ML19312D205
| ML19312D205 | |
| Person / Time | |
|---|---|
| Site: | La Crosse File:Dairyland Power Cooperative icon.png |
| Issue date: | 01/28/1980 |
| From: | Finnan C NUCLEAR ENERGY SERVICES, INC. |
| To: | |
| Shared Package | |
| ML19312D204 | List: |
| References | |
| 81A0036, 81A0036-R1, 81A36, 81A36-R1, NUDOCS 8003210489 | |
| Download: ML19312D205 (54) | |
Text
{{#Wiki_filter:T, o ) G oocumeur no. 81xoo>s nav.1 NUCLEAR ENERGY SERVICES, INC. i 1 np 54 PAGE REC'D MAR 101980 i LACROSSE BOILING WATER REACTOR FIRE PROTECTION SYSTEM COMBINED WATER DEMAND ANALYSIS Prepared Under NES Project 5101 For The DAIFYLAND POWER COOPERATIVE ....n_ j g .t 7 -... ' \\! 3 !g g'i.;'; 'a I ? ) j l Y $a'4 n 5 R Pl~P 1J 3 N I '1 {, t-s e Project Application Propered By Date 5101 - 049 _Craig Finnan 1/25/80 APPROV ALS TITLE / DEPT. SIGN ATU RE DATE kgr a$tAnalysis ((2[h [ O r-r n. Eng. ().W i/ze/go n scu V_D_ Wo. Onorationn oj Mgr. / A /* 2 $~~ 84 Q.A. Manager [. C~ - - / 8O 179 non..,,, -"y 5 7.
i DOCUMENT NO.alA0036 NUCLEAR ENERGY SERVICES, INC, PAGE OF TABLE OF CONTENTS Page 1.0
SUMMARY
3 2.0 I NTRO DUCTIO N.................................... 3 3.0 FIRE PPOTECTION WATER SYSTEMS ANALYSIS.......... 4 3.1 Fire Protection Water System Description... 4 3.2 Combined Wate r Demand...................... 5 3.3 Fire Wate r System Evaluation............... 13 4.0 CO?ELUSIONS..................................... 16 5.0 RE FE RE N CE S...................................... 18 EN CLOS U RE....................................... 19-54
f-t i NUCLEAR E ER Y 81A0036 N G SERVICES, INC. DOCUMENT NO. PAGE OF l.0
SUMMARY
This report supplies the additional information and analysis required by paragraphs 3.1.27 3nd 3.2.2 of the NRC's Fire Protection Safety Evaluation Report for the Lacrosse Boiling Water Reactor (July 27, 1979). It is demonstrated by analysis that the LACBWR fire protection system, as currently constituted, is ca-pable of satisfying the most severe combined water demand for fire protection and safety-related functions. It is also demonstrated that the system is capable of supplying adequate fire water considering loss of a single fire pump and various piping system failures, and, subject to minor facility modifications, the system 'is not vulnerable to loss of adequate fire water sources due to a fire affecting both diesel fire pumps.
2.0 INTRODUCTION
In response to a report by the Nuclear Regulatory Commission, Dairyland Power CooI jrative submitted on February 15, 1977 a report, " Fire Hazards Analysis of the Lacrosse Boiling Water Reactor to USNRC Branch Technical Position APCSB 9.5.1 including Appendix A, Fire Protection", which provided a complete re-evaluation of the fire protection provisions at LACBWR. The report included a detniled description of the plant fire protection systems; plant fire areas, fire loading in each area, a shutdown analysis, and a point by point comparison to the requirements of Branch Technical Position APCSB 9.5.1 The report also identified plant modifications and procedure changes to be made at LACBWR as a result of the fire protection re-evaluation. The NRC staff and their consultants then visited the LACBWR facility on October 31 through November 2,1978. The purpose of these visits was to observe the plant features pertinent to the plant's fire protection program. At the exit meeting, the NRC staff presented a list of concerns and positions that must be resolved to allow the NRC to conclude that the LACBWR plant meets NRC regulations and guidelines on fire protection. A summary of all proposed modifications, incomplete items and requirements was subsequently published in the NRC's Fire Protection Safety Evaluation Report for the Lacrosse Boiling Water Reactor, dated July 27, 1979. - One of the staf f concerns was that the fire water supply may not be adequate to meet the fire water demand at all times. This. report supplies the analyses to respond to paragraphs 3.1.27 and 3.2.2 of the SER, which comprise the following requests for additional information: "3.1.27 Combined Water Demand The licensee will provide the results of an analysis to demonstrate that the combined water demand for fire fighting and for safety-- related functions can be satisfied under any fire emergency or accident." "3.2.2 Fire Water System FNa licensee will provide the results of a study of the arrangement of fire pumps and the yard main piping which will assure that a sufficient number of pumps are available to meet the fire water demand at all times taking into account the possibility of a fire
9 t-I NUCLEAR ENERGY SERVICES,INC. 81A0036 DOCUMENT NO. 4 PAGE OF involving both diesel driven fire pumps, failure of a fire pump, or failure of a section of the fire water piping system. The study will include the consideration for (1) separate pump feeds to the yard main, (2) additional sectional valves, and (3) in-terconnection with the fire water system at adjacent fossil units." Section 3.1 of this report presents a brief descriptien of the design and 4 layout of the LACBWR fire protection system. Section 3.2 comprises the analyses which demonstrate tist an adequate supply of fire water can be delivered considering the most severe combined water demand placed upon the High' Press tre Service \\ Water (HPSW) System. Section 3.3 includes the results of a study of the overall reliability and adequacy of the fire water system, addressing the concerns of paragraphs 3.2.2, 4.3.1.2, and 4.3.1.3 of the Safety Evaluation Report. 3.0 FIRE PROTECTION WATER SYSTEMS ANALYSIS 3.1 Fire Protection Water System Description !I Fire protection water at the Lacrosse Boiling Water Reactor is derived from a combined asage water system called the High Pressure Service Water System (HPSW). Mississippi river water is supplied to this system via two automatic, diesel motor-driven vertical tur-i bine fire pumps located in the crib house. These pumps each have a l nominal sating of 750 gpm, 320 feet net head, at 1760. RPM. (Pump rotating speeds are currently set at 2010 RPM and 1980 RPM for pumps lA and 1B respectively, in order to assure, per pump, a flow of 900 gpm at 90 psig residual pressure at the Alternate Core Spray Valves). The pumps are. connected in parallel and discharge into a six-inch steel underground main that loops the plant. One leg of the loop is run overhead through the grade floor of the Turbine Building at the west end.. This section of the main is isolable from the yard mein by means of two underground, key-operated gate valves. The under-ground yard main supplies five 6" outside fire hydrants which are spaced at approximately-200 foot intervals around the plant. All . other HPSW services are fed from the overhead main in the Turbine Building. HPSW system pressure is maintained at 80 to 120 psi by a 500 gpm, 150 foot net head electric m> tor-driven centrifugal pump located at the grade floor in the west aui of the Turbine Building. This pump takes suction from the 16" Jow Pressure Service Water (LPSW) main. j LPSW is supplied by two. ele ctric motor-driven vertical turbine pumps located in the Crib House. A 1000-gallon surge ~ tank located on the east end of the Turbine Bt ilding Mezzanine floor connects to HPSW header to stabil'.ze HPSW system pressure. Services supplied by t',e HPSW system ares 1. Turbine Building wet-pipe, automatic sprinkler systems supply. 2. Turbine. Building, Reactor Containment Building, amd Waste Handling Building fire hose station supplies.
f I I NUCLEAR ENERGY SERVICES,INC. 81A0036 DOCUMENT NO. PAGE OF 3. High Pressure Core Spray System backup supply (loss of coolant accidents only). 4. ' Alternate Core Spray System supp1r (loss of coolant accidents only). 5. Shutdown Condenser Backup Supply 6. Eductor on the turbine condenser monitor-backup supply 7. Travelling screen wash water supply. Except during an accident or fire, the consumption is limited to items 6 and 7. This flow is about 75 gpm, mos,tly for screen wash at the Crib House. A simplified sketch of the HPSW distribution system is shown in Figure 3-1, 3.2 COMBINED WATER DEMAND 3.2.1 Method of Analysis There are fifteen separate fire areas at LACBWR; these are defined, delineated and described in detail in Reference (1). A review of each fire area was undertaken with a view toward establishing a most severe fire, defined on the basis of maxi-mum water demand concurrent with minimum availability of fire and safety-related water sources. This review entailed consi-deration of: a) combustible material content of each area and anticipated-fire loading; .b) available fire suppression capabilities and anticipated utilization; c) critical plant equipment affected or disabled by the postulated fires in each area. Table 3-1 summarizes the pertinent data for this. area by area -review. Once. the " worst case" fire was identified, a hydraulic analysis was performed to determine the flows'available to the functioning parts of the system. Ability to satisfy'the combined demand under all circumstances is demonstrated by proving it for this case.
