ML19338D680

From kanterella
Jump to navigation Jump to search
Forwards LERs 80-006/03L-0 & 80-007/03L-0
ML19338D680
Person / Time
Site: La Crosse File:Dairyland Power Cooperative icon.png
Issue date: 09/12/1980
From: Linder F
DAIRYLAND POWER COOPERATIVE
To: James Keppler
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III)
Shared Package
ML19338D681 List:
References
LAC-7135, NUDOCS 8009230648
Download: ML19338D680 (17)


Text

{{#Wiki_filter:.O .AS4 1 D DA/RYLAND h k COOPERAT/VE po sox air. 2 sis e4st av soum u cnosse wisconsin s.soi ,ece>7esacoa September 12, 1980 In reply, please refer to LAC-7135 ?' DOCKET NO. 50-409 Mr. Jaines G. Keppler Regicnal~ Director U. S. Nuclear Regulatory Commission Directorate of Regulatory Operations Region III 799 Roosevelt Road Glen Ellyn, Illinois 60137

SUBJECT:

DAIRYLAND POWER COOPERATIVE LA CROSSE BOILING WATER REACTOR (LACBWR) PROVISIONAL OPERATING-LICENSE-NO. DPR-45 REPORTABLE OCCURRENCES ~NOS. 80-06 AND 80-07

Reference:

(1) LACBWR Technical Specifications, Section 3.9.2.b.(2f. (2) LACBWR Technical Specifications, LCO 4.2.2.22.a.3. (3) LACBWR Technical Specifications, Section 4.2.2.22.f.

Dear Mr. Keppler:

In accordance with Reference (1), this is to notify you of conditions leading to operation in a degraded mode permitted by a limiting condition for operation. Reference (2) established the limitations for the gross alpha activity of the reactor coolant system. Reference (3) established sampling analysis and reporting requirements in the event the gross' alpha activity of the reactor coolant. system exceeded specified limits'.s Analyses of reactor coolant system samples taken at the inlet to the primary purification system cation exchanger at 2145 hours on August 14, 1980,while the, plant was in a cold shutdown condition, indicated that the coolant gross alpha activity exceeded the limiting condition for operation (<_ 9.0 x 10-7 pCi/ gram). This limit is temporarily in force during Cycle 6 core configuration with reactor operation extended beyond 15,000 Mwd /Mtu lead e.gsembly average exposure. The normal Technical Specificatidrs pha, activity limit is # THIS DOCUMENT CONTAINS P00R QUAUTY PAGES N'[

SEP 1 G80 8009280b 3

Mr. Jam:2 G. Kcpplor LAC-7135 R:gionnl Dircctor Septemb3r 12, 1980 5.0 x 10-6 uCi/gm. The as-found gross alpha activity value was 1.63 x 10-s uCi/gm. The action statement of Reference 3 was immediately implemented. See Attachment 1 for a discussion of the significance and cause of the high alpha activity in the coolant. also includes the results of the sampling required by Reference 3. After the two consecutive samples on August 16 met the alpha activity limitation of Reference 2, the additional sampling was terminated. The primary sgstem was then heated, utilizing decay heat, to approximately 220 F. in order to perform a hydrostatic test *on the reactor vessel. For the performance of the hydrostatic test, the Forced Circulation and Primary Purification Systems were shut down for approximately 8 hours and 7 hours, respectively. At 2025, approximately 4 hours after the Forced Circulation Pumps were restarted, a primary coolant sample was taken. The alpha activity was 1.08 x 10-6 pCi/gm, again in excess of the Technical Specifica-tion limitation of 0.9 x 10-6 pCi/gm. The action statement of s Reference 3 was again implemented. See Attachment 1 for the signifi-cance and cause of this alpha activity reading and the results of the increased sampling. The additional information required for the occasions when the samples exceeded the limit is contained in. Authorization for this report to be submitted beyond the 30-day reporting pericd was granted to L. Goodman by K. Ridgway on September 12, 1980. Licensee Event Reports (Ref. Appendix A, Regulatory Guide 1.l', 6 Revision 4) are enclosed. If there are any questions concerning this report, please contact us. Very truly yours, DAIRYLAND PO h COOPERATIVE Frank Linder, General Manager FL:LSG:af Enclosure cc: Director, Office of Inspection and Enforcement (30) U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Director, Office of Management Information and (3) Program Control U. S. Nuclear Regulatory Commission Washington, D. C. 20555 NEC Resident Inspectors ATTACHMENT 1 4 REPORTABLE OCCURRENCES NOS. 80-6 & 80-7

SUBJECT:

