ML19332B608
ML19332B608 | |
Person / Time | |
---|---|
Site: | Calvert Cliffs |
Issue date: | 12/31/1988 |
From: | Asgari M, Nair P, Mike Williams SOUTHWEST RESEARCH INSTITUTE |
To: | |
Shared Package | |
ML19332B604 | List: |
References | |
NUDOCS 8911060070 | |
Download: ML19332B608 (104) | |
Text
{{#Wiki_filter:- -- - _ . - h PRESSURE TEMPERATURE LIMITS FOR ! CALVERT CLIFFS NUCLEAR POWER PLANT UNIT 2 l i i i BY l P. K. Nair i M. L. Williams > M. Asgari >
?
FINAL REPORT SwRI Project No. 06 1278 002 i Prepared For j Baltimore Gas & Electric Co. ' P. O. Box 1472 Baltimore, MD 21203 i i h , December 1988 e 4 h?
.gRyg[fp ;/d f gw, S SO UTHWESTRE AN ANTONIO SEAR HOUSTON st.-
- e. - m-=> .
_ 8911060070 8910P7 ADOcK 050003J7
-.;, FDR *% k m,,,,,,,, P N'. f 'e * *%a w $,~~ . .g.. '[' _ _
o SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284 i PRESSURE TEMPERATURE LIMITS FOR : CALVERT CLIFFS NUCLEAR POWER PLANT UNIT 2 ; By l P. K. Nair M. L. Williams , J M. A>:nari . 1 FINAL REPORY SwRI Project No. 06-1278-002 l I Prepared For l Baltimore Gas & Electric Co. P. O. Box 1472 Baltimore, MD 21203 r e December 196d Approved:
/
Edward M. Briggs, Director Department of Structura! l and Mechnical Systems
~
r W vpw-wve-t aww.,e--wa+m --,w- -, er--p- c em w*p- -, ,w+- ne-w o w qp,,,- .*wev-evw--+e3y'- ---e-e-----*,g-n e--r--- y- g .nyw-e-'v-'- pt- w - w e'- g- "'* T
t j l
!! i (i l l
1 TABLE OF CONTENTS l Eut List of Figures ........................................... 11
,1 List of Tables ............................................ 111
- 1. Sumary of Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . .
1
- 2. Introduction .............................................. 3 ,
- 3. Material Property Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- 4. Neutron Fluence Calculations .............................. 6
- 5. Adjusted Reference Temperature Determination .............. 32
,l,- l I 6. Heat-up and Cool-down Limits .............................. 36 References ................................................ 39 APPENDIX A - Determination of Space-Dependent Source ....... A-1 Distribution for Transport Analysis of l Calvert Cliffs - 2 APPENDIX B - Description of the 3D Flux Synthesis Method ... B-1
- APPENDIX C - Power-Time History for Calvert Cliffs, . . . . . . . . C-1 Unit 2 ,
APPENDIX D - Procedure for the Generation of Allowable ..... D-1 Pressure-Temperature Limit Curves for Nuclear Power Plant Reactor Vessels ' APPENDIX E - Pressure-Temperature Limit Tables for ......... E-1 Calvert Cliffs Unit 2 APPENDIX F - Pressure-Temperature Limit Table for .......... F-1 Varying Cool down Rates for Calvert Cliffs Unit 2 (12 EFPY)
. APPENDIX G - Pressure-Temperature Limit Tables for ......... G-1 Isothermal conditions for Calvert Cliffs i Unit 2 l
l-l l 1 i l l
+ - - .,n .
4 List of Figures Figure Pgge 3.1 Calvert Cliffs Unit 2, Reactor Pressure ..... 6 1 Vessel Map
'1 4.1 Calvert C1'iffs Unit-2 DOT-4 RO MODEL' . . . . . . . 8 l 4.2 Capsule Geometry Modeling ................... 9 6.1 Heat-Up Pressure-Temperature Limitation . . . . . 38 i Curves for Calvert Cliff Unit 2 Reactor Vessel (12 EFPY) 6.2 . Cool-down Pressure-Temperature Limitation ... 39 Curve for Calvert Cliff Unit 2 Reactor Vessel (12 EFPY) l\
t i e I h iI ! i l-L I 11 4 l 1'
i l l.- f I List of Tables Table, g l, 3.1 salvert Cliffs Unit No. 2 Reactor Vessel ... 5 Beltline Material Properties 4.1 Spectrum Averaged Cross Sections at ........ 10 Center of S.C. . 4.2-a Absolute Calculated Neutron Fluence Rate ... 11 . Spectra (i.e., grcup flux) at the Center of - ' 7' Surveillance Capsules (SC) for Calvert Cliffs Unit-2 <
-?
4.2-b Absolute Calculated Neutron Fluence Rate ...
~
12 Spectra (i.e., group flux) at the Center of 14' Surveillance Capsules (SC) for i Calvert Cliffs' Unit 2 l 1 4.3-a Calculated Saturated Midplane Activities in 13 i Calvert Cliffs Unit-2 Surveillance Capsules ' (12 M Cycle) ! I 4.3-b Calculated Saturated Midplane Activities in 14 Calvert Cliffs Unit-2 Surveillance Capsules , (18 M Cycle) 4.3-c Calculated Saturated Midplane Activities in 15 ; Calvert Cliffs Unit-2 Surveillance Capsules (24 M Cycle) 4.4 Non-Saturation Factors (h) Used in Desimeter 16 l- Activities 4.5 Comparison of Unadjusted Calculated and . .. . 17 Measured Parameters of Calvert Cliffs-2 - Dosimeters Removed Following Cycle 4 4.6 " Measured" Saturated Activities (ASAT) IOP ** 10 12 and 18 Month Cycles, Based on Cycles 1-4
-Dosimetry (2) 4.7-a Determination of " Adjusted" ,(>1) in S.C. . 19 for 12 Month Cycles 4.7-b Determination of " Adjusted" 6(>1) in S.C. . 20 for 18 Month Cycles 4.8 Relative Azimuthal Variation (*) In e...... 21
(>1 MeV) Incident on Vessel 111 w,-
L -! l List of Tables (Continued) t EA11 4.9 Calculated e(E)1 ! andLeadFactorsl3}nSurveillanceCapsules.23 for Calvert Cliffs , Unit 2 , 4.10 Peak 6(>1) in RPV of Calvert Cliffs-2 ... . . 24 4.11 DPA Values in RPV of Calvert Cliffs-2 ...... 25 Due to Neutrons with Energies Above 15 kev - 4.12-a Calculated Fluence Multigroup-Spectra in ... 26 i' Reactor Pressure Vessel at Peak Axial and Azimuthal Location (e : 0*) for : Calvert Cliffs Unit-2 (12M Cycle) 4.12-b Calculated Neutron Fluence Multigroup Spectra 27 in Reactor Pressure Vessel at Peak Axial and Azimuthal Location (e : 0') for Calvert Cliffs Unit-2 (18M Cycle) , 4.12-c Calculated Neutron Fluence Rate Multigroup . 28 ' Spectra in Reactor Pressure Vessel and Azimuthal Location (6 : O') for t Calvert Cliffs Unit-2 (24M Cycle) l 4.13 Radial Gradient of Fast Fluence Rate .. . . . . . 29 j [o (E > 1) ) through F.PV, at Peak i Azimuthal and Axlal Locations in Calvert Cliffs-2 4.14 Fluence in RPV after 12 EFPY for ........... 30 Calvert Cliffs 4.15 Determination of RPV Peak Fluence for . . . . . . 31 # r Calvert Cliffs-2 5.1-a ART Evaluation for Beltline Materials ...... 33 for 12 EFPY 5 1-b ART Evaluation for Beltline Materials ...... 33 for 32 EFPY 5.2 ARTNDT vs EFPY for Controlling ............ 34 Weld 2-203 5.3 Adjusted Reference Temperatures (ART) ...... 35 at 1/4T and 3/4T for controlling Weld 2-203 iv
.i. ,. . . . _ - . . . .._ - ., ,. _.m .. - - -
r i LI i
- l. !
- 1. SUIMARY OF RESULTS AND CONCLUS!0Its i A detailed analysis was performed for developing new pressure-temperature i
limit curves for the Calvert Cliffs Unit 2 reactor pressure vessel. The ) analysis included new neutron transport calculations for 12, 18 and 24 month
+
cycles, development of irradiated material properties based on WRC Regulatory Guide 1.99, Rev. 2, and the generation of heat up and cool down limit curves ; for every 4 EFPY from 12 EFPY to 40 EFPY conditions. The SwRI evaluation led to the following conclusions:
- 1. Based on a calculated neutron spectral distribution, the peak fluxes incident on the Reactor Pressure Vessel (RPV) are 5.04 x 1010 n/cmE -sec, 4.89 x 10 10 n/cm2 -see and 4.10 x 1010 n/cm2 -see for 12 ;
month, 18 month and 24 month cycles respectively.
- 2. Adjusting the calculated flux with respect to the first capsule dosimeter analysis the 12 month and 18 month cycle peak fluxes on the RPV was determined to be 4.72 x 10 10 n/cm2 -sec and 4.59 x 10 10 n/cm2 -see respectively.
j~
- 3. The calculated lead factors for the vessel ID based on surveillance capsule capsule locations are given below: '
0:7' 0:14' Cycle Type Lead Factor Lead Factor , 12 month 1.26 0.94 18 month 1.24 0.91 24 month 1.18 C.79 , i PEG /CALVERT 1 L
!+ 4 The accumulated peak fluence on RPV ID was calculated to be 1.17 x 1019 n/cm2 for the first 7 cycles and 4.28 x 1019 n/cm2 to end-of-life conditions.
- 5. Displacement per Atom (dpa) for 12 EFPY were calculated to be 2.632 x 10*2, 1.747 x 10-2 and 0.5206 x 10-2 for RPV ID, 1/47 and 3/47 respectively. For 32 EFPY dpa are 6.498 x 10-2, 4.302 x 10-2, 1.275 x 10-2 for RPVID,1/4T and 3/47 respectively.
- 6. The 12 EFPY fluence on the RPV was calculated to be 1.69 x 1019 n/cm2 . Fluence rate of 1.2933 x 10 18 (n/ce2 ) per year was used to develop fluence value for 16, 20, 24, 28, 32, 36 and 40 EFPYs.
- 7. The controlling material for RPV cperations was determined to be weld 2-203 with Cu 0.125 and Ni 1.015. P-T limit data was developed for 12, 16, 20, 24, 28, 32, 36 and 40 ETPYs. The data also reflects different heat-up and cool down rates.
- 8. Based on the Reg Guide 1.99, Rev. 2 approach, the end of the life adjusted reference temperature for the controlling material will be 222'F at the RPV ID and 201'F at the 1/47 location.
- 9. Based on this study the Calvert Cliff Unit 2 reactor vessel has adequate material toughness for continued safe operated to end-of*
life irradiation conditions. PEG /CALVERT 2
F > -l
- 2. IbrfRODUCTIObl The long-ters degradation of reactor vessel structural material properties due to irradiation is measured by the evaluation of material surveillance ;
t capsules removed periodically from the reactor vessel. Combustion Engineering, Inc. has provided the material surveillance program for the f Calvert Cliffs Nuclear Power Plant Unit 2. To date, one surveillance capsule j has been removed and tested (Reference 1). Typically, the capsules contain ! Charpy V-notch and tensile specimens in various combinations representing the present materials, weld metal and heat-affected zone (HAZ) material of the vessel beltline region. In addition, the capsules contain iron, nickel, titanium, sulfur, uranium and copper neutron flux monitors and temperature , monitors. The objective of the survehlance program is to correlate changes in vessel material fracture toughness properties with neutron fluence so that the reactor vessel pressure temperature limits can be determined. Recentlys the concern about pressurized thermal shock has placed addittoral requirements to determine the irradiated condition of vessel inner surface. The applicable , regulations and documents that address the continued licensibility of reactor , vessels include 10 CFR Pt.rt 50, Appendices, B, 0 and H,10 CFR Part 50.61, NRC Standard Review Plan 5.3.2, Regulatory Guide 1.99, Rev 2 and ASME Boiler and J Pressure Vessel Code Section III, Appendix G. ; In this report a new neutron flux analysis for the reactor vessel is presented. Based on the analysis, projected vessel fluence conditions were , developed for assessing the long term integrity of the vessel. Pressure-temperature limit conditions are presented for 12, 16, 20, 24, 28, 32, 36 and 40 effective full power years of operation. PEG /CALVERT 3
. 3. MATERIAL PROPERTY atu t 6 i J In developing the pressure-temperature limit conditions for reactor ; vessels, the important material property required is the hererence Temperature -
- Nil Ductibility Transition (RTWDT) of various vessel pressure boundary .
materials. The locations within the pressure boundary that are of interest- ; t include nozzle area, closure head region and the beltline region.- The nozzle and closure head regions are locations of high stress concentrations while the i beltline region is subject to neutron embrittlement with time. Early in the life of the reactor vessel, nozzle and closure head regions tene to control the pressuie-temperature limit curves. However, with time the i beltline irradiated materials become controlling. In the case of Calvert , Cliffs Unit 2, the controlling material for 12 EFPYs and beyond is the i Between the nozzle and the closure head region, the beltline region material. closure head region poses greater restrictions on the PT limit curves. 10 CFR 50
- Fracture Toughness Requirements for Light-Water Nuclear Power Reactor" requires the closure head region materials to have, as a minimum, ,
RTNDT + 120' for normal operations and RTNDT + 90' for hydrostatic pressure ano leak tests. In the case of non-availability of RTNDT data or where the data is not reliable, the RTNDT for closure region is determined using the ,
- method in WRC Standard Review Plan 5.3 2, Branch Technical Position 5-2, MTEB. Based on this method, the RTNDT of the closure head material was assessed to be 60'F.
To provide the submittal to NRC on the Pressurized Thermal Shock issue, Reference 2 extensive materials data information was developed for all the beltline materials (Reference 2). A key information needed is the material chemistry, especially Cu and Ni, The Cu and Ni values for the be: Cline PEG /CALVERT 4 j_
materials are presented in Table 3.1. These chemistry values are used in - Section 5 of this report to develop the irradiated Adjusted heference Temperature for the critical beltline materials. Figure 3.1 presents the ; Calvert Cliffs Unit-2 Reactor Pressure Vessel map with all the key beltine welds identified. Table 3.1. Calvert Cliffs Unit No. 2 Reactor Vessel Beltline Material Properties ID Cu (w/o) Ni (w/o) Initial RTNDT(er) 2-203(1k 0.12 1.01 -56.0 A,B,C 3-203 0.23 0.23 -80.0 A,B,C 9-203 0.22 0.05 -60.0 s D-8906-1 0.15 0.56 10.0 D-8906-2 0.11 0.56 10.0 - D-8906-3 0.14 0.55 5.0 D-8907-1 0.15 0.60 -B.0 D-8907-2 0.14 0.66 20.0 l D-8907-3 0.11 0.74 -16.0 (I) The value used for Ni is an upper bound due to the lack of available data. The generic initial RTNDT = -56'F, is used for this weld. PEG /CALVERT 5
.. -== m 4
i i
! *u ;
t's j O N n '
- r= .
t- . 3- p 3 l M.
- Mfil.E T _ IEET IEET meytti tu rr nu rt erstrf H
39
.s' .
p 9095*2 ba.3 9 9995 3 D* Ste5-8 .. 955 2 ee 1 a
. sm u
i .s een j 0 o p.geot 2 9..ges e 9 9986 3 9 99EE 2
- x i
; e aa_______-__
es n
= ..e .. _-. --_----__ . ___.g.CeaE._ ___________ ___-___-.. ..-.___
. = 4 4 - , ses Y a 8'383
& - i ees =E .. ..
- ..2 3 .
are - a t i I l 3 .e, eee see ; i> 1 i artsustunt tetettem .setarts i Figure 3.1 calvert clirrs Unit-2, Reactor Pressure Vessel Map i i I
+ e . . , , . - , . - . - . . - ._. - ___,---_--.-_ _ - _--..._=. -..___- ---
I i
- 4. NEUTRON FLUENCE CALCULATIONS h
In this section a detailed neutron transport analysis for the Calvert Cliffs-2 is discussed. A discrete ordinates calculation using the DOT-4 [3] ' code was performed to obtain the radial (R) and azimuthal (e) fluence-rate distribution for the geometry is shown in Figure 4.1. As part of the reactor cross section model the details of the surveillance capsule - geometry and . location has to be modeled. The inclusion of the surveillance capsulea in the R-e model is mandatory to account for the significant perturbation effects from the physical presence of the capsule. Figure 4.2 represents the actual capsule geometry versus the DOT model used in the analysis. The DOT model incorporates a homogenized mixture of inconel and water to simplify the , overall model while maintaining the required accuracies for the calculation. ' The DOT-4 calculations were performed with the first 33 groups of the 47
..l group energy structure for the SAILOR [4] cross section library. The 47 group structure is given in Table C.1 of Appendix C. An S8 angular structure and a P 3 Legendre cross-section expansion were used. The fine-group dosimeter cross-sections for the 63Cu (n, o )60Co reaction were obtained from ENDF/B-V file and were collapsed to 47 groups using a fission plus 1/E weighting [
spectrum. The other reaction eross sections were taken from the SAILOR cross section library. The dosimeter activation cross sections are given in Table l . , l C.2 of Appendix C. The DPA cross sections were obtained from MACLIB. . The results of the transport calculations for the RPV fluence analysis are presented in Tables 4.1 through 4.15. Appendix A discusses the determination of space-dependent source distribution for the transport analysis performed for Calvert Cliffs Unit 2. Appendix B is a description of the 3D Flux synthesis method used in this analysis. Appendix C gives the l PEG /CALVERT 7 1
- eule ~ 6-m R
4
?!
Q m 5-RPV , 4 RPVtsER OO4pMC00ER 4* 9ARREL E1 REFLECTOR g ql g BAFFLE 3' L L_7 PERIPERAL CORE 3 3 ~1 SWER CORE l I II L__L_JI
- il 2- I I t_ __ _J l'= --4 II a
I i I _jlII i ' t-- M 11 O I I II O ' 1 2 3 I I Il 6 I Il h e IB I 1 l4 I l5 is >lIl ls I II i I A l II I ! E 1 11 1111 El 1 F: 3 - 24 52 33 24 : E 3 EE ES E E $5 3 Figure 4.1 Calvert Cliffs Ur. t-2 DOT-4 RO MODEL' (Surveillance Capsules at 7' and 14' are not shown) (Scale: 1 Large Division = 11.5 inches) y e w r 'P e **t' h p* % +w 3 -Nw swp.. -r - -wm -
'T et 'W'- Te W
i ev- ACTUAL GE0WETRY
= 2.214 ,
l
=- -1.5 00~ 1 - o' e .138 j b ," ARE AS ($0. N.)
1.539 h STEEL = 1.12 5 1 C N M EL Hao = 1.322 l
.750 NCON 600 = 0.960 9 / .
l p TOTAL = 3.407 I 00T WCDEL ; i 1
= 2.214 = .3945 =--- 1.5 00 - = .357 * 'em) - - - - - 2sene '
h h ' p
-- - - - - 217 H 7 - 217.01 750 , - - - g1s og2 0 t .- - - - - 215.06 I I I I ,
I I I .i I I ,
~
1 l 1 l l l HOWOGENOUS WIXTURE
- I I I I R 3 g ; 0.42 NCON 600
,, 7 s b" O 0.58 H 0 g c n n ~ I a :
I $ $ ! I I i l l PEG /CALVERT 9 lb
m L group. structure and' the dosimeter cross _ sections used in the calculations.
' Appendix-D discusses the expressions used in obtaining the measured saturated
- activities; and Appendix E gives the power time history for cycles 1-8. l The first surveillance _ capsule (263') wat removed from Unit 2 following
. cycle 4 after 4.58 EFPYs of operation. . A detailed' capsule testing and analysis was conducted and reported in Reference (2). The dosimetry and vessel fluence evaluation provided information on the vessel fracture toughness conditions for 3 cycles of 12 months. each and one 18 month cycle. -Since the removal of- the 263' capsule, 18 month cycles have been used for cycles 5-7; and beginning with cycle 8, a 24 month is being employed. A 24 ,
month cycle is planned for future operations. In order to verify the accuracy of the present calculations, computed . H results have been compared on an absolute basis with experimental results from the earlier capsule analysis. The average C/E value obtained for the Fe56, 4 NiS8, cu63, U238, 7146 and Np237 activities was 1.07. The worst C/E obtained 7as 1.12 for U238. This good agreement indicates that the transport alculation methodology is accurate and that projected fluences should be , n? liable. In addition the experimental results can be used to adjust the - calculated values to obtain even better agreement for the 12 and 18 month \. s cycles (no experimental data is presently available for 24 month cycles). The adjusted - fluence rates, which differs from the original calculated values by
~ .only about 105, were used to obtain the projected RPV fluence.
The transport calculations indicate the maximum fast fluence (E)1 MeV) at
- the 0-T location of the Calvert Cliffs Unit-2 RPV will be (a) 1.38 x to 2
n/cm2 at the end of the present cycle (cycle 8), and (b) 4.28 x 10 19 n/cm at the end of 32 EFPY, assuming all future cycles to be the 24 month loading configuration. PEG /CALVERT 10
, _. . _~
l 1 , Table 4.1 Spectrum Averaged Cross Sections at Center of S.C. ,- eeff(b)' oeff(b) eeff(b) Reaction y Month Cycle 18 Month Cycle 24 Wonth Cycle-54 Fe(n.p) 0.135 0.135 0.137 Ni(n p) 0.171 0.172 0.174 0 Cu(n,a) 0.00160 0.00160 0.00165 238U (n,f) 0.452 0.452 0.454 46 Ti(n.p) 0.0231 0.0231 0.0236 j [a(E)4(E)dE L oeff. . 4,ct,g l , l
- 1 p
- i i
l-l l l
]
l L r l- . I
* * '1 l.
PEG /CALVERT 11 l :
4 Table 4.2-a Absolute Calculated Neutron Fluence Rate Spectra (i.e., group flux) at the Center of 7' Surveillance Capsules (SC) for Calvert Cliffs Unit-2' l Upper Energy _ . d n-en -2,,-l Group -(WeV) 12 M - 18 W 24 M { 1; 1.733E+01 1.59292E+07 1.52822E+07 1.27832E+07 l 2 1.419h01 6.93740h07 6.654975+07 5.56482C+07 i 3 1.221E+01' 2.88874E+08 2.768665+08- 2.29367h08 1 4 1.000h01 5.90160E+08 5.65460E+08 4.66652E+08 ; 5 8.607h00 1.06918h09 1.02397E+09 8.40528h08 * ' 6 7.408h00 2.686995+09 2.57274h09 2.10562h09 7 6.065E+00 3.87362h09 3.70630E+09~ 3.01119h09 #
-8 4.966E+00 6.86589h09 6.56254h 09 5.26914E+09 I
9 3.679h00 4.85415E+09 4.63744h09 .3.70105h09
'10 3.012h00. 3.56590E+09 3.40593E+09 -2.71246E+09 11 2.725h00- 4.02853h09 3.84738E+09 3.06022h09 12 2.466E+00 1.98716E+09- 1.89776h09 1.50951E+09 13 2.365E+00 5.24276h08 5.00711h08 3.98751h08 14 2.346h00 2.48412E+09 2.37234h09 1.88732h09 15 2.231h00 5.92853E+09 5.66162E+09 4.50071h09 16- 1.920h00 6.01068h09 5.73971h09 4.55897E+09-17 1.653E+00 7.83818h09 7.464565+09 5.94153h09 ',
18 1.353h00 1.07824E+10 1.02965hl0 8.17687h09 19- 1.003E+00 6.619765+09 6. 321465+09. 5.020595+09 . 20~ 8.208E-01 3.41830E+09 3.26402h09 -2.58966E+09 21 7.427E-01 7.39563E+09 7.06203h09 5.60636h09 22' 6.081E-01 6.29429h09 6.01018E+09 4.77007E+09 23 4.979E-01 6.70364E+09 .6.40121h09 '5.08137h09 24 3.688E-01 6.70364h09 5.40516h09 4.29365h09 25 2.972E-01 9.26295h09 8.84492E+09 7.02081E+09 26 1.832E-01 7.820585+09 7.46754E+09 5.92668E+09 27 1.I11E-01 5.973565+09 5.70375E+09 4.52540E+09 28 6.738E-02 6.51274E+09 5.263695+09 4.17532E+09 29- 4.097E-02 2.16627E+09 2.06833E+09 1.64014h09 30 3.183E-02 9.612495+09 9.17733 h08 7.27404h08 31 2.606E-02 1.668365+09 1.583375+09 1.25580E+09
'32 2.418E-02 1.03785h09 9.909265+09 7.86043h08 .- 33 2.188E-02 2.77008E+09 2.64510E+09 2.09854E+09 PEG /CALVERT 12 . ~ . . _ _ . _ _ - . _ . _ . . . . ~ _ _. .. . . _
N Table 4.2-b Absolute Calculated Neutron Fluence Rate Spectra (i.e., group flux) at the Center of 14' Surveillance Capsules (SC) for Calvert Cliffs Unit-
'I 2 Upper Energy 4 n-en -2, ,4 Group (NeV) 12 N 18 N 24 W l- 1.73 m 01 1.36555h 07- 1.2800 m 07 1.03138h07 2 1.419E+0) 5.90405E+07 5.53381E+07 4.449975+07 1 3- 1.221E+01 2.395615+08 2.24094E+08 1,7717 m 08 4 1.000h01 4.82710h08 4.51228E+08 3.54086h08 ,
5 8.607E+00 8.59415E+08 8.0262 m 08 6.23235E+08 6 7.408h00 2.13034E+09 1.98863E+09 1.534395+09 7 6.065E+00 3.00697h09 2.8041 2 09 2,13264 h 09
;fJ -
8 4.966E+00 -5.19617h09 4.83870h09 3.59620h 09' , 9 3.675E+00 3.62438bo9 3.37305h09 2.47393h09 ' L.. 10 3.012h00 2.64975h09 2.46516h09 1.7986 m 09 l J' 11- 2.725h00 2.98304h09 2.77488h09 2.01863E+09 3 f 12 2.466E+00 1.46982h09 1.3671 2 09 9.94068h08 13 2.365E+00 3.88458h08 3.613765+08 2.63181bO8 14 2.346h00 1.83812E+09 1.7098 m 09 1.2432 6 09 i [ 15 2.231E+00 4.38738h09 4.08118h09 2.96463h09 16 1.920E+00 4.44645h09 4.136075+09 2.99903E+09 17 1.653E+00 5.79570E+09 5.390885+09 3.9035 m 09 1.353h00 {. 18 7.99680h09 7.4391 m 09 5.391795+09 19 1.003E+00 4.918895+09 L4.576365+09 -3.3178 m 09 20 8.208E-01 2.53234E+09 2.355565+09 1.70335h 09 !
=;
a 21 7.427h01 5.50761h09 5.1246 m 09 3.71182E+09 5- 22 6.081E-01 4.68683E+09- 4.360985+09~ 3.15694E+09 L 23 4.979E-01 4.98422E+09 4.637615+09 3.3587 m 09 24 3,688E-01 4.23105E+09 3.93799E+09 2.85763h 09 25 2.972E-01 6.89253 h09 6.41386h09 4.644765+09
-{ 26 1.832h01 5.82004E+09 5.41600E+09 3.92080E+09 m
27 1.I11E-01 4.44033E+09 4.13191E+09 2.9890 m 09 28 6.738E-02 4.025275+09 3.81070E+09 2.75518E+09 s 29' 4.097E-02 1.608465+09 1.49660h09 1.08127E+09 30 3.183E-02 7.13850E+08 6.64133E+08 4.1989 m 08
.n 31 2.606E-02 1.23418h09 1.14840E+09 8.301188+08 ,
32 2.418E-02 7.726323+08 7.19027E+08 5.2013 W 08 33 2.188E-02 2.06304E+09 1.919785+09 1.3876 2 09' 4 PEG /CALVERT 13
4
- l'
}
Table 4.3-a Calculated Saturated Midplane Activities in Calvert Cliffs Unit-2 Surveillance Capsules (12 M Cycle) ' Saturated Activities for 7* Saturated Activities for 14' Surveillance Capsule. 8a/a Surveillance Censule. Ba/r-Desineter R= R= R= R= R= R= ? or Flux 216.379es 217.014es 217.649ea 216.379es 217.014es $17.649ea 54 Fe(n,p)54Mn 5.95E6 5.36E6 4.78E6 4.58E6 4.13E6 3.70E6 i h' 58ggg,,p)58Co! 8.45E7 7.62E7 6.81E7 6.48E7 5.86E7 5.25E7 p. 630u(n.o)60Co 7.40EC 6.66E5 5.98E8 5.95E5 5.36E5 4.82E5 237Np(n,f)INICs 2.25E7 2.llE7 1.92E7 1.68E7 1.58E7 1.44E7
~
238U (n.f) 37Cs 4.75E6 4.35E6 3.91E6 3,58ir14 3.29E6 2.96E6 / 46 Ti(n,p)46Sc 1.66E6 1.49E6 1.33E6 1.31E6 1.18E6 1.05E6 ((Esl.0 MeV) 6.84E10 6.35E10 5.73E10 5.llE10 4.76E10 4.31E10 4(E20.1 WeV)l 1.22 Ell 1.17 Ell 1.08 Ell 9.llE10 8.71E10 8.10E10 ? , ! s l ? l' i l l [
! l l l PEG /CALVERT 14 L !
w - . - ._ . . -. _
- . . - . ~ . ..
j. i Table 4.3-b Calculated Saturated Widplane Activities in Calvert Cliffs Unit-2 Surveillance Capsules (18 M Cycle)- Saturated Activities for 7' Saturated Activities for 14'
-Surveillance Capsule. Bo/a Surveillance Capsule. Bo/r .j Desineter E= R= x= R= R= R=
or Fluz 216.379es 217.014es 217.649ea 216.379em 217.014cm 317.649em 547,(n,p)54Mn 5.69E6 5.12E6 4.57E6 4.27E6 3.84E6 3.44E6' 58Ni(n,p)58Co 8'.08E7 7.29E7 6.51E7 6.0387 5.46E7 4.88E7 63 14 0u(n.o)60Co 7.08E5 6.38E5 5.73E5 5.55E5 5.00E6 4.50E5 237Np(n f)l37Cs 2.15E7 - 2. 01 E7 1.84E7 1.56E7 1.47E7 1.34E7 i 238U (n,f)l37Cs. 4.'54E6 4.16E6 3.74E6 3.33E6 3.06E6 2.76E6 46 Ti(n.p)46Sc 1.59E6 ' l.43E6 1.28E6 1.22E6 1.10E6 9.84E5 4(E>l 0 WeV) 6.53E10 6.06E10 5.48E10 4.76E10 4.43E10' 4.01E10 4(E>0.1 WeV) 1.17 Ell 1.llEll l ~.03 Ell 8.48E10 8.llE10 7.54E10 J l s l l l !- l l l l l FEG/CALVERT 15
e , l 1 Tot.le 4.3-c Calculated Satitrated Midplane Activities in Calvert Cliffs
,, Unit 2 Surveillance Capsules (24 M Cycle)
Saturated Activities for 7' Saturated Activities for 14' Surveillance Capsul,e, Bo/r .%rveillance Capsule. Bo/g_ Dosimeter R= R= R= R= R= R= or Flux , 216.379em 217.014em 217.649em 216.379em 21't . 014 ca 217.649em-3 Fe(n.p)04Mn '4'6dE6 4.14E6 3.70E6 3.22E6. 2.91E6 2.61E6 ( N!(n p)58Co '6.52E7 5.8DE7 5.26E7 4.54E7 4.11E7 3.68E7
- Cu(n,a)0 Co 5.82E5 5.24E5 4.71E 4.32E5 3.89E5 3.51E5 Np(n,f) Cs 1.71E7 1.61E7 1.47E7 1.14E7 1.08E7 9.87E6 238U (n,f) 37Cs 3.64E6
. 3.34E6 3.00E6 2.47E6 2.27E6 2.04E6 46Ti(n,p)46Sc 1.30E6 1.16E6 1.04E6 9.36E5 S.42E5 7.56E5 . d(E>1.0 MeV) 5.22E10 4.84E10 4.38E10 3,49E10 3.25E10 2.95E10 d(E>0.1 MeV) 9.31E10 8.87E10 8.24E10 6.18E10 5.92E10 5.51E10 4
d' 1 6
;?
g i[ l L 1 4
' PEG /CALVERT 16 i
I
. . . . _ . . . - . . . . . , .- -- . . . _ , . . - . . . ~ . .
