ML19347A383

From kanterella
Jump to navigation Jump to search
Chapter 2 to State Univ of Ny at Buffalo Final Hazards Summary Rept,Revision 2, Location
ML19347A383
Person / Time
Site: University of Buffalo
Issue date: 09/23/1963
From:
NEW YORK, STATE UNIV. OF, BUFFALO, NY
To:
References
NUDOCS 8104080565
Download: ML19347A383 (32)


Text

{{#Wiki_filter:.m w i WESTURN NEW YORK NUCLEAR P3EA2011 CENTER IUCORPORATED C SAFETY ANALYSIS RETURT - REVISION II September 13, 1953 ^ I. lutroduction Ihis report describes the design, location, operation, and hazards analysis of the Western New York Nuclear Research Center Inc. research reactor, and supersedes the Hazards Sumary Report dated March 3,1950, the sciendants thereto, and Hazards Sumary <= Report, nevision I, dated January 21, 1963. II. Location A. General The general location of the Uostern New Yor!c Nuclecr Research Center Inc. (WtmCC) is the southern edge of the campus of the Stece University of New York at Buffclo (SUHY/ Buffalo), which is located in the northeast corner of the City of Buffelo. To the northuest is the Township of Tonavends, northeast is Amherst, and Checktowaga lies east and southeast. The popul tion of Buffalo from the 1960 i census is 532,759 and that of the Netropolitan Buffalo area is 5 l t 1,306.957. Table I details the population of the principal towns and cities. TABLE I 1I. Population of Greater Buffalo 1960 Census City of Buffalo 532,759 Lechnuana, City of 29,564 Toncuanda, Town of 105,032 ~ Tonewenda, City 6f 21 561 Amherst 62,,837 Cheektourga 21,056 84 Xenmore ,261 ' 810408056M

C Figuro.I shows Buffalo in sciction to surrounding towns and l cities, and Figure II shows the c:aapus of the University and the ne immediate surrounding area. Buffalo is located on the eastern end of Lahe Erie and clong the Niagara niver on a gently slopin6 Planc. The country currounding t the ccapus is low and Icyc1 to the ucst and is gently rolling to w the cast end south. There are pronounced hills within 12 to 10 ulles to the couth - southcact, which rise to n height of 1000 feet above the icyc1 of Lake Erie at a point some 35 miles from Buffalo. .,= ff An escarpment of 50 to 100 feet lies east-vest 2-1/2 miles to ' ~ the cast - northeast. The ecstern and of Lahe Erie is some 3 miles il to the souttuost uhile Lahe encario lies 25 miles to the north -- I the two lakes are connected by the Niagara River. Therc are no prouinant geographical features affecting the an climate except Lehe Erie. Uinds are predominately from the south- ~ st. I,. Site ' lg The site of the Nuclear Research Center is the southwestern odge of the campus. Ffsure II indicates the location in relation t. with other buildings. Y 'the ccupus la in the triangin bounded by Bailey Avenue, running ~ almost duo north and south, Uinspear Avenue, running roughly cast and vest, and IIain Street, running northeast end southwest. The reactor site is about 500 feet due north of Winspear Avenue. At present the nearest buildings are the Chemistry building, to the left, the pouer house distinguished by the tall stack, and the gymnasium ~3 to the right, as depicted by Figuro-II. )1 2 F-

I eis ey tan su. t es esres v ....,,..;, y, . - ~ .s i-e' s s /*-- ,\\, j --{ g .,. b[ J' 3, e ...,. 3 .g ,/.- r ' )- l } ,1 l. }l 5 n r l -["a.. 3...... j, s ;, r

    • . n,.

..."g,,...........p... _66 j.,,,** .p .... +. $. . n.. 1* '-[-[IAc.. .. ;,,y^;. ,i

...l.

~. s. 1

i..

.s

v
L.,.,,h \\ i.'j.

.j'

r. ; ',

t, f - 'qi s. s t s g *,,, = ,,..t.,.. -. \\,.1

.t.c:. ;

v~,,y. - - :-~...

=

..gt. v b.- %g l_j yl )g. ~fy,..... \\ _ .,p, .,1,.?f

'd)

,6* uw. ; x.}&o. e,. ,Q

h..;

7 ss ,A;ib :

.., t Nn. ' (. -.4?'s t,,

H:.

x\\. y*g':Q :. m. y ; - - >.

-lp . e .e. ... dsv..., w --~-

'.'.e _;;;j,A:

-- 5 ~ YL 7

w. -

a,'.:p.,, ', N. j t :. ,. 't.?. k l..,. p.vg,.m.. t . p t. g.,.. L " W

c.,

.t t. -r - - ..e m .,f.c.Q,.-g[~n,. ,wr{y. y if:% : 3b, / $.Ef .5khhfIhMi ?,3 .... h 1 v q.y'.q4 ?,,d ? }. .h<'. T K \\'}q..,:'c - I w ..R..r.;; 7,;g e - e., e - u.0.& 5 }s r g y.',:],=- u,-p-Q,, <,. T, wf., gt. i l ..y. 3 e,.a.. 1c..,. .3.. - r-.

f;
..a.,-9

$.. a. w u. .. -, ~. 3 ::.e:.s. t. s-v sp,. 2.

t. c.... - g-

-imu .j '\\ >f.w-s .c w. .> v M.ne., .~3kk chl -k ~-l' j@r4Gg. %g..., %x g,.,. 1 %-.,- :s.. yh, 3,. 7 '. -i. ,..97. 1 W'e! %4 .....,. 7' y .n c.

-.-1

..y M.. -f, ; ( k'q h. 'j # e$$$$/Of-k'g.,ig.d;'.j'"f( !'. Shh 5:.. '.]" y? Y'

J S

t .s .m.

i, ;T

,, h.:: c :. m..;. - 7?"fl 7 M Y,1," ' l, \\ !J.

L ;.

l H,

s....'..~ '. %

e,o

  1. . 1 y

i p. e* < s: S: \\ s 9 y,. . -N c. ',,j g, .\\Jp g'J.y ts -3;p. O '_. m~V (~ 5 $ "M ,-T.J M t ,vg. y.....b..ap.n 1 ....e. n,a.. y, .g. i m- 'r

u. -

g...ew. .... w,.;',2..... ml. O. '. _-lt g

.: n %

w):. e t ss .0 i- ~. YN.6%WWkWI-)8.i -14 3 J . 4 4/a r... m.. 4.. = c e. xw.i J..%.. 4 g J I I r b VIGUREI 1 i p) h i ~ ~ ~ ~ '

. -.. v.. q. g.. m- ..k,, 39q,..p.t-- yp ,.,s.,.,.. .... s. f....y.c.t* cw&

i...I...-

f' ]..-t. y -.: 7 ,;n"* s

s. n

~ <,... j;..t .4 ,.g,.. y:p - a-1 . \\. e ,). - y ).- y;..,q: t 3 ~ . m.,;,,. , y y...e. rc w .c. a . c., s ..,.... y.., .a... a,.:> .t r. .,,' h. yb ;;,'i.,., , '.:, cl 1: ) ~~ '" ' ...t , ',,/ ; l.. .\\ ..i,n. . 4f ~' ;, ' h,[,fr.., l. 1 /: g g .' \\ - [I 1 ;Y. [ /. 'k/.[, ? N.h '~ I 5 D' \\ 1: 1 'h' j [' nm y . x. :\\, s ; ) s./t wi.w m- .'s. e, a. ,m .t " ', 5 i,,,* % \\f*}..)).. g. v o[tj -.N nsr. ,,. 7

4,.I.

t- .,,; L, t,... ,.r. os .r,b p s 4 ,1) s

. p,..s.. v.,... r. >.

