ML19331B932

From kanterella
Jump to navigation Jump to search
Seismic & Structure Analysis of LACBWR & Genoa 3 Stacks
ML19331B932
Person / Time
Site: La Crosse File:Dairyland Power Cooperative icon.png
Issue date: 06/24/1976
From: Husain I, Obligado A
NUCLEAR ENERGY SERVICES, INC.
To:
Shared Package
ML19331B928 List:
References
TASK-03-06, TASK-3-6, TASK-RR NES-8190092, NES-81A0092, NES-81A92, NUDOCS 8008130554
Download: ML19331B932 (104)


Text

{{#Wiki_filter:l NES BIA0092 t e II .g i O SEISMIC AND STRUCTURAL ANALYSIS OF LACBWR AND GENOA 3 STACKS r-w O Prepared Under NES Project 5101 for DAIRYLAND POWER COOPERATIVE -9 NtlCLEAR ENERGY SERVICES, INC. Danbury, Connecticut 06810 Prepared by:

1. Husain A. Obli ado Approved by:
_ 4

-] _frojsct Manag r J ,b ( V. P. Engi'neering [- b_ Date: M1 m 800813o S G M i

1 s I l d n 1 G TABLE OF CONTENTS U l I 1. S U MMA RY........................................................ I C_1 c 2 2. l HT RO'JO CT I ON.................................................. 1 3 L-J 3 DESCRIPTION OF STACKS......................................... 3 j 3.1 LACBWR Stack............................................. 3 r_ 3.2 GENOA 3 Stack............................................ 6 4. APPLICABLE CODES, STANDARDS AND SPECIFICATIONS................ h!!k 5 LOADS AND LOADING COMBINATIONS................................ 7 i 6. AN ALYT I CAL P RO C E D U RE S......................................... 9 6.1 Seismic Analysis......................................... 9 6.2 S t ructu ra l An a l y s i s...................................... 15 Illi is 7 ACcEeTAnCe CaiTEaiA......................................... ) l B. RESULTS OF ANALYSIS AND CONCLUSIONS........................... 19 I,, 19 i L_ 8.1 LAC BW R S t a ck............................................. 29 8.2 GENOA 3 Stack.................................. DIII 9 RErERENCES................................................... 33 10. APPENDICES ?"~1 "- J A. LACBWR Stack - Input Data, Response Results 1 and Structural Calculations i L-- 8. GENOA 3 Stack - Input Data, Response Results and Structural Calculations 8 E E i i 11 E

LIST OF FIGURES Page No. 31 SCHEMATIC SKETCH OF LACBWR STACK 4' 32 SCHEMATIC SKETCH OF GENOA 3 STACK 5 5 5.1 LACBWR RESPONSE SPECTRA 6.1 MATHEMATICAL MODEL LACBWR STACK 12 6.2 MATHEMATICAL MODEL GENOA 3 STACK 14 j 8.1(a) MAXIMUM SEISMIC DISPLACEMENT - LACBWR STACK 26 l 8.l(b) MAXIMUM SEISMIC ACCELERATION - LACBWR STACK 27 8.l(c) MAXIMUM SEISMIC OVERTURNING MOMENT - LACBWR STACK 28 8.2(a) MAXIMUM SEISMIC DISPLACEMENT - GEN 0'A 3 STACK 36 i 8,2(b) MAXIMUM SEISMIC AGCELERATION - Gell 0A 3 STACK 37 8.2(c) MAXIMUM SEISMIC OVERTURNING MOMENT - GENOA 3 STACK 38 I Ik

rp _m i LIST OF TABLES tage No. 8.1 (a) NATURAL FREQUENC IES OF VIBRATION - LACBWR STACK........ 21 8.l(b) MAXlMUM SEISMIC M0MENTS - LACBWR STACK.................. 22

8. l (c) MAXIM,UM SHEAR STRESS - LACBWR STACK..................... 24 8.2(a) NATURAL FREQUENCIES OF VIBRATION - GENOA 3 STACK........

31 8.2(b) MAXIMUM SEISMIC M0MENTS - GENOA 3 STACK. 32 8.2 (c) MAXIMUM SElSMIC SHEAR STRESS - GEN 0A 3 STACK........... 34 l m n l $U M M 4 L t f M u, y

1.

SUMMARY

This report, prepared for Dalryland Power Cooperative (DPC), presents the results of the seismic and structural analysis performed by Nuclear Energy Services, Inc. to evaluate the structural adequacy of the LACBWR and GENOA 3 stacks to withstand a seismic event. Linear seismic analysis, using the response spectrum, modal super-position techniques, have been performed to determine the response of the stacks to the Safe Shutdown Earthquake. Soil structure interaction effects are included by providing appropriate foundation springs. 'The seismic response of the stacks in terms of overturning moments and shear forces at various elevations of the stacks are calculated and compared against the overturning moment and shear load-carrying capacities of the stacks at the corresponding elevations. It has been concluded that the existing structural designs of the LACBWR and GENOA 3 stacks are adequate to withstand the loadings associated with the S~afe Shutdown Earthi;uake. W mLa M M N N N [] -i. I

I E E I 2. INTRODUCTION 0 In response to the AEC/01.'s request to determine the effects of an earthquake event on the I.aCrosse Boiling Water Reactor, Dairyland Power Cooperative (DPC) requested Gulf United Nuclear Fuels Corpora-tion to evaluate the adequacy of the major LAC 8WR plant structures The seismic study and equipment to withstand seismic loadings. E performed by Gulf United Nuclear Fuels Corporation (Reference 1) included a seismic analysis of the LACBWR and GENOA 3 stacks which. showed that the oves turning r.oments due to the Safe Shutdown EartS g quake (SSE) are greate>* than the moment load-carrying capacities pf the chimney crosr. sections. Culf United concluded that both stacks U could collapse with possible penetration of the Waste Disposal Building, the Turbine But.iding and/or the Reactor Containment Building. The Gulf United analysis, however, made several simpilfying but extremely conservative assumptions with regar'd to the input seismic I motions, soll structure Interacticn effects and the moment load-carr'ying In light of these assumptions capacities of the stack cross-sections. NES has redone the seismic analysis of the LACBWR and GENDA 3 stacks E using response spectrum, modal superposition methods of analysis in-To account for the corporating soil-structure interaction effects. variation in the soil properties and to evaluate the effect of changing the foundation spring stif fness on the seismic response results of the stack, the foundation spring constants were increased and reduced by a factor of 1.5 and 0.4 respectively. of this report describes the overall dir.ensions and the Section 3 foundation design of the LACBWR and GENOA 3 stacks. AppIIcable codes, standards and various loads and loading combinations are given in Sec-E tions 4 and 5 respectively. The analytical procedures and structurai The resul ts acceptance criteria are sumarized in Sections 6 and 7 1 and conclusions of the analysis are presented in Section 8 of the report. The detail analytical input data and the structural calculations are given in Appendices A and B for the LACBWR and GENOA 3 stacks respectively. E !E E,

l 3 DESCRIPTION OF STACKS ' l ~ 31 LACBWR Stack As shown in Figure 31, the LACBWR stack is a 350 foot high, tapered, reinforced concrete structure with an outside diameter of 7.19 feet at the top and 24.719 feet at the base. The 4 foot thick foundation mat of the LACBWR stack rests on a pile cluster composed of 78 plies. The Each pile is 80 feet long with a nominal capacity of 50 tons. drawings of Reference 3 show the diameter, thickness and the arrange-ment of the reinforcing steel at various heights of the stack. 32 'iENOA 3 Stack As shown in Figure 3 2, the GENOA 3 stack is a 500 foot high, tapered, reinforced conerste structure with an outside diameter of 17 42 feet the top and 38.198 feet at the base. The tapered octagonal shaped at I foundation mat of the GENDA 3 stack rests directly on the foundation soll. The drawings of Reference 4 give the diameter, thickness and l the arrangement of the reinforcing steel. at various heights of the stack. t -

+ 7.19' outside Diameter i Elevation 350' 6" Wall 1 M M i g I E 24.719' Outside Diameter 15" Wall j i __ a Eleva tion O'-0" l ( !,+2.*T ' ',' 'i.* v ;,h ' y ll " - i ! k'l : i l l Foundation Mat 1 j Pile Foundation Cluster 1 1.l1I.ii.i lul FIGURE 3 1 SCHEMATIC SKETCH OF LACBWR STACK _4 M I

i N-i:% 17.42' outside Diameter r-- 2 ,T Elevation 500' q. 7" Wall rig m i N M l .m M 38.198' outside Diameter r 24" Wa11 1 I Elevation 0.0'

i

~ ':'i:.::G..p.;e.:: ~Q Y i .g. l Foundation 11at m FIGURE 3.2 SCHEMATIC SKETCH OF GEtJOA 3 STACK

APPL.lCABLE CCDES, STANDARDS AND SPECIFICATIONS 4. The following codes of practice, regulatory guides and references have been used in the seismic and structural analysis of the LACSVR and GENOA 3 stacks. ACI 318-71 " Building Code Requirements for Reinforced Concrete" 1. American Concrete Institute. i i ,1 Uni form Building Code,1973 Edition. 2. N!_A_ AEC Regulatory Guide 1.61, " Damping Values for Seisnic Design of ~1 3 Nuclear Power Plants," October 1973 1 AEC Document (B), " Structural Design Criteria for Evaluating the Effects of High Energy Pipe Breaks on Category I structures Outside 4. the Containment;" Structural Engineering Branch; Directorate of ilh Licensing, June 1973 El lt al. " Design of Concrete Structures." McGraw d 5 George Vinter et. Hill Book Company, 1964. h Pobert V. Whitman, " Soil Struccure Interactions," seminar on Seismic i 0 6. Design for Nuclear Power Plant; Massachusetts institute of Technology, April, 1969 In r 4 i l r j O 6 nm

F1U i Y l_a 5 LOADS AND LOADING COMBINATIONS l The seismic lateral inertia loading on the coupled model of the stacks and its foundations is in the form of the ground acceleration response spectrum given in Reference 1. The free field ground response spectrum C (F'- 5.1) for the Safe Shutdown Earthquake for 7 percent structural damping (Reference 8) has been used in the seismic analysis. "N in addition to the seismic inertia loading the dead loads and their resulting moments have also been included in the analysis. The follow-Ing load combination equation (Reference 7) was used in evaluating the 1 adequacy of the stacks to withstand a seismic event. U = D + 1.0 E y l where: -J D = Dead loads and their resulting acments D E = Loads and coments generated by the Safe Shutdown w Earthquake U = Section strength required to resist design loads and based on ultimate strength design methods described in ACI 318-71 Code. ,s

O 1

a / 'w2 ~ 7 % 3 p s'r g s v n'. s x',' 's i T,w< '- n /s y /* i G se< v o we-as x^ v 1 y .x ,3 s 4 'N 'y-N N' /, ' <'. T #1' A '/. N '.Z_.h .' O ' 'l / V Vs 'I\\ '/ _'.x '

  • 3 E# * ' ' ' \\

7% DAMPING SPECTRUM d 63 k ' ','c USED FOR STACK ANALYSIS r 8 +, s ,s =:o A / 0 =s / N\\ N-

/

/' o Mgs" w' ' ~ /,e. % >%,,9'f x ' s. /? e vty g y N

. x w//
x. s N

< vs N W . x ,b,b. / /,e @s 'N %<'/A'/f@ h'$,.. s wk/j( s / f .p my-v i= .yf -s/ , n ,, v/ </ ~ f n. 'I / N/C 82' %e/ o s ^ ~ ~ ~ am-s m m v s..^ v x M,i-xc v'rev r N // NO1/ ff'/ /s/ N N',' ' /,%A ' vNi'v'N N' \\ F vmxv,s,, s,2sh' f gf' g,#p#r/

g' tfx.

N //O / ~/KAM Y 's \\F I;'),'\\\\ N/h4 g^j./ /g'/V N S t.'s ':e N r .<'.\\ 'xed'X/ / X'lNXN \\ '\\4 I7 hs o ra ssweg g wesew.x / >xwxa C 'V 'j@W@R ? h V*4'##d$g X N. g f ? '* * / y E Wf g 's.'g; d F s_i !$M.,'$. a . g 4W a. u m sx-m y m s y =

  • h' }

'(, f/ ,#,'['IidsddXX,A/,' /n, / l I. _,X s / 4 </ Mvp,/ N,; .e op s U,5% S 's n--c u n 1.i o/u.< s;,v.,, a< p; p g,x c 'e - =x i v r a >c.',^ K v u ^ v t sa/m- '<x,, u u

  1. V ' / ['%8 /st'\\/x '/ x Wl/l/ V'M

.M N. A \\'\\ S ~ _g[I g n, s (/ o l) Nl lVkXi f / 'XORU'N 'sMM'V la PNX\\V\\ \\ Ele $ / 9 s [r .< 0 ' 'N 5 % g_,>'s /x/ v ' w x /' p'M/'id,k V / I Mbh\\ '#%'YX 'l/'DT8 l'N'N \\/*=h i u I7 ce c. N Nl wrv

  • e wxgs [

s n;;m -r/,e g,ist~,^s / v ei g ,a yg $s 4 t .s ,,._ ?<e ,'NN, U<,$.'/ \\. _ _ ?' s/,','DN>ds. X\\ X6llh,X3., $ Xf', Ys A' 'n2 . h/ '\\ ~ AN~A' z' 5' s p .a T 4 q+'q<x 'N 97;w / 'e < ' ' /' %m,w/'x,F+'s%o gg;sy;/,y, X - g ,Mq 1 X WM /'N' x $(4.rn/,/= sswu / 1 s X. x,, 4 <<' s s/ 5 d, i ; 's N'Gwx,. . w s. /x. s.-4 arx s s.. s s -=< ^ ^> i N,s .,/,^* X Nr N / 'v' <wnex. _r. Jg . d Nf V X N,' 1 d-x _LA *N s.< 's, ds s,' s WV e 4 /V i's/ s he s /V W//?g,F N cN 'et/s s s' N M/ ' N ^ 4fAfs N/ N 3 'N

f

%' \\ N43 rf #sNX s 'i N N"__ ' s's M 'N '/\\ ' s, /<M E / ON NAY sh b [).( ' /NN'A\\ \\ \\/N d I, _\\ \\,' e i'L / )Rs 4% X, / h'S NN x M,'9,1 $ '/ Xj f '4#.s9,\\,'j M =T o / j' '% fig %j \\ ~ ",Q)%<Q-Q in's. c' <%Q's 'N ' i a h'X J.', M~ M 'rt'68~ Q ' s, 'htL'A s = N 5,. {N\\')$f/,,D / ' b \\ N A j,',',/'s"[f,<(< / /

  1. 8,07 g

<X' / ' )ds' rni a, ,m s ,,,f ,. ss s, y/ i i ~.D. s, <'/s/ A/ A / s i ~ v i, A/,/s /,,f v e 's s f s, s ',,s.s / , ' N Ab< /N s o3s irs / /A/ fse A / N/ s,/ A s-,N g/ v A a s M 1 I Il ti!!!! I, IllI b I f I 3 II ' l lll lII I I'. ! Of f' lf Il !fl 1lI g esgag g ; a g a s a e n. a s'a~a =

  • a a

h anosasisawani ni Atiso12A FIGURE 5.1 LACIhiR RESP 0! SE SPECTRA ox6.== a sioo.

~ 6. ANALYTICAL PROCEDURES 6.1 Seismic Analysis 6.1.1 Mathematical hodel in order to perform the seismic analysis, each stack is mathematically modeled as an assembly of elastic-structural e?ements inter-connected at discrete nodal points. The three dimension 2.i, multidegree-of M freedom models of the stacks are attached to the ground by means of foundation springs, representing the deformations of the soil under the stack foundations. A la,teral spring is provided in the LACBWR lll stack mathematical model to account for the shear deformation of the soll under the foundation. Due to the presence of a pile cluster under the LACBWR stack foundation, there will not be any vertical deformation of the soII, consequently no rocking foundation spring has been provided in the LACBWR stack mathematical model (Figure 6.1). Latera' 1s well as rocking springs have been provided under the GENOA 3 stack mathematical model (Figure 6.2) to account for the shear and vertical deformation of d' the soll under the GENOA 3 stack foundation. To account for the varia-tion in the soil properties and to evaluate the effect of changing the foundation spring constants on the seismic response of the stacks, the m ) foundation springs have been increased and reduced by a factor of 1.5 and 0.4 respectively. The distributed mass of the stack is lumped at the system nodal points. Each mass represents the tributory weight of the stack walls above and below the nodal point. Masses are lumped so that the lumped mass, multi-degree-of-freedom model represents the dynamic characteristics of the stack. In order to reduce the number of dynamic degrees-of-freedom, only translational degrees-of-freedom are considered at each mass point. (The masses associated with the rotational degrees-of-freedom are set to zero.) 6.1.2 Foundation Spring Sti f fness The stiffness of the lateral and rocking springs representing the shear and vertical deformation of the soil beneath the foundation mat are cb-tained using the following equations. These equations are taken from Reference 9 l 1 ,w ~

-1 Lj 1. Rectangular Base (LACBWR Stack): 2(1+J1) G8x l BL (I) Horizontal spring stiffness, K = x I Poisson's Ratio of Soll where J1 = Shear Modulus of Soll G = Ex Co-ef ficient from Figure 4. Reference 9 = Width of Foundation Mat B = _q_j L Length of Foundation Mat = 2. Circular Base (GENOA 3 Stack): (2) Horizontal spring sti f fness, K = 3 8 G 2r (3) Rocking spr.ing stiffness, K = g 3 g_ ,._q k i vAere Y= Effective Radius of Foundation Mat w 6.1 3 Eigenvalue Analysis } The eigenvalues (natural frequencies) and the eigenvectors (mode shapes) ~ for each of the natural modes of vibration are calculated by solvina the following frequency equation: b) K -e I ,2 0 n n where: ,-a] System stiffness matrix K = th CJ = t!atural angular frequency for the n mode n System mass matrix t! = th {g } = M de shape vector for the n mode n (0} = tiull vector The eigenvalue/ eigenvector extraction is performed using the Householder QR technique. l 1

6.1.4 Dynamic (Saigic) Load Analysis Considering only translational degrees of freedom and assuming viscous ? (velocity proportion.1) form of damping, the equation of mocion in matrix form can be expressed as follows: C0 M(il+'d,,) 0 (5) + KU + = t gu t t where: Relative acceleration time history vector j U = Ground acceleration time history vector U = Damping matrix C = U = Velocity time history vector g Relative displacement time history vector U = g t'2 arranging equation (5) MU + C0 t t gt eff To uncouple equation (6), assume where: p = Characteristic free vibration mode shapes matrix Generalized coordinate displacement time history vector. Y = Pre-and post-mul tiplying equation (6) by the transpose of p and by @ respectively and using orthogonality conditions, the following uncoupled equations of motion are obtained: '2.

