ML19309F821

From kanterella
Jump to navigation Jump to search
Nonradiological Environ Operating Rept for 1979, Vol 3
ML19309F821
Person / Time
Site: North Anna  Dominion icon.png
Issue date: 04/02/1980
From: Jason White
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML19309F818 List:
References
NUDOCS 8005010377
Download: ML19309F821 (225)


Text

!

l

-. - -.. -.. 97 O

so s to oo Y

l Virginia Electric and Power Company-North Anna Power Station 1979 Non-Radiological Environmental l

Operating Report l

Units 1 and 2 Volumes 1, 2 and 3 i

l 2I-t, h, /

Recomend Approval:

24 f

Station Biologist I

Date:

3 E /fd l

i

/

Approved by:

>#A_

w/

f Executive Manager

/

Environmental Services Y&$/> ]f8d Cate:7 Approved by:

\\D h \\,,

V tation Manager

\\'

North Anna Power Station Date:

d-2-8D N

./

1 I

l l

PROJECT TITLE:

VEGETATION STUDY OF THE UPLAND AREA ADJACENT TO LAKE ANNA, THE WASTE HEAT TREATMENT FACILITY AND THE NORTH ANNA RIVER - REPEiT SAMPLING I - 1979 l

I REPORT III:

THE STUDY RESULTS FOR 1979 1

Prepared By:

Michael J. Scanlan, Ph.D.

Submitted To: The Virginia Electric and Power Company Date:

29 January 1980 0

i I

'g I

g I

A I

_?pt

a e

B g-p l

r l

A A

l s

N a

r' t

e N 3 V

e A 4

~

l

~

3 r

=

p A

E e m

K A

a e

e.

Tp'b.i'3

.s

.!=

S l

t lc l

_U r

BI p

I ma z

an yW d

T Sa j

. c E

L c

l S

f("

f>

N T

n f

I E

A r

N-S f'

Nh N

Ao I

. b.

@,/,h's

~

e h

p c

N Ei 4

K w-s L-gf A

ae r

lI A

-s e

l p

ma S

4 4

fo n

4 6

o

-A i

s ta co L

3 8

sa e

er r

t a

tg s

e i

a i

mj e

rA L

A y

l R

r s

N_

3 A 'q E

t e

N t

s S

o F

l a

l t

e c

3 h

n I

A

.a t

e H

g f

y A

o l

7-e s

t t

gA

=

n a

e er t

i t

x v

t A

e o

s I

gl e

e r

e-l-

e p

k r

lB A

h p

a o

t a

p f

md an O

Sa D

N NO Q

E E

y T

f I

S N

I 1

-B

^-

4 1

ll)

,l l

-.l lI

a

~

(])

TABLE OF CONTENTS j

page I.

INTRODUCTION.

1 II.

DATA COLLECTION AND ADJUSTMENT 3

1. Data Collection in 1979
2. Correction of the 1976 Data Base III. THE ANALYSIS OF ECOLOGICAL SIMILARITY.

6

1. Measures of a Species' Importance
2. Sorenson 's Index, IS 2
3. Squared Euclidean Distance, D
h. Cluster Technique IV.

RESULTS OF SIMIIARITY ANALYSIS OF THE 9

TREE CANOPIES

1. Richness Comparisons
2. Density Comparisons
3. Tree Stem Area Comparisons fs
4. Importance Value Comparisons T,
5. Comparison of Dendrograms
6. Conclusions V.

STATISTICAL ANALYSIS OF THE TREE DATA 18 VI.

THE UNDERSTORY VEGETATION.

23

1. Ge'neral Considerations
2. Density Changes
3. Richness Changes
4. Vegetation Cover Changes
5. Stratal Changes
6. General Conclusions VII.

ANNUAL PRODUCTION IN THE UNDERSTORY 31 VIII.

SUMMARY

33 l

REFERENCE LIST APPENDIX A l

APPENDIX B s.O l

^-

LIST OF FIGURES 1.

Dendrograms showing the euclidean distance relationships between sample areas using tree densities in 1976 and 1979 2.

Dendrogram.3 showing the euclidean distance relationships between sample areas using tree stem areas in 1976 and 1979 3

Dendrograns showing the euclidean distance relationships betweer. sample areas using importance values in 1975 and 1979 4.

Tree growth in the sample stands graphed as the average bounded by unit standard error bars.

Results of Median Scores Test of interstand variation in growth are tabulated.

5 White oak tree growth in the sample stands graphed as the average bounded by 95% confidence intervals.

Results of the ANOVA of transformed data are presented as a table.

q 6.

Understory density (a) and coverage (b) expressed as averages bounded by 95% confidence intervals.

circled averages are based on 1976 data, noneircled averages are based on 1979 data.

7.

Percent cover and total density within each stratum of the understory.

Solid bars indicate density and open circles joined by line indicate percent cover.

Figures a) through e) are 1976 data; matching figures f) - j) are 1979 data for the same stands.

8.

Location of sample areas. (Inside of title page)

LIST OF TABLES l

Appendix A:

i 1.

Dictionary of tree species codes used in the tables.

2.

Dictionary of tree sapling, tree seedling, and l

./

non-woody species codes used in the tables.

3 Summary table of raw data for canopy trees in stand 5, Turkey Stand (A-I).

4.

Summary table of per hectare data and importance values for canopy trees in stand 5, Turkey Stand (A-I).

l 5

Summary table of raw data fer canopy trees in stand 1, Beech Stand (A-II).

6.

Summary table of per hectare data and importance values for canopy trees in stand 1, Beech Stand (A-II).

7 Summary table of raw data for canopy trees in stand 4, Railroad Stand (B-I).

8.

Summary table of per hectare data and' importance values for canopy trees in stand 4, Railroad Stand (B-I).

9 Summary table of raw data for canopy trees in stand 3, Dam Stand (B-II).

10.

Summary table of per hectare data and importance values for canopy trees in stand 3, Dam Stand (B-II).

11.

Summary table of raw data for canopy trees in stand 2, River Stand (C).

12.

Summary table of per hectare data and importance values for canopy trees in stand 2, River Stand (C).

13.

Similarity between stands using species richness in 1976 or 1979 14.

Euclidean distance between stands using tree den-sities in 1976 and 1979 15 Euclidean distance between stands using tree basal areas in 1976 and 1979 16.

Euclidean distance between stands using importance values for tree species in 1976 and 1979 17.

Changes in total density and total percent cover per 64 m in the understory of each stand from 1976 to 1979 O

s I

18.

Analysis of understory quadrat data.

19 Total percent cover and total density of the eleven species in each understory with the highest percent cover.

20.

Annual production change in the five sample stands based on 1976 and 1979 collections of above-ground plant material.

Appendix B:

A.

Raw data for 1976 and 1979 canopy trees in stand number 1.

B.

Raw data for 1976 and 1979 canopy trees in stand number 2.

C.

Raw data for 1976 and 1979 canopy trees in stand number 3 D.

Raw aata for 1976 and 1979 canopy trees in stand number 4 E.

Raw data for 1976 and 1979 canopy trees in stand number 5 (O

F.

Raw data for 1976 and 1979 sapling, shrub, and non-woody species in stand number 1.

G.

Raw data for 1976 and 1979 sapling, shrub, and non-woody species in stand' number 2.

H.

Raw data for 1976 and 1979 sapling, shrub, and non-woody species in stand number 3.

Raw data for 1976 and 1979 sapling non-woody species in stand number d. shrub, and I.

J.

Raw data for 1976 and 1979 sapling, shrub, and non-woody species in stand number 5 K.-0. Net annual production measurements from stands A-II(#1), C(#2), B-II(#3), B-I(#4), and A-I(#5).

1979 data.

l

.lC

1 O

I.

INTRODUCTION:

g The floristic and structural nature of a plant com-munity are the result of multiple environmental influences.

These environmetal influences can have either natural or a,rtificial origins.

Natural influences include the prevail-ing temporal and spatial conditions of soil materials, solar radiation, atmospheric gases, precipitation, humidity and wind.

Disturbance events are also natural influences if they are due to natural catastophies.

Artificial influences include logging of the trees in a forest, irrigation and tilling of the soil and other changes in the environment brought about by man.

It is the purpose of this report to evaluate the effect on the vegetation adjacent to Lake Anna of an artificial influence -

the operation of the Vepco Waste Heat Treatment Factittles (WHTF's) on Lake A,nna.

To achieve this aim five forest sites were selected and intensively sampled in 1976, lor to WHTF operation.

Two of the forest stands designated AI and A-II are test forests on the WHTF's.

Two more, B-I and B-II are control stands in the vicinity of Lake Anna but isolated from the WHTF's.

The fifth stand, stand C, is located on the North Anna River.

