ML19331C712

From kanterella
Jump to navigation Jump to search
Forwards Response to NRC Re Operability of Containment Purge Valve.Util Has Committed to Maintaining 48-inch Valves in Closed Position While in Plant Operational Modes 1-4.Response Applies to 18-inch mini-purge Valves
ML19331C712
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 08/14/1980
From: Clayton F
ALABAMA POWER CO.
To: Novak T
Office of Nuclear Reactor Regulation
References
NUDOCS 8008190424
Download: ML19331C712 (57)


Text

{{#Wiki_filter:Alabam] Pow;f Company 600 Norm 18th street HIS DOCUMENT CONTAIN3 Pcst Office Box 2sa, S.rminghaan. Alabama 3$291 P0DR QUALITY PAGES Telephone 205 250-1000 L L F. L. CLAYToN, JR. senior vice Pres 4ent Alabama Power

re soutrern ee:nc sas:em August 14, 1980 Cocket flo. 50-348 50-364 Director, Nuclear Reactor Regulation U. S. Nuclear Regulatory Comission Washington, D. C.

20555 Attention: Mr. T. M. Norak Gentlemen: Joseph M. Farley Nuclear Plant - Units 1 & 2 Operability of Containment Purge Valve Ref.: Letter from T. M. Novak to F. L. Clayton, Jr. dated July 16, 1980. As requested in the above referenced letter, Alabama Power Company submits the enclosed response for Farley Nuclear Plant - Units 1 and 2. Alabama Power Company has comitted to maintaining the 48-inch valves in the closed position while in plant operational modes 1-4 With the exception of questions 12 and 15, the information requests do not apply to the 48-inch valves since these valves will remain closed. Therefore, with the previously noted exceptions, the enclosed responses apply only to the 18-inch mini-purge valves. If you have any further questions, please advise. Very truly yours, Q 0 y n o)f'2cKetp ^ F. L. Clayton) Jr. RWS:de $0N Enclosure S cc: Mr. R. A. Thomas Mr. G. F. Trowbridge j/ Mr. L. L. Kintner Mr. W. H. Bradford 8 008190y

ENCLOSURE DEMONSTRATION OF OPERABILITY OF PURGE AND VENT VALVES REQUEST FOR INFORMATION 1. Reques t: The AP across the valve is in part predicated on the containment pressure and gas density conditions. What were the containment conditions used to determine the AP's across the valve at the incremental angle positions during the closure cycle?

Response

The analysis used a constant delta-P (at the time of full closure) from the pressure versus time curve as shown in Attachment 1 for all incremental angles of closure and used dry air density at containment pressure. The containment delta-P at the time of full closure is the highest differential pressure across the valve during the closure time. The use of this valve as a constant delta-P for analysis purposes is very conservative. 2. Request: Were the dynamic torque coefficients used for the determination of torques developed based on data resulting from actual flow tests conducted on the r particular disc shape / design / size? What was the basis used to fredict torques developed in valve sizes different (especially larger valves) than the sizes known to have undergone flow tests?

Response

The valve manufacturer has developed torque coefficients for various disc opening angles using five-inch scale model valve test data. These are dimensionless coefficients derived from standard dimensional analysis and I ~ modeling technioues utilized in fluid flow studies. The torque coefficients are independent of valve size and have been successfully applied by the manufacturer to torque analysis of valves exceeding ten feet in diameter. 3. Request: Were installation effects accounted for in the determination of dynamic torques developed? Dynamic torques are known to be affected, for example, by flow direction through valves with off-set discs, by downstream piping backpt essure, by shaft orientation relative to elbows, etc. What was the basis (test data or other) used to predict dynamic torques for the particu-lar valve installation. n

Enclosure page 2 Demonstration of Operability of purge and Vent Valves - itequest for Informa tion 3. (Continued)

Response

The analysis was based upon maximum dynamic torque under LOCA flow condi-tio ns. The maximum dynamic torque is developed under conditions of maximum flow through the valve. Since any dynamic flow losses in the attached piping system will reduce the flow through the valve, the effect of these piping systems was ignored. The simplified model, consisting of only the valve attached directly to the containment opening, was utilized to compute the maximum possible dynamic torque that could be developed in the valve. The manufacturer has indicated that under sonic flow conditions, such as those expected in this model, the torque coefficient is independent of the direction of flow. 4. Recuest: When comparing the containment pressure response profile against the valve position at a given instant of time, was the valve closure rate versus time (i.e. constant or other) taken into account? For air-operated valves equipped with spring return operators, has the lag time from the time the valve receives a signal to the time the valve starts to stroke been accounted for? No te: Where a butterfly valve assembly is equipped with spring to close air operators (cylinder, diaphragm, etc.), there typically is a lag time from the time the isolation signal is received (solenoid valve usually de-energized) to the time the operator starts to move the valve. In the case of an air cylinder, the pilot air on the opening side of the cylinder is approximaiy 90 psig when the valve is open, and the spring force available mr.y not start to move the piston until the air on this opening i side is vented (solenoid valve de-energizes) telow about 65 psig, thus j the lag time.

Response

Both lag time and valve closure rate versus time were taken into account in this analysis. .r l l l l

Enclosure Page 3 Demonstration of Operability of Purge and Vent Valves - Request for Informa tion 5. Reques t: Provide the necessary information for the table shown below for valve ~ positions from the initial open position to the seated position (100 increments if practical). Valve Position Predicted AP Maximum AP 0 (in degrees - 90 (across valve) (capability) = full ocen)

Response

Valve Position (in degrees - 90 Predicted aP Maximum AP = full ocen) (across valve) (capability) 0 24 Maximum structural AP was 10 24 based on ANSI 16.5, Class 150. 20 24 Shut-off pressure based on f ' 30 24 65 psig. ~ 40 24 CO 24 60 24 70 24 80 24 90 24 ~ 6. Recuest: What Code, Standards or other criteria, was the valve designed to? What are the stress allowables (tension, shear, torsion, etc.) used for critical elements such as disc, pins, shaft yoke, etc. in the valve assembly? What load combinations were used? Restonse: Valves were designed to meet the ASME Boiler and Pressure Vessel, Section III Code. The stress allowables used for the valve components are shown on, and the types of loading combinations are discussed in. 4 s

Enclosure Page 4 Demonstration of Operability of Purge and Vent Valves - Request for Informa tion 7. Recuest: For those valve assemblies (with air operators) insi:e containment, has the containment pressure rise (backpressure) been considered as to its effect on torque margins available (to close and seat the valve) from the actuator? During the closure period, air must be vented from the actuator's opening side through the solenoid valve into this backpressure. Discuss the installed actuator bleed configuration and provide basis for not considering this backpressure effect a problem on torque margin. Valve assecbly using 4-way solenoid valve should especially be reviewed. Resconse: Containment backpressure will have no effect on valve closure since the same backpressure will also be present at the inlet side of the cylinder and the differential pressure will, therefore, be unchanged. 8. Request: For valve assemblies requiring a seal pressurization system (inflatable main seal) describe the air pressurization system configuration'snd opera-tion, including means used to determine that valve closure and seal pressurization have taken place. Discuss active electrical components in this system, and the basis used to determine their qualification for the environmental condition experienced. Is this system seismically designed?

Response

No valve assemblies requiring seal pressurization have been utilized at Farley Nuclear Plant. 9. Request: Describe the modification made to the valve assembly to limit the opening l angle. Witn this redification, is there sufficient torque margin available from the operator to overcome any dynamic torques developed that tend +w oppose valve closure, starting from the valve's initial open position? Is there sufficient torque margin available from the operator to fully seat the valve? Consider seating torques required with seats that have been at low ambient terperatures. l Resconse: A sleeve is being installed in the cylinder to limit the piston travel to no greater than 500 open. This type of modification does not affect the torque capability and sufficient margin is available to cover seats l adjusted for low ambient temperature. This modification was addressed l in Alabama Power Company's letter of January 15, 1980 to the NRC.

~ Enclosure Page 5 Demonstration of Operability of purge and Vent Valves - Request for Informa tion

10. Recuest:

Does the maximum torque developed by the valve during closure exceed the maximum torque rating of the operators? Could this affect operability?

Response

The maximum torque developed by the valve during closure does not exceed the maximum torque rating of the operators.

11. Request:

Describe the tests and/or analysis performed to establish the qualifica-tion of the valve to perform its intended function under the environmental conditions exposed to during and after the DBA following its long-term exposure to the nomal plant environment.

Response

As these valves do not perform a dynamic function after a LOCA, no environmental testing was required for the valves or operators. However, the EPT elastomer was specified for the valve seats because they have been proven to possess superior heat and radiation resistance qualities. 12. Request: What basis is used to establish the qualification of the valve, operators, solenoids, valves? How was the valve assembly (valve / operators) seismically qualified (test, analysis, etc.)?