  • 1 Y

+ 2GJ A Y + f.d y M R = n gt where: nt 0*"*'Thized displacement coordinate time history Y for n mode th dn Damping ratio for the n mode expressed as percent = of cr ' tical damping M" Generalized mass for the n*h mode ^ = n eng = g,w = I ->i. i

rg

'l i u b e4 The mode shape @ n is n rmalized such that H "I n th I,' Participation factor for the n mode R = Lj [M;k c;O[MI = = column vector whose elements are generally unity 1 = The solution for the differential equation (7) is given by the Duhamel Integral (t-Y) Sin (4n (t 'C) dr R il - n n e r" y n nt gt y ,W e Hn n using the response spectrum method of analysis, the maximum values of the generalized response for each mode is given by: R S (8) Y max = an n where: c a acceleradon Maximumgeneralizeph Y max = response for the n mode. th [- Spectra 1 acceleration value for the n rrode S = (from the applicable response spectrum curve) From t,h,e maximum generalized coordinate response, the maximum accelera-tion (U max) and maximum inertia forces (F m x) at each mass point are 2 n n given by: U ** " n"* n " "n F n n The inertial forces (F max) for each of the system natural modes are applied as external st"itic forces, and the system response (displacements, Total system response member internc1 forces and stresses) are calculated. I is then obtained by combining the individual modal response values by the square-root of the sum of the squares method; lower modes having large (all modes having natural frequency under 30 contribution to the response cycles per second) arc considered and higher modes with negligible partici-pation are negir;cted. (n El W

.._a l I l o l 2 0 l u3 4 o 5 0 6 o o7 9 y:,, M... .o,nt, as ,2 l3 o 15 0 16o

g o19 200

,21 23 2L i 49 g 1 ~ ?. -J' ...,.y : /- g l - l Spring teterei Founeetion Pile Foundation Clu.ter l Foundation Mat i

as FIGURE 6.1 MATHEMATICAL MODEL LACBWR STACK..

I t i % 1 i i 2o l I i '3 1 4<, 5 6u ,7 84 > I o9 10 < ,11 i ~ 12 o M l r13 14 4,- ~ >l5 Hasi Points 18 <, ,19 -i 20 < >. tr21 [ l 22 4, >23 i ,25 26 4f 28 ,29 30 4 r31 32 i, ,33 34,, Q hf& A, hv *: g 7 ' - - - M = e.,s 4: 3-

4. > p.=

e . ',3 6. e4 b Lateral Foundation. Foundation Hat . Spring i Rocking Foundation Spring Ib i FIGURE 6.2 MATHEMATICAL MODEL GENOA 3 STACK , b I ' M

i 6.2 Structural Analysis The moment load carrying capacities of the reinforced concrete stack cross-sections can be calculated using the ultimate strength design. methods as given in ACI 318-71, " Building Code Requirements for Reinforced Concrete," American Concrete Institute. As indicated I below, the neutral axis for the stack cross-section is first estab-lished by equating the compressive and tensile forces. The moment about the neutral axis due to the compressive, tensile forces and the dead weight are then estimated. The moment load-carrying capacity of the stack cross-section is equal to the summation of moments about the neutral axis due ta the compressive, tensile forces and the dead I welght. t 6 c.ssf;j ~ pe !~ l j e - C M. A.- h_,, 7 ~ l -\\ h '. = 0 4 y g-T R ~' .p ~ .,{./ / f- ./ = n /+- -A '_ a I.s SW1 ' 1 Cross section of stack Stress Distribution Thickness of concrete stack wall tc = Equivalent thickness of steel representing reinforcing bars ts = Minimum compressive strength of concrete at 28 days f'c = fy 1.15 times the miniram yield strength of reinforcement = Total compressive force C = Total tensile force T = Assumptions:

1) plane section remain plane after bending
2) concrete does not carry any tension force i El i[

$pJ I 77 ~} f j3 2 x.85 x.85 ('c te Rd O 'd C = du ~ i 6 (g) 1.445 f'c te R 'IT C = 2 f U/2 F0 2 x (Tyj ts Rd8 + 2 Ty ts Rd8 T = 2 7 y ts R Tr + 0 (10) = 2 Since T = C for equilibrium ~ 5~ = l.445f'c tR -5 2 6'y t R c ) + 3 Taking moment $about neutral axis NA. Moment Mc due to compressive force: 90-0 2 x (.85)2 f'c (R Cos 0 - D) tcRd8 Mc = ] 90-4 R sin 5) d 0 1.445 f'c tcR (R Cos 0 = o ~ -N 1.445 f'c tc R Sin 0 - O sin 5 = ~ r 2 i(90 - 0) Tr Sin 0 (12) 1.445 f'c tc R Sin (90 - 0) Mc = 180 Momes. ' due to tensile force: m 9o 4 ["G j 2 ry tsR(RCos 0+ RSin 0) d6 Mt = f90+0 2 f y ts R J (R Cos 0 + R sin 5) d6 = 2 0 Sin E 2 G'y ts R Sin 0 + = (90_66 51 Sin 5 (13) 2 2 Ty ts R Sin (90 + 6) + Mt = 1 Moment M.,due to deadweight V (14) VR Sin 5 M,,, = Total Momant Carrying capacity M of the section for stresses in the reinforcement up to yield limit is: + M Mt Mc M = = o (15) l m__

Procedure for calculating the ultimate moment carrying capacity up to yielding in reinforcement is: 1. knowing the dimensions of the section (R, ts, tc) and material properties (ty, f'c) calculate G using equation 11. 2. calculate Me, Mt, M.,and M using equation 12, 13, & 14 and ~ 14 respectively. u .i <f O ---m-

7 ACCEPTANCE CRITERIA The ultimate moment and shear load-carrying capacities of the stack cross-sections have been calculated using the acceptable maximum stress values as given in USAEC Document (B) (Reference 7) and the ACI 318-71 Design Code (Reference 5). The specific acceptable stress values used in this analysis are given below: Maximum compressive stress = 0.85 fc 4 ckjfd Maximum shear stress = g Maximum stress in reinforcing steel % = h x 1.15 EM = where: -h = compressive strength of concrete at 28 days. [ 3,000 psi. for I.ACBWR stack = 4,000 psi. for GENOA 3 stack = E = 0.85 hy = Yield stress value for reinforcing steel 40.0 ksi. for LACBWR stack = 40.0 ksi. for GENOA 3 stack = The maximum yield stress in reinforcing steel has been increased by 15 percent to account for the increase in stress values that is per-l mitted under dynamic loading conditions (Reference 7). It should be Pl noted that the actual yield stress value of reinforcing steel is generally 15 to 20% higher than the minimum specified yield stress value (40 ksi.). Additionally P.eference 9, which has been accepted by USNRC, also specifies l a dynamic increase factor of 1.20 for reinforcing steel with 40 ksi. yield strength. Therefore for evaluating the seismic capability of an existing structure, the use of 15% increase in the minimum specified yield stress of reinforcing steel is justified. (n I o La l

L.J l 8. RESULTS OF ANALYSIS AND CONCLUSlQ!S 8.1 LACBWR Stack Appendix A presents the detail calculations for the three foundation spring standard, sof ter (0.4 times standard) and stiffer m ) stiffness models: The overturning moment (1.5 times standard) foundation spring values. load-carry?ng capacities of the stack cross-sections and the detail re-sponse results of the seismic analysis are also presented in Appendix A. The results of the analysis are summarized in Tables 8.l(a) through 8.1(c, and shown graphically in Figures 8.1(a) through 8.l(c). frequencies for the first From Table 8.1(a), which summarizes the natural 10 modes of vibration of the LACBWR stack, it can be seen that the LACCWR flexible (Iow frequency) system and that the lower modes stack is a fair v y of vibration are not very sensitive to the changes in the foundation spring Since the frequencies of vibration of the higher modes were t stiffness. only slightly different for the three spring models, it was decided to h verify the results of the initial analysis by using a dif ferent approach In this second approach, the to represent the foundation spring model. H sof ter foundation spring was replaced by an equivalent additional member inch length at the base of the stack which was then fixed to the of 0.1 The member properties (shear area and moment of inertia) were ground. equal to that of the softer foundation chosen to give a stiffness valu: The frequency and seismic responsa results for this l spring sti f fness. approach were almost identical to those of the LACBWR stack with sof ter foundation springs thereby verifying the results of the initial analytical method. From Figure 8.l(a) shows the displacement response of the LACBWR stack. Figure 8.1(a) It can be noted that the maximum lateral displacement at the top of the stack is in the order of 8 inches and that this displace-is essentially due to uniform flexural defermations throughout the ment height of the stack. For a 350 foot high stack, a maximum displacement The dis-of 8 inches due to a Safe Shutdown Earthquake is reasonable.From Figure 8.l(a) placerrents at the base of the stack are negligible. it can also be noted that the displacements for the softer foundation spring (Model 2) are slightly greater than those for the standard founda-tion spring (Model 1) and the displacements for the stiffer foundation spring (Model 3) are slightly smaller than those for the standard founda-tion spring. Figure 8.1(b) shows the maximum acceleration response of the LACBWR stack. The maximum horizontal accelerations at the top of the stack are of the to I.04 G The acceleration values up to an elevation order of 0.9 G of 320 feet are less than 0.5 G with only the upper 20 to 30 feet of the F . M

I stack having acceleration vaiuc. In the range of 1 G. This indicates that a fair amount of energy will be abscrbed in this region during an earthquake event. l Figure 8.1(c) shcws the variation of maximum seismic overturnira moments i ' he over-throughout the height of the LACBWR stack. It can be seen that t t turning moment diagram is continuous throughout the height of the stack. g The maximum seismic overturning moments for the three models of the g LACBWR stack are al:o summarized and compared with the alicwable over-turning moment values in Table 8.1(b). From Table 8.l(b) It can be seen that the seismic overturning moments in all members of each model are within the allowable overturning moment values..In fact, the scismic overturning moment values in all members but members 5 and 6 are less than the allowable overturning moment values as calculated without the 15% increase in *he yield stress value of reinforcing steel permitted in Reference 7 for dynamic loading conditions. The maximum seismic shear stress values in all the members of the LACBWR stack are summarized in Table 8.1(c). The maximum shear stress value of 39.18 psi. Is well within the allowable shear stress value of 201.1 psi. n.l for an adequately reinforced (vertical as well as circumferential ' rein-forcement) concrete stack. In summary, the results of the subject analysis, which considers a wide variation in the foundation soil properties of the LACBWR stack indicates w that the lateral displacements, maximum overturning moment and maximum shear stress values due to a Safe Shutdown Earthquake are within their M acceptable values. Therefore, it can be concluded that the existing structural design of the LACBWR stack is adequate to withstand a Safe Shut-r-q down Earthquake event. I Eq o XI DE kN l f l NIh l

~ ,ya TABLE 8.1 (a) NATURAL FREQUEtlCIES OF VIBRATION - LACBWR STACK FREQUENCY (CPS) j It0 DEL 1 MODEL 2 MODE'L 3 STANDARD SOFTER STIFFER HODE NO. FOUNDATION SPRING FOUNDATION SPRING FOUNDATION SPRING 1 0.481 0.481 0.481 2 1 557 1.557 1.558 3 3 635 3.587 3.645 N 4 6.484 6.083 6.538 5 9 700 7.976 10.012 6 12 304 10.946 13.466 7 15 576 15.166 16.'327 8 20.122 19.949 20.315 M 9 25 300 25.103 30.621 10 30.554 30.492 36.042 W .D M i

TABLE 8.1 (b) Lu Ej MAXIMUM SEISMIC MOMENTS - LACBWR STACK 3. MAXIMUM SEISMIC OVERTURNING MOMENT (IN LBS) t MODEL 1 MODEL 2 MODEL 3 STANDARD SOFTER STlFFER FOUtIDATION FOUNDATION FOUNDATION ALLOWABLE OVERTURNING SPRING SPRING SPRING MOMENT (IN LBS) 1 2.2588E+05 2.4283E+05 2.1640E+05 8.1705E406* 2 3 1759E+06 3.4803E+06 3 0255E+06 9.6173E+06* 3 7.4878E+06 8.4666E+06 7.0971E+06 1.lS42E+07* 4 1.1937E+07 1.3620E+07 1.1440E+07 1.4545E+07* 5 1.6287E+07 1.8144E+07 1.5919E+07 1.9645E+07 6 2.0717E+07 2.2107E+07 2.0493E+07 2.3151E+07 7 2.5202E+07 2.6044E+07 2.4959E+07 3.6046E+07* 8 2.9560E+07 3.0319E+07 2.9256E+07 6.4069E+07* 9 3 3776E+07 3.4855E+07 3 3508E+07 6.9482E+07* 10 3.8019E+07 3 9379E+07 3.7813E+07 8.9431E+07* 11 4.2453E+07 4.3788E+07 4.2204E+07 1.0870E+08* 12 4.7128E+07 4.8271E+07 i.6762E+07 1.3088E+08* lM 13 5 2074E+07 5.3183E+07 5.1652E+07 1.5914E+08* 14 5 7435E+07 5.8810E+07 5.7056E+07 1.8585E+08* 15 6.3523E+07 6.5283E+07 6.3184E+07 2.1398E+08* 16 7 0708E+07 7 2675E+07 7.0333E+07 2.4134E+08* m I 5 .,4 MODEL 1 MODEL 2 MODEL 3 I STANDARD 30FTER STIFFER FOUNDATION FOUNDATION FOUNDATION ALLOWABLE OVERTURNING SPRING SPRING SPRING MOMENT (IN LBS.) 7 9270E+07 8.I132E+07 7.8832E+07 2.7072E+08* 8.9386E+07 9 0953E+07 8.8943E+07

3. 0876E+08*

1.0120E 08 1.0255E+08 1.0080E+08 3 3999E+0&* 1.1482E+08 1.1629E+08 1.1445E+08 3.7346E+0&* 1.3034E+08 1.3240E+08 1.2986E+08 4.0038E+0&* 1.4768E+08 1 5087E+08 1.4694E+08 4.2551E+0&* 1.6677E+08 1.7169E+08 1.6557E+08 4.5206E+08' 1.8758E+08 1 9499E+08 1.8569E+08 4.9763E+08'

  • Allowable overturning moment values without 15 percent increase in yield stress value of the steel reinforcement permitted under dynamic loading conditions.

.$ R r ~) Q--,j

M. TABLE 8.1 (c) MAXIMUM SElGMIC SHEAR STRESS - LACBWR STACK I Haximum Selsmic Shear Stress (Pst.) Pb MODEL 1 MODEL 2 MODEL 3 STANDARD SOFTER STIFFER FOUNDATION FOUNDATION FOUhlDATION HEMBER NO. SPRING SPRING SPRING 1 5 00 S.37 4.79 2 20 98 23.02 19 98 3 29 52 33.78 28.07 4 31.09 34.38 30.72 5 32.79 32.64 32.85 6 34.50 34.17 33.33 E 7 34.32 37.48 32.63 R 8 33.60 39 18-32.92 f4 i 9 32 95 37.21 32.71 10 32.15 33.76 31.13 11 31.13 31.97 29.69 h 12 29 35 31.28 28.47 13 27.72 30.68 27.41 14 26.18 28.92 25.80 15 26.50 28.30 25.79 16 28.10 29.10 27.35 17 29 38 30.20 28.89 18 30.49 31.74 30.18 g 19 31.40 33.34 30.99 20 32.22 34.81 31.55 l l M 131 as l

TABLE 8.I (C) C0"EI""*d MAXIMUM SEISMIC SHEAR STRESS LACB'JR STACK Maximum Seismic Shear Stress (Psl.) MODEL 1 MODEL 2 MODEL 3 STANDARD SOFTER STIFFER MEMBER NO. P P RN 21 33 10 36.23 32.17 22 33 22 36.79 32.11 l 23 26.26 29.56 25 22 2r, 23.62 27.26 22.42 N g M M M ~ W-H ~ b E:

1 1 . i... ; L. j.

t... :b_ t... i.w M:=i - C,..'.. !.. W.! _...

L., i... _. i.. 1 3 t. f.. ....c. , ;._.. +l.:.. s i r . a _: __ u.a..r.y.n_ f. t,~~-*- ..L_ -...u.. p. ,l i 'l 4.'...._ f.., _2- .y .(, -[ g ' -- ' _. ' ]: :. : .,L. _ 4 4 L.... - .i..., 4:* _ _. 7., '..-}p%'..l- .g *._.~ _ ~. 5 ' f ^ j,,

  • _,..{ :.

~; m..- l. .: 1 :.p=I. r r. : -:v --t c :. g:: !:.qc c.- - E .:..u:- s,.._. .: =s-= ...I........ ,_a.= ~ ~ ' ' ' .. J... h....e.m p.,. .a. S d5 ?5d b = M". N$*@isibdS-h$!*-E 7N*~ E '.. M.......Q-.N.,. 6

  • - r

..-...._,--*"".'D***.:-Y.$_

  • 55 O

II-I b'i3. h-

    • 5 Y:

5lE.. Y {.5 55.N^ ::::*^ 5? =Eh * .~ ~

.u

.m-Nl.-. ( W t ' *E5'0~E 55N il-TNL$ r n:t: c -~.: :trar:wtr e -- .:: r-

==: - c;: er- _._..:-- : ~e

.. - a -.a 4:--:.-.n

=g{. . 2enr ::r: t.:=..... :..r t~: r:- t---t--r n_.:r-t ta.c:,: _.=q n2:-- r G+ n:.: --r L:

":"-[=it :gg R 1=l':=j 5E=F. -i :.h <==n

...>~-A a -- .t.. ' F J. g-i..;.pij M:-i-! -l-j:--TJi;:p.C e ;. T.. 7.^.. %......* *=.t. =..,h~. :l:_: .C_$. :.::.:.,M.h.. 9....

u. -....!..~.. V..:.;.,:..*.:.:. !

_. T. "- 1. _... I_;; -. b. :. :... b.f :.n.. :. -.:'... ,.--t-."

..l..:.1.

';.:..-.:..O~ ;t.:

1. r :~.1%..;. :T. _..=1..

.a . i... --*-?.

:r-." - " -

LJ t "- -- - n;.n ;p-- :H.-'--':.n:--_ =;nst-::*::;r*f:.:-a -L:;.*n j L ry.1

rc'Mt! rr
:-.1 n'-n. -~-
21-*r:22.-

.,-....a... - -. 'I.*. u a.r._4 _ .:.n s.-. :I- _;; rur -:

d. -..r-- l*:-; ruf.1

.r : :..,....."..L_ U r N -. a, i d. ----... 4.-..J. _

d. -.. d_. r... ? f - * :.u. t. :.r....:

[..n_n..- ~~=.,. :r. r. t- ... } / '..' - _::r y_.f_:. J. B . n... -1

_.- r.T..- t,. :.-. :. :. r.. {

_d*... p............ e f-k 9-I A*' -- . ~ ~ .:.....j....... u... . _. :. _...... l-*77. * ^ '. ::. *. c* :.. ' - - t. ~.. ' ". r r.:-f. __ ! Z. t l-* -. f. r..M.. - J. n_'. *. b... -.'_-.*l. .. _t-.*.*_.'_;d_..-... ~T..,.. Ob .[. M -4... ..-....g....... [ .i.~i .C

  • -T.r?. :.c J - f. ~ 7. :J'r..=P t

t d ~... _... 1

=: :..... = :- {.-~.5:. = -:: m.

-t ..:m - : - --.2"9#-)gG ...!- -" t

.:r ;.:

-=-'.-..Ti--_:. ..n.n ~. -t. : g -- l-=4.: :. J*. .........._..) a -r r

  • I*
f..:{.=...-- :. 2.:.% l... _ L..._.:. -- L...... r.