. -. - .- ~ .- .. . . . - . --
1 Table 4.4 Non-Saturation Fac[ ors (h) Used in Dosiaeters Activities Dosimeter h) 3 (Cycles 1-3) h4 (Cycle 4)
-I Fe54 0.7007 0.6110 .N158 0.5159 0.7394 ' Ou63 0.3211 0.1642 T146 0.5560 0.7542 U238 0.0699 0.0313 "' h a non-saturation factor -g. n' E j j P)(1-e-A T ) e-A(T-t)) =g._ 8 where factors P) T) and T-t) are given in Appendix C. ;
j l l l l
.l I
l l 1
- t. . .
l l 1 : l.i l l { PEG /CALVERT 17
- v -'re -
~r -
ene . , evre, , , , - , , a - - --..-_.- - - - . _ _ - _ - _ _ _ - - - - - - - . --
p: Table 4.5 Comparison of Unadjusted Calculated and Measured Parameters of Calvert Cliffs-2 Dosiaaters Removed Following Cycle 4 Parameter Measured III Calculated I8) C/E Fe54. dosimeter activity (dps/gn)(2) 3.761E6 4.17E6 1.11
. Ni58 dosimeter activity (dps/gn)(2) 5.079E7 5.40E7 1.06 Cu63 dosimeter activity (dps/gn)(2) 2.88085 2.79ES+ 1.04 - U238 dosimeter activity (dp:/gn)(2) 3.78E5 4.23E5 .l.12 4 T146-dosimeter activity (dps/ga)(2) 1.07E6 1.09E6' l.01 # values taken from Reference 1.
10R (2)At center of capsule; time of renoval from reactor. i L (>>(%,),.dosimeterativityaiEx_. t kR3*
- IASAT 18Nh. 4 l~
h where (ATOR)3 (ASAT)12M 93 , i and (ASAT)12M, (ASAT)18M saturated activites for 12 and 18 month cyclet 'j respectively, and h t +3' h4 n n-saturation factors from Table 3; j r.= time (d) from 80C3 to E004 = $79 days, l gpl 6 i F PEG /CALVERT 18
" M -t "g-'e * + ,er-
f
$ i i
l l Table 4.6
" Measured" Saturated Activities (AMT) for 12 and 18 Month )
Cycles, Based on Cycles-1-4 Dosfeetry(2) Center of S.C. (12 M Cycle) Center of S.C. (18 M Cycle) < i l Dosiseter (1) ( 2.' (2) A'IOR .A SAT Q(1) A SAT 547,(n,p)54Mn 3.76E6 4.84E6 3.76E6 4.62E6 58gg(n,p)58Co 5.10E7 7.19E7 5.10E7 6.88E7 L. 63N(na)60Co 2.68E5 6.41E5 2.68E5 6.14E5' 238U (n,f)IIICs 3.78E5 3.88E6 3.78E5 3.71E6 (. 46 Ti(n.p)46Se 1.07E6 1.47E6 1.07E6 1.41E6 , (II A values taken from Reference 1. 10R L (2)See Appendix D for definition of seasured saturated activities 1' 1 i b
!f i .i , PEG /CALVERT 19 -=y 3 -- m1 r---3, i---..w- -- -
l . Table 4.7-a Determination of " Adjusted" 4 (>l) in S.C. for 12 Month Cycles CENTER FLUK: Dosimeter Measured kAT Calculated a,gg Adjusted 4 (>1)(I)- -
.- Fe(n.p)54Mn 4.84E6 0.135 5.73E10 58 g3(3,p)58Co 7.I9E7 0.171 6.00E10 l 630u(n,a)60Co 6.41E5 0.0016 6.llE10 l
[ 238U (n,f)I0ICs 3.88E6 0.452 5.65E10
! 46Ti(n,p)46Sc 1.47E6- 0.0231 6.25E10 l
Average 5.95E10 [A SAT l ****"I'd (;) Adjust 4 (>l) m y,g,{() ,,3,, i , I l 1 l i 4 #k' ' l' e r f-
-PEG /CALVERT 20
'l
I i
.l Table 4.7-b Determination of " Adjusted" $ (>l) in S.C. for 18 Month Cycles .l CENTER FLUK:
Dosimeter Measured A SAT Calculated a,gg Adjusted ( (>1)(I) 54Fe(n.p)54Mn 4.62E6 0,135 5.47E10 58pgg,,p)58Co 6,88E7 0.172 5.71E10. , 630u(n,a)60Co 6.14E5 0,0016 5.85E10 238pgn,g)137Cs 3.71E6 0.452 5.41E10
't 46Ti(n.p)46Sc 1.41E6 0.0231 6.00E10 Average 5.69E10
[A SAT I 8'""I'd (j)^ I"' " No la,gg) cale.
~
s b ,
- g-t 9
-l.
l PEG /CALVERT 21
~
l
'i g . ?
Table 4.8 Reintive Arlauthal Variation I") In p (> 1 WeV) l I' Incident on Vessel
;l J I 12 W Cycle _18 W Cycle 24 W Cycle 1 1.25000E+00 '1.000 1.000 1.000 2 3.75000E+00 0.992 0.987 0.965 3 5.62900E+00 0.963 0.953 0,w01 4 6.37750E+00 0.918' O.906 0.847 i 5 6.64000h00 0.891 0.878 0,814 !
6 17.00000E+00 0.870 0.856 0.785
.7 7.35950E+00 0.870 0.854 0.774 8 7.62200h00 0,882 0.864 0.777 9 8.37099E+00 0.901 0.880 0.780 10 9.62500h00 0,877 0.853 0.740 11 1.08750E+01 0.834 0.808 0.690 $
l- 12 1.21250E+01 0.784 0.756 0.640 L 13 1.30040E+01 0.745 0.717 0.608-14 1.33775E+01 0.717 0.690 0.585 l- 15 1.36400h01 0.690 0.663 0.563 16 1.40000E+01 0.664 0.637 0.541 ' L 17 1.43605E+01 0.653 0.626 ' O.533 18 1.46220h01 0.654 0.626 0.533 19 1. 49300E+01 0.658 0.629 0.536 - l 20 1.55590hD1 0,649 0.620 0.529 - 21 1.65000h01 0.624 0.595 0.514 22 1.75000E+01 0.603 10.573 0.501 23 1.85000E+01 0.586 '0'557
. 0.491 24 1.'95000E+01 0.577 0.549 0.485 1 25 2.05000E+01 0.575 0.546 0.483- G i
- e. _
26 -2.15000h 01 0.579 0.549 0.483 L, 27 2.25000 h 01 0.586 0.556 0.485 28 2.35000E+01- 0.596 0.565 0.488
'29 2.45000E+01 0.607 0.576 0.490 -
30' 2.55000E+01 0.617 0.585 0.492 g 31 2.65000h01 0.624 0.592 0.491 # 32 2.75000h01 0.628 0.596 0.487 33 2.84000 h01 0.629 0.597 0.481
. 34 2.98118E+01 0.620 0.588 0.468 l' 35 3.09600E+01 0.612 0.581 0.461 36 3.12330h01 0.611 0.580 0.459 37 3.158475+01 0.609 0.578 0.486 38 3.20500h 01 0.607 . 0.576 0.451 39 3.25500E+01 0.604 0.573 0.447 40 3.30500h 01 0.600 0.570 0.442 41 3.35500E+01 0.595 0.566 0.437 42 3.41962h01 0.589 0.560 0.431 ~
43 3.47000h01 0.584 0.556 0.428 44 3.49150E+01 0.581 0.553 0.426 45 3.53723h01 0.573 0.545 0.420 46 3.60720h01 0.561 0.534 0.413 47 3.71220h01 . 0.544 0.518 0.402 PEG /CALVERT 22 1
, - -- . _ - . - . ~ . . . _. . . . - . . ;' ' hj 9 -k;
( ! .: l 4 L 48 3.81720E+01 0.527 0.503 0.392 49 3.88720E+01 0.517 0.494 0.385 50 3.95720E+01 0.508 0.486 0.380 51 4.02360E+01 0.501 0.480 0.375 52 4.07750E+01 0.498 0.477 0.373 53 4.12500E+01 0.496 0.475 0.370 54 4.17500E+01 0.493 0.474 0.368
55 4.22500E+01 0.492 0.473 0.366 56 4.27500E+01 0.492 0.473 0.364 57 4.32500E+01 0.492 0.473 0.363 58 4.37500E+01 0.493 0.474 0.363 l
59 4. 42500E+01 0.494 0.475 0.363 60 4.47500E+01 0.494 0.475 0.363 ("} Peak value normalized-to unity 2
).
PEG /CALVERT 23 m
1 i 1 Table 4.9 Calculated 4 (bl) in Surveillance Capsules and Lead Factors III for Calvert Cliffs Unit 2 AZIMUTHAL 14 CAT 10N: 0 = 7' RPV Lead 3/4T Lead . j 1/4T_ Lead-Cycle Type Factor Factor Factor 12 M 1.26 2,11 10.35 18 M- 1.24 2,09 .10.23 24 M l.18 1.97 9.74 AZIMUTHAL IDCATION: 0 = 14' RPV Lead I/4T Lead 3/4T Lead Cycle Type Factor Factor Factor
-12 M 0.94 1.58 7.75 la M 0.91 1.53 7.48 24 M 0.79 1.32' 6.54 II)LF = 4 (>l) is F
gg) , where 4 pv of the 4,, sur.veillance the calculated fluz at the center caps' ale,. and (Py is the maximum calculated flux. incident at the indicated RPV location. L L 1 l l , PEG /CALVERT 24 l-t
I- l l J hl Table 4.10 Peak 4 (>l) in RPV of Calvert Cliffs-2 RadialI ") 12M Cycle (b)12M Qele I ') 18M CycleI ') 18 Month (b) 24M CycleI ') Location adjusted calculated calculated adjusted calculated IR RPV (R=221.29) 4.72E10 5.04E10 4.89E10 4.59E10 4.10E10 1/4 T (R=225.98) 2.82E10 3.01E10 2.90E10 2.72E10 2.46E10 , 3/4 T '(R=236.93) 5.75E9 6.13M 5.92E9 5.56E9 4.97E10 s t (a)RPV liner begins at 220.5 l- RPV begins at 221.29 i RPV ends at 242.41 l: Obtained by dividing adjusted S.C, flux-(see Table 4.7) by lead factor for 7' capsule in Table 4.9.
- 1. . .
! -('}Obtained by dividing calculated S.C. flux in Table 4.3 by lead factor in - L Table 4.9. -(Note: no experimental data it available for 24 month l: cycles.) J.; l
- i. i L-PEG /CALVERT 25
's
,e-- --,-,-n,- - , , . , , , , . . . . , . ,,-n- ,n - ,,_,.,.,,-..n - -
i Table 4.-11 DPA Values (Displacements ^ Per Atom Per Second) in RPV of r Calvert Cliffs-2 Due to Neutrons with Energie.9 Above 15 Ksv > Radial Location 12W 18M 24M 4 220.895 7.70120E-Il 7.447685-11 6.28355E 11. 222.102 ' 7.12429E-Il - 6.88783E-ll 5.803F,28-11 223.727. 6.20802E-ll 5.99981E-11 5.04510E-11 . 225.351= 5.30644E-11 5.126475-11 4.30195E-Il 226.976 4.50996E-11 - 4.35527E-Il 3.64730E-Il 228.601 3.82092E-Il 3.688425 3.08151E-11 230.225 3.22920E-Il 3.11603E-11 2.599045-11 231.850 2.71842E-Il 2.62221E-Il 2.18313E-Il 233.475 2.27459E-Il 2.193375-11 1.82302E-11 235.099 1.88462E-11 1.81679E-11 1.50774E-Il 236.724 ' l.53725E-Il 1.48154E-11 1.22790E-11 238.348 1.22209E-Il 1.17754E-11 9.t h.867E-12 239.973 9.27444E-12 8.93477E-12 7.39050E-12 241.598 6.21949E-12 5.99104E-12 4.95297E-12
't l~
1. l l PEG /CALVERT 26
- e. t e,- .. - y . ,,,w v4 ,.%e.,a.m.w- , , _ _ . ...,i..w,e-.. . . - - - , . - , - , . - - - - - . -
[ D , -e Table 4.12-a Calculated' Fluence hitigroup-Spectra in Reactor
~
Pressure Vessel at Peak. Axial and Arisuthal Location ( 0 =~0') for Calvert Cliffs Unit-2 (12M Cycle) 4 nece -2,,-l ' Upper 0-T 1/4-T 3/4-T Group' Enerry (NeV) R=221.29 E=225.98 M93 ., , + 1 1.733h01 0.13903E+08 0.66299h07 0.ll34th07 2 1.41 m 01 0.60230E*08 0.29019h08 0.49589h07 3 1.221h01 0.24316h09 - 0.I132 2 09 0.176395+08 4 1.000h01 0.48806E+09 0.226365+09 0.33443E+08 5 8.607E+00 0.86726h09 0.39420E+09 0.53867C+08 6 7.408h00 0.2162 m 10 0.95554E+09 0.ll839h09 L 7 6.065h00 0.30616E+10 0.13013h10 0.14864h09 l- 8- 4.966E+00 0.52688E+10 -0.22331E+10 -0.25428E+09 9 3.679h00 0.36265h10 0.16645b10 0.21901h09~ ' 10 3.012E+00 0.26524h10 .0.1304 m l0 0.18234h 09 11 2.725h00 0.2998.m l0 0.15343E+10 0.3244 2 09 12 2.466h00 0.14882h10 0.76602E+09 0.ll316h 09 13 2.365E+00 0.38856h09 0.22000E+09 0.36853E+08 L 14 2.346h 00 0.18615E+10 0.10640E+10 0.183095+09 15 2.231h00 0.45795E+10 0.26909b10 0.4696 m 09 L 16 1.920h00 0.47468E+10 0.3188 5 10- 0.68395E+09. 17 :1.653E+00 0.63481E+10 0.44750E+10 0.1020lkl0 0 18' l.353E+00 0.95161E+10: 0.7881 m l0 0.237065+10 L 19 1.003E+00 0.61356b10 0.5674 m l0 0.21153E+10' l- 20 8.208E-01. l' 0.29275E+10 0.23763E+10 0.81196h09 21 7.427E-01 0.82006E+10 0.89881E+10 0.42637E+10 22 -6.081E-01 0.68423E+10 0.733365+10 0.36954&+10 lI 23 4.979E-01 0.738675+10 0.82570h10 0.41833E+10 I 24- 3.688E-01 0.76526E+10 0.97683E+10 0.59506E+10 L 25 2.972E-01 0.967895+10- 0.10321E+11 0.54995E+10 l 26 1.832E-01 0.80861E+10 0.10286h11- 0.59507E+10-27 1.111E-01 0.60800bl0 0.63931E+10 0.35515E+10 28 6.738E-02 0.51275bl0 0.49135E+10 0.2566 m l0 29 4.097E-02 0.1798 m l0 0.13050E+10 0.64403E+09 30 3.1835-02 0.901295+09 0.40188E+09 0.19741h09 31 2.606E-02 0.23025h10 0.2764 m l0 0.178475+10 32 2.418E-02 0.14558h10 0.16674E+10 0.ll334h10 33 2.188E-02 0.27861h10 0.25660E+10 0.1495 & l0
, , . ~ . - - _ _ _ . . _ _ . . . . . _ . . . _ . _ . . . _ . . _ _ ~ _ _ _ . _ _ _ . - . . . - -- . . . . . . . _ _ - . _ . - _ _ . - . _ _ _ -
M' i t Table 4.12-bi Calculated Neu' tron Fluence Multigroup Spectra in Reactor
' Pressure Vessel at Peak Axial and Asimuthal Location ( 6 = 0 )
for Calvert Cliffs Unit-2 (18M Cycle) e nece -2,,-l Upper i 0-T 1/4-T 3/4-T Group Energy (WeV) R=221.29 R=225.98 R=236.93 1 .l 733E+01 0.13469E+08 0.64234E+07 0.109765+07 2 1.419E+01 0.58343B+08 0.28108E+08 0.47986E+07 e 3 '1.221E+01 0.23651E+09 0.10963E+09 0.17062E+08 4 1.000E+01 0.472685+09 0.219175+09- 0.323485+08~ 5 8.607E+00 0.83981E+09 0.38166E+09 0.52098E+08 : 6 7.408E+00 0.20943E+10 0.92521E+09 0.ll452E+09 7 6.065E+00- 0.29638E+10 'O.12597E+10 0.14373E+09 8 4.966E+00 -0.50983E+10 0.21604E+10 0.24572E+09 L 9 3.679E+00 0.35085E+10 0.16097E+10 0.21155E+09 l 10 3.012E+00 0.25658E+10 0.12610E+10 0.17610E+09 L 11 2.725E+00 0.29002E+10 0.148365+10 0.21672E+09 12 2.466E+00 0.14395E+10 0.74066E+09 0.10927E+09 13 2.365E+00 0.37586E+09 0.21270E+09 0.35580E+08 - 14 2.346E+00- 0.18005E+10 0.10287E+10 0.17675E+09 15- 2.231E+00 0.44294E+10 0.26014E+10 0.45340E+09 L 16 1.920E+00 0.45904E+10 0.308175+10 0.66008E+09 17 1.653E+00' O.61384E+10 0.43244E+10 0.98444E+09 18 1.353E+00 0.91989E+10 0.76132E+10 0.22864E+10 19 1.003E+00 .0.59284E+10 0.53813E+10 0.20386E+10
- 20. 8.208E-01 0.28293E+10 0.22945E+10 0.78276E+09 21 - 7.427E-01 0.79182E+10 0.86704E+10 0.41066E+10 22 6.081E-01 0.66054E+10- 0.70723E+10 10.35582E+10 23' 4.979E-01 0.71318E+10 0.796285+10 0.40280B+10 24 3.688E-01 0.73814E+10 0.94122E+10 0.56296E+10 K 25 2.972E-01 0.93382E+10 0.99482E+10 0.52924E+10 7^
! 26 1.822E-01 0.854275+10 0.99081E+10 0.57241E+10 27 1.111E-01 0.58661E+10 0.61683E+10 0.341585+10 28 6.738E-02 0.494785+10 0.47333E+10 0.24680E+10 29 4.097E-02 .0.17364E+10 0.12573E+10 0.61938E+09
. 30 3.183E-02 0.87043E+09 0.88722E+09 0.18986E+09 31 2.606E-02 0.22178E+10 0.264985+10 0.16663E+10 32 2.41GE-02 0.140095+10 0.16024E+10 0.10876E+10 33 2.188E-02 0.26844E+10 0.24671E+10 0.14349E+10 PEG /CALVERT 28 -,,y- * .- .- w s - ~ , - , .e.=w , - . . . . - . . . , , . . m.. c. - . - . _ , -. - - - - - - --
l j
.=.lL j 'll ;
Table 4.12-c Calculated Neutron Fluence Rate Multigroup Spectra in Reactor Pressure Vessel and Animuthal Location ( 0 = 0') p for Calvert Cliffs Unit-2 (24W Cycle) d n.es-2,,-l Upper 0-T 1/4-7 3/4-T ' Oroup Energy (WeV) 2c221.29 'R=225.98 Em336 93 ,
.1 1.733E+01 0.ll591E+08 0.55590E+07 0.94675E+06 f 2 1.419E+01 0.50126E+08 0.24272E+08 0.41304E407 3 1. 221 E+01 0.20170E+09 0.94309E+08 0.14620E+08 4 ') . 000E+01 0.404265+09 0.188265+09 0.27671E+08 L 5 8.6075+00 0.71675E+09 0.32716E+09 0.444615+08 L 6 7.408E+00 ' 0.17856E+10 0.79253E+09 0.97652E+08 '
7 6.065E+00 0.25196E+10 0.1075PE+10 0.12216E+09 ' 8 4.966E+00 0.43157E+10 0.18363E+10 0.207765+09 9 3.679E+00 0.29651E+10 0.13650E+10 0.178385+09 <1 L 10' 3. 012E+00 . 0.21668E+10 0.10684E+10 0.14832E+09 l 11 2. 725E+00 0.24476E+10 0.12560E+10 0.18237E409 12 2.466E+00 0.12148E+10 0.62695E+09 0.91920E+08 13 '2.365E+00 0,31728E+09 0.179985+09 0.29906E+08 7 14 . 2.346E+00 0.15190E+10 0.87010E+09 0.14861E+09 15 2.231E+00 0.37360E+10- 0.22003E+10 0.38106E+09 L 16- 1.920E+00 0.38682B+10 0.26024E+10 0.55363E+09 17 1.653E+00 - 0.51700E+10 0.36495E+10 0.82514E+09 - 18 1.353E+00 0.77363E+10 0.64101E+10 - 0.19110E410 19 1.003E+00 0.49740E+10 0.45179E+10 0.16982E+10 L 20 8. 208E-01 0.23761E+10 0.19283E+10 0.652675+09 > 21 7.427E-01 0.66195E+10 0.72511E+10 0.34081E+10 J 22 6.081E-01 0.55162E+10 0.59050E+10 0.29483E+10' 23 4.979E-01 0.59595E+10 0.664885+10 0.33378E+10
- 24 - 3.688E-01 0.61390E+10 0.78256E+10 . 0.46496E+10 25- 2.972E-01. 0.77868E+10 0.82842E+10 . 0.43738E+10 26- 1.832E-01 0.710575+10 0.82270E+10 0.47195E+10 27 1.lllE-01 0.48838E+10 0.51122E+10 0.28142E+10 28 6.728E-02 0.41218E+10 0.39300E+10 0.20325E+10 29 '4.0975-02 0.14498E+10 0.10448E+10 0.51013E+09 30 3.183E-02
- 0.72818E+09 0.32185E+09 0.15640E+09
- 31 2.6065-02 0.18316E+10 0.21863B+10 0.13643E+10 32 2.418E-02 0. ll519E+ 10 0.13152E+10 0.88646E+09 33 2.188E-02 0.22205E+10 0.20290E+10 0 ll692E+10 I
L i PEG /CALVERT 29 r i
- - 4ew ---v+w--~w-w-e----=w-,*-rw - ,+
t HL l i
' Table 4.13 Radial Gradient of Fast Fluence Rate ( ( (E > 1) ) :
Through RPV, at Peak Atleuthal and Axial Locations j in Calvert Cliffs i 4 (E > 1 MeV) ' nece-2' , 3-1 I(1)'(en) 12v 18a s4u t 220.895 5.19E10 5.09E10 4.24E10
, 222.102 4.72E10 4.57E10 3.36E10 ,
223.727 3.98E10 3.84E10 3.34E10-225.351 3.25E10 3.14E10 S.64E10 226.976 2.62E10 2.53E10- 2.13E10 228.601 2.10E10 'S 03E10 1.70E10 230.225 1.67E10 1,61E10' l.35E10 f 231.850 1.32E10 1.28E10 1.07E10
, 233.475 1.04E10 1.01E10 8.42E9 235.099 .8.16E9 7.87ES 6.58E9 236.724 6.33E9 6.10E9 5.10E9 238.348 4. 83E9 4.66E9 3.89E9 239.973 3.58E6 3.45E9 2.88E9 -241.598 2.43E9 2.34E9 1.95E9 i
e i PEG /CALVERT 30
, , - r -. -..,,-,,-w----, - - - . - , - , - , e.-w.. - - - , - . . ~ . . . - - - - . - . = ~ . - - - . - - - - - - - . - - - - + - * - = - - - - + - - - - **
i Table'4.14. Fluence in RPV after 12 EFPY for Calvert Cliffs-2 i intention Fluence neutrons.ce-2 RPV 1R (R=221.29) 1.69E19 1/4T (R=225.98). 1,01E13 - 3/4T (R=236.93) 2,05E18 t t 4.h e I PEG /CALVERT 31 _._ -s. . _ _ . . _ . _ . . . . , _ - , ,
-lI Table 4.15 Determination of.RPV Peak Fluence for Calvert Cliffs-2 Accumulated Fluence (3}
Cycles Full Power Days neutrons.es-2 ' ic- ; l-3 (12 month) 1165.94 4.76E*8 4 (18 month) 508.53 2.02E18~ 5-7 (18 month) 1242.92 4.93E18
- 8. -(24 month)(I} 586.17 2.08E18-9-EOL (24 month)(2) 8184.44 2.90E19 Totals 11688.00 4.28E19 III Projected value based on estimated EFFD/ cycle for cycle 8 i (2) Projected,. based on 32 EFPY lifetime (3)12 month and'18.nonth cycle fluence rate based on adjusted flux values ;
in Table 6; 24 month values based on calculated. fluxes from Table 4.10. h l l :.. l- , PEG /CALVERT 32 l l L- 1 l- __ _ . . _ _ _ . . . _ . .__ , . _ ~ .
E:'
-.n , '5. ADJUSTED REFERENCE TEMPERATURE DETERMINATION NRC'Regulat'ory Guide 1.99, Revision 2, provides the approach for computing the adjusted reference nil-ductility temperatures for beltline materials. The adjusted reference temperature (ART) is given by ART Initial RTNDT
- A NDT RT + Margin (1) where ARTNDT's (CF]f(0.28 - 0.1 log f) (2) and CF : chemistry factor specified in Reg. Guide 1.99, Rev. 2.
f a fluence (1019 n/cm2 , E > 1 MeV) Margin 2 7
+o 3 where og initial standard deviation of data 3.0'F c
3= 28'F for welds and 17'F for plate materials Table 5.1a and b presents an evaluation of the ART of beltline materials l for 12 EFPY and 32 EFPY respectively. From this table it is clear that the weld- 2-203 is the controlling material- for the pressure vessel. The ART of weld 2-203 at various irradiation conditions .are used in developing the. l various P-T limit curves.
' Fluence at various depths is given by, f = f surface (e-0.2W ) (3) i' The through thickness attenuation of ART NDT is calculated by using equation (2).
The ARTNDT values for the various depths for the controlling weld 2-203 for 12,16, 20, 24, 28, 32, 36 and 40 EFPYs are presented in table 5.2. Table 5.3 presents ART at 1/4T and 3/4T locations for the various EFPY. 1 PEG /CALVERT 33 l
l . 1 . Table 5.1(a). ART Evaluation for Beltline Materials for 12 EFPY Chemistry Initial ART Margin NDT Material Cu Ni C.F. RTNDT'F Surface.*F *F ART Weld-2-203- O.12 1.01 . 161 -56 184 56 184- - 3-203 0.23 0.23 120 -80 137 .56 113 9-203 0.22 0.05 101 -60 116 56 '112 Plate D-8906-1 0.15 0.56 107. 10 122 34 166 D-8906-3 0.14 0.55 98 -5 112 34 141 D-8907-1 0.15 0.6 110 -8 126 34 152 D-8907-2 0.14 0.66- 102 20 117 34 171
' NOTE: D8906-2 and D8907-3 are not included because they are bounded by the chemistry and initial RTNDT by D8906-1 and D8907-2, respectively.