HIGH ALPHA ACTIVITY IN PRIMARY COOLANT ABOVE CYCLE 6 TECHNICAL SPECIFICATION LIMITS OF 0.9 E-06 pCURIES/ML ON AUGUST 14, 1980, AND ON AUGUST 16, 1980 On 9/14/80, the Operations Department prepared to heat up the reactor using fuel decay heat to perform a reactor hydrostatic pressure-leak test after a maintenance outage of 7-day duration. The reactor's two forced circulation pumps were started at 1930 and at 1937 respectively. At approximately 2145, the H. P. Technician took a primary purifi-cation inlet (primary coolant) water sample for routine Operating Condition 4 analysis. This sample was counted for gross S/y pCi/ml, alpha uci/ml, Ge (Li)-MCA isotopic analysis and radio-iodine analyses. The gross S/y uCi/ml revealed 6.3 E-02 pCf/ml in the primary coolant water (e.g. primary purification inlet or PPI). The proportional counter alpha count revealed an alpha activity of 1.63 E-5 uCi/ml. This alpha count was substantially higher than the Cycle 6 Technical Specification limit of 0.9 E-06 (9.0 E-07) uCi/ml alpha for primary coolant. This lhdt of 9 E-07 uCi/ml alpha is the current limit at which reactor operations may recommence after Operation Condition 4 as addressed in the Technical Specification. This limit is supposed to provide one parameter for an early indication of fuel cladding perforation or degradation. As per Technical Specification requirements, we continued to sample primary coolant activities for alpha pCi/mL gross S/y activity and iodine activity on a 4-hour basis until we rsached an alpha activity of less than 9.0 E-07 pCi/ml in two consecutive samples. (Table 2, Figure 2) The reactor was then hydrostatically tested. After the hydrostatic test was completed, another primary coolant sample was taken on August 16, 1980, at 2025. The alpha activity in this sample was 1.08 E-06 pCi/ml (Table 2, Figure 2). The gross S/y of this sample was 1.6 E-02 pCi/ml which was essentially the same activity of previous samples taken on August 15 and 16 prior to the reactor hydro (Table 1, Figure 1). Subsequent water saq%4s were taken and analyzed every 4 hours until August 17 at 0636 when the alpha activity was approximately 5.4 E-07 uCi/ml (Table 2, Figure 2). The primary coolant gross S/y activity ranged from 6.3 E-02 pCi/ml on August 14th at 2195 to 1.3 E-02 pCi/ml on August 17th at 0636 (Table 1, Figure 1).. These activities were expected and within normal ranges for shutdown condition. 1-

ATTACHMENT-1 H F5R U T 6CCURRENCES NOS. 80-6 & 80 (Cont'd) The primary coolant iodine activities ranged from 1.09 E-04 uci/ml for I-131, < 3.47 E-03 UCi/ml for I-133 and < 8.34 E-03 UCi/ml for I-135 on August 14, 1980 at 2145 to 5.29 E-05 pC1/ml for I-131, < 8.27 E-05 uci/ml for I-133, < 1.29 E-04 uCi/ml on August 17, 1980, at 0636. These activities were expected and within normal ranges for a shutdown condition. Primary coolant water samples were analyzed for alpha on August 19, and 21. The reactor was at 29% power on August 19, and at 50% power on August 21. The alpha activities had decreased to 1.15 E-07 and 2.12 E-07 uCi/ml respectively. The gross S/y and iodine activities had increased to levels approximately the same as they had been prior to reactor shutdown on August 8, 1980 (Figures 1, 2, 3, and 4). We analyzed data isotopically by Ge (Li) for activities of various pertinent radionuclides (other than iodines and noble gases) which could provide an early indication of a change in fuel cladding integrity. These pertinent "early indicators" include Np-239, Y-91 + Y-92, and Ru-103 + Ru (Rh)-106. (Refer to Tables 3 and 4 and Figure 3). These elements are highly insoluble in water, normally remain within UO2 ceramic fuel pellet complex, and have melting points higher than that of normal primary coolant temperatures (e.g. 350 C - 360 C). A substantial perforation of fuel cladding would release these elements to the coolant environment, thus sub-stantially increasing their specific activity in the primary coolant. Since.the gross S/y activities and the iodine activities were within normal levels, and since the alpha activities decreased after the reactor was started up, the high alpha e.ctivities on August 14 and August 16 do not provide indication of recent degradation of fuel cladding. The Np, Y, and Ru isotopic data increased in an expected manner af ter reactor startup; and, therefore, reinforce the other data indicating that no significant increase in fuel cladding degrad-ation had occurred. Prior to shutdown on August 8, 1980, with the reactor at 85% power, the average off gas release rate was 65.84 uCi/sec after the augmented off-gas system. After reactor startup on August 22, 1980, with the reactor at SO% power, the average off gas release rate was 52.1 uCi/sec after the augmented off-gas system. This release rate can be power corrected l to approximately 88.57 uCi/sec. On August 8, 1980, the average i off gas release rate at the air ejector was 265 uCi/sec. On August 22, 1980, the average off-gas at the air ejector was 165 uCi/sec, or power corrected to approximately 280.5 uCi/sec. These off-gas activities do not indicate that increased fuel cladding degradation had occurred. 2-

ATTACHMENT 1 REPORTABLE CCCURRENCES NOS. 80-6 & 80 (Cont'd) During the shutdown, the 1A recirculation loop was drained so that the forced circulation pump seal could be repaired. After repairs, the loop was refilled with water. The mechanical action of refilling the loop is believed to have contributed to the releass of alpha emitting materials. It is also believed that when the primary system recirculation flow was re-established by starting the recirculation pumps on August 14 and again on August 16, alpha emitting material deposited at various points in the primary system may have been resuspended in the pri-mary coolant and contributed to the transient high alpha activities observed. + 3-