.4. - . :.- < = ;.- .......z. 2- ..i... t. . i... .___.\\...

~~.:. ~..r..%..
  • ~. -. l :. "- * - - - -

..~ ....,..'_.__'_ _._..._.+.._'] .1 ( ST AN DAR32f 00 40 A m::: *t : ,:.6 .. t= =. = ~ ; ) .o ~ QQ N-J{ .-.4: ?i - 9 T l:.. *. ; f, f; 2]g ...t---..._ - --. "- - 1 =.-. ;; : r.1,.:. v..:.4_.... g.... -- -. - *. - ..i~ ] ~- r 6..L :2.L. '.r " -. -t . - - - i.--: ---- a-- m_r .m:_ 1 --.: 4 2._;.un =:.t-m:uI.:: 2 :.. u _ ;. ;;. =. _ W . _ ; y.. *t 0 0 --: c. t.r r :::.c--.; r.-.- o g- .= ;; = _4... r... -".../,f. g - -b r-Q : - M~ __ , - - - t.m_c.. .n .c _ ;.; jg{ig 3. dd!EAd, dE!0N!ON SP.Mit45 4 a /S [ g gZ_ H-J - --TIu. I .m 1 r -d

4.. ~..

... :., c _... ; _. _ r.. _; c -- _._.t

ff' e -m - - - :::- - -- t-h_.. :. _ _

-; m - ;;r2 _T r -~ . ~.y. c W mr r m-6 _q . n... ..~. n. ._.,.~.:. t[ g. M - r-..zy J5l : _: [. 3:=;= y -i. g --~.r,H j q.-di:. -# y :E=p.il: j:_gs.{=2Jg:.p' ifP,f ::(5TIFG.Q. _ F0ml0AT1.O!F k j r~ -. - - ' .4.. M....c..n... 2 ;-g fTOD. E.U.1~. _. q:~ I g.. r:. . :._...- =.u:=. _: :.. : =_. _ : 7.... _,: - --,- --

2-

" D, _,-"-. - ; ;. g.-. 9 ~= M z _... w.=...:.c..l.:=..,,

= =...
..

p g .-y ,,,_v-6.. m - = /----,....)_=.- f: _. ,r-~. g.-._.. ,,t.-- i n:.. tc.:.... _

. e tc

..I_.. I..

a..

u s. ...;._.g...._L._... T 3 u, a - "w ,f- - - - -. r- - - -- t. . $ : -.1 -. m u. 1


t--

---a. r -,r.- ~ -:- / ^ -... J. g p-}.". -. ----:--.-m ; --L..4.-. 7, :. -, V I y- - -.=.: 3 ? -r- ,m .= u._:c.. t.,_=- t... i i.:..

.1
--t,. :_. a - ::.

c c-o


r__-

I p

:,, =e_::$s..._ 4. -- =}. _...

..- mp n jj.. .1__c. r2

p.__

}. 4 .. p_... .. 7 735 L...... - W, e ..... r -", e w r-d El 'E I4 i - il:1 r 120. ~ t v . 5 # !-9Ii5d"in u-i "*3"E".i"..:-...._ n-:__ =_.........;.. a 1:;--. n f~lj =._ : L!.c a c 2;;. c : ~ _ -. - - 5 -- -. -- -,.. -+p r. ;-. -... ~..- ur/. p_ _n... g_=.: __ c. =.:.. : :-. _q :c. r. ---


. j

f. c 7 -:: - 1_.:_u... :.

..:p. :.:. . ~ ~.. l

_.. e

.--'.l-.. c._ c !. -. Lq e, nc.: ;.: r..L J-. C.b M - .,1. f *. ;.. r.. :ne n. - -- _ n c.1- -- ..... n.: } =_.. . {.- - 8..

  • -** :. t

..l...., ---r------- U W .._. 4:. o - - _9 x c.

7. -

. ! :.n..p i e p, .:--.j._,---.. g n.3,.....,. 22 :.g.= p _........ ___ 7 R,: ---r--- 3 ' ' l". '.j - -.j j. ~ ---r g %... j . [ ={(. - g- - --= -~j... ,4... 1 ...r. + .... + -t, -f : p. _. b...~. ~ 4. 3 -- r.~ -- + : .9=. ..i.==.: =: : ..s bn p.. I. .t _ _.n _. ._.w. r l ,n g:~

n.-

7.__. l.. .t. ,.l- -{ _7 i-r. 7 - rr.:. v = ,; _. ;,;,_ g 4'- U -i - .._.-. _..._:.. = y.. y .._ gc.c 9.: ;.:g_.. _ 2('_4....i_ :._.; i-3.1. 4==f> ',..3 p_. _,. :.:.3.. _ _=q.:..c._ y l t 7. .J. t i ! Dt SPLACEME!1T. III.:l!!CHES: .u .__.w.... :_. i [ l t I t i .t i .:!E. 11 1 1!a - [ i. 1 . _. y-t-~~~ '~~~~~ ~ T T GURETT-M nm i nun. 3 E i 5n i CE 0ttPtACMitrY- -tACff.! l c rm e] {. l g: _..... .l_ -__L_._._ ..__._t __...._.:_._._A. 4 S i

1 I .._ [ _. l l. ] f -- : 1. .) .. f_ e. a g l. ._.1 .....4 ~ e' ....t. i .t... _:..._.._..i_..__'..._ _ _ _ - :2_ ;;. _.e. . _ _ _ c.; _.. _. y - _.... ..____ m .j. _.1_ . :._ L:._u... i i l{ l l l [' .l

j..

r-3 i- ,_.2 {, _ p..,.,._ 4 t- , m ....p...t____.,.. .,q. ,. ]. g f ;-{

-. c.

! =,y..; - . g..:r.n . 7_ y_ i i .l. . i. r i.- ~ _.. " f:. _. l... v._ -l

-4 2---

. r p:);- ; g 71:-Su _?__.:: _ J ~. :q : q_.... _ . _..c.,=. t ty:_yr.. ' '.. h

  • ii:Qi"1.fiE i

.} '.E l

.}

.' ; ;. p.-jt ) ::_] Oi:.Ta~$4 :.@"._c q {.d p:F- . E::

t.. [ :n...

n-- --~c-- t

2 r.:

.u:. :d-r.:} 1-* g.c.... ..c :.n .u. - H r. 2,u =

_ c u.

..r --t---[:- n-c : :t; e..

nt--

. c.. n.....u. g... .J.:-,M.c. :: cc;_ a.n.

r

. i %,+ * ~ +p '2..f.-.i Q,__'*_'{Z-*-*.k_._..__J.. - i.j n _ _ _ _.... _ _ ", ."g _ _. f.._ u..; ;t.@.{R: ~ [*l*

Ty._ -.

p .i. r. i .*4.-

  • -**l* L q._

=. ~

=:

.q .._z :.. - .. n.. I

4.._

.. = r.. =.c=..b:=. =- 3. n. : ;.==: z r u =-=- 9 L.- -- r - r c. .-_ u.:n- . :-+r lag..i. h. w. _.... _.t---2 ::g ..l. .-- u.: pr-:-. =q_7 = :- t q.:_. g : ].. y.9 -- }.=;.u. r y . 9.-: .P;e!=E n _d I-T.;.r=r rrpEpa " =-I;J = CQ:a:' r - u==Lp:-4-- l-+=I.i=:_:-. l* -i. -Z;~ _J.- y---: 1 .F. ;.lz a. =, nEp " f L.~;F.;-:: =U.7 Q._*~:....;.: ~ + 'T!

  • 2..... _m_ _r._.. n.. =. ! =_ t u.

< - _.. 2. :..._...:.- ....n. t -. t: :.. y.2i.. 1. =....... .t_ 1.

.ic.11. ;.... ]S..r.... [- - " - I. __.

e. J.u.r. N.. :.. _.. ;.-._ _ - p...J.

1. :.7_

t_ 2 '4 4_. :.... ..m.4[rt.:: e y_.-._

4..__.
t..

. _. 7..;c_.-j.~ It_"._ ). 4...... T .. _. 5_ x.}.._. c.. :.t,;c_u; a.. n_.2.... _.: _-_.. _.. a -.:t.. :. : __; c___ :- ;: h=..=._.-,. =_ _ ; n c.: 2. ;.3, . _. b...___.,

m.....c _ p......r
2... ; :...._;

.,g, f = = =j. = : =.;:... =.. l.x.=.:-t, L - :- l ..,..]..:.. _-f._..._.=.:

+
n 2 ;.. :.. ::

=s.:

n 2-a.

_. : -r ,.arr .. _.. _ -- g;..i...... r---.' r.. r c+- n;n. me==-="",-....;.._.--;**-.-__... f,.. : Z. r. :; ;.J

    • ... '.- : : : j. - --. _.. "J

..I ~1... '*:; .g_ ._._...p. i-. - . " _. h.. _i::..L. ;:-" ; -* 17 :.. v -~

  • x y ? ^..

.. / .t _. -- t= - r -- - e-a _a_y.._., s _-._.h--_....~T.;---,_. h * -* : =U.; ;- -- f =nrca ; ;. ;:. ; _ : r -=* = . : : 4 a n = 1 _._.. t - :"N..r. g- ...\\~: -' ~ - t^ = 7.. ; t :_ ~-- . -. k. - I" -n 1 w,. _ _ m, _ - t_--.: -,..

=. u t._~..

.p -::. Au::.= =:::==j:.. g.:=. pem .;;,_._._..' ~ ~- t.b:,: - ....?. -t

,: _.l

. _A -s ...w , _ _it'.:.:_ J-F_ _- C ~21 :1 p.' -' _ _, t - :f C * -. ( .r.I:F *.1 ^---ti h } /.. f x 2;_.%. M.O_D. g L; t2.v.


... ?.,. r % 1

.1 n n
z r --

b.:_ 2... = i- _i_..._ t y 1 a t.<*a ~ g -m .t ~ ... _u ;- 5 _:.... (;. .2. _.: % = - L ~,L,.7 ,j f +j..qc y _. l. _-~ V.y. ( -f '.. ;:_.)- ; Q.. -~ T *;_:. - f l-f d _...~ }; :_. ].1-:i' - ' [--f-~j- -Q noc e.3 .:....._ j,:.,-. ' ;.. [...; ;..._. w-i

c....

_r. id. ._..:.._.,...n" <.i. m _._. l. - ~. _....t._.

  • r

.. m s z :.; n. ..t - =-- t. -- m, -.:

r... :...
  • . / :.

. ~.2: ;;.

nn.

s. .u + - m -. :- E, _,~.r . t 2 =.: s. .. ;. =... ..__,i 1 - . _.. ;_. t.- 1 . gu - i n ],e n + 4... .u, * .I I ...i-t .r-8

3.. - _

. g "... ; _. r ~ _ _< g - -- + es

  • u.c.

.t _ _ _ -- l Q._ -q -.. 7._.... _. ........._g .,.. p.,._y g. 3 , p.-... -- 7 g. p,., s

w. 7,,,,

.l...:.=: :n.,, _ J._. _ _ G. :.i. f 4, .u..... .4. r a.. u. _. L _ ;_l. :.:.,..*._L.... -r r-170

l *

~. i _.,,, J,.:/,, J. : }zj.._ . l _..ch.. 4...p

.ct, : :,=.

i {w73 -.r.._.- ] .M ( ... _.....a_ ..,t_..; _ __ a.._ 'W e 4_..._- : l..r - 1. ; :.. ;._-, _ _,:.:,,.u-

t. - - :_, -

,r.._- ~ :. _.. _t.. r . c --.}.-. w.

;1
f..

p: ~i j._ y :.:.a. _.a_. u_._5_, 4 _:..c ; ::--_ t- -_-_.. w. - 6 n e I.. " _ .8 .t -dr;_ u a=. / .._ _. 2_. u _ t_. _ _ : _ _ _. _.:..._._.1 c _._.1. ,....~,, 1_ n -a--

_..x...._

L_. p. __. S 4 t. 3:- - c f I. .... :.k.._.. M., I

. -'.a,..__..

1._ :_.. .a ;. m. i. i \\____.__ 1. s r I a _ ;f.--

.. - L_u

_0;.1. :.:c 4 016j; ..D lcs:_ p. 1 L,- :. ,s i ~ . {.

0. _ y. 0;2 1 0

l .i.. 1.

  • c

.. l. l J ACCEliRATF.#L:.W.. _'.'P ~ l FIGURE 0.1 (b) MAXIMUH SEISHlC ACCELERATl0:1 - LAC 3WR STACK. f I n .,3

~~I.~~~l. g. i '...a..-. 8.- .L..- L .i _ c _.. r _ t._ m _. - l a,

-._ __ __, +. s. _.

...-4,_..... 9 1 t ..i.*.- f~ t

._*.;..h 2 - -

.1 : a, 8 4 . i e. i

c -

.._ u - t.

._} ;.

l. . g.. i l c l. L 'l T @{] - s 5' - * ~* A= - (*] . -. i j ,f ._.,_.; a - '..._!....L^

_L

..' !. i ::. f j,, { g J .. =. = t ~. u. t-J. m. - :- =.e _;"#.. , r u c. ..Ir,a.t.5_-.p- .._J; L , _,_.... - 1r.. =t i : :_*. :a : --- :- l t.:_l: _ :tr *L**: p .__ : __r :. :. : _..a r. 3 s l.: ;::..t ;. t . A"; .. : L** :}. m e-.{. =.:... w..... (._- ; :. i_ .g-. ._-.i =*.='~~I.NI'"~-+.h. !s' T **'- 421 .f...... ;)'. h*: 2'.. ' h'i-"' '.*::4 'J.* '.. C-i.]. _... .~.__.-l.-. ... ^ ... !:.J -* T. * "" " O"'; t. ' * -. ~ ' - *

1. ;: * -
  • ~-t ~~' ~~=

j -m..u.c :-

==-=

;

=

.tu=p:.=.:..c pL.:J.

=_:r.. ---- -. ~-3= 5-t m - 1 q. =.t ~a =._gaser a : : a;. l .t._ t.:_::: . r_ 2-. M ~ t-e. . = -. . 2:.: -t-- ' s-- - * - - - '" - - ~ 0~ 7: *~ ' ~. - ^'ZJ

~

r' - - '. ; ' *:. : : ~ ~ ' -'. '"..':;L ' '~ _ '}

'~,,,

-*'-'.nt--'- __ -... =.... - ,( ... I P ; * ;.b. ' j-~-- l' .....b.. - }, - n :=, e =.

    • l

.:--+'.

.: f.. '

. ~. . s. . -. -..= = =._>,,,j , - - =. _ - ---t, m =. + :. .- _. i..- .. f _.:... I....-i.. =..

.p.

a- ... = _ . ~... = .I

  • n
  • 4 -

.: _ :%-~ - :-.jr..; _. .:(_- Q. - ; M 1. . g.. -~~ _--l; =:: c f...t ;. p:.:.. _ . ; c :3. - - ..; M ---{.--- ;.., =,.. - :-'. _,..-..- *: = V:. :.. _... _. - _. = _ "..... ~ Lt .._w

n.,,,..,,

7 M

  • .t

. s... t =;t.:--- m_ ;p. =.. :, : _. p J r--~ ! *;.-'* M _ - - - - - * ~ ~ ' ~ y,_.. :. $ _- - j. . r.r. c..s..t....:..*

y[. * ~$-d
E_:Et; O-%.. '.55.dtN.-- I.h;::i*5-A"-.;
b. ; _'* -,

k _l_ _; _. v...if.:t_7. @.sM -h.21:!.;- Q -...;.J y;c n -y --N E ~--55--Es ~

  1. 'N ~
  • i*~..~
5 '.E h ' ' ~-- d ' MMG '-
".l@ii-MEI'-9" 1J0 t : :, --- Jn;;y-' ::;.: :.}...;' J[:"; ~. r__ _.. __'.w

'_ _,. '. "r - 7. : ~*. ..[.... 8 *

  • - 1 :. ::

.:+t .t N. --.--"_._t.. - _j -. -?:.... t- .._,3

  • - -,.... (

--.. _ r__ :=_ 7.:..- n. : q ;-- :q. - : ' 4-.- -* "~~' . p m:c. l- ...i 7 r L I-

t. : ;. _ ~f. __~J;.._- {. ;. J...__;.t.2.*;*.-*~'..

+ -- ~ e

$~._.f..

. : : -. t.;;. " P-".... ....t-~*- - "J 1- ~ - - *- f ;'. :... - ..p'. .. _.._...I_'.-.... q' i -.. L t.I. _T_*' k. *, * . i.. ..,.l .. : j.... 9 ..? y;,.,_ r--- - ;.g.- "

u. ; =:. g ;.;;;= % u n,. 3 :W2-1.;L.= - l. ME:

,,,__,L. .m uu..ci-

.: m.
-tt-- e - 2.r

r= r __j . g . g. 3... t ca. __:_,., fT ::i-'_3 f 2 j.T-[:_"ul-.. _ 2t:0. ,\\ "9 - - I- ~ - i 1-T"3 i": " ' - ~ " " - ' ~ ~~~ Ed

tt0DE L:T-I E = D::.m - - --

l .i;' .3,= t. +.,-= - A .- - -.- t_ _ c..,: : -._.= a.n _.. n. [ i <; .. _... _ :2;. c-g 1. '_ j U,' ~ ~ ' ' * ~ ~ ~~ F[ f... \\ -. _ _ _... -. ..,1. ~ ~~~" iODEL. r w ~ ' -- u.._.180, - - - - - -... - ~ V E '. \\.....__. ' ~... & K_Q '_.L..".. - =,. ~~ .2 --_.?--- . :1:-.;; 7

r.. o --.. ---

a - L L.; - a . w- ._ - [- ..._ r -.I =. _ ::...:..:= :. _ -. ~ ni-420----;---- ~ M L i._c '. l; C ...x(6,. _L;; _, ;-- m!

=: :.._ :

- S ; 3-L ,,,J _g, ~ *-.... 1 -- -- T. ~.'- _ {:. T 1. I.-- -[.- .?. s = wa _._p :.;...:__ g_.:u___ a. _.__- --- -.;+ - -- pu a.,, - T.,... -. z .. w..:_ J +..5 :3.- .;_=m .-p. 71.=L - L ^..

8..

f. ~ w .i '3;.. . ;-yliOf.* ..'.1. .-g r j ~ a j S -.:; d _ ~.h y t; _c.. '. '.)"*i~

.;_.t.