Table 5.1(b) ' ART Evaluation for Beltline Materials for 32 EFPY
;i ~ , Chemistry Initial ART Margin NDT 1 Material Cu Ni C.F. RT NDT *F Surface 'F 'F ART Weld 2-203 0.12 . 1.01 161 -56 222 56 222 3-203 0.23 0.23 120 -80 165 56 189 L
9-203 0.22 0.05 101 -60 139 56 135 Plate D-8906-1.. 0.15 0.56 107 10 147 34 191 D-8906-3 0.14 0.55 98 5 135 34 174 . i D-8907-1 0.15 0.6- 110 -8 151 34 177 D-8907-2 0.14 0.66 102 20 140 34 194 L 8 PEG /CALVERT 34 , ,T l r
- - ~ -
5 Table 5.2. ART NDT vs EFPY for Controlling Weld 2-203 ART ART ART NDT NDT NDT~ ' 4-Surface (1/4 T} (3/4 T)-
-EFPY- *F 'F 'F t
12 184 161 115 g 16 196 173 -127 , 20 204. 183 136-24 211- 190 144
'28 216 196 151 32 222 201 157 l- 36 224 206 162 ~ #l 40 228 210- 166 r
1 4 l> PEG /CALVERT 35 1
1
. l s . Table 5.3. Adjusted Reference Temperatures (ART) at l/4'T and 3/4 T for controlling Weld 2-203 ART (1/4 T) ART (3/4 T) ' 'F' EFPY 'F i
12 161 115: 16 173' 127 20 183 136 24 190' 144 28 196 151 2 32 201 157 36 206 162-
-i 40 210 166 s
l-. l l t 4, 47 s l l p PEG /CALVERT 36
..i
; i J , .? . l ll -- .6. HEAT-UP AND COOL-DOWN LIMITS-1 s 'The adjusted reference temperature ( ART) for 12, 16, 20, 24, 28, 32, 36 l and 40 EFPYs were ~ presented in Section 5. These ART values were used to i
develop .the = pressure-temperature limit conditions for the EFPYs descr! bed
- above. An inhouse computer program PTLIMT was used. The generic procedures for PTLIKT are described in Appendix D.
The-following pressure vessel constants were employed as input data in the Calvert Cliffs Unit 2 analysis: Vessel Inner Radius, ri 86.81 in. Vessel Outer Radius, r o = 95.43 in. , Operating Pressure, P o : 2235 psig
' Initial Temperature, Tp = 550'F ,
Effective Coolant Flow Rate, Q = 128.8 x 106 lbm/hr Effective Flow Area, A- = 39.83 ft 2 , . Effective Hydraulic Diameter, D = 22.44 in. . Heat-up limits were computed for heat-up rates of 40*F/hr, 50'F/hr, l . l 60'F/hr and 70*F/hr. Cool-down curves were computed for cool-down rates of ) L O'F/hr, 20'F'5r. 50'F/hr, and 100'F/hr. Figures 6l1 and 6.2 presents the heat up and cool down limit curves
' respectively for 12 EFPY, These figures were developed based on the NRC . I Standard Review Plan (5.3.2). In Figure 6.1, the lowest service temperatures, minimum bolt-up temperature (70'F) and inservice leak test curves are incorporated. In developing the heat-up and cool down curves, instrument error margins of -60 psig for pressure measurements and +10'F for temperature monitoring have been included. These margins have been used industry-wide to i
PEG /CALVERT 37
_ _ _ 4 - i i i i 2600 m ,
; , , . . g, , , .. . - -
q , ,; 2 i
~-
R 2400! ' v
,u :. , .- e i l . * .- ,
rn 2200I- .m i '
'I'.
5 g l n? % ._ , ,
?A I
m 1600 fhY'
Fi'hh]F ' 'i : r !: "
i
'?.[l m 'I' F-s - ? / ' j' ' l.,
I b
- a. 9.- n . :~:. .. ;
v . y . - .. i: .!:,'- g - . ' .
,: ;,,,4 (
} e i t.tMJ
~
ah [ . * L !. [ I 2W :- ~ ' ' I . - . - - ) I' E - I
~' .e , . ,- '
1000I;f,.. . .. 5 i .,'" m en W.-:m .o i
~
Nt
- m 800 [1'T t!!t-II I . it'
*8 e
t
- ~hM#Rif'b I 00 hERIEEklE h;[. -
g q'!'n="T .
- gh.- :.: ,1 s .-
- l .
4 %g .i
, ,a, _ . _; ., ,. ,
L- .
- g. 1(33 j ,# t 60 100 ISO 200 250 300 350 400 450 500 !
Teuperatierc 'F i Figure 6.1 Meat-Up Pressure-Temperature Lisalt at ion Curves for Calvert Cli f f
- Unit 2 Iteactor Vessel (12 EFFY)
_ _ _ _ _ _ - . w , , , , n +- + , . - - - - - , ,-.-+.-w , , , - , , - , , , , , - , - ..,,.,,n ,.,.-,,_..,-w
- - - m 2b00 ,p ;g, nnq ;qq;. ;g , ; . ;;pn. ,, mng qi, ,o yg j g ; ,7 "" 2400 2200 '
E ' l @h!Mq l]l ] ! 1
, n!! j!Wi$lhWDIN }b
- , ! i I l [: 'o l hNhhhhh Il h i on I. na.
Y- W !MW a E Nlh m liRN hlp Mjhi M ' N SP Y m[ y i i W 'M W h i llI W O N Y I' M ES N P l @ i j :!R$ m gi d c &W dM!
'.Q: W $[' ~
m ..q: ' f Hil
- NA "4!: -
NU "M-
' " fig {-[R",gio h ' --jjC ..' ! S # C"' ' 'f- F' H L A.LRM.9 ' i:* f M: M i Gh }1200 ll 1 ;l ' ' " { 'l -
j I
- loo 800 - :. - -b d"- a ~W
[p[ , app n-1pqd3 8 n; ' h.jh b b h N N h L
.d N .h b 1,
h l d [ i 600 ' '
*'A:+ '
NHWhM- +r C 4l hj.i N.i d" i
L4 i' lI MC@ 3N Mij 'i j -1l i , . . e"b":!illillillm,npHH"h illlllN m %N !!!!!$mi I !li gd'H'I"l h
hi j$l[l :{y@h - mw W m'[
' gl4, Q W 7 .}f hpR L 1M I Ql '
i 2% oll#I III,, j Alliffi/
.q.n g '[li A}que ; , , y gq gg3 H aww.. m,x wyW{paM. .. .m . .g g g , y , m , ,1 ,e m j L
i l: l'N i S i; i iM 4 [ i h.h b k. _ 00 100 150 200 250 300 35G 400 PO 500 Temperature "F Figure 6.2 Cool-dowr. Precenre-Teasperature Limitation Curve for Calvert Cil f f tinit 2 Reactor vessel (12 EFPY)
.:s
I' - allow for possible errors in measuring instruments and account for variations > 4 between bulk temperatures and local (near beltline) temperatures. Appendix E presents the tables containing heat-up and cool-down data for 16, 20, 24, 28, 32, 36 and 40.EFPYs. Appendix F contains the P-T limit tables j for. varying cooldown rates for 12 ETPY. Appendix G presents the P-T limit tables for isothermal conditions. l .. l l : I I i I l- . PEG /CALVERT 40
I ! References j f I i 1. Norris, E. B., " Reactor Vessel Material Surveillance Program for Calvert ) Cliffs Unit 2 Analysis of 263* Capsule," .~1nal Report, SwRI Project 06- l 7524, September 1985 I
- 2. JAT (BG&E) letter to NRC, January 23, 1986 and Don Wright's (BG&E)
Calculations, January 15, 1986.
- 3. Rhoades, W. A. , Childs, R. L. , " An Updated Version of the DOT 4 One- and '
Two-Dimensional Neutron / Photon Transport Code", ORNL-5851, Oak Ridge National Laboratory, Oak Ridge, TN, July, 1982. 4 Simons, G. L. and Roussin, R., " SAILOR-A Coupled Cross Section Library for
- Light Water Reactors", DLC-76, RSIC.
i ( e r
\ (t '
a 1 e 1 FEG/CALVERT 41
l' s . i e , k i APPDIDIX A Determination of Space-Dependent Source Distribution for Transport Analysis of Calvert Cliffs-2
~
a 1; l i- i l ' l. l l .. PEG /CALVERT l i.. 4
, , _ _ _ _ _ . _ . _ .- - - - ^ - - - - - - - - - - - - - -
I Appendix A. Determination of Space-Dependent Source Distribution for Transport Analysis of Calvert Cliffs-2 l I The space-dependent source distribution used in the transport i calculations was obtained by combining the assembly-wise power distribution with relative pinwise power values for the peripheral asseabiles (i.e., XY , Zones 9, 18, 26, 34, 42, 49 in Figure 1). h relative assembly-wise power distributions for the 12, 18, and 24 month cycles are shown in Figure A.I. f These values were obtained by averaging 800, WOC, and BOC absolute assembly 1 powers provided by Baltimore Gas and Electric as representative for the i appropriate cycles and then dividing the average assembly power. (The 24
- nonth cycle distribution corresponds to a projected NOC core.) Note that all interior assemblies are approximated as having a unity relative power (i.e., '
producing the average power). Since the interior eles) hts contribute a ! negligible amount to the RPV fluence, this approximation is very adequate. ' The absolute assembly power distributions provided by BG&E for each type'of cycle is given by Table A.l ( } The power density is assumed flat within the interior assemblies, but is represented with a pinwise variation for the boundary assemblies, which account for virtually all of the RPV fluence. Baltimore Gas and Electric has confirmed that the relative pin-power variation within the peripheral ' assemblies is similar for Calvert Cliffs Units 1 and 2;(2) therefore the same g relative pin-power values obtained for the previous Unit I analysis (3) ,,,, , also used in the present Unit 2 calculations. Examination of the BOC, WOC, k and DOC relative pin powers provided by BG&E shows that the WOC distribution
; is a good approxirtation for the average over the eyele, and hence was used '
A-1 '
t): as the representative pinwise variation. The relative pin power in the peripheral assemblies are very stallar for the 12 and 18 month cycles, and f therefore the 18 month is used for both (the assembly-wise distributions are different, however). Tables A.3-A.4 give the relative pinwise variations for ! configuration in P!rure A.1 (given in
- FIDO FORMAT *).
The combination of the assembly and pinvise powers results in an l h absolute space-dependent power density defined for the quarter core. '!he power density values are converted to a source density by multiplying by the factor,
- 7.84 x 10 16 neu ons/s The 1/4 core XY sovree distribution is then mapped onto the 1/8 core R8 mesh used in DOT by utilizing an interpolating progran previously developed for l . this purpose.
RDT.RENCES (1) J. B. Couch, letter to W. L. Williams from Baltimore Gas and Electric dated January 7, 1988.
! (2) J. B. Couch, personal communication to W. L. Williams, January 6,1988, s
(3) P. Nair, W. L. Williams, " Pressure-Temperature Limits for Calvert Cliffs
; Nuclear Power Plant Unit 1", Southwest Research Institute, Final Report.
I 4 ( A-2 t
__ ._ e Figure A.1 Relative Power Distributions (Assembly-wise) Zone l for 12, 18, and 24 Month Cycles for / ! Calvert Cliffs Unit 2 z' l A 12M B 189 C 2 fin 45* 44 46 i 47 48
/ 49 43 45 1.0 1.0 1.0 1.0 1.0 1.0 .82 3
42' 35 36 37 38 39 40 al 42 1.0 1.0 1.0 1.0 1.0 1.0 1.16 .75 1.00 .68 t.07 40
> 27 28 29 30 31 32 33 34
- d. 1.0 1.0 1.0 1.0 1.0 1.0 1.08 .98 1.06 91 1.09 .87 s
19 20 21 22 23 24 25 26 1.0 1.0 1.0 1.0 1.0 1.0 1.00 1.10 1.14 .91
.85 1.26 .71 10 11 12 13 14 15 16 17 .65 1.0 1.0 1.0 1.0 1.0 1.0 .85 1.06 36 1.08 .98 1.07 1.13 9 .86 i 1 2 3 4 5 6 7 8 .84
{ 1.0 1.0 1.0 1.0 1.0 1.0 1.15 .85 .80 . .96 1.07 i 1.29 90 fa ~a f 5e* *' , ,
Table A.l. Absolute Assembly Powers (WWth) for Calvert Cliffs-2 . I Eone 12 Month Cycle 18 Month Cycle 24 Month Cycle i
, "1 3.11 3.11 3.11
- 2 6.22 6.22 6.22
- 3 6.22 6.22 6.22
- 4 6.22 6.22 6.22
- 5 6.22 6.22 6.22 i
- i.
- 6 6.22 6.22 6.22 i 7 7.16 5.96 8.02
- 8 5.26 6.68 5.58 I 9 10.60 10.41 10.00 {
- 10 6.22 6.22 6.22 11 12.44 12.44 12.44 12 12.44 12.44 12.44 ,
13 12.44 12.44 12.44 ! 14 12.44 12.44 12.44 15 12.44 12.44 12.44 16 10.60 13.43 13.27 17 13,16 12.17 14.10 i 18 8.82 8.02 4.45 j , ' 19 6.22 6.22 6.22 L 20 12.44 12.44 12.44 . I 21 12.44 12.44 12.44 . 22 12.44 12.44 12.44 l 23 12.44 12.44 12.44 24 12.44 12.44 12.44 25 12.44 14.12 15,62 , 26 13.72 11.36 10.53 ,
- 27 6.22 6.22 6.22 l
28 12.44 12.44 12.44 !- 29 12.44 12.44 12.44 30 12.44 12.44 . 12.44 , '31 -12.44 12.44 12.44 l 32 12.44 12.44 12.44 l 33 13.41 13.15 13,53 34 12.16 11.36 10.76 (
- 35 6.22 6.22 6.22 .
/ 36 12.44 12.44 12.44 37 12.44 12.44 12.44 38 12.44 12.44 12.44 39 12.44 12.44 12.44 40 12.44 12.44 12.44 41 14.45 12.48 13.26 42 9.35 8.48 5.02
- 43 6.22 6.22 6.22 44 12.44 12.44 12.44 45 12.44 12.44 12.44 46 12.44 12,44 12.44 47 12.44 12.44 12.44 48 12.44 12.44 12.44 A-4 l
1
l 'f-49 10.16 9.36 8.21 50 0.0 0.0 0,0 (*) indicates 1/2-assembly rene (") indicates 1/4-assembly zone t i k < l 1 I
) ,
a b i e i f
-I i '*- , 1 1
i I I i 4 m 4 A-5 4 1 i L i e --m- ' we e vw ,n
i I i i N k ' 2 02ee 4 S P 0 O. b 0000 ec .= PS .
=
O - Me
- o. g N eMa = e 0 0. e 4 .= e eb 4 0. 5 b Onb .
O N G. N 44 e . 4 # N e m. e be e e 5.N P W e p 55. pen . h bb . l
- d. 5 54444 g e n. e 4 4 M. i 4 4. N
. b .4e a 5 e 4 8 M N b*S . N e e ' .P S .PN44 Nbbb . SS . . N NS .N 50e n. . e .
4 N i e e B.
. . . . . . b. e . . O. H n P
i W . P e = 4 E.
.S 44eMM Mr. .
e M M e l S S . b. N4 n. e 4 m. eG.W m. t. S.Pb S . .b . N
. e. M. .
e E . S ID > N M N i 4 . P. M M S P = P MW e dD 5 h e> e 2 N e e 2 S
. . P. =. = N S.=.=.>.>.>. .
S 5 b4 4. N .eW e .54 e g b 4. NNP eed & ' M
. N P. a ==
NN4 e
=
M
.SeN S. B. 4 9 .NN . = ,
3 > = N P. S
. P. P. . . (D e N . . 4 ==n=me==N==3 . = P. S M. P.
u PW O C. S. a . E. . . 342N b. 5 =Se=3 A N OP . . . . .m e 4 P n. U . .b O
.-SS-M b N b N e N . =S NnNe , P. P. & W = M .N 3. P 4 @ e eeM ; ,,, e e N P e . . . .= M e=
(D se bMP48=w. . 4 =. == 4.==c N. -=4. .5 N. P.
= . P. .
N. 4. a. = N w s, NNPm.N. . . . 4N N = e . M
, . P. e. . = = B S = P. P.
ee 0
. .Pb . P.
W W @.
.. .SM4 v1SNM o b bb3 NM
- e. = ,
i W = 4 em Na ea m . = i w . M e S. S. . .n. 4. W e . . . . . .. . M. . n. N. N. 4 . =. n
- 3. 8.====== . .
a=
. P. .N 9
Ne.t.s.4S.w-.= P. NP p
=MS N
m SPwSN.we.=3 S
, a NS44 edenMe. =43 . Se P . =
4 em N w .=NP N
-=MMNS.S. . S. =. N N. =. S. = P.
N= .eMe I
- o. N. M. a. ==========M
. = . . S e em..N . 4 < N. Ne me = S. . . == .
b b
==
O 4 4PS 3 ab
=
4 . . S
==3.SBNSSN 4
5 e== ! w s = g M. S. . O. N .S P S S.
. . N. =. a e.0=
N= ewN
= .NM=
Na
= 3 N . =
- 4. = O N N' NNe A w. M.
.S======SS*=
w . . iM e. . e . M. e g eada ' 5 N . . . .... a . &. l @ 2- =N 3 .P w
. . = r)
W
. - .B. .S. ==
m
==
w = .e m e. . n. a
. . . E. Nn. . . n.. . S .S = = b . m. === s & PM a - .SS-====-88=== N. S = N .M M = N = = a Sm . . ==
- 9. N e. .
< .mN ==
e t
. j > MN N Nee ** N =0 =. .--Maa =w . S. . . , a << = = .4M S .=* .ma ? . . . . . . . N..M. M. . . N . . S S N
a N. = N
. a. ....--======== .= . . P. P. ne=M =5wN et=M4BSe MNeeN N 4
y N MMabnNe
= am .N-S = Mh N. = .. W N. e. b N. S. =. N. S.
- tB . * .
, N. N. N N. . . .N . =. =. . ===aw= = .= .4 .5.4.M M. .N. a=* ta m = == 2. = = ma ==N== =
se =============== ==awa . S. P. . P.
. . S. . -l 8 . . . . . . . . . .l. . . + = P. . . .. .= aw H . . . . . .g g g g =g g ==========w -== ==w=w== Nw EEEtteEEEEEEEEEeEEEEEEP == = = nm .
ge 5> 4e NP i 888888888888888aS89998
===============S-----=
A-6 9
' - - - - ..r,-c.-~e y - , - - -- ---
., , :! , ! > ' 't' I ;' ,, ~
- l. ~
~ -
9 4 5 3 7 9 3 7 5 9 3 7 3 7 9 1 2 - 59 6 4 7 9 _
. 1 5 9 6 ~. 5 _
9 e 2 9 4 8 9 3 _ 4 e 5 8
. 4 7- 7 5 e 2 _
9- 2 9 _ 2
- s. 9 9 , e.
- 9 7 S. 7 9 1 . 1 5 9 . _
4 _ 1 1 S e 7 7 7 6 _
- S. 1 5 9 8 .
2 9 . 7 1 O 1 9 6 S. 6 e 2 2 8 2 5 7
- e. 9 '63 1 1 e. 7 2 7 9 .
1
=
5 3 1 1 1 6
- 1 8 9
9 9 5 9 . 3 3 Z Z Z Z Z Z Z 2 9 _
. 4 5 62 _
3 4 4 4 4 4 4 45 eJ 1 9 0 3 1 1 7 . _
. 1 1 1 1 1 1 1 6 1 2 6 2 9 4
2
- e. t. 6 9 9 1 5 2
- e. _
5 - 1 1 7 9 4 e 3 7e3291 e 2'5795e472i44 4 8 1 27t 3841 7 9 9 2 1 1 7 1
. 1 . 2 9 1 _
3
' 1 6 4 0 9 7 7
- 4. S.e 6 3. S. 8S13e1 8 7 1m1797s.7 8 71 7. 9 92 9 8 1
e d
. . . . 9 4 2 e. . 9 ".Si4e91 t
9
.26499e89936925563 91 e1 e. 1 1 9
9 9 e. 1 1 e e 2 2 4 9 9 3 5e 4645334231 29535 9 2 7 S. S 9 3 ._ 53.s.8 9 38283 91 e. 2 e. 1. 91 94 9 9
- e. 2 9 e 1 . 9 m
. . . . .1 2 9 1 2 91 e31 4 e1 eI 81 1 1 1 1 e1 8 . e. 9 1 3 . 2 9 7 4 . 1 1 t 1 3 1 3 _
954 91 7759833e5e1 31 3291 2e2e89e21 e93 e 1 4 9 1 4 3 . e. 6 1 8 1 9 _ e 8 1 9 4 8 I 41 991 3 e 4 .
.1 91eI921 .
S1 4 s. 4e1s. e1 1 1
. . 3. e.2 11 e
- 9. 2 2 . 2 1 3 1 7 1 1 . 1 9 9 9 5 _
2 1 1 1 1 . 9 1 3 53942523648see461 4 9 7 1 e. . 4994677378eee65696 943 91 941 4 3 7 1 9 1 1 3 e. 1 3 4 3 9 2 2 1 3 . . .
- 8. e. S. s. .4.12 9. 2 4 1 3 1 9 6 7 8 53 e 1 a1 S1 1 SeSe1 1 1 e . 1 . 9 8 9 4 4 2 1 Z1 1 1 1 3 1 923926I 85s3e41 44s 4 e. 1 e. 3
- e. . .
e3553278 41 e1 ee097e1 1 5 e 0 7 1 3 1 S
~
S.8 19 1
. e. 1 . 941. . e. 2. s. 2 4 9 2. so27 448 6Z 9 4Z1 3 3 9 8 9 1 1
1 81 3 I 1 1 1 51 91 1 1 1 l . 1 4 . 9 9 1 7 _ e e. e 743 1
.47 5.261 331 47974e21 44743493226t 631 1 1 1 4 e 1 1 1 7
1 9 3 3 d 1 96 4 1 1 1 . e s 5 o a23121 1 3.e48,4 . . 9 3.e28 6 27. 5364 86 5 4 923Z9 221 49 3 1 Z 42 S s 1 6. 1 1 t 3 1 1 1 1 1 1, 1 11 1 9 21 7 i 8. t 1 51 1 1 1 6. 1
. 1
- e. 8 1 1 t
n 5e43ee96t 55e2e622 2 9 1 . 2. Z 4 o 553 9 7599 1 Z1 31 41 _ C 9 9 e 7 9 n 2. 7. 5 1 e95e403 9 6 499. 6 9 7 Z 2Z271 3 1 9797Z 54471 4 7 4 1 _ 3t .s.61 e. 21 21 t21 S. 1 1 121 e.'s e. 2 e. 2 9. 2. 151 12 I 1. 1 41 721 5. e 39 e 1 e1 1 1 1 2. 4 4
. 7 2 1 1 1 71 1 ,
2
- e. 1
. 79 B. a. B e. e. e. 9 3 3 6 t 7 41 93 91 41 4 7 25 71 2
_ A H l l
- 9. t 5 1 4t R5R 19. Rt 6 I I 5 I 6 I 5 5 1 I I I 1 1 t l
2
- 7t 69 sH e
H 1 H 8 R 1 R 1 R 1 R 1 R 1 R1 1 R7 1 6 1 I Z b 9 6. 9 9 R1 a 0 s9 7
" 9 9 9 9 9 9 9 9 R R R R4 .
_ T . 1 1 1 1 1 9 9 9 9 9
.O l' ' ji},!l ,
l l l
~
l l , l
. g <
e G t b 4 5 ' 4 1 b " M M M M 4 4 4 0 & M N 4 b. O. . 4 P
- b. b. CD & S 9 . t-S. S . b. 4 , m 3 . l 5
3 5 M N S S b e N O - S = f) = l 0-E.
.4 ID
- e. 4 m. b P.
. CO. , g e. c . S G. S S 3 j - l . .
S . S + e. , 3 N- 4 5 N :
- P b S J
, 'M S M S. 3 G P b l . e
- ID 5 0 n. n
- S P. E C 4 t. . 3 e. -
* *
- M S S S 4 5 4 > S S M b & ;
N N S 4 N 4 N S (D G. ? M &. 5
- 4 0 '
-l S. '
- b 3) S P. b '
(D 4 N f a C . S * . S e M 1 e f4 ID. S O S S S l P S P S - 5 & b. ' e O @ > M 4 P b S l S. P. 'O 4 . 5 M & (D b J
'3 0 .= CD S & . M e
i b 4 . S CD. . 3 CD. P ,
.* M P &. S b S S e . S 4 4 3 CD.
P. P. > (D M P = . 3 3 ,
& a > . E 4
- S -
O (4 O S S
- 8 's .-
4 S . S (D. N : e P. S N S S. P. . . - S- C N e S. P. -
*
- 2 to - B B 4 4 M 4 . - (F N - P S e P M l 3 $ $. S.
. . $. $. I"4 m. .
, - E n 2 S S ! l = . - p M S. e. . l - P o 2 - S ED 5 M e. P. 4 (4
- 0 0 6 - S .S S 4 M o - S . . &. 5 m E
- g
. e . =
- S . . . i a M. - - (4 S S . S ii .a e N b S t . O e s . N. (D.
. 4 - 8 m
1' S N T - M - .= N & = m - . . N. &. (D CD. -
. f) . - - 3 = S P. . S i S . - S. S S 9 mN N b (D G S 4 4 N i' I e 424 4 M e > d M a 3 - P = N p.
- 2. -
-t . . M. e. a. . P. . P. .
w . N. . .= - O S = S S P. ..S f = .= * *= 5 S S S 5 4 6 &b e lD & . (D .* *Ma - 3. * > S.* S S. > S. M 4-4N-4
- N -N=4 .4 - (4 4 = Le 4 N o. ca M n.
l (4 (, 4.= -m.
. . E fi n. E M. = E - M. E - .= *.-E .B .- 4 E P. - P.
E E- F. 5 E a 9 N. - .N 4 3P.=3P- P- P-St=5PS -S &S M. P * 'l I q -. a a (4 - 4 4> PO + 4 b4 >M e& N M S
.re . .N . 4. *S* bb (D 4 4 m> q> NP ae >-- - N .= .-
E $ M N tb M N
& E*E E - .N.44N. .= 4. 4N - .= N - 0 N w O. < N 5. t.4N $ eMe N . .4 .t4
,- g - .- - - P-S--S-- . C.--4--S--S--St-S-8 4.><. .- ll > > > S . - S - A-B I
,. . . - - , ., , ~ . . . , , . . , _-,,c.,, , . . . _ . , , , , _ , , - . , .- . ~ , . . , , . . , , - - - - - ,
- -- - . - - - amme. m e-Table A.2. Coatinmed-9.987 1.916 1.964 1.919 9.883 M.747 9.793 9.678 9.626 4.641 9.642 9.58' O.464 9.363 14Z 91RI.9 R.98 1.982 9. 9. 9.926 9.796 9.643 R.617 9.582 9.655 9. W. B.49 .348 .
14Z 91R1.9
.322 M.943 1.934 9.9 m.9 0.060 9.653 9.59 9.564 9.534 9.685 9.9 9.9 9.455 14Z 91Rt.9
- 9. ts 79 9.878 9.997 9.853 9.716 8.585 m 535 R.513 9.478 9.499 9.511 9.46 i
. 9.360 9.286 14Z 91R1.9 l .H13 .713 .669 .629 .575 .529 .491 .472 .434 493 .374 .337 !
0.293 9.258 14Z h 77RI. 1.29 1.25 1.25 1.22 1.17 1.12 1.98 1.85 1.93 1.91 1.BF .96 .99 .83 2UL
- j i.