The con-clusions based on the sampling in these five stands are ex-pected to apply to the general forest vegetation.with a sim-O ilar proximity to the WHTF's.

The present report is based on vegetation data collected' in the five study stands in the autumn of 1979 and a compar-ison of these data with the. initial 1976 data.-

Its purpose is to consider the vegetation changes during the three year period and to determine whether WHTF operation has had a sig-nificant effect.on the vegetation.

Although the time between sample periods was three years, the WHTF's were only used for approximately 16 of the 36 months.

This submaximal use should be kept' in mind because maximum use of the WHTF's can be expected to have a greater effect on the vegetation than can be shown from 1976 to 1979 A disturbance of any kind in a community leads to succession -- a natural, progressive change in the flora and fauna of the community.

If Waste Heat Treatment Facility operation disturbs the environment in nearby stands A-I and A-II but not in the more distant B-I, B-II, and C, then successional changes should occur in A-I and A-II and be detectible through the sampling results.

However, there are other alterations in the environments and biota of the i

sample stands that have initiated successional change and i

that make difficult the ascription of vegetation change to WHTF operation.

i.0 m

2 A primary alteration in the environment was the general elevation of the water table and, possibly, of

' (

the atmospheric moisture conditions in forests surrounding Lake Anna due to the creation of Lake Anna in 1972.

From topographic considerations, A-II and B-II are on the shores of the new lake and should be most seriously influenced by lake filling.

An alteration of the biota in most stands also occurred prior to 1976 (pre-19727),

when the stands were logged.

Based on 1976 estimates, stands A-II and C were most extensively logged, B-I and B-II were moderately (selectively?) logged, but A-I was only slightly logged or not at all.

Therefore, successional changes in stands A-II and C should be the strongest followed by modest changes in B-II and B-I.

A-I should show a minimum of change due to non-WHTF influenc es.

Because ' successional changes due to non-WHTF factors are expected in the stands, the successional status of the stands and the vegetational changes due to non-WHTF factors are frequently considered.

4 9

6 I

3 II.

DATA COLLECTION AND ADJUSTMENT:

1.

Data Collection in 1979:

The 1979 sampling period lasted from 13 October through 4 November in 1979 During this time the five study areas established in 1976 were revisited and resampled.

The abun-dance of the tree species, their stem diameters, and their canopy heights were recorded for all permanent 15 x 6.7 meter (m) tree quadrats.

All 74 tree plots were easily located by the labelled stakes that had been placed in two diagonal corners of each tree plot.

The tree quadrat data from both the 1979 and 1976 field seasons are presented in Appendix B in Tables A through E.

The 1 x 2 m small quadrats were also revisited and re-sampled.

The abundance, height, performance, and cover of the herb, shrub, and tree seedlings and saplings were again recorded in these quadra ts.

All 144 of these small quadra ts were relocated.

However, in each of two plots one of the diagonal corner pins was missing and its location had to be approximated.

The raw data can be found in Tables F through J in Appendix B.

The height code convention of all plant groups was the same in this year as in 1976.

The cover ca tegories used for the understory plants were also the same.

However, the method of recording understory plant density was somewnat different.

In 1976 each separate stem of a plant emerging from the ground

/-

surface was counted as an individual.

In 1979 all stems that (j

were part of the same plant were collectively counted as an individual.

Thus, plant species that are strongly rhizoto-mous will automatically have lower density record in the 1979 data base.

This difference in enumeration did not in-fluence tree seedling and sapling or herb records except for the herb Lycopodium flabelliformae.

The major effect of the change in density will appear as a reduction in L.. flabelli-formae density in stand A-I-1979 Biomass was collected at each of the five study areas.

In stands 1, 2, 4, and 5 which are also known as the Beech, River, Railroad, and Turkey stands respectively, biomass was collected using the 1976 plot arrangement:

sixteen randomly selected 1 x 2 m (meter) plots.

A large 15 x 20 m biomass area adjacent to the 1976 biomass area was subdtvided into four 5 x 10 m subdivisions and the 16 sample plots positioned randomly in the subdivisions.

In stand 3, the Dam stand, the biomass plot structure was different from the above methcd l

but the same as it had been in 1976 in the Dam stand.

Here l

the biomass samples came from the whole of four 5 x 10 m subdivisions of a large,15 x 20 m area.

4 4

In 1979 biomass was defined as the vegetable material that had accumulated in the form of leaves and one-year twigs (O'

in the collection plots.

Biomass was collected from all woody plants with a height of 2 meters or less.

The only difference between the 1976 and 1979 definition of biomass is tha t in 1976 herbs were part of the definition and total biomass weight for a stand.

By 1979 it had become clear that an autumn collection of herb biomass depended greatly i

on the time of collection.

Therefore, although the weights of certain herb species are included in the raw data listings for 1979 they are not used in the analyses.

The biomass data are tabulated in Tables K through 0 in Appendix B.

2.

Correction of the 1976 Data Base:

When this project was initiated in 1976 the accurate identification of certain plant species was impossible due to their autumn condition.

However, because identification notes were taken in 1976 for the questionable species and because the 1979 survey was made of the same plots it was possible to correct the 1976 misidentifications or unknowns.

This has led to slight alterations in the species diction-artes and in the species codes.

The updated dictionaries of tree species and of saplings, seedlings, shrubs and herb species appear at the beginning of Appendix A in Tables 1 j

and 2.

The corrected 1976 data base for both the canopy l

trees and the understory species appears in the second appen-l dix in _the same tables as the 1979 raw data records.

All alterations to the 1976 data base have been noted in the 1976 Performance column in the tables.

A name change for a particular plant is indicated in the 1976 Ferformance column by a pair of dollar signs, "$ $ "

The code "$$$$" in the same column has a different meanin6"and appears only in i

the tables for canopy trees, The "$$$$

code indicates. that.

l the plant was n'ot a tree in 1976 but was a tree in 1979 be-cause its diameter at breast height (dbh) had ree.ched or sur-passed the 10 cm lower limit'for tree status.

Beuause the plant's dbh was not recorded in 1976 its stem area was-not originally used to calculate" tree stem base area i.n 1976.

This 'can lead to problems.in the use of tree base area as an indicator of environmental impact.

For example,.tf a single plant achieved tree status in a stand in 1979 the 1979 base area total would show an increase of at least 81 cm.

Because 2

this would be approximately. O.2% of the total, an several new trees in a stand would not seriously affect the stem area totals.

However, an 81 cm2 increase in each stan.1 is 3% of the average basal area change from 1976 to 1979 and several s;

v

,e

5 saplings entering the tree canopy would significantly alter the average basal area change.

Consequently, each new trge

([ }

in 1979 was assumed to have had a stem base area of 77 cm

?

(dbh of 9 9 cm or 3 9 inches) in 1976 and the tree's name and assumed base area were added to the 1976 data set.

These additions are signalled by a quadruplet dollar sign in the 1979 Performance column of the tree canopy tables in Appendix B.

These new trees are used in comparing interstand tree base areas and so contribute to all 1976 and 1979 basal area stat-istics and sums in Tables 3 through 12.

Consequently, the stem base area averages and standard errors for each species and totally for each stand are based on the 1979 tree den-s ities.

However, the frequency and density values in the same tables were calculated using only the plants that had tree status La the indicated year.

4

()

i 6

i l

O

[]

III.

THE ANALYSIS OF ECOLOGICAL SIMILARITY:

The floristic and structural nature of the tree canopy Ln the sample stands is examined and compared in this sec-tion using similarity indices and cluster analysis.

The ex-amination elucidates the phytosociological relationships be-tween the stands.

It also provides direction in statistical tests to be made on the tree data set's.

Finally, it contri-butes information about the direction and relative magnitude of the changes in.the tree canopy community from 1976 to 1979 These considerations' will influence the interpretation of alterations in the tree canopy that may have resulted from the operation of the Waste Heat Treatment Facilities (WHTF's).

The indices to be used for measuring interstand re-lationships are Sorenson's indeg of similarity (IS), and the square of euclidean distance (D h a dissimilarity index.

The first index is used to compare stands on the basis of the species they contain.

The second index is used to examine the 'importance of the different species in each stand.

A

(

species' importance can be measured in several ways as dis-l cussed in the next section.

l t

. (])

1. Measures of a Species' Importance:

In the community analysis of forest, tree stands are l

traditionally compared on the basis of the frequency, density, l

and dominance of each tree species in the stand.

The fre-quency is the number of sample quadrats a species was found in.

The density of a species is its total abundance in the sample area.

Its dominance is its total stem basal area. cal-culated from the stem diameters measured at breae;t height (dbh).

These summary measurements for each' spec tes in the five sample stands are given in Tables 3 through 12.

When a forest site has poor growing conditjons the stand will have fewer and smaller trees per unit area than a' forest site with better growing conditions.