R,h u f. .1 f r r ?6n u_ .;:.=.f.-..ul'.<:.. . l.; - f .NN t n. .=- "4 4 .w ..:.- y i

g. ;'. (.. -

.'r - i o 2 u. ._.",_N-.* w,. j j. ( =.,,%. 8 m t 4 0 .x .a 0, b-b6XI9-b250/.lOL -- V -0310 J:1;IXIO 3 ... _ _.. t _._ : p g. t[X I O. ~, P 0 H DJ T Un N= l 5 5.-.... t g.... .~... _... _.. i . u. - ..,f ~ FIGURE 0.1. (c) H. Ax i _tt.utt..SE l sil.l C.O..V._E.R..T..UR'll.E ttW:IT_.- U '/; i w r P E a2h-_. _M

8.2 GENOA 3 Stack 7 Appendix B presents the detail calculations for the foundation spring stiffnesses of the three models: standard, softer (0.4 times standard), and stif fer (1.5 times standard) foundation spring values. The over- - turning moment load carrying capacities of the stack cross-sections and the detail response results of the seismic analysis are also given in Appendix B. The results of the analysis are summarized in Tables 8.2(a) through 8.2(c) and shown graphically in Figures 8.2(a) through 8.2(c). From Table 8.2(a) which summarizes the natural frequencies for the first 11 modes of vibration of the GENOA 3 stack, it can be seen that the stack is a fairly flexible (low frequency) system and t1at the lower modes of vibration are not very sensitive to the changes in the founda-tion spring sti ffnesses. Figure 8.2(a) shows the displacement response of the GENOA 3 stack. From Figure 8.2(a) It can be noted that the maximum lateral seismic displacement at the top of the stack is in the order of 9.8 inches. For a 500 foot high stack, a maximum displacement of 9.8 inches due ~ to a Safe Shutdown Earthquake is reasonable. The displacements at i the base of the stack are negligible. From Figure 8.2(a) It can also be noted that the displacements for the softer foundation spring (Model 2) are greater than those for the standard foundation spring (Model 1) and g the displacements for the stiffer foundation spring (Model 3) are slightly smaller than those for the standard foundation spring. Figure 8.2(b) shows the variation of maximum acceleration response of the GENOA 3 stack through its height. The maximum lateral accelerations The accelera-at the top of the stack are in the order of 0.85 G to 0.9 G. 'gg tien values up to an elevation of 420 feet are about 0.4 G with only the 63 This upper 30 feet of the stack having a high acceleration response. indicates that a fair amount of energy will be absorbed in this region during an earthquake event. Figure 8.2(c) shows the variation of maximum seismic overturning moments throughout the height of GENOA 3 stack. It can be seen that the variation of r - the overturning moments diagram is continuous through the height of the stack. The maximum seismic overturning moments for the three models of the GENOA 3 stack are summarized and compared with the allowable overturning moment in Table 8.2(b). From Table 8.2(b) It can be seen that the seismic overturning moments in all members of each model are within the allowable overturning moment values. In fact, the seismic overturning moment values in all members but members 8 and 9 are less than the allowabic overturning roment values as calculated without the 15% increase in the yield stress value of steel reinforcement permitted in Reference 7 for dynamic loading conditions. l l ; i LJ

r The maximum seismic shear stress values in all the members of the The maximum shear GENOA 3 stack are summarized in Table 8.2(c). stress value of 5517 psi. Is well within the allowable shear stress H value of 269 psl. for ari adequately reinforced (vertical as well as circumferential reinforcement) concrete stack in summary, the results of the subject analysis which considers a wide variation in the foundation soil properties of the Genoa 3 stack indicate that the lateral displacements, maximum overturning moment .p and maximum shear stress values due to a Safe Shutdown Earthquake Therefore, it can be concluded Lg are within their acceptable values. that the existing structural design of the Genoa 3 stack is adequate to M withstand a Safe Shutdown Earthquake event. FM ~ g N N E .M RI f 1 l

TABLE 8.2 (a) NATURAL FREQUENCIES OF VfBRATION - GENOA 3 STACK FREQUENCY (CPS) M'0 DEL 3 MODEL 1 MODEL 2 STIFFER STANDARD SUFTER MODE NO. FOUNDATION SPRINGS FOUNDATION SPRINGS _ FOUNDATION SPRINGS I 0.375 0.357 0.379 j 2 1.464 1.353 1.495 I 3.305 3.045 3 384 3 4 5 726 4.909 5 906 8.065 6.487 8.671 i 6 10.190 9 357 11.050 7 13.480 13'.003 .13 785 8 17 269 17.028 17.442 9 21.521 21.358 21,624 10 25.838 25.720 25.907 11 30.312 30.226 30.361

i TABLE 8.2 (b) I MAXIMUM SEISMIC MOMEMTS - GENOA 3 STM#. i iM, MAXIMUM SEISMIC OVERTURNING MOMENT (IN LBS) MODEL I MODEL 2 MODEL 3 STANDARD SOFTER STlFFER FOUNDATION FOUNDATION FOUNDATION ALLOWABLE OVERTURNING SPRING SPRING SPRING MOMENT (IN LBS) I 7 3980E+05 7 3170E+05 7.2104E+05 5 0222E+07* 2 9.8249E+06 9 8473E+06 9.5282E+06 5 9467E+07* { 3 2 5639E+07 2.6412E+07 2.4607E+07 6 9326E+07* 4 4.4850E+07 4.7568E+07 4.2624E+07 8.0760E+07* 0 6.4693E+07 7.0642E+07 6.1029E+07 9 2273E+07* 6 8.3324E+07 9 3374E+07 7.8399E+07 1.0410E+0@ 7 9 9968E+07 1.1411E+08 9.4393E+07 'l.1776E+08* 8 1.1476E+08 1.3190E+08 1.0934E+08 1.4646E+08 9 1.2835E+08 1.4558E+08 1.2367E+08 1.5234E+08 2 10 1.4131E+08 1.5854E+08 1.3746E+08 1.6179E+08* 11 1.5396E+08 1.687IE+08 1.5054E+08 1.7516E+08* I 12 1.6630E+08 1 7827E+08 1.6276E+08 1.9541E+08* 13 1 7811E+08 1.8815E+08 1.7411E+08 2.3970E+08* i 14 1.8930E+03 1.9891E+08 1.8487E+08 2.8347E+08* 15 2.0008E+08 2.1070E+08 1.9552E+08 3 3360E+08* 16

.1090E+08 2.2339E+08 2.0654E+08 3.8834E+08*

17 2.2231E+03 2.3677E+08 2.1826E+08 4.6641E+03' su

i TABLE 8.2 (b), continued MODEL 1 MODEL 2 ft00EL 3 STANDARD SOFTER STIFFER FOUNDATION . FOUNDATION FOUNDATION ALLOWABLE OVERTURNING c: MOMENT ON LBS ) tEMBER tQ. SPRI NG SPRING SPRING 18 2.3474E+08 2.5070E+08 2 3084E+08 5 5474E+08* 19 2.482Rr' 2.6498E+08 2.4422E+08 6.4935E+08* 20 2.6292E+0S 2.7971E+08 2 5845E+08 7 3926E+08* 21 2.7880E+08 2.9528E+08 2 738SE+08 8.3359E+08* i 22 2.9602E+08 3.1200E+08 2 9089E+08 9 5946E+08* L,J 23 3 1485E+08 3 3017E+08 3.0992E+08 1.0596E+09* 24 3 3576E+0S 3 3007E+08 3 3145E+08 1.1455E+09* 25 3 5935E+08 3 7196E+08 3,5598E+08 1.2412E+09* 26 3.8630E+08 3 9620E+08 3 8400E+08 1.3325E+09* 27 4.I720E+08 4.2325E+08 4.1594E+08 1.4203E+09* 28 4.5252E+08 4.5363E+08 4.5221E+08 1.5524E+C3* 29 4.9270E+08 4.P" ole +08 4.9324E+08 1.6889E+09^ 3's 5 3827E+0' 5.2733E+08 5 3954E+08 1.8472E+09* 31 5.9004E+08 5.7294E+08 5.9190E+08 1.9839E+09* 32 6.4908E+08 6.2680E+08 6.5111E+08 2.1231E+09* 33 7.1612E+08 6.9062E+08 7.1754E+08 2.2480E+09* 34 7.S128E+08 7.6531E+08 7.9092E+08 2.4098E+09* L) Allowable overturning moment values without 15 percent increase in yield stress value of the steel reinforcement permitted under dynamic loading ccnditions. -Fl L> 33 FR L-

I TABLE 8.2 (c) i MAXIMUM SEISMIC SHEAR STRESS - GENOA 3 STACK 'aximum Seismic Shear Stress (Pst.) MODEL 2 . MODEL 3 MODEL 1 SOFTER STIFFER STANDARD FOUNDATION FOUNDATION FOUNDATION SPRING SPRING 8 MEMBER NO. SPR!N L, I 5.52 5.46 5.38 21.48 22.16 22.23 , i 2 3 37.56 39.29 35 84 4 44.67 48 93 42.07 5 45.85 52.29 43.14 6 44.27 51.08 42.54 i 7 43.02 47.49 42.78 8 43.64 43.96 44.06 9 45.50 42.56 45.17 10 45.39 42 35 43 55 g 11 47.74 47.33 44.49 i; 12 47.31 50.88 43.82 13 46.58 53 53 43.98 i 14 46.47 54.58 45.11 15 47.44 55.17 46.76 16 49.16 54.87 48.25 17 50.97 54.50 49 29 aif aire as

TABLE 8.2 (c) continued MAXIMUM SEISMIC SHEAR STRESS - GENOA 3 STACK P, Haximum Seismic Shear Stress (Psi.) MODEL l_ MODEL 2 MODEL 3 SOFTER STTFFER STANDARD FOUNDATION FOUNDATION FOUNDATION .] SPRING SPRING SPRING ' MEMBER NO. ll 54.47 49 99 l 18 52.41 19 46.99 48.38 44.64 20 47.95 49.66 45.94 21 47.62 49.80 46.31 45 18 47.42 44.55 22 44.80 46.67 44.49 23 24 43.80 44.90 43 50 25 44 i5 44.39 43 66 26 44.60 44.16 43.93 g. 7 27 45 06 44.26 44.28 0 28 43.06 42.29 42.30 u 29 39.69 39 27 38.95 _4 30 34.66 34.74 34.01 a 31 29 34 29 94 28.66 32 31.86 33.15 30.87 33 34.10 36.17 32.70 I 34 35 97 38.90 34.08 7 ' g,q u

A-I. t i i .t: i + o ...g.. ._a .2 .1.. r - - .510 = .4-- ,-q.i ;. t ,- -.... j t p- ~ / _.? y:.c c L .. p. - 480.. .[. r ?. -1

h. _.. ! -

~-.: .- :.t. .1 . s... !-, s _a. a .. t.. - '.wl... J t..nl. l. t.::; *.

. c.

..j.... ,_ j - t. ._t .. - 1.-n n 2 ".*.r + M n..j -r

  • t--
2.,,,,_,,,,,,,,,,_ _ g.__.

l '.i.. p._........g.............g.. .,7g.,,,,f~.......,.,.=._g

,,. ;.;.. ;..g t

..i.

.,.;..;.r pu !. (. j. k :. ;.;.. a:.J:;un.r;_.

a_ (::--E......L, ,j. =i .t.: r. .n.L..;;.., p_.c d' tid ' ..m

  • '- - :!E::I

'i'" hi": Idn ib ."I

  • _i.

F a r ..c i 2: :aN: . n.. f ; -

m-3
n.+a..r.:in ;rM-Q: + n : : fi.O. DE.L"_IU.!(. STAND.A x..

u r=n. : - t.. mn 9.-r t... [- .... - 7. :-

-... t..... e n..2 F u - -.. ;.....,

cr :.r.:-.: r ;: , ;, _ _,, i.. - :.... _. t. - 3. t r r.-!r: r..q. :...:..:..:. :..; r /_;. -* r .,.. - ~ - ~~1 g,. _.., u 7, =.,;.;....=..u. !. _c..,.:- : w:r

g..n...;. ; ;..... :, ;,...... ~..

.. :..n... [.

1 -

9 ~...... F- ..t.360 L ::-" tie-iEt.--rui.ui.-/i [.__...-_.........g g.g gsfpfERU EJEAUONES25~N m lii ." _..: L _..r_ ;.u.. _-un ; __i. /. -..:2. h t.:.. . j.

c a. : :t..-.

u__;.u r g;.u.., -,_.,.,t_ ;_= ::r u .tr 7._ : L1. 2... _.. r - .. i. r ;. .....t..-: ....I..:- .n qnm. :..--- j... -(" i MODEL3J(STIFFER. FOUNDATION SPRINGST I. m. ., =

w.. _ T.,

... n. l-

t -

m :- :t -- r-6.-. ;- :.... - --+ 3 L. "p .Q. M- ... - w_ s ........ i...... y:m. gn :r.:.;::n.cfd. ;i:pii s, pp ~ ; .r .i-i.h tt.. ~

S.-..

.l.. rr-. . f:.. _.. 6.... n..r.. .r r ~ M _....I.. ..n...._ n t. c i .g 'p- =

u. r. r.

l. . L. ._ :. q.. :....i.;f;j:Z ; ;.;.~_ _. _. u.E - r ..a _.t

__i.~.if :n_4c-f,

..a._ : E.:: u_.: ; 24.0 /."_ ; ~ = ' I"- e. H ~ ~'r s . '. i.

r.._- ".,

u:a..:i!-i::U.;-. ~..... - i. 9... i.. + - n. ii -.. -. N .. c,. : : r.. . :.n r,. -..... a-...r;.:..:m. ~ :.,. -.. ::. _.. r :. 2.... ..;;,_,l mu n - i w_ .:-t = : r c-a c. a. : - -... : _ m.. r.. -....: - r s:...-

  • ~~ - " * * ~ ~ -
    • 8

..t*.-** y. . e ..-....."c -...i.. f .c..

u

l ./ -... F * !!- i i _180 . t. _._ - F - :i.. i-ni j p /. ..j ..d.. 4. 1 .I 1 i__- \\ t -/--..

23...
...._.;.. q _..._ i

.... ;._ 2.r g

i..

./.... _._. ; ~;. j... j t tr-7 ~

. J '

l 3 ]g 7 ---J I d 6 .,, 7., - a , y, t.... .- t ;. ;... ,T ...,,,.,;,.. ~ ;.,; _ t.,_. 7. ;r i; .a

3.,.n...

. g.:. _, ;.,, ;

7. :.

,.?, 4_ ~ : m:- T.".i_ bi.Q.:..::!'... [.:. :.aj ;.._:nid:"_ _ _.:.c... _ _ F-l. . ;e h. i... ..c.. I , / ::.L c.; f, u __ uau_..:._:..:.:: c. R;,, ; j f..._.; .a. q u. _ 60._: J: u. u.

u...

W d- .~ _, _. 3 t... I l .... $ _.. p _.. b._. 2. ,_...._ _0 t i t 6. 3.. 10 0 2 -.4 e i. 1-e ^~~ ~ ' DISPLACEMENT IN INCHES ~ ' - T ~ ~~ ~ g FIGURE 8.2 (a) MAXIMUM SEISMIC DISPLACEMENT - GENOA 3 STACK.

g* 6 1 .} i .4. l J l .tj t -.j I b.-' j ..;..-.,...I .. _... -f. - h,..., ',. f. ,' " l ~~i f-gQ ' g. 1 :...,..; : Zi. f .".t, f .l.. P~g i.- I:.. ::RiF j- - l e .i ,r'" {~.__._.. j,8 0 .: t.... r.

_ ___.;...' ; :)

Z L .{ s **.,, "1 n..[. ' ~j;f.:.__ - l. I-t ) -._.. '.1 J-* : : 2C;I.

n.;L. nin.} J..-- :

.;!---t -. :.a - : :-- :r m R :326:*':0t: ..n .q";..n f ::h .m 2-n n n: c -- -(. :- Jn ~~.:... n .;;: v

n..; u;a:-

n;:m }.. r-.-.

r--

r c. =.. I P ! N i ....-r ? e .t- .. a _ h...;.. . -. t .a. ..:.-..._..g;'-- 1 I. n .I.- j 1 1;. .N- /t.~

tt:T I-Qg i.

~ t-f-H. :. t..:.. .....!.,*..... ;.I. m -". ( iM .t u:.!* J:;:

n. -. F 0 D E L. l...... ~..=:..... ; n.
n. n. s.==:.=..u.

. i_ =. n.m._H.. _n a. -. g.... l.. :.. .g... -e ..t ~ = t -~u n -- - p :. s.-.O m 2: .f

  • ~-

-.t.- .:t .y s - V: G**". _ n. s..,;.,.. ..~1.

hn. aa.....- - - -
3...

g.j ..,,,t...;....+g..'- i" ~. .j ,. p. ,.t....,.._._q...

g.

..g .:n,ur ... a. : z - -- :

i. a::n '

RODEL>~~i . "... '...... = _...' ~ ". I- . 360 f.. : -d.. ^ -. -.! ee, ar t -d e

-r * -* ;;"p
n. u:.;n.: a]

.r c- ..a.C

_.a:./. '. n '_"
.11
n.- n c - ;.... _ -

P.;: t* . ; n. .....;;/- _ ;./.*..;..i s" J._. "b:.:.:g l ~ .-t.:... ..-r~_...

.L Jy

. 1 t-g.

T ^

I I- .J ~'.:-..... '.f!!.t'..!., MODEL.n;_ ~.m. ..J~.

* -~.,za
..' m I

.- W. i '7 i m,- a: o F. "..n - n W ! u.. 100 ._. :;... l l -~ j .c : ':- ! ].up-.. " g - :._. -._ _ ' _ u__. _ r.. :_,.;.1 .u j:.: !_a _. a _.. :.7_._. j~-~*' ~ p.; ~ - -t :.. _ -}.. 1

t...

I_. i -'j.-

t:.

. ;;2.: t.%. -... .:J F* *O . : r nh c L;, ..._f. .....] . t.,.. ).. 'I _1 . *6 .... '. J :. _. M' -g_...; .;;...._;. d ....._;..4_.-:. b. .t.- _.._:_.__._____~--a 21.4Q .r. }, + .:.......t. _:...j; ..j. :...

-r.

+ .. j :- - t ::.. /;j... j M ... ;...M ;.... ..._.....Jh._.._.. .. : 4..,... ...... c_. ;.. --,g 7....M..~ ..t., 7

j

.t y.. J.}

;. -~ - --
*~,'

. t. '.

t::.

-g .g..- ,;.~ '.... '. - .' l' t ^ h". r: .,/*. M, .3'... f 4 X!

. _..} n 0 u

2. - H '.[. :... _ _ ! , _Z :. g W; l =.m W l f j*r.: J 3.'. .-L....

... _, g I

120 ..-. _.._. { ::

=:-
1

,,, 5 7 : F._._..'.!_._. 1 n_.._,. E;"... 3 :.....a. t 3 s r ....n_.__.. , _ 1, .7 c-m. .e. . : 2.. - .i...

M 3l p.-_._...

-_. ;.. [.j. L._.. _ _..... I _. ; 12..c.[.;U.p.a _; h __ g._.E.nh.g... : ; _.. ;_2.I J0 . _ _.] K

  • l
-. = _a

._".} = U '^ )- I-r g r . 0.. ..._..-__a-. _._i .. -/ / ~. _ _.. Y i L I l. 5 =... i... _ _. 0. t r 0 0.2 0.4 0.6 0.8 i.0 l il ~ ' G ' 9 __...a ;_... ._.. '. _ -ACCELCRATIO!! _i ', FIGURE 8.2 (b) MAXIMUM SEISMIC ACCEt.ERATICtl - GEt10A 3 STACK j .]'. 1

=- ..-_r_.- ..q 1 2 i ,'s u.. 32 .p-' , - -, 'i. e.. .r. ............:f..=

  • t.
. a.. A- _..~

_= s. -_..m..__., s $ } O _. a_ ~, _-r-r Iu--..::..- . r.

b. 80 s 4

..I. g t _-_w...a.-.. ..:..._:.. a d -l . :: {*:..- - i.'.

