2. =
u 0.e.
".40 8
-c._,..
\\. N a.-..
.9,M,,.
g/-
i 0,20
,,0. *.
1 E
WIS 1.!:
i 0 10 1 1; l'
3 0 08 0.0.
2.c
' ' ' '.03' ' ' '.04
' ' '.00 1 0
- 047, G.02 0
0 0.09 0428 0.IO 0.15 0,20 0.30 0 40 0 00 0 1.J 2.0 PERI 81T IN SEC8NDS FIGUF2 Q130. 29-3 HORIZONTAL N-S RESPONSE SPECTRA COMPARISON OF FINITE ELEMENT METHOD ELF. NATION :
525'7" (SLAB 2X)
AND SOIL SPR:NG METHOD RESULTS 2-(SHEET 1 OF 12)
LOCATION:
PIACTOn, AUX, TURBINE BLDG.
SARGENT 4 LUNDY CALC N8.
8.11 4-4 rasarCr zinnen acy a
i
> Ex3INEDt3 PRSJECT H3. 4130-0Z 04 NRY 81
'25""
PROC P00R ORIGINAL FREQUE!!CY IN CPS 50 0 20 0 10 0 8.0 20 10 0.r 20.0 _,f,,,f
,f,f,,f,f,,,
,f,f,,f,f
' t,f f f,f,f,f f
f ffff f f f f f f
f ' f f
8
,,,, 1,,, _m -.
1 15.0_
~ * ---
- ZIRMER DESIGN BAS IS 10 0 i
-t l
SOIL S? RING 5%
MI i
i 8 00 SOIL DA!! PING T..
8 00 t
a i
i 5 00 l
.r '
t j
4 00 l
i
_A.
~
3 00
=
~,.
3 C 2.C0 t
//. 5k\\
3.-
5 E
,,,2 0
. t...
/
\\'.
~
= 1 00 j
g\\
E
}
N'.
l 5.:
t 0 81
/
i 2..
[l A/
A/
M 3,.
i w
g 0 80 u,,,o 1 ar illa A / V v.\\
l 0 40 f~l mM ' V ""
w_,,
. j 3'..
- -,.'/
- /, -
.,_ ;.o 0.t0_
,;h, : =
l
- I E
0.ie j
0.10 1
5 a.1:
i 0.08,,
l
[
3
~
7 0" 0.08 h
I 0.05 ' ' ' '.03'.04
' ' ' ' ' ' ' ' 3 0 :-
0 02 0
0 0.00 0 03 0 10 0 15 0 20 0 00 0 40 0 00 08010 16 20
[
.C PERIOD !!! SEC3H03 1
FIGURE Q130.29-3 HORIZONTAL E-W RESPDNSE SPECTRA COMPARISON OF FINITE ELEMENT '4ET~O3 i
ELEVATION: 525'7" (SLAB 2Y)
AND SOIL SPRING METHOD RESUuto 2
e (S!!EET 2 OF 12)
(
LOCATION:
REACTOR, AUX, TURBINE BLDG.
)'
CHLC NS.
8 11.4-4 SRRGENT 4 LUNDY PReaccT zInnEn REv o
Di31NEEAS PROJECT N8. 4130-02 1
P00R ORIGINAL FREQUENCY IN CPS 50 0 20.0 10 0 50 20 1.0 0.c f
f i
f f f f f I '
I I
f I f
I ffffII 20 0
' f.f f f I sie' I I I f f I
I I
iiigieingiga g i i. g 'e n i g i i 4 agisi 7- * *
- m *
.iiea i..
ii iaae isai a
~
~
15.C 18 C
~
ZI1MER DESIGN BASIS SOIL SPRING 5
gg
I SOIL DAMPING 3
8 00
- '3.C 8.00
- 27 g
~
r.00
" c:
4 00 40 b:
3 00 342 3
h N
~
os b 2 00, f
2.C$:
E E
r\\
\\
0 1'00 I *C
./
g
/
\\
m
' ~ ~ ~
z t,00 3
E I
.../
f
!.00
> 0 60 d
3 00 E
/
b /
\\\\
3 v
.2 0 80
'1. T.
d
/m A 4 il Al il/
hk' g
50
,. 7 g wyn
,,4 g
e...