e i I ' NUCLEAR ENERGY SERVICES, INC. 0036 DOCUMENT NO. PAGE OF 3.2.2 Analysis and Results The most severe fire was identified as one involving the Turbine Lube 011 Tank at the grade floor of the Turbine Building. A fire in this area can be expected to open three sprinkler nozzles it is assumed that streams from all five available interior hose stations will also be required to combat the fire. The worst-case scenario develops as follows: A turbine-reactor trip with simultaneous loss of offsite power is assumed. This results in the loss of the High and Low Pressure Service Water Pumps and the Main Condenser Circulating Water Pumps. Since the main condenser becomes unavailaSle as a heat sink, decay heat is dissipated through the Shutdown Condenser. It is also assumed that the Demineralized Water Transfer Pumps are disabled as a direct consequence of the fire due to their proximity to its origin. Since domineralized water is the primary source of coolant 't to the shell-side of the shutdown condenser, backup HPSW is automa-tically supplied, thereby placing a safety related demand on the HPSW in addition to the fire water demand. The vertical turbine fire pumps in the Crib House have diverse (diesel engine) drivers which automatically receive signals to start upon low HPSW system pressure. However, a single active failure in one of the drivers is assured, leaving only one vertical turbine pump to satisfy the combined demand for water. On the basis of the above scenario, hydraulic calculations were per-formed (enclosore 1) to determine the available flows to the individual components which comprise the total demand for water. Calculations .A conservatively utilized the 1760 RPM pump performance curves. Thus, no credit was taken for the higher speeds at which the diesel fire pumps now operate. These higher impeller speeds, 2010 RPM and 1980 RPM for pumps lA and IB respectively, guarantee the Technical Specifications requirement that 900 gpm be available at the ACS valves at 90 psig residual pressure, with one pump running. Calculated flows were as follows: 1. Reactor cooling water to shutdown condenser 69 gpm 2. Fire suppression water through open sprinklers 161 gpm 3. Fire suppression water (total) through 5 hose streams - 472 gpm Total 702 gpm = . Available flow to the shutdown condenser exceeds maximum decay heat removal requArement of 63 gpm (Enc. 1). Total available fire water supply is 633 gpm.' Of this, 161 gpm is applied automatically by the sprinklers, providing a total heat absorption capability of up to
- 1. 63 x106 Btu / min. Considering the combustibles involved (4000 gallons of turbine lube oil with a flashpoint of 400 F, potential total availa-0 ble heat = 500x106 Btu), sprinkler flow alone should be capable of ex-tinguishing the postulated fire in a matter of minutes. With the availability of at least 472 gpm of backup manual hose streams, adequate fire suppression supplies are' assured.
um. u S ZC b o Y NYMA 9 HyDstA)4T :ll y m O z l m 3 r----'--"----------'-----------~'------'--- I W N's w m j Y 3 l ~O INSIDE Hose c' g d TURSINE S00 Q g STATI045 ,'~f 9 l i - o-_ / l REMToR y 8 BLVG' N / GL.HPSW PUMP ~ i c \\ a rn...:...- Q ~ .n i \\ I i .i r, WASTE DISPASAL A : l Svit-Dii4 4 T I I l 0 _ c _ _ _ _ _ [_6_" U_u D E R G R0 0 N D_ _ _ _ _n_$tM l k c I l g 16.LfSW E a t---O 14YoRayr # 3 t_ _ _- _ _(.__ _ _ _,x m Dir5R FIRE WS Zs Dfe'){Psv/ \\ LT5W PUtiF5 7 s L _ _o O' N N 7 i IlllE 14YDRAgrs2 "*Rwdip \\\\ g$ 4 ~ 'y g O CRIS HOUSE on t.n Figure 3-1 LACBWR FIRE WATER SYSTEM 6 (SIMPLIFIED)
TABLE 3-1 ~ y I r h-o g CONTAINS SAFETY MAXIMUM AVAILABLE (WATER AVAIL. FIRE AVAIL. FIRE: AREA DESCRIPTION REIATED EQUIP. FIRE IDADING USING) FIRE SUPPRESS-WATER SOURCES
- SOURCES S
ION EQUIPMENT. FOR CORE ![ g COOLING
- p
~ $x 1 Turbine f" Z Building yes Turbine oil 1 1/2" fire hoses Diesel Driven HPSW from m-Service Tank from Turbine Bldg; Vertical Turbine Diesel f! (4000 gal.) Auto, wet pipe Fire Pumps in Fire Purps 4 Btu sprinkler systere Crib House only *
- SOOxlO
^ Total avail. I 1/2" fire hoses y heat frcm exterior hy-5 drants 2 Oil Storage no Clean and 1 1/2" hose streams Diesel Fire Demineral-Room (Office Dirty Oil f rom Turbine Bldg. Pumps ized Water-Bldg. Grade Storage Tanks Hose Cabinets; 1 1/2 'or HPSW 'h Floor) Fuel Oil hose streams from Storage Tanks exterior hydrants; Total avail. Auto. Wet-pipe beat =180x106 sprinkler system Btu 3 Office no Misc. ordinary 1 1/2" fire hoses Diesel Fire DMW or Building combustibles-from Turbine Bldg Pumps HPSW 6 34xlO Btu 1 1/2" fire hoses Total avail. from exterior heat hydrants 4 Office Bldg. no None 0 Stair Tower On 5 Machine Shop, yes "A" Diesel 1 1/2" fire hoses Diesel Fire DMW or C "A" Diesel Generator from Turbine Bldg; Pumps HPSW Em Generator fuel oil day 1 1/2" fire hoses 2 Room tank-To tal from exterior 3 available hydrants Q o heat = 15xlO6 Btu 6 Penetration yes Cable fire-1 1/2" fire hose Diesel Fire DMW or e g Room Total avail. from Turbine Bldg; Pumps HPSW heat =7.8x106 1 1/2" fire hoss '8 Btu. frou B Diesel S Generator Room; 1-1/2" fire hose from T ext. hydrants
~ TABLE 3-1 Con't. i-CONTAINS .k SAFETY-AVAILABLE f, . FIRE' RELATED MAXIMUM FIRE AVAILABLE (WATER AVAILABLE FIRE SOURCES FOR [1 AREA DESCRIPTION EQUIPMENT IDADING USING) FIRE SUP-WATER SOURCES
- CORE COOLING S.
PRESSION EQUIPMENT C o yes Ccr. tents of Diesel 1 1/2 % ose in g 7 - "B" Diesel ~ Generator Fuel Day Tanks- "B" Diesel Gen. Room; DMW or 3 Diesel Fire p HPSW Building Total available 1 1/2" hose from m heat = 45xlO6 outside hydrant y Btu Mm 25om . - ~ _. - jn 8 ReactorContain-lyes Oil and Poly-1 1/2" hoses from -Diesel Fire DMW or ment Building j ethylene in Reactor Building Pumps-HPSW control rod drive fire protection I j heat =64x106 area-Total avail. standpipe. Btu t i 9 Electrical Equip. yes Cable Fire-1 1/2" hoses from Diesel Fire DMW or ment Room and Total available Turbine Building: Pumps HPSW Control Room heat =19.5x106 1 1/2" hoses from Btu ext. hydrants-10 -l Waste Disposal
- no None-negligible DMW or O
O Building amount of com-O HPSW bustible material 3: .I in this area m l g H m> 2 i R 9 i g-- o' 11 lCribHouse !;yes Small oil fire 1 1/2" hose from Diesel Fire DMW or y 1 due to' leak in exterior hydrants Pump HPSW 8 l l fuel line o y i I l r t
TABLE 3-1 Cont. i H CONTAINS .k SAFETY AVAILABLE (WATER AVAILABLE AVAILABLE FIRE DESCRIPTION RELATED MAXIMUM USING) FIRE FIRE WATER SOURCES FOR 3 AREA EQUIPMENT FIRE LOADING SUPPRESSION EQUIP-' SOURCES
- CORE COOL-C t
MENT ING h t 9.
- o 12 Record. Sto rage No Miscellaneous 1 1/2" fire hoses Diesel Fire DMW or Q
Area ordinary com-from exterior Pumps-HPSW g bustibles hy,drants o Total available 4 heat = 105 Btu D$om .M '13, 14, Warehouses No 1 1/2" fire hoses Diesel Fire DMW or 15 Nos., 1, 2, and. from exterior Pumps HPSW ~ 3 hydrants 6 i
- R: actor trip with simultaneous loss of offsite AC power assumed
- DMW transfer pumps assumed disabled due to their proximity to fire OO OCE m
2H o> 2 .O m t; 5> 8 O W m m A l
o i 81A0036 NUCLEAR ENERGY SERVICES, INC. DOCUMENT NO. PAGE OF 3.3 FIRB WATER SYSTEM EVALUATION The LACBWR fire protection water system is described briefly in Section 3.1 and shown schema'tically in Figure 3-1. In general, availability of fire water is assured through provision of redundant pumps with diverse drivers. The ability of the fire water system to continue to perform its function following various adverse events and unc'er degraded operating conditions is examined below. 3.3.1 Failure of Fire Pump It has already been demonstrated (Section 3.2 above) that the combined water demand for fire protection and safety related requirements could be met under the most limiting set of cir-cumstances with only one fire pump operable. Thus, the ability of the fire protection system to perform its function is not compromised following the loss of a single fire pump. 3.3.2 Piping System Failures An investigation was undertaken to determine the ability of the LACBWR fire water system to maintain its overall integrity and function following piping system failures at various locations. Representative locations chosen for analysis are indicated in Figure 3-2. All fire water system piping at LACBWR consists of A106, Grade . A or B, seamless carbon steel pipe. System piping with nominal diameter greater than two inches is schedule 40; piping two inches and under is schedule 80. The piping system is designed 0 for a maximum working pressure of 150 psig at 100 F. Under-ground steel piping is coated and wrapped with bituminous compounds for corrosion protection. Exterior surfaces of above-ground piping are protected by coatings of paint in accordance with standard industry practice. System design, installation and in-service testing practices are consistent with its dual role as both a fire protection system and backup reactor safety system. In view of the low system service loadings and conservative system design, the following failure modes are postulated for the purpose of analysis: a) For all underground piping, and all aboveground piping which is not' routed near high-energy fluid system lines, the maximum postulated failure mode is a through-wall leakage crack. Fluid flow from the crack is, based upon a circular opening of area equal to that of a rectangle one-half pipe diameter.in length and one-half. wall thickness in width. This is consistent with regulatory guidance regarding postulated failures in moderate energy fluid system piping given in Branch Technical Position MEB 3-1, " Postulated -l Break,and Leakage Locations in Fluid System Piping Outside Containment."