. 1 < '.Yf. i... s-)' rl, ',. ? ?' .hk '.,1 i .. ", 'y < t, Jy, k'n. : 4g.,.....;r- % y ?. Q... J o f.. Qs.". .i ...t.... .. '\\ y A '., ',: .p., t,;j t., \\ - si a .d up: t:; s .n . s. ;i. y/ 4_ . '.f c 1. g- .t f.h.., p :,,'. - y >,.Q, s..m,. r 1 s.s. ,, )] .yfi.it'. g v... q.. v.,. s,. s _, .'!j.- ..> g . v...,. 1,, _,. r .1 . i.; } +) i

  • s

..j .t. f ;.+ i, g I.,.. t t.., ,i

  • )

y [1

p, 4
  • *;' t,.

toqt s. ..,.13l.,.fyp.N.'.u1. 9, i ,' &,4*,,.i,, q,j',jd ' %, * .p i.pg ... s 1.f..<. .j < ,.e... a : 't.. ' ' w. c e.;..n.,... .V.g.', ms 4 eo f. s J /,.'3l. rg. .. u.. T.v..pi.M;,...,eqc ? .1.W. 1 4ti).'4,;g,'5 j .gj, p t.r. %' % y:.a,....... s. , > e, .,q,; .. / .'.3 ., f.. l y rf ///.*;" *. * .. e }6,. ~. 5. 4 (l.. 4 s..p.s e r. 5 -..'. %',,,.':j. n, '@d ' % c 't s '. :.. $. 5 . i.;."9 r -}j ' f.}.'.. w ~v .\\e . +'~

5..

t.},,

  • 5 4

%.. ;.p.g ^ .I,:.\\ i. '.? e J-y 1, t ,t.,.,. '....:5 {'Q'. '.'I .. \\. s 5.;h, <j*' I '..s,.! e I 3 . := !!} u.. ..,.f 3s,. I1 _.: P..c.s. - g.- ' i .t. p%<.. l y m,.. :.. &p. I t ~ .gI...-..g.. c. .q 1 v. t l L,' ti ..m -(,..,. s.c.,.. j...t. .....o.

s..

.. M. i *.4t g

e.,t-7

). g.

n. g.'. %g.l c, %' %..

,3, s3*.... v.of 'g y'\\ . h. u,. -t t 4,)h n.)[.$ '(.' g l 1.. k n..:. .L. ' y.)'

).<.v.w. c.., ? \\..

n. s.. m. .. g .o s . ~p j .4 f. ..t.. pj. a. t n.'i s. w ' ; /ei. / g

7.,., _. 4, g

us. ss i

  • r --rw o:

,,, y "r.- ./.. , s },, 'd.6},W. 4. t .~w r~ ,+

p. ".

.,.i.. 6.._g,..N.. ,s. 2,,.'. / I i 1 .e rt in-. ,,I.. a , c. m.- ..a.~.

a. g.

i .y g.' ,,.., e. i g. ,-i . e, .k

j. 4 I. ~.
  • 3.f '.g - )d..[.

..f ... 1 }..g ' 't., l.* \\ t l c- ~,.,.... 1 N e .q q cs,.4 m o, 1,.. d...;- 6 '.. ;, p 1

\\s r 44,

n e : G .y. A e.y@&. n..%(<

  • l,g;......R> > s i,

i r,., y /,-'

1.,'.,.s7 t

s 1 .1 b 4 eM 3 ,n. j

e is h reactor is about 100 feet from the ahcuistry building, 300 a er feet frou clark Cymnasitn, 1100 feet. from Hayes Hall, the adminis-tration building, and 2000 feet from the Veterans Administration Hospital. o m, The reactor building and rcector operating procedures hrve been designed for unr.imum safety. An eccident involving the general a, public is inconceivable, as is discussed in the hazards analysis section. C. Noteorology m. Data for this section, and those on Hydrology and Scismology, were compiled with the help of Profccoor f.eginald Pegrum, chcirmen .i,,, of the Dopertment of Ccology and Geogrcphy of SUhT/ Buffalo, and his staff. Buffalo is located near the r.can posief on of the polar front. -f", Its weather is varied and changachle, characteristic of the latitude. Uide consonal swings of temperature frou hot to cold are tempered appreciably by the proximity of Ickes. Lake Erie lies to the south-west, the direction of the prevailing wind. Uind flou is somewhat high throughout the year due to this exposure. The vigorous inter-play of vam nr.d cold air masses during winter and early summer -L causes one or more wind storms. Precipitation is moderate and fairly evently distributed throughout the twelve months. The vind rose dctn of Table VII and Figures IV, V, VI, indicate ~" -5 Through the year the wind' blows froo the south-g the wind varience. west quadrant 61 per cent of the rice, including west and south winds, with a mean velocity caf 16 r.iles per hour. ~5-i

a. le= Invers!.on data are shoun on T-bic II for tio hours between I 10:00 P.II. and 1:00 A.M. This interval represents the period of greatest sechility; 1.:nce, the u::e pessimistic fro:n cn airborn hazcrds po!.nt of vicu. It may be shoun from these data thet the s se " moderate icpse rato" chosen for hazards evr.luation is certainly L pcssimistic, and that the conclus:.ons reached represent a considerabic margin of safety for " normal" conditions. _1. Tempo: atur_c : The data collected for the meteorological regime were obtained from various prepared annual meteorological sucmaries, and -= from unprepared data at the Ucather Eureau itself. Ebch information was gathered at the Buffalo Airport at elevation 693 feet. The airport is 2-1/2 miles from the campus, at the same clavation, with no intervening geographic features which might influence the data. Within a 2-1/2 mile radius of the campus there is no point lover than l1 l 580 fcot, nor higher than 720 feet; conscquently, the data can be i-assumed valid for the ccmpus and immediate vicinity. Tabic II presents data accumulated at the Buffalo Airport for the vertical temperature gradient, and Figure III represents graphically the data for typical t.onths. The data were collected l from September,1939, to July,1940, and January,1941, to December, '~ a= j 1943. Observation were made between 10:00 P.U. and 1:00 A.M., except i T== l prior to Hovember, 1939, when observations were taken at 3:00 A.M. These data, therefore, represent the most stabic conditions to be expected; hence, the most pessimistic from an airborne hazards point 4== of vicu. i.,- l