.. J.

r. ........ 6.... _4... a - - nf' -:M..,_.1..=....=....=...1_.......v---. ..:: r_ :I ::nus.rur:,i.... -. - : -: =:. - s . _j ..'b r :: -,. ~ ' ::! r - --lr. .. 3- .r i --n-+--. .~ 1- '. ::rt::

4....... b... -

. I ...=...,r i i; ."Tc;..- f n -- ' p. :._.p.

.k.

..._.. p _;..; 6 . \\... c.; .2... t.. a 1 . [: :. n h.r. '..-'- r...}- - :r . j y .t. IN-b.h U- ~ 2

.1

-E - i.a v.1 N

i.. ur r e m.,..2,...

...--r..-.. v 6 i . ;q ; ~

.g

,3 j . :;. : t:. }....u.. : _..: _.,. ..= 22:cP:- :...-.n :..d :;.7;u..... -.u::a;.:r... r.. _: ; s

L _........:
1. =. - :....... L. :... f........ ;

--3 - :.n =...w. ... _ \\'.-..... - :..,: n.:... .....:I:... ~ - - = - _ --~r---... ~ = ~ Moo wa2;w ~:=r= "="..___.;P: =: :._ ..r [.... ; 3.60 ... ~

3. -

~ a , :_ u.- y ta. _. _ ;.. n._i..._.". ~.n_:.. _ J . E =J. - i. L3 ' - - j _.y... u.d:. _. _..: 4. ::e!. u:. -,_...: 3. :er.u.2 ~

i

.x t e - .:: w 1 m;r i w -b =. _.., :.. .,.. a. _..... .._ n _. _. + ,r .t. E ' ~ - .. _..,... s\\n . _4__a._ n==ur=2. * "-"r" r -.:. 1 r: _: " :r ~ =.: - rk -...:-- --

.c F

.>! 100 4 ~4 i L.-


m-

. J.... r i...u m :,r -p g......__.._......--F.x:.... .,._ J ps 1 * ~..:--- ,O._ t. \\ Ls

y. _

i-

r. -,.

= :--- o "=- L '...t===*

=

r. \\ ~ i w. .. MODEl. 3 ~.-

r...

_!a-- \\. -~ J i -i \\ 'd ; irir.:ip - g:.:.'~r u...) : rg/~! ; -@;-T.b... w l240-L : + -- ". " : \\.,!.- )

i.

M, ..-~ .. -N~-- . w. .:...-l...._........ ... _..:.. ; r -..... ... a:- = :. r t, .._,_._x_ - _g

2. ! :.2. -p N _ _..

7.u... ._:._.u u..: a._2. _ _.....;.__; H .m L.. . a. :._. 180 b t s-g.. 4=._.,...._.... _ p_ ; r - - -- y l r.. --m : -.._..__a._ 2. r . 7

. r
. ~

j m.. ta [ u .1 ,, 3 u.2. y _ _u _ u. 22.;:.: _. : a.a.

.,.._. a.

x s y..,g.,-. j:^. r. : 2. ..a. _. __ _ __ 2..c. ;..a._: c... 2.. _ u._ ~.; u. b....... 2 r ..._..p_ .6 ..... ~. . g - d,

e..

~ .._ T. .. \\ n .t .... n.: n.n r.. s l- ...... T... _ . g___. : _ __. _.. __ c - I r i ...g 7. '.- m .- _g0 s i a, ; .u..

.[ -

g Q -..;_a i M 's. . x 0 .._.0 d 2x10" 3X100 4X100 SX100 6xtov / X 10(' 8XI0 O IX10 N ~ ~ ~ ~ ~~ ~ M0HErlT Ir4'lN!~N SS. s d ~____ FIGURE 3.2 (c) MAXIMUM SEISMIC OVERTURAING MCENT GENOA 3 STACK ~' d -

I ! l 9 REFERENCES Gulf United Services Report No. 55-1162 " Seismic Evaluatton of the f 1. Lacrosse Bolling Water Reactor" dated January li, 1974 LACBWR Application for full term operating authorization, LAC-2783 2. N of October 9, 1974. Drawings, Sarger t and Lundy Engineers, LACBWR Drawings 3 LACBWR Stack Nos. 41-503434, 41-503435 GENOA 3 Stack Drawings, The M. W. Kellogg Company, GENOA 3 Drawings 4. Nos. 6152-1, 2, 3, 4, 5, 6, 13 and 16 ED. ACI 318-71 " Building Code Requi rements for Reinforced Concrete," ~ 5 American Concrete insti tute. George Winter et. al. " Design of Concrete Structures," McGraw 6. Hill Book Company,1964. AEC Document (B) " Structural Design Criteria for Evaluating the' 7 Effects of High Energy Pipe Breaks on Category 1 Structures Out-side the Containment," Structurai Engineering Branch, Directorate of Licensing, June, 1975 AEC Regulatory Guide 1.61, " Damping Values for Seismic Design of 8. Huclear Power Plants," October,1973 Robert W. Whitman, "Soll Structure Interaction," Seminar on Seismic 9 c3,) Design of Huclear Power Plant, Massachusetts Institute of Technology, ^d April, 1969 1974, " Topical Report Design of Structure.*, m BC-TOP-9A Rev. 2, September, l 10. for Missile impact," Bechtel Power Corporation, San Francisco, ' y-M Cal i forni a. S 4..m air aff gs ->9 as

eT~ l APPENDIX A l LACBWR STACK - INPUT DATA, . 4, R'iSPONSE RESULTS AND STRUCTURAL CALCULATIONS l s, A-l INPUT DATA Lumped Veights Member Properties Foundation Spring Constants i Response Spectrum A-ll SEISMIC RESPONSE RESULTS Displacement Respcnse Acceleration Resror,.e Moment and Shear rorce Response A-1Il STRUCTURAL CALCULATIONS Allowable Overturning Moments 1 .x l ina

2 A INPUT DATA LACBWR STACK FOUNDATION SPRING STIFFHESS_ y The foundation mat for the LACBWR stack is almost square in shape as ) (i shown on Sargent and Lundy Drawing No. 41-503434, 41-503435 (Reference 3) and it rests on a cluster of plies. Since these piles are fairly stiff, the LACBWR stack will not be able ?.o rotate at its base; however, it could have lateral displacement due to the shear defortnation of the ~ j 'y Therefore, soil structure interaction effects have been accounted soll. y for by providing a horizontal spring at the base of the LACBWR stack mathematical model. The soll properties used for the 1.tandard founda-tion spring are those obtained from boring nu.1,ber 3 if Using equation I given in Sectiors 6 l.2 Horizontal Spring Stiffness Kx = 2(I+}l) GS Y BL x where: 0.24 fl = Poisson's Ratio for soil = 6 2.4 x 10 lbs/ft. Shear Modulus of Soil = G = (Boring number 3. Table 3.1, Reference 1) Length and Width of the Foundation Mat L B = = 39 75 feet = Sx = Coef ficient from Figure 4 of Reference 9 1.0 = 2(1+0.24) 2.4 x 10'(1) /(39.75)(39 75) K = x 2.37 x 10 lbs/ft. = 6 19 72 x 10 lbs/in. = i I for Standard Foundation Spring (liodel I) 6 Kx = 19.72 x 10 lbs/in. i For Softer Foundation Spring (Model 2) 6 1.0 x 10 lbs/ft.2 G = 0 6 19.72 x 10 = 3.217 x 10 lbs/in. Ky = i I l

i Y Al - INPUT DATA i I LACBWR STACK LUMPED WEIGHTS LOMPED WEIGHT (L8S) NODE tt0. ] i .300"7E*04 I .lA075E+49 R 790 3.1E + 09 3 .?6a??E+0c 4 97AA9E+09 I 5 .?o760E + 09' 6 .709)3E+09 7 R .??pn9E+an .34676E+05-Q 1'123E+0c 10 4297.6E+09 11 4JE7'tE+09 i ]2 .59946E+09 13 i la i .AL677E+0: le i 71993E*ac- . A 4"> 14 E + ^. 9 16 94277E+09 17

  • "9c3c GC la

.G9764F+GG 19 l .10725E+06 20 .lov4E+0A 71 .,,9s E.e. .14"61E+06 73 .1779?E+0; 74 i 10667E+07 >9 ., COO 3E+07 91frd'4 S T

  • n N I

) U I ( NE MI

Al - INPUT DATA LACBWR STACK MEMBER PROPERTIES h POLAR MOMENT MONEftT MEMBER j JOINT -- OUT610E NO. NO. OlAMETER THICK!lESS LENGTH AREA 0F INERTIA 0F INERTIA .(IN)~ (IN) (lN)" - ~ (IN) 2 (IN) 4 (IN) 4 9 1 ~ l~ ~" 2 W.563E+01-6.000L+00 % 000E*01 1.501E+03-2.302E+06-1.196E+06 2 2 3 a.862E+01 6 000F+00 1,800E+02 1.597E+03 ?.672E+06 1.236E+06 1 800E+0? 1.647E+03 3.158E+06 1.579E+06 3 3 4 c.337E+01 6.000 +00 4~ 5 1.813E + 01-6.000F +00 1. A00E+0? 1.737E+03 3.700E+06 1.85cE 06 5 6 1.031C+02 6 000F+00 1.300E+0F 1.831E 03 4.134E+06 2.167E+06 1.800E+02 1.92SE+03 5.037E+06 2.51EE+06 6 A 7 1.091E+02 6 000 +00 15600E + 0 2 2.019E +03 5.911 E +06 2.906E + 06-3,131g+0P-6.n00E*00 7-7 9 1.lalE+02 6 000 +no 1 800E+02 2.114E+03 6.66*E+06 ?.331E*06 F P O r'] 1.800E+02 2.299E+03 9.231EiO6 4.115E+06 1.256E+02 6.l?5E+n0 4 10 La

1. 396E
  • 0? 6.375c + no 1.dO0E +02 2.589E +0 3 1. 0 %E+0 7 5.419E +

~~ 10 ' ~ ~1 r 11 1.40 E+07 7.035E+05 7 11 11 IP 1.456E+0P 6.6605+00 1 800E+02 2.00E+03 IP 12 l '4 1.SSnE + 02 7. 094E+00 1.800E+92 3.310E+03 1.830E+07 9.149E+06 -7 7 I' 13 16 !.646E*0P 7.650E+q0 1.800E+02 3.801E 03 2.377Er07 1 13dE+0 14 16 19 1.73r# + 02 8.930 '00 1 800E+ 02 4.476: + 0 3 3.1 %E + 07 1 567E+07 15 I f' l.F6E+0? 9.000#+00 1 400E+02 4.994E+03 3.405E+07 1.c52E-07 la la 17 1.4565+0P-4.000#+00 1 803E*02 5.277#+03 4.6 SE+07 2.303E +07 0 17 17 1" 7 066E+02 9 000F+00 1.800E+02 5.53SF+03 5.467E+07 2.73AE+07 1" 18 l' S.14AE+0? 9 000#+n0 1 80cE+02 5.927E+03 6.9P3E+07 3.262F+07 9 0 4F+00 1 80nF+0? 6.329E*03 7.778E+07 3.4896 07 9 10 l' PO 3.306E+0? 'O 20 S1 2.425E+0? 9.220#+00 1.800E+02 6.761e+03 0.222E+07 4.611E 07 ~ q 21 21 ?2 2.546E+02 9.?B0!'+no 1 800E*02 7.153F+03 1 078E+03 S.390E+07 j ?? 2P~ 73 p.6MF-+ gp 9.u7 s + no 1.800E*0?'7.651F+03 1 267E+r;B 6.333E+07 0 23 23 ?^ 3.746E+02 1.?37F+ql 1 900E+0? 1.035#*04 1.P3BE+08 9.192E+07 24 25 3.40M+02 1.425c+n1 1.80cE+0a 1.2377+04 2.lf-9E+09 1 184F.03 + .a 4 5 M

'l i

an ft'-

i l l' For StIf fer Foundation Spring (Model 3) 6 1.5 x 2.4 x 10 lbs/ft.2 G = 6 1.5 x 19 72 x 10 K = y 29.58 x 10 lbs/In. = IEE ,WE ' als les n 'M M ,M ,N M E' IN ~ w

I ' ti l

  • i A1 - INPUT DATA rl LACBWR STACK - RESPONSE SPECTRUM n.

I i i 1 77??00 1

cFO

0c000n. c.r F CTo a = 3.091200 i 2 coro = .100000, corCTD.4 = 6.955200 7 'GFO = 14^003. C 3 ? C T J.1 = W 4 rain = .p90000. SecCTaa = 19.320000 1 s rogo = .annn90, so:CTus = 29.207?00 44.41An00 6 rpF9 =

4090nn,

%pFCToA = 50.23?n00 .onngac. corCToa = 7 rpFq = 1.noaqon. corCTan = 59.892600 r4 -7FO = f 1.T00000, 4:rCTee = 86.940'00 u epFO = 10.a.19?c00 10 carn = 2.nn300n. c,ecToa = ll 11 corc = ?.concoe, e n e c r o e. = 127.519600 123.64:8000 !? carc = 3,nnq00q. gr:CTo, = 115.o20406 1, c ur i: = a.nnaqaa. cor r rt. 3 = 113.9.a100 n 4.nconno.

-erTon =

la carn = 112.n'H80no 1c raro = 6.nonnor, c e>c r T : = 106.260^00 16 coro - n,nnonpa. geeCT06 = i 96.60^o^0 l !^.anonne. tocrina = 17 8RF0 = 77.dancno 14.nor.Ono. sucCT39 = 11 e u r..' = 19 ruFr = ?n.000090 % FCTJe = 65.6P.An00 56.024a00 70 rcrn = 's,00neqc. 4 :rTea = 46.369n00 71 roro = 17,6conqa. go CTot = 46.369160 ?? r;Fn = 70.600nqS. corCTo. = IIII b N nu l 1 I

_,m-_ i ~ f A-ll - SEISMIC RESPONSE RESULTS -I LACBWR STACK SEISMIC ACCELERATION RESPONSE MODEL 1 MODEL 2 MODEL 3 STANDARD SOFTER STIFFER FOUNDATION SPRING FOUNDATION SPRING FOUNDATION SPRING N0DE ACCELERATION NODE ACCELERATIO NOPZ ACCELERATigN NO. (IN/SE,C ) no, ( g eefsgg2 No. (IN/SEC ) 2 ) Y B oo :;o:.qP - - "I l l 1

4. c o 1 A l t.71 e + 02 1

3.9A74nGAcr+02 2 3.cla770%or+n? I P

3. 7cP41091 r
  • 0P P

2.Ao44792rF*0* } t. 1.'io W 'in 7 e ni'i 4 1.7enonvoce.02 4 1.A9270044r+02 1.414t. Ann U+0? 3 1. A.s o ; q r n 7 e + 0 p 3 1.9257socor+np 7 9 1.'olnhance-02 5 1.n1Ao:qpqr+02 5 1 43099c41r+n? A 1.c7744c14r+0? 6 1.oa14.24cor+0? 6 1 101479Acr+02 - ~ 7413cIAcoe.op : 7 1.npcip7avr+np j 7 1.cytpicAcr.q? '7

11. ;sanapp1r + 0 ? '

8 1.4?996170V+07 1.An?cic07e+0? a A o 1.e i Ao7maar.0P ! o 1 1977p194r o? l 9 1 4s.71AApar+ns In 1. '. 7 7 s a A l o e + 0 ') In 1.96;A:424r+02 10 1.'1197cQAF+02 M 11 1.pqlocnver+nP 11 1.co7A4c1Ar+0P l 11 1.?a=12774r*o? J 12 1.104412077 0? I? 1.se171760r+0? 12 1.S'27"A98e+0? - ~ 1, -- ~ 1.1 7 7 K7 5'7 Je '* n ? ' ', 11 1.'lsina71r+0? 17 1.11997971r+0F 14 1.114Sc1r n? 14 1.^G719'7"r+0? 14 1.n>?'A'1Ar+0' ic 1 614707Acr+n? 1 "- C.77711777e+01 19 C. 0 4 7 p/7 4 3 r + 01 1A-- c'. <in 4 7 a 4 p t r. n l. IA 1 0 0 a '- o i t 7 c + n P 16 4.;Apaoppor+n) 17 0.3794011se+01 1 17 1.o'4 "1*e+0? ? 17 4.n49.nanA7c.01 la p.cas7cepor+01 l 19 1 69Acev 77 0P l ln 8.4Aallapne.01 I - ~lo

o. 17sn7c11r nl ;

14 9. 7.' M ' s s' r + n 1 l 19 F.ns Anr. car +61 p9 9.on7evoo'r.n1 ; 2n 9.n11n117'r.nl l Pn 7.7% oil 7por+01 M ~ ~ ~aj 7.ma23,a7sr-01 21 S.?se'09'r+01 21 7.?ACAA04'"+01 pp' ~c,.'oip7I717r'.o'1 27 7.9790 oAAr+01 PP 6.9101^ 31r*91 23 6.6oq7o71er.n1 23 7.n79ptoo'r+nt 23 s.A9'4707or+01 [ ps s.4o7,1iior.ni P4 A.4260n4cir.01 24 4.ooAc1,97e.cl l 79 A. Sono.7 Ate +01 P5 4.cAc>nce.ar+01 a p; 4.oApqapate.nl 1 IW IEI IBI

1 f 1 f a A SEIS!ilC RESPONSE RESULTS I L' LAC 8WR STACK f MODEL 1 - (STANDARD FOUNDATION SPRING) SEISMIC SHEAR FORCE AND MONENT RESPONSE MAXIMUM ,HAXIMUM h) 11AXIMUM MAXIMUM M tiEMBER NODE SHEAR FURCE MOMENT MEMBER NODE SHEAR FORCE i40 MENT t,0. NOS. -(LBS)' (IN L95) NO. NOS. (LBS) (IN LBS)~ ~ c, p yWj r.'As

  • T.' ft'fCi E'+ 0 7' ij 1

~1 1 3.76t6p+0, 2TEO.TEr05- ~ -~i -( 13, l 5.?n7e.E*07 i g,g74>c+pa P 3. 7 A 'i 6 e. n l 2.75aRE *05' 14 j

1. I E;iE Tse""2.~PMid E TO5l

"~ Tis }4 q, a 7 2 3 r.~n c ' 575074?-To 7 ~ 5.74'cE+07 3 W p l 3,17cce+06! 15 q. 9 7 2, r. n e.

1. 6 3 n p e. n t.