Response

The valve and operator were qualified by static analysis using a seismic 2 inertial load of 3.0g in the horizontal and vertical directions simul-taneously. This is in accordance with the requirements of IEEE 344-1971. The de; mentation for the valve and operator was sent to the tiRC Seismic Qualirication Review Team as an enclosure to a letter dated July 17, 1980 from F. L. Clayton, Jr. to Mr. A. Schwencer. This submittal addressed Unit 2 valves; however, the data apply equally to Unit 1. The documenta-tion was reviewed during the SQRT site visit and was found to be acceptable at that time. This response applies to both the 18-inch and 48-inch valves. .s

Enclosure 1 Page 6 Demonstration of Operability of Purge and Vent Valves - Request for Informa tion

13. Request:

Where testing was accomplished, describe the type tas:s performed, condi-tions used, etc. Tests (where applicable) such as flow tests, aging simulation (thermal, radiation, wear, vibration endurance, seismic), LOCA-DBA environment (radiation, steam chemicals) shet'.ld be pointed out. Res ponse: The folicwing types of tests were performed: (a) Hydrostatic test - done in accordance with the requirements of ASME Section III. (b) Disc and disc seal test (seat leakago). (c) Performance test - the valve was cycled three tices from the fully opened position to the fully closed position and returned under a no-flow, no-pressure condition to demonstrate proper functioning of the assembly. r-

14. Recuest:

Where analysis was used, provide the rationale used to rea'ch the decision that analysis could be used in lieu of testing. Discuss conditions, t assumptions, other test data, handbook data, and classical problems as they may apply.

Response

Testing of these valves under dynamic LOCA conditions is not feasible as no facilities to conduct such tests are known to exist. The manufacturer's report on the analysis provides all conditions, assumptions, and rationale for the analyses.

15. Reques t:

Have the preventive maintenance instructions (part replacement, lubrica-tion, periodic cycling, etc.) established by the canufacturer been re-j viewed, and are they being followed? Consideration should especially be given to elastomeric components in valve body, operators, solenoids, etc. where this hardware is installed inside containment. i

Enclosure Page 7 Demonstration of Operability of Purge and Vent Valves - Request for Information

Response

For the 18.0 inch mini-purge valves, the manufacturer's technical manual states that no preventive maintenance is necessary for the valve body or associated components. This has been confirmed by a vendor representative who inspected the mini-purge valves. Any degradation of the valve seat material would be noted by unsatisfactory results of the yearly local leak rate test and would subsequently be repaired. For the 48.0 inch purge valves, the manufacturers' technical manual recommends flushing the top and bottom valve trunnions with Dow Corning 111 silicone grease and visually inspecting the valve seats. These recommendations are being added to the FNP Preventive Maintenance Program to be performed during each refueling outage. Furthermore, any degradation of the valve seat material would be noted by unsatisfactory results of the yearly local leak rate test and would subsequently be repaired. 9 -- f l

e LITTA,C bl ME,k1T 1 + l zz ri-:v i - = T O. L -- T _ :^=~ ^ l * %.- ! % M -='- - ~++i = I --- ' = '--i =L ' T = W = r= w = '3 = m m = m w e = m==: =-U:mm'== m' =:- --m_mmm e , = ~ y----..__- _ ___ _-__.--__zc-__2_,__1=_=_=3..:-._.g=_=__-

z. --

=> -=- _= _.r =---. 5-gg =_ _ -. _ ___.___r_.=2_y

_ c.- - - - _-

.--_g_-- _______r=___.. -. _ s___,___-___ p- - ( ~ ~ C=_1.-----.-'L -^ -- QIE'M 4+=3- >_ +=*F15 Qi- ~ Ef3.@5-'^-'-lE5'?55 =*ff^-- 5 -'~ X=^5d&:E =~ -EN'= BEE =E-b_^Q'--Z = p i= =J . _ - ~- JH =*E2?r;!== re=d '~-~.-G l'IiEEEEWiF $~ =.~-==p-i'_-t=-~'~~=i E= E=" EI E T=~ -E=3Ne--E==iE;=sy = = = = =.. -. - - - -. - - - =-__.5.=-.===___ g g g =.- =s- =_==w. u____- s --c=-=.;_--- n e--- m.ee------ M: 2...-. L ,'A-'A ( g 6 gy Z f auC M MW / JQ > / > gg gg

  • W 1

w ^ / Zgg 4 Qs I t i 4 ED W ag r a amt W Q= a ~ agm v;- o

  1. s m c-m u

,=ec==r. rme.n=mm. s a--- F -___ 3 ?_-- W " _I = _=~=~ A' 7 -* 5NE =~=_= _ _--,N5 5- ~'Y E

D >

_;_m _ _ -..- - - - - -. - - - - - - - - ~ ~ ~ * - g ga E. y-- g-.. _ -~ " "'-~~2.

  • .-~ ~ _.

--.~-/__-_- g

    • U

.-..m e-- W pg 3.am n /-- M W g-- i W anC 1_ _ _ f M3 C3 CW g y ~ T- ~2==' - _ 2-- '_9-. 5- ^ - 5_E~WC55TM. n-E-5-:_ 5E-5.=-N-Z z- --- -- t ;..- --.-=-.==--1=== .- =_ E.1_~= 6_ - EE"- ~~ ,st a --=-:,..-.-. w g, . - - - - = -.. - =---.;=.--=--==- m 4 yw

==..c=- e < --._.==._._=_=_r._;i.__.M=_-r --.-.2-;_. 7________------ -- - - = - - y C3 qM <3m m G.


+=-s.--

J y =a gh asC y," W2 A us --

z..

-,3 6 h C 1 1 8 \\ t 1 t [ \\ f t i l t i f t l l e e i i i se /* ) g,[ Y- _.. -.. - - - ._.-x = -=..-n . _ _. _ - - - _ = _ = _ =, _. ' ^ - ^ ~ --~- O ... www=v= =_m= -x====:=t=: :L e a.w = -;-a x m_--_: m %s y__p-.=,..___=-_=a==__.__..,.=.. - _.---_=_____w--

==_=..a..--.=_3___.___.__....__________, _= __ L 3-- g i ---e---- g c =- ~ i=.. = --- ^ = '~-E = - h 2= 'E T El-R F-- ~~ ~ * *'~. - '. ~ = ~.'

^-E.=EEF=_'~=iE:~--f_

- ~a.' 5=EE-5ss. = -~' ~.. : ^_- -~2=^2.2=v; =.==== : = ~ ~==- = - ~ 4, . 5 Y E5 ~ $=------ --E - [ '~ ^ '. = -. --__ _ ;5.= = =-- +:_ x -== : - - - - - - ~. ~ ' _ ~. - '. ------ Y ___. ~ ~ ~ - - - ~ ~ ~. ~. ~ ~ ~. ~ - ^ _ 3,, e M

t..

~ ~ 1 l 1 C \\ R i x i g, I t i N i i 4 3 e N' g*[. a w=

==_ -E=='-'-si..:--?=====---=.==:.. _= 3-t-. g =g._. ,_____.=_,=__y.---fr-=_:==.=_=3-- O_ -515 0'_-? ' _f l. ' _ _2 ~ Y "_-' ' E -.__~ ;._- _" i",'"_ 8 = ". _-f J _-- ~ t "_= "-~=. _'i -' i-JM- -~~ * "_ = *- - =E_i i : ~_--. "'_ =_=,- ""-

  • ==__.;_'-- _ _ _ - _ _ _ -

e. ~- = ___m.._;_=.WI.*.'7?_.O"---.----~.^'-T.-_-*-_.___ ~1 ~_7 g, --y.--'*__ 7, X i 5. A db ffTE'Z. "-M!='==' EkEE#_1'~=T-- -EGB--TMMZm E E=+0= -- :W _Nr==== - -== = = a- = = -- - --. 4 .-_=-[-N 1 5 s 5 5=- ~-'-E.--- 5_'l:#'_-' #Y- _M=- ='- ~~~- i. E' _3--T- -DMr=~M[ _ f _- ~ ~=~.=2 _ ' _ -~_ i -$ O]_fE _. ~ k- = ~ =T_^2 = "'==- '.- _ _l== 2 =-- ^ _ _. =2===~-. %,=_.=_=.=_.^=^^- '. _L : _,__ _ _ _ :- =_- =_.=_ - _z__^; =- _ _ _.. _ _ _._ _ _ _ _ _ - _ _ = _ _ _ _ _ _ _

3. g : - -

t_- p V Y _w_____ tl g j O e 2. -A ct e---- V e.j .J I - 1 4 y 5 3 1 i r ? i I \\ qp 1 I \\ f CC O C 4 C o g U T q M (9 8 td ? Ju n!!N

e =- kTTlkCL\\ MEN 1T Y 2.s u a r., l t { l l l l

a e m a a.-aAA+ 4 ="9- -d4:'-A5-M=a17-. CAM-- e.,J---m--- u i-#J.- ---"'4---MM-M-KM-- e 'P _-b&v.AM._4ew--- Ar iW-s e+b-. -s.Ja ---um-- h-mJ-u.==--m.a-m. 1 i s d i 4j W a 1 s 4 1 4 ir i 4 f 3 4 l 4 I .I 5 1 4 4 I. d I, 4 I 1 I f 4 9 i, i i r Y ) I l I. .f I' + ) 1 i 1 6 4 i~ i I e e e 4 1 0 ,1 7 j F 1 + 4 'j l' s ,--.-y+ev,, ,w,-y. - ~. -,w,-nv-%,y,,-r--,-- ,,,---,w--,,ey-y --enr-,,.,,.-% we -,n-,ew,r,-,.-,ww,m, %,.e.ywm,w,.wv,-,,ww,,,wwee,,em,.ww-w.e,,w-=,=---e,-- g-

18", NRS,.Breac*o, ..o.w. 7-s-y 9 SThtESSLEVEl.S1:0!tVALVGCOMPONENTS -Table 1 Allowab i Ite r Stress Stress Le Code Ref Compon en t-Paragraph Symbol G Name Page Materini Level. psi psi ND-3541.1 Primary membrane P ASME SA-516 Gr.70 Sm m 34 ,gg 17500 Boy stress in crotch ~ region A,M E A-6

r. 0 Primary membrane Pm' 35 1309 17500 ND-3545.2 Primary plus secon-Qp 35 ASME SA-516 Gr.70 5336.