I NUCLEAR ENERGY SERVICES,INC, 81A0036 DOCUMENT NO. PAGE OF b) For fire protection piping routed in the vicinity of high energy lines, complete severance is postulated. The impact of failures at each location is examined below. -All failures are assumed to occur concurrent with the maximum combined water demand scenario of Section 3-2, and the results are therefore highly conservative. 3.3.2.1 Point "A" Since point "A" is located in the exterior underground portion of the piping system, a through wall leakage crc,k is postulated to develop. For six inch schedule 40 steel pipe, the crack is equivalent to a circular opening with an area of 0.535 square inches. Calculations (Enclosure 1, Appendix A) indicate that under the given scenario, leakage flow through the crack will amount to 117 gpm. However, the increased flow demand causes the pump to run out to a new total flow of 803 gpm compared with 702 gpm in the reference case. Component flows adjust as follows: Ref. Case Ref. Case % Change & Leak Flow to shutdown condenser, gpm 69 67 -3% Flow to sprinklers, gpm 161 158 -2% Flow to hose streams, gpm 472 461 -2% Leakage, gpm 117 Total Flow, gpm 702 803 +14% The reduction in flow to the various branches is seen to be insignificant. 3.3.2.2 Point "B" Due to the absence of high energy fluid piping in this area, the maximum credible fire water system piping failure is a through wall crack. Equivalent circular opening size is 0.535 square inches. For this case, calculations yield a leakage flow of 105 gpm. As in the previous case, the im-pact of this leakage flow is mitigated significantly by the tendency of the pump to' runout to new higher flowrate with only a slight reduction in head. Component flows adjust as follows:
o i 81A0036 NUCLEAR ENERGY SERVICES, INC. DOCUMENT NO. PAGE OF Ref. Ref. Case Case & Leak s Change Flow to shutdown condenser, gpm 69 65 -6% Flow to sprinklers, gpm 161 156 -3s Flow to Hose Streams, gpm 472 456 -3% Leakage,'gpm 105 Tbtal, gpm +11' 702 782 These slight reductions in flow do not compromise the capability of the fire water system to perform its designated functions. 3.3.2.3 Point "C" Point "C" is also subject to failure in the through-wall leakage crack mode. Magnitude of the leakage flow will be very nearly the same as that from point "B" (Sec. 3.3.2.2). (This conserva-tively neglects any restraining effects of the earth backfill immediately adjacent to the buried pipe). Failure at this point does not, there fore, impair overall system function. 3.3.2.4 Points "D" and "E" Points "D" and "E" are subject to the same consideration and conclusions as for point "B" (Sec. 3.3.2.2). 3.3.2.5 Point "F" Due to its proximity to the 10" Main Steam Line in the pipe tunnel, the 3" HPSW line in the vicinity of point "F" may be subject to dynamic pipe effects in the event of a main steam line break. A complete pipe severence at point "F" is there-fore conservatively postulated. Should such a break occur, isolation is possible by manually closing 3 inch gate valve #75-24-083. This permits all available fire water sources to pressurize the interior primary and backup fire water suppression systems in the Turbine Building as well as all exterior hydrants. The effects of the postulated pipe failures in the various locations are summarized in Table 3-2. It is apparent that function of the fire water piping systemLis not compromised, even assuming various piping system failures in addition to the highly conservative scenario constructed for the combined water demand analysis in Section 3.2.
L-ZC O r-NYDI HYDRAl4T dl y m a 3 p---s- .----_______---r----------- O s', g -l f (n h g l V,' l S O IN51DC llost g Q g STATto45," t} - TURSINC' BIDG l -l' ~,.C uf o s c + I l D-f l /. RErcioR u X / 4 BLDG
- E" s2m j
L MPSW PUMP a y l C k m.. 3., l 3 g sm n suu -- I y, g WASTE DISPOSAL.- T I l' Sviai46 l 0 'C" y f fo"UuvE16RoonD _. _ _ _ _ _ _ _ _ n_n M I 0 c m 8 l g ( 16.t.?SW m tR HP5 2 '---O fiYDRANT # 3 l_ _"_ _ ~__~__ _ _ ~_ ~,T y Dfe"l{P5W \\'s LP5W PUHrs, g z / .O i \\ \\ m x' L - -O o' \\ s -O O IWDRAvr s2 IIRE y Q\\ lifDRANT *f I e A. N N, . _g g s ,=. o O o CRIS HouSC Figure 3-2 POSTUIATED PIPING FAILURE IDCATIONS T
TABLE 3-2 CONSEQUENCES OF FIRE WATER PIPING SYSTEM FAILURES 7 g I OS'IULATED REQUIRED OPERABLE (WATER) MINIMUM AVAIL. PUMPED
- O LOCATION DESCRIPTION PIPE FAILURE MANUAL ACTIONS FIRE SUPPRESSION SYST.
WATER SOURCES (ASSUMES h. LOSS OF OFFSITE AC & u SINGLE ACTIVE FAILURE z 3 C t O A' Unde rground '. Through-wall None All. Break results in 1 Diesel driven vertical yard main, leakage crack; insignificant ~ loss of turbine fire pump. common dis-equivalent to a capacity to fire (750 gpm). Z charge line' circular open-suppression equipment. from diesel ing of~.535 See Sec. 3.3.2.1 driven pumps square in. m m 2 B 6 inch supply Through-wall None All. Break results in 1 Diesel' driven vertical to overhead. leakage crack, insignificant loss of turbine fire pump Q main in equivalent to capacity to fire (750 gpm) .m Turbine Bldg. a circular suppression equipment. opening of See Sec. 3.3.2.2 .535 square in. C Underground Through-wall None All See Section 1 Diesel driven vertical yard main, leakage crack 3.3.2.3 turbine fire pump exterior (750 gpm) loop. .g D, E 6 inch fire Through-wall None All. Break results in 1 Diesel driven vertical protection leakage crack, insignificant loss of turbine fire pump header in equivalent to capacity to fire (750 gpm) Turbine a circular suppression equipment. O Building opening of See Sec. 3.3.2.2 o .535 square j, in. m Z -i F 3 inch Complete pipe Close valve Primary and backup 'l Olesel driven vertical 3 z HPSW line severance caused no. 75 fire water systems turbine fire pump ,0 to Reactor. by whipping main 083 in the Turbine (750 gpm)
- Plant, steam line.
Building; all out-e* vicinity of door hydrants 10" Main g Steam Line 0 0n ci
81A0036 NUCLEAR ENERGY SERVICES, INC. DOCUMENT NO. 16 54 PAGE OF 3.3.3 Fire Involving Both Diesel Pumps A fire involving both diesel fire pumps in the Crib House could result in a situation where inadequate fire water supplies are available, should both pumps become incapacitated. The probability of this occurring is quite small. Apart from the fuel oil in the fuel supply lines to the diesel engines, l there is no combustible material in this area. In view of the e available fire detection and extinguishing capabilities, any small oil fire that may develop Ot one of the diesel engines would be quickly detected and suppressed. The only credible mechanism by which both pumps could become involved requires that a fuel line at one diesel engine rupture, that spilled oil be heated to ignition, and that hot or ignited oil impinge on the other pump or diesel engine in sufficient quantities to maintain combustion at the second pump. This scenario itself is made highly unlikely by the small quantities of fuel oil invalved and the existing physical separation of the pump drivers. Despi,te the low level of hazard inherent in the existing arrangement, it is recommended that, in the interests of taking all practical measures to assure high fire pump availability, DPC install an oil impingement barrier between the pumps. This barrier should consist of a partial wall of noncombustible material placed so as to preclude interaction of hot or ignited fluids from either pump.
4.0 CONCLUSION
S The major results of this' study can be summarized as follows: I 4.1 COMBINED WATER DEMAND Analysis indicates that the LACBWR fire water system can satisfy the I combined water demand for fire fighting and safety related functions under, any fire emergency or accident, i 4.2 FIRE WATER SYSTEM-l 4.2.1 Loss of a Fire Pump, It has been demonstrated that loss of single fire pump will not [j impair the ability of the LACBWR fire water system to provide ( sufficient water for_ fire and safety related purposes.
81A0036 NUCLEAR ENERGY SERVICES, INC4 DOCUMENT NO. 17 54 PAGE OF 4.2.2 Piping System Failures It has been shown that the ability of the fire water system to perform its design functions is not compromised, even assuming piping system failures at arbitrary locations. 4.2.3 Fire Involving Both Diesel Pumps Addition of a suitable barrier between the diesel fire pumps as recommended in Section 3.3.3, precludes the loss of all fire water due to a fire involving both diesel pumps. 4 4 2 4
I NUCL6A A0036 RGY SERVICES, INC. DOCUMENT NO. PAGE OF
5.0 REFERENCES
1. Fire Hazards Analysis of the Lacrosse Boiling Water Ret: tor to USNRC Branch Technical Position APCSB 9.5.1 Including Appendix A, February 14, 1977. + l
o NUCLEAR ENERGY SERVICES, INC. DOCUMEU NO. "M "^ " REVISION LOG P^ no' DATE DESCRIPTION APPROV AL N 1 2/29/80 g Refer to CRA # 1216 d M 4 6 9 l
8 30036 DOCUMENT NO, NUCLEAR ENERGY SERVICES, INC. 54 PAGE OF ENCIDSURE COMBINED WATER DEMAND HYDRAULIC ANALYSIS i ) 9 l i l l i
81A0036 21 of 54 llI"7N PROJ.I/O l TASK od aY DATE N L ENERGY SERVICES INC. fh,hi b'3 CHKD. DATE PAGE . OF UGwR RRC PtoTRT10A-Con &NED V)ATFR bEMRAlh'. REF. LACBWR FIRE PROTECT 1oM sYsrEi1 Cor1SINED \\ DATER 'DEt1AND FOR FIRE-FIGHTING ( S AFETY-RG.ATED FontrIONS $0 STATEHENT of problem Per&rm hydraulic analysis do demndralc a Od 4ht.' combined wder d.emand.$or Lolf Sire-ki Ming and sakely-rel4-fe) &ncbions can be sal 3isOiel considering a. worst case [ive , oss or oNsi--e and normal toin con current onsk-e AC oower. 2.0 A SSuHPYlotJ S po BASIC ^DATR The worsf case Sirc ([ rom Me h An/poin 2 -l o-l madmum kire avNer Eernand y>l0 Q minimum of GV4i a ble -fire k>aler sources) is a 4 ire a -Ae sh:ne kitding 'lyd< 4loor invo Vin $ OE -htrbine }ube or s4crAje -an k. 3~t is assumeM -fd -Hqis [ ivc achivdes Oqred Sp(inkler r)DEgles OSOVE doe -o n k. In GAkihion., ib 'is 0.5 Sameh -}4ak a l, 0.ia.avaiaole ,ose ss ions wiAin uSi\\iUb l Ik Q ~.4urbine bui Ain} a rt 4 c.odod --4 e l ce. i v mumam o
81A0036 22 of 54 II E 7N ROJ. 8/0[ TASKO SY ' ' ' ' N#' D AT E P N ENERGY SERVICES.INC. [// I bN DATE - A Vi PAGE ~M - OF CHKO. LAC %fR FIRE PRaTEcfl0N-CDMBIAICb h/MFR WHANb REF. a 4
- 2. c2 AS 4. r85u " boo -
E pos u ghe [irf, durbine and reac oc rips ensuf. A4 4his point it is assurned -Ad all offsil-e-AC. powerf as well-as norrvd onsi4e AC power,is
- os m This disa bles -hhe Lu ond. Migh Tressure Service W.ner pumps.