3 l ~ h ~~T 3-i'I3h 7 c'+W4 f 3717 4 o E'+ 0A '"~i 5 8T~ K~6MO Wu ~~~5.%~' R E'* O 7 l E 6.15p3F+07 2.4337E+ns' 7.Ae74E+0A 16 j 6.6p:nr+cc i] s ( l7;cptge.nu w r52;FT07 ~ 2.70 7se.n,7 7:p7 9E'.ne 16 is 7.n70cE+07 .Q u 9 p.7074F+n4

1. I '; 17 e. 07 37 7,cp5pp.pc

~7 3704ET07' ~.vno4rJo771;1o'7eT07 -- ' y 17 g] an3F+4t. l 3 7.'3270E+07 5 4 s i 6

1. o n c a r + o t.

l.A227E*07j 19 o,ppnge.nc 0 T ~T.Tp 7 ' E 0 7 /~~I 373po1Frea'I 1fra:7ET07, --~ a ja q,qcape.nr l 8. o 3 a t. E + ') 7 [ 6 n,nc pp.nc c 7 3.3?c3F.e4 2. r. / ) 7 E + 07i lo ~~'8~.%~3'9 SET 07l ~ ~7 7 -~~ ^ 1. t.7 p A F'. ni. " 2 ' 0 717 Es0 7~, ' jg 19 o,oc73e.nc

1. t.7 3 A c..w. 2.c ? 9 P E. 0 7; pg o,9 t. 7 3 e. p t.

1.01goE.02; A : - z... p...~ 3, c,. n,., n,, .p,;? ape,qq ,n ,r... y..,i n c ; n,,-

g.,7 7,q,4 z

,n 1.14op7+08 3.ce 2 0e.ne. 2.c:ie 0E +07 pt 3,non.r.nc s a g, g a c j g.p s bl~; ~1E37ET09~ - 4 ' ' '~~ o ~ " * ' 7, 7 0 ? c. n c r 2 ',e. c.70 E. 0 7 pg pt 1.10'4E*08 c i }0

1. 7 d e p e. r.c 3.1776F+G71 pp

},10.c t r. c ~,' p 7 -$ n e'.y 1.~ie 7 4E Tn 2 ' ~';>;" ~~ 5 -" ' " ] W -"-] W - t,~, } e. 91 c. r..~ ~ 3.77 7 AF ' 0 7

1. 4 7 4 44 F + 0
  • J' 11 4,lAale.c<.

3.3010E*07; p3 },p7pne.ne i ~ 73~ -" 3 3 " ~ 1.'3 6'a c e i 'W ' I!'~74##*98 ~ 11 11

e.. q t o s e..) <

3. 01 W.0 7' 1.4 6 77e + " 4. 7 4 c ' F + 0 7 _. pa 1,'Arce.c: 12 c. s 1 ; a e. n <. p c '" ' f, t. A.. n e. n c' ~ ~ I.TF7 7 + 0 2 ' F { IP 17 4. o e s 7 r. n f. 4.74c3r+07. ~ps 5-m 1.37c6E*^? oc;

, c A <. n e. n e

LJ 11 c,oAe.7v..v. 4.rtsac+07 m. I

,I A-1I - SEISNIC RESPONSE RESUt.TS LAC 8VR STACK t MODEL 2 - (5 OFTER FOUNDAT10i1 SPRING) l SEISMIC SHEAR FORCE AND MOMENT RESPON$E 1: MAXIMUM MAXIMUM MAXIMUM MAXIMUM MEMBER HODE SHEAR FORCE MOMENT MEMBER NODE SHEAR FORCli MOMENT NO, NO. (LBS) (IN LOS) NO. NO. (LBS) (IN LBS)

  • i-4 3,

4.4271E+07 ' I 1*

4. 047'sE + 07 8.5?44E-06 13 13 5.aal2E+0s 14 5.P61?E+nc 5+31A3E+07 2.4235E+05

... 0475r+03 5.31A3E+07! 4 P 2 2 l.74A7F+0A 2.4239E+05 14 14 6.4A43E,04 5.9310E+07! 15 6.4953E+04 3 1.7447F+ca 3.4803E*06 3 3 2.7905E+04 3.4A03F+06 15 15 7.0776E+ns 5.A810E+07! 16 7.0776E+04 6.52A'E+07[ A ?. 79 05E + 0 s. 8.a6A6E+06 6.52A3E+07I 8.4666E+06 16 16 7.6400F+04 7.?b75E*071 4 4

2. 441:w + o t 5

2.4933E+64( l.36?0E+07 17 7.6900F+c4 1 _l 7./675E+07! 5 5 ?.0951E 04 1.36?nE+07; 17 17 8.447AF+n4 8.ll32E+07! 18 8.4A74F+pt. 6 2.coS3E+04 1.9144E+07l 1.nl44F+07' 13 1A 9.4191F nt i A.ll12E+07 9.61,:35+04i9.0953E+07' 6 6 3.2966e.n4 7 l

3. 29 A6E + (;4 2.?l07E+07; 19 i

,9.1953E+07, 7 7 3,7420c+nn 2.?lo7E+07' 19 19 1.0563e+0c A 3.7090F.04 2.A044e+07' 20 1,ng;3F*qc, 1.re?99E+0B 2.6044E+07f 20 pa 1 17alg.qc 1 0295E+08 21 1.17416 0x 1.1629E+0S 8 A 4.1499F*nc 9 c.16dPF+04 3.9314E+07;

3. 0'119E + 07 l 21 71 1.2471F+n9 1.16F9E+0A in 4.??A0E*04 3.4855E+07 72 1.2071E-0; 1.32"cE+08 9

9 4.auqF.on f-1.4097e+o;!1.124nE+0S yy

t. 7 7 7 2 E
  • 0 /. ' 3.4A55E+07 22

?? t i 4. 3 7 7 2 F + 0 t..' 3.0370E+07 23 1.4097F+n51 1.4097E+0B 10 10 I1 11 - 11 A. 49s o F. 0 t. 3.4374D 07 23 P1 1.53?ne.n9 1.'50 47 E + 0 6 oa 1.53?qF*c;' 1.71 ACE +0e 4.778FF+07 4.6cG3e+na 1? l 4.3798E+07' 24 24 1.6>2c3F + 0c 1.7144E+0F 25 1.6441E+0e 1 4494E+0F L_J 12 12 E.1 "3r+04 5.14';3F +n4 l 4.n271E + 07, 11 M iib.d p.LJ IN i nE l l

i 08 iI A-Il - SEISMIC RESPONSE RESULTS LACBVR STACK l MODEL 3 - (STIFFER FOUNDATION SPRING) l SEISMIC SHEAR FORCE AND MOMENT 3ESPONSE ~ MAXIMUM MA.X1 MUM MAX 1 MUM MAX 1 MUM MEMBER NODF SHEAR FORCE MOMENT MEMBER NODE SHEAR FORCE MOMENT j ,.. (IN L.BS) NO. NO. (LBS) (IN LBS) NO. NO.. (LBS.) 5.2179E+c4' 4.6762E+07

  • 1 1

3.60a3r+04 2.5255E-05l 13 13 P 3.6033F +03 2.1650E+05 14 ; 5.2179E +04 5.1692E+07 ~... I 2 2 1.5610r.04l 2.1650E+05 14 14 5.7869E*04 5.165PE+07 15 l 5.736CE+0s 5.7096E+07 M .1. 5 6 1 0 F + o 4 [ 3. 0 2 9 5 E + 0 6 3 f 3 3 2.3147E+04 3.0255E+06 15 15 6.4901E+04 5.7056E+07, 6.31 4E+07I 4

2. 31 -17F + n 4 7 0971E+06 16 6.4501E+04 W

I 4 4 2.674FE+04 7.0471E+06 16 16 7.2277F+04 6.3184E+07 17 7.2777E*04 7.0313E+07 ~ > - 5 2.6744F+04 1.1440E+07 5 5 3.n146:*94 1.1440E+07 17 17 A. '18 7*-;r + 0 4 7. " 3 '4 3!". + 0 7 4 3.0146r*c4 1.5914E*07 In A.0P?5F+6e 7.?S12E+07 6 6 3.2144E+04 1.5419E+07 la 18 4.9594E+04 7. o.6 7 2 E

  • 0 7 ;r 7

3.21<4F+04' 2.0473E+07 19 6.0559E+na S.M43E+G7 I 7 7 3.301Ar+n4 2.Cuo1E+07 lo 19 o.n196E+na B. ':9 4 3 E + 0 7 4 3.301Ar*04

2. 4 9';4E + 0 7 20
9. P.10 6F + 0 4. l.. ^ 0 4 0 E + 0 8 l

a R 3.4497 +c.4

2. t.094E + 0 7 20 20 1.0676F+09 1.0040E*08 l.0676F+0s;1 1445E+08
3. c '; 7 : + a t.
2. '12 96 E + 0 7 21 _'

o 9 9 9 3.inACE*n4, 2. o ?'16 E + 0 7 21 21 1.1916E+09 1.1445E

  • 08,

22 1.1916E+0S 1.29A6E+08 10 3.7650F+naj 3.1509E+07 l1.P20~r+09,1.?966E+08 10 10 4. 019 D F + 0 '. 3.350RE+07 22 22 4.0VdF + 04 !.7813E+07 23 ! 1 2205F+99 1.46c4E+08 ; l 11 1.~10 7 0 r + 05 ' l.46 '24E + 0 8, 11 11 4.3234F*n4 '4. 7 313E + 0 7 23 73 4 I? 4.3224E*ct 4.2204E+07 24 1.3070E+04 1.6597E+08' M i 4.71$AF.04 4.??n4E+07l 24 24 1.3 446r + c; 1.%',7E + 0 8 i I 12 12 29 1.3ac6F+0c:,1.95A9E+08 11 k 4.714ar+nn 4. 6 7 f,2 E + 0 7 i h a lar

A Ill - STRUCTURAL CALCULAT10flS LACBWR STACK - ALLOWABLE OVERTURHitlG MOMENT The allowable overturning moment carrying capacity of various crossections } of the LACBWR stack are calculated using the equations and procedures described in Section 6.2.1. The results of the structural calculations are summarized in Table A lit. A typical structural calculation is shown below: Member No. 5, Node No. 6: p_,, (Refer to section 6.2.1 for nomenclature) 6 in. 105.6 in,; Vall Thickness, tc = Outside diameter = 101,6 in. 6.0 in. ; 2R 30 #4; A = C Reinforcement = = 3 0.0188 in.2; f'c 3 5 ksi. = t -- t = b 1.15 x 40 ksi (15 percent increase for dynamic loading) Cy = Using Equation 11

1. 4 t+

3.5 x 6.0 +y (f "- ) x (f - ) ~ 2x 1.15 x 40 x 0.0188 X 1 75445 i9 ?, (x - 1) 4 - 1) 0 80*294 O 2 (x + 1) radians = 9u p + 1) Using Equations 12, 13, 14 and 15 2

1. W 5 x 3.5 (101.6) 6 (Sin (90 90.294)

(90 _3.294) y x Mc = 4 190 Sin 80.294} 127.06 k-in. = 2 } ISI"O +

  • D+(
  • )

+ M t 190 h 8+ n Sin 80 294} 13.828.9 k-in. = 113.61 101.6 Sin 80.29" = 5.688.8 K-in. WR Sin 0 x M = = D.W. t 2 Allowable Overturning Moment ti 127 06 + 13,828.9 + 5688.8 - 19644.8 k-In. n = i nL_d

  • -~- -

1_ apt f f Ill - l ACBWR STACK Att0WABLE OVERTURrigg MONENs lie I N - NODE 0.0. sc FORCE-1- 21-ts X 0 Mc ttt Mc + lit DEAD VT Ng,y N NO. (!N) (lN) MENT ( HU flN) (IN) (DEG) (T-lN) (K-IN) (K-IN) f(IPS (K-IN) (K-lN{ I 85.6 6.0 24r4 4.3 81.6 0.0187 20.284 81.54 54.09 7741.05 7795.1 0 0 7795.8 2 86.25 6.0 24,8 4.8 82.25 0.0186 20.393 81.59 53.99 7823.77 7877.8 7.82 292.69 8I70.5-- 3 91.0 6.0 24 4 4.0 87.0 0.0176 _21.552 82.02 51.62 8291.45 8343.1 32.15 1274.2 9617.3 ] 4 95.75 6.0 2544 5.0 91.75 0.0173 21.926 82.15 54.67 9067.11 9121.8 57.SE-2419.9 18548.7 5 100.6 6.0 28,4 5.6 l 96.6 a.0185 20.503 81.63 72 97 10734 % 10807.9 65.01 3737.3 I I 45'* 5.0 6 105.6 6.0 30/4 0.0 101.6 0.0683 20.676 81.50 65 05 12063.69 12 48.7 113.61 5'51.4 17400.6 07.5449 Lo. Nd 027.00 03828.",) (113955.9 E i88.8) 09644.8) 180.6 6.0 32/4 6.4 100.6 l 0.0191 19.859 St.37 97.93 13487.81 13585.7 143.69 6966.21 20558.9 i b7.269) e 3.1 t 75 045.69 05459.9) 0 5605.Sc) (7545.71) (23 51.4) ! AN 60.',15 74.64 602.72 26768.72 27371.4 175.24 8674.8 36046.2 8 415.6 6.0 4015 12.- .ti.6 l~ lN ' l p l Ar6 73 1492.35 38665.12 53587.5 208.26 10481.8 64069.3 9 120.6 6.0 7.90:, 1 I 3 2642.46 53737.42 56379.9 244.19 13102.7 69482.6 lo 130.6 6.25 l 52 6 l 12 l-F l 6.872 i 11 140.6 6.50 l46=7 l-1 I 2 6.391 35 ,853.36 69283.25 73136.6 284.63 16294.0 89430.6 i 12 150.6 l 6.37.;l527 l : n " j 4643.06 84068. % 88412.0 330.06 20292.3 10E104.5 e

f. 42c 13 160.6 7.25 ALE !-

. E: 5445.00 100321.70 105766.7 381.78 25114.5 13cS81.2 14 170.6 E.12' 53.S l .En 504.56 122034.47 128039.0 lni.17 31105.6 639141.6 i '[.a 15 180.6 9.c 54r8 l 42 it 7.395 57 6103.60 141096.24 147199.8 ..l.13 38651.5 185851.3 l q-16 190.6 90 58:8 L. li. 7.27' 7. 7:21.49 159883.18 167004.7 589.16 46971.0 213975.7 6 e ~'] 17 200.6 9.0 61.'8 45.i g Q E 1 . 2f '. 7851.13 177079.17 184930.3 678.6 56412.9

28. l F.'

j 18 212.6 9.0 63 8 4- ' 4 M. 8235.84 194583.10 202818.9 758.9 67897.4 270716.3 19 224.6 9.0 67 8 52.3i! 220.t. o.0 M l 7.447 9366.54 238891.75 228258.3 851.5 80499.0 308757.3 e 4 20 236.6 9.825 68t8 53.721 232.6 l 9.07M i 7.649 9 9192.18 235446.13 244638.3 950.39 95347.3 339985.6 21 248.6 9.25 6958 54.51l244.0 07%l8.24S 4 9033.62 252395.70 261429.3 1055.99 112028.3 373457.6 22 260.6 9.375 8917 53.4 256.6 l o.0662 l 8.953 i.i c2 8093.65 261255.14 269348.8 li67.79 131035 2 40038a.0 f -4 t-23 272.6 9.5 86/7 51.6 I 268.6 l 0.0/11 9.829 i _ 6 6991.41 266110.16 273101.6 1287.29 152407.6 425509.2 6 0.0545f16.240 l t '6 2801.32 265328.39 268129.7 1448.99 183933.4 452063.3 24 284.6 14.0 80!7 43.0 280.6 25 296.6 15.0 80/7 4 L 's 292.6 0.0522 Ilk l66 2376.15 277169.42 279545.5 1642.32 218087.8 497633.3 N ant.c s in ; ir o nt lw. i a. r at e. 'on t.. c alculat e st mio ith 15 percent increase i vic td st ress value of is is.t m t i n

  • I f r.i a..

is I hqucal e i.o.

e R 3 APPENDlX B GENOA 3 STACK - INPUT DATA,- RESPONSE RE!ULTS AND STRUCTURAL CALCULATIONS M N B-1 INPUT DATA t ]J W Lumped Weight l Member Prope'rties Foundation Spring Constants Response Spectrum W ~ SEISMIC RESPONSE RESULTS ) B-ll /- Displacement Response Acceleration Response Moment and Shear Force Response STRUCTUPAL CALCULATIONS M B-lli LJ Allowable Overturning Moment 51 lui lul IEE ' 55 rus ' ' ~ ' '~ ~ -,, - _ _. _,, _ _ _ _

L,s M .- J 4 n.'* B lNPUT DATA . GENOA 3 STACK LUt1 PED VEIGHT NODE NO. LUMPED WElGHT (LBS) N 1 .!1625E+09 2 4715ME+09 L 't 79144E+0C 4 74P15E+09 5 7AP77E+04 .74"$'74E+09 m 6 '~ 7 .R0400E*05 8 974/?F+09 ~ ~~ 9 24cP1E+09 10 99301E+09 11 0676LE+09 19 .c0704E+0c 13 .QPP.onF + 0c 14 .?c76AF+09 ~ 19 ~ .o7977E+09 ~ 16 .10 0" GF + 0.6 17 .lo309E+06 ~ ta .10569E+06 to .11906E+06 70 .1?A24F+06 21 .]7112F.+06 ?? .14??AE+06 77 .19966E+0A ?4 .16CAAE+06 La PG .1945hE+0A PA .197A7E+06 ~ - 97 .p1166E+cA 28 .P72?AE+06 29 3596'E+06 ._.y. .3?633F+06 11 .419.63F + 0 6 12 4799r.E.06 7.7 400c0E+06 14 .56110E+06 U '45 4P93PE+07 j 09707E+07 k EllMH A T i nt-i .~ (E 1 - o

IN B INPUT DATA GENOA 3 STACK HEMBER PROPERTIES M - OUTSIDE" - POLAR M0tiEtlT MOMENT-OF-- lllER{)I A itEtlBER JOINT DI AMETER THICKilESS LENGTH AREA 0F INEPTIA (IN. 4 (IN) (lN) (!!!) (IN ) (IN. ) No ho P.100E+0?"7 000E+0C 6.000E+01"4,464E+03 4.605E+07-2.302E+07 1.800E+02 4.552E+03 4.882E+07 2.441E+07 ~1 ~ l 2 2 2 3 ?.140E+02 7.000E+00 1.800E+02 4.694E+03 5.319E+07 2.659E+0i 9.200E+02 7.000E+00 P.26'0E + 02"77 000E + 00 1.800E +02'-4.816E +03-5;780E +07 2;iB90E +0 3 7 4 9.320E + 02 7 000E +00 1 800E +02 4.948E+03 6.268E+07 3.134E +01; . y. .. g.. _ g. 1.800E +02 5.090E+03 6.783E+07 3.392E+0 I ~ 5 5 6 9.3 ROE +02 7 000E+00 ?.~440E* 02"7'.0 00F + 0c 1.80 0E + 0 2 - 5.212E +03 7.325E +07 - 3.663E + 0 ~ 6 6 7 4 1.800E+02 5.344E+03 7.895E+07 3.948E+0~i 7 ~ 7'~ R 8 4 9 9.500E+02 7.000E+00 1.800E+0? 5.475F+03 8.494E+07 4.247E+0') o o 10 9.560E+02 7 000E+00 1.800E+02 5.828E+03 1 024E+08 5.119E+0'l 10 ~10~ ~11 P.720E+02-7;000f'+00 1.800E+02 5.740E+03 9.7e2E+07 4.891E+0'l 11 11 12 P.6A0E+02 7 000E+00 1.800E+02 5.872E+03 1 047E+08 5.236E+0' 17 17 ?.740E+0? 7 000E+00 ll 13 14 P.R07E+02 7 iO00E+00 1.800E+02 6.020F+03 1 129E+0B 5.6a3E M ' 'I ? 16 14 15 P.392E+02 7 000E+00 1.800E+02'6.195E+03 1 224E+08 6.119E+0 15 19 16 2.957E+02 7.000E+00 1.800E+02 6.350E+03 1.324E+08 o.622E+0 - 16 16 17 T.032E+02'7 000F+00

1. 8 0 0 E + 0 ? 6. 515E + 0 3 1. 4 3 0E + 0'.i 7.151E +

1.800E+02 6.680E+03 1.542E+09 7.708E+0 7.107F+02 7 000400 '.182E+0F 7.000E+no 1.800E+02 6.845E+03 1.650E+0B 8.293E+0 17 17 (8 18 la 19 1.009E+0 '.297F+0P'B.000F+00 1.800E+02 7.986E+03 2.017E+08 19 lo 70 ?0 Po P1 3.332F+0? 8.000F+00 1.800E+02 4.174E+03 2.163E+06 1.082E+0 '.407E+02 B.250E+00 1.800E+02 8.618E+03 2.383E+08 1.19?E+0 21 P1 ?? '.482E+02'9.000E+n0 1.800E+02 9.592E+03 2.762E+08 l '. 381 E + 0 N'l 22 22 23 Q 23 23 24 1.557E+0? 9.500E+00 1.800Ev02 1.033E+04 3.100E+08 1.550E+0 PA 24 95 7.63CE+0? 1 025E+01 1.800E + 02 1.139E +04 3.563E+08 1.791E +c 25 75 PK -' 7P9E + 02~ 1. 075r + 01 1.800E +02 1.223E + 04 4. 013E+0Fr-2.006E+ q 7.819E+02 1.125E+01 1.800E + 0 2 1. 310F.04 4.50 ?E+08 2.251 E +0 26 26 27 27 27 98 ?.909E+02 1.175E+01 1.800E+02 1.399E*04 5.034F+0S 2.S17E+C J PR 2 R' '99 '.099E+02-1.300E*01 1 800E*02~-1.590E+04 5.C 19E + 0 8--2.959E + c 29 23 70 4 039E+0? 1.500F+01 1.800E+02 1.8S6E+04 7.209E+03 3e605E+c 30 30 11 4.170F+0? 1.H50F+01 1 800E+02 2.3 PIE +04 9.275E*03 4.638E+r 31 ~ 31 72 A.26"E

  • 02-2.4 0 0E +01 1.800F+02 3.0384 04 1.237E*09-6.185E+C 32 3?