Tabic III preacnto data accuculated at the Euffalo Airport _ l 4uring the period 1921 - 1950, representing the avernac daily variation of temperature monthly for the period. Tabic IV represents the diurnal regime by hourly averages of the temperature for cach conth. The data were accuculated during the period 1890 - 1930

== M ' em I' ] l< i ll 5 il ll i lt ! mm Llll G. l t s S m.

as I.. AVERAGE TEMPERATURE OF 'l -4 14 32 50 68 l .m 2.0 JANUARY APRIL _,, OCTCBER JULY 1.2 } I \\ i -m i i t i 1 1 \\ ~ 1,3 _i o,9 \\ ~ \\ \\ 1 \\ \\, '\\ ~ i 1 i\\ s i 1.0 \\ g 0.6 ~ \\ 1 l g \\ \\ \\ \\ O.5 lb ---- - - s l l I 0.3 f I l i / h 1 ) 6 l -en 1 I l f . I l! e 4 i j i i! li 0'

  • I O

20 -10 0 10 20 AVERACE TEMPERATURE #C -ke g SEASCIIAL VARIATION OF IAPSE RATE g AVERAGE TEMPERATURES: 1890-1930 !4 f naURE 111 !.aus l.g '3

a TA3*2 IV !!aurly Teaperature Haans (87) Honthly for the period 1000 - 1930 A. !!. 1 2 3 4 5 6 7 8 ,L 10 11 Noon Jan 24.0 24.6 24.3 24.2 24.0 23.0 23.0 23.0 24.0 24.6 25.4 26.1 Feb 22.0 22.7 22.4 22.1 21.0 21.0 21.9 22.3 23.3 23.3 24.2 25.1 Har 31.0 30.7 30.4 30.1 29.9 29.7 29.6 30.1 30.9 32.0 33.1 34.0 Apr 40.4 40.1 39.7 39.3 39.0 30.0 39.4 40.5 41.0 42.0 43.9 44.0 llay 51.4 50.0 50.4 49.9 49.4 49.6 50.6 51.0 53.1 54.7. 55.4 56.2 Jun 61.6 61.0 60.5 60.0 59.6 60.0 61.2 62.6 63.0 64.0 65.0 66.0 Jul 67.0 66.4 65.0 65.4 65.0 65.3 66.5 60,1 69.5 70.6 71.7 72.6 Aus 56.6 65.0 64.0 64.0 63.5 63.4 64.5 66.1 67.9 69.4 70.7 71.7 Sep 60.5 60.0 59.5 59.1 50.7 50.5 50.9 60.3 62.2 63.7 65.1 66.1 Oct 50.1 49.7 49.3 49.0 40.7 40.4 40.5 49.3 50.7 52.1 63.6 54.6 Nov 39.1 30.0 30.5 30.3 30.1 30.0 37.9 30.2 30.7 39.6 40.7 41.4 Dec 28.7 28.7 20.6 20.4 20.3 20.3 20.2 20.3 20.6 29.1 30.0 30.6 ~ P. 11 N 1 2 _3 4 5 6 7 8 9 10 11 Mid't Jan 26.6 27.0 27.2 27 26.0 26.3 26.0 25.9 25.5 25.3 25.0 24.0 Feb 25.8 26.1 26.5 26.5 26.1 25.4 24.9 24.6 24.1 23.7 23.7 23.1 Mar 34.7 35.1 35.5 35.5 35.1 34.4 33.6 33.3 32.6 32.2 31.9 31.6 Apr 45.5 45.9 46.1 46.0 45.6 44.9 43.9 43.4 42.6 42.1 41.7 41.2 May 57.0 57.4 57.7 57.7 57.6 56.6 55.8 55.0 54.1 53.6 53.0 52.4 Jun 67.5 67.9 68.4 60.6 60.4 67.0 67.0 65.9 64.7 64.0 63.1 62.5 Jul 73.3 74.0 74.4 74.4 74.2 73.6 72.6 71.6 70.4 69.5 68.5 67.0 Aug 72.4 73.2 73.6 73.6 73.3 72.5 71.3 70.1 68.9 67.9 67.0 66.3 sep 67.0 67.6 67.9 67.9 67.4 66.2 64.8 63.9 62.7 62.0 61.2 60.7 1 Oct 55.4 56.0 56.2 56.1 55.3 54.2 53.2 *52.6 51.7 51.3 51.0 50.4 Nov 42.0 42.4 42.6 42.5 41.0 41.3 40.8 40.5 39.9 39.5 39.3 39.0 Dec 31.0 31.4 31.5 31.3 30.8 30.4 30.1 30.0 29.6 29.3 29.1 28.8 O e g .,0 1

,2 IJinds : - - The vind regice in Buffalo is one'.of modcrate velocity predouinantly.frou the southwest. The wind is most frequently from i the south and southeast when precipitation occurs. IIithin the first few hundred feet from the surface, the wind direction at times varies ac much as 90 to 100 degrees frou the surface wind direction. In general, houcvor, the vind directions of the louer layers of air above the surface aro wit!'in 45 degrees of the direction of the sur-face wind. Though the wind circulation is basically souchuest, local geographical factures change this pattern socawhat. The local land and sea breezes previously mentioned are of considerabin influence. Because the prevailin; wind fron Buffalo is southwest, the trajectory is over Lake Erie. This path of wind over the water is less affected by friction than.if a land route were folloued. Furthermore, with . ~., lover relief of the laka, the wind is funneled or held in the lake path enroute, and the velocity is thereby built up by the time the an uind reaches Buffalo. In fact, velocities are some 20 to 30 per cent l higher in Buffalo than only a few uiles either north or south of tbn city. Table V presento data on the mean hourly wiad velocity. accumulatM from 1897 to 1930, monthly for that period. Table VI -s= j stamerizes the mean vind velocity by anths for the 54-year period up _5 to 1949 and the prevailing direction for the 79-year period up to 1949. Tchle VII presents the vind varianco in velocity and direction in .torms of the avera6e per cent of time the wind blows frou any given L compass point and the mean velocity of the wind, on a monthly basis, . -e.