Sm dary stress due to 17500 internal pressure NB-3545.2 Pipe reaction stress 1.5 Sm Axial I.oad. Pet; ASME SA-516 Gr.70 ,. 3 5 2117. 26250 Bending Load Ped 1392. Torsional I.oad P 2717.. _e t ASME SA-516. Gr. 70 8" i ND-3545.2 Thermal Secondary Qt 37 1192 Stress 17500 .s 3 Sm Nil-3545.2 Primary plus secon-S AME SA-m Gr. 7'o n 37 7314* 52500 dary stress I Sm NB-3545.3 Normal dut fatigue S A SMll SA-516 G r.7 0'. I3 37 6481 stress Na._ 2000 Disa ND-3546.2 Combined bending S(If ASME SA-516 cr. 70

3433, 1.5 Sm 38 stress in disc 26250 Sm NB-3546.2 Bendir.g tensile S(4)

ASME SA-516.Gr.70 40 395 ih unsupported flat 17500 I 3-P "I" Hil-3546.2 Shear tear out of S(5) 40 ASME SA 516',Gr. 70 3438. .6 Sm shaft thru disc

  • 10500

t .i a

r..

.ia",

NRs, rearn.

~ ~' STRESS L'EVEl.S FOR VALVE COMPONENTS Allowable Code Ref Ref Stress Stres's Leve Componen't Paragraph Symbol 6 Namo Page Material Level,. psi psi , Disc, Cont Shear stress across S(6) 40 3149 .i.. disc hub ucids 10500 Shefto NB-3546.3 Combined stress in S(7) ASME.SA-564 Type 41 25077

shaft, 630, Cond 11-1150

,33700 NB-3546.3' Torsional shear S(14) 42 ASME SA-564 Type 9345 .6 Sm stress at reduced 630, Cond 11-1150 20220 pi,n cross-section Dice in NU-3546.3 Shear stress in top S(15)~ '43-ASME SA-320 Gr.B8M - 5812. .6 Sm l pin 8160 l NB-3546.3 Bearing stress on S(16) ASME SA-320 Gr.B8M 43 2163 top pin 13600 NB-3546.3 Combined shear S(17) 43 1808 ASME SA-320 Gr.B8M .6 Sm stress in bottom 8160 uin Shaft Compressive stress S(20) 44 ASTM B-438 cr. 1 3031. Sm Bearing on shaft be.aring Type 2, Bronze 4000 cover cap NB-3546.1 Shear' tear out of S(21) 45 ASME SA-516 Gr.70 2273' .6 Sm cover cap bolts 10500 thru tapped holes in bottom trunnion ASME SA-516 cr. 70 .6 Sm NB-3546.1 Shear tear out of - S(22) 45 458 g i O cover cap bolt head .~ 10500 l thru cov,cr cap i

+ e 1 18",.NRS. B rI to l STitl!SS Ll!VI!!.S I:Olt VAINI! C0hlPP:ll!NTS Allownble Coile lief Ile f Stress Stress Level jComponent Paragraph . Symbol li Namo Page Flaterini Level, psi psi Covor, Cap 111-3546.1 Combineil stress in. 'i(23) 43 ASht!! SA-193 Gr.!!7 Sm 9993

  • (cont.)

cover cap bolts 25000 - f. Combined stres5 in 'i( 26) 47 ASb!!! SA-516 cr..70

6654, Sm cover' cap 17500 1

l i Thrust + noortug !! caring stress on S(30) 48 SA11-660 819 Sm 4 thrust collar 8800 Shear load on S(31) AISI-420 Pm thrust collar spring 48 2298 pin llearing stress of S(32) S A!!- 660' 8" i g 2278-8800 spring pin on thrust collar' l Shear tear out of S(33) /. 8 UAll-660 .6 Sm 3443 , ';pring pin thiu S280 thrust collar Shear tear out of S(34) ASF111 SA-564 Type .6 Sn

  1. ' 8 spring pin thru 630, Cond 11-1150.*

1534 ,20220 I bottom shaft *:, 1 i y t* gg 'e O 8 g

)*. d,.. 9.. ~ t- . n3 STitESS LEVELS F0tt' VALVE CO*IPONENTS 5 m a kilowabi Ref Stress Stress Lev , Code Ref* Page Material Level,. psi psi Component paragraph Symbol 6 Name 1 Operator 3 Shear tear out of 49 ASME SA-516 Gr.70 .6 Sm i Mounting trunnion bolts '3048* 10500 j thru tapped hole ir S(35) i trunnion Bearing stress of 49 ASME SA-516 Gra 70 Sm j trunnion bolt on g r77 7500 t tapped hole in S(36) trunnion i Bearing stress of ASTM SA 36 Sm s trunnion bolt on s'(37) .O through hole in G & /3 12600 2 honnet l 3 l Shear tear out of 51 ' ' Astk SA-36 . 6 Sn. trunnion bolt head S(38) 22.24-7560 thru bonnet \\ L } Combined stress in S(39) 51 Sn trunnion bolt SAE Grade 8 33 88$ 37500 Shear tear out of S(47) 53 ASTM. SA-36 . bonnet bolt head .6 Sm. thru. hole,in- ./ 0 0 4-7560 j bonnet ] Dearing stress of S(46 ) 53 ASTM SA-36 Sm bonnet holt on 12600 thrui hole in. bonnet 1 IN Bearing stress of ASTH SA-36 .Sm l N bonnet bott.on s(45, 51 /8 7 *. 12600 tapped hole,in~ i adapter plate, **

',[ ~ q -J. -t* i.. .7 STRESS LEVEL.S FOR VALVE COMPONEyTS 4 i- [(, i Allowable Stress Stre.ss Leve Code Ref' Ref ~ + . Material Level, psi psi Cbmponent ~ Paragraph ". Symbol 4 Name Page Shear tear out of .6 Sm Operator bonnet bolt thru 51 ASTM SA-36 //53. Hounting~ tapped hole 7560 in adapter, plate S (4.4 ) ~ Combined stress in S(48) 53 5AE Grade 5 Sm 20 MS ~ bonnet bolt 2 3ooo Shear tear out of ASTM SA-36 .6 Sm i operator bolt head S(53) 56 327 thru adapter plate 7560-j i Dearing stress of ASTM SA-36 Sm ~ ~~ 6 7 0 '7 operator bolt on S(54) 5.6 adapter plate 12600 l Sm Combined stress in ~ S(55) 56 SAE Girode 6 2 3 (. / operator bolt 23000 Combined stress in ASTM SA-36 l Sm ~ j bonnet body S(60) 59 2 9 (, f 12600 i 4 .6 Sm 1 Cor.bined shear I stress in bottom S(65) 59 2757 7200 bonnet weld ll Combined shear .6 Sm i j . stress in top S(72), 60

  • /'/5L 7200 bonnet weld i

Sm Combined stress in S(79 : 61 ASME SA-516 Gr.i70 /f33 trunnion body 17500 u u. .y.. l

  • * " ' ' ' ' ' ' ', * ' ~

,.(* >'0 U37 0t.. TEXALi f' I s L AST 7 t v.e:c. i .,........e..s f.'0C E L S A A N O i< R-10 f !:-4 2 i Wittout Se i smi c Exc i;a t ior..inile Actuator lS ProdUCInc P-aw. C u ? D.J i Y O f" C U 8 _ s" t STRESS REF. ALLOWASLE STRESS COMPONENT IDENT. PG. MATERIAL STRESS esi) Spring Tie Bar 5a ASTM AI;!-S7 Sm=3: 400 et=7864 Cartigge Tensite Connectio-Preload 25m=62800 e =296io i (150 ft. Ibs.) Max. Shear 5f .6Sm=18800

j=3934 l

g S; Housine Sh ASTM A536 .6 p 9750 3=I539 inc. Snear 65-45-12 I I Piston Tie Sa-6a ASTM A!93-57 Sm=31400 c2' 2h053 Assy. Tensile Connection l S i t Housir.c 6i ASTI A536 . 6---= 9 7 5 0 n=3.55 j l Thd. Shear 6f-45-!2 I .I s Heusing Solting ASTM Al93-S7 25m=62500 e =2*67; i -o Valve Dreicac ':o u r - ; n g (125 fr. Ibs.) l TensiIa Se Sm=3.c;; =79.; C Shear 5f . 5 S := 12. ' ?.0

=9555 S-Heusinc 9a 13 T f/ A536

--=' :!" 0 3 = 2 0..; ~ Tensile

f-45-12 l

t

  • 5TM A53-GRE Sm=15000

..,=5228 I CvIinder 9c Hocp ( Ccve.- Dowel Pin 12: AISI 874C .6SM=37C00 7.=239.5 e Conne: Tien Snear 47Rc NOTE: Allowat - stress Sc. per ;SME Section i;.. i l s 7

c.. r e l :s.... t :

-~ S ' e ce. l l ne 3 i... l o

I'.; f E TTi' C C+ P.