77RI. 1.25 1.32 1.43 1.49 1.24 1.97 1.93 .99 .97 1.E5 1.12 1.97 .99 .73 20Z ' j 1 77Rt. 1.25 1.43 9.99 R.99 1.33 1.96 1.91 .97 .95 1.12 9.99 9.99 .94 .69 28Z ' T ]
- 77R1. 1.22 1.49 9.99 9.99 1.31 1.94 .99 .95 .92 1.97 9.99 9.99 .99 .65 28Z 77Rt. 1.17 1.24 1.33 1.31 1.16 1.91 .98 .94 .99 .9' .98 92 .75 .69 28Z
] 77RI. 1.12 1.97 1.96 1.94 1.91 1.96 1.13 1.97 .93 .e9 .76 .79 .62 .56 20Z 77R1. 1.97 1.92 1,99 .99 .98 1.13 9.99 9.99 .97 .77 .79 .64 .58 .52 20Z ; 77Rt. 1.95 .99 .97 .96 .94 1.98 9.99 9.99 .95 .74 .68 .62 .55 .31 20Z 77R1. 1.93 97 .95 .92 .- 89 .94 .99 .95 .82 .69 .64 .59 .52 .47 20Z 77RI. 1.92 1.0$ 1.11 1.97 .94 .81 .77 .74 .69 .72 .73 .67 e55 .44 192 7 7 R .,1. 1.01 1.12 9.99 9.99 .98 .76 .79 .68 .64 .53 S.99 9.99 .57 .42 20Z 77H1. .97 1. 97 H. 99 0.09 .92 .79 .64 .62 .59 .67 9.99 9.99 .53 .38 i 20I 77Rt. .99 .99 .94 .89 .76 .62 .58 .35 .52 .55 .37 .53 .42 .34 28Z 77pl. .83 .74 .69 .66 .61 .56 .52 .51 .47 .44 .42 .39 .'J9 .39 ~ 28Z ,,,_,
. ;:L :5 , , . , . . . .. , . .~ . . _ . . _ _ _ . . - _ _ , - - -
_ _ _ .- .. . a mm. . a. eum e-'W Tal,le A.3. Relative Pin Powere for 24 Month Cycle i 0 [ a u .no a .e 1.963.1.847 1.939 3.ee9-M.956 S.099 S.949
~
l W.995 9.766 m.73I a.691 R. 6 32 B. 55 i B. 4"iB toSRI.e 1.e71 1.076 1.179 1.146 e.982 e.90e 8.043 [ l, e.19H e.164 e.749 e.7H6 B.722 m.569 e.465 leSHt.R 1.997 I.29e 9.098 9.098 1.R96 5.996 0.039 m.793 9.766 S.832 e. nee m.mee e.649 e.474 ) leSH1.9 1.e9e 3.196 e.000 0.000 1.999 0.902 e.030 R.793 B.763 m.926 e.ese 9. BOB R.634 e.471 l 195Hl.e ' 1.875 1.857 1.349 3.116.R.969 0.091 m.046
- e.002 IMSRt.S S.757 e.729 e.759 e.694 m.549 m.456 1.853 1.996 S.984 9.955 9.919 0.899 H.954 R. 907 e. 760 8. 798 R. 646 B. 584 9.5I2 R.439 IOSRI.9 3.e35 9.999 9.947 e.921 9.903 e.907 0.008 -
I 9.999 8.848 9.609 81629 B.557 9.492 9. 426 105R1.9 1.916 e.967 B.935 9.998 9.899 e.972 S. ROW
- 8. DOS E.B33 8.675 S.696 S.544 9.408 8.4I6 4
. y 195RI.9 1.999 e.972 9.959 8.919 e.se2 e.s6'2 9.913 g 9.866 9.729-S.661 S.687 S.547 9.479 9.411 195RI.9 i 1.917 1.955 1.868 1.851 S.899 B.839 9.704 B.739 195R1.8 8.693 9.663 9.696 S.625 8.493 8.418 3.925 1.121 W.988 5.989 8.995 9.916 9.751 ! e.7e5 195 RI . S 9.673 S.723 S.Se8 S.s88 S.54e e.4e7 1.913 1.119 9.988 9.998 S.977 9.796 8.727 i ) R.698 8.651 9.793 S.388 9.SSB S.534 9.396 te5N1.9 9.999 9.992 1.568 1.815 8.953 S.769 9.7R7
- 9.668 195RI.8 S.626 8.689 9.637 9.582 S.458 8.376 ' ~
j S.976 S.951 9.925 S.979 9.812 9.747 B.692 . l 9.645 9.687 S.575 9.541 S.494 9.43d 8.363 105RI.O .711 .665 .646 .683 .562 .521 .4R2
.444 487 .372 .330'.394 .267 .224 te5R1.9 .697 .588 .661 .615 .547 .586 .465 .427 .391 .356 .336 .394 .eOS .217 185R1.8 .679 .672 .388 .999 .558 .486 .444 .486 .371 .351 .SSW .SSS .254 .295 305RI.S .648 .637 .998 .SSS .538 .465 .423 .386 .353 .335 .988 .SSW .238 .192
- 305RI.S .612 .591 .573 .541 .SSS .442 .399
.365 .336 .SSS 283 .256 .214 .188 r y,#,
':ll l 1[ ]
i I 6 e 3 i 1
. 1 i ll , 1 4 ~'
I i 1 4
.n gI -
E (D b. 1
. . M =
P e S 4 n N S S N . . S . . . 2- N - . CD '
~S 3 N . S. '
e e b 4 o M
* > S e' b 4> . S. m = m 4ND
- n. e nN 4MN eM SMS '> 9 4- M P. (4 M P. &N . >
[. M=== a M- Na N = &. N= pS= ta=> n& NSn N a e. F. t i n.N .N ..N . . m e e S 8
..N . . . . . . S. S - 5. M e l-l
); .S .O . 4S S. e CD . t CD 4 8. M SP N 4&4
. e. e' S ',
- S E= bb= *n=404=4 e * (D N P 5
n NMN Mn
.PP e . 5. t >
CD N b = bMa .M= '. = ebN S .n-.44 n . . P n. .=N.. &m.bea S ee n O f. 3
. .e4 4 M. =. m e a . .&4 8 N. a e e4 ;
e e- S . = . 4 5N S . m
.S.M a . m4 . ID N 5. b n.SM e b 4 -i I M =N&P=a N ID S . b8 .O ann F.=2M4Mnbb&e.O5 3 O. G. o.
aN=N 4 G =*&. eN=e . n.M=MS 11 = O e S i
& .> .p N. M. a.N 5. .M. =. m 8 . . aS .M M 4. M. . 1 e . . . . . .> = O. M .=a
- o. S .N S. 4 & M eSPN 98 4 (D 5. S.
a = mN 4 .4 S. c & S . S S. > S. M ~5 MN4N e a b.U eN N = CDeG 33SSS&SS = 4 N o $. 4 M e e mb 5NN O eN .= . .N . . SS e=
. . tB S . *S . .* e M. =. N b. . .N=>
- 4. = n. =. 4 =9 4 g n e
n =S we = S S tD SS 84
* .c4 5 N .e.8 . tD M S .S=M N. S. 6. , S- ID ~ Nw . 4m=.eM=5M . .
S O .5 S= N (D =. b. M 4 N .aS= 4. 9 4.4 =.S4ID S.S. S :
. 8, eN eN e = f4 M5...a4 = 8. = - .=S' 4 N. M , ~ tD 4 Nete . .MM . . 44 . N. 3 b .m* M. =
4 = ; L c n a ID = ID -$..Me = ID == b
. 4b b t & N W .4= n. 8 e 0 . . m 4 5 . .N> . .<= . .t= 5N 8. b N = (D 4 i .
5 = bna n+ <N= NS= a 9 4. S. 3 . men i M e+N
- 4 n. 4 (D . . & 2 = N(D
= MM.na.-S. CD = * = N = =
m S e . CD . . = e.N. 2 (D O 4. N. . . . -
. . CD. . b. .E a .b E. b. E b * =. hn-S. S. S &M 5.N= 44S = .
bbS > U S =S. 4 4 e . men N4S.g. ens.S4tDSS& S e P
- N=awe e. N G. M = =. S. ID b n w EME 4a . n o 4CD 46 N n.n .Z=a e n. . E= cD n.(p
. . . E . . .
- e. N..EE CD (D ee N
.E 2S ..ESN N v A S S = a a .N .N .
l 4= a e > > a = = = e e 4 O' D- > > P a a a A=11 _ _ _ _ _ _ - - - - - - - - - - - - ' " - ^ ' ' ' ' ^ - " ~ ~^
1
,~
j I I 1
~
l l 1 i i
> N = = =
3 M = = N 3 o n n 4 2 M S * = b N 2 S 2 2 & ! S 6 5 4 m. S S S S S 3 3 S S S S
. . . i S S S
- W S
- M e K 4 M = n N M '
M = v4 = S = W 4 N
> F P O N e N &. . e. &. 3 N . . . . &. C. - m. b. b.
i-E4SNSnSNSbSMubGWSeS+S=S S & > E o M = S S S S Sbs= 4 e (~ 1 S O.SN f M .S
@ . 4 N e4& .N 4cF . mNe*q.= e.N4 4 .
(Me>
.N ee .NN M.mN M. =4 M-a m > .
SS S -S
. .. =SP SP S V.Sm.S ES .SPSDBSSt.Se t 5. m s b b 96=4 = . . . . , . = > '
e . b m & 4 W e Sn4 S=e 9>aS N& S NS S SP S*N SNnSQS e b t M e b mea n e .N 4 e n. 4s , d.= b.me = 4 4 f e t. n c. b44Sep
= t.' 4 . .
a1 . . . 4. N .m.M .g .e 8 n m S . N l.- T. . N S. S - S . S = S e d P. S F. S F. S S. S .S . e. n M-L m ~4=n3
. S P. S m. S e
- N S . 4 4
& =0SSSSS4SN==S 5 & 4 4 4 N S SS9te e . . & M4&b nb 4 NM =
P. 8 a 2 m.S . S S=S
.n. n. 6m O. N N n. Ma 4n. M 4 . . .e. . n.e n. n. M . = p.
S. S U S S S N a f S =M-25
. . . . S P. S P. S D. S S. S . . S S. S S=NS n. .
- 8. * =. 9 -~SMSOSSSN=MS M iJ S 8 n N = S S S =NSbbNNN N O Sem ne N >. SN .. N M. .M
=
2 5 .. .pW b 4 4. 4N .e . 4 b 4.n 9 4. b >4
. . Nm . e.s M 4 4 n.Nn M n.SPS. >S .S .=
8n9
.O .b 4 > = . . S . = S .
N S N S s. S . >S. S . P S P. . S > SS.SPS$9 S . P. S n N M g p S e=S-.D n ebbmNNmem
===4=>-S=-5=SPSt$tSa =4=NSf8=
4 4 e e t = > m 4 4 = t > 4
. Ne S. Mn e.
SSN 2 M SNS 9 .M- .N .N 3 . b .Nb b ~
.S 4. m4 4. M m 4. = 4 e =SS s .
b a c. 4e n. n e. 5 2 CD m N 5 4
. . .a.n P. -4SS = 4.SS=<===S=4=S=4==S49&SM=4SSSSSNn.2 =. 2 S 5 = 6 S2 = S n = S . S S. S S. S F. S
- 4. S F. S 4 4 .
&. N M &
- 4 S S b 8 5 2 b 4 e = > N n 84SS 4 E 8=9.Sn= 4. m.
I
=
E 4. = 8. S. 9. S. 5* 8. S. S. 9 9.
= = = = = = = = = =
9 S S. S.
= = .S =
94*S. b M.48S. nM . M S. 5. S 484
= = = -4 epMa=MEfENE4ESEnt =-9-S===Ma E E4ESENEbENEP 4 e 3 l S' 4 4 = =S=4=>=q=4=N n M N u . G. P C
- P S. P 2 > 3>>>
- 8
- S.
- lB. . . .
. P S. > b P 4 6 4. P 4. > 4.*S. M S. M S.= M. S. . -Sa E >=@e NSNSNSNSNSNSNSNSNSNSNSNSNSNS=
e
= = =
4 e e 4 4 + e e e < ESEPESE
= = =
9 N. E= -4. E ~ 4. =
= = = = = = = = = =>=4 4= < P = 't P 'M & M o n e n. e n. e
- b b b a,
N .N .N . .NnNMNNN e e < eNtSt@t b = = = =4=<
. . - M. a ;
l. A-12
l l
- 9. -
f
'a *Y j
1). il
'i M 4 4 4 N 4 b
- 4. 4 S. S. . S M N M =
W M. M. S S 4 = N
. . O M e > f4 N N N
N 9 { s e 4 0 o (4 N . N. N M O 4 M S 6 4 4 h
$ ;D b n f4 S e e r,*n
- M M a &
M ft n. . . e. e. M.
. . M. M. M. M C4 = . . <
CD o . . M e b 4 N W 1 4 > N N 4 3 41 4 N '? 4 N = = . . > b + = b 4 M > 4 - > N A M e N aft 4 0 e e f f f M M & N N MN 4
. n. . - f. . M. < . . M. M. M. N > 6 4 5 5 > N O 5
f44OO>4OMMN4= O M MM N e bNS&Mba nCM2=M&N2m4 CD S
- n = 4 4 S M 2 a b a e e lD E m N b 4. M e4e N 4 n N (4 4 N n N = N !D =.tan = N =.
e 4 M ee O. e. t. N . =. t. M
.M N . O.
b n.>. e. .0 < .=.4. -.M.
.
- S. = G.S S & . > . S N. *.eN9-gne M 4 =Sb9eaMg=
> > = CD 4 a S3b4SMOS .S . 49N2 =
b5nbN M. M 4NNN i
.f .<a MMNnen2N 4 e e =
e
- l. = O.
N M = > =. 4.ea.e
. h4n . . =.<~ .~ S = 5 =&M. ~ NS.
- S. .SN. N = N 9.S N S . .
n L M S
. N M > = eSbS MN ty a 4 4 e h a eN=SS*44 =
i MMN=a CbMM4>4S N 3 . eb . . 5M 4 . N4NNNDN. , S.6O. O. 9 N N.NO.$=. > .fb=.(D 4. e =4 N =4.SNM. G. S S e 3a a . . . . . O. . O. . e. . e S - N S. M. . M. .=4 >tNM4 4 4 h E M & 6 4 # n .OM=eDS4h4 '
, Sa4ee=4hCM>29a .F64 S N S (D M e = b. e h e5 CD .b MeMaN4NMN 4
e .= . N = F) * . b. s S o . c. N e N = 0 > a 4 = 4 m M E 4.M. n. lDe n.IS. 4 . . R 9 . M N. O. N n. N . .f
. . 4 . S 4 S M. . M. .=N
- M (D 4 a e 4
=
b b CD S b b e
>eSeeMeb-ebbeSNC >Nb N
M 34=f&444MM.SM.4e .b .b 4 M. 4aGSN. OPE- .
= S.EeEta S. = = = ..
E
..fENE 4 S. i dO S. NM = = . .=
S.a Ne S. =.
. S. . b. . =
e S. 3
=. S. N . e. .=. S. =. S M
N- =>- 4 s
= 3 = 4 . N=S=m N E M E e aa E c E c == e. .= S..4 4
5 9..= . . M. e*S. M .S..-S S. b 8. S. M. 4 m..M S M > N. P &5&NSNPNS=>=>eg N -b E E E S. Me
=
4 ' .. '
. 4 .bebeb*b 054545 E E E E 5
E 64
'a nan @N N 4 N @ N CD N b N N N O N N ObNb&b4hMbN5 4 4 4 4 6 54 ,o M p 4.=M.=M= 4 4 e M eSS. aS S.N. =e= N. b 4- (44 4- N. N 4=S. 4 S< f. 4(D N O. N9 O.CDN .N .N .N .N .N .N M.
sp
. . .* N N N N tD m m a N N N &
A 13
yg , 7 e m TebIe A.3. Centinwed 29Z 77H1.9 .549 .590 .491 .453 .399 .3u5 .334
.395 .276 .249 .231 .297 .176 . ISO 20Z 77RI.B .316 .499 .999 .999 .389 . ~l30 .396 .277 .259 .233 .MOG .WM9 .166 .333 20Z:77Rt.B .479 . 4e.2 ' . 999 ' . 9He . 35 7 .339 .2/7 .259 .225 .239 .999 .9R9 .359 .321
- 20Z 77R1.9 437 491 .385 .353 .396 .275 .24/
. .222 .299 . ISO .169 .151 .127 .197 20Z 77R1.9 .309 .347 .317 .209'.263 .OG _234 ,
. .193 .173 .155 .139 .124 .190 .BY1 i 28Z 3 t
>e H
V I
- . . , . . . . - -. ..- . . - ._ -- .,. . - _ . . . - . ~ . . - . . . . ~ . _ . . - . _ ~ . . -. . - _ . . , - - . . . _ , . - _ _ , - - - - - - . . _ . . _ ~ _ . . - _ _ - . . . - . - _ _ - -
t e
?
I I 1-i:- i G APPDfDIX B Desetiption of the 3D Flux Synthesis Method , i 4 ; 4 F k I
'^3. . t l
[ i l l l l l l
- l. PEG /CALVERT l
r [
;g. l
- l. I i
l Appendix B. Description of the 3D Flux Synthesis Method i A 3D (86Z) flux distribution is syntheslied using the following well ; established approximation: i l (gg(R,Z) ((R,0,Z) = d yg(R,0) pggg) e Agg AM,Z) B.1 a i where (R9 is the flux obtained from the 30 DDT colculation; and ; E A(R,Z) e
#R - = axial distribution function obstined by representing the R1 flux = (egg) distribution :
and dividirig it by the ititeccat w er Z of the ! RZ fitx, ) e., da g fgdag C. In some previcus studies the RZ flux distributica was representt3 by the results obtained from a D7f RZ calculation, while the radial flux (g was l-obtained from a one-dimensional calculation. However, it has been discovered ; that a simplier approximation gives similar results (within a few percent) as & ,' + , i the results of these transport calculations for locations not outside of the ' RPV and near the reactor utidplane. In this approach we represent
.- (g (RZ) P gg) +
A(R,Z) s
- B.2 Jg P(ZJdZ where P(Z) is the. average axial distribution of power in the core. He i function P(Z) has been represented by discrete nodal values corresponding to the core-average axial power distribution at M00, which was provided by Baltimore Gas and Electrie. He relative axial power values were provided at 51 points for the 12 and 18 month cycles, and at 24 points for the 24 month ;
B-1 r-- , -,-------w,-ew-...r,v..wm,- ..w,---w.-w-c. .-w-,-,-.- 4 -* ws - - + - -r-, - - = - , + + - - , ee --
Appendix B. Des ription of the 3D Flux Synthesis Wethod r f I i A 3D (R9Z) flux distribution is syntheslied using the following well i
)
established approximation: I du(R,Z) ' ((R,9,Z) = (gg(R,0) * #R8 AII'E) I*I
'R(R) l where (R0 is the flux obtained from the R6 DOT calculation; and EZ A(R,Z) m = axial distributien function obtained by # t R representing the RZ flux = (ogg) distribution i and dividing it by the integral tver Z of the 4 RZ flux, i.e., '
dZ. 4R * [Z #RZ ! i lh some previous studies ti.e RZ flux distribu.tlen was 'epresented by the resulta ebiained from a DDT RZ calculation, while the radial (lux dgwas ; i obtained from a one-dimensional calculation. However, it tas been discovered ! r that a misplier approximation gi*.es similar results (within a few pertent) as the results of these transport col'culations for locations not outt Me of the RPV and near the reactor sidplane. In this approach we represent dg (RZ) P gg) ' A(R,Z) a B.2
- Jg P(Z)dZ where P(Z) is the average axial distribution of power in the core. The <
function P(Z) has been represented by discrete nodal values corresponding to the core-average axial power distribution at MOC, which was provided by Baltimore Gas and Electric for the peripheral assemblies. The relative axial power values were provided at 51 points for the 12 and 18 month
,. cycles, and at 24 points i:r the 24 month cycle.
B-1
.-.-. . . - . . . . ~ . . - - _ . - - . - -
- _ __~ _ _ . . _ . - . _ _ _ _ . ._ .. .- _
l l Rerefore employing the expression eq. B.2 for axial point k, we { find ; P i A(R,Z) s. A(Z)
- Ak
- JP(Z d2 ; kel, # of antal points There are 51 points used for the 12 and 18 sonth eyeles, in the antal ,
dimension. The 51 points define 50 nodes (i.e., intervals). To calculate l the integrated axial power we use the expression 50 , P(Z)dZkul- IFu g g Bs '
*bert Fkis the average power (relative) in the kth axial node. This value - "* + "k+1 is anrni.at.o by F, a . .here P,ana P,,; ire the ,oint ,o,ers i taken from the s'elal power data provided by 80&E. .
Equation B 3 uma used to approximate the denominator of eg. B.2, for the 12 and 18 month cycles. The axial distribution provided by BGM for the 24 month c, tele only has 24 intervals instead of 51 as for the 12 and 18 month cycles. A similar G 7, development for this gives 24 ~ P(Z)dZ - I F, az g B.4 kul Equation B.4 was used to approximate the' denominator of eq. B.2 for the 24-nonth cycle. " The final axial synthesis factors for the 12 and 18 month cycles are given in Table B.1, and for the 24 month cycle in Table B.2. In order to compute the 3D flux or activity at some axial location B-2 e i
+- ,r+m,,--e.,-.,--,.y-re- ew,r*,---<-,,,v-e ,-~,w--- -er-- ,--w----r- ~--#
< u: j i
(corresponding to a height Z in Table B.1 and 8.2), for some 30 location one i
, sus t-(a) find the flux or activity at the appropriate (a ,g e )glocation in the DOT I run ;
(b) find the axial flux factor at the appropriate node K (c) compute the 3D value using expression l 4( , e,, za) d,,(B r 'J)*^r- ' i (*) For example, in the 18 month cycle the peak power estresponds { approximately to 2 = 3.20 feet from the bottom of the core. From Table B.1 it can be seen that'the axial flux factor for this location is equal to 3.17 x i 10-3 . Therefore all activities and fluxen in the DOT De output should be multipiled tsy this factor in order to obtain the corresponding peak values. , l 4 1 l B-3
.- ,,- - - . - . ~~ - ,,,,,----,--.-----.,--n.-,---,.w-.a,,..., ,m , - - - , ..---,.w-v--ev.-.~ - - y -
I l
' Table B.1 Calvert Cliffs Unit 2 Axial Distribution Facters for Flux Synthesis: 12 and 18 Month Cycles Heitht (feet) Ag , 12 Month Ag ,18 Month 11.4300 1.844465-03 1.749715-03 11.2000 2.02698E-03 1.94625E-03 10.9700 2.192585-03 2.127885-03 10.7400 2.34726E-03 2.293735-03 10.5100 2.484155-03 2.44322E-03 10.2800 2.604975-03 2.876075-02 10.0500 2.709725-03 2.691995-03 9.8300 2.798985-03 2.791555-03 9.6800 2.873315-03 2.87734E-03 9.3700 2.933295-03 2.94277E-03 ,
9.1400 2.979785-03 2.99642E-03 8.9100 3.01393E-03 3.03659E-03 8.6800 3.037185-03 3.06471E-03 i 8.4500 3.050955-03 3.00221E-03 8 2300 3.05640E-03 3.0P053E-03 8.0000 3.055545-03 3.091395-03 7.7700 3.04952C-03 3.08652E-Os 7.5400 3.039765-03 3.077345-03 7.3100 3.027995-03 3.065284-03 7.0800 3.015655-03 3.052085-03 ' 6.8500- 3.003F88-03 3.0386&B-07 6.8300 2.9936bF.03 3.02569E-03 , 6.4000 2.9E500E-03 3.017318'e 03 ,. 6.1700 2.46150%-03 3.01077E-02 -
?.9403 2.980938-03 3.00761E-03 3.710e 2.98437C-03 3.002868-03 5.4800 2.990975-03 3.00388E-03 i 5.2600 3.002745-03 3.036885-03 1~
6.0300 3.018235-03 3.02856E-03 4.8000 3.036895-03 3.046635-03 4.5700 3.05784E-03 3.069595-03 4.3400 3.079945-03 3.08967E-03 4.1100 3.124995-03 3.112345-03 3.8800 3.12270E-03 3.133575-03
/ 3.6600 3.140495-03 3.151945-03 '
3.4300 3.156285-03 3.168715-03 3.2000 - 3.16144E-03 3.173175-03 2.9700 3.161445-03 3.17231E-03 2.7400 3.152265-03 3.16169E-03 2.5100 3.132465-03 3.13960E-03 2.2800 3.100315-03 3.104315-03 2.0600 3.05497E-03 3.05467E-03 1.8300 2.994995-03 2.98926E-03 1.6000 2.919235-03 2.906905-03 1.3700 2.82739E-03 2.80733E-03 1.1400 2.71891E-03 2.68940E-03 0.9100 2.59321E-03 2.55369E-03 l l 3-4 . _l. l l- .
- - - - . _ . . . . .___., ~ .._- _ . _ ., . - . _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . .
's ig ,
- i u 3
,l i b b + .
s 0.6900 ~2.450295-03 2.39960 H 3 . 0.4600 2.290725-03 2.227735-03 i 0.2300 2.11480E-03 -- 2.061605-03 1 0.0 1.923675-03 '1.833495-03 j i 3 g -;
.6 b
t b i (. i I I' , u l s l: > [ .- f, i. r , 9 l-O i 4 4 0 3 e
? +
b l
+
E-5
I : Table B.3 Calvert Cliffs Unit 2 Axial Distribution Factors for Flux Synthesis: 24 Month Cycles Height (feet) Ag , 24 Month 11.2500' 1.48084E-03 10.9600 2.02411E-03 10.6600 2.430105-03 10.3700 2.681295-03 10.0800 2.879905-03 9.6200 3.028945-03 8.9700 3.087285-03 8.3100 3.101885-03 F 7.8300 3.101885-03 7.3500 3.10188E-03 6.6900 3.098965-03 6.0300 3.101885-03 5.5500 3.107735-03 4 5.0700 3.116495-03 , 4.4100 3.131095-03 3.7600 3.14278E-03 3.2700 3.154465-03 2.7900 3.157385-03 E-2.1300 3.119415-03 d 1.4800 3.011345-03 1.0220 2.844865-03 !' O.7300 2.617035-03 5 it 0.4380 2.231495-03. I lj 0.1460 1.69990E-03 1 ,' 1 !. j l 4 l l 1
'1 i
l l . i 36 i
I y 4 APPENDII C Energy Group Structure and Dosimeter Activation Cross Sections Used in Transport Calculations l-e k i-
-5 PEG /CA!. VERT i
![ ^ , ] W., i 4 J d$ Energy' Group Structure and Dosimeter Activation- + d,i Cross Sections Used in Transport Calculations fjig are presented in Tables.C.1 and C.2. !h: ?
- p. *
(? .J. a
- 6 s
1.i . , 4:
.i t
i
-.c e
f' b$f I ');
- r,.
f 9 i r PEG /CALVERT C-1
a .. ; y fi ' Table C.1 SA!!DR 47-Group Library thergy Structure
! 1 1
Group- 1. owe r. ene rgy Group Lower energy-(MeV) ) (MeV) ' 1 14.19* 25- 0.183 2 12.21 26 0.I11 3 10.00. l 27 0.0674 4 8.61 28 .0.0409 5
,l 7.41 29 0.0318 !
6 6.07 30 0.0261 ! 7 4.97 31 0.0242 l -8 3.68
- 32 0.0219 L 9 3.01 33 i 0.0150 ;
10' 2.73. 34 7.10 x 10*3 11 2.47 35 3. 36 x 10*3 '
-12 2.37 36 1.59 x 10~3 -
13 2.35 37 4.54 x 10*' j- - _14 2.23 38 2.14 x 10-'
~ 15 1.92 -39 1.01 x 10-' ..
- p. 16- 1.65 40 3.73 x 10-5 4 17 1.35 41 1.07 x 10-5 33 18 1.00
- 42 5.04 x 10-6 ,
19 0.821 43 1.86 x 10-6 20 0.743 44 8.76 x 10-7 21 0.608 45 4.14 x 10-7
. 22 0.498 46 1.00 x 10-7
- 23 0. 36 9
^
47 1.00 x 10"Il 24 0.298
*The upper energy of Group 1 is 17.33 MeV .
C-2 I. n . . . . . - . . .... .-. - -
6 lfo L
,;p
- Table C.2 Reaction Cross Sections (Barns) Used in Calculations
'I for Calvert Cliffc Unit 2 l
Oroup Ene r8y U-238 Np-237 Fe-54 Ni-58 Cu-63 (n.t) (n.p) ! (MeV) (n.f) (n.p) (n.o) , 1 1.733E+0! 1.275E+00 2.535E+00 2.686t+0! 2.962E-01 3.682E-02 l 2 1.419E+01' ! .086 E+00 2.320E+00 4.1375-01 4.416E 4.540E-02 3 1.221E+01 9.844 E 2. 334 E+00 5.276E-01 6.103E-01 5.357E-02 , 4 1.000E+01 9.864 E-01 2.329E+00 5.781E-01 6.588E-01 3.811E-02 5 8.607t+00 9.891E-01 2.248t+00 5.888E-01 6.553E-01 1.906E-02 6 7.408 E+00 8. 574E-01 1.965E+00 5.590E-01 6.285E-01 9.277E-03 7 6,065E+00 5.849E-01 1. 520E+00 4.697E-01 5.365E-01 2. 915E-03 - 8 4. 966 E+00 . ,5.615E-01 1.538E+00 3.199E-01 3.917E-01 4.437E-04 L 9 3.679E+00 5.475E-01 1.638E+00 1.762E-01 2.287E-01 3.568E-05 L 10 3.012 E+ 00 5.463E-01 1.680E+00 1.155E-01 1.658E-01 5.831E-06 11 2.725E+00 5.527E-01 1.697E+00 7.755E-02 1.131E-01 1.707E-06 12 2.466 E+ 00 5.521E-01 1.695E+00 5.111E-02 9.308E-02 6.834E-07 ' 13 2. 36 5E+00 5.512E-01 1.694E+00 4.756E-02' 9.232E-02 4.637E-07 14 2. 346 t+00 ~5.504E-01 1.693E+00 4.484E-02 8.614E-02 3.430E-07 L 15 2.231E+C0 5.390E-01 -1,677E+00 2.008E-02 4.661E-02 1.150E-07 H 16 .l.920E+00 4.685E-01 1.645E+00 4.771E-03 2.660E-03 1.536E-08 17 1.653E+00 2.706 E-01 1.604E+00 6.335E-04 1.337E-02 0 18 1.353 E+00 4.502E-02 1.543E+00 1.311E-05 4.438E-03 0 19 1.003E+00 1.102E-02 1.389E+00. 0 5.023E-04 0 20 8.208E-01 2.881E-03 1.205E+00 0 1.729E-04 0 1 21 -7,427E-01 1.397E-03 9.845E-01 0 4.914E-05 0 - l 22 6.081E-01 5.378E-04 6.437E-01 0 7.673E-06 0 23 4.979E-01 1.502E-04 2.642E-01 0 8.903E-07 0 ' 24 3.688E 8.333E-05 8.800E-02 0 4.070E-08 0 25 2.972E-01 6.168E-05 3.552E-02 0 1.832E-15 0 26 1.832E-01 4.668E-05 2.043E-02 0 0 0 27 1.111E-01 4.015E-05 1.542E-02 0 .0 0 . 28 6.738E-02 4.000E-05 1.228E-02 0 0 0 29 4.087E-02 6.176E-05 1.088 E-02 0 0 0 30 3.183E-02 8.610E-05 1.023E-02 0 0 0 31 2.606E-02 8.7002-05 1.002E-02 0 0 0 32 2.418E-02 8.700E-05 9.906E-03 0 0 0 33 2.188t-02 8.700E-05 9.723E-03 0 0 0 34 1.503E-02 5.650E-05 1.004 E-02 0 0 0 35 7.102 E-03 4.860E-11 6.506E-03 0 0 0 36 3.355E-03 7.439E-10 8.716E-03 0 0 0 37 1.585E-03 4.199E-04 2.303E-02 0 0 0 38 4.540E-04 1.464E-08 3.701E-02 0 0 0 39 2.144E-04 1.044E-08 6.129E-02 0 0 0 40 i.013E 1.243E-08 9.027E-02 0 0 0
]-
41 42 3.727E-05 1.068E-05 1.955E-08 3.086E-08 2.296E-02 1.014E-02 ' 0 0 0 0 0 0 43 5.043E-06 4.770E-08 4.011E-03
- 0 0 0 44 1.855E-06 7.171E-08 9.350E-03 0 0 0 45 8.764E-07 5.067E-08 1.407E-02 0 0 0 46 4.140E-07 1.881E-08 4.328E-03 0 0 0 47 1.000E-07 1.182E-09 8.332E-02 0 0 0 C-3 w.
y; i c .
