ML19321A380
| ML19321A380 | |
| Person / Time | |
|---|---|
| Site: | LaSalle, Zimmer, Shoreham File:Long Island Lighting Company icon.png |
| Issue date: | 06/13/1980 |
| From: | CINCINNATI GAS & ELECTRIC CO., CONSOLIDATED EDISON CO. OF NEW YORK, INC., LONG ISLAND LIGHTING CO. |
| To: | |
| Shared Package | |
| ML19321A376 | List: |
| References | |
| REF-GTECI-A-39, REF-GTECI-CO, TASK-A-39, TASK-OR NUDOCS 8007230263 | |
| Download: ML19321A380 (17) | |
Text
-
a y$
D NTE2O DU CYDON LEAD PLANT GENERDC T-QUENCHER M ET E-2 O D O LO G V - J U N E 13,1960 e
S&W PRESENTATION IN FEBRUARY,1979 SHOWED R/H SEQUENTIAL > SIMULTANEOUS ENTRY IF APPROPRIATE T-Q LOAD DEFINITION USED (LOAD CASE 5, NUREG-0487)
ADDITIONAL INFORMATION REQUESTED RE: LOW FREQUENCY PIPING (PROVIDED IN APRll,1979)-
~
PLANT ANALYZED WAS SNPS CONCLUSION GENERIC
' INTERIM' T-Q LOAD DEFINITION USED FOR STUDY INTERIM DEFINITION BASED ON PP&L LOAD DEFINITION (1.5 X KKB) EXCEPT MULTIPLIER OF 1.1 USED ON j
3 KKB TRACES CONFIRMATION REQUIRED I
i a
i*.
80 17,222
' IDEALIZED' CONTAINHENT ARS R/M -SEQUENTIAL VS, INTERIM SRVALL R/H Sequential S
ei
- -- Below 10 Hz f,
f 0
I I
8
\\
I o<.
g
/
/
Interim (1.1 KKB)
\\
/
\\
f
's /
\\
~'s
\\
0.0
~
O.10 0.20 Period (Sec)
I e
.t D NTZG DU CVDO N LEAD P0_AIMT GEDGEREC T-QUENCHER i
METHODOLOGY - JUIME 13',19 8 0 (cont.)
DEVELOPMENT OF PLANT - UNIQUE T-Q LOAD DEFINITION BASED ON KARLSTEIN DATA METHODOLOGY - LEAD PLANT GENERIC APPLICATION - PLANT-UNIQUE USED BY SNPS TO SUPPORT INTERIM LOAD DEFINITION FOR SNPS,1.1 MULTIPLIER NOT RESTRICTED TO FIRST ACTUATION AND ADS LEAD PLANT GENERIC APPROACH INCLUDES ALL SUBSEQUENT ACTUATION DATA USE OF 1.5 MULTIPLIER EXTREMELY CONSERVATIVE (CONSIDERED EXCESS!VE FOR SNPS)
~
nn. i7 o,,
(
APPLICATION OF TFE KARLSTEIN - TEST MEASUREMENT RESULTS TO THE OVERALL LOADING OF THE CONDENSATION CHAMBER OF A MARK ii PLANT BY VENT CLEARING PROCESSES OF THE PRESSURE REllEF SYSTEM I
- ETH00 0F THE WEIGHTED TRACES
- DEYERMINATION OF THE FREQUENCY MULTILIERS
- DETERMINATION OF THE AMPLITUDE MULTIPlilERS
- SELECTION OF THE BOUNDING TRACES BY MEANS OF PRS
- LOAD DEFINITION BASED ON THE WEIGHTED TRACES
?.
i
.S
- l l
I t
p w-
-+
9 METHOD OF THE }/EIGHTED TRACES BASED UPON PRE.SSURE TIME HISTORIES MEASURED,AT 6,
~ PRESSURE TRANSDUCERS IN THE VICINITY Of T,HE QUENCHER
- SELECTED FOR THE WEIGHTING PROCEDURE PS.1,P5.2,P5.3 - FOR THE FLOOR LOADING PS,4,PS.5,PS.10- FOR THE WALL LOADING WEIGHTING FACTORS r
EFFECT OF THE WElGHTING PROCEDURE i
Y
c N
c l
-l p
j l
i t
A y
,t w
=~-~
n I.
t s
P5.7
=
l l
I i
I PS.9
" P S.6 "PS.9 p
.4
= P4
(
h
_.}'
(}_
- T,_-
P55
}-
{.
- - =.