1 of 2 TABLE 1 Gross Sv Analyses of Primary Purification Inlet Water from 21 July to 22 August 1980 Reactor Power Time of Gross Sy Analyses Level Date Analysis (uCi/ml H O) (g) 2 7-12 0048 1.44 85.0 7-13 0031 1.36 85.0 7-14 0033 1.36 85.0 7-15 0040 1.49 85.0 7-16 0055 1.35 85.0 7-17 0023 1.38 85.0 7-18 0130 1.33 85.0 7-19 0225 1.31 85.0 7-20 0200 1.07 45.0 7-20 2130 1.42 59.0 7-21 0225 1.61 67.0 7-22 0304 1.58 85.0 7-23 0049 1.74 85.0 7-24 0149 1.56 85.0 7-25 0053 1.71 85.0 7-26 0037 1.62 85.0 7-27 0207 1.67 85.0 7-28 0120 1.29 85.0 7-29 0150 2.02 85.0 7-30 0125 1.69 85.0 7-31 0117 1.56 85.0 8-1 0125 1.38 85.0 8-2 0215 1.52 85.0 8-3 0140 1.52 85.0 8-4 0217 1.41 85.0 8-5 0212 1.59 85.0 8-6 0142 2.02 85.0 8-7 0104 1.45 85.0 8-8 0112 1.35 85.0 8-8 1307 6.96E-01 0.0 8-9 0039 5.8E-01 0.0 1-10 0045 1.2E-01 0.0 8-11 0903 2.9E-02 0.0 8-14 0059 1.2E-02 0.0 8-14 2195 6.3E-02 0.0 8-15 0115 4.5E-02 0.0 8-15 0508 5.6E-02 0.0

3 2 Of 2 TABLE 1 - (Cont'd) Reactor Power Time of Gross By Analyses Level Date Analysis (pCi/ml H2O) (g) 8-15 0807 2.6E-02 0.0 8-15 1140 1.6E-02 0.0 8-15 1517 1.9E-02 0.0 8-15 1851 1.2E-02 0.0 8-15 2250 1.6E-02 0.0 8-16 0238 1.5E-02 0.0 8-16 0635 1.5E-02 0.0 8-16 2025 1.6E-02 0.0 8-16 2245 1.4E-02 0.0 8-17 0237 1.1E-02 0.0 8-17 0636 1.3E-02 0.0 8-18 0046 4.0E-02 < 1.0 0-19 0130 5.9E-01 29.0 8-20 0123 9.5E-01 40.0 8-21 0053 1.21 50.0 8-22 0100 1.11 51.0

FIGURE 1: Reactor Power Level and Primary Reactor Coolant Gross 8-y Activity (uti/ml). 10^ ,o c. i o ,i i a. i - i i ga "i, 4. L r o62 .e - - } _r:-

a. un nr-2_ /

. r. 2 - .2._ _j -t. _ _.. I p /: : = ::-:== .: -- = : l.. .. _ l.--- + : : -izt -.=.:===== . :- l,r= = _=:

=. :

..:= m:.

_;=r.:;----

y

d===i==== =i= f=w=- = r" t====

=1 :+= = ii=l " = r=- Wi- =-====M =11.

== .m v. -i i

m-

..m... i. r + c-- i. /g :. g

r..

/

==a:q== =. .-b-j== f= - -- ,==;: . ~ = = =, =i=t ;: = - - - - u.-

=. s _=.
7.== _:=

. + =

-.=.

= =. _2 ="-l = ~ ~ - --

+t d = = +=s==tt'-h4=_-- --t h-- f

===== l 4 =_=_r = J =-i ""-- : _. L__. q. = =- q_.___ . _...:=--l-Reactor MWt (,.) = g

- 2g r--

-- =; n 3 ~ 4 4 I o J i 4-t_

_.. j.

g 5__ j 9____. .-_.9.__ __ q._.7,; _ _.._ 4 um_. _ 7

==f tr - : r - ; :.:,; _---j =:f r

. : =; j _ j u - u r-t - ;.:- = :_.nL:: :.r- =u : _:p_ _ m. - -.i...i-W-it: ====~ = i: - " =-i== L j= = c= + - 4 : '= i= -: 3 . ~ . r g -i. l r - i e 1-

t : :

_{ , : :. - e - - __ a l a . - _.a _:. y - _ ca

l.: _

2-g- -4

:..l_:=

r. = _6E:. j =:::=

=:=,:2.h:=.ri =.: _..;_. l -- ;- ur.= .H : = =

-- r p.:;;= __

3 = __ ;_q,_ _ _ }.._._.. ~ ---=t=----- -1:= "-- p _,__ j.--- _ l--- - -pr ci -- - ""_---9 _ y

_ __,. _ _..._ g ;_

L I_ y m g rht:f:.___ _. ./i\\ i i -- } i-t -. __._g_._. y y x-_y t 9 l -V-- A j. ..a _: i... - -.. _.a _. - i. =.L _;i .:_f-z- -

u:
2. s. _.. _

..- - 4 :... -.q. 7

f u..: s = u _..