However, the tree species may show the same degree of importance in both stands.

To negate interstand differences of sitc. quality a I

species' proportionate importance is calculated by dividing i

its measured density or stem base area by the total for the stand.

These relative values indicate the species' degree of infl.ence in each stand in terms of each variable and are given fa Tables 4, 6, 8, 10, and 12.

The site-standardized values of density and stem area can be averaged together to indicate a species' overa.ll im-portance in the tree canopy.

This average is its importance value (I.V.t), and is calculated as follows:

((])

I.V.i=0.5-(d*"81tY&nsity+standbasearea) 8t** D*8* ^#**i stana a S

7 In this index a species' relative density and stem size are

{3 equally important keys or indicators o'f its importance in

,~J the forest.

Thus equal but opposite chan6es in a species' relative density and stem area cancel one another while changes in the same direction are additive.

In addition, l

because the I.V. of one species depends on the relative in-l fluence of all other species in the stand, a species that does not show any increase in 'I.V.

components over a time i

l period will decrease in I.V. if the other species do show increases in the two metrics.

i l

2. Sorenson's Index, IS:

Sorenson's index is used to measure the correspondence between the species lists of a pair of stands.

The formula for the index is IS = 2c/(A + B) where c is the number of species that occur in both stands, A is the number of species (the richness) in the first stand of the pair and B is the richness of the second stand.

The.

index ranges from zero when the stand pair is completely different to 1.0 when the species in both stands are the same.

(])

Because the number of coincident species is represented in l

-terms of the average richness of each stand Sorenson 's index l

l 1s a statement of the average correspondence between the floras of a stand pair.

In ~ the 1976 report (Scanlan,1976) Jaccard's index was used to judge the similarity of species lists.

It is not used here because it is nonadditive.

That is where c is small the addition of one cocccurring species causes a smaller increase than when c. is large.

Sorenson's index..

l is additive because the increment is the same regardless of.

l the size of c.

Unless two stands are completely similar

.or dissimilar, Sorenson's inder gives higher values than Jaccard's.

3. Squared Euclidean Distance, D :

Euclidean distance as it is used here is distinct fran Sorenson's index in two main ways:

it employs continuous data and it measures the dissimilarity of, a stand pair.

The equation for this index is...

1 Djk * [ (X j - Xik )2 2

i

[)

The values of x are measures of some continuous m.2tric or um

~

A r

a 8

th each L species in the two stands.

With one exception in 2

the analyses the values of x are the field-measured tree density or stem base areas that are summarized in Tables 3, 5, 7, 9, and 11 or the I.V. 's tabulated in Tables 4, 6, 8, t

10, and 12.

The one exception is stand C whose tree densi-tiesandstembaseargaslistedinTable11areeachmulgi-is calculated.

This means that D is plied by 2.0 before D based on vegetation characteristics summarized from 16 tree quadrats in each stand.

Dissimilarity equals zero when the stands are exactly the same.

The maximum depends on the i

stands being compared because...

D[ax"~

aXkj+

X k In order to make the distances cross-comparable between variables the distance matricgs have been standardized.

This permits yhe contrast of the D magn'itude of one variable in 2

a stand pair with the D for a second variable or with the D2 in another pair of stands

4. ' Cluster Technique:

1 A similarity index between a pair of stands is suffic-()

ient.for comparing two or three stands.

However, as more stands are considered in the analysis the overal1~ relation-ships become intricate.

Cluster analysis is the method used to clarify the relation between the five sampled forests at i

Lake Anna.

In the cluster method used here, the euclidean dis-2 tance (D ) is calculated between all possible paigs of the five forests.

The' stand pair with the smallest D is con-sidered._a group or cluster.

Io some. methods the da.ta for the ~ two' stands are, merged by averaging the compl'imentary variates for each species (xi elEace the pkdr+in Yu)/2).

ster " (X i

X The synthesized stand would then rep rther an-alyses.

In the present analysis stands that are considered members of a cluster retain their individuality.

'After the first stand pair or. cluster has been established the distance Dgtrix is searghed for' the stand pair with the second smallest If this D is between two stands outside of the first clusterthetwonewstandsareunitegascluster#2.

On the other hand, if the second smallest D involves a stand in cluster #1 the new stand is added to cluster #1.

This me'thod of clustering is referred to as the fhrthest-neighbor tech-nique.

Clustering continues until all stands have been united in a single group.

The cluster results are presented graphically as a dendrogram.

Clifford and Stephenson (1975) describe a den-drogram as a rooted, tree with nodes that link the entities

O

~

--,-w

---w-w a

w--e aa

9 or clusters being classified.

'Im Figures 1-3 the length of the rootg or legs of the dendrograms indicate the in-(])

crease in D resultingfromclusterformation.

For example, in Figure 1A, stands C/A-II have a D of 0.405 and the2 units dendrogram legs joining these two stands are o.405 D 2

tall.

When all five stands are united the D is 5.654 be-2 between the two most different stands in the cause the D group, A-II and B-II, is 5.654.

The outline for the steps used to create the dendrogram in Figure LA follows:

2 Maximum D Source of Standardized D[ax as a Number 2

2 Of for new D

D 2'

cluster max max

% of final D clusters 0.0 0.000 o%

5 320.0 A-II & C o.405 7.2 4

823.0 A-I

& B-I 1.042 18.4 3

1585.o A-I

& A-II 2.007 35.5 2

4466.o A-II i B-Il 5.654 100.0 1

The euclidean distance on the vertical axis at the left of the diagrams in Figures 1-3 is a standardized scale

' to all'ow-comparison between' dendrograms.

The gight-most 2

between l

vertical scale is D in terms of the maximum D stand. pairs.

In. addition, the $ D2 is noted at each node O-in the figures.,-

max IV.

RESULTS OF SIMIIARITY ANALYSIS OF THE TREE CANOPIES:

1.

Richness Comparisons:

The five sample stands are compared-in Table 13 using -

Sorenson 's similarity index.

Stands A-I and B-I had the highest similarity in 1976 with an IS of o.667.

Consequently, the species composition of all stands differed in 1976 by at least 30%.

Most stands compared at the 50-62% level'or.

similarity.

However, pairs A-II/B-II and B-II/C had very.

different tree species.

These differences will effect the remaining similarity analyses because when the species lists are grossly different the density, stem base area, and importance values for each species will not match.

In 1979 most stand pairs showed an increase in simil-arity because of the new species that entered the tree canopy in all stands except A-I and C.

Stands C and A-II were less similar in 1979 because two tree species not already present in C entered the tree category in stand A-II.

e 1

10 j

2.

Density Comparisons:

O, Stands C and A-II were the most similar pair of stands in 1976 in terms of tree density (Figure 1; Table 14).

Both stands had approximately the same total density count per 16 quadrats, were dominated by beech (FGRA), and had similar i

amounts of the gubdomgant white oak (QALB).

Based on the ratio between D and D these stands were 81.2% similar.

Stand p2tta B-I/B-II a$$*A-I/B-I had similarly clase com-l positions and all three pairs also had high similarities in

.?gecies lists ( IS A 58.3).

Stands A-I and B-I had a low D

(high similarity) because of their similar composition of oaks and hickories.

Although the density composition of stand B-I is simi-lar to B-II because both are dominated by white oak, B-II shows the greatest dissimilarity with C, A-I, and A-II and is consequently grouped with other stands only at the last node.

Its high density of southern red oak (QFAL) and white cak and its relative lack of beech, maple ( ARUB) hickory, and tulip tree (LTUL) is the reason for its segregation.

When, measured in 1979 the tree densities were more similar (D' decreated) between stand A-I and all other stand s.

i This results from the high species richness in A-I because where the density of the tree species in the other stands increased due to new species additions or 3 additions cf established species the same species had dec tity increases in A-I.

Slight declines in similarity were _*ecorded between stand A-II and all non-A-I stands and between B-I and B-II because the specific density increases did not correspond.

l l

l 3

Tree Stem Area Comparisons:

Y I

Based en the stem area of the tree species in 1976,

. stands.A-II and.C were the most alike (D2 = 0.347; Figure. 2, Table 15)'.

Though the dominant beeches and subgominant white oaks were slightly smaller in A-II, the ~D is small because"these trees were more-numerous in A-II so that their total stem areas were similar in A-II and C.

Stand pair B-I/B-II were similar in tothi atem area as well as in terms of white oak stem area.

Da tiv stands also had equivalent amounts of post oak (QVEL). d virginia l

p ine ( PVIR).

Stand A-I had a uniformly high dissimilat%y index with all other stands in 1976.

Part of this uniquene:Is is due to the 1Irge ' average stem diameter of southern rcd oak (24167cm ) in A-I.