- l t
i
/
.. d I
P 5.1
/
' P3. A P 5. 3 '
~
P 5.2
/
SSES prototype quencher Karlstein Quencher Tests Allocatio'n of the Pressure Transducer in the Water Spdce of the Test Tank
(_
~
4 i
y I
6 W
?-- --
~~
- g--
l e
s1 i
i l
.e q py.7
- t t
.. \\
l c.
s P E.8 P5.8 P S. 6
~
i P4.4 I
o I
a P 5.10 P 5. S w
i i
l
/
I=
n IP 5.3 P 5.4
~
a 5.2 P 5.1 SSES prototype quencher Karlstein Quencher Tests Allocation of the Pressure Transducer in the Water Space of the Test Tank
.q
=
- f
/
i WEIGHTING FACTORS PA]
9 n
Nt I bA
=. 2 c A l
?
C 8i i
DT
(=4 c.
e f
jl K.represen.tativepressuret[mehistory 5.
E Q total s,urface area.of the part.of the condensation Ul c
~
chamber's boundary subjected to maximum pressure m
5 g
pressure time history of the Karlstein preccure.
X transducersP5.1,PS.2,PS.3,PS.4,PS.5,PS.10 0
3 A = the action syrface areas associated with those t
f pressure transducers h
Ps A2 pw.Aw Index 2 =EoTTOM
~
P = Anr
+ Anr Index W WAu a
i, 2
?
P. f PS 1.+ f $52 + f P.53 2
m, f
p; } P.T4 + f Ps3 + f P&d'0 m
3 m
9
.f FREQUENCY MULTIPLIERS y
b'
- FREQUENCY SHIFT CAUSED BY m
DIFFERENTPOOL'SURFACEAREASPERCUENCHER, C
9:
DIFFERENT SUBMERGENCE DEPTH 0
s
!: $f OlFFER.ENT BACK PRESSURE IN THE CON.DENSATION z
l CHAf0ER AIR SPACE m
COMPARED TO THE.SSES. TESTS
=
m X
~
0 3
- THE 8,ASE FOR THE FREQUENCY.TRANSPOSiT10N IS 3
C 3
KW COMPUTER PROGRAtti VELP0T ii?
KW COMPUTER PROGRAMi K0VlB m
2.
0 3
Ul s
Ul et 0
3 S
l
~
Pra.cHex /
So tu 40 a
,g l f-
~
lt
}
computer codes VE!. POT and Kovie,4 A
' f.,
(d) hk comelry. positron of pressure}c +
WLP0T a volcaity pof61,'ficl giff I
).3-S
( s m s p ; u g ru g e.
i.
of djti.fSidBT$EM)
[i ifCM8kCRPS v
p.[
s,
f i.
(,2 ) tewk geomcfry 7 bl514 (n'qM) r#
posit (ou of k
+
V ELPDT*
wiegfien w.nfact k, d
bubb(*
.(hydrodynctiis Nk.';/s.
rngst) m)
i: 1 i$ '
(3) (gir maC3 inih4 hhble, f
.or wss llow in(6 fke bubble) y Egnifibri4M buMl4 prCSWtt, I
Wedor fe M PS M
,I inif(el condiHows J
i *.
~
L m,
ey a
th ';
NOVlbO 4
3
- i
'f, d t
e A -f%uditdt'es
( %
aepu,c eccasarc.,
i-(det'ael. j'ichiitanli)
(..
s i
f y
,y
.l 1
BASIC E0U T!0NS OF VELP0T
$Q STAT 10 NARY POTEt1TIAL. E01)AT10t.10F AN INC0tlPRESSIBL m
=
1 GylD; 4
=
l]
hV- %)
5' a
}
A =g9' L.
L 2.
(N/BLA)0PERATOR IN KARTE,-
3-
- ~
2 f +gj ff 3
m g
j l
SIAN COORDINATES MAT MEANS: A CYLINDRICAL lie 0 METRY MUST BE CCNVERTE m
X TO A RECTANGULAR GEGETR.Y'. FOR 00R PURPOSES WIS l
EFFECT IS NEGLEGIBLE HERE. q 3
c-5 9
fcc)=-lV-%l 5:
m E
o 3
m IW f(v)ISCALCULATEDBYUSINGTHEMETHODOFI ct FOR A FINITE WATER SPACE m
3 m
l
-w l
i O
KWU Hothod of images l
{Dl R 14 e
e
%4 1
.omr sovace m iwavitsky entseco. '
N
,e si.uio f.
g
,-t
~
m l
a g
m D
tu i
0 8
l
,I P
i s
/!.[
j I
a,,
g
(
7 s
i,
n iu.Acewuaes,';)
Z t.nouacs i:
w some esvees q a swa 4pwe;r A ep asctp c Al.l.