8 0 40
~
N;
-- U
% @2.n 0.ec -
@/.00 i
0.20
1 5
0 15
_3.12
~
0d0_
3 040 0.0e 2.c-b 0 08
? ~. :
' ' .I''
' ' ' '.03' ' ' '.0 4
~
04 0.Gt 0
0 0.09 0.C3 0.10 ads 0 20 0.:0 0.40 0 40 03010 13 0.0 PERIOD IN SECONDS FIGURE Q130.29-3 L
HORIZONTAL N-S RESPONSE SPECTRA COMPARISON OF FINITE ELEMENT METHOD ELEVATION: 593'6" (SLAB 5X, JOINT 17X)
AND SOIL SPRING METHOD RESULTS l
(SHEET 3 OF 12)
- 4. LOCATION:
REACTOR BUILDING, j
CONTAINMENT l
1 1
i l
SARGENT 4 LUNDY
$ $c$*
IMMER REV O
l
'EN3INEERs PR8 JECT N3 4130-02 04 MRY 81 l
PAGE l
72,5NH l
P001 OR GlNAL FREQUENCY IN CPS l
l 50.0 10 0 10.0 6.0 2.0 10 06 I
20 0_,f,f,
,f,f,,,
9,9
,,f
,f,f,
,f
,9,9,
,9 i i,.9 9 4,9
,, i,f,,a6 3.g...-
999 9 f f f
8 9
99999 8 9
f I
i,i, i..,,
, i i
I I
I i
1 15 0[
$15.0 ZIMfER DESIGN SASIS
-.-+
~
10 0 SOIL SPRING 5%
IC*C S
PING 3 00
_3, l
l' I
l 8.00 4.00 j
5.00 30 d.00 l 4 00 1
l E
r q 5
i 3 00
. _3 0 j
Q l
.4&.
?,. ll g"*g j
i
.// \\\\
f" '
a t.cc q.,
_t.s~
2
/
k b
z 1 00 E
5
[
[
f
\\*.
3 ::.
1.
t
>- 0 80
/O TN 3 :: i 3.
E' i
d'*'EC d'..'
/
% T'1
\\liAN
't\\ h r,,,y y'3.4; g
.- (
v
'0.4C l
{ *-
k, 0 30
~
h 04: !
D<..
E l
0.20 E
h-il s
Q.15
_3 1: {
(
0.10 J3 11 {
i 3
1 0 0s 37: l 3
l O.D.
.:.=
l
' ' ' '.03'.04
'.03
'.20 04
~-
0.02 0
0 0
0.03 0.10 0.15 0 0 30 0.40 0 80 0 80 1 0 15 10 PERIOD IH CEC 8N03 l
FIGURE Q130.29-3 HORIZONTAL E-W RESPONSE SPECTRA COMPARISON OF FINITE ELEMENT METHOD ELEVATION: 593'6" (SLAB Sy, JOINT 17Y)
AND SOIL SPRING METHOD RESULTS 4
LOCATION:
REACTOR BUILDING, j
conma NMr.nr
P l
CALC NS.
8 11 4-4 SRRGENT A LUNDY PReaECr unnER REv 0
ENGINEERS PR8 JECT N8. 4130-02 04.MRY 81 PAGE 1724NH P00R ORIGINAL.
FREQUENCY IN CPS 50.0 10 0 10 0 5.0 20 10 0.5 20.0_,f,I,
,f
' f 8 f f,I,,f
,4 f
,f,f,,f,f,,,
,f,f,
,f
,f
, f f,f f f,f,f,f f,,f,
P
,f,,,,f 8
f I f e
e a
15 0
-1E.:
~'~*
ZIMIER DESIGN BASIS 10 0 SOIL SPRING 5%
~igo.:
8 00 SOIL DAMPING "O. -
e.00
. '.. ~.
5.00 4 00 5
3 00
_3. :
, \\.