Southern red. oak also occurced in B-II bgt there the species' stem area was different eocugh so that D

is high between A-I and B-II.

Stand A-I also had the d

highest total stem area (56,566 cm /16 quadrats) and was the Q

m o

l 0

D b

A.1976 Densities:

B. 1979 Densities:

N.

<120 N"

100%

100%

g d

a I

80 s N

N ke g 4.0 g 4.0 g

N M

M b

H H

A A

y z

z m

a20 a

.0 34.5

~

0 d

35 5

'd E

2 m

d d

4 10.4 1*r. 5 to4 7.2 77 N-A N

i B-II C

A-II B-I A-I B-II C

A-II B-I A-I STAND CODE STAND CODE Figure 1.

Dendrograms showing the euclidean distance relationships beitween sample areas using tres densities in 1976 and 1979.

l

[

A.

1976 Stea Areas B.

1979 Stem Area n.

-120 A.

M 100%

100%

g 3

~ ~ -

o Q

4.0 4.0

- 80 zy n

n 5

0 M

1 4

z z

d d

56.6 e+

55.1 m

~

m H

o H

o a

a

$ 2.0

$ 2.0 40 m

m o

O O

d d

17.6 16.4 75 8.0 4

a B-II B-I C

A-II A-I B-II B-I C

A-II A-I STAND CODE STAND CODE Dendrograms showing the euclidean distance relationships between Figure 2.

sample areas using tree stem areas in 1976 and 1979

13 most rich stand with a more equitable distribution of stem areas than any other stand.

O The negative changes in basal area similarity between

(,,f stands from 1976 to 1979 were slightly more numerous than for density.

They can be primarily assigned to two stands-l A-II and B-I -. the same stands that decreases in density l

sjmilarityfocussedon.

A-II showed slight increases in l

D (decreased similarity) with every stand including B-I.

B-I also became more dissimilar from B-II and C.

The increased individuality of A-II in 1979 is due to its large total increase La beech and pignut hickory (CGLA) stem area.

Neither species occurs in another stand except for beech which is common in stand C and pignut hick-l ory which is present in B-II.

Although the beech trees in C are common and much larger than in A-II, they grew on the average only half as much as the smaller beeches in A-II.

In B-II the pignut treest also had much smaller growth com-pared to A-II.

Tree stem area changes that led to B-I's gre'ater seg-regation from A-II and 'C include the high average increases in A-II and C that conflict with the low increases in B-I and the increased size of different tree dominants in A-II and C.

B-I and B-II have nearly the same stand totals of tree stem area and in 1979 show almost the same stem base area increase per tree.

However, their specific stem area changes did not compliment one another.

O 4.

Importance Value Comparisons:

The euclidean distance dendrograms based on the impor-tance values for the species might result in an averaging of the relationships shown in Figures 1 and 2.

However, in the calculation of the I.V. 's the' density and stem areas are relativi:ed so that:to.tal density and, total stem arga dif-ferences between stands are cancelled.

Thus,-the'D of I.V.'s compares the stands with respect to their hierarchies of average species importance.

In addition, La stands with few species the I.V. of each species.is automatically higher.

These differences may contribute to nonaverage dendrogram structure.

~

As expected from the dendrograms in Figures 1 and 2, stands C and A-II were the most similar.

The strong rela-tionship is due to the major importance of beech and the secondary importance of. white oak in both stands.

White oak was the dominant species in B-I and B-II, but their additional correspondence in the importance of other oak species and in Virginia pine is sufficient to consider them a cluster separate from cluster C/A-II.

Although A-I was the most unique stand in terms of stem area, in terms of I.V. where

./

it1 i{

D N" M nN3o sake m u$gE 4 Q %d 4

e 0

0 0

0 2

8 4

1

~

~

ne I

e w

A t

7 e

s 5

b 9

e 5

I s

u l

2 p

a 2

B E i.

V 0

D h9 0

I O s7 I C n9 e

1 c

o1 n

B D i

a N

td A

an t

7 I T l a ro 2

I S e

p 1

r6 m

A 7

I e9 c1 9

C n

7 an 9

ti 1

s is de B

0 0

0 u

nl 4

2 0

aa D'

ev N N86nA znQAg die lccn ua et r eo I

hp t m 3

A i

g

s 6

ng in e

5 3

I wi u

l 1

os a

2 B E hu D

s V

i I O s

0 e

0 I C sa c

1 me n

B D ar a

N ra A

g t

5 I T oe ro 1

I S rl p

1 dp m

A nm I

ea Ds 6

C 7

91 3

e 0

0 r

A 0

u 4

2 0

g i

O F

NM8nnA znOA$

1 l

15 its large total stem area is cancelled it is found to be similar to the B stands.

Consequently, prior to the last

.fT union of stands two groups of stands appear :

stands

[

C/A-II in one group and stands A-I/B-I/B-II in the second.

Stands C and A-II representing one community type are dom-insted by beech with a high composition of white oak.

Other coincident species in this stand pair Lnclude tulip tree,

~

red gum (LSTY), red maple, add flowering dogwood (CFLO).

Between stands A-I, B-I, and B-II, stand A-I is most similar I

to B-I in species composition, density, and I.V. structure but more similar in relative stem area values to B-II.

In all three white oak is one of the most important species although it is not the most important in A-I.

Colnc ident spec ies in the three stands include mockernut hickory (COVA),

sweet gum, Virginia ptne, scarlet oak (QC00), shumard oak (QSHU), and black oak.

No beech, trees are present and these stands have the highest tree densities.

In 1979 there were slight increases in correspondence of I.V. structure between most stand pairs.

Only stand pairs A-II/C and B-I/B-II showed increased differences though the changes were slight.-

5 Comparison of Dendrograms:

The difference in' dendrograms from 1976 to 1979 can be inspected for changes.that may indicate environmental O

alterations due to WHTF operation.

The overall difference between two dendrograms that are based on different x, var-

~

iables is difficult. to assess because of the differende Ln However, Clifford and Stephenson 's (1975)1.s units.

compar-ative technique of calculating

'd' (their symbol-

'D ') is independent of the units used in deriving the dendrograms and will be used here.

The technique compares dendrograms based. on. the number of. nodes that separate pairs of entities The index of difference of

'd' is calculated...

allpairslmt..-m2

}3 d=

are the. number of nodes separating pair i where mi and m2 in dendrograms 1 and 2.

For example, for the dendrograms i

in Figures 1 and 2, stands. A-I/B-I are zero nodes apart Ln Figure 1 and three nodes apart in Figure 2.

Stands B-I 1

and B-II are three nodes apart in Figure 1 and zero nodes apart Ln Figure 2.

All other' stand pair,s are separated by the same number of nodes in the two figures so that pairs A-I/B-I and B-I/B-II are responsible for d

= 6.

By this method no differences are fok33.between the dendrograms from one sampling period to the next.

However,

16 between dendrograms of density, stem area, and importance value large differences are found:

(<

Dendrogram Type Density Stem Area I.V.

0 6

9 Density o

6 Stem Area i

O I.V.

Therefore, the hi,erarchy of stands based on tree density is very different in structure and group composition from the dendrogram of I.V.

The similarity in I.V. and stem area l

dendrograms is obvious even as high as the 50% level.

)

6.

==

Conclusions:==

From 1976 to 1979 modest changes occurred in the floristic and structural conditions of the five sample communities.

The changes are evident in slight alterations in the dendrograms showing interstand relationships of cano'py tree density, tree stem base area, and importance value'.

The decreases in similarity ~ between the communities centered on the increased singplarity of stand A-II in terms of tree species density and stem base area.

The - increased s ingular-ity was due in part tg the large basal area increase in A-II which averaged + 49cm / tree.

Although in both sample years stands A-II and C resembled one another in tree density, tree basal area and importance hierarchy more than any other pair of stands and had high species-similarity in 1976, A-II and C showed consistent declines Ln similarity in all four of these metrics in 1979 Stands B-I and B-II also becam.e more dissimilar in tree density, tree basal area, and importance value.

The changes in this stand pair were mainly due to se'veral ad-ditions of white oak and southern red oak to the tree. canopy of B-II and additions of other species in B-I.

The alter-ation in importance value was due to the decreased importance of white oak and the increased importance of tulip tree Ln B-I while mockernut hickory and sweet gum Lncreased in im-portance in B-II.

Similarity increase was a more common. aspect of the floristic and structural change during the sample period.

A-I was the only stand that showed consistent increases in pair-wise similarity of tree variables.

The reasons for this lay in the high richness and the equitable structure of the A-I tree canopy.

For example,. where new tree. species O

17 appeared in a stand in 1979 they were already present in 1976 in A-I so that the similarity between A-I and the stand r

increa sed.

However, the high equitability of A-I makes it a most distinct stand in at least tree basal area because dominance in this respect is well developed in the other stands.