--. y ----- 3 : .:=\\, -- { =. : ::= ::..= 4 =-j r. _... _. :3 =} ::= : :=: = { =:- }=: :- =- e. E x!---ma. !._....._.._ _ a..= = - -. n= - 1 i==4= = =i., =,i -

-S= - - t _.._.-

= o. 5 i g i. 9

n l

g 4 -j- _ -i --- - s. - $r ~ t1 gu.

a. i.... _

.._j= .;c. : r: 9 p.u. - - _ _.. w :q 2_ r. . :. _ 3 -

s. j -

u3 ,3 .=:: =. ; :_= = =. = : = = : l _== --

=:. ::.a.j= :::= =:

=:.-, f = === =.. -- { := _:.., =. : - i -

===_ f.:. 2:5 u : --g - - = t - y =:-j:l .= - -i nk_._.....i-. = = -. jj-- -..:=L l:: : - -i u: :== { 5:-

-- = y=q
d;=

x- .Z. ;{ l 2__._.3. :d.;._5.._.,-];;;;;M.. E j :. 7-^9h-l CZ ~._] [12 ~ ' j l' -]-{j;pf -[j-['S._

d.,d '
, Z._

= - ~ - L_._._.-_ m.-- P,: - 2:.u ..: = n;_ = = m-- ; n-: .!u

== T - =

... T :. r= T-- - -

2..__J --- -l=-
);=

_r c - c-- t r_. c un! --- r-r! - r : r r- _._ q -___ _ _._i __ _ 4 ~_____. ~ I Ia -t- - - - - r ___-4.- 1 g i _. .... y _._. w g. = 7 -t I i i i i g. l I + l ^ l f g i + - A .. - lqQ!A .l-- _l t l.- i VI i Primary Purification Inlet l-

L 4

i i Gross S y uCi/mi f; { f i i !l 1-1 / .i i il i \\- / i n f !'Il l kJ l l [ i V ) l t i 1 / 1 + 8 4 e e 9e e jg el M* l

TABLE 2 Proportional Counter Alpha 3tivity Analyses of Primary Purification Inlet and Outlet Water from 14 July to 22 August 1980 PPI PPO Time of Alpha Activity Alpha Activity Date Analysis (uCi/ml H2O) (pCi/ml H O) 2 7-14 0033 5.43E-08 <2.33E-08 7-17 0023 <2.14E-08 <2.14E-08 7-21 0225 3.82E-08 <2.29E-08 7-24 0149 8.74E-08 <2.38E-08 7-28 0120 6.28E-08 <2.35E-08 7-31 0117 3.11E-08 <2.33E-08 8-4 0217 1.85E-08 <l.llE-08 8-7 0104 6.lE-07 4.18E-08 8-9 0039 6.03E-07 8-14 2145 1.63E-05 8-15 0115 6.22E-06 8-15 0508 7.97E-06 8-15 0807 (5. 53E-0 6) (6. 2 8E-0 6) * <2.25E-08 8-15 1140 (2. llE-06) (2. 2 6E-0 6) 3.75E-08 8-15 1517 (2. 57E-0 6) (2. 3 8E-0 6) 8-15 1851 (1. 50E-0 6) (1. 7 0E-0 6 ) <2.25E-08 8-15 2250 (1.13E-0 6 ) (1.10E-0 6 ) 8-16 0238 (6. 68E-07) (8. 6 9E-07) 3.22E-08 8-16 0635 (7. 40E-0 7) (8. 2 0E-0 7) 3 8-16 2025 1.08E-06 8-16 2245 (9. 4 0E-07) (9. 6 4E-07 ) 8-17 0237 (4. llE-07) (4. llE-07) 8-17 0636 (5.37E-07)(5.45E-07) 8-18 0046 6.99E-07 5.44E-08 8-19 0133 1.15E-07 8-21 0033 2.12E-07 <2.5E-08

  • Two aliquots of the same sample vere analyzed to determine if

= activity was due to a hot sub-microscopic particle. Results indicate that the = activity was evenly distributed in sample

bottle, i

h f i

FIGURE 2: Primary Coolant Alpha Activity (uCi/ml) from Primar.y Purification Inlet. (Dotted Line is Primary Purification Outlet e Activi;y (uci/ml). to g. + -t i 3 t _,t n c 1 _3 a.u-t - - _ - , _u--.

.i== =

=2:

-:: - d:- =. _.

-l.: :..

c _-== 3=c... 2=p: = =- = g-izi :: a =-i 2:i n.:-j " "- _ __, } ;- "- j='-- _,._._.___. i - -- -- l =_=-f '-- ' =::- i- ! --- -- i REACTDR HEATING UP- ~


i.