/
d" 2.00 3
7' g
.:.00
/
e 150
/
\\
,1.
l x
p 2
\\
l 2
2100
- g..,
/
Y 1 00 2
i i
l 3
> 0.00 i
i J.!:
/
3 U 0.80
~
3.!*
0
// \\
A
,A # li (K I 8, _.
e,,,,
f /
Y
\\1 y
'v >[
.( ~ ~
0 40 l
%\\3 1.4:
E-. -.
L 0.30 2.::
~
0 20
' 1.;;
b 0 15
-G. Li
~
0 10 3.::
0.08 L
3
- 1. :
i
-1 i
U i
0.00 7 05
' ' .03
' l ' ' '.08 0.10' ' '
' ' ' '.15' ' ' '.i ' ' ' '.3 0
' ' '.80 1 0 ' ' ' '.5
'i"*~
O.080.00-0 0.04 0.08 0 0
0 00 0
0 40 0.80 0 1
20 PERIOD IN SECONCS FIGURE Q130.29-3 i
HORIZONTAL N-S RESPONSE SPECTRA COMPARISON OF FINITE ELEMENT METHOD ELEVATICN: 627'9" (SLAB 6X)
AND SOIL SPRING METHOD Td:SULTS 6
(SHEET 5 OF 12)
LOCATION:
REACTOR BUILDING
SRRGENT 4 LUNDY EEI Innta acy
'O Ci3!NEERS PROJECT NS. 4130-02 04 MAY 81 PROE 725NH P00R ORl8lNAL
~
FREQUcHCY IN CPS 50.0 10.0 10.0 50 1.0 10.,.,0.5
, i, s
i i FY )...iig i g a g i i i g i s i g i a.. g i a 6 g*-
200_,iii o.
i44i i
i iii 144 i iii iiis
~
~
15.0 15 0
- * -
- ZIMiER DESIGN BASIS
~
SOIL SPRING 5%
10.c l
10.C E
SOIL DAMPING 3.C3 8.00
~
3.0 8 00
-i 3 00 3.c:
1
]4C0 4 00
, -. y
~
3 00 J.C k
,I
[A
=
C 2 00
/
././
\\.1 2
_2.C3 1i s
5
. i.se o
_ i.c a
?
l
./
\\-
?
O 5
l D
\\
/
hl
\\'
i 0=
i.
- i.0:
/ / \\
p, f
Q g' ' "
j 'l'*l;
_e e
nr mn w
-C.;~
g :l j
j n,
m n
% \\ 8,. c 0..O_,.
E
@,_,. =
- 0. 0.:
- 0. e _
w.=
E a
0 15
_C.1~
0 10 2.1 g
~
0.08 3.C E
3 0.0.
3.c
''''''''''''''''''''''*1.!'
' ' ' '. 03 0.C3 0
0 04 0.C5 0.03 C.10 0 15 0.20 0.33 0.40 0 80 0.8010 15 20 l
G.01 PERIED IN SCC 8NDS FIGURE Q130.29-3 COMPARISON OF FINITE ELEMENT METHOD HORIZONTAL E-W RESPONSE SPECTRA AND SOIL SPRING METHOD RESULTS l
ELEVATION: 627'9" (SLAB 6Y)
(SHEET 6 OF 12) t 6
l LOCATION:
REACTOR BUILDING L
CRLC NS.
8 11 4-4 SRRGENT 4 LUNDY eReaEcr zinnER Rev 0
Of3tNEER3 PROJECT NS. 4130-02 04 MRY 81 PRGE P00R ORIGINAL FREQUEllCY IN CPS 50 0 20.0 10 0 6.0 20 1.0 00 20 0
.t..I
. t...
8 1 1 i,t t,t t,,I,
,t.t..t
, t, s i
,t,t,
,f,f,,,
i t.t t I ti.
.I.t.