Thus, in terms f species stem area A-I has the 2

highest dissimilarity D with every stand.

When tree species density and basal area are averaged as importance values, the general structure of A-I is more similar to the B stands, than to A-II/C stand pair.

f f

I e

t.

9 4

m l 0

.I

-~

18

'($)

V.

STATISTICAL ANALYSIS OF THE TREE DATA:

The tree data collected in the 1976 and 1979 field seasons include measurements of frequency, density, height, and stem area for each tree species.

Of the four variables only stem area has changed' sufficiently since 1976 to be statistically useful as an indicator of environmental alter-ation.

Although stem area change (SA4) is the measure of tree growth used here and is based on tree stem diameter measurements 1.3m above the soil surface, it relects total tree growth in branches, leaves, and other tree parts rather than simple stem area change.

The average difference in tree stem area between 1976 and 1979 is presented in Figure 4.

The differ-ence is based on individual tree areas in 1976 subtracted,

from the 1979 areas.

The general parametric test of differ-ence between the stand averages is the analysis of variance (ANOVA).

However, an ANOVA requires especially that the ste m areas be sampled from normal populations with the same var-iances.

Based on the F teut (Sokal & Rohlf, 1969), stem area incrcase does not $$Et the variance homogeneity require-ment (Fmax=ty/sB-II = 3.216; P(AF) 4.002).

O This significant heterogeneity is especially due to the variability of the measurements in Stand C which exhibit the highest coefficiant of variation (s2/x = 2.3).

Either the heterogeneity-in the variances must be corrected 'by trans-formation or less efficient, nonparametric test methods must be used.

Taylor's power law is aseful for identifying the tr' ans-formation necessary for stabilizing the variances between

~

samples (Green, 1979).

For SA4, Taylor's power law involves (variance *SAa) against logtkng(mean SA4) and regressing log using the regrk9sionm slope 'm' in the follow equation to find the Z transform of SA :

Z SA 4

=

Because SA4 is in square centimeter units the expected trans-fcrm is the square root and this is approximately the one sug-gested by Taylor's power law.

Also, some gf the stem area changes are zero or negative so that 0.5cm' was included in the transformation equation:

Z

= 6/ SA4

+05 An F test on the transformed variables still showed-heter-osceEEIticity.

Thus the Median Scores test, a non-parametric test of means similar to the single-classification ANOVA, was h6 empee m e.

+ = = _

=*

=

e ew m e. -e **

ew

l h

i A1 A Il

,ao BI

-+-

i B Il

-+-

C l

0 40 80

\\

STB 4 AREA INCREASE (cm2)

Median Scores Test of Tree Base Area Change for All Tree Individuals Sampled Stand a sum of Scores Sun Scores Standard Mean Above Median Dpected Deviation Score under Ho A-I 110 52.0

$5.0 4.49 o.4 A-II 66

$0.0 33.0

'3.72 c.

B-I 88 36.o M.o 4.16 o.41 B-II 107 M.o 53 5 4.k5 0.41 C

37 22.o 18.5 2.90 o.59 2

~

2 Chi square (2 ),25.39 df = 4 P($X ),, coot l

Figure 4.

Tree growth in the sample stands graphed as the average bounded by unit standard error bars.

Results of Median Scores Test of interstand variation in growth are tabulated.

a

'. /

20 applied to the untransformed data (Figure 4).

A significant difference was found between the tree

~g stem area increases of the five stands (Ps X' = 0.0001).

<dm/

The high sum of scores above the median for stands A-II and C indicates that exceptionally large stem area increases in these stands is part of the reason for significant inter-stand difference.

Exceptionally low tree growth in B-I and B-II is the other contribution'.

As shown in the summary tables and from the Sorenson similarity index calculations (TJble 12), the five stands have different species compositions.

Then the significant growth differences found by the Median Scores test may be due to interspecific differences between stands.

This source of variation is eliminated when the growth of a single tree species is considered.

White oak (OALB) is abundant in most stands.

For this reason it was used to reexamine interstand growth differences to determine if unequal tree growth was due to differences in species composition or to environmental disparities between the stands.

For white oak trees,

/s

= 5 904 F',x = s,7 c

for the transformed variable # SAA

+0.5 and is nov signir-icant.

Assuming that the data are normal for each stand, the ANOVA for the transformed measurements indicates that in terms of the single tree species, stands A-II and C still show un-usually high basal area increases (Fig. 5).

Although the con-((g tributions of stands A-II and C to significant difference are j

reversed here for white oak trees, this pair of stands must have an unusual environment or disturbance history that en-courages tree growth.

The significant difference found between stands in the two statistical tests above may be partially related to tree size.

The average tree and the average white oak in both A-II and C are above average. size and show above average stem area increases.

Also, 'in the B stand pair where the oak trees are smaller than those in A-IT. and C, and where the average tree is smaller than in C (though larger than in A-II) both B stands showed poor tree growth from 1976 to 1979

However, approximately half of the general high tree growth in A-II is due to tremendous growth increases in the average-sized beech dominants in A-II.

Large white oaks make a secondary contribution.

In C the elevated growth is indeed a pheno-menon attributable mainly to large trees -- bur oak (QMAC),

white oak, and beech are all large in stand C.

Consequently, the significant differences in interstand tree growth are partially explained by the difference in tree i

i w

O A1 us A Il A

~

O 81 j

Q

^

g B Il l

H W

C 0

d 8

1'O STEM AREA INCREASE (( SAa+ 0.5

)

ANOVA of the Change in White Cak (Cuercus alba Sten Area from 1976 to 1979 A

VU Ia)ble has been Transformed to 4SA4

+ 0.5 Stand J Mean Statistical Analysis A-I 23 2.69 M$amons = 19057.06 A-II 8.82 s-I 3

17.67 MSwisatn - 820.55 E-II 72 1.12 C

5 1

.11 F = 23.22 P(*F) d.0001 l

l l

Figure 5. White oak tree growth in the sample stands graphed as the average bounded by 95%

confidence intervals.

Results of the ANOVA l

of transformed data are presented as a table.

l l

(

22 size and partially by compositional differences.

The above-average growth in~ site C is best explained by the large sizes of the trees in the canopy.

On the other hand, the eleva ted growth in site A-II is due mainly to the fact that its canopy l

.is dominated by beech trees which for their small size (com-l pare to FURA in stand C) are showing unusually high growth.

I Except for the tulip trees (LTUL) in stand A-II which are smaller but have nearly the same high growth average as the A-II beeches, noother tree population in the size range of the A-II beeches has as high a growth rate.

Thus beech and I

tulip appear to be behaving as r-type species with high growth rates in the recently disturbed A-II.

Test stand A-I shows corresponding elevated average growth over the control B stands which also may be explained by the larger trees in A-I (Figure 4).

However for white oak, which is abundant in A-I, B-I, and B-II, there is no significant difference in tree size (Figure 5) between these three stands and oaks in A-I are growing faster on the average (yet the white Figure 5 ).

Also, depressed or elevated growth in A-K in individual tree species is matched by growth in the opposite direction in the B stands; that is, there is no pattern to the differences on the species level.

In conclusion, tree growth from 1976 to 1979 was sig-nf.ficantly different between the five sample stands at Lake Anna.

A portion of the change is due to interstand floristic differences and the different growth rates of the tree species.

However, stand A-II on WHTF #3 and stand C on the North Anna River, show significantly high growths based on all trees or on white oak trees alone.

The high growth in these two stands is typical of recently disturbed forests with open canopies but cannot precisely be assigned to succession or to the op-eration of the WHTF's.

Consequently, indications of WHTF influence on tree growth must be sought in comparisons of A-I which is on WHTF #1 with control stands B-I and B-II.

B-I and B-II show insignificant growth differences.

Thus either stand can be compared to A.I to judge environmen-tal alteration.

Based on a t-test of mean tree growth (Sokal

& Rohlf,1969 for unpaired means) in stands A-I and B-I where the variances are equal, A-I shows significantly higher av-erage growth for all trees.

However, for white oak trees, neither A-I/B-I nor A-I/B-II show significant differences.

Thus we must conclude that WHTF operation has not lead to a significant increase in tree growth during the 1976 to 1979 in terval.

l l

.

23,

VI.

THE UNDERSTORY VEGETATION:

1. General Considerations:

The 1976 and 1979 raw data from the 1 x 2 meter under-story quadrats are found in Appendix B in Tables F-J.

The data include measurements of the density and quadrat cover-age of each species with separate records for each stratum or height category.

All three variables are expected to have altered enough since the 1976 sampling period to provide information on the possible alteration of the understory environment by the operation of the WHTF's.

The total understory density and coverage p'er 32 quad-rats of the five stands and the changes in these values are found in Table 17.