Z.s ^ Due,o,keir groximi,!y ,.h.f;ye k Den,ineraliqcl Undre Trans.fer Pumps ag rend Q.re d. t no pe(A$ivf. Core. Coo livig o.I'- Coni (4-dhis poink i5 Via. Me Shu-0wn ser, u4iliting d by At 'Diesci nio4ov-4-ligh Pressure Service. Wrober provide driven Auxi\\iory Core Spray pump. 2.T A sin 0 e acAia -Cai\\u<. h ass umed in one o4 44e Diesei nAv driven Acs / Fire. Weir r IMs' Sceact rlo,.o n ly 4 -fumps. Thu3, ynhr Sinj lO diesel dYiven VCYd ic.t .4 r lain E is avai\\aL\\e 4a a) a<ovidt 2;<< phen 1 wJ r _o kla chen side 44hc 'snud/own c.ondenser and se<vec. a sin k 4< ove
m '81A0036 -23 of 54 IIA ~79 PRO 1.$/0/ O gy
- l ' M+Wh DATE TASK N
LEAR ENERGY SERVICES 'INC.- gggg, ' g I~M'U b'3 d"b DATE PAGE OF .LAnwR PIRf PROTECTt01)-CDnb/Alfb WAER 12HAHD ftEF. residd neak and & yrov;&e wader 4 _k 0i<e wder mams in Me 4ubinc %i\\ ding. A seme\\ieel ske% 4 4e piping arrangemed-2.5 .C o r M e. HP5W/Five pededion syskm is provided in Figarc 2.-l. For %e pu< pose-c4 he h droAic analysis,-his sysIem is y enJeled as shown in Fig 2-2. L Ais
- SheM, Pa4 B-C : 3" HPsw icne -lo Ae 56tlown Condensen Pa% 3-D = %c hydraulic eguivaled o f %e sprinkler system] PaA B-5 = hy radt d
equivalent of %e 5 : hose sek<4 ions (operadin$ simulkn ously' in parallel ). The -ellowing e approximedions are. inhered in Me model: i) Lcouk leads 40. %e hoce cabinefs, sprinkir syste m, and HPsw line 4c conlainmen Mi ~ connect 4o Ac RPsw heuder a4-a le point (Point B in Fig z-z.) This%e beod<ppro a aflor i noves lossec in 3 we a. chi conne c4;ons whic.h are inMi-cJpac.44e orf didr;6uh8 alon3 Ac heador -4bou houF ee Turbine Bui ding. This ic Juskikialle since unik losces in h e hea b r are small relo4(ve 40 uo tosses. in M< various 6 ranches. z) Elevallon di#erences -amon e e Cive.-Ci n bose ca6;ne4s are neglecfed. Wil hose
'81A0036 24 of 4 dd BY ' ' /*M II~b'M PROJ. ' lO / TASK DATE N ENERGY SERVICES INC. I" b'W CHKD. DATE l J'O PAGE OF LncewR ftREPRoTRT/MJ-CDHBIAlfb WA7ER D HAND C REF.
- 2.. fr, z coni 'd s,eams ar.e assume) -ibe uFi\\ise) ah.
El. (on'-G ". -This is jus 4iliaLie since 411 boses are likely 4o be o geradel a.f-about &c same -eleva--ion er a siqle even 4ha"6 h Ae hosc cabines are Sire,bu4el amon0 dis 4ri 4he 4hree lev <ls e4 445 4urbine builliw3. % chosen eevdion corres-fon$s to 4he~ citv dlan ah 4I16 %rbine Oil nnk sprinklers. This assump4 ion a sicghHy conserva4We Gv a fir < on 4he Turbioe C, rude Floor (EI. 640'- o").
- 3) Thd e. leva 4 ion o4 de.
sprin k ee heo//S .locafed a bove 4ht Tur6ine oil Tank. lS (o S& '- (, d Pi ;ng ydraulic losses are es rima-fed by use h 2.G p of varia rions of dine Ha.? en-Williams 4<mulg., componed losses. are calcuta ed by conver w 3 egu;n ed kng% o$ p;pt or Gy converky +o 4low toeMciers-obtained 6y 4est in4o len+ Wsis-awce coe88icled
- K" Aclors or e
i
- w -Cot \\ow; q % gu vadrau\\ce re\\eion a;p and Armulae. are u--th eJ '
4
_57 .a-j 8 8]R0036 25 of 54 OW ll ' PROJ. 5/4 / rAsx SY "' ' 2+HM UATE N ENERGY. SERVICES INC.- 'M I'N b~ OF CHKO. DATE #*M'NPAGE LkBwR FtRC ptainn0AJ -etenrhlGb tvATER HEMA tJb REF. 26,. con + 'of 4 I Ge,S K = e,9 i d + 4<===y 2.91 2 3' BY ~ ~
- 2. s. 2.
R=ugg R=* AH K gz. 2 G.s % = R,+p....(Flu nesh4ance5 in serles) 2.6.%h 'l (i + g [ _b resishnces in 1( y 2.6 4 g) Req.1/(L diUk dx4 /i!'a, z Ry _p.c r</s in ji 14 14 4 j.L s In ne alaove : A R head loss,-ft 3 S= spcific grav[4y yekfive. -m wder d-Go F Q = 41owret iv1 o pnij ap pressure di#eren4cd;in psi; c[= diamebe,in. 2.65 Wee.n-k/illiams Faulre : y= 1,318 c g?"s
- 2.c. 0 A H = M3 9 85 I
2 G.7 g185 g 4.97 %= hy n<a\\iL YcAins in See:* j S = sO e k f rn %e Qbove. : o4 He-hydraalic crodient; C = Hasen-k/a\\iams Q flove d e coefficiend of r$(a4ive l d = cliameter, inches ;gh ness, d lcus p rou AR= hea in $ pm ;- Z.6 8 Darey -4VPe -forrnula - A d= 2.59%Io KQ' bbkeadIoss,l. d4 ~
81A0036 -2 of 54 II'l#3 PROJ. b TASK OW 8Y DATE NUCLEAR ENERGY SERVICES INC. N-
- ~# A ~N b
6~M - CHKD. -DATE PAGE OF NES DIVISION' LACEwR FlPS PRa7ECT109-CDM8lAtEh lvATT'R IL91Ak'l REF. 2.7 The Hacen-Wi\\\\iams McMon coefficienH C hor 4he. hire brotechion And. biF ? press (trd 1 f f ng is.}a'cen 8 6exvice. Laa TeO i i -o o e., C"IOO. EKperiE:kce I1a6 6boWM-Nab-sis Nalue oh C provodes c cod esrimdes 00 head loss Ecy s4eed ?r c.tsf iron f*fo'n3 some yea > 5 in service. %is value of C. as borne ou-l-by faclctf ahrk -VesfS Oh -h t H g diesel ver!icalkurbine fumf s on A AIECb'i' gp3s pamp in Ocdpher o4 /4 % The. -foilousing LAL 4est c a a. was oL+ained viA i 2.8 elephone Svom Oe W.E Allen Co. -f-or -cheiv rnode s '7I(po and 'll71 1 %. " Sire. hose hoz.2./es : 1 l 2 8.1 For mole -# 7lso c 75" spray and e L Nostle. Press psi Flowcake,37m i z5 Ala. G 50 GW '75 20.5 r loo 93 ~ z.8. z Far model *f 7/7/ naule Noule Press., rsi Flouralc, gpm g5 ss (wide opn -full-(& e: .s 7 C vg nn eksed)
- 32. (Va.! urn closed)
NFS 105 f?/74)
'81A0036 27 of 54 II'b' PROJ.f/0I TASK O BY A DATE [ U b'7 OF DATE '-'2 2 - f # PAGE CHKD. D SO .LACPMR VIEPtortcnM-roh8wb uriYP D9 fed REF.