from data accumulated during the period 101C to 1947. Figures IV, V, and VI graphically illustrate tha wind conditions in the Duffalo area. Extremes in wind velocity are relatively rare in Buffalo. Tablo VIII reflects the per cent frequency of colus uhen the vind velocity is Icss thaa one mile por hour from the period October,1949, to September, 1954. Table IX prescats the record of extremely high vind velocitics over the past 44 years. The speed, wind direction, and year in which it uns recorded arc. indicated. The average number of days monthly uith high wind velocity, for the period 1921 - 1947, is presented in Tchle X. During tha winter, and to a lesser extent 3 the spring, there is a high degros of cloudiness and a low percentage ] of sunshine. Nuncrous storms pass over the area, and the polar front J* swings over the arca periodically during this time. During the suumer ,g g and in the early fall a largo percentage of clear and partly cloudy as weather prevails in the Buffalo area. Ihe lake tends to moderate -6 conditions and prevent the force. tion of may thunderstorms that are found in the interior during the warmer vaather in mid-afternoon. (Table XI presents the mean number of days monthly, from sunrise to sunset, of clear, partly cloudy, and cloudy weather, accumulated over an SS-year period.) Table XII reflects the relative amount of possible sunshino received monthly, and the mean shy cover during the month. Tbc value 10 to choscu to indicato complete cloud cover, O a cicar sky. As has been described previously, stagnant conditions I conductivo to heavy fog, smoke, haze or dust conditions are relatively .raife. Table XIII presents the mean number of days per month when such

4 6.

-eenditions prevailed during the period 1906 to 1950 1 -11 he

e -

/-~~. e, , s. / y /..- /,... s., l

7. - r.

// f,. gr^ ,i j = r / - -'xo y r w.,- e _ -. _: <. v /a.

!L--

..x,,.,a ,\\ !L - -s 7 :-ff-i Q.I j g g \\ /,....p ~ .~ l z. f,. c. a i N. e f ' fi., [l ,.f'.' ,' l ^ q./ / /., ~ ,/ / / u ~ m.. JAWARY FEREARY n --u. w. .....% ~. ,a .J- ,/,. - ~. ,l ,[ ~ [ N s c / ', & 9-N\\\\ i i s s p,. t .a \\. \\ \\ i

q-.!-

.c s .N..'. 1,.I. /,_C )' ** I t -.... -.\\. '\\ r .4 t \\ \\. r.b. 3.w......> ; i. ;\\ 1 .-.=... s \\ .'A t - \\. ,,f. M ll t _ /f' s.& ',

  • _,.l ?

j~- ,,,f*,. 'i.l : l,1 \\\\_ \\ A.. \\. N.. -- 's '.,,/ %. . f. j j -4 \\ / / / f '/ \\,b .. /, / ,s'N's.%....,. /,/ N .s - l ..--,,/ N. ,#~ 1.'l mm MARCE APRIL i l I -esl \\ \\ L! } } i,.f 5 MPE OR 5% WIM ROSE '-i>:. dl i WIND DIRECTICW SEDWIE DIRECTION AND VEICCITY l AFEMCE ENTHIY VANES 'e WIND VELOCITY 1918 - 1947 AT 700 FT. i i. FIGU M IV se l o

l: l d s s 3 \\ s. i s -~ . \\yy u r /. s ', ", w,p g \\. ,6 x. .m ..,t 1 , /..

s...

t .s .. = 4::.'=.-, , e.; _ ".. h. \\ (- /,' %g.: i \\,, .,l!lN :-- .. ^ t

. y l%

.I- \\ /s...1. % l \\. oi ws /p.. '9 6 1, .,/,/s. s / . j,/ ~ / /. ~ ~1 \\ 'y ,/ \\ / /,',.%.'.~~... ,/ N ~., g. .[- 'N s x A ,,x.. s .s MAY JUNE \\ .. -. ~., N., . + / / /. .s e ,./

  • s

..\\s / 6% \\. s y ..m. / ,r k / , f- \\ s j ,f $y.-;o.',l.. \\ \\. I l 'j.;s * \\ d _. :. %~..=.% / ;..g.. ; ,i -.4.:.. -. x : -.q } l .,y y 7.. g... /s'f. 0(lj. ,.g., \\ ? Y'.. \\ ~ / !-l l y, / i >P '... 'l ~ / / \\ //- x,' i,/'. w w / ',/ / /

r..

y ,. / \\ ......e .lF JULY AUCUST 1 4 WIND ROSE i <.. 5 HPH OR 5% r -t t l SHOWING DIRECTION AND VEIOCITY , WIND DIRECTION AVERAGE M)RIHI.Y VAUJES 1918 - 1947 AT 700 FT. ^ } e WIND VEIACIT'l FIGURE V wa ~~ I

=1 e r 79 . ~,,

  • ====.., '..

r- , g**1

==.... ,. * * - =.. l 's 'N - - ~.. - ~ - / /[' ',s' \\ \\ / [ s\\ A. N,. l t u s ( p. 9 i e Ely/ N 4 e g g ,/ i q g i j f ,j w .. =.a.S I ~

.t i

/ / W ' l/ l ! l y s l, .,'.[.[N.. ~a .. \\,. N. ' /,- i -g.' ./ .l .~., y ~,s s s m A ..m= SEPIEMBER OCTOBER l s. .. ~ ~ ' ~ ' f l .. -~ m, N, / s ,- ^s N \\s\\ /l/ N. s. // / \\ s e / T g\\3 . l' . l ' I R,g?)y'(', \\, ) \\ .! !. !.Qdpf% \\ h y \\ l ) i t' l me-; y 4 -n: i \\, .f,' ~ t / / \\ '(,,/ \\ \\./ '1 8 / ,3 / \\ \\ W. s ,s,., ~, 's ?. % ~c ' ~..... m ~ ~ - ~. ./ --d NOVEMBER DECEMBER .} l 5 MPH OR 5% WIND ROSE ]

==-_ Z.'..~.O WIND DIRECTION SHOWING DIRECTION AND VEI4 CITY AVERAGE M)NTHLY VALUES WIND VEIACITY 1918 - 1947 AT 700 Ft. w 9