.=n _ +: t s ' _: = =: _ FORCED CIRCULATION ,__.g a== .=

=:

:. : :

.=-a:- ._==1-5 =inil-u-=---

== =--: FUMPS STARTED AT f._j g ;.. . q icy -- :; ::- = = = = = ::t:=:- ri : ;= : l930 l l0SI. .;.==. f_==~=a_

= - y-~===

_u:=: u _.-- _ =.. = _... I.-. - - - = = = =- .;. _ u

u;

= ~ SAMPLE TAXGN =._=_

-

= l AT 2145*. .---- _.__L__..__. _._j j h

n r.:rr r-______

q.a _______t . -__ 1 i n


4 g5 f

1 .i .p- -.i-t g ._:. a. .{. 7 _._..-.j \\ jj. ...--. 4: - -. ri .. =

===-t:yw;:

==_ = y \\ _ - 4===. =--t===- _g= u: =

==; =

.==-=.:____ =- =_.__!=~'"- = =- !.--- : l*- "-l ~ ~ " -- - -- i =1 = "- - - 4 # ~E I : = r?l-- ": - =ri = rr 3 r i -i r _t---..i i t- - 2 i [ i >n g {] y' . i c,. ;.= =:


,: a u.

_za r

_=

Q, .u=p=:==. _ = = t. _== =;. ---=j= 7=i= = =

==

- =

= : ;.: p ._=.- _._- =l r= l: REA cmg Hypro <,.a n ma r:== c_ --t___l--+------f._._,_.____ 4 F ED & W ~ n 2 gpppLg,7pygg <c I t -{ AT 2025. 2 4 o t, \\l y,i-gle i 'W i y 1 f3 ~ t _jg.j - g __..___j_ g _.. FUEL CYCLE G .. f. : =- = =: n =-- = t = = = ; = = 6 "" 1 4

== TECHNICAL SPECIFICATION =-

<= " - t -- - - - t - - - - --

(: = f===;.=== = =- 9: .-d LIMIT -j _. L _, - - } __4-g-[- C. l-2 g o, i .f. m

==~n =.:~ .i.-.= .i. _ =s._ =.: ,y- =,

  • 1 e

-. = = -

=-

. _. : _ : m.: u - :: L.t : n=: . - =. . :_a; ::. _ _=.:_. ,3

i: n. :-

=; =.-- f. ---- -- i: '

-j ;
;=i.

i-- =_h

__;c.:l: = n
:- n _=_

n _;. ._---t _n--- c. V,. !, ~=!!: T l 21'-- = E9-~ 1 F-N-

; :~C.E~.~;;d f_ if i - ~- 1.- J-d :- = x-h_=::Er'l- '-- --~ i c R

-i- - 5d ":1 . f 55s8fdl'5 b EI[25} N5d[22 $r$i-- --f = Ed l.5--U ~~-~ - ?

:== 1 ~~

. u y.. -.- 2-----

._=.__=__-

.___4...=. ~}. _ ---. :=. ; - ____=g....=_.._ _, p_.u g= j.___... d* _ _.. y ._._._ _ _ f. ._ _ I - - 2- _ _. [ ___ __._p_-.-.__-.__.-----_j ..q_-_-_..__- --e q 9 .7 e., 10 6 i i e p i qs 9 g l.A i i I i 2 I t i , f. A i i =:.lf: N: = i r

g;j = 3
:. / =-

\\ l -- - : l - l. y 3 i \\ - l' \\ f 4 I \\ /t \\ i i s' 1 \\ /1 \\ I t i pL_ /

  • i

.\\

/ -l X

l 1 l- ',, 4t" \\ 3 \\1 / : i \\. i i lp _J i 4 l ! - E + 7 mj\\;i l l a w [\\ f M :?!! M U M ig4_.__. r. l \\/ ..y 4 l e., I

si t

8> 8-G ' 61 8-Y ' S-5 a-G ' 9. -' ' %- 0 7.h 77 7.h h 1 "' ' ?

TABLE 3 Yttrium, hthenium, mthenitm-Rhodium and Neptuniun Activity (u Ci /ml) in Primarv Purification Inlet Water as Determined by Ge ( Lil-%A uCi/ml Np-239 Y-91 Y-92 Ru-103 Ru (Rh)-10 6 Date tg = 2. 3 4d. t = 58.8d. th o 3.53h. t = 39.5d, t = 368 d. 7-17 7.09E-02 7-22 8.24E-02 7-24 5.52E-02 1.42E-02 7-31 1.20E-01 8-8 5.54E-05 1.12E-03 8-14 4.72E-04 8-15 1.29E-03 2.08E-04 5.90E-04 1.39E-04 6.08E-04 8-15 8.67E-04 8-15 1.51E-04 8.12E-05 5.88E-04 8-15 2.52E-05 7.58E-04 4.83E-04 8-15 9.72E-05 1.21E-04 6.00E-04 8-16 8.69E-05 7.78E-04 8-16 6.20E-05 8-16 1.02E-04 5.15E-05 6.70E-04 8-16 6.19E-05 5.41E-05 6.06E-04 8-17 3.67E-04 8-17 4.78E-04 8-18 1.00E-03 5.13E-04 5.66E-05 4.93E-04 8-19 1.24E-03 6.85E-03 1.90E-02 s

FIGURE 3: Yttrium, Ruthenium, Ruthenium (Rhodium) and Neptunium Activity (uCf/ml) in Primary Reactor Coolant w e memo m \\ i i '^ l u , y:sigt Qg\\i - t-t ~a ..s. 1- -u=2 _t; - ) -4 7 - y. .-.c 7. g g : u. . _.. _. nc. p =q= q =p= i\\- .==.:. --- - g-. =4 1- =

==== j==== "=l-.\\ =1===il\\ri= 53-E Ys'.7 5 r-i- - - I 5'-~ ~~ " ~ {+ I r .t. -i: + \\ i f }.\\ -q :- I-- t .L L .\\ - =

-\\+

\\ ~ ~ I =_: _ = q.