,t a4 a
t f8 8
t a
l 15 0
_-15.0
~ * --. ZI??fER DESIGN basis 2
10 0_
SOIL SPRING 5%
IC*C g,g SOIL DAMPING
,g l
l 0 00 3 00 G.00
)'0'
- 4 00 4.C0 e
3.00
_3.'
f
/** \\
e C 2 00
- 2. C':
x
/
\\.
e U
5
[ \\
\\
O 1 50
_1. r a.
f j
. \\
z 2 1 00
./
1.C S
E
/
/
\\
\\
3 g 0 00 0.00 x-
/
\\A a-m a 0.cc 2.t tf A. \\ h a 4 d A/
'\\
l 1,.
e **"
/1 y ' Vy V
p\\
-( " ~
,f 7
0.30 q (3.00 v
i
_..____/. p y 7/
~
~
0 20_
p%0 5
0 15 3.*~
0 1C
--3 10
~
l 3
0.08 3 00 0 08
- ~'
' ' ' ' ' ' ' l ' ' ' '.16
'.i'
h 04 1C 0.02 0.03 0.04 0.08 0.08 0.10 0
0.00 0.30 0.40 0.C0 0.8010 1.5 20 PERIOD IN SEC8ND3 FIGURE Q130.29-3 HORIZONTAL N-S RESPCNSE SPECTRA COMPARISON OF FINIG ELEMENT METHOD ELEVATION: 473'5", 496'0" AND SOIL SPRING METHOD RESULTS g
(SLAB llX - BASEMAT)
(SIIEET 7 OF 12)
LOCATION:
REACTOR, AUX., TUh!. TINE BLDG
CALC N3.
8 11 4-4 SARGENT 4 LUN0'f rResECT zin.'1ER REv o
Ciothtr.R8 rR8 JECT No. 4130-02 04 MRY 81 PAGE 725NH P00R ORIGINAL FREQUENCY IN CPS 50.0 20.0 10 0 5.0 20 10 0.5 20.0_,t,t,,t
,t
,,,t
,,t
,, i,
,t,t,,,
,,t,,t
,'tttt,,,,,i,
,t,,,,?,,_.3.<.
seti ee t
e e
+
t t t t e
h 15 0 15.0
~
~
~ * - - -
- ZIMfER DESIGN BASIS 10 0-SOIL SPRING 5%
- 00 i
0 0g; SOIL DAMPING
_"3.c:
i 0 00 0.::
I l
i H
5.00 3.C :
I l
l i
i 4 00_
4.::"
3 b
3.00 J.C:
~
~
[ 2 00
- - -\\
3 2 c-~
/[
z 3
Q e 1 50 1.E:
2 sg l
2100 e
f x.
i
- t.
, 0. =
3.=
4 h
s s;;;;:
e,. d,,r' A
mc s
6 40
-w 'u-r,,
~.
i e
m.,
qg+,
0..
l 2'// L,f,/if'( / '} -'/'
2.=
O.20
- 3. ;'.
5 0 15 3 12
~.
0.10 _
3.1 02 3
{
3.;;
0 08 3.cz i
' ' ' '.03
' ' ' '.15
' ' ' ' ' ' ' ' i. ;;
I 0 08 0 01 0
0 04 0 08 0.C3 0 10 0
0 20 0 30 0.40 0.60 0.50 1.0 15 20 i
FERI83 IN SEC8NDS i
HORIZONTAL E-W RESPONSE SPECTRA FIGURE Q130.29-3 i
ELE'/ATION : 473'5", 496'0
COMPARISON OF FINITE ELEMENT METHOD g
(SLAB llY-BASEMAT)
AND SOIL SPRING METHOD RESULTs (SHEET 8 OF 12)
LOCATION:
REACTOR, AUX., TURBINE BLDG m-
s Cal.C N8.
8 11 4-4 SARGENT 4 LUNDY ra8acCr zinnta sty o
EN0!NEER8 rR8 JECT N9. 4133-02 04 MAY 81 rnot L724NH
~
P00R ORIGINAI)
^
~
FREQUENCY IN CPS 50 0 20.0 10 0 5.0 2.0 10 05 1
0 t
f I
ifttttt t t if e
'a.
20.0_,t i
.i
. f.
' 9 9 9 f f.f f
- f. 8
.f..I
. f.
i
..t.t...
ii,,k..-..