    • -a FIGURE VI i

a g y-w

= i. I, -m TAM.E V IIcan Hourly Uind Velocity (I;iles per hour) m !!onthly for the period IG97 - 1930 'A. M. 1 2 3 4 5 6 7 0 9 10 11 IIoon Jan 17.3 17.2 17.1 17.1 17.0 16.9 17.1 16.9 17.1 17.2 17.7 17.0 Feb 16,0 15.9 10.7 15.7 15. 7 15.6 15.7 15.0 15.9 16.2 16.6 16.9 IIar 14.9 14.9 15.0 14.9 14.0 14.G 15.0 15.0 15.4 15.7 16.2 16.5 Apr 13.6 13.6 13.6 13.7 13.7 13.7 13.7 13.0 14.3 14.7 15.0 15.4 I lby 12.2 12.3 12.2 12.1 12.0 12.0 12.0 12.3 12.6 13.1 13.7 13.8 Jun 11.4 11.6 11.5 11.5 11.5 11.5 11.5 11.6 12.1 12.6 13.1 13.4 Jul 11.0 10.9 10.0 10.9 10.9 10.7 10.5 10.9 11.4 11.9 12.6 13.2 i Aug 10.8 10.8 10.0 10.7 10.6 10.5 10.4 10.6 10.9 11.4 12.0 12.5 Sep 12.1 12.1 12.1 l'. 0 11.9 11.0 11.C 11.9 12.0 12.6 13.1 13.3 Oct 13.3 13.3 13.3 13.4 13.3 13.3 13.3 13.6 13.7 14.1 14.5 14.6 Nov 16.5 16.5 16.3 16.2 16.1 16.0 16. 0 16.1 16.3 16.6 16.9 17.2 Dec 17.0 16.9 16.9 16.9 17.1 16.9 17.0 17.0 17.1 17.2 17.6 17.8 me P. 1-i. 1 2 3 4 5 6 7 0 9 10 11 Itid' t Jan 10.5 18.6 10.6 10.3 10.1 17.7 17.0 17.0 17.8 17.6 17.5 17.2 Feb 17.6 17.0 17.9 17.6 17.3 16.0 16.5 16.5 16.4 16.3 16. 1 16.0 1 thr 17.2 17.3 17.5 17.3 17.1 16.4 15.? 15.6 15.3 15.1 15. 1 14.9 Apr 16.0 16.2. 16.1 16.0 15.6 -15.1 14.6 14.0 13.9 13.6 13.7 13.6 liay 14.6 14.7 14.9 14.8 14.5 14.0 13.5 12.9 12.6 12.6 12.5 12.2 Jun 13.9 14.1 14.1 13.3 13.5 13.1 12.7 12.0 11.6 11.7 11.7 11.4 i Jul 13.9 14.2 14.2 13.9 13.7 13.1 12.3 11.6 11.3 11.2 11.1 10.8 Aug 13.2 13.4 13.6 13.6 13.3 12.C 12.0 11.4 11.2 11.2 11,1 10.9 ';. g. 14.0 14.'l 14.:: 14.2 l 't. it l't ? 12,7 12.7 12.7 I?.6 1 ?. e.

12. /-

'l Oct 15..l 1.'. 4 15.4 l'. 2 14.7 14.2 14.2 14.4 14.3 14.1 L3.? 13.u u 11ov 17.G 17.9 17.9 17.6 17.1 16.8 16.0 16.9 16.0 16.0 16.0 16.7 Y Dec 10.5 10.5 10.4 10.0 17.6 17.4 17.5 17.5 17.5 17.3 17.3 17.0 W e -w .,,e -+

TABLE VI l Mean Wind Velocity and Prevciling Direction Month 1!een Velocity (mph) Prevniling Direction .t ig Jan 17.5 U g Feb 16.5 SU = !!ar 15.8 SU 'I Apr 14.6 SU llay 13.1 SU Jun 12.3 SU .l e Jul 11.9 SU Aug 11.5 SU Sep 12.7 SU Oct 14.1 SU Nov 16.4 W Dec 17.0 U 14.5 Sif ,I l* T/.3LE VII Mann Monthly Uind Variance Velocity and Direction i Uind Jcn Feb lbr Apr Mey Jun Jul Aun Sep Oct Nov Dec Ann't I." N per cent of time 4 4 5 5 4 5 5 7 7 5 4 4 4.9 hourly velocity 10 11 11 10 10 10 9 9 10 10 10 10 10.0 N2 per cent of time 6 7 7 9 9 9 8 9 9 9 7 5 7.9 }* hourly velocity 13 13 13 13 12 11 10 11 10 11 11 11 11.6 E per cent of time 11 10 11 12 10 8' O 9 10 8 9 10 9.7 as - hourly velocity 13 13 14 15 IL 11 10 10 11 11 12 12 11.9 SE per cent of time 5 5 6 6 6 5 5 6 7 7 7 7 6.0 hourly velocity 10 10 11 11 10 10 0 9 9 10 10 9 9.6 i'j S pee cent of tiine It 10 10 10 10 12 13 16 17 16 13 12 12.6 hourly velocity 14 13 14 14 11 11 10 10 12 13 15 13 12.4 5 h SW per cent of tima 25 26 20 31 37 37 36 29 25 23 22 20 28.2 hourly velocity 23 20 20 17 15 14 -14 14 16 18 22 22 17.9 9 ) H per cent of time 29 27 21 17 16 16 15 14 14 19 25 30 20.3 hourly velocity 22 20 la 16 14 13 13 12 15 la 20 21 16.9 [* NU per cent of time 9 11 12 10 8 8 10 10 11 13 13 12 10.5 hourly velocity 14 14 15 14 12 12 12 11 12 13 14 14 12.9 Prevailing wind dir. W W SU SW SU SW SW SW SW SU W W SU

..g TAti2 VIII Frequency of Calms (Uinds less than 1 mph) = Janunty < 1% Februcry < 1% ~ Herch < 1% t April < 1% ley < 1% ~* June < 1% i July < 1% August < 1% Septencer < 1% October < 1% Hovember < 1% December < 1% Annual < 1% TABLE IX I, m-Haximuu Uind Velocities i Month Speed Direction Year Recorded w I Jan 91 SU 1950 and on earlier dates, i Feb 73 SU 1936 months or years liar 84 SU 1943 f Apr 73 SW 1929 lby 63 SU 1950 Jun 73 U 1924 i Jul 62 SU 1927 and on earlier deces, Aug 60 U 1923 months or years Sep 63 SU 1941- !l Oct 71 U 1919 Nov 76 SU 1914 Dec G5 SU 1921 i I n g 11 \\. ?. h. f j '

L T!BIR X Average Huuber of Dcys tiith High Uind Vclocity Jan M Ihr Apr Ihv Jun Jul Aun Sco Oct Nov Dec Annuel E 20 mph or above 26 22 24 22 20 13 17 15 17 21 22 24 240 4' 25 mph or chove 20 17 10 15 13 11 10 9 10 15 18 19 175 30 nph or above 15 12 11 9 7 6 5 4 6 10 12 14 111 g

35. uph or above 10 7

7 5 3 3 2 2 3 6 8 9 65 40 uph or chove 7 4 4 3 2 2 1 1 2 4 5 7 42 TAB E XI Ucen IIonthly Cloud Cover Dcyc Cicar Pertly Cloudy Cloudy = Jan 2 0 21 Feb 3 9 16 l Ucr 5 11 15 I,pr 7 10 13 1:ay 3 12 11 Jun G 14 8 Jul 10 14 7 Aug 9 14 3 Sep 9 12 9 Oct 7 10 14 Nov 3 0 19 Dec 1 C 22 Annunt 5 130 163 TABLE XII us Reictive Abundance of Sunshine and Cloud Cover 1 % of Possi.ble Sunshine Hoan Cover