.: -. =

\\ I ,Q: ~ = :-\\ -

Y
~

........l-==.= :i==:

== - :-. =j== = t ""it=i:_==lh ~= =~.\\r' M'i-Ei "-:2-i = =M ~I 3 +N -'

= ~ ~ I #- !"== "~r" : I ' Ar' r

h N._ ___. b j===[ TM $E%..iS~I'5tG EV539@ 15

v. -._

~_. e..

==: % g \\ ... ;Kp-Z35 -- ygy -g 3 - }--- .I z. .\\ 1 c I ,.,. f-g.,,,, - s a-i i + i =., _... n,y(%,ij--n- .g. : \\ x__, t- =i i P,

.,.- p r_._1._

.s. : .e c._;; n.u j. _r: = :

:.1_ r: ra-l :.

1 l -- - }\\ n - \\ -- l-P I : --- ~ :;-i - I ~ ~I _____._, g gi- : p====a ==== l. _1 i== = 31 =N :\\ t==st-- '--"-F -- -~ - + i I. .\\.\\, --i t- .. :sj - 4 ).. a g \\i i ..c

r

. \\\\: .a

.1

=.l===. = = = \\\\ -- - - - i

= =-

.=:- M = ~2=I= ;f' ~-! :c2 =F--I NTT= Ji f 2=T-9 -- d II;kh==k ~' ~~-'l- ~ ' - ~ = - 4 E... E_ _: :=2_..i E. _.===_= =_= 1 =_--i_ 2 C..E_ c-Tr. E._F,\\: E. P.-_ EEE E EEE Ei-E ri = - - I-g O r _;. _1. __. u ~_. - r" -- l r:- r "1 ' " - --'-- - *b \\ -\\~-{ Z J_. - - - -- r_ -- t _r n. ' Ir p.. rl - ~ 1-- - ~. [\\;--__ d-!r ' Z-~- ]~ M ZZ,'~ ~~ ~ T "-~ i-- -- l Z U- '~ ZL 2 \\_.-__-----.----.---L -._i _. __ p .. _.a l... _..._. _. -... -____.._.L y -~ \\ _7 -...-_ + A -. 4 -. --- y - - i l- -- F 6---


l/-- - ~ -- ;

t- .._4-. \\.g - -.~.] \\ l ......-y.-- y { -- i i i \\i l. i\\ - f \\- i '/ 3 ,s _g 2. .i 4 f.-\\\\/ 1 4 f j / l

. - u t. ; -

a;- _ p. .4 - - ) /\\: /N - i .._: _ el- : =... : : r2 = j. 1 _-- -. zu_aju=. .t /\\=- }: \\r

/:::-N
/

,--r-. = F==, r== j = = ; - - - - - - = ; = =/n.y/L:.1 M:--p-\\m :-h k m ' j=.. g-Ii Y l- \\ # o; g. =,_me--/e .\\ /./ i t. 3

Y f+

t

;. r:- /. i-

. \\i -, o a 2 :. m 4_.._._.

2 = u g _. 2-

=u - - _ f. _ 2-p.: u l-

/-g--

6'- / i= 1 -;= /t-4 -y v=-i

/ L j;

-z

tz e

b2 .Cri=+l . r p-n R= uh.5 :U[=Ei =- i\\ ! = + !: v' i

5 e h.

' ~ h 0N_ ~ l

l Li e

9.: 5 ... _ y -.]..n u -... _m. _ - _ __-.__.\\ f...-. } _._....-.t. l-___._..._..._.;-..._ ,-\\ f. _3 1--.~.._. t----'-" 'g L- - - l--~ fi \\ rT \\ I i ? i i / i i 1 \\ \\/ i / o g \\ /- i 7 j i i i i. l / i . h \\ Y' l Il k - I l t i l ll! i 4 i 4 hj i I i ? i i i il l 3 i l lI I [ d, t 1 l 2 I l i j i I e l l l i p __ _--... __. __ -. I i I i ? { 9._. _ h. _. 7 j 7 -~_ g 7-il ?-t2 7-22 %G e-I S-6 8-Il PA 9-15 6-M E-J7