'3 6.359E+02 ?.400F+nl 1.800E+02 3.105F+04 1.322E+09 6.608E +r 17 31 14 4.449F*02 2.400F+01 1.800E+02 3.173r+04 1.410E+09 7.04cE+r la la 4.5'9E+02'2.400e+nl 1.800E+02 3.241"+04 1.5n2E+09 7.510E+( af,l x ^

J I B INPUT DATA GENOA 3 STACK - FOUNDATION SPRING STIFFHESS The foundation mat of the GENDA 3 stack is octagonal in shape, as I shown on the H. W. Kellogg Company Drawing No. 6152-ED, and It rests directly on the soII. For the purpose of calculating the stiffness of the foundation springs, the GENOA 3 stack foundation I mat is assumed to be equivalent to a circular base of 75 feetFor The soll properties are taken from Reference 1. diameter. the standard foundation spring, the soll properties correspond to averaged values for boring number 5 and 6 and a shear strain of 0.005 percent (Table 3 1) Using equations 2 and 3 given in Section 6.1.2 Horizontal Spring Stiffness Kx= 32(1-D) G 7-6 M 8 G 2( } Rocking Spring Stiffness K 9= 3 (I-p) where: Shear Modulus of Soil = 2 51 x 10 lbs/ft.2 6 G = (Tables 3.1 and 2.2 of Reference 1) Poisson' Ratio = 0.4 (Calculated from data given 11 = in Table 3.1) Y= Effective Radius of Foundation Hat = 37.5 feet 6 K2 = 32 (1-0.4) 2.51 x 10 x 37.5 7 - 8 x 0.4 6 6 Kx = 475.6 x 10 lbs/ft. - 39.63 x 10 lbs/In. K9= 8 x 2.51 x 10 (37.5)3 3 (1 - 0.4) 9 Ke = 588.28 x 10 lbs.ft./ radian 9 Ke = 7059 38 x 10 lbs.in./ radian e 4 8 W I

.l E For Standard Foundation Springs (Model 1): Kx = 39.63 x 10 lbs/in. 9 Ke = 7059 38 x 10 lbs.in./ radian I For Softer Foundation Springs (Model 2): 1.0 x 10 lbs/ft. G = 6 1.0 x 39.63 x 10 Kx = 2.51 7 1.5789 x 10 lbs/in. Kx = 9 Ko = R x 7059 38 x 10 2.Si 2.8125 x 10 lbs.in./ radian 12 Kty = For Stiffer Foundation Springs (Model 3): lbs/ft.2 3 765 x 10 G = 6 1.5 x 39.63 x 10 Ky = 7 Kx = 5 9445 x 10 lbs./in. 9 Ke = 1.5 x 7059 38 x 10 13 Ke = 1.0589 x 10 lbs.in./ radian i 4I i 4 h, I f l

l l 1 .s s, B INPUT DATA t GENOA 3 STACK - RESPONSE SPECTRUtt l. i, s f M. '1 I .777800 ~ 1 ecFO = 040000. g., F C c * = 3.091?0n .joengq, gneCT A = 2 rorq = .t40003. corCToa = 6.959200 3 5 siFO = 19.320000 250000. SecCT32 = 4 edF0 = 28.207?00 5 euFO = 500004 So CT23 = 4 4. 4 3 A r. 0 0 .r-00()nn. c es r C T o *. = 6 rpFO = 50.23?q00 . n 0 0 0 0 0.. <,9 c C T a a. = 7 rpF0 = 5 9. 3 H ':f'O 1, n p a g n.). e n r CT *M = l ri '7FU = 86.ti44a00 9

PFG =

1.:0 0 0 p i., ge r c r c,, = 109.197c00 c ecT :- = 10 rpro = ? nnnonn. 12 7.S !,,.ac II eocc =

2. i: n n c o ri,

c, ct: a. = ~* 123.6'e 00 ,,nnnona, qc'r C T r '. = I? r.irn = r i s. c a, n g ruFO = 11!.99V.SD

n e c o n i.,
-c rT 2 - =

Ic . r e. = ll?.04',n.Dt 6. r.c n n g., c: CT:- = l' .-uF.. = 10,:,2 s o n a r. <-. r r r., = l '- rsec - a,nnanol. 95.60^o^n t 0. 0 0 a. 9 0 n. sn CT-r. = 17 e vFo = 7 7. 2 a n e.m.6 14 erF'=

14. <19 M o n:.

qccci. a = 65.69.9n00 i': rurr = n. n n o c c :'. nrrCr r = 5 6. 0 2.p 0 0 ? r, coro = n; p o n o y. c-erT . = a6,36:nnn , ?, n n n n n :.. st. ci:> r = 31 rort = <. 6. 3 6 m n D

  • G.nn1nM'.

c n = C ' s.' = ?? ' A F . = t I I W W W __ i

4 B-ll - SEISMIC RESPONSE RESULTS GENOA 3 STACK - SEISMIC DISPLACEt1ENT RESPCNSE I Maximum Displacement (IN) MODZL 1 MODEL 2 MODEL 3 STANDARD SOFTER STIFFER l NODE FOUNDATION FOUNDATION FOUNDATICM l NO. SPRINGS SPRINGS SPRINGS 1 4.690cAc70c+00] o.7nco,o74e.no n.a607,op4F+00 s ? A.nacAq,per.no o,coqq,ipor.On. 9.6791c494F+00 o.nsa,o nor.co' 9.16c a.a c c or + 0 c 1 a.'70,nnece+n0 3 4 7.a3427714r+00 9.c19n4'19e+00 7.4719%P47F+00 5 7.'3A71aane.no o.n10co,o2e.oq 7 1907popsr+00 A 6.049&oAcer+0p 7.nc7panger+00 6.AOQ474A7r+00 o 7 A.,71,ccETe+0n 6.o9741o41r+0C 6.3797an gr+00 1 e c.ollAG769F+00 6.91?^71%'C+0' N.77197c797+00 o s.4Actajogr.pn '.0440'; Ice +0r 5.7324371eF+00 lo 5'.7'U p o 661 C - 6ii~ '94'0117'#*00 4.on7^41C'E+00 I 11 4.sppenA44r+00 9.I'O'R'2'#*00 4.4c77417Cr+00 }? 4.pp74 407r+0n, 4.7477C"14C+00 4.In314epor+00 ]i 3.ocj4,c,2c+po'~ 4.74746'M r+00 3.7177n777c+00 14 3.4947'c77F+0c 3.070474 A7c + on - 3.qng,o167r+00 ]; 7.1 c 7c,4 7 71 r. p n l 3.6141040lr+00 T. at ?'> 7 t* 7 7 F + 0 0 7 3.7774707'r+00 P. 7 '. ' A 2 o 71 r + /> 0 1A P 97474o07r+00 17 P.4.4'l'.471nr+00 2*%0'"? #*00 P.44404777F+00 1 14. P.fr.P3ncAs.F.00 P.'67^47 Car +00 p.1A-toloter.00 .lo ?? o p c e. p nTr.'cT)~ 2.'A617P070 0n 1 013noqnAr+00 20 1.7Alc7674r+0n 0 1977771oe co 1. 4 7 6 7 1 o ti o r + 0 0 1 21 ).cinA,no,r.On 1.naA7217ar.0c 1.4cAcAnsar.00 ?> T. Pi, n o 74 p r p o-1.(Alnipine.nn 1.ose,,iee.7F+00 23 1.144Ap71pr+nn 1 4%+11'73c 0n 1.171 r* 1n. A r + 0 () 1 Ps G.79Apoc7ce_01 1.'A%n7cn7c+0h 0.na71-occF-01 24 A. i A G c A l-r c y 1.ns'o7Aecce+0p 7.ci70,acer oj 26 6.7;ooAq)pr_01 9.24PA1 09pc-01 6.1'A7?oA6r-01 1 27 5.cosc'ainr_01 7. 0 1 'l o n 1 1 c e - 0 1 4.09Pm*p11F-01 p sr 4 ;3 0I ovo p m e- 01~, 6.4947e,17ar_01

3. m o,01ar_01 Po 3 4343,pocr_01 : 5.9473n19Pr-n1 P.C4491947F-01 30 P.41364'o'F-01 4.27PC7047"-01.

2.231773 6r-01 1 71 1.6Tc725in c 1-7 4S"' &#-01 1 5 '* ^

  • c r-01 o

?.66 M 7241r-01

1. '17 " 4 0c par _91 3?
1. 'no,o7e o r 0 )

37 P.c7CAo71or_op ; 1.'4H74nA?r-01 6.96P'134'r-OP 8 34 4".c7ooce.oir-np! I.l*0'r-01 3.in%77'20c-OP 3s p. e. n p o.2 < 1 r e _ n p ' 7. '" 1 ? A ' ' i c n '> 1.c, 97 poor <)P I I I N

l B SEISMIC RESPONSE RESULTS i GENOA 3 STACK - SElSMIC ACCELERATION RESPONSE

f MODEL 1 MODEL 2 MODEL 3 r

SOFTE!1 STIFFER ~ f STANDARD FOUNDATION SPRINGS g FOUNDATION SPRINGS FOUNDATION SP*llNGS 1 NODE ACCELERATION n00E ACCELERATION N0DE ACCELERATION ~ ito. (tu/SEC ) NO. (IN/SEC ) 40. (IN/SEC ) [ 2 2 2 f 3.40AlpAnor+02! I f 1 3 40A774a^r+0P~ -- 3.acesin7er+0p 1-1 o 3.'97400PDF+02 { ? 3 17421AAoF+0? / 3.1497qA7ar+0? 7 ?. 04 Sooc1'e + n?. 3 p.2317,ccoF+02 1 1.oPO'o741F*02 I 4 1.?YaT Wi M 0?" 4 1.413a4opce+02 4 1.onto64989+02 I 5 1 11344cDaF+0? s o.1703194Ar+01 5 1 243a424Ar+02 6 1.45P opp 07r+0?, 6 9.ocosocnar.nl 6 1.<5107An4F+0F 7 }.7n4n4) N !?ip] 7 1,33q6o7Acr+0? 7 1 6A3c7347F+0? A 1 745774 Ear +0P. A 1.A1667464r+0F A 1.An3Aq79ar+op o 1.Ala7anAor+0? o 1 74941anar+0p o 1 441gv7opr+0g 1 44A0 a7trW p] 10 1 v7a437s7c.op in 1,,4 :g n 4,7a e. 0 2 f- -10 11 1.61176Ar+02 1 11 1.'717no7or+02 11 1 49756796F+0F 12 1 414'c743r + 02 ! 17 1, '.a 174 c47F + 02 IP

1. ;' 47.wo'r + n ?

13 f Win A vc o r + nW 11 1,74s77479F+02 17 1.cosno726r+02 14 1.c9114791F+02 l 14 1.'73pa'7or+07 14 1.C61cao6AF+02 14 1.90972nPor + 0 2 ' 19 1.p774Ao71r+0? 15 1 47engnacr+02 16 1 r~1'?ff73Fe' TOP' 16 1 1776f.4?67+0? 16 1.'79a7oP79+02 ( 17 1.4137o14ar+0? ; 17 1.'7aapaA74r+0? 17 1 1'cs,o77e+02 14 1.71074447F+np in 1 4nat:7?or n2 la 1.'7677ao'F+02 - is' ).N En'6cfro2-19 1.,qsianpar.Op to 1 14994A41r+n? 1 70 1.osic7acor+07 Po 1.1774nc;!r+0p 20 1 7706a>94r+n? P1 1.oa4c Apave+0p. 71 1.76077194F+0? 21 1.70P'79377+02 2?~ - ~l~57 84T3nr.02~ 22 1 12411oo7c.o? 22 1.747c?'A>r+nP 23 1.23572457r+0? 23 1.lo77ac14F+o? 23 1.1407n'17e+02 24 1.140A?41ar+n2 ?^ 1.*'ll74#.o? 24 1 1257127"r+0? 97 1.cca7Ac57e+0p PG 1.co?oA917r+0? 2'c 1 1}ovvpAor+07-1 PA 1 64424"47e+n? PA 1.r57A741cc+n? 26 1 063ac4A7r+0? 2_7 1.0164049nr+0? 77 1 07047144r+0? 27 1.6117000'e+0F _28 9.810142pe+01 ; PA 1.nq97179'F+02 2R 9.AA1P7170F+01 '20 'o.757c15A0r+01 29

4. :i614 a H9r + 01 24 9.n71477?ce+01

- 30 S.605111P0E+01 10 9.17o4 777e+0) 30 P.7914A400r+01 7.G764.olaF+01 31 E. 9 9 9 c 7 4 7 Ar + 5)~ 31 8.9AAonc?'r+01 31 37 7.4too44AAr+n) 3P P.69A101177+q1 3P A.c3'oa7oce.nl 37 6.7053c77pr+01: 33 7.<4CO2474r+01 31 6.14nonAmhe+01 74 7.1 A"*4 A4o4c.n l 34 %.Glo7717nr.01 6.731 ?i Ap7r + n )- }i 34 'S 6.'n4?o11Ac.qi 35 S.nn5Sla11r+01 5.777444c7e.0j 39 ( 4 i

=~ ; B-Il - SEISMIC RESPONSE RESULTS ~ ~ GENOA 3 STACK - SEISHIC SHEAR FORCE isHD M0MEtlT RESPONSE i~~ f tCDEL 1 - STANDA20 FOUNDATION SPRINGS MAXIMUM MAXIMUM MAXIttt;M ltAXIMUM l SHEAR FORCE 110 MENT ttEMBER NGOE SHEAR FORCE MOMENT - ~ r HEMBER NODES (l 85 ) (IN LBS) NO. NOS. (LBS) (IN LBS) . nor Nos. i ~ -j ") 1.2370 RIM. 7 T74'1F-04 la la 1.7047c+n; P ~P 2 ~fTGIIS~

_J. -

2 1.23'40F + n a 7.3990E*G5, 19 1.7943c+nc 2.3474E+08 i "P 2 5.0474F+04 7.3@~cE465 'l 9' 1.E77TE+n:I 2;V.14'E i1Wj T ~ 19 3 n.047cF*na

9. A 24 0e + 0i, 20 1.A771F+0c 2.40ppe+0a 7 7*~2 oE+06 70 90
i.. o c q u r. n c

~239260C T 3 f.~P hW*~0 E W 4 P.R029E+n4 2.c6'cE+07. 21

1. Q A q G F '+ 0 c 2.62c2E+08-2.c6 4F+07 pl 91 p.ns nE+ac'~~7.A'2 M Es0W 3

4 4 1.7i7 A 4 F + 0 9 j 9 1.97A4e+n; 4.4ac0F+07 pp 2. n % 2 0 F'+ p ; 2'.7340F*03, ~ '.1,s t e 6c-s.43cor 07 M' -- y p -~-'- p",1 Al l r.~5 c ~ ~2. t A fo c V0 F 3 3 c A 1.13cle+nc 6.4 6 C '}F + 07 /3 '>.16 91 r + n c ' 2.140RE+08 /- ~ 4 1.12C1F+cc 7". l. 6 4 3 F + 0 7' p3 p3 p 31gge.nq ~~2.~C9 P F A 0 8 ~ ~ 24 p.11cce+en 3.143<E+0a 7 ].locle nc 8..394F+07. - - - - - - 3, ) 7 3, e ; p,.- p--.3 3 7 uc g7j ,.3 y p j;,,ocq q q 2 3;T435FTOA-9

1. l p 17e + "c-9.34'9E*4 as 2.4ccee.nc 3.79'AE+08

~ ~ j s. c r e ; n c "9'. r/4 A g e. 0 7 yg-- 7q - y,7 nl i c '+7 c' 7 3. 35 7 A E4 0 3 - p-a j

1. l Ae 6e + n% ; 1.147AF.0*'

pc p. 7 01. i c + n c 3.4439F+08 o [.y., y,gg, .. _.... p ; o,,,, e, n c' ' ~3 '.V, ' 4 F0 8 ' __..g.....,-.-- 10

1. Pac'e+nc 1.99'tE+0A 77 p,opoor.nc

'3.;67nr+0a -3.1 c c ? e +M ~ 3'.'c'6'7 0 E + 0 F 1 -jo' In- - j, > p,, e m 1 ".w, c q. 0, -77 77 11 1.~4P11c+nc 1.41;1c+0"; pp 4. l c e ' e + n '- 4.170nF+09 11 ~ 11 1.703r+0% 1.'41'l#+0A _ M....'. 4 0 '* ' F '+ n c ~ 4'.'17 7 0 E

  • 0 A !