  • * *. hau;t... TE a.

..s..._.... i. ~ v - .(-. 10:.; :. .a - (' ~ ' # ~ At 59 '" c i c.

  • c A c c.. c r a t i e r.

In i P.

  • r.s s i.

S ;:..: ! T a r e o.: s l y While Ac+.e or 1: Proco: g *.' a x. Ci.;pc- ~ a .e7qc.c.e .R E. r. Y' '.' ' t - - ~. v. a .v C C": G !ifC IDENT. PG. f.*ATER: A. S':E55 t3' ... :~ 0 7 Spr.a r. o 7se Roc sa r.s il.' A l 9 ;..., =.9 5 . a.... ..,. : 1 -a ,c s i C a rt - ; c c. e Tensite . Co r. n e t. t i e r .B l r.' a x. Sr. ear 71 t'=i206 63000. C..:i l .I g e a .,..s v. T ;.. t..t ;- l l .2., U,. :.,.. Q .r.3s

r..e. 7..

e i .; o v e., t s,= s. i T*.c. Snea-65-45-:2 1 3

1 11 i... >..,.

..r..=. a r f .......,. a

r..

_...q.-, na n. e s.s::. . ens. --

ie

.,... r:or l .. a >. o n w. a. r c, s

1.., s.~: 3 c 2
5-h..i c 6.

n.t ..u-c../ 6s.. l ., er .e.

r l'

.i r. g 2a

2. S..
c. l v,.2, _ : -

..c.8 .e1.. ..y.. I te..

:. c a r. *ir-i I..

.i

e..s. e...

.. 4 . : ;. c. c a 2 i..=. i I 1. .. -i.

4. =..:.

... =...:. s

e..

a. g ;,.. g .~ Tens.:s e:--s.i. i I '7:3 . K inc. Sncer C: - : = I 2.s-i.;..) l ; .. wei F.a r, l.o

e.. e cis.

, = .-oc. ,I ..,. - ; c.. c. <.. t.- m-l l3; S r. s c r yieIc

w. -
t. :

t 'sr.s!'- s... l l. 6 I . I ll I.' I, e g ' i 1 l i ...'.L

    • ,,JO.4.

.ee .e ees. e !l iI ,h

  • aESS l

y w w- ,.-.m---9s.---c. -_m 3.,._, ,-,-ww,.,--g- ___,,--y.,-,% ,.n

p N'e - Me&y -ee mr 90 ge y / 7 t I k n i n soeu .~ j i e .-..,,,,.-,.,,e,, .e,. .----a---

$a 4 BODY ANALYSIS The body analysis consists of calculations as detaiied in Para NB-3540 of Section III of the, code. Since Para NB-3540 is primarily intended to control the design of high pressure, high temperature globe and gate valves, in some cases it is not possible to directly apply the equations as specified in the code. Where interpretation unique to the calculation is necessary, it is explained in the sub-section containing-that calculation description. Figure 3 illustrates the essential features of the body geometry through the trunnion area of the valve. 'The symbols used to define specific dimensions are consistent with those used in the analysis and with the nomenclature used in the code. 3(-

1. Minimum Body Wall Thickness Paragraph NB-3542 gives minimum body wall thickness re-quirements for standard pressure rated valves.

The actual minimum wall thickness in the NRS valve 6ccurs between the flange bolt holes and body bore. The I e e (-

i.' I( /l .:q 'k A m ~. ,..( N ~ Af i 1 'M x f c. PRESSURE-AREA ANALYSIS BODY CROSS-SECTION ' Figure ~ ~. _.---.,-.,-..-------.-----------.----.-y-+,,,--w-~---


e

,-.-..e,- -e--------+.--.----,.---,--.. -,,--*w------- -.w-

29 - Body' Anal sis C- . 2. Body Shape Rules The NRS valve meets the requirements of Paragraph ~ NB-3544 of the code for body shape rules. The ex-ternal fillet at trunnion to body intersection.must be greater than thirty percent of the minimum body wall thickness. i

3. Primary Membrane Stress Due to Internal Pressure Paragraph NB-3545.1 defines the maximum allowable stress in the neck to flow passage junction.

In a butterfly valve, this corresponds with the trunnion to body shell junction. Figure 3 shows the geometry through this section. , _( The code defines the stresses in this area using the pressure area method. As seen in Figure 3,.certain code-defined dimensions are not applicable to this style of butterfly valve. For example, there is no radius at ~ the crotch when seen in a view along the flow pattern, To comply as the neck extends to the face of the body. and A are with the intent of the code, the areas Af n interpreted as shown in the cross-section (Figure 3). Using these areas, the primary membrane stress is then calculated. (A /A +.5) ps Pm " f n l - 1 a.

2.9,,.". Body Analy' sis ( As an alternate method of determining the primary membranestress,anequiva.lentanalysisforgprfmary membrane stress is applied to an area away from the e . =, trunnions. In these areas, the metal area and. fluid ~ area are as shown in Figure 4. Since the depth of the metal area is equal to the depth of the fluid area, the ratio A /A is equivalent to the mean radius of the f m body over the thickness of the body shell, Rm/Hg. The ' primary membrane stress through this section is then: P,,= (R /H +.5) ps m g

4. Secondary Stresses A. Body primary plus secondary stress due to internal

, f_ pressure. Paragraph,NB-3545.2(a) of Section III of thecodedefinestheformulasusedincalculatkng l this stress. Qp = Cp ri_+.5 p3 . te ,) B. Secondary Stress due to pipe reaction. Paragraph NB-3545.2(b) gives the formulas for finding stress due to pipe reaction. Ped = F S (Direct or axial load effect) d Gd [ Peb = C F S (Bending load effect) bb i Gb Pet = 2F S (Torsional load effect) b G { t s 2 . C ~ .~

e ( .-t 7 sv u Am Hg / / 4 A K R ( Af a I. l s l h_ M PRESSURE AREA ANALYSIS l I* . CROSS-SECTION IN BODY Figure 4 e C-e 4 ,.,.-,,_,-.,,..,-....,.n...._..-.---,._-,n-----.n.-.. c.-'..a

29. f Body' Analysis ~ ~ ( .C. Thermal secondary stress.. Paragraph N3-3545.2(c) of Section III of the code gives formults or I-determining the thermal secondary stresses ib2 the E. 3 pipe. - QT " QT1 + QT2 Where QT2 = C C AT2 ~ 62 D. Primary plus secondary stresses. This calculation is per Paragraph N3-3545.2 and is si= ply the sus of the three previous secondary stresses. Sn"O + Ped + 2Qt2 1 33= p 5. Valve Fatirue Recuire=ents ab Paragraph N3-3545.3 of Section III of the code defines requirements for nor=al duty valve fatigue. t l The allowable stress level is found from Figure I-9.0. Since the nu=ber of cycles is unknown, a =sximus value of 2,000 is assumed. The allowable stress can then be found from Figure I-9.1 for carbon steel. This then i gives an allowable stress of 65,000 psi. Spi = 2/3 Qp + Peb/2 + Q73 + 1.3 QT1 Sp2 " 4 Qp + Peb + 2Q73 [ Where: 7 QT3 = C C AT2 63 C O ,r -n-. y --v-v,--, v-.- -w-* +v-w- -v----

29 .c . DISC ANALYSIS. l Section NB-3546.2 defines the design requirements of the Both primary benling and primary membrane stress are valve disc. . mentioned in this section. For a flat plate such as the butter-fly valve disc, membrane stress is not defined until the deflection ~ of the disc reaches one-half the disc thickness. Since total deflection of the disc is much less than one-half the thickness, ~. membrane stresses are not applicable to the analysis. Figure 5 shows the disc for the NRS butterfly valve. The disc is designed to provide a structurally sound pressure retaining component while providing the least interference to the flow. Primary Bending Stress Due to the manner in which the disc is supported, the disc ( experiences bending both e.long the shaft axis and about the shaft axis. The combined bending stress is maximized at the disc cen-ter where the maximum moment occurs. The moment is a result of a uniform pressure load. 1 Combined bending stress in dise: S(1) = (S(2)2 + S(3)2) Where: 3 Bending stress due to noment S(2)' =.90413 PsR4 C7 = along shaft axis, psi 13 R 3C8 Bending stress due to noment S(3) =.6666 Ps 4 = about shaft axis, psi I4 (- g,