1
'(!i
=
i D
,a\\
I s l
t i
r t
l
/
J h
8 3
g I
g
}
J IMAGESOURCE 7
}
s
..., 8 ~.
am 8
/
'8e e, PQiNT tou,.es i= 4 etvio u oin 4,oA=
=
. Ui e
--.. __.. I. 'm'-
3
.... sun.es b
\\
asAlSQUMCS
,9 i
3 3
. :... c...+.
3.g.., c.... c. -.
e o
4 e
n e
n l
4 I
-i,,
y
(
m immmim. mun
_.=
.y r
F
- t i
.D
\\.* *. i
{ N
. romr.ou.o m w 4,,p w%Meon4Lu
! [. 4*1,;) U,i_ _.._._.
me e-m.,, t.u.
d e
e M6f^rdtAAh vtCa.5,in1
! - l,,. - -
3 g_
V y-.
i c
t s;
e g
e m_'
4
~
~
e e.
^
a
.... ~.....,
l
- r-t e
e e
1
4 velocitt3 Potentia.l of a. Fixed SpbriMl Bah in a. r,wite Tank with Rigid Wars 6 d.n - 0
/.. s - =,
y1 y
'l
~
f.
- 76.. it_
a o
,/
g j
- 9 a
n,-
y c
l A
geuera,Iited coord.ina.tes:
R, R k~
(.F; R R) j s
),
VE OC Lj pol E K"IQ :
3 i
i r,1. t K. ) R= R r 6 region r 1
1, y 4
O,(7; RJ)
/
cpje P'il
~
F. ves ons i
c o
soIa+n'on o} l.a.,4a.ce.'s qga.Koes wnder boundery condi[ionsakys unlu al n,Jan e,>
,tuuk
Pulding Fixed Spherica\\ C#le. in.oc Finite. Toutk with Eigid Wod(s : SoInfiok azol Fiuel Resalb A
Solu}ioM :
R=RN}
R =
R (4 T dgnomic
[d4 tid pressu,re (gemralb A
-lg (V6)*
Apgt,U
=
9 9 A
dpanic
'f aid. pressun das to fk pv.Itzting bu bhie:
.l Qg $d) =
(.O O LF)
'\\
O L
g 5 (,+)
4+ k.R ( Op 4 { N')
"kk-
~'
Et L-()-
noa rdioury acurce lustcdt'oFL change, in. Vste, 0-l-mess -l low pcr sk
\\
out ( a point sourc.e, into %e, gide(
Ff N AL RE S U.LTS :
pcci sec.:-co w.
%caucce.s pre.ssure. - kiw e, - kis (-o riq
0 0
AMPLITUDE MULTIPLIERS s
~
THE AMPI,jTUDE MUL.TIPLIER SHAl.L4 COVER TH.E EXTREME.
INITIAL CONDITIONS EXTRAPOLAT10N 8ASED ON THE CORRELATION BETVEEN MEASURED PRESSURE AMPLITUDES AND MEASI) RED VENT' CLEARING PRESSURE
+
uiILISATION CRITERIA FOR THE AMPLITUDE MULTIPLIERS IS THE MEIN PLUS OtESTANDART DEVIATION CRITERIA.~
l 4
e-6 3
B 4
\\
t.
t.
4 t
SELECT. ION OF THE BOUNDitlG TR. ACES i
BY MEANS OF PRS u
a 6
y e
g 3
e s
t a
t 1
1
- Q
.t-y 1
- 4 9
i l
- . l
DETERMINATION OF THE FREQUENCY MULTIPLIERS WHICH HAS TO BE APPLIED TO THE SELECTED TRACES ar
-ALLVAl.VECASE
~4 5i.
- TO EACH TRACE ORRESPONDS A MEASURED FREQUENCY RAME o
=i ji INTHEKARl.STEINTESTS, R 6 % G Os p
I
- EACH MARK 11 PLANT HAS A SMALLSINGLECELLWITHTHECALCULATEDFREQU i
LARGESINGLECELLWITHTHECALCULATEDFREQUENCYMU)TIP
- EXPECTED LOWEST FREQUENCY IN THE PLANT r.
O
= f5 - Q l
tp j
- EXPECTED HIGHEST FR.EQUENCY IN THE PLANT ~
. On, - hv G w
{
n i
- FREQUENCY MULTIPLIERS OF THE SELECTED TRACES
~
O'*
LOWEST
.[q* = Wt LARGEST
[hg,
f s
,---r