Yd 1? I. '1 7 D o e. n c 1.437'e+0A PQ 7.4647e.nc 4.epqpe+0a } 12 19 1.73';c*nx

1. E N E + 0 A E'

N 3.6""F'^e 4.CP.cPr+08 l' l.1895F+0E 1.'A70F+04 '10 3.63e3e+ne 4.7770,e 0a 'Ti'----}1* ) 4 n,7'c. n q ' T 3470e.q 'O 'O ,, /*. 0 2 i l F * ^ c' 4.OP7DV*9A 14 1.4&?7e sc

1. 7411c +nHl
5. wave.os' 11 4.nPo 7c.n :

'i.497AcWibf~w11F+q8. T4~~ ~ "i-i" 31_.. __. I '^#7e'+"c 5 ; 3 " P '# + 0 F5

  1. +08'l

} 32 4.4'6 3r + cc, S.onn4E+on 15

1. 4'17 Ac
  • n c
1. "-3 ' O is yc-i.cn u e.4= c m,ne.oe 2

2' ' '. "7C"+ne' 7.cnn4E+08

1. c o ' 3 e + o '; ' 2.000RE+0a 4.057Cc+ng 6.4e,p kE + 0 a l '-

' l' A 16 1.'A610e.qc~-~2 ~ Tic'q 8 F. 0 F ~ 6.igosc+0w 33 3' c.5p?ce+ne j 17 1.Aalce.o; 2.19qpe.0a 34 5.4P70r.q: 7.1Alpr.ca 17 "f7 ~ 1.7^'1c.n; ~~P.*dooF.ila' 3" 36 c. 4)?e.ac 7.1Alpr+0A la 1.79,le.nc 2..,g,v e.na c.c4??c.nc 7. :.1 2 ; F. c 4

e ii - ac aniu n c.). u.. .. s u i..., -m =. - - - e,~.c, GENDA 3 STACK - SEISMIC SHEAR FORCE AND M0HENT RESPONSE i' ~ .4 N - ,7 l'00EL 2 - STAM" ARD FOU?iDATION SPRlHGS /- E i- MAXlMUM ltAXiMUM MAXIHUM MAXlMUM ER N00gs SHEAR FORCE 110HENT MEMBER NODE SHEAR FORCE 110 MENT i f. go. 1 HQS., (LBS ). .(IN LBS ) NO. NOS. (LBS) (IN LBS) 3 1.p t ic r c 9.'.P*9E-05,' 19 10- }.ol/ar+ec 2.4470F+08

  1. Zf1 P.A44AE+08

?

1. 21 # ~~ r
  • c t.

7.8170'+09 20 g.07?4F+nr 1 ~2 ~~ P C. 0 ~ ' '4 F + 0 4 7.'l70E*05 70 PO E.0?Osr.9q

2..,4 9 8 E + 0 8 -

t 7 9.0641F*r4 9.9473E*06 ?1 P.n30Ar+0C 2.7471E+08 3 3

9. p p. i e. n,.

o. 4 4 7 3t' + 0 's 21 71 p.14 4 C r.. e-P.7471F+08 2 p 4 o ?ncar.c4 2.641?E+07 pp P.14A5e+o; 2.oSP8E+08i 4 4 1.177ce.ne ?.A41?E+0~ PP pp p.27spr.oc ?.45?PE+08 5 1.17cor.nc 4.796AF+0' P3 2.P79?F*04 3.12 0 0 E + 0 H' S 9 1.?4'5E.nq 4.79 APE +0' 23 73 P.4126F+n; 3.JPonE+c8 5 1.pcc4r.ns 7...n42E+07 94 2.4126r+0; 3.1017E+08 A i. j. p o c a r. n c. 7. n 'i e :'F + 0 7-24 74 P. 5 e 7 4 r. n e. 3.1017E+08 7

1. p 'N ' F. e c 9.13 74 F + 0 7 79 2.957c.F+ng 3.5007E+08 1

7 7 1.p u tr.n-9.7374F*07 25 74 p.71-Ir.nq

3. Con 7r+08 2n P.7141F+irn 3.7146E+08 4

1.?blr+r< l.1411F*09 A F 1.1751r.n 1.1411F+0F 26 76 p;sqvr.n 3.7]o67 09 e j,j712e.n-1.7]qnE+0s ,27 p, g g 3, q. n c, 3.n670E+08: e c 1, j e: o r.., =

1.,1.10 F + 0 A y7 7,og ce.n 3. '3 6 2 0 E + 0 P 4..'3.9E+0S i c.

j.1,,r:r. : 1.c.5..8E*09 /c ?. n ::- 4F + 0c 1.****+0" pA 74 3. ~2. u r + C-4.03?qE+q5 1.?',<Cren-10 to c. f r. 1.E'"4"*03 24 7. 7 4 4 r..* *- 4.El A3r + 9 1. ;, )1 l 11 11 1. ' 4 I r

  • 0 5-1.'"5'"'69 29 70 1.6474r.n; 4.c.3 A 3E + 08' i

IP

1. 3'W E. a.;

1.r-971F.0F 30 7.6.74F+nc 4.480lr+08! ) 12 ja 1.4c4sr.c:

1.
  • H 71 E. + 0 A 10

'O 4.01Wr.aq 4.18n1E+0R 17 1.444'r+ac 1.7.-P7F+08 71 4. 017 9 r. n e. 5.2713E+0g 13 13

1. ' l ? e ' + v:

1.7dP7"+09 31 41

c.. q s 7 ;r. n r.

9.27 33E +0s)'

1. pigr.0a 37 c,r--

5,77oug.oq la 1.61;rr.ne; d 14 14

1. vi i c. r. ;. g 1.se197+0m 7p j

%, g e, 7 e. n,- g. 7 3r;4 r. g q th

1. 6' '", r. m i:

1.">41F+0-17 s.1:'re.1; 6. ::6snE.qs l i IC 15 1.757'8"*^' I 1.4 541 #

  • 0 d' 7 'l 3 '1 4. 7 9 6 3 r +.i c
6. *:. o n E
  • 0 8 1,,

1. 7 c, r. <. - P. l il 7 nr+G-

1. 4

-;. 7 9. A r. i. ; e.oo6pE.ga 3 ,,.3,,ce.n; 6...i - ? # + ua 1> 1. ),7c: ie.u 2. i e 7 8. c it 4 ,,,.,a ,7 1.7,.. .e i I, v. I 1e iu g,,. 2, -77c.,s < s t 6 )

E-' B SE!SMIC RESPONbt-Mtbutss Q GENOA 3 STACK - SEISMIC SHEAR FORCE AND MOMENT RESPONSE ki __g,- !;COEL 3 - STA*10AR9 F01P10AT10M SPRittGs p(; a ~., _ ? , 7 ~ llAXIMUM MAXIMUM k' SHEAR FORCE 110 MENT ttEMBER NODE SHEAR FORCE MOMENT. 1 ItAX 1tlUM llAXIMUM { l-5 l yNo.; HOS.; (LBS),, ,(!N LBS) 11 0. HOS. (LBS) (IN LBS } k 1 MMSEli NODES rnF l-i E -w~ s.: f 5 2.?044r+0F

2. / 4.P P F + 0 F f h, 781;E+nq u=

l 9.4404E-05' 19 1 j j 1.2n17F+c4 r 7.?l04E*05 7p 1.7a mpr+n-Dl T p

t. pol 7r+c4 i

j 7.0104E+09! po pn 1,97uv+ng 2 44PPE+08 r 2.;R45F*08 [ p p 4.poTir*nc 4.:P82F+06 pg g,97p3r+0= k 3 ! 4.Ralic.c4 1.co^ 2E + 0s. 2.c 44sE + 08 i. ~ A 3 3 ' M.Ana r nc: 9.479PE+06 21 71 4 A.4005F*ne-2.4607E+07 22 1.0 ^2F+ng l2.7309E+0A c s t 4 4

1. n 170F +.ic 2.46n7E+07

?? 22 i ?.1377E*0" 2*734 F'08 ' p.1777r+ns 2.40A9E+08 4.26P4E+07 p3 1.n t 'or +o. N c l p.2908F +ngl 2.C0aoE +08 ~ f c' 4.?674E+07 23 73 6.10Ror+07 pa p.29 car +qc 3.0902E+08, c, e 1.0670c+n A 1.n67ce.9% 6 6 1.nal v+nc 6.1079f*07 P4 74 ?. 47 d l E + n'; 3.c4G2E+08 I 7 1.najar.nc 7.5349F+07 pq p,4791r*ng 3.7149E+c8 i 1 1195r+o5', 7.4399F+07' 25 75 l 2.6715E+nc 3.1149E+0R' P.6715F +09' 3.4GHE +n8 7 7 F 1.ll;se+ng 9.4303F+07 P6 1.17ccr.nc' 9.u303E*07-26 76 P.975Pr+nn 3. ~' 5 '1 A F

  • 0 8 1.1740F+ng 1.0914E+0A 27 p.874PF*nc 3."400F+08 e

a o o o 1.2174"*1E 1.3914E+0A p7 77 1 Inc7F+an 3.wo0E+06 I in }.p174E+cc

1. ?lf-79 + 0e pa 3 loq7F+n, 4.I'D4r*08 e

4.55'*4C+0A 3.'4alF'+n".:. lo 10 1.7C9'*3C I."7F'0" /A PR j) g. pu.cir + ns I.T746F+08 pq 1,34 5 } r + ne 4.CP'1F+08 I c' 4."P?lE*08 11 11 1.7775E+n4 1.1746F+08' po po 1.62??E+n-1

3. Appgr.nc. t 4324E +08' I

17 l 1.2773r+nc~ 1.5394E*08 ,o 12 IP 1.pA70r+nc 1.50C4F+0A 70 3o ?,oq14r.qq 4.4324E+08 1, 1.9.a7qF+0c I.477AE*08 71 7.oS34r+n:; 9.'7#4E+08 13 17 1.3744r.ng, 1.A276F+0R 31 31 4,3A17c+ng

5. 6%4F+n4 14 1.1744r.nc-1.7411r.np 3p 4,3537e.,q s,q1ccy+oa 14 14 1.75"7:.nt 1.7411E*0" 77

'P 4.9'H ic+9" 5.'160"+08 15

1. 3CC 7C + n*;

l**'4R7E*09

e.. g n 4 A r + n e.

A.,IllE+08' 1 u,r,jr.,n

1. %37r+08 33

,3 c.10 7 2 +.v. G.nll!F+09 r 3,. 3,4 x j r. a :; 1.07:9F+0F as c;. i t.' m r + a n 7.17~4'+0a je jq t,c 7 ;,r. v 1.v U o'.q w v. 34 c;, c y, ;,r. n m 7,i7 % r. rig i? .c 7 : pr.r t 2.56'4v+0H 3 r, g, q,.. r. r. o - 7.i' P C + A A 14. je 4 s i7 17 ),4-c.* ?.*46. ' l e' 9 tou e.';ra s j. ), A. t a r., e. r <: 3,'*?AL.h T 1 -- 3 },7 ) p.. r

9 l l 6 i i k l 2 B-1II - STRUCTURAL CALCULAT10NS l GENOA 3 STACK - ALLOVABLE OVERTURNING MOMENT ti i The allowable overturning moment carrying capacity of various cross-E. l sections of GENDA 3 stack are calculated using the equations and I procedure described in Section 2.1. The results of the structural [ i j calculations are summarized in Table B-lit. A typical structurai ? calculation is shown below: i C I F 4 r'. ember No. 8, Node No. 9: l l (Refer to Section 6.2.1 for nomenclature) I ' I 6.0 in.; 2R = 249 0 in. 253 0 in.; wall thickness t = Outside diameter c in.2 gj l = 13.4 in.2 t, = 0.0171 Reinforcement 67 - #4; A 3 1.15 x 40.0 ksi. (15% increase for

l l

4.0 ksi.; Cy I f*c = dynamic loading) [ I = i $l i Using equation 11 i I x (j -e-) (3 + * ) = !.Is I 40 N.0171 (} -e ) = x = 25.718 l 2 x+1) (X+1)_ 83 263 radians = 90 (x-1) 1 ((X-1) = 0 = Using equation 12,13,14 and 15 i 1.445 x 4.0 x (249.0)2 7 Su (90- C MN-Mc = u i (90-80.263)ITSin 80.263 i 180 q 339 36 K.in. / = en-. eI I O. I e 1 ?- I 'i.

= 2 x 1.15 x 40 (249.0)2 0.0171 S m (90+80.263) M t 4 + (90+80.263) TT Sm 70.263 ' 180 = 76091.95 K.In. [ I, M = 566.4 x 249 5680.263 70029.89 K.in. = D.W 2 339 36 + 7,6091 95 + 70029.89 4 A11mable overturning moment M = = 14,6461.2 K. in. I, I sl l 2 I l I

N T /.B L t h 19? - f.ENOA 3 STACK ALLOWABLE OVERTURNING MOMENT ,o - N00E 3.D. tc FM CE-As 2R ts Mc Mt Mc + M t

  • DEAD WT Mo,y M

O N0, ( l *l) (INI PfNT (IN2) (IN) (IN) X (DEC) (K-IN) (K-IN) (K-IN) KlPS (K-INj (K-IN) I I i l 2 211.0 7 58'4 11.6 207 0.0178 28.413 83.88 175.86 47655.69 87831.6 25.25 23?l.6 50222..' 3 28/.6 7 59:4 11 f 213 0.017' 2!'.736 83.95 179.89 49897.71 50077.6 96.37 9389.7 39467.3 16987.2 69326.6 223.0 / 60-4 12.0 219 0.017's 29.0661 8!. 01 184,57 52154.59 52339.2 169.55 w 5 229.0 7 6P4

1.. i 2 2..

0.0675 28.9 63.98 197.77 55364.96 55562.7 244.8 25197.1 80759.6 6 235.0 7 63-4 42.6 236 0.0174 29 0661 64.01 205.35 58026.75 58232.1 322.11 34040.6 92272.7 l 7 241.0 1 64.4 2E 237 0.0172 29.404 S3.72 249.075 60346.49 60595.6 401.48 43506.7 104102.L l 1 8 247.0 7 66-4 i 2L. 0.nl73 29.23L I .4.a5 222.73 63847.0 64070.3 482.91 53688.9 II7759 2 67 4 l 2-l d71 29. .Il 226.E6 66271.39 66498.3 566.4 64532.9 131031.2 9 253.0 i I '. 2 5 ~. 2 6 3) 039 36) (76091.95) (76431.31) (70029.89) 046461.2) a l 65 4 l :: l { 0 72 23 72 288.35 69861.14 70149.5 651.95 76064.8 146164.3 10 259.c i 25 .225) 061.45) (80263.88.) (80625.79) (71711.7) 052337. 5) 1 I 11 265.0 l ~ I 7S 4 2-1 249.26 72Si2.92 73062.2 743.0 88733.6 21795.3 4 l l . i.'i S. 72 316.13 73187.40 73503.5 832.68 101656.1 i175159.6 7 l 72 4 l 12 271.0 i [924.42 13 277.0 7 74:4 2/i [ 3.017t ! 29. 0 115475.8 195410.5 .11 272.69 79662.28 79935.0 c2.5 f n 222 22 - 43 610.76 108818.8 109429.6 1018.48 130269.2 239593.5 14 284.5 7 93-4 6 l o.0265 l 19.r E A4 1066.90 136476.06 137543.0 1115.11 145927.1 21,470.1 15 232.0 7 12044 .c 2P 25..l 0.0314 16.i- . '1 1816.24 169492 90 171309.1 1214.32 162288.0 333597.1 16 299.5 / 94 5 _.i.. I 17 307.0 7 112 0, 3 L 3.., ii 0.03M 13 .3 2916.93 206068.66 208985.6 1316.12 179351.9 388339.5 I. w i l ii.. E 3i4.5 7 inoc6 c

6 5493.i3 264698.73 270i96.9 i420.52 i362:5.7 4664 2.6 3i0.s 4

{ 322 7.5 424.6 l 3 t " <>, 8644.86 332576.6 341226.4 1527.42 213523.2 554744.6 ,, 3,u 324.l % 37 l

3 2:53.5 Au463.2 4:46is.7 i652.22 234729.4 649345.i gy 2a 329.5 8.o ins 7 i

l n.

L s ~ TAPtE B til - GENDA 3 STACK ALLOWABLE OVERTURNING HOMENT (ccetinued) RE I N-NODE o.0. tc F3RCE-As 2R ts 0 Mc Nt Mc+ Mt DEAD WT H H .K-lN) (K-IN) (K-IN) KIPS (K-J (K-lN), No. (lN) (iN) (ANT (IN2) (lN) (IN X (DEG) ( I I 21 337.0 8.0 54!8 74.26 332.0 0.07:2 8.118 70.26 17164.16 466238.4 4S3402.6 1779 92 255855 3 73925' M _._ _ 4 22 344.5 8.5 1C0 8

6. 3r 339.5 1 3.0730 7.8734 69 71 20695.08 532454.7 553149.8 1914.52 280438.1 933587.9 I

<e. a c. 08T 7.586 69 036 25928.00 62582S.2 651748.2 2064.42 307710.1 959458.3 23 352.0 9.25 96:9 90 24 359.375 10.0 lo4P1 t oi M4.0 c.03E 7.737 69 374 27796.60 692610.1 720406.7 2225.12 - 339234.5 1059641.2 I 3/1.- 05 '+ 7 8.01 70.024 27900.9 740360.0 768260 3 2403.82 377240.6 1345501.5 25 368.375 10 5 108'9 la.0 26 377.375 11.0 ll2e9 ' t u.t i 372.0 e.0958 9.296 j 72.517 20637.45 796983.0 817620.5 2594.92 423530.7 1241151.2 I 27 386.375 11.5 116 9

  1. 9 ! 8.575 71.20 28100.0 839925.1 868025.1 2799.62 464484.3 1332509.4 f 9 o?

' ~2.01 26946.05 878311.9 905257.9 3018.32 510513.6 1420271.5 I' 26 395.375 12.0 158-9 29 404.375l14.c l1249 i ./ ... ' t o.::( 73.97 23326.51 953100.8 976427.3 3265.22 575996.I ' 1552423.4 W 413375f16.0 !130-9! i ll.P ~5.48 20745.65 1028512.5 1049258.2 3555 22 639700.2 1688958.4 30 t, 31 422.375 21.0 ,134 9 ! c m i14.83 " 63 13691.16 1096693.7 1 10384.9 3917.92 736786.2 1847171.1 F,_ . 176 10543.79 1125259.5 1135803.3 4392.52 848136.5 2'.o3939.8 32 431.375 i 24.0 134 9 362 10382.45 1150470.6 Ino8st n, 4877.7p o utra i 2:2 tine _t 33 440 375 24.0 13h6 i6 t i i 34 449.375 24.0 133.9 (, _. RM{ 7 622 9966.04 1165197.0 1175163.0 5373.52 1082819.6 2248016.6 l W.a 'cm ! ! C. 5U .9.79 9827.49 1190545.7 1200373.2 5879.92 1209462.0 240f?5.2 35 450.375 t 24.0 133s9 lb. R s.is r.prewnts. red values with 15 percent increase in yielJ l.a 4 - in U r, \\ s t r;., value .. i n t. e c i r.9 teel -i.amic earthquake loadir95. 4 \\ n III cn u}}