__._,..,_._.__._.,_,,___,.________,__,,y

'~ ( DISC PINS .4 , f>' - 5 ~ i 3 3 .}., 3 \\ s \\ 1 1 t 3 l l 3 - s s 3 ( 3 u ',, -\\ s-g l l SHAFT BORE HUB BLOCK x.._. / HUB WELDS I I ' SEAT 'uu u u. u u l FLAT PLATE RETAINER SCREWS NRS VALVE DISC Figure 5 b .g C s e e e e e ,t pp

29 Disc Anal sis (~ Bending stress o'f unsupported flat plate: S(4) = M Cg 8 1 ~ 7 Shear Tear Out of Shaft The disc is designed so the minimum thickness of material surrounding the shaft extension in the disc is above the shaft l on the arch side. The loading is due to both seismic and 1 pressure loads. l S(5) = vP Rs 4 +w2Ex = Shear tear out of shaft 2 through disc, psi 2Lg(K +.SD ) 2 2 Shear Stress in Hub Welds 2 + TR42.283(gy2+8:2)(2 ~ 4ps+ T8 S(6) = 2R 1 "6 Wl 2WE 6 t - _66 5.66 %~ i ~ l f. b ( a -

29 SHAFT ANALYSIS The shaft is analyzed in accordance with Para NB-3546.3 of Section III of the Code. The shaft loading is a combination of. seismic, pressure and operating loads. Maximum torsional hoading is either a combination of seating and bearing torque or bearing and dynamic torque. Columnar stress is not con-sidered in the shaft loading due to its' neglibible effect on the stress levels. Figure 2 shows the banjo assembly with the through shaft. Shaft stresses due to pressure, seismic and operating loads: S(7) = S(8) + (S(8)2+4 3(g)2)h 2 2 Where: s S(8) = (S(10)2+S(11)2)b = Co=bined bending stress, psi (vg4 p +W2E'x).25 B RI 3 = Bending tensile. stress 2 S(10) = s due to pressure and seismic 4 2.25R5 loads along x axis, psi = Bending tensile stress BRI3 S(11) =.25 W28y 'due to seismic loads along 4 .25 w R5 y axis, psi (S (12) 2 +3 (13) 2)b = Combined shear stress, psi ~ S(9) = S(12) = T8R5 = Torsional shear stress, psi .5 R5 l 4 ps+.5W (Ex +gv2)h = Direct shear 2 2 S(13) = 1.333 .51R 2 'R5 Also worthy of attention is the torsional shear stress at the l Teduced cross-section where the disc pin passes through the ~ l

l

.~ shaft. (. "O ~~ ~

o 29 - ~ ~ ' Shaft' Analysis 3R5 S(14) = S(12) 2 3 D [ 3R54 - D2 33-DD32 .2 12 12 'v I M O 9 0 4 e O r(- r I 1 e. 6 9 e S 4 g** O 9 e G mm' 4 e c. . l ,, - -, - Giin,.. g. s,,,- .n.,--. .,. -,,..,..,. -. -,,,..,, ~,., _..,. -.,

L DISC PIN ANALYSIS (;. ... As seen in Figure 2, there are two stub shaf ts to the disc i The top pins are subjected to torsional load as"_.they transmit pins. ~ The bottom pin is subject to shear loads the operating

roue.

due to seismic a d torsional loads. ~ Combined shear stress in top disc pin: S(15) = Te 5U4 Z 2N R.785D3 15 Bearing stress on top disc pin: S(16) = T,,5U, (R5+. 5K2) 2K2 D3 ti, - Combined shear stress in bottom disc pin: T .5U4 S(17) = 8 2 2N R.785D yS 3 i( _ Bearing stress on bottom disc pin: T .5U4 S(IS) = 8 2(R +.5K )K D N231 5 5 S(19) =.5u5+U6 2 1.57R D53 e g - ~ - ~ ~ ~

1,9 . SHAFT BEARING @ LYSIS ~

  • ^

(' The sleeve bearings in the trunnion (Figure 2) are subjected to both seismic and pressure loads. r .I 2 Compressiva stress on d 4 +W (Ex *Ey ). = i S(20) = TP R 2 shaf t bear:.ng, psi 2% ~- . s e O l I i 4* e L 6 o G O e 0 e e e 9 a ( e mee e** g me --,-m.4 =

29 l - COVER CAP AN LYSIS (' , Figu're 6 shows the bottom trunnion assembly, including th'e cover cap and cover cap bolts. [, 1. Cover Cap Bolt Stresses I 8 The cover cap experiences loading from the wright of the banjo and from pressure loads. In determining stress levels, the bolts are assdned to share tor - sional and tensile loading equally. ~ . Shear tear out of bolts through tapped holes in trunnion: S(21) = W28:+wP Rs6 4L3 2.83 D6 Shear tear out of bolt heads through cover cap, psi S(22) = W2 :+wP Rs6 8 4T1 5.2 D6 rr -e Combined stress in bolts, psi S(23) = S(25) + (S(25)2+4S(24)2)h 2 2 Wherd:- ~ S(24) =.25 W2 8: (D 2 +. 66 (D4 -D2) ) = Shear stress in bolts due to tor- .707 H3 4A4 sional load R 2 S(25) = W2E:+wPs 6 = Tensile stress.in bolts due to seismic and 4A3 pressure loads, psi 2. Cover Cap Stresses [~ The combined stress in the cover cap is calculated using the following formulas: 4 A. - 1 n. n = =. -m

L-T Uh ON / N B G udy. \\ xx a</ \\ SPRING PIN .gm g,,,,-,,. ~. L \\ l1 ofhs SHIMS BOTTOM TRUNNION AND THRUST, BEARING ASSD!BLY 1 j, Figure 6 u .,_,,,_..,,,..m..

29 ~ Cover. Cap. Analysis ( S(26) = S(27)+S(28) ((S (27) +S (2 8)) 2+4_S (29) 2)% 2 2 Where: .. + S(27) = 3(.785(D +.25)2 ps+W2E:) =. Radial Stress 4 4rT 2 ~ 4 S(28) = 3(.785(D4+.25)2 Ps+W2g:) = Tangential Stress 2 4rT4, S(29) =.785(D4+.25)2 ps+W2g: = Shear Stress

  • (D4+.25)T4 de en

~ l l \\ N e =., C 47_ W .,._--.._..r,

29 THRUST BEARING ANALYSIS (,* As seen in Figure 6, the thrust bearing assembly is ) . located in the bottom trunnion. It provides restraint for j \\ ~ the banjo in the z direction, assuring that the disc edge re-mains correctly positioned to maintain optimum sealing. Formulas j used to analyze the assembly are given below. 1. ' Bearing stress on thrust collar due to seismic and pressure loads: 2 S (30)' = W22:+2PsR5 4 -(D +.25)2) 2 .785(D 2 2. Shear load on thrust collar spring pin due to seismic, pressure and torsional loads: .25W g:(D +.0833+.66(D -D )) 2 g+sP Rs5) S(31) = W + E 2 2 4 2 ( R5 / i (.- 3. Bearing stress of spring pin on thrust collar: s 5 )2 + (.25W282) )b 2 S(32) = ((W28:+rP R t D5(D4-D2) 4. Shear tear out of spring pin through thrust coJ.lar: _ R S(33) = W28:+1Ps 5 T (D -D ) 3 4 2 5. Shear tear out of spring pin through bottom of shaft: S(34) = W28:+TPs 5 R 2D (T +.5 D ) 2 2 S l 'i l c. -4,8- ./ ._.._...-.,.._.p.--.

29, / . OPERATOR MOUNTING ANALYSIS .(* ' The operator mounting consists of the top trunnion, the bonnet, the operator housing, and the bolt connections. The elements of the assembly are shown in Figure 7. 1. Bolt stresses and localized stress due to bolt loads. 2 r The following assumptions are used in the development of the equations: A. Torsional, direct shear, and direct tensile loads rre shared equally by all. bolts in the pattern. B. Moments across the bolt pattern are opposed in such a way that the load in each b'olt is proportional to its distance from the~ neutral bending axis. a. Shear tear out of trunnion bolt through tapped hole in top trunnion. b- _H (J 4h ) _._M (J +H ) S(35) = Fz+W gz + + y 1 2 x 2 2 4 2 2J1 + 2 (J1+H2) 2 2J2 +2 (J2+H2)2 2 4 .9 L D47 b. Bearing stress on tapped holes in trunnion. I 2 2 2 (Fx +p 2)h + W4(Ex +Ey 3% S(36) = (Mz+T8) + y ~ 4(.707 H2) 4 4 DL74 . Bearing stress on through hole in bonnet. c. 2 2 2 y )% x +p 2)4 + w4(Ex +g (F S(37) = (M +T ) + z 8 y 4(.707 H ) 4 4 2 D7T6 9 3...._...--

riwunc i C___.._.__._....--.- l ADAPTER PLATE (. 'Y; 'I7 g , i M E' y .N \\~ v II8 N s \\ 7 Fill.ET L/ ELD 'Ts ALL AROUND Y N p r y, L- 's. /f (/G s- ~ .,e. - i g .w.. s "[' 4 BDNNET TOP TRUNNION l VAL VE BDDY O TRDNNIDN BOLTS ( '50