, .e , j cj[x r?. f:
i e s -
#1 s'
i t 74,
- { (!
u APPENDII D - I
. Definition of " Measured Saturated Activity" Used in Calvert Cliffs-2. Capsule Analysis ,
e p L: l'- :% l ?: 1p PEG /CALVERT
il '
~ , l Appendix D. Definition of " Measured Saturated Acitivity" Used in Calvert Cliffs-2 Capsule Analysis" -The term "sensured saturated activity" is a somewhat ambiguous ters which
} i s extensively used, but often aisunderstood. In this appendix we will L discuss the definition of saturated activity and derive the expressions used (- it; the present analysis. In the Calvert Cliffs-2 263 capsule analysis following cycle 4, most dosimeters did not remain in the core long enough to reach " saturation conditions"~ (i.e., the activity at which the rate of decay is equal to the h rate of production). This is often the case for dosimeters removed relatively early in the life of a plant. Thus the " time-of-removal" activity (A!OR} , L . which is physically measured does not actually. correspond to a saturated - t 1 activity. However it 'is common to define a " measured saturated activity" s 1 (ASAT) by the relation: II) A!OR = h ASAT' (2) !. ASAT
- A'IOR/h 1
where h is the non-saturation factor given by L .
-AT (3) h=
EP)(1-e I) e-A(T-t)) j k In reality the saturated activity is not seasured at all - only the 'IOR activity is measured, and a "seasured saturated activity" is then calculated using eq.(1).
- j. .
l D-1 l l _--*"-+-.-______s-____.__________a_ _ _ _ . _ m --__ , w. m...w,,,,, ,,-w,. ,yse, m ., _m. m a,s- -emq
-r w
W.. l 1-
.m .)
As shown in reference (1), eg. (1)-(3) are rigorous only if the core power distribution does not change with time. If the distribution is j time-dependent, then the idea of a saturated activity is ambiguous, since the i different power distributions may cause the dosimeters to saturate at different activities. We encounter this difficulty in analyzing the surveillance' capsule from Unit 2, which was exposed to cycles 1-3 havirig a J power distribution representative of a 12 month cycle, and to cycle 4 having an 18 month cycle distribution. Which cycle type should be used in defining 1 < the saturated activity? Obviously the simplistic expression in eq.(1) breaks down whenever several different power distributions are involved; and it is no longer clear how to define a " measured saturated activity" in terms of , i A*IOR. In the following development we derive an alternate expression to- ; eq.(2) for defining a " measured saturated activity" in terms of A for the TOR Calvert Cliffs-2 analysis. (This derivation is easily generalized.) f We assume that a single power distribution can be used to represent all 12 month cycles; and another to represent 18 month cycles. It the dosimeter 1 were exposed to either of these distributions for a long enough period of 6 time, it would obtain a saturated activity equal to and A T' respectively. Note that in general 12 18 A SAT
#A SAT and that the ATOR value should represent some combined effect of the two power distributions.
The value for A.IOR s t the end of cycle 4 will be given by D-2 '
h .. f ^ 12
~A T 344 18 I4) ^70R = h l*3 A SAT e +h 4 SATA i
where hg 3 = non-saturation factor from beginning of cycle 1 to end of-- Ie. cycle 3. *
'h 4 = non-saturation factor from beginning of cycle 4 to end of cycle 4.
l- ' T3 ,4 = time frca the end of cycle 3 to the end of-cycle 4. 2 A GAT and A = saturated activity associated with the power distribution for the 12 and 18 month cycles, respectively. A. = dosimeter decay I ; Equation (4) can be written as
-A T p4 A +h 4 (5) A1OR = [ h l *3 e 12)I*k2T SAT From this relation we define the " measured saturated activity" for the 12 '
l, month cycle to be , 1 3 l l 12 A(10R) seas . (6). (ASAT mess. " - -AT 18 . -u e g4+ h b T'
' hl *3 4 T ' Calf. '
h- Note that eq.(6) allows us to obtain a " measured" saturated activity by j utilizing the A 70R measurements; h wever it als requires knowing the retto D-3 J
~ ' .I ,: , 18 4
[3 which'aust be obtained from the transport calculations. A SAT
-l.
- l .In a staller way we obtain the sensured esturated activity for the 18 month cycle:
..l (7) i8 % )se.s. ,
(ASAT} seas. " . -A T IS . hg + hb3' T' 1 MT ' b The results called sensured saturated activities in Tables 6a and 6b were obtained using eqs.(6) and (7) respectively.
. n.,
! R. E. Maerker, M. L. Williams, B. L. Broadhead, " Accounting for Changing l ' -Source Distributions in Light Water Resetor Surveillance Dosimetry Analysis," , Nucl.-Science Engr. 94, 291-308 (1986).. i k i 1
. Y '
l 0 1. D-4 l
p: , ty .,
- { J '
- la ,
a -l- [' ' , .; i IJ ; - f. I
-?
APPENDIX E Pressure-Temperature Limit Tables For Calvert Cliffs Unit 2 E-1 Heat-Up Conditions
. Rates: 40'F/hr il 50'F/hr , " LI- 60'F/hr .i 70'F/hr l t
I:
,i.
c. l l* l ' ] if
' PEG /CALVERT
- . ~ . . . . . . . -~ _ - - . - ~_ . _ . . - . - - - - - --- -.- ---
CALVERT CLIFF HEATUP AND C00LDOWN CURVES ..- 12,16. 20, 24, 28, 32, 36 AND 4E EFPY HEATUP ANALYS!$ NEAT RISE RATE
- 40.0 (DECF/HR) j f,2 EFPV 16 EFPY 20 EFPY 24 EFPY 29 EFPY 32 EFPY 36 EFPY 40 EFP9 TEMP PRESS . PRESS PRESS PRESS PRESS PRESS 1- 70.0 461.0 441.1 427.3 416.3 407,7 400.7 PRESS 395.2 PSESS l 391.1 !
- 75. 0 464.7 441.1 427,3 416.3 407.7 400.7 395 2 391.11
- 30. 0 460.8 441.1 427:3 416,3 407.7 400.7 395.2 391.1 l SS. 0 473.2 441.1 427.3 416,3 407.7 400.7 395.2 391.1 I I 90.0 472.9 441.1 427.3 416,3 407.7 400.7 395.2 391.1 1 95.0 446.1 441.1 427.3 416.3 407.7 400.7 395.2 391.1
'- 100.0 462.S 441,1 427.3 416.3 407.7 400.7 395.2 391 1I 105.0 461,6 441.1 427.3 416.3 407,7 400.7 395.2 391.1 !
110.0 441.3 443.0 427.3 416.3 407.7 400.7 395,2 391.1 ) 115.0 4M.S 443.4 420.6 416.9 407 e 400.7 395.2 391,1 120.0 471.O 447.3 431.S 419.1 409.3 401,7 395,9 391,S -l 125.0 470.7 4S2.6 439.8 422.6 412.2 404.1 397.3 393. 2 l 130.0 487,2 459.4 441.4 427.3 416.2 407.S 400.8 395,9 j 135.0 497.2 467.S 448,2 433.1 421.2 412.0 404.9 399. S 140. 0 900.7 476.8 456. 2 440.0 427.3 417.4 409.8 404,l' 145.O S21. S 487.3 465.3 448.0 434,4 423.7 415.6 409.4 I 190. O S35.7 499.1 479.S 497. 0 442.4 431.0 422.2 415.4 ISS. 0 881.4 512.1 486.S 4M.9 451.3 439.1 429.6 422.6 160.O S68. S 524.4 499.2 477.9 461.1 440.0 437.9 430,3 165.O SS7. 2 542.O S12. O 499.9 471.9 457.9 447.0 438.9 170.0 607.S 598, 9 527,6 503.0 403.7 MO. 6 457,0 l 175.0 629.4 S77.3 S43.7 317.3 496.S 400.3 447.9 448, 3 450. 9 100,0 653.1 997.1 561. O S32.7 S t o. 4 493.0 479.7 469,e ' l ISS. 0 676.6 618.6 579. 9 S49.4 S25.5 Soe. B 492.4 481.6-l l- 190.0 696.6 641.7 600.1 567. 4 S41,7 321. 6 506. 2 494.6 5 195.0 718.0 eu.7 622.O 586.O 559.2 S37. 7 S21.1 500, 7 200.0 741.0 688.4 648.6 607.S 579.1 SSS.O S37, 2 803.S-203.0 765.G 709.2 M9. 0 630,4 598. S 573.6 554. S See. 3 210. 0 792.3 731.6 680.4 6S4, 7 630.4 593. 7 573, 2 SS7.7 215.O S20,9 755.6 709.2 600. S 644.0 615.3 593.3 976.7 230,0 OSt. 6 701.S 731.6 700.7 M9. 4 638.6 614.9 597. 1 229. 0 884. 6 809.2 755.6 722. S 696.6 M3. 6 630, 1 619.4 230. 0 930.O S39. F 766. S 748. S 7IS, 0 690. 5 MS. 2 648. 6 235.0 995.1 571.1 809,2 770.9 741.0 718. 0 690.1 MS. S 240.0 999.0 905.S 339. 1 797.9 768.0 741. 0 710.0 699.3 , 249.0 1048.9 948. S 97h F 886. 9 790:3 765. S 746, 6 75.DJ 250. 0 1090.0 983.3 905.5 OSS. 0 Ste. 9 792.3 769.0 748.O ~ 259.0 1140.6 1024.9 942.S 991.S 581.6 M0. 9 792.3 770.9 260.0 1895.0 6970. 7 -9W. 3 937.4 894. er 851. 6 000,9 797.9 265.0 1283.3 1120.0 1084.9 9M. 0 930.O M4. 6 081. 6 M6. 9 l 270.0 1316.0 1172.8 1070.7 1007.S 950.1 990. 0 884.6 050.S 275.0 &MS. 2 1999. S 1836.0 1098.0 999.6 958. 1 996. 0 89h 3 200.0 1498.2 1990.4 1872.8 1099.9 1042.9' 999.0 950. 1 937.4 l- SSS. 0 1939.5 1355.7 1329. S 1131.a 1090.0 1042. 9 999.0 9M.0 a90. 0 su S. 4 saae. S 1a9e. 4- taS6. 3 use.
- 1090.0 104a. 9 60e7. e 299. 0 1704.2 1901.0 1395.7 1263.S 1199.0 1140.6 1090.0 1058. S 300.0 1799.4 1981. 6 1425.9 1329.0 1253.3 1195.0 1840.6 1099.9 309.0 1901.3 1665. 6 1906.0 1397.2 1316.D 1293. 3 1199.0 1 SDh 8 l
310. 0 2010.3 1760.5 1981.6 1470.3 1333.2 1316. 0 1293.3 1906.3 315.0 2126,9 1859.7 1MS. 0 1948.6 1495.2 1383. 2 1316.0 1265.S O t E-1
-. , _,m, ,, _ ~ _ _ . . , _ . . . . , . _ , . _ , . , _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ .
<l CALVERT CLIFF 5'HEATUP AND C00LDOWN CURVES ... 12, 16, 20. 24. 28, 32, 36 AND O EFPY -S. ' HEATUP ANALYSi$ . HEAT RISE RATE
- 40.0 (DEGF/HR) f 12 EFPY 16 EFPY 20 EFPY 24 EFPY 20 EFPY 32 EFPY 3) EFPY 40 EFPV TEMP PRESS PRESS PRESS PRESS PRESS PSESS PRESS PSESS 320.0 2251.5 1965.0 1760.5 1632.7 1532.5 1455 2 1383 2 1329.0 325.0 2384.5 2079.3 1959.7 1722,7 1615.4 1532.5 1455.2 1397.2
,- 330.0 2S26.3 2200.6 1965.B 1819.2 1704.2 1615 4 1532.5 1470.3 335.0 2678.4 2330,2 2079.3 1922.5 1799.4 1704.2 1615.4 1949.6 2939.9 2468 5 2200.6 2033.0 1799.4 1704.2 1633,7 340,0- 1901.3 345.0- 3011.S 2615.B 2330.2 2151.1 2010.3 1901.3 1799.4 1723.7 350.0 3194.3 2774.1 2468.5 2277.4 2126.9 2010.3 1901,3 1919.2 355.0 3300.0 2943.S 2615.B 2412.1 2251.5 2126.9 2010.3 1982. 9 360.0 3591.9 3120.0 2774.1 2555. G 23SA 9 2251, 5 2126.9 2033. 0 .
365. 0 3008.0 3309,2 2941.'S 2709.9 2526.3 2354. 5 2251. S 2151.1 ? 370.0 4035,6 3509.7 3120.0 2973.4 2670 4 2926.3 2384.5 2377.4 375.0 4274.7 -3720.2 3309.2 3047.4 2639.9 2679. 4 2526.3 2418.1 300.0 4526.S 3943.2 3909,7 3232.2 3011.S 2939.9 2670.4 2999.S
' 309. 0 4789.5 4177.7 3720.2 3420.1 3194.3 3011. 8- 2939,9 2709.9 390.0 5121.S 4423.6 3943.2 3634.2 3388. 0 3194. 3 3011.S 2973.4 399.O P479.0 4682.0 4177.7 3063.6 3991.9 320.0 3194.3 3047.4 400.O 5843'.1 4905.9 4423.6 4002,5 3000. 0 3991. 9 3300.0 3333. S 405.0 6276.O S333.0 4602.0 4039.6 3000. D 3991.9 3438.1-4995.9 4333.9 4577.0 - ' 4274.7 4035.6 3808.0 3634.S 410. 0 6720.0 .5706.1 419. 0 7197.4 6107,3 5333. 0 4884.0 4526.S 4274.7 4035.6 3398. 6 ,
420, 0 7710.6 6530.6 5706.1 9191.1 4789.5 4996. S 4374.7 4003.S-l 425.O B262.4 7002.3 6107.3 5583.6 5121.S 4789.9 4536.S 4WS. 9 , 430.0 9055.7. 7500.9 6938.6 9943.3 S479. 0 5121. S 4789.S 4977.S 435.0 9493.6 8036.9 7002.3 4362. 3 9863.1 5479.0 9121.S 4884, S 1 440. 0 10179.4 8613.2 7500.9 6812.B 6276. 0 3863.1 5479.0 5191. 1 i 445.0 1091 e. 7 9232,9 8036.9 7297.1 6720.0 6276. 0 3863.1 5593.6 < 490. 0 11709.5 9999.1 8613,2 7Dl7. G 7197.4 6720.0 6276.0- 0943.3 459. 0 12561,8 10615,4 933.9 8377.7 7710.6 7197.4 6720,O ~ 6363. 3 i 460.0 13478.2 11385.5 9999.1 8979.6 0262. 4 'r780. 6 7197.4 6818.S ' 465. 0 14463.5' 12213.5 10619.4 9686.S SOSS. 7 M62. 4 7710.6 7397.~ 6-13103.7 11389.5 9493.6 MSS.7 8962. 4- 7917.O q 470.0 19522.8 103RR. 6 8377. 7 ' 47S.0 16H1. B 14060.8 12213.5 11070.7 10179.4 9493.6 8888.7 400,0 17886.3 19009.9 13600.7- 11679.1 10966.7 10879,4 9493.6 8999. 6 19202.9 16196.3 14060.0 12739.S 11709.5 10916.7 10179,4 9686.G 489.0 490.C 20618,4 17385.8 19009,9- 13M9. 6 12961.S 11709.5 10916.7 10 W .4 l 18M4. 9 16196.9 14M9. 3 13670.3 18961. S 1178E S 11896.7 1 495.0 22140,3 18961.8 11878.8 500,0 ' 23776.5 20039.0 17300.8 19744.1 14463.5 13479.2 305. 0 . 2553s. S 21518.3 18M4. 8 16899.6 1 stas.9 14463. 5 13478.a 18739.9 27407,3 23107.S 2000 % S - 18148. S IM66. S 1SBen. S 14448.S 1366u . 310. 0 19583.8 14ME S 519.0 29460.9 24816.S 21918.3 19477.S 17036.3 16661. 8 2MS4. 2 23107.S 20914.0 1990s.9 1756,3 16M1. 8 19744.1 S20.0 31647.3 17886.3 16SOE 6 529. 0 33998.1 28629.7 34864. & M400.1 20618.4 19me. 9 2MS4. 2 24118.3 23140. 3 ' 33618.4 19300.9 19848.S 530.0 36535.5 30753,7 W140, 3 20618.4 - 19477.8 539. 0 39342.9 33037.3 20689.7 28903.2 23776.5 1 43164.6 39493.S 30798.7 279M.3 25088. g app 76, g- 23648.T 30M4. 9 : 540. 0 23776.S 39408.1 549.0 45305.S 30132.3 33037.3 29888.6 27487.3 20039. S 35499.9 3E103.9 29460.9 27487.3 29535.S 34118. S : SSO. 0 49683 1 40970.4 80888.S ' 595. O S2314.1 44021,9 38130. 3 34489.6 31647.3 29460. 9 27407.3 l 860.0 56210.1 47302.7 40970.4 37083.4 33999.1 31647,3 29440.9 RMS l L l-l l t.2 l l
, : CALVERT CLIFF HEATUP AND C00LDOWN CURVES -- 12, 16. 20, 24, 28, 32, 36 AND 40 EFPY I HEATUP ANALY$l$ . HEAT RISE RATE
- 50.0 (DEGF/HR) 12 EFPV 16 EFPY 20 EFPY 24 EFPY 28 EFPY 32 EFPV 36 EFPY '40 EFPY
, TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS l- 4 70.0 443 1 421.3 407.1 395 4 386.2 376 7 372 9 360. S 75.0 443.1 421.3 407.1 395.4 386. 2 370.7 372.9 368. 5
, 80. 0 443 1 421 3 407.1 395,4 396. 2 370.7 372 9 360.S 05.0 443.1 421.3 407.1 395.4 396.2 370.7 372.9 368.5 407.1 395 4 90.0 443,1 421 3 386.2 378.7 372.9 368.5 95.0 443 1 421.3 407.1 395 4 396.2 370.7 372 9 360. 5 100. 0 443.1 421.3 407.1 395.4 386.2 37G 7 372.9 368. 5 105.0 443.1 421.3 407.1 395.4 M6. 2 378.7 372.9 360. 5 110. 0 443 1 421.3 407.1 395.4 386,2 378 7 372.9 365. S 115.0 443 2 421.3 407.1 395.4 396.2 378.7 372.9 368. 5 120. 0 445.3 422.1 407.1 395.4 386.2 370.7 372.9 360. 5 ;
125.0 449.2 424.5 400.7 396.2 386.4 370.7 372.9 368. S 130 0 454.7 420 5 411.6 399.3 307.9 379.S 373.6 368.9 13S.0 461. 9 433.9 415.9 401.0 390.7 382.0 375.3- 370.4 140.0 470.5 440 7 421. S 406.4 394.9 305. 3 370.2 372.9 145.0 480 6 448. B 420. 3 412.1 399.5 376.3 - i 389.6 382.0 l 190. 0 492.1 450.2 436.2 419. 0 405. 4 394.9 386.7 30.7 J* ISS. 0 505.2 468.0 449.4 426.9 412.4 401.1 392.4 395,9 l 160.O S19.7 400.8 455.7 435.9 420.4 400.3 398.9 392.O i 165.0 535.7. 494.0 467. 1 446. 0 429.3 416.3 406,4 390.9 + l 170.0 593.3 500.6 479.8 45).1 439.3 425.4 414.7 406.6
, 175.0 572.6 524.6 493.7 469.4 490.3 435.4 423.9 415.3
{' 190.0 593.5 542.1 500.9 482.9 462.4 446,4 434.1 4 24. S }l I 155.0 616.3 561.1 525.5 497.5 475.6 450.4 445.2 439.3 (; 190.0 440.9 581.6 543.5 513.4 489.9 471.5 457.3 446,7 199.O e67. 5 603.9 542.9 530.7 509, 4 485.7 470.5 459.1 200.0 696.3 620.0 984. 0 949.4 522. 3 Sol .1 484. 9 472.6 209. 0- 727.3 654. O 606.O 569. 7 540. 9 517.7 500.2 487.1 210. 0 760.G 602.1 631,4 591.S 560. 2 535.7 516.9 902.O 315.0 796.8 712.3 657.9 615.0 SSI. 4 555.2 535.0 919. 8 l' 220. 0 035.6 744.9 606.4 640.4 604.3 576.1 554.4 935. 1 229. 0 877.3 779.9 717.1 667.7 629. 0 599.7 575.4 557. 9 230. 0 920.O S17.6 790. 2 697.2 666.D- 623.0 999.0 579. 2 235.~ 0 950,1 898. 1 789.5 720.S 684. 1 649.2 622.3 603.1 240.0 999.0 901.7 824. 0 762.9 714.9 677.4 648.5. 626.S l 245. 0 1042.9 94G. S 866. 2 799;5 -747: 9-- 707.7 676.7 600.4 ! 290. 0 1090.0 902.3 90s. s 838.9 703. s 740.2 706.9 6es. O RSS. 0 1140.6 1024.9 942.S Sg t. 2 821. 7 775.3 739,5 712. 7 260.0 1199.0 1970.7 905. 3 - 926. 6 . -868. S- 812.9 774.5 745.7 265.0 1293.3 1120.0 1024.9 966. 0 906.9 893.4 812.2 781.3 , 270.0 1316.0 1172.8 1070.7 1007.S 954,3 896.9 Sea. 6 819.4 279. 0 1305.2 1229. 5 1136.6 1002. 9 999.G 948.S 996.0 860.4 200.0 1499.2 1290.4 1172.0 1099. 9 1042.9 993.7 942.7 904.4-205. 0 1533.5 1395.7 1229. 9 1151,2 1090.0 1042,9 992.S 951.7 290.0 1685.4 1428.S 1898. 4 1206.3 18 46. e- 1000.0 1042,9 1000. 5 299. 0 1704.2 1501.0 1399.7 1265.5 1199.0 1140.6 1090.0 1092.0 .
.300,0 1799.4 1581.6 1429.8 1229. 0 1293.3 1199.0 1140.6 1099,9 i 305. 0 1901.3 1668.0 1996. O 1397. 2 1886.9 1253.3 1195.0 1191,2 +
1 310. 0 2010.3 1760.S 1901.6 1470.3 1383.2 1316.0 1253.3 1206.3 1 315.0 2126.9 10*9.7 1668.0 1540.6 1495.2 1383.2 1316.0 1869.S
.~
t - hi$ I l l l i . I l E-3 l
. __- . . . . -~ . - - . . .- . . . . - . - - . - . - . . -CALVERT CLIFF HEATUP AND C00LDOWN CURVE $ ... 12. 16. 20. 24. 28, 32, 36 AND 40 EFPY I, HEATUPANALY$l$.HEATRISERATEo50.0(DEGF/HR) J j 12 EFPY 16 EFPY 20 EFPY G4 EF7Y 00 EFPy 33 EFF V 36 EFPY C0 EFP l TEMP PRESS PRESS PRESS PRESS PRESS PREES PPESS PRESS 320.0 2251 5 1965.G 1760.5 1632.7 1532.5 1455.2 1383,2 1329.0 325.0 2304.5 2079.3 1959.7 1722.7 1615.4 1532.5 '1455.2 1397.2 ,
330.0 2526 3 2200 6 1965.0 1919.2 1704.2 1615.4 1532.5 1470.3 i !i;. 335. 0 2670,4 2330.2 2079.3 1922,5 1799.4 1704 2 1615.4 1549.6 ) 340.0 2039.9 2460.5 2200.6 2033.0 1901.3 1799.4 1704.2 1632.7 ; 345.0 -3011.S 2615.5 2330.2 2151,1 2010.3 1901.3 1799.4 1722 7 , 350.0 3194.3 2774.1 2460.5 2277.4 2126.9 2010 3 1901.3 1919.2-l l: 355. 0 330s,0 2941.e 2615.0 2412.1 2251.5 2126
- 2010.3. 1922.5 ;
- l. 360 0 3591.9 -3120.0 2774.1 2555.8 2384.5 2251.5 2126.9 2033.O !
365,0 3808.0 3309.2- 2941.S 2709.9 2526.3 2304.5 2251.5 2151.1 1 370.0 4035.6 3509.7 3120.0 2073.4 2670.4 2526 3 2384.5- 2277.4 375.0 4274.7. 3720.2 3309.2 3047.4 2839.9 *2679 4 2526.3 2412.1 300.0 4526.0 3943.2 3509.7 3232.2 3011.S 2039.9 2670.4 2999.O 4 305. 0 4789.5 4177.7 3720. P. 3428.1 3194.3 3011.9 2039.9 2709.9 I 390.0 5121.0 4423.6 3943.2 3634.2 3388.0 3194.3 3011.O ~ 2073. 4 i 395.0 5479.0 4652.0 4177.7 3092.6 3591.9 3300.0 3194.3 3047.4 1 l 400.O SS63.1 4905,9 4423.6 4002. 5 3000.0 3591.9 3398.0- 3232.12 I
, 405.0 6'276. O S333.0 4603.3 4323.9 4035.6 3000 0 3541. 9 seat.1 410.0 6720.0 57M.1 4905.9 4577.0 4274.7- 4035.6 3000. 0 3634,2 415.0 7197.4 6107.3 S333. 0 4854. 0 4526.9 4274.7 4035.6 3892.6 420. 0 7710.6 6530.6 57M.1 5191.1 4709.5 4526,9 4274.7 4083.S 425.O. 8262.4 7002.3 6107.3 5593.6 5121.S 4709,5 4526.O 4 M 3.9 430.O 8855.7 7500.9 6538.6 5943.3 5479.0 5121.8 4789.5 4577.0 l 435.0 9493.6 8036.9 7002.3 6362. 3 5863.1 5479.0 5121.9 4884.O L 440.0 10179.4 8613.2 7900.9 6812. O 6276.0 5843.1- 5479.O S191.1 .
445. 0 10916,7- ~9232.9 8036.9 7297.1 6720.0 6276.0 5863.1 SSS3. 6 490. 0 11709.5 9999.1 8613.2 7817. G 7197.4 6720.0 6276.0 9943.3 455.0 12561.O. 10615.4 9232 9 8377.7- 7710.6 7197.4 6720.0 6363.3 l 460. 0 13470.2 11385.5 9999.1 0979.6 3262. 4 7710.6 7197.4 6tta. S , 465.0 14463.5 12213.5 10665.4 9686.S 0855.7 8262.4 7710.6 7397.1 t 470.0. 15522.8 13103.7 11385.9 10322.6 9493.6 0855.7 8262.4 7317.S 475.0 ' 16M t . 0 14060.9- 12213.5 11070.7 10179,4 9493.6 8855.7 3377.7 480. 0 17886.3. 19009.9 13608.7 11675.1 10916.7 10179.4 9493.6 .3979.6 489. 0 19202.9 161 % 3 14060.8 12739.9 '11709.5 10916.7 10179.4 '9636.S 490.O 20618.4 '17308.0 19009.9 13 M9.6 12961.S :1709.5 10916.7 103RR.6. 499.0 - 22140,3 18664.D 161 % 3- 14669.3 13478,a 12561.0 11709.5 11070.7 500, 0 23776.5 20039.S. 17300.O 19744.1 14463.5 13470.2 12561.0 11075.1 SOS.0- 25935.S 21580.3 18664.0 16099.6 15S22. 8 14443.5 13479.2 18739.8 510.0 27427,3 23607. Os 88999.9 19649.6 1M68. 8 15988.0 14463.5 13669.&
- l. 515. 0 29460.9 24916.S 21910.3 19477.8 17086.3 16M1,8 19922.S 14669.3 520. 0 31647,3 2MS4. 2 23107.S 20914.0 19202.9 17006,3 16H1. 8 19744.1 529. 0' 339 % 1 28629,7 24SM.S 23499. 6 20618.4 1998&:9 17986.3 16899.6 530.0 36989.S 30753.7 2MS4. 2 24118.3 22140,3 20618.4 19302.9 19142.0 535.0 39242.9 33037.3 23689.7 . 29903.2 23776.3 22140.3 20618.4 19477.9 -
l 940. 0 42164.6 36490.S 30783: 7- 270 s . 3 ESSSS. S 23776.5 2Ds 40. 3 80984.0 ', 545. 0 45305.0 38132.3 33037.3 29005.6 27427.3 25535.S 23776.5 3 000.1 590. 0 48603.1 40970.4 39492.S M103. 9 29460.9 27427.3 25535.8 24119.3 ( 550. 0 52314.1 44021.9 3S6M.& 34409.4 31647. 3 29460.9 27427.3 29933.2-560. 0 56319.1 47302.7 40970.4 37083.4 '33990.1 31647.3 29460.9 27Ms. 3 l 1 * \ . i' l i 1 l-L l
. E-4 L
. . - - -. .- - -- - - ~ - - - ~ ---- - -
- 5-h CALVERT CLIFF HEATUP AND C00LDOWN CURVES-~. 12. 16, 20. 24, 28, 32. 36 AND 40 EFPY-HEATUP ANALY$15 - HEAT RISE RATE
- 60.0.(DEtF/HR) .