  • j Jan 31 0.1 Feb 41 7.5 2hr 49
7. 0 Ay; 52 6.5 lby 60 6.1 Jun 68 5.5 l

Jul 70 5.2 l Au; 66 5.4 t l Sen 60 5.6 l Oct 50 6.3 Nov 32 7.7 Dec 25 0.2 Annuci 53 6.6 l

  • Sunriso to sunset; 10 equals complete cover, 0 equcis a cicar sky.

l -1c-l1

TABLE XIII !!eca Nuaber of Days of Fog, Suoka, Hazo, etc. '8 i 1:eavy Fog, Snohe, Linht Fog Duct, Sandctoras. Haze J..a 4 1 Feb 4 1 j Ihr C 2 1 Apr 4 2 y,c.; 4 2 Jun 3 1 l Jul 2 <1 Aug 1 <1 Sep 3 1 Oct 4 1 '3 g Nov 4 1 ( Dec 4 1 Annual 13 k 1 ,L ,t ,.'t t 4 l i!l .; E I 4 I

= 1 I-3. Ic ccipitation m The norac1 totcl precipitction by months for the period 1921 - 1950, cad the n.v.imum conthly, ain:'.uma monthly, and acximum, = in a 24-hour period, recorded for the pcst G5 years is precented in Tchle XIV. Table XV indicctes the meen neuber of days ccch conth with :: rector than.01 inches precipitatio, for the scac period, Tchle XVI the greatest intensity of precipitation during the period 1G90 - 1947. For snou, slect, and heil, Tchle XVII presents the monthly ocen total for a 71-yecr period, the u:ximuu conthly total for a 72-year period, and the ca::icum in 24 hours for a 73-year period. I Tchle r/III indicctes the ccan number of days conthly uith greater than one inch of snou, slect, end hcil for a 71-yeer period. Table '~~ XIX presents dcta on the total and cycrc a number of dcys of significant snoufcil cnd the number of days of significent seasonal snoufc11 for the period 1G93 - 1945. Tcbic XX presents the relative huuidity monthly for various times of day. The dcta vere acceculated over a 16-yec: period. The timo recorded uns Ecstern Stenderd Time. Tcble XX: presents the monthly variance of bcronceric pressure, reduced and corrected to the old city clovation of 76G feet, for the years 1G71 - 1950. Severc storms crc of rcther rare occurrence in the Buffalo area. Hail storms lI p hit the oren nt a V:tto of one evecy oLl'er year or 4o. Ilind stonas l

  • occur in vinter especially, but usuelly are not of severe ncture.

Though the highest vclocitics of vind have reached 91 aph es of m l January 1950, no hurricana or cornedo has ever been recorded in Buffalo. Uccvy snoufalls are found in vinter, et rather infrequent intervals, end heavy rainfalls occur in succer at rather infrequent intervals.

r i en 1 TABLE XIV thathly Variance of Precipitation ,u (inches) 1 Noman Mc:imum IEnimum Hax. in Total ibnthly Year Monthly Year 24 hours Year .i Jan 2.70 6.41 1910 0.09 1921 2.02 1896 Feb 2.59 5.74 1910 - 0.46 1877 2.31' 1954 Mar 2.72 7.03 1936 0.60 1910 2.66 1936 l Apr 2.55 5.02 1929 0.59 1915 1.94 1903 i= }ky 2.47 7.35 1092 0.53 1877 2.15 1894 Jun 2.70 9.67 1920 0.11 1955 3.20 1005 Jul 2.43 0.29 1097 0.15 1933 3.56 1896 Aug 2.54 10.63 1005 0.05 1876 4.20 1893 Sep 3.01 7.44 1870 0.31 1097 2.36 1875 Oct 2.49 9.13 1954 0.00 1924 3.49 1945 l" Nov 3.09 6.71 1927 0.51 1904 2.02 1920 Dec 2.92 0.55 1070 0.69 1943 2.53 1070 Annual U M AugM 0.05 AugIE W U Aug IO9f i: I= BER,JY, Mean h r of Days with > 0.01 Inches Precipitation I Jan 19 Feb 17 g Har 16 Apr 13 i May 13 I= Jun 11 Jul 10 Aug 9 +I i l. Sep 11 Oct 12 I, Nov 15 Dec 18 m l,_ I. 21 e

Greatest Intensity of Precipitation -b (Inches) 1890 - 1947 Jan Feb Mar Apr Mcy Jun Jul Aug Sep Oct Nov Dec Annual 5 min ---- ---- 0.82 0.34 0.36 0.45 0.48 0.55 0.38 0.36 0.24 ---- 0.82 10 min ---- ---- 0.88 0.35 0.57 0.60 0.78 0.73 0.57 0.43 0.29 ---- 0.88 15 min ---- ---- 0.83 0.37 0.87 0.90 0.87 0.96 0.67 0.48 0.32 ---- 0.96 30 min ---- ---- 0.88 0.46 1.16 0.90 1.28 1.34 0.92 0.82 0.45 ---- 1.34 I hr


---- 0.88 0.55 1.37 1.70 2.22 1.73 1.53 0.83 0.59 ----

2.22 g 2 hrs ---- ---- 0.88 0.74 1.40 1.70 2.40 2.29 1.60 0.85 0.69 ---- 2.40 .] 24 hrs 2.02 2.19 2.62 1.94 2.15 3.28 3.56 4.28 2.36 3.49 2.82 2.53 4.28 MN Monthly vari' ce of Snow, Emil and Sleet (Insbes) Maan Maximum Mszimum

gggg1, M

Jgg in 24 hrs. Year 1 Jan 18.9 50.6 1945 17.4 1902 Feb 16.8 43.7 1910 16.1 1910 Mar 10.5 30.5 1936 19.0 1936 Apr 3.0 15.7 1885 8.9 1894 Hay 0.2 5.2 1909 5.2 1909 Jun T T 1953+ T 1953+ Jul T -T 1954+ T 1954+ Aug T T 1954 T 1954 Sep T T 1954+ T. 1954+ Oct 0.4 6.0 1909 6.0 1909 3 Nov 7.5 28.6 1949 19.9 1955 Dec 17.5 51.1 1945 24.3 1945 Annual 74.8 51.1 Dec 1945 '24.3 Dee 1945 -b + Also om earlier dates, months. or years. --b T Traos l 3 =22

m-I TABL3 XVIII Maan Nuaker of Days with > 1.0 Inches Snow, Sleet and Bail 'l Jan 6 Feb 5 -{ Har 3 Apr 1 My j" An 0 I. Jul 0 kg 0

== Sep 0 .:lE Oct I Nov 2 ~. Dec 5 Annum 1 22

  • Less than ons-half.