    • "****9 A.

mm- ~- ?= e g _e.e. mM

Operator ?!ountin$ Analysis

d. ' Shear tear out of trudnion bolt heads through O

bonnet. .(. = M (J +H ) S(3C) = Fz+1f gz Mx(J +H ) y i 2 4 2 2 2 2 2 1 +2 (J +1123 2 +2 (J +H23-2 2J 2 i 4 2J b- .5.2 D T76 }. 't.;

e. Combined stress in trunnion bolts (Sec Fig. 3)

S(39) = S(40)+S(41), ((S(40)+S(41M+4(S(42)+S[43))2)b,, 2 2 ~ ~ Where S(40) = Fz+W gz = Direct Tensile Stress, psi 4 4A5 = Nh(J +H ) = Tensile stress' S ( 41) = M (J +H ). i 2 x 2 2 il 1 +2(J +H2)2 he u uphF 2 2 2 ?J2 +2(J +H J 2J i mass bending 2 2 m mont, psi A5 O, S(42) = (Fx.p 2)h.w4(gx +8y2p = Direct shear 2 2 y ,,(. stress, psi 4, A6 - = Shear stress due.to S ( 43) = (Mz+Tg) torsional load, psi (.707 H )4 A6 2 bolt through tapped hole in .f. Shear tear out of bonnet. Ad. apter. plate S( 44) = Fz. Il[(J +H ) . K (J +H ) 4 4 3 4 ~ 3 + 2 (J +H'4) 2 2 2J4 +2(J +H )2 2J 2 3 4 4 4 . 9* D9. LS

g. Bearing stress on tapped holes in adapter plate y )b 2

2 (Fx +F S (4 5 ) = Mz+T3 + (.707 11 )4 4 l 4 DgL, (c-e S'I -, =... m-

9 9 4 9 g g e 9 e ~ OI (

  • ,b 8

wy =. r + 4- .g i l A O H2 1 \\ X5 J2 k> { H2 V f A u J1

s..

o -V V 4 4 h l TOP TRUNNION BOLTING Figure 8 Y i e e g e a e ( a

  • m L

m .___..._,__._.-__..,_-_,7,.,__ ,.--__..,7,_ ._,_.._,_.c.-. .,.,..w.

vuutnLuc revuss L 1ss g nuss a y a1a .h. Bearing' stress on throu2h holes in bonnet. b. S(46) = Hz+Ts ~ +[Fx p 2)h 2

f.,

y (,l (.707 H )4 4 4 .Dg'T - 9. ~ 7

i. Shear tear out of bonnet bolt head through bonnet.

r. + T (J +11 ) . Ily(J +11 ) '# ~ S (47) =. F2 3 4 x 4 4 3 +2 (J +H )Z 2 4 +2(J +H )2 2J 2 e-' 4 2J f, 3 4 t 4 4 ~ S.2 D T ~ g7

j. Combined stress in' bonnet - bolts (See Fig. 9)

S(43) = S(49)+S(50) (-(S(49)+S(50))2+4(S(51)+S(52))2)h '~ '2 2 Where 3(49) " E = Direct Tensile Stress, psi 4B3 r. .I.y S(50) " Ix(J +H ) + I (J +H4) = Tensi2e stress 4 4 y 3 due to bending

  • 3 + 2 (J +H ) 2 psi 2

2J4 +2 (J +H ) 3 2J 2 3 4 4 4 B3 ,S(51) = (Fx2ip 2)h .' Direct shear stress y '\\ 4B4 ~ = Shear stress duc S(52) = M +T3 z (.70711 )4 34 4 53

8 S e XA s.- > Y 4 =om s A o H4 1 J4 (= J. u4 r ~ v ( a 3 3 37 BONNET BOLT PATTERN Figure 9 ~ e 'I.. 4 l \\ ( s% u-R as1 m

upurator riounting Analysis

.i,..
k.. Shear tear out. of operator bolt head through ada'pter plate..

!b (. NVy2 .e-MVx4 'S ( 5,3) ' = ,g* 2 2 2 2 2(V1,y2 ) 2(V3 +y4 ) 4 j . l 5.2 D T8S i .'I. Bearin~g stress of operator bolt on hole.in adapter plate. S( 54) = 2(M,+Tn) + -(F 2 + F 2)y 3 7 - a, 4.T5D8

m. Co::bined stress in operator bolts. (Sec Figure 10)

S(55) = S r56)+S(57), _((S(56)+s(57))2 4 (S(58)+s(59))2)b .2 2 Where S ( 56) = F: = Direct tensile stress, psi f' 4A7 s(57)

  • MV y4

'MYx4 Tensile 's' tress due,to + 2 2 2 bending moment, psi 2(V1 +y2 )A7, 2,(V3 +V4 )A7 x +p'2)h ' ,= Direct shear stress, psi 2 S ( 58) = (F y 4A8 ~ ~ S(59) = (>fz+Ts) = Shear stress due to , ' 5 !! 4,Ag torsion, psi

2. Bonnet Stresses.

~ The bonnet stresses are calculated with the as.sur.rption

that loading is through the bolt connections as previously

~ defined. l l l SG -c=> -w= m-w o. - ~ m ~ ~., _,

m (.. *, 2 .,c .? a. 7 iL J A 1 Vg A / V, ,-{ j. A/ V6 s. l Y5 y V V Y A.d.a.o t. _er B ol t. P a t t e rn Figure 10 e O a g .e (* e% e g 57 l I I

d e 0 4 e e = e e <X-d .o (...y u >a \\ Ji ~ C t; S __m L ~r iL IL l 3 p) h 2: a m HH 4m ~ F 2 su O M c g-et 4 e O H*I. m A N O 1. k ( / 1 e s

  • 4 d
  • {

e ? 8 (J e 9 58

== 9*

.l ,c. Tho ccxicum co2bined stress in the bonnot was calculated ~* b using the,following formulas:

'I S(60) = S(61)+S f 62), (CS(61)+S(62))2+4 (S(63)+S f 64))2)

~ I,.I 2 2 .q j = Combined stress in, bonnet Icgs ~ f S ( 61) = F +1f gz '= Direct Tensile. 2 4 . Stress, psi

1 B5

~ S( 62) = Nx g, M Bg = Tensile stross' B y due to b.cnding y1 y 2 ., moment,. psi i if (gx +gy )b 2 2

:= Direct'shcar.

x +p 2)h x. 2 S( 63) " (F 4 y stress, psi. ..BS t = Torsional shear S( 64) = (Nz+TS)(B8 +Bg2)h 2 {'- 1 +I 2 l ~p' '

b. The maxicun combined shear stress in the bonnet 'ounting m

plate to body welds was calculated using the following Armulas: l ., Bottom Bonnet ifcid 3 S( 65) =., S( 66) + (S (66)2+4 S(69)2)g Combined shear stress in bottom wcld, psi 2 2 Where. 'S( 66) = S(67)+S(68) = Totn1 tensile stress, L psi S (.6 7)= Fz+h'4 g: = Direct tensilo stress, psi y 1 l 1 O g ^ 39

Ocerator Mounting Analysis _ - i

I

. = 3ending tensile stress f' -S(63),= 5 + y: J. ./.. 2 g I..i. 1 2-l* S(69) " S(70)+SC71) - Total. shear stress q y )% = Direct shear 2 2 2 S(70) = (Fx +p 2)%+W (Ex +g y 4 stress, pst y 1 = Torsional shcar stres's, psi ~ S(71) = (Mz+Tg) I 23 Top' Bonnet Weld S(72) = (s(73)2.43(74)2) = Combined shear stress in-4 top bonnet weld

yyer,

. = Total tensile stress, psi S(7j) = S(75)+S(76) = Direct tensile stress, psi S(75) = Fz .(, U 2 .= Bending tensile stress, psi S (76 ),= Mx _ + 3;- --V-ZI Z 2 ~ .= Total shear stress, psi S(74) = S(77)+S(78) x +p 2)b = Direct shear stress, psi, 2 S(77) = (F y ~ ,b ~ 2 = Torsional shear, stress, psi S (73 ) =, M +T3 z 24 c.. Trunnion Body Stress The trunnion body stresses are calculated using the 2. followi'ng assumptions: 1,. Operator. loading is thr,ough the. bolt connections. O 6 60

g Operstor Naunting Analysis .2. There is an equal and opposite reaction to the bolt f.,. Ioads at the body. I The combined stress in the trunnion bddy was esiculated ~ i s .j. using the following formulss: S(79) = S(80)+S(81) + ((5(80)+S(81)j 2+4 (s(82)+S(83))2)4 - 2 2 Where . = Direct Tensile Stress, psi ~ l S(80)

  • Fz+1f422 2

~ X K .78532 45 S(si) = h!x+FyK6). 5K4 (h!y+ Fx K6). 5 K5 = Bending torysile ~ l 3 4 .0833K K5 4 ,32 .0.833K K4 5 -2B2 5 c (- ' 64 y )b = Direct shear 2 ~ 2 2 x +p 2)h+1y4(gx.g S(82) = (F y strcss, ps K K .7853 2 45 2 -( e i S(83) = (h!z+T8).5 (K4 +K5 )4 ' = Torsional shear 2 2 stress, psi 4 4 5 +K K 3)-*B2 .0833(K K 54 32 g [ l l .s. 2 P,. .s r. 41 . =.....- .p..---

I I l L E T T !*, C O.*: T. .s..