12 EFPY 16 EFPY 20 EFPY 24 EFPY 29 EFPY 33 EF7V 3$ EFPY 40 EFPY j 7EMP PRESS PRESS PRESS PRESS PRESS f ~= PRESS PRESS PRESS 357i1 350.8
- i. 70.0 424.5 402.0 386.0 374.7 364 p 346 1 75.0 424,5 402.0 386.S 374.7 364.g 357 1 350 9 346.1 I
- 80. 0 424.5 402.0 306. S 374.7 364. g 357 1 350 S 346,1 l
85.0 424.5 402.0 386. 8 374.7 344. g 357 1 350 8 346,1
- 90. 0 424.5 402.0 386.S 374.7 364.9 357.1 350.9 346,1- ,
- 95.0 424 5 402.0 386. 0 374.7 364.g 357.1 350.9 346.1 '
100.0- 424.5 402. 0 386. 8 374.7 364.g 357 1 350.S 346.1 t 05. 0 424.5 402.0 386.0 374.7 364.3 357.1 350 8 346.1- l 110. 0 424.5 402.0 386.8 374.7 364.9 357.1 350.8 346.1 115.0 424.3 402.0 386. B 374.7 364,p 357.1 350.8 346.1 120.0 424.5 402.0 386.S 374.7 364.3 357.1 350.# 346.1-129.0 429.5 402.0 306. 0 374.7 364 e 357.1 350 S 346.1 1 130.0 428.2 403.3 307.3 374.7 364. g 357.1 350.8 346.1 135.0 432.5 406.1 309. 1 375.0 365. 3 357 1 350.9 346.1 140.0 430.4 410.3 392.3 379.1 3M. 9 350 2 351.5 -346.9 145.0 445.8 415,9 396.7 301.6 369.7 360.4 353.3 340.O' 130. 0 454.S 422.9 402.3 386,2 373.6 363.7 356.1 390.4' 155. 0 469.2 431.1 409.2 392. 0 373. 9 369.0 359,9' 333.5 160.0 477.0 440.7 417.3 390. 9 384.4 373.2 344. 5 390.0-165.0 490 4 451.6 426.6 406.9 391,4 379.4 370.1 363.2 170.0 505. 3 463.S 437.0 416.0 399.5 386.6 376.7 369.2 - 175.0 521. B 477.4 448. 0 426.2 400. 5 394.7 394.1 376.1 I SO. 0 539.9 492.4 461. 0 437.6 418. 7 403.9 392.5 384.0 : 109. 0 559.9 500. 9 476.1 490.2 429.9 414.1 401.9 392.7 190.0 581. 5 526. 9 491.7 464.1 442.3 425 3 412.2 402.4 195.0 605.1 546. 5 500. 0 479.2 455.9 437.6 423.6 413.1 200.0- 630.6 567.9 S27,4 496.6 470.7 451.1 436. 1 424.S 205.0 650. 3 591.0- 547. 6 513. S 496.7 465. B 449.7 437.6 210.0 690.3 616.1 569.5 532.9 504. 2 481.S 464.5 491. 5 215.0 720.7 643. 2 593. 2 999. 9 583. 1 499.0 400. 5 4M. 6 220. 0 755.6 672.4 618.0 576. 7 543. 5 317 7 497.8 402.9 e 229. 0 793.2 704.0 646,5 601. 2 Se5. 7 537.9 516.6 500.4 l4 230. O S33.7 736.9 676.S 687.7- 589. p 559.7 536.S 519. 6 238. 0 877. 4 774.6 700.4 696. 2 615.3 583.3 550.7 940.3 l 240.0 924.3 014.0 742.9 487.0 643.0 600.7 502.3 563. 5 249.0 974.S 996c 5 -70D. 1 78D- 1 679.+ . 636.0 607.7 906.4 l 290. 0 1029.1 902.1- M0. 2 795.7 709.O M5. 5 635.0 612.2 299.,0 1007.4 991.2 863. 2 794.0 739.4 697.2 - h4. 5 640.0 See. 0 1190.9- 1989.9 - 999.-5 836.5 776. p 730 3 696.2 M9. 9 265.0 1217.3 1060. 5 999.2 579. S Ste.9 760t 0 730.3 708.0 270. 0 1899.4 S tat. 3 1012.7 927. 1 899.9 067.4 7M.9 736,6 275.0 1366,4- Alte. 6- 6076.S 978. 3 986.& 84% 4- 906. 3 773.S 200.0 1449.9- 1256.6 1131.7 1033.2 999.S 095.3 848.7 013.S 299.0 1932. 5 1331,7 1197.5 1092.1 1009.1 944.2 994.2 Ste.7 290. 0 1615.4- 1412. 4 1268.S 1 i St. 8- $466. 996 7 *943.1 902.S 299.0 1704.2 1498.9 1344.9 1223.4 1827. S- 1053.1 999.6 992.4 300.0- 1799.4 1981.6 1429.0 1296. 3 1193.S 1113.7 1051.9 1009.6j 209. 0 1901.3 1MS. 0 1964. 9 1374.9 1264. 6 1178.7 1112.4 1062. 7cc l 310. 0 2010.3 1760.S 1981.6 1498.3 1340.5 1248.3 1177.3 1124.0 ' 319.0 2126.9 1999. 7 1MS. 0 1549.1 1421.9 1323.I 1246.9 1199.S 1 1 l' I E-5 i
,-,nn-,-.-- e . . , - , , - , , , , ,-w.va,, -..w.. .-- , - . , - , - - - , - - - - _ _ _ _ _ - - - -
_ ,_ . - - - - - - - - - - - - - ~ ^ ^ ~ ^ ~ ~ ~ ^ ' ~ ~ ^ CALVERT C'IFF HEATUP AND C00LDOWN CURVES *.. 12.16. 20. 24, 28. 32. 36 AND 40 EFPY HEATUP AhALYSIS - HEAT RISE RA1E o 60.0 (DE(F/HR) , 12 EFPY 16 EFPY 30 EFPY 23 EFPY 29'EFPY 22 Erpy 33 gppy 40 gpp ')
> TEMP FRESS PRESS PREES PRESS PkESS PREF 5 320.0 PREES PRESE 2251.5 1965.0 1760.S 1632.7 1909.1 1403 3 1321.6 1960. D ' ,
325. 0 2384.5 2079.3' 18S9.7 1722.7 1602.S 1489 2 1401.7 1335.9 330.0 2526.3 2200.6 1965.9 1819.2 1702.6. 1591 2 1497 5 1417.1
.l 335.0 2678 4- 2330.2 2079.3 1922.S 1799 4 1679 8 1579 5 1904.C l 340.0 2039.9 2468 5 2200.6 2033.0 1901.3 1785 4 1673.0 1997.2-345.0 '3011.8 '2615.0 2330.2 2151.1 2010.3 1999 3 1793 3 1696.9 250.0 3194 3 2774.1 2468.5 2277.4 2126.9 2010 3 1996.1 1903.7 355.0 3300 0 2941.G 2615.S 2412.1 2251.5 2126.9 2010.3- 1917.9 360.0 3991.9 3120.0 2774.1 2595.8 2384.5 2251. 5 2126.9 2033.0 365.0 3000.0 3309 2 2941.# 2709.9 2526.3 2384.S 2251.S 2191. 1 370.0 4035.6 3509.7 3120.0 2073.4 2678.4 2526 3 2394.5 2277.4' 375.0 4274.7 3720.D 3309.2 3047,4 2939.9 2670.4 2926.3 2418.' t .
320.0 4526.S 3943.2 3909.7 3232.2- 3011.3 2939 9 2670.4 305.0 4789.S 4177.7 3720.2 3429. 1 3194.3 3011.S 2839.9- 2995.8'] 2709.9 390.0 5121.8- 4423.6 3943.2 3634,2- 3300.0 3194.3 3011 e 2973.4 399.0- 5479.0 4682.0 4177.7 3852.6 3991.9 3300.0 3194.3 3047.4 400.0- 9863.1 4905.9 4423.6 4002. S 3000.0 3591.9 3380.0 3232.2 405.0 6276.O S333 0 4602.0 4323.9 4039.6 3000.0 3591.9 34 3 .1 410.0 6720.0 5706.1 4989.9 4577.0 4274.7 4035.6 3000.0 3634.8' 419.0 7197.4 6107.3 5333.0 4854. 0 4926.8 4274.-7 4035.6 3058.6
'430.0 - 7710.6 4530.6 5706.1 S191.1- 4789.S 4526.9 4274.7- 4082.S 425.0 8262.4 7002,3= 6107.3 5553.6 5131.S 4709. 5 4$26 e 4333.9 430.0 0855.7 7800.9 4539.6 5943.3 5479.O S121.8- 4789 S 4977.9 435.0 9493.6 9036.9 7002.3 6363.3 5863.1 5479 0 5121.S 4894.0 440.0 10179.4 S613.2 7900.9 6812.S 6276.0 5863.1- 9479,O S191. 1 445. 0 10916.7 9232.9 0036.9 7297.1 6720.0 6276.O 5463.1 SSS3.6 490.0- 11709.5 9999.1 8613.2 7817. G 7197.4 6720.0 6276.0 9943.3-495.0 12561.8 10615.4 9232. 9 8377.7 7710.6 7197,4 6720.0 6368.3 460.0 13478.2 11385.S 9999.1 9979.6 8262.4 7710 6 7197.4 6818.S 465. 0 14463.5 12213.5 10619.4 9626.4- SSSS. 7 8262.4 7710.6 7297.1' 470.C 15522.e 13103.7 11389. ti 10322.6 9493.6 8055. 7 8262.4 7817.0 475,0 16Mt.0 14060.8 12213.5 11070.7 10179.4 9493 6 0855.7 8377.7-480.0 17086.3 15009.9 13100.7 11879.1 10966.7 10179.4 9493.6 0979,e 489.0 19202,9 16196.3 14060.8 12739.0 11709.9 10916.7 10179.4 9686.S A90. 0 20610.4 17309.0 19009.9 13M9. 6 12861.S 11709.5- 10916.7 10M3. 6 499.0 22140.3 ISH4. 0 16196.3 14669.3 13476.2 11961.8 11709.9 18870.7 ,
900.0 23776.S- '20039.8 17309.S 19744.1 14463.9 13478.2 12961.e 11079.1 ! S05.0 25535.0 21910.3 1SM4. 0 16099.6 15822.0 14463.5 13475.2 12739.8 510.0 27427.3 23107.G 200K G 1964G. 6 - 16Mt. 66 19848.8 14463.5 13669.6 519.0 29460.9 24816.S 21918.3 19477.8 17056.3 1 1. S 19832.8 14M9.3 580.0 31647.3 2MS4. 2 '23107.5 20914.0 19308.9 1 .3 16H1, e 19744.1 SSS. 0 33998.1 28629.7 Seele. G 29488.& 30610.4 19000.9 17886 3 16899.6 l 830.0 36529.S 30753.7 2MS4. 3 24110.3 22140.3 20e10. 4 19902.9 18148.O S35.0 39242.9 33037.3 28629.7 29903.2 23776.S 22140.3 20618.4 19477.S ' 540. 0 42164.6 39499.S 30758.7 27em. 3 25886.S 23776.5 22140.3 80914.O t 4 949. 0 45309.0 38132.3 33037.3 29000,6 27427.3 29935, e 23776.S. 38488.'1
' 590. 0 48683.1 40970.4 39492.S 39103.9 29460.9 17427.3 2SS35.8 84113.3 SSS.O S2314.1 44021,9 3B139. 3 34409.0 31647.3 29460.9 27427.3 89908.1 560.O Seale 1 47302.7 40970.4 37083.4 33990 1 31647.3 29460.9 270R3. 3 Y
- 1. '. .?
1 E.6 l 1
- - - ~ - - ,
j
.L CALVERT CLIFF NEATUP AND C00LDOWN CURVES ... 12. 16. 20, 24, 28. 32, 36 AND 40 EFPf I7 HEATUP ANALYSIS . HEAT RISE RATE
- 70.0 (DEGF/NR) l l
12 EFPY 16 EFPY- 20 EFPV 24 EFPY 28 EFPY 32 EFPY
- [- TEMP PRESS PRESS -36 EFPY 40 EFI PRERS PRESS PRESS PRESS pngst !
70.0 406 3' PRESS 302.6 M. S 354.1 343.7 335,4 328 9 75.0 AD6. 3 302.6 346.S 3SA,1 343.7 323.(l 90.0 406.3 335.4 328.9 333.I p 302.6 M. 0 354. 1 343 7 335.4 328.9 eF SS. 0 406.3 382.6_ 366.S 333.I 354. 1 343.7- 335.4 328.9 333.(
- 90. 0 '406. 3 382.6' MS 354. 1 343.7, 335.4 1 95.0 406.3 382. 6 329 9 323.I 366.S 354. 1 343.7 335.4 329.9 333.I 4
100.0 406.3 382.6 M. 9 354. 1 343.7 335.4 105.0 328.9 333 ( .
. 406.3 382. 6 M. S 354. 1 343.7 335.4 328.9 323.I -110,0 406 3 382.6 M. S 354.1 343.7 339.4 329. 9 115.0 406.3 392.6 M. 8 394. 1 383. t [
343.7 339.4 328.9 383. ( ? 120.0 406 3 382.6 M. 8 354. 1 343.7 333.4 129. 0 - 406.3 382.6 M. G 323 9 N3. I ; 394.1 343,7 333.4 323. 9 M3, t 130.0 406.4 382.6 M. S 354.1 343.7 335.4 135.0' 400.2 383.O 328.9 333.I M. S 394.1 343.7 333.4 323. 9 Ms. E ' 140.0 411.S .394.9- 367.7 364. 2 343.7- 339.4 149.0 416.4 380.1' 369.9 329. 9 MS. I 399.6 344.4 339.6 328.9 MS. E 190.0 622,7- 392. 7 373.3 3SS.1 346,2 336 9 329.7 199.0 430. S 390.6 379.0 M4. d 361.9 349.1 339.2 331, 6 NB. 9 ; 160.0- 439.9 409.0 383.9 M. 6 353.1 342.S 334.4 169.0 450.7 333. C 414,3 390.9 372. 6 358.1 346.9 330. 2 331.7
- 170.0 463.0 424.2 399.2 379.6 364.2 382.2 179. 0 476.9 435. S 400.S 342.9 336 C' 307.S 371.2 399. S 348, 6 343l; i 190.0 492.3 448.1 419.S 397.1 379.S 369.8 395.2 ISS. 0 909.4 462.2 431.6 407.6 347.5.
300.5- 374.1 362.S 394.3 190.O S29.2 477.7 445. 0 419,3 399.2 383.4 371.3 36R. D , 195.0. 543. 3 494.7 499. 3 -432. 3 410.7 393,9 330.9 371.; 200.0 971.4 913.4 476. G 446. 6 423.S 405.4 391.S 391.I !L 205.0 995.9 S33. S 493.7 462.3 437.S 418.1 403.2 398.I 210.0 622.S 555.9 913. 0 479.3 452. # 432. 0 410.1 404.'1 215. 0 651, 4 980. O S34. 0 49E 9 464. S 447,2 430.1 220.0 48-7. 3 682.6 606.1 996.O S te. 0 487. 6 463. S 449.4 431;7-- 225.0 716.4 634. 3 981.4 539. S , 507. 2 481.7 462.1 447.3 230. 0 752. 8 664.9' 608,6 563. S 988. S- 901, a 400. F 46& 3 - 239.0 792.2 697.G 636.9 509. 1 991. S 922.2 499.6 4W. 7 ( 240. 0 834. S l;
.733,3 660.0 616.7 976.4 S44.9 520, 7 908. S 245. 0 000.2 77t 6- -796.6- 446: & M& 969.4 See. 4 306. G . '
! 250. 0- 92*.3 ela. e 737.7- 47s.6 63a. 2 999.9 S6a. O e47. 299.0 9e2.1 s97.2 776.6 713.2 663,4 624. 9 994.6 972.1-260. 0 1030.9 906. 4 969. 9- 786. 6- 697. 6 689. 3 689.6- 999. 4 269. 0 1100.0 996. 3 863. S 790.S 733.2 688.4 683. 9 6N.0- ! 270.0 1169.S 1011. S 918. 0 633.7 772.1 754.0 687.0 689.3 L-279. 0 1M6. 9 1974. e 964< a - 400.0 964.0 768.4 75.7 6N. 9 1 ao0. 0 1381. 9 1134.4 teso. 0 929.9 est. O eB3. 7 761.s 7s9. : i ' 299. 0 1392.6 1200.S 1000.1 933.4 907.4 See. 0 808.3 748.0 290.O- 1479.S 1274.1 1644,6 - 1446:9- -999.4 996.7 946. 6 MS. S l 295.'O 1S72.7. 1394.0 1213.3 1808.7 1015.2 946.9 994. 2 004.7 , 300.0 1672.S 1439.2 1200.1 1164.9 1079.2 1001,9 949,4 9N.O t 306. 0 1779.S 1529. 7 1367.S 1840.1 1139.S 1060.9 1986.3 994 9 310. 0 1993.9 1626.6 1493.2 1316.4 1200.6 1124.3 1099,2 1980.6 319.0 2016.2 1730,4 1944.0 1390.2 1200.7 1192.3 11E2. 6 1070.4'-
+e.
( l l E-7
- ._ . _ _ _ - _~ _ . _ . _ . - _._ _ - - 'g'i , CALVERT CLIFF HEATUP AND C00LDOWN CURVES ... 12. 16, 20. 24, 28, 32, 36 AND 40 EFPY HEATUP ANALY$l$
- HEAT R!$E RATE = 70.0 (DEGF/HR) !
i 12 EFPV 16 EFPV 20 EFPY 24 EFPY 28 EFPy 32 EFPY. 36 EFPV 40 EFI
'; -TEMP PRESS PRESS P9ESS PRESS PRESS PAISI PRE 6S PAEEl -- 320,0 2147.0 1841,5 . 1642.9 1485.9 1362.1 1265.3 1190 6 1834.;
325. 0' 2286.5 '1960.3- -1747.9 1579.8 1447.3 1343.5 1263.5 1203j 330 0 243S 3. 2007 3 1940.3 1690.S 1538.5 1427.4 1341.6 1877.s f' 335.0 2S93
- 22&2 9 1990.4 1788.1 1636.2 1917.2 1425,4 1386.
.I-- 340.0 2762.5 2367.6 2109.8 1903.3 1740., 1613,5 1915.I 1441. i 345.0 2943.4 2521.S 2245.9 2026.5. 1852., 1716.6 let t. 3 -153.I 350.O 3134.5 2685.S 2392.1 2158.0 1972.5 1826.8 1714.2 1629.]
355.0 3337 2 2061.5 2S47.9 2298.5' 2100.5 1944.8 1824.3 1733. 360.0 3551.9 3047.6 2713.7 2448.1 2237.0 2070.8 1942,1 1843,,
. 365. 0 3777.S 3245.1 2991, a 2607.5 2302.7 2205.4 2067.9 1964.
370.0 4016 0 34S4.4 3079.1 2777.0 2937.S 2348.9 2202, 3 3091. i 375.0 42M.6 3675.7 3278. 5 2998.S 2702., 2902,7 2345.7 0037 ' 380.0 4526 6 3907,6 3449.6 J190 8 '2879.7 2M4. 7 2499.0 2372. I 30S. 0 4789.5 4152.7 3712,9 3354.4 30M.S 2838.9 2M1. 0 2927. 1 390.0 -5103.2 4409.S 3943,2 3569.9 3265.4 3023.5 2034.9 SW1. 1
'395.O S447. 4 4670.& 4177.7 3796.3 3475.7 3219.4 3019.3 3867. I 400.O 5858.5 4960.6 4423,6 4036.S 3698.1 3427.0- 3214.9 3854.- l 405,0 6276 0 5300.2 4682.0 4286.S 3931.0 3644.6 3422.2 410.0 4549 9 3876.8 3641,4 MSt.
3461,Ji
'6720.0 5678.6 4905.9 415.0 7197.4- 4084.9 5333.0 4825,1 4177.0, 4434 4120.0 3871.3 36M.i '420.0 7710.6 6520 9 5706.1 5129.6' 4706.2 4375.2 4114.2 3914.
429.O S262.4 6908, 9 6107,3 5499. 2 4642.1' 4369.1 4199. 430.0 8055.7 7491.1 6938.6 58F7. 6 4987.6, 5333. 4921.9 4638.7 4444, ' 435.0 9493.6 4030.1 7002.3 6300.7 5714.2 5290. 6 4915.0 4488. 440.0 10179.4 8600.5' 7900.9 6760.6 6122.6 5624.9 5241.9 49M.' 445.0 10916.7 9229,2 8036.9 7249.6 6960.7 6026.4 5615.4 9307. 450. 0 11709.5 9095.3 8613 a 77M.1 7030.8 6457.4 6016.1 8488. 455.0 12561.8 10409,9 -9232.9- 8324,9 7535.3 M19. 7 M46.1 6091. ) 460.0 13478 2 11376.S 9999.1 8923.7 8076.7 7416.0 6907.6 6806. ; 465. 0- 14443.5 12199.6 10619,4 99M.7 8667.5 7948.4 7402.7 6990. 470.0 15522.8 13082.3 11389.9 10254.4 9280.6 0919. 5 7933. 9 7499.* 475.0 1M61. 8 14029,3 12213.5 10996.S 9949,2 9132.4 8903.9 80 3 . 480. 0 17876. S.' 19048.2 13648.7 11798.4- 10Me. 4 N8 W8 M! !. 489.0 19173.6 16139,1 14060.0 12642.1 11439. , 104M 1 11291.6 9771.2 W r 490.0 20964.8 17304.2 19009.9 13999.4- 12261.3 10474.S. 90 4., L 495.0 22097.4 19999.4 1M96. 3 14936.S- 13646.8 12063.3 11M 9.7 30809. t SCO, 0 23690.6 19903.0 17309.0 19987.2 14096.6 12M4. 0 12009.S 113M. [ 905.0-510.0 25375.9 27217.5 21346.9 22004.3 1SM4. 8 20000. S 16714.9 17904. F 19119.p 16000.1 13867.9 14869.9 19908,1 1 3 8 9. 9 198W. i 13067.*
' S19.0 39192.7 24994.0 21518.3 19001. 4 19943,7 14838.6 14818..
530. 0 31311.3 26334.3 23107. S 20612,7 17300.0, 18636. 17099.9 19910.2 19081.( Sal. 0 33SSG. 0 20043.2 24888.6 22644.5 19984.8 1 m .4 17099.3 1M48. ' 530. 0 36019.1 30290.3 EMOS. 3 32704.4 21430.3- 19696.4 19891.6 17368.0 535.0 38631.1- 32445.2 28980.6 29419.S 21077.1 19612.9 19919. e s40.0 41432.0 34038.8 30994.3 37399.2- 22900.0, 24641. Sa6SS. S c1009.7 neen S4t. 0 44439.1 37362.4 32009,a 29231,6 26423.9 Tr4233, 9 22S49.O. 3896.g . f 25989.S 24179.0- M l 590. 0 47655.4 40064.S 35184.2- 31346,4 20334.7 L ' 559. O S1107.2 42969.1 37738.0 33613.4 27863.0 25M4.2 34478.i 560.O S4000.1 46079.1 40499.6 36044.1 30MS. 33978. S, 29076,1 27796.9 36SM. < - l: \ E-S u . . _ - _ _ _ _ . _._ _ _ . . _ . . _ . . . . . _ . - _ . _ ___ _ . . _ _ _ _ . . _ . . _ . _ . _ _ _ _ _ , __ _
~ V e p
i[ . Iu
- y
, ll : '
6./ 4
.iy 5
i 4
- j. , ,
4 Y t.
- 9. ,
o .. ,.,
.E-1 Cool-Down Conditions Rates: 20'F/hr 50'F/hr 100'F/hr .[
i
'. l3 i .j 2 , '*b 1 U j t 44 i l
l PEG /CALVERT E-9 x 1
CALVERT CLIFF HEATUP AND C00LDOWN CURyt$ . 12. 16, 20 24. 28 32 36 AN 40 EF C00LDOWN ANALY$l$ . HEAT DROP RATE
- 20.0 (DEGF/HR) 12 EFPY 16 EFPY 20 EFPY G4 EFPY Og EFPY 32 EFPY 36 EFPY 40 EFPY
.f -TEMP PRESS PRESS PRESS PRESS 1 press PRESS PRESS PRESS 560.0 56218 1 47302.7 40970 4 37053.4 33990.1 31647,3 29460.9 27322.3 555.0 52314 1 -
44021.9 38132.3 34499.0 31e47.3 2940 9 27427.3 29903.2 SSO. 0 48603.1 40970 4 35492.5 32103.9 - 29460.9 27427.3 25535 8 24110.3 'i 545. 0 45305.8 38132.3 33037.3 29895.6 27427.3 25535.S 23776.5 20498.1 540.0 42164 o 35492.5 30753 7 27822.3 25535.g 23776.5 22140.3 20914.0 + 535.0 39242.9 33037.3 20429.7 25903.2 23776.5 22140.3 20410 4 19477.8 530.0 36525 5 30753.7 2H54. 2 24110.3 22140.3 20618 4 19202,9 18142.0 4 525.0- 33999.1 26629.7 24816.S 22458.1 20615.4 19202.9 17846,3 16899.6 520.0 31647.3 2H54. 2 23107.9 20914.0 19202.9 17084.3 1M61. 0 19744.1 , 515.0 29460 9 24816,8 21518.3 19477.3. 17006.3 16M1. 8 19922.0 14M9. 3 510.0 27427 3 23107.8 20039 9 18142.0 16M t . 8 15522.O 14463.5 12M9. 6 905.0 25535.e 21518.3 10M4. 8 16999.6 19522.O 14463.5 13470.2 18739.9 500.0 23776 5 20039 9 17305.8 19744.1 14463.5 13478.2 12541.0 11079.1 495.0 22140.3 ISM 4. 0 16196.3 14669.3 13470.2 12961.9 .11709.5 11070.7
- 490.0 20618,4 17385.8 19009.9. 13h 9.6 12561.8 11709.5 10916.7 10332. 4 ~ '
485,0 19202.9- 16196.3 14M0. 8 12739.8 11709.5 10916.7 10179.4 9686.8
, 480.0 17986.3 15089.9 13103.7 11075.1 10916.7 10179.4 9493.6 3979.6 '
475.0- 16Mt.8 14060.0 12213.5 11070.7 10179.4 9493.6 0099.7 3377.7.l 470.0 15522.9 13103.7 11305.5 10322.6 9493.6 8095.7 9262.4 7017.8-< 465.0 14443.5 12213 5 10615.4 9626.S SSSS. 7 3262.4 7710.6 7297. 1 460.0 13478.2 11385.5 9999.1 9979.6 8262.4 7710.6 7197.4 6842. S , 495.0 12S61.0 10615.4- 9232.9 8377.7 7710.6 7197.4 6720.0 6362.3 490. 0 11709.5 9999.1 8613.2 7017.S 7197.4 6720.0 6276.0 9943.St ' 445.0 10916.7 9232.9 0036.9 7297.1 6720.0 6276.O 9863.1 9993.6 440.0 10179.4 8613.2 7500.9 6812.8 6276.O 5863.1 S479.0- S191.1 439.0 9493.6 9036.9 7002.3 6362.3 5863.1 5479.0 Stat. 0 . 4004.0 - 430.0 0955.7 7500.9 6930.6 9943, 3 5479.O S121.8 4789.S 4977.# 425.O S262.4 7002.3 6107.3 5983.6 5121.O 4789. 9 4926.S 4MS. 9 420.0 7710.6 6538.6 5706.1 5191.1 47t9.5 4526.8 4274.7 40M.9 ' 415.0 7197.4 6107.3 9333.0 4854.O 4526. e 4274.7 4039.6 MSS. 6 ' 410.0 6720,0 5706.1 49f 9. 9 4977.0 4274.7 4039.6 2000.0 3634.S 405.0 6276.0 5333.0 4682.0 4323.9 4035.6 3000.0 3991.9 3480.1 400,0 SE3.1 4945,9 4423. 6 4002, 5 3000. 0 . 3991.9 3388.O MM. S 399.0 5479.0 4482.0 4177.7 3052.6 3991,9 3308. 0 3194.3 3047.4 390.0 5121.8 4423.6 3943.2 3634.2 3300, 0 3194.3 3011.S 2373.4 I 389.0 4709,5 4177.7 3786. 2 3489.1 3194.3 3011.0 2039.9 SF99. 9. 300.0 4926.S 3943.2 3909.7 3233.2 3011.5 2839.9 2670.4 8995.O; 375.0 4274.7 3720.2' 3309.2 3047.4 2339,9 2670.4 2S26, 3 3418.1/ 370.0 4035.6 300*r7-- 3120. 0 2373. 4 2673. 4 2006.3 2394.9 MPP.4,, 368.0 2006.O., 3309.S' 2941.S 2709.9 2926.3 2384.5 2291.S 2191.1 360.0 3991.9 . 3190. Da 2774.1 2998.0 2384.3 MSt. S 2186.9 2033.0 3ss. 0 33ess ek 2941.07 2615. e 2412.1 22st. s 21a6. 9 2010.3 19es. s . 390.0 3194.1 - 2774.1* 246e. s 2277. 4 2126.9 2010.3 1901.3 lete. 8 ~ 345.0 3011.S 2616. M 2330.2 2151,1 2010.3 1901.3 1799.4 17M. 7 } 340.0 an39. 9 - 246e,e- 2200.6 2033.0 1901.3 1799.+ 1704.2 tem. p3 339.0 2678.4 2330,2 2079.3 1922.9 1799.4 1704.2 1615.4 1948.65 ! 330. 0 2926.3 2200.6 1965.5 1919.I 1704.2 1615.4 1932.5 1470.3
' 325.0 2384.5 2079.3 1889.7 1722.7 1615.4 1932.9 1455.2
( i 320.0 2251. 5 1965.8 1760.5 1632.7 1933.9 1499.2 1383.2 1397. % 1M9.94 ( 315.0 2126.9 17159. 7 1MS. 0 1548.6 1459.2 1303,2 1316.0 1865.Si S l - E-10 l I 1
- , . - , , . . . - , ,, <n, ,..n ...an. - - . , - - - - . - . - -
ll' CALVERT CLIFF HEAfUP AND C00LDOWN CURVES ... 12. 16, 20, 24, 28, 32.'36 AND 40 EFPY I l C00LDOWN ANALYSIS
- HEAT DROP 8 TATE
- 20.0 (DE6F/HR) 1 12 EFPV 16 EFPY 20 EFPV 24 EFPY CS EFPY 33 EFPY 36 EFPY 40 SPPY l 1 -
TEMP - PRESS PRESS PRESS PRESS PRESS PRESS PRESS pSESS l 310.0- 2010.3 1760.5 1581.* 1470.3 1303.2 1316 0- 1253 3 1806.3- ) 305.0 1901.3 1668 0' 1501.0 1397.2 1316.0 1253.3 1195.0 1191.2 l 300.0 1799,4 1581.6 1425 8 1329.0 1253,3 1195.0 1140.6 1097.S
., 295.0 1704.2 1501.0 1355.7 1265.5 1195.0 1140.6 1087.1 1049.9-l 290.0 1615.4 1425 8 1290.4 1206 3 1140.6 1087.2 1035.5 996.8 285.0 1932,5 1355 7 1229 5 1151.2 1007.3 1035.6 967. 5 991.4.