- 2. 8. 2.
c.on4'd-Nonle Press., Psi Flowra'fe, gym s'O 75(unde oyseni 53 (Yq lurn closed)
- t,(n. -}um cfosed) 70 83 (wide open) 64 (vy hrn closed)
% (h 4um closed ) lot (usid< open) \\ IO* 94(Yq -lum closed) 64(h-furn closed} ZA TM cliic.harge coe_.Q.Q(cuej ( y_ gg,) g,, gg %rbme hildin$ 3prinkle heols is E. (4, 210 For oli head Ioss calcaldions, Sally furbuled flow /s a ss umed. 2.H Eguivalen-leng#s a[va ves and -$i(Nys are irden -from Re4erence 3. The -femperclure oZ 4fe M{(oo ' essure pr 2.12 wader is a ss umed 40 be F. 2.13 3'4 is assumeA %d 4Q kallim .sen en ajash wa rer %pply lkt -is isola el-2.,sq The shefi-side u>ahr Ievd in Oe Sh"~ ~ gown. c.'odensee is assumel -k he cd El. 712 O " !~ F l
Q 81A0036 28 of 54
- H PROJ.b OI O
gy A** DATE TASK . NUCLEAR ENERGY SERVICES INC. IM DATE M ~d# PAGE C H KD.' E~b 8' N OF NES DIVISION LACEut F1RK WaTEtnoAl-conBIMEb WATER DEMA AID. FtC,vRE 2.i REF. FRE PR01EtTioM /HPS W4TER g GEWER A L ARRA!)6HENT 2 g a< DLL w mW 2 Es
- n og r
c o -.+- e e k y a 2 b 4 _'a g g ss H i \\ N 1 i i h L 9 s i \\1 m
- g 3 m Y
sd ,e a 4 l bl q )b '( h5 T it s. 4 \\1*f NA ov \\ .bE +y L _;3 cu
== I N b h 4 E683 esE=
81A0036 29 of 54 . g y T. T /
- h 'DATE II'b'7 PROJ. 6/dl-TASK OYi NUCLEAR ENERGY SERVICES INC.-
- p b OF6dY c ggg, DATE M"'I# PAGE NES DIVISION LMEWR FIRFPROTttnor)-cnHBinFb VJATFR D.CHAlJO 4 FICWRE 2.-2 WYDRAULic HobEL. / \\ (/.7/1*O,, O * ( '] SguTDOWM c.o o ensra .,e $fRINktER FIRC NOILI.E 5 Hose 5 e e
- s. GrMc" 3
4..o"__ca.'e' 'A" f) DIESEL 'rtoroR DRIVEN ACS Pu!1P. E7. 620 -o " [tilSS. RivCR No8MA L WATER LEV l 6 w - w e
.o- + II'lf7'p of-54I PROJ. SO/ 81A0036-3 T,ASK OY'c gy g 'L/+> rtdM-DATE ENERGY SERVICES - INC. M i-M.(O E~IO OF EMi CHKD. DATE PAGE N D S LkRwR FtRF Pto1CCnON-COH81WED WATER DR'1AMD e REF. 3.0 ANALYS/S. The Sysfem llotos will At kNevminek udnj d@f0f cal +echn, eggs, Me Variou 5 combining 4hc hea).}[ous hi ia ra. C.-Eris-rics of bYancheS toith he. Charachris4(c5 o.h Me diesel driven Ac s wmp. \\ SWTDowN l CONDE M SER -nc -Ethl2'-o" G$* >- EI b5(l-$ lDM
- p" ygn A-r+---
Avt. Cote SPRnf Toe DATVM EL. 62.0 - o # Ybf d fl8W['d3 The propbiCd! Soluhion COM5if k5 O steps -
- 1) ?id ec 4M heol d oid 3 a.s a Anc-sm p
of flo9 -fov-each -of pak 3-7c, 3* D, anL 3 %.
- 2) Consbach %e combinedjokoI 4}ow curve by summiny#e flows &om 01 af each value w.
o SL kval d Tleo l.
81A0036-31.of 54 BY ' ' ' ' NM II* PROJ.5/0/ TASKO DATE NWL NERGY SERVICES INC.: !/Y E~N E~Il OF CHKD. ^DATE t-A.t - fr0 PAGE LACbwR FIRE PR'0TEcrioAl-CDHBINGh fMATTR b91ANC REF. ~ o o eA k R$ Q pg pg g Maf S\\ow (4a) = carvu + los.+ hed _a. 3 2-) Also, -kM hed J.?A = ; pmp. /. glot ~ Mp%p vs. Q ($ rom vedovd ump cune). In+ersec4/oco4 curve _s (v)p (t) debe 4o d 4 Slow. S) kloahatcme}s $wcueves x bhrbain i<diyl}- vaA 4\\ows sec, s->D, g-c, 3.1 /t'PSW LtNC ro SllurDowN condenser Wr;4in3 Enerey egucdion from 3 do C., Ar'm G20'o" 7_a 4,yf g o ?3',\\ve*tg 4 _ L. e-c- , ) ag c f 23e. 0 0 Nr. 8 0.c + L. A = Ep;nled-len3% ok yopc and hiIfiny ; l'l 90' L.R. ells 63' 70 3> S, d /-/ 3 e valve s t 3.f < /e/ ' (,, 7 / check vee G 3r' ~3 5 ' 3 -lees (llw-lh<d<uck ) G.14 ' 'f6 ' (o ' 45*.cils @ 2.s-' IC' j 90 g b Lea,( ( t(! '/' 0 s-laidtlen@h 3"pfpe 171 5bM eguivaled leny,s" pie = -357 f lb ( - NES 105 (2/74);
. / [TJ+;+w o -alA0036 32 of 54 . -r - II~lF7k PROJ.ElO/ 0'/1 gy DATE TASK " ENERGY SERVICES '.lNC. [/ .DATE "' W PAGE CHKO. ~IS F-3 8/ OF N Vs LN8wR F1N~PtoTEcnoAl-CDMBIAICD WATER MHAb1D .= .REF. M M = 3 57 (/043[ Q.ar i 1 =
- 0. 002.82 7 Q
. 8 r (/00 )lA'(2.osg)'l97 [ fz. "' Conho l Va ve : Fmm R e k 4 ?p r g 1 b.# sin k sek codrol C.v
- 2.l.
Ilssume a. -%roH ed Cv of dad ValVe, h h$ sui l Cee n Cv, o r Cv wana> = 7 .Af3 C Cv= D W w <= E9 g Cv'
- =v g= 38 (, Cy =o.04711 l
bYca.d.%De*$Q=0.0T71Ih b . 00 2 8 2.7 Q -t 0.097// Q L Sec. I ~ sa n i. 00 2 82 '7 Q ' + 0.0V7// Q t 92. 1 TABLE 3-l &;@PM ~ To4d(b) > N 20 fil.V 2.5 / 2.I. 8 30 /359 40 /70 0 Fo 2/3,7 55 2.3 9. 2.' Go 2671 -7o 33 2. fg 3(os.3 B '402.9 i [ This' dh. o f o&A ik Fs'gure 3-1, Curve i. J l .is l~
u I *b PR.# NUCLEAR. ENERGY SERVICES INC.- - BY 'DA TASK N 2 F /3 ore-3d C H KO. DATE I-2 2 - NPAGE LACBwR FIRE' PROTECTIOAl-(OH81NCD WA rER TM/l/11) t' REF. 3.Z Hose' STREAh 52 EneGy eguab~ ion $ rom 8 h G,dalum (.92 o '- 6 ": f -l E + Ec+ Ye s-c b + $7nm-S = l-li, s g + & c 3.2. I bedermiYion a h N a.-C ' ror a molcl 7t60 nozeJe of 7s'semy smie, nctsured Slow cel nottle pressure of 100 psn = 'I 3 $ P"' A E= 9,3 =Ep R = 0. 02&& T = Re4.1 b 1'4" " exA gualMy 4'in Fom lee %se " ( r&Lle 9-5E, pg 9-09), aP/'w.f4 = 2 5. E psi a+ 100 gent. Far gr,y.ofhose 6?~(,f)ps,s-ff.13 fsi f h = 2 31 A P = W.19 =: RG =- R llov)t z _ a y ~ W(to)V =
- 0. ooW2
. Losses -lbrough 4he (s'/9'" runs $ rom dbe HP.s W header do .l4e hose cabine-/[using 40 -}{e hose ce bine4 4 coluy -lhe p; ping } van a line F on - be T*5. Main Floor as 4yPicd. *.
~ 81A0036 34 of 54 l 4' PROJ.I/#/ IASK Ob i - By h DATE NUCLEAR ENERGY SERVICES INC. "I OF b _ CHKO. DATE l~# A-H PAGE urawa riae os,rt,1oAl-CoM81AO WATFR MM/1/JL _ .:=. REF. ()f 2.' f-lee [L brand,)e 30 30' Hee ( b rm ) e lo /o ' siesih f Iem-}h lI ' ep<ival'ed lengi4, &" p+c = st ' converh'h3 h quivalenf 1:ng14 of 9 piH ')'I= 5/(Q'I= f,9 f Lag y*= L u ys f eiee : Y.90' LR e)l @ 7 -7 ' sIrainhl lenri4 2o' ep/J# /<.y}4 v" p@c = g 7 Told epivdd leng% o 1 q*'p,' e = q q +py= 39,94 p d too ym,4he hea/ lass -lbra 36 9.$/ of y pqe sg 23 !=0 (os]'8s .4 /" x(,xJi.w(q,.pggj'/.97 ~~ 0 3 $ g % (5 yjefjg g,, \\y!! s.Q O' W ,oocol3y4-(/
- 7;+t g" -for one
'R = o.oz(.L9 +. OoM2 +. 00o0379 = 0 03/15 7 a s b. m
[A'* 81A0036 35 of.54 II~b'N PROJ.I/0/ O BY TASK DATE NUCLEAR ENERGY. SERVICES INC.- CHKD. IM DATE 8-M~d PAGE E*/f 'OFE~3N NES DIVISION - LACBWR FIRE PPo77n7aD-cor1AwfD I.M7 hcH44b
- =
w. %.c sud kse s+ ream in jaaralle I a ~ s.} = e, = ft Q. Ij'9, e> %= } = 0 03 % =- x= I/% 4 h= } =3;'5 .o0,99 = 'fr f /(.n'un #.om9 I 2 l t.o snr.orne)'&, = . oo /2 5-_ m 1 . '. Ih s-e = 0.00125 Q ' _ " "E ha g =
- 0. 001254 * + 36. 5~
re_r 3 - 2. Mi $P"' b-rxt.8,'fY o 3 5. r Zf 37 3 So .34 4 -100 Ll9 \\ ffo 64 4 f7f 7S 8 l. 2.00 84.s* L. 250 //q,6 l '- 300 /47 l 550 189. tr p yoo zs t,. s-L vzc 2522 / L/To 2.g9,(, 47f 318,5-Soo -349 38I-525'. -r%is d a h is iloneel -; RA 3 -I , e.u<ve 3 '""""~
81A0036 36 of 54 BY MfA DATEll ~7i PROJ.7/0I ON _ {ASK N La NERGY SERVICES INC. Y! DATE p-22.to PAGE E-lb ore-F/ CHKD. tAGWR AftF pro 7Er710il-coMRINrD WATER D914@ REF. 3,3 SPR JNKIER ~ SYSTEV1 .) Ene<g egudion -Crom s +0 D, da+um el. czo'o ' i f"+((+e-4 + /4 s.n s +2 + 0 O TaTM B NLB-D $ $0 3 3. / De4emindion 0-01 a-o Pe,- Re-ferenee (7), -Fhe esu:'valeJ lengB, oS 2" spr,'nkle< pip,Q km 4be HP3W nos'n' k -Fhe ,wb,1,e labe ou'I +an k is : G W L.R. ells @ 35 gj / = .I 44jh/44m code 3.c = 1.s ' E-4'5* ells @ l95 =
- 3. S '
o+rai M len$h = (,9 ' 3 44d quinIe.d lengH,2 " pin = 9y i tov 3 (too V* *T a;b tw gpai, s y ICD.?? y boo)!.8C(2.or,y)W,g7, yg = whicl, oktplies an "R " o l 218 e ,coagy (/01 )
- I The k-fac-he of -lhe sprinkler naula so -He *T B.