  • . ' c.,~

1 suc yas o.., T z : a :e . t as _u__v. n. _... A .c _ s, a i r. a._,- .....s nN. .a s c 1 ( 3 JB.' ECT : S FR I NG C ARTR I D3 E.VC'.NT i t.3 ANA L YS I S (5)) The sfr:ng es.Tridge 8 volvec

r. : n ; s a n a l y s i s i s *-

LR3 (9/M 20946: 30.5" long - !!" I; s. i ne n.<! mum rc en; cr ne connecr.i s t.

s at Tra 5,:r'ag a s sec. l y cor.r ect icn (3)) wher. the sa.*.g is cc= pressed.

Tne ?.or.ents for the p essu.e cylincer assectif and tne .e,.er sprer.g cyllacer ssse=:iy ars shcun.r 2. rsg. c r l tc Figs. 2a ar-2b fc x, a r.d z s: rect:ca anc ci.actic-

e.,.ity.

i _.ese n:d Tens.ie: t t t I.,., F R O. P '. Fi r.' V. 4' 3 7 D ..e 1 l A F. t,T a ! t:s rce Icar (..s.. ) = C 4 F,. ei T i e d a r e r.s l e . r e s ; =

b)

C'.

2. 4 + F v

f 2 gz g.< gy

t.,,,

t.1,, etc. - Refe-F . 2e L 23 s. s: ring s at, ccn:.s:a.s ' t :1,.D F = s = z " !," 'z 7~ (*##*} S~* #0'~ ' 3 r --- (-) F = acceleratic. 9 (.,2 +gZ e, ) 2 g = , -l w/o.T seisn:c ra:; : c )- =t >: = i. g x #' i - c i g: = ! I l l (c ~ wi r. seiin:c e.,its.:.;- 7~L .=, X: g> = gy = = .. z = 5 e caxt=um s r.1 : r - gy";

{

= ee r, =- t. = t snsver=: s r. a s - I -c.. t A = rensii2 57 ass erss. :. e

c. t

~-

r..
  • e., s9
i. <

l g3937 w .e = roct a. =: tia ad) .ti?:.. A., 2 = f'", i .ci n? scri ; ca Tr er,.3 ass- = i - Ti (';4/) j 1 (f) 2 l l I ( e d.

  • h.

.a (g) T i = l ( netsi.c Tnesad Snear-i

  • o. sin-

.t c. shear st t34 = .I

3 3

D.,. = :nre d .c. O. (.50- i r.. ) 4, g,., ) _s J,,. g 3 l L = e (..'..' ' r. ien: n en:3:er.er' l e ic:-si.t: N. = - _ _ _ _. ,r.. 0, i 2 _y..- _i._

le

  • f 85.

L 'J t.. .. gs..:, . et -:r-i- .u. l :. r.,nt :.re. Ttu: + t L A:. ki v. r;t. a ,g .s u.. r.0 D E. S A A!:, e .001-;2 ~ + .l i ~

SUBJECT:

PIST0f4 ASSEMB Y TO 303Y Ct:A ECT I C.: (8 ) 2 T..e piston asseso:y co.ered by this aralysis I' 5 a :2" cylinder naving an assacolec waignT of 12 5. 8 l o s. w177 e r.a x i mum c.umer.t a rm to Tn e pc : c c f ccenection t T...' . inches producing c Landing c:r.ont at,; of,8 96 in. l s. ~!i.2.03 TENSILE: c I A (al 02 p c2 T i e :: a - t e n s ! ' e s re s s = = = total Tie rod Icac ' fax.) F2 p. = maXIFce 8 lowstle tr6SfL d 1 2 -r t F 2 -i dx cz cY (172 psi) pressure a es ;:.6.3! so. i.- : A; = Ter.si'o stres, sr.3 't h.ac) A = ,c .s 3 r e ? (. 4 c- - sq. . n.,e i

c a c s -T i e r-.
- t r<

F (etc.) c I d x : c2 = sresswre loa-1 ( d,, d> = 2L rr i x weier. of pret. cu assy. h. = (l'25.cf) = o - acca:arat.i o r,

: r. 2 r;. -

I S,N LC., i. 7 ] L., L.,, eTc. e:er C., fe e.s r.. 2 ) c-u 1 z2 w/ou-so smic 6>.: s.er - i 0 o = c = l -x v E v'h 1 = o r ' 7. !.f. = U w i t h s e i s <r i c a x : !.: ' c.- = 25 9 O* Shete: x s g* m 4 2 4 d' 2 iO) Tj T2, T { = ff 3 X I f* L rt. shea- + I * = I L 4 . = Trsr.sverse s r. t-s r l I (c2 - c-) W A = cost a. ea (-:e c:. ~x ~z r (.419 s:. i r..i (n) = 'e. r 1 Fe' sin Tnread S.>. t..e. : l l -r2 = hous! ; T..d. stear 3-ess L ,. 3 L 3 l me i O r I .A .. t I dik .6 g ! Ca.p:.tt i-f! [.: < c. l 3 y ,* s r es g. g t -~ m

.s. C * . r s f". e e., w

    • , ** 09 5 ? =. 21141,

..~; 3 ~ p ! !i : - . a T a t '.. r s t. .i ..'.,5......)...:. :1 .i .f a. s : . - t.,. c., - s o. s.,. C..: . 3.IS.h. v.L,t...b-w L .> av..- O .s

n.

.m Refer to: rig. 3 - Cer. ice of gr:sity t er.a r ie n pm== Fig. 2 i T u a c r :.c. -- t r - : I a r.g t i T..e var; sus Iccar*cns ":." ar.c :*e cire Tien o- :n e ";;" + res: i t.re assi.ce: as sec.n in Fig. T..e 5.. O f these 10.Ces 7,recact t, tr.e caxicun ter.s;te loa: in 1,ct? "a". 7, p 'y ~, ..a .o-s'.'.,. .) ~, s .a A W...e. .s '.e.=- l ., X w. 1. a. 8.. 4 =2 e 3.sme O. X O )- )," f f k' = 1 Y 0.- y ,y g s

  • d.s.

7 (.- g. g, g *..; *,. ... j. e .s 5 4.< .x 2, e. s o y...,. I = - v ... ), ,r.. ,......s er ..s, sc r ay

  • l, *,
  • L.t m

= er.s..e 5 rest tre: + :: ss y (. s..- i-,. _ p ,.c. .v.-.. . 3 3.g.. g l se .. 1 i = -2 xe.2x -: r.. V.et. v l 4 t !. e., x + L.tx 2: t.2 y ) . 4. y -

I P'.

1

.,... 3..,

j.c .ge .y -.g

3.. - =.

.ug ,. r. A..., ,n.,..,.,.. J. .v. ..= Se.S... 44.e S. e5*.... ..e .o.a. l. ... era. . 1 6,.. _. a......... l ra;se: face. 1 t .e., s t (e: I -r = >T- ..- L yx ,, :. y ).:: . h.. x i

s...

g F. 2 m;

2....: -

2,4 a ,3 i(,, = .s.,..- ...a

i.

s. = 4* a s. g,.. i

e.. }

= s. =..>..=. s.- .~.- - s..s . I' r. i t 8 i t z

  • i t

.at, lew.:: ' J-4 4,..... g Of=[ 'e--

~.- e s e 3..* - ( e.. g. --=

  • 8-e o s hr,t; or.*
  • g y A *. I

'g. '~~ .v.=.., 3

  • A *
  • F E 'e'.

T.

  • ?*

<o l \\ .. i u... - > P., .. a -e f.100 ? i ! A A E S

SUBJECT:

FOUSING TENS!LE' STRESS 'ne acusing Teasi:e s ress (c 3) t.. cough the neur:t ; r.; belt hele at max mu n outpur tarque ar.:: seismic affac;s !s: ~ ) t. ' l 2 (2.781.s?i) = stress 3:ea e' A, (a) e s = T+(gY *we L = L ~ ~ r.ousing a+ i" er. gaga.e-- D NA t 3 l l .a l. t $ U S.' ICT - HO'.;S i N3 TF !E C S t-: E' R A ~(F ^tF Y +' F ', ; ? I(b) t cu s i r.g tnrea d s.'ea. sT est ~ = ~ l ' = c s ~Cn2Le2 i C6.= Tarsac .:.3. col? no;: r.eads

i

(.EC2 in.) l Le.=

engrh cr. gage e T.)
.-

(1.00 i r.. ) 1 i 3 t i l e c. ,. _ v-e.. C s.. l.v. r e. n u a The hoop stress (cc) a max;num p.essaro is afice ec virtual.y no.ac sy 5; Jeisr.!: sxcii2~i:"-. l l l p(R+.cti i ns ica rad t s O f c' ' i ncer l F. ' (c ) 0., = = (6.1675 in.) Thicknass c' c,lic ar T = (.2C7 i..) 9* I !} 4tf g \\- .i s t i j.:c w A T.. l l 2 .N ?,

  • sr *.