280.0 1455 2 1290.4 - 1172. B 1098.1 1035.7 987.6 942.9 909.3 275 0 1383 2 1229.5 1120.0 1045.9 907. 8 943.0 901.3 070.0 270.0 1316.0 1172. W 1066.5 997,2 943.1 901.4 Sea. 6 833.S 265.0 1253 3 1120.0 1016.4 951.9 901.5 862. 7 026.6 799.9 260.0 1195.0 1066.7 969.S 909.S 862.9 526.7 793.1 767.9 295.0 1140 e 1016.6 926.4 870.5 026.9 793.3 762.0 730.5 - 250.0 1098.0 970 0- SS6. O S34. 0 793,4 762.1 733. 0 711.1 245.0 1036.5 926.7 840. 5 000.0 762.2 733.1 706. 0 609,7 1 240.0 998 5 986. 3 813.5 768.4 733.2 706. 1 600.9 668.0 l 239.0 943.9 848. 7 781, 0 739.0 706.3 681.1 657. 6 640.0 ' 230. 0 902.4 013.S 750.7 711,7 601,2 657.8 635,9 619.6 , 229.0 - 863.7 781,2 732. 6 666.2 657.9 636.1 ell. 7 600.S. 220.0 - 827.S 751. 0 696.4 M2. 6 636.2 615.9 597. 0 SSR. S 215. 0 794.3 722.9 672.! 640.6 616.1 997.2 579.6 See. 4 210.0 763.2 696.7 649.4 620.2 997.3 979.S 563.4 991,i 209.0 734,2 672.4 6at. 4 601.1 579.9 M3. 9 548. 3 S36.9' 200.0 707,3 649.7 608. 8 583.5 563. 7 S48. 5 534.3 533. 7 i 199.0 682,2 620 6 990.6 567.0 540,6 J34.4 Sa t. 3 911,4 190.0 658 9 609.1 573.7 551.7 534.6 521, 4 909.2 000.0 109.0 637 3 590.9 557. 9 137. S 521. 6 509.3 497,9 409.4 100.0 617.1 573.9 543. 3 584. 3 909.S 499.1 487. 5 479.5 175.0 598.4 558. 2 529.7 512.0 499.2 487.6 477.S 470.4 170.0 500.9 543.6 517. 0 900.6 487. S 477.9 468.7 461.9 165.0 564.7 530.0 SOS.3 490.0 470.1 468.9 460.4 484. 8 160.0 549,6 517.3 494.3 450.1 469.0 460. 5 482. 6 446.6 155.0 535.6 505.6 484.2 471.0 460.6 452. 7 445.3 439.S "
- . 150. 0 522.6 494.6 474.S 4 6 0. S 492. 9 449. S 438. 6 43.4
! 145.0 510,5 484.5 466.0 494. 6 445.6 438.S 4N.3 487.9 140.0 499.3 475.1 457.9 447.2 438.9 432, 5 486. 5 45.1 135. 0 483.S 4M. 3 490.3- 440,4 438.6 486.7 40t.1 417 t ' 130.0 479,1 450. 1 443.3 434.0 426.8 421.3 416.1 418. S 129.0 470.1 . 490.6 436,7 420,1 421.4 416.3 411.4 407.9-120.0 461.7 443. & 439. & 422.6 416.4 411.6 4 89. 6- 408.6 119.0 453.9 437.0 429.0 417.5 411,7 407.3 403.1 400.S, ( 110.0 444.7 430. 9 -419.7 412.S 407,4 400.3 399.4 396.9 105.0 439. 9 - --- 489.4 414,9 400.4 403.4 399. # 396.9- 308.S l 104, 0 433.7 480.0 410.3 404.3 399.7 M6.1 398.7 300.S 95.0 427. S 413.2 406.2 400.6 396.2 398.9 389. 8 M7. 4 90.0 48G. 4- 464.6 402.2 397,1 393.O M9. 9 357. & 24.S OS. 0 617.4 406.4 398.6 393.S 390.1 387. 2 384. 9 MS 30.0 412.8 400.5 399.3 390.S 307. 3 384.6 SW.1 MO. 3 75.0 408.4 399.9 390. 2 300. 0 384. S 300.3 379.9. 39858 . , 70.0 404,4 395. 6 389. 3 -305.4 382.4 300.1 377.9 376.3 E E-11 I.
CALVERT CLIFF HEATUP AND C00LDOW CURVES .-- 12,16. 20, 24, 26, 32, 36 AND 40 EFPY C00LDOW ANALYS15 - HEAT DROP RATE
- 50.0 (DEEF/HR)
'> 12 EFPY 16 EFPY 20 EFPY '24 EFPY 20 EFPY 32 EFFY 36 EFPY 40 EF7 TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS pegSS 31647.3 29460.9 560.0 56218.1 47302.7 40970 1 37053.4 33998.1 27382. 3 l 555. 0 52314.1 44021.9 30132.3 34489 0 31647.3 29460.9 27427.3 25903.2; 8
550.0 48683 1 40970 4 35492.5 32103.9 29460.9 27427.3 25535.S 24114.3! 27427.3 25535.S 23776.5 32400.1
'[
- 545 0 540. 0 45305.S 42164.6 38132.3 35492.5 33037.3 30753 7 29885.6 27822.3 25535 8 23776.5 22140.3 30914.C:
535.0 39242 9 33037 3 26629 7 25903.2 23776.5 22140.3 20618.4 19477.S' 530 0 36525.5 30753 7 2H54 2 241it.3 2214J.3 20610.4 19202.9 18143. C ? 525 0 33998 1. 26629.7 24816.8 22458.1 20618.4 19202.9 17886.3 16899.6 ! 520.0 31647 3 2M 54,2 23107.S 20914.0 19202,9 17886.3 16Mt. 8 19744.1. 515.0 29460 9 24916.8 21518.3 19477.S 17886.3 16M 1, 8 19532.8 14M9. 3 : 510.0 27427.3 23107 8 20039.8 18142.0 16M 1. 8 15522.0 14463.5 13669.4 2 505. 0 25535 8 21518.3 IBM 4. 8 16899.6 15522.3 14443.1L 13478,2 13739.4i 500.0 23776.5 20039.S' 17305.8 15744.1 14463.5- 13478.2 12561.8 11879,1' 495.0 22140 3 18664 S 14196.3 14M9. 3 13470.2 12M1. 8 11709.5 11078.7~ 490.0 20618.4 17305.0 15089.9 13669.6 12h t. 8 11709.5 10916.7 10M. 6 ; 485.0 19202.9 16196.3 14060.8 12739.8- 11709.5 10916.7 10179.4 9486.4 " 400. 0 17886.3 15009,9 13103.7 11875.1 10916.7 10179.4 9493.6 9979.4 ; 475.0 16M1, 8 14060 8 12213.5 11070.7 10179.4 9493.6 8099.7 3977.7-470.0 15522.8 13103.7 11305.5 10322.6 9493.6 0895.7 3262.4 7917.G 14463.5 12213.5 10615.4 9626.O 8855,7 3262. 4 7710.6 - Y397.1 ; 465. 0 460. 0 13478.2 11385.5 9999.1- 8979.6 8262.4 7710.6 7197.4 6813.8 ! 455.0 12561.8 10615.4 9ft32. 9 8377.7 7710.6 7197.4 6720.0 6368.3 : 450.0 11709,5 9999.1 8613.2 7017.S 7197.4 6720.0 6276.0 3963.3 - 445.0 10916.7 9232.9 0036.9 7297.1 6720.0 6276.0 5863.1 SSS3. 4 ' 440.0 10179.4 8613.2 7500.9 6812.S 6276.0 5463.1 5479.O S191. 1
-435 0 9453.6 8036.9- 7002.3 6362.3 SE63.1 5479.0 5121. G egge, c '
430.O 8955. 7 7500.9 6538.6 5943,3 5479.0 5121. S 4789.S 4577.C'
.425.O S262.4 7002.3 6107.3 5553.6 5121.S 4789.5 4926.S 439. g 420.0 7710.6 6539.6 5706.1 5191.1 4789.5 4926.S 4274.7 40W.5s 415.0 7197.4 6107.3 5333.0 4854.0 4526.8 4274.7 4035.6 MSS. 4 >
410.0 6720.0 5706.1 4905,* 4577.0 4274.7 4035.6 2000.0 -3634.2? I 405.0 '6276.0 5333.0 4682. 0 4323.9 4035,6 3800.0 3991.9 303 !, 400.0 5863.1 4995.9 4423.6 4000.5 3000.0 3991.9 3308.6 m33 l-395.0 5479.0 4682.0 4177.7 3852.6 3991.9 3399 0 3194.3 300,4i v' 390. 0 5121.S 4423,6 3943.2 3634, il 3300.0 3194.3 3011. O M73. 4 305.0 4789.5 4177.7 3720.2 3429.1 3194.3 3011. S 3009, 9 3789.g ; 380. 0 4526.S 3943.2 3909.7 3232.2 3011.S 2039.9 8678.4 RSSS. 3 - 375.0 4274.7 3720.2 3309,2 3047.4 2839.9 2670.4 2336.3 3413.1 ' I 370.0 4035. 6 3509.7 3120.0 2873.4 2478.4 aste. 3 3384.S WFF. 4 - 365.0 3000.0 3309.2 2941.S 2709.9 2336.3 2 24.L 3891.S 3898.1 i i 360.0 3591. 9 3120.0 2774,1 2555.S 2284,5 23S1.? 2186.9 am c 1 l 355.0 2006.0 2941. S 2615.S 2412.1 2251. 5 8686.9 3088. 3 RSS.5i i 350. 0 3194.3 2774.1 2448,5 2177.4 2126.9 2010.3 1901.3 1819. 3 l 345.0 3011,8 2615.S 2330. a 2151.1 2010.3 1901,3 1799.4 173. ') . 340.0 2039.9 2460.5 - 2200.6- 2033.0 1901.3 1799.4 1784.3 467i 235.0 2678.4 2330.2. 2079.3 1922.5 1799.4 1704.2 1615.4 59 5.4-330.0 . 2526.3 2200.6 1965.8 1919.2 1704.2 161S.4 1932.S 1370. t l 1859.7 1722,7 1615.4 1938. 5 1459,3 1985,s . 325.0 2364 5 2079.3 320, 0 2251.5 1965.8 1760.5 1632.7 1532.5 1495.2 1383.8 8M9.'C i 315,0 2126.9 1959.7 1660.0 1540.6 1455.2 1383,2 1316.0 1868. ! l L - . _ _ 1 1 l 1 i 1 l l E-12 l
~
CALVERT CLIFF HEATUP AND C00LDOWN CURVE $ .** 12. 16, 20. 24, 28, 32. 36 AND 40 EFPY 1 C00LDOWN ANALY$1$ - HEAT DROP RATE * $0.0 (DEGF/HR) i 12 EFPY 16 EFPY 20 EFFY 24 EFPV 20 EFPY 32 EFPY 33 EFPY 40 EFPY TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS !- 310.0 2010.3 1760.5 1581.6 1470.3 1383.2 131 0 1253 3 '1206.3 305.0 1901.3- 1660.0 1901 0 1397.2 1316.0 1253.3 1195 0 1851.2 I j 1140.6 300.0 1799.4 1581.6 1425 0 1329.0 1253.3 1195 0 1099,9 I r8 l 235.0 1704..! 1501.0 1355 7 1265.5 1195.0 1140.e 1090.0 1066.1 l MO. 0 1615.4 1425 0 1290.4 1206.3 1140.6 1090.0 1034,8 990.3 ) 2S5 0 1532 5 1355.7 1229.5 11 St . 2 1090.0 1035 0 979.G 938,4 ( 290. 0' 1455.2. 1290.-4 1172.8 1099 9 1035.2 900 1 928. 7 890.1 ) 275.0 1383 2 1229.5 1120 0 1047.0 900.3 928.9 801.1 845,2 l 270.0 1316 0 1 t 72. 8 1070.7 991.3 929.2 381. 4 836.9 303.5 215.0 1253.3 1120.0- 1013,4 939, 5 801. 7 337.2 795.7 764.6 260.0 1195.0 1070.7 960.1 891.3 837, 5 796.0 757.5 729.5 255.0 1140.6 1014.0 910.5 846.4 796.4 757.8 721.9 695.0
; 250.0 1090.0 960.7 864.4 804.7 758.1 722.2 600 0 us. S 245.0 1037.0 911.1 821. 5 765.9 722.6 689.2 658. 1 634.3 l
240. 0 992.2 865. 0 791.6 729.9 689. 5 658. 5 629. 5 607.9 931.2 822.1 744.5 696.4 658. S 629.9 603.0 583.5 235.0 . 630.3 603.4 ; 578.3 559.6 230. O SO3 8 782.2 710,O MS. 2 S39.7 745.1 677.9 636,2 603.7 575.7 555.4 530.0 225.O 609,3 579.1 555.S 534. 1 517.9 220.0 799.6 710.7 648.1 760.5 676.6 620.4 584.3 55e. 2 534.5 .514.4 499. 2 215.0 534.9 514.S 496. 0 482.0 210. 0 725 0 648.O 5#4. 6 561.1 621,1 570.7 539.5 515.1 496.4 479.O M5. 9 20b. 0 692.0 496.S 479.3 463.1 450.9 200.0 661.3 595.4 540.5 519.4 632.S 571.4 527. O 500.S 479.7 463. 5 440.4 437,1. 195.0 463.9 448.S 434.7 424,2 l' 190.0 606.3 549.2 500.6 483.5 449, 2 435.1 422. 0 413,2 l 185.0 SS I . 7 528.6 490.S 4&7. 4 550. 8 509. 4 474.3 452.5 435.5 422.4 418.2 401,1 150. 0 410.6 399.3 - 390. O 175.0 537.6 491.6 455.9 438.7 422. G 517. S 475.0 444.& 425.8 411.0 379.7 399.1 Mt. 2 170.0 413.O 400,1 399.5 379.7 370.4 165.0 499.5 459.7 431.4 445.4 419. 0 402.7 389.9 300.1 371.0 364.2 160.0 482.4 300.5 371.4 362.9 Ste. 5 155.0 AM.6 432.1 407,6 392.4 451. 9 419. S 396.9 382.S 371.S 363.3 359.4 349. S 150. 0 363.7 355. G 340. 4 342,9 145.0 438.3 400.4 307,1 373.9 425,6 397.7 375.0 365.7 356,2 340.S 342.0 336.9 140.0 349. 2 348.4 Ste.1 351,3 135.0 413. O 397.9 369.5 380.1 402.S 378.7 361, 6 351. 0 342.G 336,4 330. 5 Me.1
- 130.0 354,4 344,9 336.S 330.9 325.4 Mt. 3 370,3
] 125. 0 120.0 392,7 300.3 362.4 347,6 338.5 3H.3 309.S -- 300.7 366. 9-h 355.1 341.4 333.S 3te. 2 - 31.1 216.3 313.3 , 115.0 374. 5 321,5 216.7 313,3 309.0 110.0 3M. 4 348.4 335.6 327.7 305.9 330.2 322.9 317.1 348. 7 308. 6 105.0 49 - 342.1 399.0 305.1 300.3 100,0 38860 336.4 .325.3 318.4 313,1' 345, 5 331. 0 320.7 314.3 - 309,3 305.5 201.9 399.3 ' 95,0 Ste. S 339,6- 326. 1 316. 5 318.S 309.9 308. 3 299. 9
- 90. 0 302.7 299.4 296. 3 394.0 05.0 334.1 321.5 312,6 307.0 317.3 308,9 303.5 299.S 296.7 293.S 291.7 30.0 329.0 313.3 305.6 300.p 297, 1 294.2 296. 6 M9. 6 %
75.0 324.2 292.0 209.5 N7. 6 . 70.0 319.9 309.7 302,6 298.1 294.6 e E-13
- i
)
, ; ' CALVERT CLIFF HEATUP AND COOLDOWN CURVES - - 12. 16. 20. 24. 28. 32, 36 AND 40 EFPY 1 C00LDOWN ANALY$l$ + HEAT DROP RATE
- 100.0.(DEEF/HR)
-1 l- 12 EFPY 16 EFPY 20 EFPY 24 EFPY 28 EFPy 32 EFPV 36 EFPY 40 EPPY-i 'j-TEMP 560.0 PRESS 56210.1 PRESS 47302 7 PPESS 40970.4 PRESS 37053.4 PRESS 33999.1 PRESS 31647.3 PRESS 29460.9 PBESS 27822.3 l
555.0 52314,1 44021.9- 38132.3 34409.0 31647.3 29460.9 27427.3 25903.3 1 y' 550.0 48683 1 40970.4 35492.5 32103.9 29460.9 27427.3 25535.S 24110.3 ; 545. 0 45305.9 30132 3 33037.3 29805.6 27427.3 25535 8 23776.5 22498.1 1 540.0 42164.6 35492.5 30753 7 27822.3 25535.g 23776.5 22140.3 20914.0 l 535.0 39242.9 33037.3 28629.7 25903.2 23776.5 22140.3 20610.4 19477.0 1 530.0 36525.5 30753 7 26654.2 24116.3 22140.3 20618.4 19202.9 19142.0 ' 525.0 33998.1 26629.7 24816.G 22450.1 20610.4 19202.9 17836.3 16099.6 520.0 31647.3 26654 2 23107.0 20914.0 19202.9 17986.3 1 H61. O 15744.1 24816.B 21518.3 19477.8 16661.8 515, 0 29460.9 17996.3 19522.O 14M9. 3 510. 0 27427 3 23107.0 20039.0 19142.0 1M61. O 15522.8 14463.5 13M9. 6 505.0 25535 8 21510 3 1SM4. 8 16099.6 15522.0 14463.5 13470.2 12739.S 500.0 23776.5 20039.9 17385.9 15744.1 14463.5 13470.2 12561.0 11375.1 495.0 22140.3 10M4. 0 16196.3 14M9. 3 13479 2 12561.0 11709.5 11070.7 , 490.0 20618.4 17305.8 15089.9 13M9. 6 12561.8 11709.5 10916.7 10393.e 485.0 19202.9 16196.3 14060.O 12739.8 11709.5 10916.7 10179.4 9686.S 400.0 17886.3 15089.9 13103.7 11875.1 10916.7 10179.4 9493.6 0979,4 475,0 16M t . 9 14060.S 12213.5 11070,7 10179.4 9493.6 3055.7 8377.7 0855.7 ' 470.0 15522 S 13103.7 11305.5 10322.6 9493.6 8262.4 7017.S 465.0 14463.5 12213.5 10615.4 9626.O 8855.7 8262.4 7710.6 7297.1 460.0 1347R 2 11385.5 9999.1 9979.6 8262.4 7710.6 7197.4 6913.S 455.0 12561.5 10615.4 9232.9 8377.7 7710.6 7197.4 6720.0 6368.3 - 450.0 11709.5 9999.1 8613.2 7817.8 7197.4 6720.0 6276.0 9943.9 445.0 10916.7 9232.9 8036. 9 7297.1 6720.0 6276.0 5863.1 5983.6 440,0 10179.4 8613.2 7500.9 6812.0 6276.0 5863.1 5479.0 5191.1. 435.0 9493.6 8036,9 7002.3 6362.3 5863.1 5479.0 5121.S 4884.0 430.0 9055.7 7500.9 6530.6 5943.3 5479.0 5121.S 4709.5 4977.& 425.O B262.4 7002.3 6107,3 5553.6 5121.O 4709.5 4526.0 430.9 " 420.0 7710.6 6538.6 5706.1 5191.1 4709.5 este. e 4274.7 4083.9 415.0 7197.4 6107.3 5333.0 4854.0 4526.S 4274.7 4036.6 3 08,6 410.0 6720.0 5706.1 4985.9 4577.0 4274.7 4035,6 3000.0 3634,3 405,0 6276.0 5333.0 4682.0- 4323.9 4035.6 3000.0 3591.9 34 3 .1 400.0 5863.1 4995.9 4423.6 4000. 5 3000.0 3591. 9 33 3:6 MM. 3 395.0 5479.0 4682. 0 4177.7 3852.6 3591.9 3390.0 3194. 3 3047.4' 390.0 5121.6 4423.6 3943,2 3634.2 3308.0 3194.3 3011.O M 73.4-305.0 4799.5- 4177.7 3720,2 3420.1 3194.3 3811. S 2009,9 3709'. 9 300,0 4526.S 3943.2 3509.7 3232.2 3011.O 2839.9 2678.4 8995.S 375.0 4274.7 3720,2 3309,2 3047.4 2039.9 2670.4 2526.3 3413.1 370.0 4035.6- 3509.7 3120.0 2873.4 2678.4 2006.3 2304,5 3 77. 4 l' 365. 0 3000.0 3309.2 2941.0 2709.9 2526.3 2384.5 2251. 5 2131.1 360.SL 3591.9 3120.0 2774.1 2555.O 2384.5 2251.5 2126.9 3083.0 255.+-- 3300,0 2941.S 2615.5 2412.1 2251.5 2186.9 2010.3 19 5 . 5 350. 0 3194.3 2774.1 2468. 5 2277.4 2126,9 2010.3 1901.3 1919.S 345.0 3011.S
- 2615.G 2330.2 2151.1 2010.3 1901. 3 1799.4 17 3 . 7 -
340.0 2039.9 2468.5 2200.6 2033. 0 1901.3 1799.4 1784.2 16 3.7 335.0 2670.4 2330.2 2079.3 1922.5 1799.4 1704.2 1615.4 1948.6 330.O 2526.3 2200.6 1965.0 1819.2 1704.2 1615.4 1939.5 1470.S , 325.0 2384.5 2079.3 1859,7 1722.7 1615.4 1932. 5 1455.2 13SF. S ' 320.0 2251.5 1965.9 1760.5 1632.7 1532.5 1455.2 1303.2 139.S 315.0 2126.9 1959,7 1MS. 0 1540. 6 1455.2 1383.2 1316.0 1869.9 y E-14
- .i l )* ' CALyERT, CLIFF HEATUP AND C00LDOWN CURVES ... 12. 16, 20. 24. 28. 32, 36 AND 40 EFPY C03LDOWN ANALYS!$ . HEAT DROP RATE
- 100.0 (DEGF/HR) 12 EFPY 16 EFPY 20 EFPY- 24 EFPY 28 EFPy 32 EFPV 36 EFPY TEMP- PRESS 40 EFPY PRESS PRESS PRESS PRESS PRESS PRESS PRESS 310.0 .2010.3 1760.5 1581. 6 1470.3 1383.2 1316.0 1253.3
- i -- 305.0 1901.3 1206.3 16eG 0 1501. 0 1397.2 1316.0 1253.3 1195.0 1191.3 300,0 1799.4 1591.6 1425 8 1329 0 1253 3 !!95 0 1140.6 1099.9 295.0 1704.2 1501.0 1355.7 1265.5 1195.0 1140.6 1090.0 290.0 1615 4 1425 0 1052.0 1290.4 1206.3 1140.6 1090.0 1042.9 1007.S 205. 0 1532 5 1355.7 1229.5 1042.9 280.0. 1455.2 1290,4 11St.2 1090.0 996.1 944.1 1172.9 1099.9 1042.9 996. S 932 0 883.S 275.0- 1303.2 1229.5 1120.0 1052.0 996.9 932.4 872.3 027,1 270.0 1316 0 1172.8 1070.7 1007.S 932.g 972.7 .316. 7 J 265.0 1253.3' 774. 7 i120.0 1024.9 945.8 873 1 #17. 2 765.1 786.0 '
260.0 1195.0 1070.7 971. G 885.3 G17.7 765.6 717,1 255 0 600.7 1140.6 1024.9 909.6 829, 1 766.1 717.6 672.S 638.7 250.0 1090.0 972.7 851. 9 776.8 710.2 673.1 631,1 599,4 245. 0 1042 9 910.6. 799. 0 720.2 673.7 631,7 972. 6 240. 0 999.0 563. 3 052. S 749. 0 683. 0 632.3 593. 2 996. 9 589. 6 239.0 936.1 799.1 701. S 641.0 SS7. S 523.6 230.0 876.7 593. g 498.3. 749.1 698. 3 602.1 550. 1 524. 3 '492. S 469.3 225.O S21. S 702.7 610.2 565. S 529. 0 493, 9 464.2 443, 3 220. O 770 1 659.6 580. 9 S32.2 494.2 464 9 437.7 215. 0 722.4 417.3 619. S 546. 3 501, 0 465.7 438 4' 413.0 393.9: 210. 0 678. O 582.3 514.2 472.1 439.2 413.7 398.1 205.0 636. 9 547.7 373.4 " 484.4 445.2 414.S 390.p 363. e 353.4 200.0 599. S 51S.6 456. 7 420.2 391.6 369 6 349.2 199. 0 563. 0 495.9 431.0 349,9 333.3. 396.9 370.4 330.9 314.7 190.0 529 9 450.2 407.1 375,4 350.7 331. 7 314.0 185.0 499.3 300.7 432.S 384.9 355.S 332. S 314.8 29G. 4 M6. 0 190. O 470.S 400,6 364.3 336.9 315,6 299.1 2e3. S 373.4-175.0 444.4 386. S 345.3 319.B 300.0 284. 7 270.4 170.0 899. 9 419. 9 365.9 327. 6 303.9 205. 5 271.2 250. 0 See.1 165.0 397.0 346.9 311.3 299.2 272.1 288. S . 346. S 160.0 375.9 337. 3 329.3 296.1 275.7 259.7 247.4 335,9 m. 4 155.0 356. 3 312.9 282.1 263.0 248.2 236.7 236.1 Ste 1 150. 0 330.1 297,8 269. 1 251,4 237.6 236. 9 217. 6 145. 0 321. 3 809. 6 293.7 257. 1 240,6 227.g 317.9 200.7 801. e 140.0 305.7 270.8 246. 0 230.7 210. y 309.S 300.9 194.5 135.0 291.2 250. 0 239. 7 221. S 210.3 301. S 193 S 137, 9 130.0 277.0 247,7 226. 2 212.9 202.6 194 4 187.2 101.7 125.0 265. S- 237.4 217. 5 205.1 195.5 188.1 181.2 176.0 120.O. 254. 0 227.9 209.3 197.9 100. 9 15.0 175.6 176, e . 115. 0 243.5 219.2 201, 9 191,2 192.9 176.5 170. 5 110.0 233.7 166.0 211.1 195.0 I SS.1 177.3 171.4 148 8 161.7-105.0 - 224,6 203.6 ISS. 7 179.4 166.7 161. 5 - 100.0 172.2 157. 6 216.3 196.7 182. S 174,2 167.5 168 3 157. S 193. 9 m 95.0 208.6 190.4 177.4 169.4 163.2 190.4 153.9 190.6
- 90. 0 201.5 184.6' 172. 5 165.1 159.3 154. 8 190. 6 -147.S
- 95. 0 195.0 179.2 168. 0 161.1 155.7 151.5 147,e
- 80. 0 186. 9 144.7 174.3 163.9 157.4 152.4 148. 5 144.9 143.3 75.0 103.4 169.7 160.0 154. 0 149.4 149.S 142,4 139, 9 '
70.0 178.3 165.6 196. 6 131.0 146.7 143.3 140.2 137.9 I E-15
l p. 1 T p
/,
{
, - j Eh , .
> t ;.
~ , .g Mg APPENDII F.
Pressure-Temperature Limit Table For Varying Cooldown Rates
.For Calvert' Cliffs Unit 2 (12 EFPY)
Rates: 550'F to 250'F :.100'F/hr
<250'F Rates 50'F/hr 40'F/hr 4 20'F/hr-i s ' ti n# $_ ..'h ~
A
.-, ..3 5 ,
1 t y '5
- y .