S, 0 c== ) R = gp - ^o. 0 7D 3. Fo < S nmles in ~ = (* rRIIf l, R =g/q = 0,o06 .: To-id . E= M
- Oo3W
% + gz. u D.oo803- +,OoD 7t/ = -j-- j]7,y s = 0. 0108 q' + 3G 7
81A0036 37 of 4 s Il-lo"W [O/ e 1 M af e -t-DATE PROJ. TASK gy s NUCLEAR ENERGY SERVICES INC.~ N b'N E~I9 OF CHKD. DATE l-8 ^ - N PAGE NES DIVISION-LkBwP Flef PROTEtThN-con 8MD wngR ZEMAkb REF. fASLE 3' 'h 6 > 3em N,mu, N o SG. T 2r 'l 3' 3 HD 53 6 50: . 43, f 7f q 7,3 9* _ _ _ IL4 Ioo I44 5 12 f 2.0Si3 /40 2.4S.2. I&o SI3' ./ 7f 3G7. 3 /fo 3/G.'/ 7% dah is p oHed in R. 3-1, Cu rve 2 - l 3
- 3. '{
G!' PI?/WG, CRt5 House 70 TuReINE BulLDING To r -lfe 6 ACS pump Ssch>. rg c pipin (p4s.A 40 3 see Figs. 2.- 1 and 2-2 ) :g guiulenf len3Nb ) 8)
- 2. fq}e va ves G 6 5~
IIS g .L checknlve e 65* W EO 8 90'L.R. dis e i o ] qo* 5.0 Lends 6 5
- O
!./ 45 5D Gends e 4.zc l'7 ~ 0 m u aue m
1 o 81A0036 38 f 4 ll-b~li PROJ. TASK O BY " " ' /+1* DATE NUCLEAR ENERGY SERVICES - INC. ///' ~l bF E' 3N c g gg, DATE '*/2-10 PAGE l.ABVR Fine PRorniros>-conniNFD WATER D91AND REF. L 4ees (44ru kndje a w Go $dee (-lh dP" l b n-e > N LGoo 21 9 G2.6
- 23. la 50 25~ 'l (0 7f 27.3 70.0^
?A. 2. 72.f- - 31. ) '750 n l'
- 77f 3 s. 2.
Spo 37 3 -S2( 3 9. f 8 TO 4l. 8
81A0036 39 of 54 DATE lf*b'7' PROJ. [O/ By '7 *. Af M" TASK NUCLEAR ENERGY SERVICES INC.- E'I S I~N CHKD. DATE f-AS-d PAGE OF NES DIVISION LW%R FIPf" WoTECT100-COMBINfb WliTER 'bfMAND REF. %BLl 3"Y (CovT$ 'd b R>Oem Ila_ n.a, 4 900 46,4 -9zS 46.1 950 Si, *S foco so.y NOO 67 3 % da4a is ploHJ s'n ~ Fib 9 3-1 Carve 5~ 35 To Scd -Me cor, dined Head-Flow curve -Gr 4be parallel branches 8 -,c, a -, o < e-e-aJJ -lfe inliv,'daJ 4 tows 'a4 conskJ hed. From F'y urt ~9-1 ; liedvN Qi 2 Q,- ISO 85, /o'3,*508 439 l1T 45,llS,~533 49) 53S' 200 49, tuf, 303 24 ss, /33, af t) 577 250 60, 140,4I4 GI4 275 64, I5o; 437 651 300 6%l54,460 (os2 32f 70; 16f; W3 7l P 3 50 74;171, 6 6 74/ 375 77i I 1f, D 2. 177 7Ns defines Cueve 4 in Figur< 3-1. l
e.llk **Di;in-dWe5sioi ,,,,ou-n LEAR ENERGY SERVICES INC. DATEf-B +0 PAGE CHKO. d*2 O OF E-32/._. LNtwR FIPr 'DRo1TcnofJ-(DH81HCh WmW kT1Alf; REF. 34 To 4,'nA #e combind head-Flow curv< kr & sero'es pa o.llel sys4em au,ak c.ons ad 4 ow, 4he indiv, dud heads dek) i R are 3 -L : Gy carves 14 ond 5. From R > 6P'" Hg,11s-2ll N i h50 2.75> 'L S.'l 3oo,i( G79 p.43, 27 3 p o,f3 900 3tz$,292. 3yj.7 '7Zf 3 3 i > 3' l 362.1 750 35'/ ; 33'l 3Mj R.3-1 -rh,'s deC,'nes euvve (,, 3 37 ' Pump Cuue : rea d $ro m The followiny ll-Q pol4fs are -Ife Diesel Fio-e Pump charac-leris-ls*c curse, Re.P /0 l C 8 h " diet. impeller ) H,44 o, um 350 600 700 3W Boo 220 l 900 3/f 1000 295 -1100 zqC
81A0 36 41 of 54 / O rnos. 9 1 rAsx O N gy _ h DATE NUCLEAR ENERGY SERVICES, INC.* CHKO. N DATE I-R-U PAGE E-21 OF b NES DIVISION z jygg gjpg.PPo7ECDooJ-CoMBr#ED WATER DE71ANb ~ y. y - ~ q--- ~ m j
- y
- . w
.--.-i _k- /
- a. _.p --
r w +-.V--~+ y1 -.--4-+.3, = =
- v..w-
. +,., .e. ' -. ;l ~ ~~-. -~ -**~ ~~i +" _ ag{~ . a _E-M i $2:- m -w w I,, p
- 4~
."z ^
- N' o--r----
.w --.. - 2=,r ,,_,g = ~- N_ 1 ---
- -'+
m .N ww. _. + - I
- m(~'
~ -.I* ~*+' n E.zQl.7'N=. _%..%.. u_ _..e .z 4 i _.4 .a s____.#_ _i_; _1 _y '"~" 2"*W **--. y --J: ' ps -1 . = - v.d.A
- 4 * * ' ' '
-. a. m. .~;
- u..~ :.l
+- ---..+*t**t* -1 ' * * ' ~ - *-N--.. i. M+ D**** .IM N^ ?***++4+ u di i +' M. ^
- 4+
~ g . w J'! -- . M-D2 .- W.. i, _ _. n a:.. Y = -;r -a-5.j 1:a s IC M r: Min : g-- w ..n.4 m p--- s Ar$=:,, gr'.ntn t ++.,7gg._.-.- r .z-- f, z sg +---: I l-+-. gj_ ,,, g -+.4,. :;* ~ + - - N w,_., ~4 :. - r.1 ,= -8*'Nmes'r,m sue
- MC*lisE!M%so mewca se..,edE.] Iia (
^~ _l (O +*.+. N-4 ~ ingE res.M*I5EC1CES(*3mE -M-rr m.pa.y-. - h ~ ++-F+.- g Md t 3
- N,
,c =~
- ir++i:~ : '
_N O A~N- _$ '*I:6 }l T .i-a.[
- +- -
t*--+ ~ 5. u. \\ --a w - Q ^'~~' g ~ ~ u
- t!.
1 q: - a =: + I ! - =% m -L I". ..N' 6sw - A _- { t:t;=. Z w +_ w y 4-w g d N .n-~r-t~-- .g z g - * ~ ^q - n 3 hjl J- ,a Aa ~-t. " w W u 4 g ~+ ;
- 2 5,
b"d I i + + * - u _ M. ih a. n, N --. "m gg ~_ 4 s. = w _-. _ =2 4. -~-w
- L~wp4%
m-
- _.===x Q
M -7 h% g 3 84-W q -_ * ' - * ' 1 - u m _: _- -;..m c .-a-.---g..- r_r. r__.-__py_, _w\\n __ -.4T' : +. ..__ r =. E m- - -~ _+ 3 Wc: ga._ -M- --v _ mi . _ = - - --i_. .=m ~ - + - - y =,-. - _.t-- p ...-..__._.__,----,---t---*nc*---*- t- . _ _ _,"-.nl y. l ? "v ' ^ - -, - - - + -= j ._Y _. _ -= i.: i -=Tt*.*..'"--+- --+=-- J --***.*;!** 1 __.,4 e Y"; --+ -- a_-i._.. - - + -. - ---;~.._;_ -_k h
- m. _
,4--.-- -~ =-- 1== 1 3 M k _g. N..W 3 H"'*U V~bO L,' -~
- T":
_==: _4.;. +r.,:-* "7 r,7-f .- %= s=e. . = = =
gy 0 >m**t nryg l-l 'l e 03 5101 r.rsy k$ ENERGY SERVICES INC. b 6*EN I E*22 OF DATE rf PAGE CHKD. N D S LNRWR RPG PPoTECTioti-ro/181AfrD wtTTER hr+1Ar>D REF. 3o6 DETERMINb'10Al OF BRANCH Ft.dvs Zn.Fiy.3-1 44e in-I-ersedian of carve & and dbe pump curve de0ines -l-ht do4al -{fow $7= 7o2. gpm Working bad.wnla Rcoujk -4kroug4 4he co,,,posilc -+o-Me componed curves (4.Hel he),44e,ndiv-idad Leanck -flows are : Flon -lo skuldoon condemer 69ypm(%8%) l6i yni(22 9 7,) Flow dru spanHer ysk Flow from b hose sheams 472 yin (47s%) 702 grin (/oo v,) /depacy of Flou do Shu-{down Con /enser 3.9 shuidow Co-deme < design espac;-ly is (s1,ooo I6f,. 0$ sakurcled slenm d 1380 64 9 (based upon (s
- 70 o$ l90 MW[4]).