6 i gi giis 1
I
~
~
16 0 15.0 ZIldER DESIGN BASIS
~
,__,_._.6
~
~
10 0 SOIL SPRING 5%
b
.c 10 SOIL DAMPING 8 00
- *3.C 0 u
i s
i 3
E 0 00
!. 7 l
-t 5 00 3.00
-1.00 4
4.C0 b
3 3 00 3.00
./"\\
0 00 2 00 f
\\
8
=
'4 e 1:50 _
q
_1 5:
- /
g100
_,1 00
/
/
\\ \\
L
>- 0.80 i
3.30 V
l B
5 8.80 a 0.
~
/
fN \\.1 ll Al 1
4 >-
0 50 0..
g y
y y
0 40 7e E._
h e
0 30 1.0;
./,_
0.20
'. 0.;0 l
5 l
0 14
_7 1.
0.10 0 10 3
0 08 c.03
~
0.08 0.00
'l*d
'l
~
' ' ' '. 03
' '.15 0 05 r.**
0.02 0
0 04 0.08 0.00 0 10 0
0.00 0.00 0.40 0.C0 0.80 1.0 15 20 PERISD IN SEC8NDS FIGURE Q130.29-3 HORIZONTAL N-S RESPONSE SPECTRA COMPARISON OF FINITE ELEMENT METHOD ELEVATION: 543'0" (JOINT 22X)
AND SOIL SPRING METHOD RESULTS (SHEET 9 OF 12) l 10 ' LOCATION: DIOLOGICAL SHIELD
CALC HS.
8 11.4-4 SRRGENT 4 LUNDY rnestCr zinnca REv 0
EN31HtI23
. T- ' *.'
N-PROJECT N8. 4130-02 i
04 NRY 81 Pace P00R ORIGINAL I
FREQUENCY IN CPS
}
C0.0 20 0 10.0 8.0 t.0 t.0 0.5 20.d_,i,,
,f
'
- 1 9 f,',t
,,f
,t
,t,t
,t
,9 e t,t g f
f f e g
g e
i g g g g g g e e
e e
e e.,,
3 15.C 3
7157 4
ZIldER DESICN BASIS
^
10.0 SOIL SPRING 5%
-lo.:
3.00 SOIL DAMPING g
%, ~,
E 3
i
. 00 2.:
L 1
1 s.0c a...
4 00_
l i.C-4 h
I
- ~
3.ce
_.- l E
3.=
E
/
1.CC
'~
2.C0 m
s
//
\\,s s
i e 1+50
_1'50 t
\\
/
\\
/
\\
st 1.CC 2
l.0 i
b.0:-i l
\\
/
}
\\i 5
-0 3.::
5 h
W !! _ fY h
0,..
a 0.Ce 0.UC
. /
V tN T'
r' % c'l il !/W l' A\\
l uD
=
/
i O.4C
-l J.4
^~
Q L
r 0.C0 E
Yh:."-
7 0 20 w
' 1.0
{
b 0 15 l
_3. ' ;
f 0 1C t
- 1. '. :
O.03 3
J.0; 0.03
- 1. :
T
' ' ' '.C3 - 0.04
.40 0.C:
.0013''''''''M l
Q.02 0
0.C3 0 03 0 10 0.10 0 00 0.33 0 0 80 0
13 20 PER!CG Ill OECCl!DS t
FIGURE Q130 29~3 I
HORIZONTAL E-N RESPONSE SPECTRA COMPARIS "INITE ELEMENT METHOO ELEVATION: 543'0" (JOINT 22Y)
AND OI an:G METHOD RESULTS 10 (SHEET 10 OF 12) tecATION:
nIntOGIcAL cnIELo 1
ca.c no.
c.n.4-4 SRRGENT 4 LUNDY
' c.w co-rncarcT ziraca -
, D?311!: C:3
~
' '~
! RCJ7CT-NU. ~ 410~ -05 I nr -~~~~ a- ~ -
.. L L.-.
. ~~
04 IIRY 81
~'
~~'- ~ 2" " '
- ncE 724NH Ii:TCAfEl:CY !!! c?S - P00RBRIGINAI.