The totals give a picture of the overall vegetation differences from the 1976 to the 1979 sampling 8

period.

The average quadrat densities and coverages and the 95% confidence intervals for the parametric means of these variables (Table 18) are the basis for judging the significance of intrastand and interstand differences.

The intervals als o indicate the degree of variation of individual quadrats within a stand.

Point and interval estimates of quadrat density and cover are graphed in Figure 6.

In Figure 7 the total % cover and density are graphed at each measured stratum to show the cover and density profiles in each stand.

The density and cover changes for the dominant species in each. stand are presented in Table 19 That table was con-posed by selecting the eleven species in each stand with the highest cover values.

The cover and density totals per stand are given for each species that was one of the eleven top species-in at least one stand.

However, the stand totals at the table bottom apply only to the eleven dominants in each stand.

The distribution of species-cover and species-density is expected to be non-normal but possibly one of the following types:

geometric, lognormal, log series, or MacArthur broken-s tick.

Ho'ever, the cover and density-totals for each quadrat w

are expected to be statistically normal.

For these reasons l

the statistical tests in this section are treated as totals and in 'per quadrat ' units rather than 'per species' units.

Although the species-cover and species-density distributions do fit certain of the aforementioned models the meaning of l

the models is theoretically unclear and will not be analyzed.

l l

2. Density Changes:

From 1976 to 1979, stands A-I, B-I, and B-II showed only h

s

./

24 1-2% change in total understory plant density.

During the same period 30% of the plant individuals in successional

()

stands A-II and C disappeared.

Based on a subjective asses-sment of tree canopy cover at levels D5 through D6 (above 5 meters), stands A-II and C were open in 1976 (s 50% cover) and by 1979, A-II showed the greatest degree of canopy clos-ure between A-II and C.

Stands A-I, B-I, and B-II were closed (s80% cover) during both sampl'e periods although B-II was less closed than B-I or A-I.

Canopy closure in A-II and C is a natural response of the trees to pre-1976 logging which was most intense in A-II.

Then the large density decrease in A-II and C is expected because of the closing of,the tree canopy and the resulting decree sed light energy in the under-story.

Thus the understory density changes are successional changes resulting from a non-WHTF source.

The overlapping confidence intervals for average quadrat

. density for 1976 and 1979 (Figure 6a) indicate that none of the quadrat density decreases within the stands are signif-icant at the 5% probability level (for A-II the tept is invalid).

However, in stand C where the average density is based on 16 quadrats the large drop in average density suggests that a larger sample or longer operation of the WHTF might have re-sulted in significant change.

Stands B-I and B-II both had intermediate quadrate den-sities of 30 and 26 plants per quadrat.respectively that were l

stable from 1976 to 1979 Stands A-I and C had the highest quadrat densities in both years.

Although stand C had a higher plant density in 1976, by 1979 a 30% density decline in stand (b'-)

C from 44 to 30 plants per quadrat left stand A-I'with the highest average density of all stands.

In 1976, stand A-II was significantly lower in average density than stands A-I and C and by 1979 its density had dropped to 14 which was significantly lower than any stand average.

The decline in A-II is again ascribed to canopy closure and early succes-sional age.

When the dominant understory species listed. ~in Table 19 are examined for stand C, three of the tree species (ARUB,

~

CFLO, & COVA) show slight density gains from 1976 to 1979 At the same time the early successional trees sweet gum (LSTY),

beech (FGRA), and sassafras (SALB) and the shrub and herb species decreased in density.

The largest portion of the decrease is attributable to mountain laurel (KLAT), the understory dominant.

Laurel prefers the steep hillsides above rivers in the sample area so that the environment of stand C is natural for it.

Thus, the decrease in laurel abundance is probably due to an adjustment to tree canopy closure from 1975 to 1979 In stand A-II the density changes at the species level O

~

i O

i A1

,0 i

A Il

?

l

-t-l Bl f

l B ll l

c a

10 no so do so O

Al

?

l A Il

?

Bl

?

B Il

?

~

C b

40%,

80%

12o%

Figure 6.

Understory density (a) and coverage (b',

expressed as averages bounded by 95%

confidence intervals.

Circled averages are based on 1976 data, noncircled averages are based on 1979 data.

j o

26 were mainly decreases from 1976 to 1979 In A-I the domin-ant tree seedlings and saplings and lycopodiim (LFLA) gener-7) ally remained the same or increased in abundaace.

(

3.

Richness Changes:

In the following table a're the richness changes in the understory of each stand from 1976 to 1979 Tbe number c.f species remained fairly constant in each of the stands with approximately the same numbers being lost and 6ained except in C.

In that stand the number of new species was four times larger than the loss and the net change was the highest re-corded in all five stands.

Stand:

A-I A-II B-I B-II C

5976 Taxa:

43 52 43 38.

38

}979T'axa:

43 50 40 34 49 During Period 1976-1979:

new species:

7 9

6 6

15 species lost:

7 11 9

10 4

net change:

7 7

3 4

+1T The species gains were primarily tree and shrub speci~es but

~

the herb species beggar's lice (DNUD)ie' appears in the greatest numbers (density = 8).

Although spec increase appears unique to the river bluff environment of C the increase does not indicate environmental alteration due to WHTF operation because there is no coincident increase in stands A-I and A-II.

4.~ Vegetation Cover' Changes:

The total area of the forest floor covered by vegetation ceclined in all stands between 1976 and 1979 sample seasons.

Stands A-I, A-II, and B-I experienced an average cover decline of 31% during the period although they did have approximately equal total coverage in 1976 and 1979 stand C, with the highest cover in 1976 and 1979, also had the lowest cover decrease (Table 17, 18%).

It is expected to have the highest understory cover of the five stands because of its high plant density and because of its steep location,where sunlight can easily penetrate the discontinuous tree canopy.

Stand B-II had-the lowest coverage in both sample seasons

27 and showed a decrease of 59%, the greatest decrease during the period.

This sharp coverage decline is not due to tree o(])

canopy closure because its canopy has been closed since before 1976.

Stand B-II is immediately adjacent to the Lake Anna shoreline and will be most strongly affected by the lake-filling in 1972.

Envircnmental changes which follow lake-filling are elevated soil moisture and higher atmospheric humidities as well as greater penetration by strong cold winter winds and cooler summer winds.

For forest B-II which was a xeric cak forest prior to 1972 the environmental changes are apparently reflected in a sharp coverage decrease.

The decreased performance of the present understory species may be a prelude to taxa alterations from xeric to mesic.

The turnover of early successional species in stand C may reflect their sensitivity to the environmental changes but the change. due to lake-filling and the logging event are inseparable.

Of all five stands, only B-I and B-II showed significant declines in average quadrat coverage.

Because the B stands are controls this may indicate that the operation of the WHTF's is maintaining the vegetable cover in the A stands.

In B-I and B-II the cover decline is reflected in nearly all the dominant understory species which are all shrubs and tree seedlings and saplings.

However, in A-I, A-II, and C the understory dominants are of the same life form and the majority show decreases in cover.

Thus, neither life-form nor dominance category are useful in explaining the

)

significant quadrat cover change in B-I and B-II.

5 stratal Changes:

The total density and cover of plants in a forest understory reflect general tree canopy conditions because the. understory members will make maximum use of the avail-able light.

However, the subcomponents of total density and cover at each level of the understory and the changes in the~se measures reflect competition below the tree canopy and developments that mcy lead to tree canopy alteration.

The 'de'nsity and percent cover of plants in each understory stratum are diagrammed in Figure 7 In the figure the cover values are connected across levels to show the cover pro-file.

The low stature and the relatively flat cover profile of plants in A-I, B-I, and B-II is typical of closed forests in the Virginia Piedmont.

In these three. stands tree seed-lings, tree saplings, and shrubs are the common understory members forming the most dense layer in height category #1 (0.0 - 0.lm).

With the exception of a modest layer #4 in O

9 e

O TOTAL DENSITY e6o s0o soo

'7 p Al p

Bl

(,

BIl 4<

i s

2<

a b

c O

~

TUrAL DENSITY (number of plants per 64m2)

<h \\

7

?'

I' 4

E B

l (

a l-2, f

9 h'

O 0

20%

0 20 %

0 20%

TOTAL. COVER (% of 32 quadrat sample area)

I Figure 7.

Percent cover and total density within each stratum of the understory.

Solid bars indicate density and open circles joined by line indicate percent cover.

Figures a) through e) are 1976 data; matching figures f) through j) are 1979 data for the same stands.

O

l

.O i

TOTAL DENSITY s

800 800

[

A ll f5 C

s, 4

ums mme 2

~

d '

e 7

0 TOTAL DENSITY (plants /64m2',

eI' I'

4-(O i

j O

J 40%

0 20 %

40%

0 20%

TOTAL COVER (% of 32 quadrat sample area)

(

Figure 7. continued.