Mad ~m 11 shellsiAc cooling &cler demank kselon Aesign \\ con //-li6ns, is as /s//ows : j /-led I-ced = Q = n*rl - f) = (ol,000,f, 58aI f o 12 / G = 3,5 3 4 X'/o 7'84"/4,- Repi<ed skildh toolin wde'~ kloW -[of Go#F,felm) 35,34g/o" = 4[970,3 ) + ok o [ziz-(oo) g
I ^' DATE PROJ 0/ O ~ BY TASK LEA NERGY SERVICES lNC.' b DATE ' M - N PAGE E93 Op E-3V CHKD. LK8wR FIRE PROTErn0N' COH8) neb k)ATER b91AND.
- a...
ALj c = 100 Bh</ji r-p - - 7 4 = 3 /,512. //s/A,.
- Q
= 3bsVz k 19sf 0+'k & =(,3ym h-g 6 cz.g Since. (o9 gym is usilaLit un/er4h4 asskmphion of g -lArs-l4lu[ sbddsw undense e-n level con +rol velve, iV is seen Al Re cupply Oh reackov Cao lr',9 wder is mort -}b4 n QlEfa br his Scena vio. Adeguacy of Fire Woler Flows : 31o }{eak a bsorblion calattli-ly of sprinkkr Now-llol 9: !, y $ y W" g (! V lb = go,5g(, Nv 2 h a y8 pd 4,- ja ~n Ani"$ -Me Sprfeak okorhel vapon-zed and is enliv 400 *F,pu. ~ 6t = 8056G (97o.2) 40 +80,ssco (212-(so)+ 89s?G Gwl.4 -lisns) = 97.f,x 10 4 Bhky 1fo3x/o'Bf4Nin oy- ~fhe N<e loaNng consis hs basically o-f -& lank. con 4aining lusine Lubi oil s-lamy h n -flash poin4 ob 2 4000 gal. o$ ^Regd A " wid I 400 F wilk :a pokn%{ 500tro
- liki Jxmila Lie heok,.
- The incinkl<rs alone shoulf }feve4re mwnme
?
- ^ 'Il 87fn'o;.5/0/ - (43gON ny o41e N
LEAR ENERGY SERVICES INC. DA1 E A**d ' PAGEb"E OF EJ34 l ' C H KD. g 9 9N LACBvR Fmf Ptark77sN-cDMBHJED Id1Wk D9%k '^ REF. Ae C4pQbl4 0h 2$hl'h} mis l1/nj his hrc in a mdkr of in.na-les. M% Me . R Vdllqhifib)/ Ch An Qllihonk $$ fpm -fYom hose ShrenMS i$ neekeh, a/e9un five tuker SupplieS arc RSSMYCY. 1 4 g
81A0036 65 of 54 lI-b'H PROJ. [ BY ' ' d'## 'M DATE TASK CL NERGY SERVICES INC. M DATE **" PAGE g g gg, b"N OF E~3Y L/1cBWR FIEF PPnECflod-CoHBrnED VAR 1' T'EH!)WD REF. REFERENCES 5. NFPA Ftre 'Pedeclion llan/Losk,19'L& f Eddion, M7V. 2 Ree HawrA.s Analysis of 4he ) a Crosse Sailinn Wale < kelor 40 uSNRC Brsncb Tech-nicd Posi+ ion A Pc s S 9.s.1 Including Appendig A 3
- How so cornpg ;e 9;pe S;.,e ag goge,; yetn, y
iping Design series, pa(+ 2, Prac4ica D Chems' cal Ene)/neering, January 6, /975-Valves in ' Process ? an L " b Robed /-/.
- Con-ro s
y Kern, 'Prach cu ' Piping tesign series,ref 5', Chem;cd Enc,ineerin9 rr;I l'd, I475~. A Reaclor Planf Pi ing T)rawings : 5 p 5.1) 41-503M z. %ch< Plad Piping T%s"A A"i "s-B". Res n
- 52) 41-5 o sw3 se3 "c_ c "g "p p" ges,p
" Ph n G c, " aesJ
- 5 3) #1-so3%s 5 4) #1-fo3Y/ 3 -
Reoclor Plant Tiping Sec.4 ion"P-P " WR
81A0036 46 of 54 BY M. DATE ff'C'7hPROJ. b I T,ASK b d NUCLEAR ENERGY SERVICES INC* f,// - DATE D ~N PAGE EN OF b3Y 4 CHKD. NES DIVISION INLJR FtRF PRJTTCT10fl-C091Bl?)ED VIATER DEHA//D 1 REF. j G. nnel Piping Drawings 6 1) 41-503381 runnei Pie ns Plan Rev. 5 i 6,.z) TI-503362. Tunnel Piping Sec} ions 'Eev R \\ 7 m6ine Building Pipi"5 Tr'"i"05 71) H-42 Turhine km Bping T%n "A-A" Re y, pt Plan "B-B " Rev. T 7 2) h-43 7/a n ' c-C" ReV 3 7,3 ) g -#t/ ^ ^ Pla n " b-D" Eev N >7.q) n-45' n 7.c) M-46 TurL. Toom Pip,'n3 ong. see+s. vg-g"(ry"yev. R L g) p.//4 Cross-sec4s. "L-L"C'h H" Rev.7 y,.7) p.5j Hn'sc Plans 4 Seckons Rev. R. \\ 'n " S ' ' '*"5 T*"' d 7.g) M-52 l l \\ 8. M Ceih House ' Pie;n3 an ?, sec4 ions Rev. W 'Pl 't. M-z9 - ouMor Pipnjflan Rev.I
- 10. ucewa, openhn3 Hanual, %lume 1, Service Sysl ems.
11 LAcBwk SakeA Analysl '[deforh f .~ r1. wam Tables; Co.,,kdhn Engineerins nc x Severdh Prin4in3, fHTUYMTFv62?A
81A0036 47 of 54 SY DATE/ t O PROJ. TASK N L NERGY SERVICES INC.* I'3 Y C H KD.- DATE I
- AA 'N M7 OF PAGE LAC 5WP FlM PPo7Fcmg -coMatuEb WATER BEHAND bendix A
3 hee 4-1 a"- conseguences & pos%'-ed 4broug lice h w al' The a+ buio locahtons in %e leakage cracks woc er sysam supply and distrihu;-ion wgiv$ were examinel. The. Sirsh loed/on considered was in he (o" diesel 4,'re pap underground casimo n lis cl,arje header near he cribhouse (jud bu,s4 ream o 4 (oinVA" in Fabure 2-z ) -rbe secon) Ioc.v/;an ms in-lhe undergrounk yard main .bedmen 1,yfrank 3 (g = Delerm/mNon of lesbage cracle sie.e a c ConsiSkenh'LoNl1 YefairemenkS $or pos[ulks'on mo.derde ener o}, Zailure. modes in3caneh Tecl,nied %y P!?tn3 ofen in 4 ton VIES 3-l, " Pos4 uded Eceax and Leakay Locolions in Fluid Sys w Piping Oul-C on 'qivin,ed. # This tem lo.. ovy doc - Sic R ~ repi<es considerdion derde m<zy 4 hugk- ) umen .usaR khay cra&s ta mo pigeLine.s. Fluid b hon 1 ne crack. is & sea upon A circa. ar openi'n3 o 0 aree egual -o JMd od 4 recra nh ohe l 4 @ 1
c. 01AUUJ6 48 of 54 . s H a D i h ito,,o,. m,A,u ne N LEA NERGY SERVICES.INC. b20 N'Ed CHKD. DATE _8-21-H PAGE OF LACPHR FIRE PPaTEtnopJ<cManNFb tanFY- (fMAIJD Appenlix A su&, 2. ner. Lenyh and one-na [ oipe d& Erev in w d l E ness in d4. For s4,40 cire A. " nomin41 dia. ; va11 -Rickness = 0.zgo". ofedng a b " - 7%is imp ies 0 ' circa av- = 3 x t(0 zfo ) = 42 4I J z=.b #N = 0, 5 3 f 4 or 7r k OW hrough Gn OridCt or 0 = ' D9. fi/ j' d. g4P? 9 = jjse' w$w A = 94 Nfc aounej a ffa> caffd3 c =.62 s=
- g.,
w q = .nv 4x leak close -k 4e enkse: Wm A- 'E-g% ._ gup, a n. y.
..~ 81 00 6 49 of 54 NOI l'7I PROJ TASK N LEA NERGY SERVICES INC.' N DATE RY E-M o,4-34 CHKD. DATE l-J 8 -M PAGE LAcMt PsRE pro 1RT10n)-cortb!A%D svMTDC DEHAt@ 'A ppenliy / shf. 3 Energy ejantion, p+. " y " -4 a4mosphe<< : r %> = O P
- Ex + 0 o&e 1-
+ 'Px V/ 7 + 2p = r t..r: b u + Ex Seyy e l oq fr."A o p': X YE X~ + +%,=lltZ.+2x A e. neal. To $ d $en l 6 h "A = Ng,,;.(, + %y RQ'+ /2' = TABL E A-L Q 0Z Y Q ' +-12 l-lo 50 4 l Go 9/ 4
- 70
/29 4 Jo I4CV 40 20G,4 . loo 2s2 110 3o2.y 1M 357b /25 3 g 9,. 13* 4t q, Q 1
- /4 1A0036 50 of 54
^ DATE /7 O PRO). 9 0(- TASK O I BY bW C H KD. --- DATEf*M' d PAGE OF E' SO LNWR FIRE PRoTBC770r) Cur 181NCD WAT&' 0 91119': i.0 /ppekiX l-sid y 1hes slah are p'o}4ed in R, A-l, 9 cu we " x ". leale in 44e undeqcouns( ma : For a () 5 A 5, e e - a oro-c j DATvh -.- _ EL Ozo' te.E DekeVmine h00 hyrs lof6 Ih kenns oh To4al head af *B"j]) L f m = o+ o + y + IL or,ta< .p age To+at fleul afh" = IL od. + % TA BLE A -2. Q .024Q'+ 36.5^ 40 7 4 'l go 95.s Go /z2 9-70-154 1 20 I90.I q0 2.20 9 _ e,. ,,o zu.c // 0 32M 12 0 3g p,j [-
BY J DATE / PROJ. TASK N
- t. EAR ENERGY SERVICES INC.