F E0 0 20 0 10.0 60 0.0 10 c.C
- 1.f.0'.' s '$
s 's s a
' 'I ' 's' N &lY l s Wr't n'--E n ' i n ', n~'Y!.l5$:!d:W-5$$--hi^: ;
n I
i I
i a
I E
I
$1!. "
15.0
~~-
i
. -- - 10.0 ZII!!ER DECICN us7e
~
- ~ ' - - '
COU. S21.0:C 3 :
O.00 _
SCU.' DAMPINr.
~k.
k' '"
')
~
9. ~..
.._.G.00 l
l l
1 I
e.00 4.
l l
l i
~
4.C0 t."
b b
s.cc a.:
m
/
v3
\\
-j
..'h 0
- U 2.00_
.r.
\\
2
/
A d
-1.E:
a 1 5C _
?-- --. y
- + -
\\
g 9,
/
~'
q T 1.CC l/ I
\\li
---I 5~
- 1. -
J VF 2
s
> 0.80 2.~
r-A,-
f,, -
b.
5 ss.n a 0.cc 7..
L /
F\\/ l V \\ /s. A / li/ N l
'A.
l t.
8 ****
~
y j
/
i y<V" l
y'
\\
O.40
-.r
,/
v-0.30
~
.'./.
w.: '
.N.4 t
0 20_
..f,'.1 s
a 0.ts L:
0 10 J.:
I a
0.cc d
0.C0
=*:.*
ttttI e ttI t t.tIg i
ee",
I t i e t
i _t t
tta t t t,
- e9t,
.,,t ee t
t t ;
e f e gg 0 02 0.03 0.04 0.00 0.C3 0 10 0.16 0.*0 0.:30 0.40 0.80 0.8010 1.6 20 fIIICD D! SECONDS FIGURE Q130.29-3 HORIZONTAL N-S RESPONSE SPECTRA CCMPARISON OF FINITE ELEMENT METHOD ELCVATION:
565'0" (JOINT 23X)
AND SOIL SPRING METHOD RESULTS ig (SHEET 11 OF 12)
LOCATION:
BIOLOGICAL SHIELD
CALC NS.
8.11 4-4 SARGENT 4 LUNDY PasaECT zInnEn nEv o
ENGINEER 8 PR5 JECT NS. 4130-02 04 MRY 81 PRGE FRECUENCY IN CPS 50 0 20.0 10 0 E.0 10 10 05 20 0_ i i
.f
.f,,
f,f f if fis ii f
.f.f.
.f..
.ii_....
t 1
ff f f
f f f
f f
'ffff I f f f f f
f f
i,si 3
i.
6 i 6 isi 3
~
3 15 0_
_~13.0 ZD.NER DESIGN BASIS 1
10.0
_10.0 E
SOIL SPRING 5%
-i 8 00 SOIL DAMPING
[*00 O*.!:
I
\\\\
f 0 00 5.00 L2; 3
l q:
4.00_
[
,4.
1 3
[
3 00 0.0' N
\\
=
=
2 A
l g
.00_
l 7j g
=
f i
/
\\.
3 L
e 1.G0
_1 50 I
j E
2 1.0C 1.
l 5,,c5
/
/
\\
e4
/
V 2 ;;
2,c b
g,gg a,,,c r
/
V V/Vu
%1
-C,...
~
e f /
1
.,.A
.i7.]..
0.40 E
0 00 0 0:
i l
v'-
O.20
' - ?.::
b 0 15 1.i?
2
~
t 0 10_
1 3
- o. :
=
O.00 0.07 f
0 0$
S.:-
0.05
'.30
'.5'.0 0 02 0.03 0.04 0.08 0.08 U 10 0 16 0.20 0 00 0 40 0
0.0010 1
0
}
PERICD IN SECONDS r
FIGUP2 0130.29-3 HORIZONTAL E-W RESPONSE SPECTRA COMPARISON OF FINITE ELEMENT METHO3 l
ELEVATION:
'565'0" (JOINT 23Y)
AND SOIL SPRING METHOD RESULTS g9 (SHEET 12 OF 12) j LOCATION:
BIOLOGICAL SHIELD
,