(O m

30 s tand B-I, and of A-I in 1979, none of these three stands shows a single distinct stratum in any height or stratal

()

category (Fig. 7). In stands C and especially A-II plants are above average in height.

Assuming that the quadrat i

averages are statistically normal, the quadrats in A-II and C that have an average plant hei ht in category #3 or above (12 meter height) is 44% and 2 respectively.

This unusual situation is emphasized by noting that only 0.7% or less. of the quadrats in the other three stands have a plant height average above 1 meter.

~

The stratal difference between stands is again related to the successional youth of C and especially A-II.

These stands were selectively cut before 1976 and tree saplings are moving upwards to fill the gaps in the tree canopy.

One consequence of the tall saplings in A-II appears to be a low understory density.

C has apparently retained a high understory density (though it declined from 1976 to 1979) because light penetrates the thick understory layers as well as the tree canopy layer.

Thus, although 'there have been stratal changes from 1976 to 1979 the interpretation of its cause is successional rather than WHTF operation.

6.

General

Conclusions:

O Changes have occurred in the understory vegetation of the ftve sample stands from the.1976 to the 1979 sample sea-t sens.

The greatest decreases in plant density occurred in A II and C and are due to ecological changes that follow loggir.g disturbance.

The unusually high stratal averages in A-II and C have a similar cause.

The only changes that-may indicate environL. ental change due to WHTF operation are the lack of significant cover decrease in A-I and A-II while a significant decre~ase did occur in the B control stands.

The environmental' changes due to WHTF operation ^ at Iake Anna' may be maintaining the vegetative cover at an unnaturally high level.

(

0 O

b

~ ~ -.. - ~ _ _.

31

[)

VII.

ANNUAL PRODUCTION IN THE UNDERSTORY The understory annual production measurements are presented in Appendix B in Tables K-0.

These data are summarized in Table 20 by plot (l x 2m in size), by quadrant (4 plots within each 5 x 10m area), and by stand (16 plots) for both sample seasons.

Unlike tree stem area, annual production biomass is nonaccumulatory from sample season to sample season.

However, like the tree stem size and tree growth inter-relationship, net production in the two years are dependent.

Thus, the highest understory production in 1976 and in 1979 occurred in stand C.

Production was also lowest in both years in stand A-II.

These stands have unique environments and histories that lead to these differences.

As was mentioned earlier, stand C is located on a steep slope and sunlight can penetrate the open tree car.opy and the tiered understory strata.

The high insolation at all strata in stand C are reflected in maximum annual production rates.

On the other hand, although stand A-II also nra an ooen tree canopy, it has a dense subcanopy at level #4

(~/

(h4% at the 2.0-5.0m level) and, combined with the canopy at level #5 these two strata which are not part of the production records,' cover 48% of the sampled quadrat area.

Therefore, although the tree canopy is open, light levels will be depressed in strata that are sampled for annual production (in strata #1-3; 0.0-2.0m).

The explanation of depressed production.in A-II is supported by the production / canopy relationships sho.wn in the other stands.' 'For example, between forests B-I and B-II where the tree canopy is closed a significantly higher cover occurrs at level #4 in B-I.

As a result, the total production in the 1976 and 1979 seasons is 14%

and 19% lower respectively in B-I.

In both 1976 and 1979 the total understory. cover in A-I was intermediate between that of stands B-I and B-II and the average annual production per plot in the three stands was not significantly different at the 95% level.

The change in. biomass production from 1976 to 1979 was largest in A-I and C where total production increased r

I by 107% and 175% respectively.

In both stands the increase j

is accompanied by slight though insi nificant decreases in understory density and total percent cover.

Possibly in both cases increased biomass production is a response 1

-,r-m m

2.

^

~

'~

- '^^

^-

32 I

of the remaining plants to decreased competition (competitive release).

The unusual env'ronment of C

/( )

may in some way be encouraging plant growth.

However,

\\.

the environment of A-I is not too different from forests B-I and B-II and yet the total production in the B stands remained relatively constant changes were -l% and +5%

of 1976 totals, respectively)(.

This difference between understory growth in A-I and the B pair is not significant based on the.16 plot totals from A-I and B-II.

However, the large precent increase in A-I does suggest that j

WHTF operation is encouraging elevated annual production in stand A-I..

Stand A-I is on WHTF #1 -- the first facility to receive heated waters from the North Anna electricity-generating plant.

Therefore A-A is expected l

to show the largest effects of WHTF operation.

A-II is proximate to WHTF #3 and is expected to 1

show increased annual production similar to that in A-I.

A-II's production has actually declined by 41% from 1976 to 1979 This decrease does not compliment the suggested source of increased production in A-I.

But in A-II there the plants in stratum #4 are lnopy in stratum #4.

is an unusually thick leaf ca Because intercepting larger amounts of sunlight than the plants celow, the vegetable matter manufactured in the stand will be concentrated in the extensive leaves and shoots in stratum #4.

If the matter in level #4 had been included in net production samples similar increases in production may have appeared.

/"'

It was suggested in 1976 that the growth of several

,(hL) plant species should be examined over the stands for temporal differences in growth.

However, temporal l

differences in specific net production are more variable than the total plot data and the patterns are difficult l

to interpret because there does not appear to be any consistency to the increases or decreases of accumulation.

For example, spotted wintergreen (CMAC, whole plants) showed significantly decreased growth in B-I and no change in the other plots.

Mocke'rnut hickory (COVA) showed decreased matter accumulation in A-I, A-II, and C but not in B-I or B-II although none of the changes were significant.

Finally, white oak (QALB) seedlings and saplings showed significant increases in A-I and B-II but insignificant increases in the remaining stands.

This lack.of pattern means that production changes are a general phenomenon rather than the response of any one species or species-group of the understory.

e

'O

33 D

VIII.

SUMMARY

The five forest sites that were delineated and sampled in 1976 were again sampled in 1979 Based on a comparison of the two data sets test stands A-I and A-II displa,v'd atypical alterations in tree canopy structure.

On Waste Heat Treatment Facility #1 where the greatest change was expected, stand A-I showed increased similarity in tree density with all stands.

However, the increase is simply a consequence of the

^

community characteristics of A-I -- equitable density and rich composition -- rather than one of Waste Heat Treatment Facility operation.

Between A-II on Facility

  1. 3 and most other stands similarity decreased in terms of tree stem area.

A search for the cause of this pattern revealed high growth rates in the A-II trees.

Upon closer inspection the average tree in A-II and the average white oak tree in A-II were found to be showing above average growth.

A portion of the elevated growth is probably caused by the large tree size in A-II.

However, half of the tree growth is due to abnormally high stem area increase in the dominant tree species of A-II.

The dominant is a typical tree species in open-canopy, early successional environments following logging.

(,]~

Because elevated growth is expected in pioneer or early successional species, the high tree stem growth of A-II may be due to the species composition of A-II rather than its proximity to the Waste Heat Treatment Facility.

Because the white oaks in A-I show only insignifi-cant growth above the B control stands the elevated growth in A-II is probably a natural consequence of logging disturbance rather than of WHTF operation.

Thus, the level of operation of the Waste Heat Treatment Facilities between 1976 and 1979 has not had a significant effect on the tree canopy of the A sample stands.

The understory plant density in test stand A-I and in control stands B-I and B-II changed very little in 1979 Notable density changes did take place in stands A-II and C.

Because the density decree.se in A-II corresponded to a decrease in the ether early successional stand C, the change is linked to tne post-logging succes-sional process.

In these two young stands the total vegetative cover of the understory also decreased.

Large decreases in this variable occurred in most stands.

Coverage decline was especially high in stand B-II near the dam at the outflow of Lake Anna.

In B-II the significant change is a phenomenon of the entire understory O

34 h) profile.

Thus it is a symptom of an alteration of the understory component of the community following increased moisture conditions and other environmental changes resulting from lake filling in 1972.

The cover values and their decrease in A-I are insignificantly different from those in A-II.

Because the understory cover changes in A-I and A-II are not very different from those in B-I, WHTF operation does not appear to be causing altered plant growth in this way.

Annual production changes on the samole sites from 1976 to 1979 were partially related to the general understory light regimes.

Thus, the greatest amount of organic matter accumulated in stand C and smaller amounts accumulated in the other stands.

In A-I the accumulation increased while in A-II it decreased by 1979 The decrease measured in A-II is probably due to the accumulation of organic' matter in strata above those sampled.

However, because it cannot be positively determined that the doubled production in A-I would also be found in A-II at higher strata, these results are unequivocal.

But through comparison with other stands, particularly the B stands which did not show a change, there should not have been an increase in organic matter production in the A stands.