I-1 '~he M + ge e lg l i. .g i -1.- i 'l. 4 3

TABLE XIX J Total and herage Number of Days of Snow 1893 - 1945 g m gc,t, Nov

ggc, ica

{cb, g gr, g Seasonal t c r l Snotifall: Three inches or more Totals 3 32 95 91 89 41 16 1 368 herage 1 2 2 2 1 7 Snowfall: Six inches or'more Totals 1 0 34 19 22 10 3 0 97 Average 1 O 2 Snotifall: Ten inches or more Totals 0 2 11 7 4 2 0 0 26 herage 0 O O Snow Depth: (Snow, Sleet and Ice on Ground 7:30 P.E ) Three inches er more J Totals 2 40 450 709 004 288 17 0 2318 m herage 1 0 13 15 6 O 44 Snow Depth: (Snow, Sleet and Ice on Ground 7:30 P.E ) f Six inches or more Totals 0 9 224 429 491 136 7 0 1296 herage 0 4 8 9 3 O 24

-I snow Depths (Snow Sleet and Ice on Ground 7
30 P.E )

Twelve inches or more Totals 0 1 71 135 165 42 1 0 4 15 heraga 0 1 3 3 1 O O Snow Depths (Snow, Sleet and Ice on Ground 7:30 P.E ) Eighteem imobes or nors Totals 0 0 20 59 59 10 0 0 156 herese 0 0 1 1 0 0 3 Saoyllanthi (Snow, Sleet and Zee'on Ground 7:30 P.E) ~* ~J Twenty.four inehes or more g Totals 0 0 3 26 21 1 'O 0 51 herage 0 0 0 0 1 24 ~ 9*

r ~ TABT2 XX 3 .) Relative Humidity n (Per Cent) 1:30 A.!!. 7:30 A.1I. 1;30 P.M. 7:30 P.M. Jan 78 79 72 78 Feb 79 80 69 76 Mar 78 79 65 74 Apr 77 76' 58 67 May 80 77 56 67 Jun 83 77 56 65 Jul 82 78 53 63 = Aug 82 82 53 66 1 Sep 82 82 56 72 Oct 80 82 58 76 Nov 77 80 66 77 Dec 78 79 71 77 ' Annual 80 79 61 71 1 TABLE XXI Barometric Pressure (Inches of Hercury) 1 Meen_

gghgg,

!awest Jan 29.200 31.03 28.74 7 ~Feb 29.187 31.00 28.83 lE Har 29.152 31.04 28.51 ] Apr. 29.156 30.71 28.99 l--% Nay 29.142 30.62 28,93 Jun 29.143 30.55 29.29 Jul 29.154 30.53 29.29 Q Aug 29.185 30.49 29.45 Sep 29.232 30.70 29.37 Oct 29.219 30.74 28.90 Nov 29.197 30.96 28.77 i Dec 29.193 31.00 28.99 Annual 29.179 31.04 28.51 1 1 2,. 1

, t

w D.

Hydrolony 1. General: The campus is located on the extreme edge of the Onondaga Cuesta which follows a NE - SW course in the imediate vicinity. Here the cuesta faces northwest and stands above the land in that direction by some 30 feet. This-change in elevation forms a " steep" slope to the northwest of approximately 70 feet in 1/2 mile (2.7 per cent grade). The southeastern part of the campus is located on the dip slope of the cuesta. As modified by glacial deposits, this slope in the vicinity of the; reactor site amounts to approximately 10 feet in 1/2 mile in a southerly direction. Tt a general ages is extremely flat, marked only by the above-mentioned Gwndaga Cuesta. As a consequence, streams are slow flowing and widely spaced. 3111cott Creek flows north over the cuesta at I:1111amsville some four miles east of the caspus. A small un-named ~== s tributary to Ellicott Creek has its headwaters approximately two miles north of the campus. No other streams are close. 2 Geolony: The campus is covered with dense glacial clay overburden, generally 10 to 20 feet thick. Such boulder clay is general over the we entire Buffalo Area. To the north, the bed of glacial Loko Tonawanda is surfaced by varied clays and silty sands, with some pent and mari. The bed rock of the area consists of Silurian and Hiddle Devonian marine shales, dolomites, and limestones. The structure is very simple, there being a general southerly drop of apper-imately 50 ft/ mile, (1/2'). The reeks show rather well a joint system 1 -s= -m l k

1. consisting of tuo joint sets intersecting at about 90'. In the campus - w area these tuo sets are arranged north-south, east-west. Uhcre the --he overburden vill allou entrance, unter moves readily clong the joints, . 15 presumably reaching the surface along the scarp face of the cuesta. ~w The uppermost formations and members are shotm on the campus profile (Figure VII). These rocks are underlain by a similcr marine series of Ordovician and Cambrian age to a depth of some 3,000 feet where they rest on pre-Cambrian. On the campus the overburden lies on a well developed and markedly level glacial pavement developed on the strong dense Onondaga limestone. The transition from the overburden to the Onondsga is not at all gradational, but is extremely sharp. Figure VIII represents data from core drillings on the campus. 3. Soil Characteristics; j% The thickness of the overburden from the bedrock to the surface averages about 15 feet. The soil proper occupies about 13 inches, while the subsoil is made up of dense boulder clay that extends uniformly down to the bedrock. a Under average moisture conditions, the soil to a depth of ..u 3 inches consists of moderately compacted, brownish-gray, heavy silty clay loam. Beneath is a 5-inch stratum of compact dull yellowish-brown silty clay containing a considerable amount of fine pebbles.T This layer is underlain by dull brown plastic, very heavily compacted, 1 l% silty clay that contains some crystalline pebbles throughout. This boulder clay material esteeds deum to the bedrock without any signifi-r. cant ch.nges. l ~

=, consisting of tuo joint sets intersecting et about 90*. In the cacgus area these tuo seco are arranced north-south, east-west. Uhcre the overburden will allow entrance, uater moves readily clong the joints, presumably reaching the surface along the scarp face of the cuesta. The upperuost formations and members are shown on the campus profile (Figure VII). These rocks are underlain by a similar marine series of Ordovician and Cambrian age to a depth of some 3,000 feet where they rest on pre-Cambrian. On the campus the overburden lies on a well developed and markedly level glacial pavement developed on the strong dense Onondaga 1, limestone. The transition from the overburden to the Onondaga is not at all gradational, but is extremely sharp. Figure VIII rept wants j" data from core drillings on the campus. 3. Soil Characteristics: l1 The thickness of the overburden from the bedrock to the surface averages about 15 feet. The soil proper occupies about 13 inches, while the subscil is made up of dense boulder clay that extends i "" uniformly dom to the bedrock. Under average moisture conditions, the soil to a depth of O inches consists of moderately compacted, brovaish-gray, heavy silty 1 clay loan. 18eneath is a 5-inch stratum of compact dull yellowish-brown silty clay containing a considerable amount of fine pebbles. This layer is underlain by dull brown plastic, very heavily compacted, silty clay that contains same crystalline pebbles throughout. This bmider clay material esteeds down to the bedrock without any signifi- ..at.hsag. -27 -a. l.. ~~ m t