  • l 0 9

TABLE 4 Expected Fission Product Ouantities from 1 Kg of Completely Fissioned U-235 (Af ter 150 Days Irradi-tion and 30 Days Cooling). Ref. Nuclear Reactor Metalluray, Arconne National Labs, 1958 Fission Products (Elements) Grams Curies Nb 5 220,000 I 6 11,000 Rb 14 Te 14 1,200 Tc 26 170 Ba (La) 39 66,000 Sr 39 110,000 Ru, Rh, Pd 74 235,000 1 Mo 84 190 Cs 108 2,900 Zr 114 119,000 Kr+Xe 128 6,300 Y + rare earths 308 675,000 2 TOTAL 959 s 1,446,760 1) Ruthenium Series is 7.72% of fission products by weight and 16.24% of fissica product activity. 2) Yttrium and rare eeeth series is 32.12% of fission products by weight and 46.66% of fission product activity. 3) 41 Grams of the original 1 Kg of U-235 is fission neutron loss. i

f TABLE 5 Iodine-131, 133, 135 and Dose Equivalent _Iedine in Primary Purification Inlet Water Date of Sample I-131 I-133 I-135 Dose Equivalent Analysis uCi/ml uCi/ml uCi/ml Iodine 7-16 2.24E-03 8.01E-03 2.43E-02 1.10E-02 7-17 1.45E-03 2.98E-02 5.60E-02 1.50E-02 7-20 ( 0200 ) 5.19E-03 2.29E-02 1.05E-02 7-20 (2130) 2.42E-03 3.31E-02 6.67E-02 7-21 2.12E-03 2.95E-02 6.20E-02 1.96E-02 7-24 2.40E-03 2.09E-02 5.039E-02 1.25E-02 7-31 1.44E-03 2.40E-02 5.30E-02 8-7 1.92E-03 2.56E-02 6.44E-02 2.01E-02 8-8 ' 11E-03 5.35E-02 5.56E-02 8-14 (2145) . 09E-04 .3.47E-03 <8.34E-03 8-15 0115 <2.30E-04 <2.98E-04 <4.33E 04 8-15 0508 <4.33E-04 <6.53E-04 <1.31E-03 8-15

0807, 8.22E-05

<4.24E-05 <6.96E-05 8-15 1140) < 9. 69E-05 <1.33E-04 <2.40E-04 8-15 1517) 7.38E-05 <4.15E-05 <6.59E-05 8-15 (1851) 7.89E-05 <3.44E-05 <5.13E-05 8-15 (2250) 5.59E-05 <3.17E-05 <5.14E-05 8-16 (0238) 4.22E-05 <9.04E-05 <1.59E-04 8-16 (0635) 9.25E-05 <9.23E-05 <1.58E-04 8-16 (2025 4.36E-05 1.07E-05 <4.53E-04 8-16 (2245 3.30E-05 <2.74E-05 <4.18E-05 8-17 (0237 1.65E-05 <5.98E-05 <9.07E-05 8-18 ((2306) 8-17 0637 5.29E-05 <8.27E-05 <. 29E-04 1.04E-03 1.44E-02 3.31E-02 8-21 1.60E-03 1.85E-02 4.88E-02 1.31E-02 8-22 3.09E-03 4.34E-02 <8.35E-03 O a a

FIGURE 4: Iodine-131, 133, 135 and Dose Equivalent Iodine in Primary Coolant a = i i i. _ z. _a _ _ _ F ,i i i M PW 6 m W i- ) 6 .j l _: - 2,nM ='G, -- - REACMff9NEWD i .i f 1. A =.fCCF 5

  • N - _d.

t { .= N-} J ::=2 i n: u n.;<. = a n. ,~.. - _---#~== = n + # b = %..L T.* / -I +"i N -t =

=== ^-H :=1- =% L kI l 'M x ~ i / j.__r.;m .l .\\.=~ .x,v--, n y. _p-

p.

=- .- :-- _ = g y=- sg s:- + \\. (,=,;\\ - = = = ~ ~ - -

1.

.., = = i z -. lf ~~ 2

I = ~ --

iMan __l]=-i:Y\\"- E~:=E9 l[kk uh::::.- = =-~?

m:

H r ---*1 3 -- '. =:cx f a. .. :._ t rx. - . = T __ :__ = ; _c "l. _._... H r - xiN- =#::e - _;__ ;, r- -- .:A - r i -- -- -- --- A cc : :- - - -. 1

mIr:_:-

:r- - -

t x:r_ '.6--- .....__ __..,,.. - n I. :: ;a rJ :--- - p -' 1 ... _ _ [7 -rz :_. a = ~_ --]n_ a: r r; l.g. CCI 2- -~ r'_'.t zr .___ 4..__, y ._..' Q.._. r _. n.__ - p;}. -..-..-. J - ,l ~ ~ ~ s-~~~Z1 Z REACTDRD --.-. I DOSE 1.. - ~~_3~-~~~~~-'1.~.T. "b1 -t __ q.._; - -- EQulVA\\El4'U-- -- -- - - f --- g gg "3 h t \\ f I ,__,,i s i-1 1

/

O 1 2 - a ,_ r -.,.i _ 2. .=-i, -4 ....i, -4,, - -i g,

== ,~ ....): -t. .-J:..-:. =a

== ;

Q - - t =. : - -- . :- l. ll - : . =_ - 4 : - -- :} - - p_. .... g _ _. 4 g_. g p_ _ _ _.. p .,_g q __,_4 _ : _ _ ; i - ) i i at .i i i n, f 1 a y -u - f 9 -j .j = p .c __ : [. .. Q - ! _. - ;..: l.. j i. 1 -f =}. = _. t - _m -.u. . _ tr. R

===t+#pl: =\\ -i :

== = i: = = i v.-- \\\\ i==== i==\\ = ! !