Ak DATE '"240 PAGE CHKD. E*3 l OFb3 ikBWR fME PROTECT 70Al-C01RlWED wh#R. bEMAMn c: hppendix h-sld 5 =- 1%s dda is plo44d h FGure A-2 as Curve
- Y".
De ermivSon o4 %nc.k FIon1 For -lfa case afa breal near#e eriL house, -}ke -lald syshm head-$ loa ~cmavac-len'sNc c.uvve is oIdaiked Lg aff a? cons-Ind head, 4$e Slows de!neNlen$ic. i Ly aurve "Y " -v -(4.e hes)-$ low charac oc se ce ,ndec v4 #1 sysbem Ueka by c.arve 6 in Figure 3'l ) The iMe" seen o 4 k e resul h3 c.wve_ wi% Mt guy t nead-Flos carve yields % d s p -e m S os. OU"ineA "X wokn3 *O-Brand A\\ows a re warcis b ough 4ke componed curves as in/iwbed in L av<. A-I. Res&s a re 3 As b \\.o ws '. i~ low 40 skandoyn condenste lo7 ym Flow -w spr;nk e< sysm 158 ym Flow -lo hose s ea 41s Wo/cjFM Led 4de //7q pm TOM 'go3 }pm ) cmmom
t 81A 036 52 of 54 ON_ 8 /N DATEf a paoj,9 41 733g u$fo'*y"s"o ERGY SERVICES INC. g E-32 or E-3V c g gg, DATE '*dd*if PAGE (ArPWR FIRW PROTFZ1100-CcHP)tib wnM D81AWI) bppenYi)< A str s ner. VW - h< Case. ok a bre N s% - M under6round main, an equimled head-flow curvU-M<~.Cor gar 4 e brawlis is q//el N consnN k ow, Em he' hea) Alou cna md,s-ish curve. ,4 seeem 4-us (sum s-4 SfShn1 kig ufe. 3-1) -o oIbAin -b4 heal Now Ourack&ic~ic '*e 3'r***N .Q%g are. Aderm ined by worleing ad-h l -he c unees as sho~ n t% war /s,4roug, Tesu ls are JoHows-Qure A as FIou -% sau--down andensee ory-Plo w --a Spr.'ndW SyS--em 15(ogfm Flow -fo aose s-%ris 6G y-' Leabg< i o 5 geri Tk*l 784 [ea1
a n } g '1' 1A0036, 53 of 54 9 p 4 l j i tm 'aY - * ' MA D ATE I1 0 PRO) di-TASK'N W < (h 'N b ENERG SERVICES, INC. cggo, [ M UW PAGE E*32 'ON P3N' OATE NES DMSION ggjp pfg,PP no W ConBW n isA R JEMAND ~ = n=ug, u_w _.,. -c - =.-- .,,.[.' l m.-- h E.-. i-.a.--> g y "~' ,; '~~.._, -} J+ -6 is .. _ _.,/_. ~ ~ ~ ~- -'~ + ~ -n .a f "Ia t.- 4 ~ Y .c ._ g._ I' '-*-~ s_-. _4.- }-_q _m 6 n a... - _. ' *. - ----+~'~}---+ L. m /- - ar... _ L = =-y ~ +-
==~ ._a...- W _f. ~.
- - * - + - "
- _-, 2
+..- --5;==.t - - +t-- ~' - + .~I r .a u..J - ^-k
- n. L~$-
- Nc-2*.MU-=
- -. _ - = ~ = ~_ k -- '. -.-- :p' :X _.- .a 5**"' '* * * - - - - h e h '._ f { -~" =nt _ -+ +.- p-- + - -.. ~ _+ _- 21_--/., .' i ? m- -O N 'M . - + - ._ a.L - -. _. +. - + - -t- --a ~. g sf:~=In t_ - - +. -+4 _.-- n J =nm.,. _ _ _. _r '"~~* '*-~~g = = ' + ',..
- * " - ~
~ ~$1 O 'i
- +-
_ =-.7;=_ T --+-,g _.. _ _ g- ,Z.**.*Z.6 - t, -t*~,,,~ ;} . g =~: h ;. NQ
- =~i t*
.'----,[' \\!x 5 ~ * * * ~ 3. 't M-W, i__ .._t--*
- -*-l
. I -._._4. ^ _i___,;_ g2 - + - - --+
== t r--- +- t=t:.,. x_.. ._ g = **-+- ~'- p;=1t=$^ - - i. -d a,t: - ? ~ f i y !- -A 1 -r.-- W =, . _. s 3 - q/) :=- 7 - =t_. +-;-- i.mu - _ w.--- 1.-- 2 =Q- ^
- 4.
w w. ~~- C' 5 4.-+h. f -%= _.._-,L.-.- -4.- -c o%..m.. _. m,mm gg_wm.-. ip
- n. a 7g
_ a "~ it -h .I?d D= T,N- -v. 2 .L; . M^ "g ) e
- -*-+ i-x
- 4*:--
9 g- _ M_-'M. r ...'g' 4
- =^
,,w4 e 04 -*- :*M I E '~~***- - ' l;. 2 1 9-=ee [
- m' T
v "C g, + - - -= e C et i = s -r E m 3-v.
- N
- w _d~++ g M. _--.- N-.. 2 m w 4-. y g 5 -- y W 's 9 gt M N wa=t N. +- g g.g -t s - __,=-e:- u .____.3-- + -. _. - e - N 's. e g x ;=. =D wa 4 - + - - - o. p .A -r.--- ..--+-{ g i- - -rr,. -m $ -m - K'. = e.. - _ -y %-W. m < mm:ww.m -.-.=..- .Js=f W --\\ .. =. m. , -.+ -s-- ,. +- a n.acm r.k-e ::L-cgpw.t wa .,w=h\\w m-rea __._ C..* i. 'Cv - N _._.i N^ - - + - - - q _- -.-n-+-- ) ..\\=:- oc -~ = ' - - .._m._.
- +
- w.o.m mm&
-c e.c_w%.camt* +-m m _4... .-~- _ a _. ge_._. - + - - m_ gr- * -- "~ ~ _ h. - ~~MC h-. -+- I {~- -? -.__ g -. 2 y ~ . - - - + - -. -. -. - , d-p=' W _ __+4._.[ .__3 9 M.I Q' f -.- t "** C."$. 7 ++.-- O ....,---- } r - 433g. =g ..-i... - ~. -- _. - a__
W a -s,-,,,.., D'. 0 D c'U . ) W w. . S. ElA0036 54 of 54 s / DATE t?Zw/po PRoj 5/o/ TASK BY {*
- l'MM
.:s l
- Mg i NUCLEAR ENERGY SERVICES, INC.
e~ CHKO. [ [ OATE i~h *fd PAGE E*N OF b N NES DIVISION INPk/E FtWPf%TFCT10!J-CD1RINEb VWTn ' DEMAND ~~~ Lj-L__.2 _~ - 4_ - T- ~% ~_.~I -- I ~~ ~ 7t._ ..1.- ^~_. - -,, _.._ _ f ~ ~[: ~ ( ~_~*;"f- - - ' - - _. r +.._. e f4 1 4 g_. ~ _ - - i 1 ~ ~ ~ +++ ..,,,, f - + -4 + _ i./ - --+ - s,__l-;."- - - ". _ ~ ~ ~ _ . ~. ' M 1- - -y rn ___ _ r. 'N .f - + - - 1--+. _ -e .:,( - y=- - + - n +- -u 1 N ~ __f
- ---+
' - N M '"~ih ' _j. - + - - ' * * + -n-f- 1
- .4
'N [p ,V g bgp a -- =~_.-.t-L"_l' gw m c+sa.d.r~m.
- mad w.,ggg A-)M34.w 3gd ge[,
A l ; dasww'1a.y
- gem m ;**
-**'+ = gi:_y n--+-+- e t p l K4-dh n-~~+ ~ x= w_._ [ NC C.-\\ '* * ^ ~ + - _. ~. _ - + - c. y= -j P%=$ -- -- ' +
- DE af wis::
1 .h a __ j w n 1*= ~~~* ..rmt _. i ~**--- 4 ..__p.. ~ _g .- r:W~ +- 3.p C EI C =ta = _L + - - - pg tQ W w= E-K- q _.._q _ Ca_ .~ n_ M =- a+ ._-q--s. 4-e x zg y LU _;.,,. - G_1 .--.r+.=.%-.~ _ - _m--. _.. + _. &--4_A N m--- - _ +. + - - _ ne CC @m + D m _m eg ~~ y 7 T, N ~== 7 '~ t-. i'** Ge w r a= yu q if a F, _,r N 1: L.. + - x w A . _ _. _1 C = w -v U N :. _4 i as d z t ~ M -t^ s = 0m 'N p3m u s'.N -- -_u 0 De -+- A i .+,> ~ -. __a__ . _g_. e y --A;--- ---4 N p ' - - - ' ~ -1 i ---h k,- - Q _ 4 -- _--.- -Y 4 - -L h L \\ ,A _ _ _ i A__ _ - - ~ = -p_-_- i } 's-+=> : p e c.=1.m.-+~e- =- .s +\\ > _m i ~ - u_ _., a im aA=.w.w2= =-= = ^ ~~~ ^ U--**-~~ M_
- Qg'
~~, 3M m __ w. > N~~~ C MM ., _ )N __=' ---* --'" Jj_'.' ~ Q =$_.__,t-- / -'Pd... - -, _ q-.. g I 4:-* y v_= .a _;g =- M w .) " -T = 4 ^
- _u_,
+- jj '"I""* ~ h m .}}