~ . _c immi imme ramm s'amm s ame insin g ame imme raums asus runs siumi tulin reuim iums inds sans simiu imms - I i t ~ 720' i I. I .I I I rN. CAMPUS LIMir WINSPEA AVE. g S. CAMPUS L T g j 690' I -=_ I I I ~ M1\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\ MN I O Y~ - } &~ N ///lll/lNlllllllll//// 460' 8 agggNgNNggg///////////////////////////////////////Yn'l!/d////- N g g g g g g N g g g Ny g g Nxy 2 d s///// exxwxx///////7/////////// f////////////////////////////////////////////Av//////-W -- r, ~~ xN m xxx w w/xxx w x 3 j -Y///NAMwxwxwxxxxxsxxws 4 s //////////// W M P2it'FA'P2(/g(f:,* = msm ~ 570' - OVERBURDEN j NEDROW MEMBER ONONDAGA LIMESTONE L2 EDGECLIFF MEMBER VERTICAL SCALE.......F4]=30' coBLESKILL DOLOMITE 3 W LLIAMSVILLE MEMBER HORIZONTAL SCALE...Y4 5300' h4s SCu=AD^ asaaea n aa ' & m m _. a x BERTIE. DOLOMITE (16 FALKIRK MEMBER 7 OATKA MEMBER SALINA SHALE 8 SANARGUA MEMBER N.-S. PROFILE THROUGH NUCLEAR REACTOR SITE

t ,g !1 OVERBURDEN 2 i_, i NEDROW GRAY LIMESTME, ONONDAGA MEMBER A8UNDANT LAYERS AND l LIMESTONE BLESS oF BLACK CHERT. t h0E LIGHT GRAY LIMESTONE. { FF g COBLESKILL DOLOMITE MOTTLED GRAY To 8ROWN FINE-GRAINED DOLOMITE. hhI I GRAY DOLOMITE. SCAJAQUADA GRAY DOLOMITE MEMBER SOME SHALE f%RTINGS. \\ i.E BERTIE l E DOLOMITE d '= FALKIRK SROWN FINE-GRAINED MEMSER DOLOMITE. A i. CATMA 3 HIGHLY-VARIABLE LIGHT MEM M GRAY TO OLACK 00LOMITE AND SHALE. SALINA /7 sANAR004 / DENSE UNIFORM l SHALE MEuSER fJ SLACK SHALE. !I L. STRATIGRAPHIC COLUMN g AT NUCLEAR REACTOR SITE-(- nouaE vm I Sc Ai.E X. - s-o

The heavy silty cicy materici that extends from an average

== depth of 13 inches to the bedroek is made up of the follouing materials Perticle Size Percentaae in Weinhe./ l 0.17 na or finer 09.2 % 0.17 - 0.25 2.0 0.25 - 1.00 6.1 1 1.00 ma or larger 1.9 For all practical purposes Jurface water penetration ceases at a depth of 13 inches. Within the first 8 inches of topsoil, water wi.11 move through saturated and undisturbed material under a head of 1/2 inch water pressure at an average rate of not more than 0.02.co 0.2 inches per bur. The pw.meability indes for this layer is 2-1,f, 2 d Within the 5-inch layer beneath the 0-inch topsett the permeability decreases sharply and reaches about sero at greater the rate of pe:meability may be taflineased 17: 1. Previous compaction 2 Organia matter esotent s a, 3. Presence of sodium (through its influence of dispersion) J 4. Directies of matt?ral breakage within soil 5 3 roper, espesially after peelonged periods of

  • =

droughts. None of the fasters above will play any signifieant part under the prevaillag local senditions. 1. Variations throughout the subsoil are insignificant. .I 2 Index based upon: R.E. $ 1and and A.& 0'Neal, Soil Permaability ~" Determinatia== for " e in soil and "-*==' -- sistion. U. S. 'E neparta.at of =rie.1t re, se,t ceases,eti setvice, ses tv-101, 3 washington 25 D. C.,1951

  • h I

,p i l 7 ys h underlying Onondaga, etc., with the joint systou t mentioned above,'as far as is known, does not contain water in the immediate vicinity, but it is not impervious. In the core drilling logged on the accompanying disarca all drill vater was lost at 4-1/2 feet in the rock. No information is available for rates of flow. % water presumably moves to the escarpment edge, judging from some areas observed several miles east of the campus. e 4

== Conclusions:== ) Hater movement within the overburden, including the soil proper, is extremely slow. Only within the first 13 inches does water percolation take place at a very slow rate, never exceeding = 0.2 inches per hour. In the subsoil sad weathered meterial to a depth of 15 feet from the surface, permeability seases for all practical purposes. Standing surface wat w, a good indication of extremely . slow internet drainace, is typteal for the area. Its removal is assemplished by either artificial surfase drainage or by evaporation. On the reactor site, surface water will flow in a southerly direction, to be intercepted by an adequate storm sewer system. 1 Normally it would flow to the seuese treatment plant. A portion of J the storm saunge at peak runoff by-passes late a large retaining pool and is pumped book into the system during normal flew periods. L (aissolofty pour ear

  • V s stase 1357 have had their opicenters

\\ u within 30 miles of Baffalo. Table XIII lists available data concerning I ,s these insidents. We fastes m kasua in this eroe nor in the area i = ei the episenters. h shoeks perhaps were related to the general isostatie readjestment felleutas the Wisesasta glasters., e

The first three acrthquakes referred to in Tcble XXII were quite minor shochs. The 1929 qunha intensity in Buffalo (acceleration 1-50 cm/sec/sec) una apprecichle if the upper part of the intensity s given by the Coact end Goodctic Gurvey was reached. 111th the favorable bedrock conditions on the nuclear site, a properly constructed building resting on the Onondaga would, in the opinion of Dr._Pegrum..be nearly i'== to any but;, the most sevare quake. TABLE XXII Earthquakes Mfeciing Buffalo 1857 1G73 1079 Oct. 23 A217 6 Aun 21 1929 ~f Mcation 43.2 N. 43.0 N. 43.2 N. 42.9 N. 7 0. 6 11. 79.5 U. 79.2 11 70.3 11. Area Affected 10,000 30,000 1,300 100,000 Intensity at Epicenter R.7. 7 6 6 9 Intensity at Epicenter M.H. VI V-VI V-VI VIII-VIII+ 7 Buffalo Distance 30 35 30 30 [ Estimated Intensity at Buffalo H.U. II I-II I-II IV Estimated Accoleration cm/ soc 2 at Buffalo 1-5 1-5 1-5 1 - 50 'm t 17 l g-em4 ar ..}}