= t = :-l== m = -

>_s ;, gg=s-;;;s lg-p .c ;=.g =_ si g E c, - = g = 5 g p=. m s = =_: 3 _._i.. -. .j._ g _] - l ~'-^ J~~ ~._.-q ___. .~.] .{.,

} - -]. _

- ~__{._.] ,___._._...5._._..____..i 1 _.____j...-._ j. ____._._.p_.__ __ ___ t _ _ -___ j e _._ _ ._._a...____ _ __ } _ ._._p_____g__.._______ 3 .._y_--.__ q_ s i =\\\\ II a s 9 -,n. r fg y .u--. i ... i. 2 c y -t ._+g_. 9 ll. ,.= i .._2 p I n..~ p ;.= = -_-- .mj...._. p -.. : }. y.. i,3 l - - - l. .g-2:__- .2 t2== w =:-#== = i~ - = =T. =;= =+W ... \\\\ = ! H =m =

= = = 1:

c. c," i- -...=: 1 i. p, u .fg ?

  • \\\\ -

'll o g g5 =- -. - - ( 3 g qq p. . = . i =_; 4 2_. _ y,.g. p. j _.

:ci-z._

3 3 jj v-w t 7 igg, 3 y. i p: ._ = : * :. 'q EE-i. j ui=. i ig g .._-p j ,2 = . _.. ~ -

n. - _..

4,, [, z.

1-

-t . a j- _. 1

j. ;

t-9, .*-t ..--e.- . _.. y m.. g . _ =. ..{..._-- .g_. [ .p 4 j.._ 3 e 7 i. I j i t t 4 3 f l v l 7 6 i 'I f emm i c h-1 i I i t l l l -- i I i i --i i i i i I i l s_ I I t I i i e l t 4 l f 1 i . _ _ _f i l t 6 C_ _ _ _._ ; 4 -. 3. __ _r_._ v __ __. T - -T----P-t--------------- --- - ^- Q.. t a. ;. ,a. s.

a..

~. J

  • ?'

ATTACHMENT 2 ADDITIONAL INFORMATION 1) Reactor Power Level for 48 Hours Prior to the Samples Exceeding the Limit Reactor shut down for this entire time period. 2) Fuel Burnup by Core Region See attached Figure 5. 3) Cleanuo Flow Historv Startina 48 Hours Prior to the Samples Exceeding the Limit i 8/12/80 @ 2100-2400: 40 gpm 8/13/80 0 0100-2400: 40 gpm 8/14/80 @ 0100-0700: 40 gpm 8/14/80 0 0800-0900: 39.5 gpm 8/14/80 @ 1000-1500: 40 gpm 8/14/80 @ 1600: System Shut Down 8/14/80 @ 1700-2000: 39 gpm 8/14/80 @ 2100-2400: 40 gpm 8/15/80 @ 0100: 40 gpm 8/15/80 @ 0200-1100: 41 gpm 4 8/15/80 @ 1200-1300: 40 gpm 8/15/80 @ 1400-1800: 40.5 gpm 8/15/80 @ 1900: 41 gpm 8/15/80 @ 2000-2300: 40 gpm 8/15/80 @ 2400: 40.5 gpm 8/16/80 @ 0100-0800: 40 gpm 8/16/80 @ 0900-1500: System Shut Down 8/16/80 @ 1600-1700: 38.5 gpm 8/16/80 @ 1800-2025: 39 gpm 4) Off-Gas Level Starting 48 Hours Prior to the Samples Exceeding the Limit No Off-Gas flow. 5) Gross Alpha Activity Level Starting With the Last sample Taken Prior to the First Sample in Which Limit was Exceeded See Attachment 1 i i l l

Fu3l Expocuro Ectim3 tion (GWD/MTU). An Indication of Expo 3uro on Auguct 14, 1980. The Average Exposure: 10.486 GWD/MTU. A B C D E F G H K L j Is.s I6.2 _ Exc J 2 84 7 30 lo7 4.9 67 /0.9 f.2 li? C'4C _ C litQ ] C id Y Q C if D Zy , 7. 8 ll.9 /22 9./ 'e ? _ /0.1 /0.0,_ P 'M 7f 3 _, PR5 G 7 W f.0,jl?.6 ; f.7 @Fr9 70 17.9 9.3 ll./ 4 ll.0 i--'n i y2 Pg9 i ~ ~ 6e,Hll.9 ' d.10LS,,126IM75 ll.9 75 13.0 72 15 2. 15 5 e ::: r Q

sJa 12.6 l 7./

15.1 75l~C'j 6 l62 f.9 13.0 75 ll.g ll.3 L?$ d C5Q~CN ~ ~ i H 7 / l.1 S.3 12.3 70 /o.9 /2.6l g.o

/0.1 10T!@6 C/2.2!/l.9',,29 b "l

.3 C ri. ' @ < 76 ! 2./ 73 i 8 4 .H r,r m 9 !sd 7.2 /0.f f.7 f,.? 10.6 79 l ly7j I t pt M /0 158 /5.9 e IN CORE FLUX MONITORS Q PLANT NORTH 1 FIGURE 5}}