I g l ___

...,..r+... .....a r.i.. r

  • *.* l r', :. *.n.

't i 4.

  • * ~ ~ ~ ~ * *

......v..

g.. s r.. --

+ 1 ,I s .. I.a.,. *...*.1 r - ? 3 '....

r. - s - :

} ~

g...

r. s.:.. ( I l . L. F.,.,.e I - .:.<I.:

4. s...

I 1 -s.g. .. 3 t.,,.. g.,. 3 g,. .,..S55 (.~, ) *. *~~.:~.'. ~..' e.~ ~'..*.*. *.,- 5 *. 4 S ~ i ' . a.,... . g e .3.. .s: .4 x : _.... ... 5..'. $ I a ( ~ a 4 -(. t.x a x - ~# } 'd. s a, gg,j;,

, a 3-g$g g.gg gf

( *s ) ".g 8 .s. g, g e.s. 3. e... g........ 2 3 [ l 1 1 I' I Ii e.,= =-. e.. *..:: s .e. : :.. .s I, f gefsy*is _*?s. ....-..ae. ...s. l

g. *)

.; z ..c.. .-.,2a ~~. .o r: .a .r. s_., ..az 4 s..= A. *

  • 8

.J e l a..... s.....- .g. ..y.. y ,4... .& ~... 1 s I t. I i 8 I L., s. ::. ,..s l ..,x:-.- e.r t..3 g - .,.g n... m. iS.*...* 2x.*."..~.~.~**** 4S... ...y w. s I 2* .s ,.) g g n.s 4-.3e.. ... s. a. ~ a..

  1. 4. ? A. 7.*
  • ... )

L. a 4 ..g%.=.4 4 . -

  • 4.3

(..S. *. .... s 8 e a e e* e s a I I a k e i 1 2.'. gg E y. ,r;.m el g s,... e s .3 v. 8 s.. .C, gr

  • m-C.

=

  • t

.a: '.I c: ,. c r. t > 1 c.o # a. 8:ta:ces. Trus ]-

e... r.,. v.

..i.:t ire e.:. n f

  • e I

f T F.*.~

  • 2 l

M _,.'.. e. A. 5 :. 3..,... s.

n. : n no..

{ 1 I, IU S.' E CT : COVER CONNECTION Tr.e.eight (8) hex head cap s:re* cr. The cc.e are

r tensien only.

The shear loacs f e c ~ '.1 << aisto. 2n: 3; ring reactions are car.-led L/ ine ces: : Ins. in

r. e l,
Ollowir.g analysis, the dowel pirs are assu.ec T cc.ry Tr.e entire load withec; tenefit cf clamping-farce rc-l The retaining screws.

I The maximum f o rc e r.c.T i n a l anc equal te 'he thrast af The l Piston c: curs when the ycne is a* O* cr 90'. That .s, I 45* on either side of r.e n e r-i n a l cente.- t i ne o' th.:: c y. The maxinum selstic effect en ne covsr c,re:-!on eil!

  • th Sg accelerarien a!:.; The Y exis uti!!-ir:

ne escur e I mass et tne s e r i r.;, o i s c r. anc,-!sTc-o: a s s c r..i s y cecoined witn a Sc. aces!eratice alone. na x a is u-! !:i the cever and yoke. T.is araivsis is sr.cwn I:

r. e fellowir.g Fig. 5 s..c e:cstions.

T..e tota! prr:scre ::sc~ is a:so.:ad.by Tne Ocdy 73: cover e;cally, h e r.c e T - 3rce 8 (:t) Ir. Tne fclic, ting Se!f T r. e pressure Ica: ri:!':-a: ll !osses are not :: r. s i d e r e c Ir. -.a- -hoy scui: scace -.e I e stress values cf t,c pirs, j l e *. . e..

e.,.

f -I t l I Sy M3 r ~ I 1 = 5 r t; a. s *. e s s i.

  • 0. r.

IOI N:x ]' E r, L pen L 2 t E ; L ;, ; g d 0;fraTicn l = s r. e a r strSss 7.T a, / r ;* ,D) MsX ^$X se smsc t i 1 t/

g3 x\\ 2 y

la .i = OssecTic.a ares e 1,\\ 2 t

o..

.I 2D Q.... [ ~ i 4/- Fn Mrma! cac = n ( (-) s I o a r. : 9eao) ( ~O A03d ^ Es*7 I ICC IL~ ~ E" ' j C.TO.e$se* .% i $ t i. j y, 7:~ I8 /~ Ist:r T *,

4. s -
  • a:

~_ (c) E,., = OCIbined be'gr-Oi s. ~. r. g, V3 = .i?o.s, O'!*:r F-.s. .o*C

1. - : ::.cr 7 2.-

3: ( g x - + g y ' )N r.". (e,) 4 = :c . 4 7 l 4A

e. l

.6 il ll I t 1 e n l m. -.s~*. l

f. = 8*;L E ;,-

I R ,J lg l 4 l i' i c < :.. i 3 l' c- ...5 l =.. _ c., a v 4

t, ' TT ......).I,._,..., .g C' .w l'.rsi s.u no. I s 2 Ti5 cohp. r. . c. i, s ....,,e...am; n ..ce-*4 l MOD ~LS A ANC i DEFLECTI0t. OF TIE BAR: Def;ection of tie t,ar in pneuma t i c s nc s;.-Ing c.'r'r. cs s cy inder, I s neg i ig ! b I e co'nf. area tc the cI carance :sTweer the ;isTon anc cy!inde.. Defitction is ceiccis sc wi-- ao fixed ends wiTh in' err.edihTc load wnen The pistor, is in Tre cen er c: tne cy'inde-and i n the sp r: r g ca rt.-i oge wner. s,rir; is c ::.assad. The tension in the Tie bar and ioac sus cr ed by Tne ;.ush rod is not T a ke.n into consideration whl'cn cecreases the tie ber de#lecticn. I . %h a !.h-, y __...._ m /jf. di I 9 I t, t I t 8 l p.o. c s.i..i. g.a.c.. t 1 W'L3 1 ncn-seismic 8 = 9 l v.r a x - 5 seismic i 192 El = I ,i 1/2 T :e weictT c- "is or, I I E. 5 = push red anc it : 7. r (....s up - I = morn e n t c' iner*!t s. ':. ! ' 'd1 ,I ~

c. i r. ! m - m clearar.cs a irt.we e.

l c = .0 01 t r. non-seise.ic piston and 0 I n c -: - (.f.6 -i 6 imax = .00077: seisT!c Y. :: x = n s x i m u r-ce 'lec r io. v max = 10.643 in. l t. = l I 5? RING CASTRIDGE Siv-l l 2>3 l. 5 3 9:. a w .non-seise.ic Y *"a x 6 - I 3 El (3s+a)2 6 seismic l = d 1/2 T,e we'g,T of etai .r, l t.., = T !e ta., p.st cc :nc .4 weign; I c+ s p - 1..; ! *d ? ' j = = c : 5. r. T c' e.--is . '. ~. 5 ' :.- ' l i

c.....: s

= l

...: in.

= 31 I r.. . 0 0 3.; in ncn- = f r.e x = l seismie c = 0iearaner .u T s. e e r.

,I: 7 :.' r 2r:

i .0206 in seismic reTair.e.- (.437 in. max = j i Ynex= maximum ce'tectica l 4 o i t { i i i gC**.M.C: t. 8 1 s d ?. i e.v:,. i i -'4 'A=>* 0 l 8

p...

"s~-> ~ . *'.' E C - ~ ;5 C O.5.P. , us? ntv so .v

e. t,

r ;., :.. g. i. a s.

  • >l..t.n - S r. 3

~.A...- ~ [ tC ~ E L S A A '... S S U E.* ~ 2 7 - TCRCUE ANALYS'S 5eismic excit: tion of the ccc0onents refa e.

o tte 3 TuaTor cuTput torqus are es:lliate; :*-dirs:T:c.!

st the f r e q _ e r.c y exci'ed Or:cecing ar. oscil:2- 'ng To cu - ouT;ut asove and belcw 'ine maar. average Tar ;ue. angle of sc07:n veke i if*) m '** ( I s^' 5 ) ' = =,ac-JaTor e'f::lec:f a s e sr e ::- l ces c' ri ~ lished by tes; (SM) s;-ing loac at break (5!35.4) f ~ = 3 Fs= strirg load er ei.: (3IO'.*) ar ;arcr .:.a.,t (2. 12 l-i 'I = ac uaTer c. pt.T s - " i t. ; . ;u l} = ~ w.ignt of ; i sto.., Apri.;, e--

c. c =

L.1-Ibs.) l I l I 23!;7 i r... s. Torq e at b r e c '. p o s i - : o r. = '3954 I T.. 135. Tcrqae at encir.g posi*lon = 6 9 i jl l a 1 1 e f 'l iI 1 ( f a 1. I ,l l Coas*:.*

  • l a

c r? , e.ro. I. 2 s. l4 r t

3. t l

-,}}