PEG /CALVERT L ! :- a -'i,
.~, . ., -
- . . - . - . ~ . - -. _- . ,
( I :, H: CALVERT CLI F-vN!T d VARIABLE COOLDOWN RATE C00LDOWN * -EM DRCP . R ATE = VAR I ABLE (DEOF/HR ) 12 EFPY 12 EFPY
- g. TEMP: H! MATE) PRESS TEMP ro4 ATE) PRESE li 560.0 100:0 56218.1 310. 0 ' 1"O O 2010.3
.SSS 0 100.0 52314.1- 305 0 100.0 1901:3 550.0 '100.0 48603.1' 300.0 . 100 0 1799.4 S4S. 0 100.0 45305.s- 295 0 100 0 1704.2 540.0~ 100 0 42164.6 290.0 100.0 :1615.4 535 0 100.0 39242.9 295.0 100 0 1532.5 530.0 100.0 36525.5 200,0 100 0 .1455.2 ,
525. 0 100.0 33999.1' 275 0 100 0 1383.2
- S20.0 100.0 31647.3 270.0 100.0 1316.0 F 515.0 -100,0_ 29440.9 265.0 100.0 1253.3 i
510.0' 100.0 27427.3 260.0 50.0 1195.0 . E S05.0 100.0 25535.s 255.0 50.0 1140.6 L' S00.0 100.0. 23776.5 250.0 50.0 1090.0 ' ' l 495.0 100.0 22140.3- 245.0 50 0 1032.3 ( 490:0 100.0 20615 4 240.0 50. 0 972. 9
- 4 9 S. 0 100.0 19202.9 235.0 50.0 919.3
! 400.0 100,0 17886.3 230.0 50.0 '870.7 - 475.0 100.0' 16661.5 225.0 50.0 826.3
- 470.0 100.0 15522.8 220.0- 50.0 705.6 465. 0 100.0 14463.5 215.0 50.0- 748.2 460.0 100,0 13479.2 210.0 50.0 713.6 455.0 100.0 12561.5- 205.0 50.0 681.7 L 4 50. 0 100.0. .11709.? 200.0 50.0 652.1 445.0 100.0 10914.7 195.0 50.0 -624.6 i' 440.0 100.0 10179.4 190.0 50.0 999.1 '
435.0 100.0 9493.6 185.0 50.0 575.3 L 430.0 100.0 8855. 7 180.0 50.0 553.3 429.0 100.0l 8262. 4 175.0 50. 0 S32.7 420.0 100.0 7710.6 170.0 30. 0 513.7 415.0 100.0 7197.4 165.0 50.0 495.9 410.0 100.0 6720.0 160.0 50.0 479.4- , 409.0 100.0 6276.0 155.0 50.0 464.0 400.0 100.0 5963.1 150.0 50.0 449.7 395.0 100.0 -S479.0 145.0 50.0 436.4 390.0 100 0 5121.5 140.0 50. 0 423.9 305. 0 - 100.0 4789.5 135.0 50.0 412.4 300.0 100.0 4526.8 130.0 50.0 401.7 375.0 100.0 4274.7 125.0 50.0 391.7 370.0 100.0 4039.6 120, 0 50.0 332.4 365. 0 100.0 3000. 0 115.0 50.0 373.8 360.0 100.0 3991.9 110.0 50. 0 365.8 359. 0 100,0- 3308. O 105. 0 50.0 398.4 350.0 100.0 3194. 3 100.0 50.0 351.6
'345.0 100.0 3011.8 95.0 50. 0 349. 2 340:0 100. O E339; 9 - 90.0 50. 0 339.3 335.0 100.0 2679.4 85.0 50.0 333.8 330.0 100.0 2926.3 90.0 50.0 323. 7 329. 0 100.0 2384.5 75.0 50. 0 334.0 -
320.0 100.0 2251.5 70.0 50.0 319.7 315.0 100.0 2126.9 , , F-1
. - - . - - . . . - , , - - . . . . . - . - - - - - . - . . . - . . . - -.-w.- .-...,~..-.-.-w.-.-v--- ,- . .v --- . e t-
1 4 l
)
C ALVERT CLIFF UNIT 2 ' VARI ABLE C00LDOWN RATE COOLDOWN
- HEAT-OROP RATE = VAR!ABLE (DEGF/HR) 1 12 EFPY 12 EFPY
+ ' TEMP HtRATE) PRESS TEMP M(RATE) PRESS 560 0 100 0 56218.1 3go 0 - 100 0 2010.3 ,
SSS 0 100 0 52314 1 30S.0- 100.0 1901.3 ' 1 550. 0 100 0 48693.1 300.0 100.0 1799.4-545.0 100,0 45305 8 295. 0 100.0 1704.2
.540 0 100.0 42164 6 290.0 100.0 1615 4 l 535. C 100.0 39242.9- 295.0 100.0 1532.5
' ' S30 0 100 0 36525.5 200.0 100.0 1455.2 ? SIS 0 100.0 33998.1 275.0 100.0 1303.2 S20.0 100.0 31647.3 270.0 100.0 1316.0 > 515.0 100.0 29460.9 245.0 100.0' 1253.3 510.0 100.0 27427.3 260.0 40.0 1195.0 SOS 0 100.0. 25535.8 255.0 40.0 1140.6 500.0- 100.0 23776.5 250.0 40.0 1090.0 495.0' 100.0 22140.3 245.0 40.0 1027.3 490-0 100.0- 20618.4 240.0 40.0- 971. 5 465 0 100.0 19202.9 235.0 40.0- 921.4 480.0 100.0 17886.3 230.0 40.0 876.0 475.0 100.0 16661.8 225.0 40.0 834.4 470 0 100.0 15522.8 220.0 40.0 796.3 465.0 100.0 14463.5 215.0 40.0 760.9 460.0 100.0 13478.2 210.0 40.0 728.2 455.0 100.0 12561.8 205.0 40.0 697.0 450.0 100.0 11709.5 200.0 40.0 669. 6 445 0 100.0 10916.7- g ,3, 0 40,0 643.2 440.0 100.0 10179.4 g ,0. 0 40.0 618.7 > 435.0- 100.0 9493.6 10 5. 0 .40.0 595.9 430.0 100.0 SSSS. 7 180,0 40.0 57 4. 6 425.0- 100.0 8262.4 175.0 40.0 954. 5 420.0 100.0 7710.6 170.0 40. 0 536.3 415.0 100.0 7197.4 165.0 40.C' S19.1 410.0 100.0 6720.0 160.0 40.0 503.1 405.Os 100.0 6276.0 135.0 40.0 400. 2 400.0. 100.0 SS63.1 g 50, 0 40.0- 474.3 395.0 100.0 5479.0 145.0 40.0 461 4 390 0 100.0 5121.8 g40,0 40.0 449.3 385.0 100.0 4789.5 135.0 40.0' 438.2 380.0 100.0 4526.S 130. ) 40.0 427.7 , 375.0 100.0 4274.7 125.0 40.0 418.0 ; 370.0 100.0 403S.6 130.0 40.0 409. 0 365.0 100.0 3000.0 g gg,0 40,0 400.7 360.0 100.0 3S91.9 110, 0 40.0 392. 9 = 355.0 100,0 3308.O TOS. 0 40. 0-' 389.7 350.0 100.0 3194.3 100.0 40.0 379.0 345.0 100.0 3011.5 93,0 40.0 372.8 340.0 100,o 2339.9 .90, c ' 40. 0- 367. L 335.0- 100.0 2678.4 33, 0 40.0 361.7 330.0 100.0 2526.3 00.0 40.0 356.0 325.0 100.0 2384.S 75. 0 40:0- 392.2 320.0 100.0 22S1.S 70.0 40.0 348.0 315.0 100.0 2126.9 1 J F-2
.w . 4-. g-.s . , . . ~ . . - . , _ . - . . . - - - .mw , e . - , ,_ 1, _. .,.,,-.v, , - . . _ - . - - - , . - , . . - . , ,--w- . .
. . ~ . . . . - . - . . -- - - . .- .- - . .
Qi i h . .. . 0ALVERT CLIFF UNIT E VARIABLE COOLDOWN RATE l COOLDobN
- HEAT DROP RATE
- VARIABLE (DEOF/HR) 1 12 EFPy 12 EFPY l TEMP H< RATE) PREES. TEM m ATE) paggg 560. 0 100 0 54218 1 3 1 0. 0 100 0 2010.3 i 555.0; 100 0 52314 1 305 0 100 0 3901, 3 100 0 44683,1 300.0 100.0 179g 4 550. O'. 295.0 100. 0 1704,2 545.0 100.0 45305 8 540.0 100.0 42164.6 2%. O . 100 0 1415.4 !
535.0 100.0 39242. , 285.O. 100,0 1532.5 ' 530 0 100.0 36525,5 230. 0 100, 0 1455,2 525.0 100.0 3390s.1 275.O 100 O g383.2-520. 0 100.0 31447,3 270.0 100.0 1316.0 515. 0 100,0 29460. , 265.0 100.0 1233,3
. 510.0 100.O ~27427,3 240.0- 20.0 1195. 0 505. 0 100,0 25535.S 255.0 20.0 1140, t, . 'i n .
500.0 100.0 23776.5 250.0 20.0 1079.8 %. 495.0 100.0' 22140.3 245.0 20.0 1027.6 240. 0 20.0 900,9 i 490.0 100.0 20418.4 485.0 100.0 19202. , 235.0 20.0 937.9 f Sg-230.0 20.0 897,9 480. 0 100.0 17886.3 225.0 20.O S40,5 475. 0 100.0 16641 3 20.O p' 470.0 100.O' 15522.S 220.0 S25.5 792.7 r 44 5. 0 100.0 14463.5 215.0 20.0 440.0 100,0 13478,2 210.0 20 0 742. 1 5 455.0 100.0 12541,9 205.0 20.0 733.5 450.0 100 0 11709.5 200.0 20i0 706. S 445.0 100.0 10914.7 1Mo 20.O eel, 9
' 440.0 100.0 10179.4 1M 0 20.0 658,7 435.0 100.0 9493.4 ISS 0 20.0 637.1 -
L 430 0 100.0 8855. 7 IM 0 20. 0 417. 0 425.0 100.O S242. 4 175.0 20.0 598. 3 420.0 100. O - 7710.6 170.0 20.0 500. 9 415. 0 100.O 7197.4 145.0 20.O 564, 7 . 410.0 100,0 4720. 0 160.0 20.0 549.4
- 405.0 100.0 6274.0 155.0 20.0 535.6 400.0 100.0 5863.1 150. 0 20.O Sat. e 395.0 .100,0 5479.0 145.0 20.0 510, 9 390.0 100,0 5121. S 140.0 20.0 499, 3 385. 0 100.0 '4709.5 135.O 20.0 400, a 300. O 100.0- 4524.S 130. 0 20.0 479.1 375.0 100.0 4274.7 125.0 20.0 470.1
- 370 0 100. U 4035;6 120.O 20.0 441, 7 345.0 100.0 3000.0- 115.O '
20.0 433. 9 340. 0 100. 0 3591 , 110.0 20.0 446,7 - 355; c' 100.0 33K 0 105.0- 20.0 - 439.t 100, 0 20.0 433.7 350.0 100.0 3194.3 95.0 20.0 427.S 345. 0 100.0 3011.8 M 0- 20.O- er
'- , 340.'O 100.O 2039,9 SS. 0 20.0 417.4
- 235. 0 100.0 2478.4 00.0 20.0 412.3-330.0 100,0 2526,3 325, 0 100. 0 2304.S 75. O 20.0- 400.4-320.0 100.0 2251.5 70. 0 20.0 404.4 315.0 100.0 2124.9 F-3 w + ..~ . - - , - . . ,.,,.,..,,.y.. , .__...,-..v.-.. . _ _ _ . . . , , , . . _ , - . ,- , .. ...-,,m.,,._-
p o U cf Y. o I L 4 [ 4 , ; i
/ , i 1
e APPQtDII G Pressure-Temperature Limit Tables for Isothermal Conditions for Calvert Cliffs Unit-2 ; k, F I 5 0
., i 6
0 PEG /CALVERT F
- ~ . . - - _ _ _ . - _ _
I I CALVERT CLITT UNIT 2 HEAT UP TABLES .. HEAT UP RATE- STEADY STATE l_ g 12 EPPY 16 EPPY 20 EPPY 24 EPPY 28 EPPY 32 EPPY 36 EPPY 10 EPPY TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS 70 461.0 452.9 447.2 443.7 440.9 438.8 436.8 435.4 75 464.7 456.1 480.0 446.2 443.2 440.9 438.8 437.2 '1- 80 468.8 473.2 459.5 463.2 452.9 448.8 445.7 443.2 440.9 439.2 85 456.1 451.7 448.3 445.7 443.2 441.4 90 477.9 467.1 459.5 454.8 451.1 448.3 445.7 443.7 . 95 482.9 A71.4 463.2 458.1 454.2 451.1 448.3 446.2 400 488.3 475.9 467.1 461.7 457.4 454.2 451.1 448.8 105 494.2 480.9 471.4 465.5 461.0 457.4 454.2 451.7 110 500.5 486.1 475.P 469,6 464.7 461.0 457.4 454.8 115 507.2 491.8 480.9 474.1 468.8 464.7 461.0 458.1 I 120 514.5 522.3 497.9 486.1 478.8 473.2 468.8 464.7 461.7 125 504.5 491.8 484.0 477.9 473.2 468.8 465.5 130 530.6 511.5 497.9 489.5 482.9 477.9 473.2 469.6 135 539.7 519.1 504.5 495.4 488.3 482.9 477.9 474.1 1 140 549.3 527.2 511.5 501.8 494.2 488.3 482.9 478.8 146 559.8 536.0 519.1 506,6 500.5 494.2 488.3 484.0 150 570.9 545.4 527.2 516.0 507.2 500.5 494.2 489.5 , l 155 583.0 555.5 536.0 523.9 514.5 507.2 500.5 495.4 ( 160 595.9 566.4 545.4 532.4 522.3 514.5 507.2 501.8 165 609.8 578.1 555.5 541.5 530.6 522.3 514.5 508.6 170 624.7 590.6 566.4 551.4 539.7 b30.6 522.3 516.0 175 640.8 604.1 578.1 561.9 $49.3 539.7 530.6 523.9 1 180 658.1 618.6 590.6 573.3 559.8 549.3 539.7 532.4 185 676.6 634.2 604.1 585.5 570.9 559.8 549.3 541.5 190 696.6 651.0 618.6 598.6 583.0 570.9 559.8 551.4 l 195 718.0 669.0 634.2 612.7 $95.9 $83.0 570.9 561.9 I 200 741.0 688.4 651.0 627,9 609.8 595.9 583.0 573.3 205 765.8 709.2 669.0 644.2 624.7 609.8 595.9 585.5 210 792.3 731.6 688.4 661.7 640.8 624.7 609.8 598.6 l 215 820.9 755.6 709.2 680.5 658.1 640.8 624.7 612.7 1 220 851.6 781.5 731.6 700.7 676.6 658,1 640.8 627.9 225 884,6 809.2 755.6 722.5 696.6 676.6 658.1 644.2
; 230 920.0 839.1 781.5 745.8 718.0 696.6 676.6 661.7 235 958.1 871.1 809.2 770.9 741.0 718.0 696.6 680.5 I 240 999.0 905.5 839.1 797.9 765.8 741.0 718.0 700.7 245 1042.9 942.5 871.1 826.9 792.3 765.8 , 741.0 722.5 y"- '
250 1090.0 982.3 905.5 858.0 820.9 792,3 765.8 745.8 255 1140.6 1024.9 942.5 891.5 851.6 820.9 792.3 770.9 ' 260 1195.0 1070.7 982.3 927.4 884.6 851.6 820.9 797.9 265 1253.3 1120.0 1024.9 966.0 920.0 884.6 851.6 826.9 270 1316.0 1172.8 1070.7 1007.5 958.1 920.0 884.6 858.0 275 1383.2 1229.5 1120.0 1052.0 999.0 958.1 920.0 891.5
. 280 1455.2 -1290.4 1172.8 1099.9 1042.9 999.0 958.1 927.4 .
285 1532.5 1355.7 1229.5 1151.2 1090.0 1042.9 999.0 966.0 290 1615.4 1425.8 1290.4 1206.3 1140.6 1090.0 1042.9 1007.5 295 1704.2 1501.0 1355.7 1265.5 1195.0 1140.0 1090.0 1052.0 300 1799.4 1581.6 1425.8 1329.0 1253.3 1195.0 1140.6 1099.9 305 1901.3 1668.0 1501.0 1397.2 1316.0 1253.3 1195.0 1151.2 310 2010.3 1760.5 1581.6 1470.3 1383.2 1316.0 1253.3 1206.3 l 315 2126.9 1659.7 1668.0 1548.6 1455.2 1383.2 1316.0 1265.5 320 2251.5 1965.8 1760.5 1632.7 1532.2 1455.2 1383.2 1329.0 325 2384.5 2079,3 1859.7 1722.7 1615.4 1532.5 1455.2 1397.2 i
l 330 2526.3 2200.6 1965.8 1819.2 1704.2 1615.4 1532.5 1470.3 ! 335 2678.4 2330.2 2079.3 1922.5 1799.4 1704.2 1615.4 1543.6 i 340 2839.9 2468.5 2200.6 2033.0 1901.3 1799.4 1704.2 1632.7 i 345 3011.8 2615.8 2330.2 2151.1 2010.3 1901.3 1799.4 1722.7 ' 350 3194.3 2774.1 2468.5 2277.4 2126.9 2010.3 1901.3 1819.2 l i ; 355 3388.0 2941.8 2615.8 2412.1 2251.5 2126.9 2010.3 1922.5 360 3591.9 3120.0 2774.1 2555.8 2384.5 2251.5 2126.9 2033.0
,. 365 3808.0 3309.2 2941.8 2709.9 2526.3 2384.5 2251.5 2151.1
- 370 4035.6 3509.7 3120.0 2873.4 2678.4 2526.3 2384.5 2277.4 l 375 4274.7 3720.2 3309.2 3047.4 2839.9 2678.4 2526.3 2412.1 .
380 4526.8 3943.2 3509" 3232.2 3011.8 2839.9 2678.4 2555.8 385~ 4789.5- 4177.7 3720.2 3428.1 3194.3 3011.8 2839.9 2709.9
; 390 5121.8 4423.6 3943.2 3634.2 3388.0 3194.3 3011.8 2873.4 '1 395 400 5479.0 5863.1 4682.0 4985.9 4177.7 4423.6 3852.6 4082.5 3591.9 3808.0 3388.0 3591.9 3194.3 3388.0 3047.4
- 3232.2 405 6276.0 $333.0 4682.0 4323.9 4035.6 3808.0 3591.9 3428.1 .
410 6720.0 5706.1 4985.9 4577.0 4274.7 4035.6 3808.0 3634.2 1 415 420 7197.4 7710.6 6107.3 6538.6 5333.0 5706.1 4854.0 4526.8 4789.5 4274.7 4526.8 4035.6 3852.6 5191.1 4274.7 4082.5 425 8262.4 7002.3 6107.3 5553.6 5121.8 4789.5 4526.8 4323.9 430 8855.7 7500.9 6538.6 5943.3 5479.0 5121.8 4789.5 4577.0 435 9493.6 8036.9 7002.3 6362.3 5863.1 5479.0 5121.8 4854.0 440 10179.4 8613.2 7500.9 6812.8 6276.0 5863.1 5479.0 5191.1 445 10916.7 9132.9 8036.9 7297.1 6720.0 6276.0 5863.1 5553.6 450 11709.5 9899.1 8613.2 7817.8 7197.4 6720.0 6276.0 5943.3 455 12561.8 10615.4 9232.9 8377.7 7710.6 7197.4 6720.0 6362.3 460 13478.2 11385.5 9899.1 8979.6 8262.4 7710.6 7197.4 6812.8 465 14463.5 12213.5 10615.4 9626.8 8855.7 8262.4 7710.6 7297.1 470 15522.8 13103.7 11385.5 10322.6 9493.6 8855.7 8262.4 7817.8
- I 475 16661.8 14060.8 12213.5 11070.7 10179.4 9493.6 8855.7 8377.7 480 17886.3 15089.9 13103.7 11875.1 10916.7 10179.4 9493.6 8979.6
,. 485 19202.9 16196.3 14060.8 12739.8 11709.5 10916.7 10179.4 9626.8 490 20618.4 17385.8 15039.9 13669.6 12561.8 11709.5 10916.7 10322.6 495 22140.3 18664.8 16196.3 14669.3 13478.2 12561.8 11709,5 11070.7 500 23776.5 20039.8 17385,8 15744.1 14463.5 13478.2 12561.8 11875.1 505 25535.8 21518.3 18664.8 16899.6 15522.8 14463.5 13478.2 12739.8 510 27427.3 23107,8 20039.8 18142.0 16661.8 15522.8 14463.5 13669.6
- - 515 29460.9 24816.8 21518.3 19477.8 17886.3 16661.8 15522.8 14669.3 520 31647.3 26654.2 23107.8 20914.0 19202.9 17886.3 16661.8 15744.1 525 33998.1 28629.7 24816.8 22458.1 20618.4 19202.9 17886.3 16899.6 530 36525.1 30753.7 26654.2 24118.3 .22140.3 20618.4 19202.9 18142.0 ^,
535 39242.9 33037.3 28629.7 25903.2 23776.5 22140.3 20618.4 19477.8 540 42164.6 35492.5 30753.7 27822.3 25535,8 23776.5 22140.3 20914.0 545 45305.8 38132.3 33037.3 29885.6 27427.3 25535.8 23776.5 22458.1 ;#. 550 48683.1 40970.4 35492.5 32103.9 29460.9 27427.3 25535.8 24118.3 1' 555 52314.1 44021.9 38132.3 34489.0 31647.3 29460,9 27427.3 25903.2 560 56218.1 47302.7 40970.4 37053.4 33998.1 31647.3 29460,9 27822.3 . ll . I l .
I CALVERT CLITT UNIT 2 HEAT DROP TABLES .. HEAT DROP RATE- STEADY STATE 12 ETPY 16 ETPY 20 ETPY 24 ETPY 28 ETPY 32 ETPY 36 ETPY 40 ETPY TEMP PRESS TRESS PRESS PRESS PRESS PRESS PRESS PRESS 560- 56218.1 47302.7 40970.4 37053.4 33998.1 31647.3 29460.9 27822.3 555 52314.1 44021.9 38132.3 34489.0 31647.3 29460.9 27427.3 25903.2 1 550 48683.1 40970.4 35492.5 32103.9 29460.9 27427.3 25535.8 24118.3 545 45305.8 38132.3 33037.3 29885.6 27427.3 25535.8 23776.5 22458.1 540 42164.6 35492.5 30753.7 27822.3 25535.8 23776.5 22140.3 20914.0
.l 535 39242.9 33037.3 28629,7 25903.2 23776.5 22140.3 20618.4 1947? 8 '
l 530 36525.5 30753.7 26654.2 24118.3 22140.3 20618.4 19202.9 18142,0 525 33998.1 28629.7 24816.8 22458.1 20618.4 19202.9 17886.3 16899.6 . 520 31647.3 26654.2 23107.8 20914.0 19202.9 17886.3 16661.8 15744.1 l 515 29460.9 24816.8 21518.3 19477.8 178!4 ,3 16661.8 15522.8 14669.3 l 510 27427.3 23107.8 20039.8 18142.0 16601.8 15522.8 14463.5 13669.6 - 50b 25535.8 21518.3 18664.8 16899.6 15522.8 14463.5 13478.2 12739.8 500 23776.5 20039.8 17385.8 15744.1 14463.5 13478.2 12561.8 11875.1 > I 495 22140.3 18664.8 16196.3 14669.3 13478.2 12561.8 11709.5 11070.7 : l 490 20618,4 17385.8 15089.9 13669.6 12561.8 11709.5 10916.7 10322.6 485 19202.9 16196.3 14060.8 12739.8 11709.5 10916.7 10179.4- 9626.8 480 17886.3 15089.9 13103.7 11875.1 10916.7 10179.4 9493.6 8979.6 1 475 16661.8 14060.8 12213.5 11070.7 10179.4 9493.6 8855.7 8377.7 i
'l 470 15522.8 13103.7 11385.5 10322.6 9493.6 8855.7 8262.4 7817.8 465 14463.5 12213.5 10615.4 9626 8 8855.7 8262.4 7710.6 7297.1 460 13478.2 11385.5 9899.1 8979 6 8262.4 7710.6 7197.4 6812.8 1 455 12561.8 10615.4 9232.9 8377.7 7710.6 7197.4 6720.0 6362.3
- l. 450 11709.5 9890.1 8613.2 7817.8 7197.4 6720.0 6276.0 5943.3 445 10916.7 9232.9 8036.9 7297.1 6720.0 6276.0 5863.1 5553.6 440 10179.4 8613.2 7500,9 6812.8 6276.0 5863.1 5479,0 5191.1 435 9493.6 8036.9 7002.3 6362.3 5863.1 5479.0 5121.8 4854.0 1 430 425 8855.7 8262.4 7500.9 7002.3 6538.6 6107.3 5943.3 5479.0 5121.8 4789.5 4577.0 5553.6 5121.8 4789.5 4526.8 4323.9 420 7710.6 6533.6 5706.1 5191.1 4789.5 4526.8 4274.7 4082.5
- a 415 7197.4 6107.3 5333.0 4854.0 4526.8 4274.7 4035.6 3852.6 l 410 6720.0 5706.1 4985.9 4577.0 4274.7 4035.6 3808.0 3634.2 405 6276.0 5333.0 4682.0 4323.9 4035.6 3808.0 3591.9 3428.1 .
400 5863.1 4985.9 4423.6 4082.5 3808.0 3591.9 3388.0 3232.2 l 395 5479.0 4682.0 4177.7 3852.6 3591.9 3388.0 3194.3 3047.4 j 390 5121,8 4423.6 3943.2 3634.2 3591.9 3194.3 3011.8 2873.4 385 4789.5 4177.7 3720.2 3428.1 3388.0 3011.8 2839.9 2709.9 380 4526.8 3943.2 3509.7 3232.2 3194.3 2839.9 2678.4 2555.8 375 4274.7 3720.2 3309.2 3047,4 3011.8 2678.4 2526.3 2412.1 370 4035.6 3509.7 3120.0 2873.4 2839.9 2526.3 2384.5 2277.4 365 3808.0 3309.2 2941.8 2709.9 2676.4 2384.5 2251.5 2151.1 360 3591.9 3120.0 2774.1 2555,8 2526.3 2251.5 2126.9 2033.0 355 3388.0 2941.8 2615.8 2412.1 2384.5 2126.9 2010.3 1922.5
,, 350 3194.3 2774.1 2468.5 2277.4 2251.5 2010.3 1901.3 181942 345 3011.8 2615.8 2330.2 2151.1 2126.9 1901.3 1799.4 1722.7 -
340 2839.9 2468.5 2200.6 2033.0 2010.3 1799.4 1704.2 1632.7 335 2678.4 2330.2 2079.3 1922.5 1901.3 1704.2 1615.4 1548.6 330 2526.3 2200.6 1965.8 1819.2 1799.4 1615.4 1532.5 1470.3 325 2384.5 2079.3 1859.7 1722.7 1704.2 1532.5 1455.2 1397.2
'320 2251.5 1965.8 1760.5 1632.? 1615.4 1455.2 1383.2 1329.0 315 2126.9 1859.7 1668.0 154C ) 1532.5 1383.2 1316.0 1265.5 310 2010.3 1760.5 1581,6 1470.3 1455.2 1316.0 1253.3 1206.3 305 1901.3 1668.0 1501.0 1397.2 1383.2 1253.3 1195.0 1151.2
,i lI l
p= . ,, , g. 300 1799.6 1581.6 1425.8 1329.0 1316.0 1195.0 1140.6 1099.9 i l 295 290 1704.2 1615.4 1501.0 1425.8 1355.7 1290.4 1265.5 1206.3 1253.3 1195.0 1140.6 1090,0 1090.0 1042.9 1052.0 1 285 1532.5 1007.5 l 1355.7 1229.5 1151.2 1140.6 1042.9 999.0 966.0 280 1455.2 1290.4 1172.8 1099.9 1090.0 999.0 958.1 927.4 I' 275 270 1383.2 1316.0 1229.5 1172.8 1120.0 1070.7 1052.0 1042.9 958.1 920.0 891.5 1007.5 999.0 920.0 884.6 858.0
~'
265 1253.3 1120.0 1024.9 966.0 958.1 884.6 851.6 826.9 260 1195.0 1070.7 982.3 927.4 920.0 851.6 820.9 797,9 i l i 255 1140.6 1024.9 942.5 891.5 884.6 820.9 792.3 770.9 ! 250 1090.0 982.3 905.5 858.0 851.6 792.3 765.8 745.8 245 1042.9 942.5 871.1 826.9 820.9 765.8 741.0 722.5 I 240 999.0 905.5 839.1 797.9 792.3 741.0 718.0 700.7 l 235' 958.1 871.1 809.2 770.9 765.8 718.0 696.6 680.5 ' 230 920.0 839.1 781.5 745.8 741.0 696.6 676.6 661.7 ! 225 824.6 809.2 755.6 712.5 718.0 676.6 658.1 644.2 I 220 851.6 781.5 731.6 700.7 696.6 658.1 640.8 627.9 215 820.9 755.6 709.2 680.5 676.6 640.8 624.7 612.7 x 1 210 792.3 731.6 688.4 661.7 658.1 624.7 609.8 $98.6 ! 205 765.8 709.2 669.0 644.2 640.8 609.8 595.9 585.5 1 200 741.0 688.4 651.0 627.9 624.7 595.9 583.0 573.3 . 195 718.0 669.0 634.2 612.7 609.8 583.0 $70.9 561.9 190 696.6 651.0 618.6 598.6 595.9 570.9 559.8 551.4 :
-185 676.6 634.2 604.1 585.5 583.0 559.8 549.3 541.5 P
180 658.1 618.6 590.6 573.3 570.9 549.3 539.7 532.4 I 175 640.8 604.1 578.1 561.9 559,8 539.7 530.6 523.9 170 624.7 590.6 566.4 551.4 549.3 530.6 522.3 516.0 165 609.8 578.1 555.5 541.5 539.7 522.3 514.5 508.6
, 160 595.9 566.4 545.4 532.4 530.6 514.5 507.2 501.8 155 583.0 555.5 536.0 $23.9 522.3 507.2 500.5 495.4 150 570.9 545.4 527.2 516.0 514.5 500.5 494.2 489.5 145 559.8 536.0 519.1 507.2 Ll 140 135 549.3 539.7 527.2 519.1 511.5 504.5 508.6 501.8 495.4 494.2 494.2 488.3 488.3 482.9 484.0 478.8 ph l 488.3 482.9 477.9 474.1 130 $30.6 511,5 497.9 489.5 482.9 477.9 473,2 469.6 -
125 522.3 504.5 491.8 484,0 477.9 473.2 468.8 465.5 120 514.5 497.9 486.1 478.8 473.2 468.8 464.7 461.7 l 115 507.2 491.8 480.9 474.1 468.8 464.7 461.0 458.1 110 500.5 486.1 475.9 469.6 464.7 461.0 457.4 454.8 M' r 105 494.2 480.9 471.4 465.5 461.0 457.4 454.2 451.7 100 95 488.3-482.9 475.9 471.4 467.1 463.2 461.7 458.1 457.4 454,2 454.2 451.1 451.1 448.3 448.8 446.2 N
'f 90 477.9 467.1 459.5 454.8 451.1 448.3 445.7 443.7 <'4 85 473.2 463.2 456.1 451.7 448.3 445.7 443.2 441.4 80 468.8 459.5 452.9 448.8 445.7 443.2 440.9 439.2
- 75 464.7 456.1 450.0 446.2 443.2 440.9 438.8 437.2
, 70 461.0 452.9 447.2 443.7 440.9 438.8 436.8 435.4 l ,h" 5 I I __ _ -. - __ __}}