The large quantitative O

production increase in A-I then suggests that WHTF (9

operation has led to an increase in the production of biomass in the understory of the forest.

However, the differences are not statistical ~ ones.

()

REFERENCE LIST Clifford, H.T. & Stephenson, W. ' 1975 An Introduction to Numerical Classification.

Academic Press, N.Y.

i Green, R.H.

1979 Sampling Design and Statistical Methods for Environmental Biologists.

John Wiley & Sons, N.Y.

Radford, A.E., Ahles, H.E., & Bell, C.R.

1968.

Manual of the Vascular Flora of the Carolinas.

University of j

N6rth Carolina Press, UEapel Hill.

Rohlf, F.J. & Sokal, R.R.

1969 Statistical Tables.

t I

W.H. Freeman & Co., San Francisco.

Scanlan, M.J. *1976.

Vegetation Study of the Upland Area Ad jacent to Lake Anna, The Waste Heat Treatment i

YacIlity, and tee North Anna River.

Report II: The i

Study Results.

l Sokal, R.R. & Rohlf, F.J.

1969 Biometry.

W.H. Freeman & Co., San Francisco.

l d.

4 l

l

I i

i J

I k

l i

lO P

APPENDIX A:

SUMMARY

TABLES b

I I

i r

l f

i l

m O

I l

e I

l l O

.v_--

.v-y-------

-_. =-, ~

s.,

.-i--m-ar.......ei----w-r

-m-

k h

TABLE 1.

DICTIONARY OF TREE SPECIES CODES USED IN THE TABLES.

Code

  • 1970 1979 Latin Name Common Name Canopy Species:

ARUB Acer rubrum red maple CCAR Carpinus caroliniana ironwood CGIA Carya glabra pignut hickory COVA COVA C. tomentosa mockernut hickory COVA CSHA C. ovata shagbark hickory CPAL C. pallida smooth hickory CSPP Carya sp.

hickory FGRA Fagus grandifolia beech i

FRAX Fraxinus ef. americans white ash LSTY Liquidambar styractflua liquidambar, sweet gum LTUL Liriodendron tulipifera tulip tree, yellow poplar NSYL Nyssa sylvatica black gum, black tupelo PTAE Pinus taeda loblolly pine PVIR P. virginiana Virginia pine QALB Quercus alba white oak QCOC Q. coccinea scarlet oak QFAL Q. falcata southern red oak

(

QMAC Q. macrocarpa bur oak QNIG Q. nigra blackjack oak QPHE Q. phellos willow oak QRUB Q. rubra red oak QSHU Q. shumardii

' swamp red oak QSTE Q. stellata post oak QVEL Q. velutina black oak

'LOCU,RPSE Robinia pseudoacasia black locust Subcanopy Species:

CFLO Cornus florida flowering dogwood DVIR Diospyros virginiana persimmon JVIR Juniperus virginiana red cedar SALB Sassafras albidum sassafras Unknown Specles:

'UNKN unknown species

... the 1976 code is given only if tts meaning in note:

  • 1976 has been altered in 1979 O]

O

,0 TABtE 2.

DrCTIONARr OF TREE SAPtING, TREE SEEDt1NG, AND NON-WOODY SPECIES CODES USED IN THE TABLES.

Code 1976 1979 Latin Name Common Name Tree Species:

ANEG Acer negundo boxelder ARUB A. rubrum red maple BNIG CCAR Carpinus caroliniana ironwood BNIG BNIG Betula nigra black birch CCOR Carya cordiformis yellow-bud hickory i

CGLA C. glabra pignut hickory COVA COVA C.

tomentosa mockernut hickory j

CSPP Carya sp.

hickory CFLO Cornus florida flowering dogwood CPUM Castanea pumila chestnut FGRA Fagus grandifolia beech FRAX Fraxinus ef. americana ash IOPA Ilex opaca holly JVIR Juniperus virginiana red cedar LSTY Liquidambar styraciflua sweet gum LTUL Liriodendron tulipifera tulip tree Q

NSYL Nyssa sylvatica black tupelo, black gum OSTR Ostrya virginiana hop hornbeam OARB PSER Prunus serotina black cherry PTAE Pinus taeda loblolly pine PVIR P. virginiana virginia pine PINE Pinus sp.

pine QALB Quercus alba white oak

-QCOC. Q. coccinea scarlet oak QBLK QFAL Q. falcata southern red oak QFAT Q. black type, fat leaf general black oak type

' QMAC Q. macrocarpa bur oak QMIC Q. michauxit swamp chestnut oak QPHE Q. phellos willow cak QPRI Q. prinus chestnut oak QRUB Q. rubra northern red oak QSHU Q. shumardit swamp red oak QVEL Q. velutina black oak QUER QSPP Quercus sp.

cak QSPP QSPP quercus sp.

cak SALB Sassafras albidum sassafras UAME Ulmus americana American elm O

l

./

TABLE 2. continued O

Code 1976 1979 Lati Name Ccmmon Name Shrub Species:

AMEL CCAR (tree specles)

CEAN Ceanothus sp. cf. americanus New Jersey tea CMAC Chimachila maculata spotted wintergreen CUMB C. umbellata p ips issewa CSTO Cornus cf. stolonifera red-osier dogwood CAME Corylus americana hazelnut DVIR Diospyros virginiana persimmon DVIR NSYL (tree species)

EAME Euonymus americanus wahoo GBAC Gaylussacia baccata black huckleberry

?

KLAT Kalmia latifolia mountain laurel BBBB RNUD Rhododendron nudiflorum wild azalea MVIR Magnolia virginiana sweet bay PQUI Parthenocissus quinquefolia Virginia c^reeper RCOP Rhus copallina shining sumac RRAD Rhus radicans poison ivy ROSA Rosa sp.

rose RUBU Rubus sp.

blackberry-raspberry SALB Sassafras albidum sassafras SGLA Smilax glauca catbrier SROT S. rotundifolia catbrier i

VBRN VERN Vaccinium cf. stamineum blueberry

~

VDEN Viburnum dentatum viburnum V0PU V. opulifolius viburnum VPRU V. prunifolium nanny-berry VGRE VVAC Vaccinium vacillans early sweet blueberry VERN VSTA V. stamineur.

blueberry VCOR V. corymbostm blueberry

.VAES Vitis aestivalis summer grape VROT V. rotundifolia muscadine V/PA Vitis - Parthenocissus sp.

liana VITI Vitis sp.

grape SUNK UNKS Shrub sp. unknown unknown specles WTLF Shrub sp.

white-leaf abaxial Non-woody Species:

BDIS Botrychium dissectum common grape fern BVIR. B. virginianum rattlesnake fern CCAN Cryptotaenia canadensis honewort DNUD Desmodium nudiflorum beggar's ticks EVIR Epifagus virginiana oeech drops FERN AASP Athyrium asplentoides spleenwort GAIA GALI Galium sp. 4-leaf bedstraw GAL 6 Galium sp. 6-leaf bedstraw GALE Geum aleppicum white avens O

az^a uaxn-o nerd HEX 1 HVIR Hexastylis virginica Virginla heartleaf i

I

TABLE 2.

continued

'q"]

Code 1976 1979 _ Latin Name Ccmmon Name HTOM HVEN Hieracium venosum rattlesnake-weed LILI AHYE Aplectrum hyemale Adam-&-Eve-root LFLA Lycopodium flabelliforme runningpine MREP Mitchella repens partridge berry i

LICO Osmorhiza longistylis wild licorice FBIF Polygonatum biflorum Solomon's seal PARI PACR Polystichum acrostichoides christmas fern POTE Potentilla sp. 5-leaf cinauefoil SCUT Scutellaria sp.

skullcap SMIL Smilacina sp.

false Solomon's seal SRAC S. racemosa false Solomon's seal SOLI Solidago sp.

goldenrod DREP Stylosanthes biflora pencil flower TIAR Tiarella cordifolia foamflower UMBE Umbelliferae RORB MONO cf. Orobanchaceae red orobanche CARX Carex sp.

sedge CARE Carex sp.

sedge GRAS Gramineae sp.

grass PANI Panicum sp.

panic grass ELEP cf. Elephantopus elephant's-foot HUNK UNKH Unknown herb specles Non-Herbs:

MUSH mushroom fungus fungus RUSS Russula sp.

fungus PUFF puffball fungus puffball

0EAD Cladonia sp.

reindeer lichen LICH lichen sp.

lichen sp.

POL 7 Polytrichum sp.

hair-cap moss MOSS moss sp.

moss sp.

note:

Scientific and common names are taken from Radford, Ahles, & Bell, 1968, Manual of the Vascular Flora of the Ca rolinas.

LO v

Q co D

TABLE 3.

SUMMARY

TABLE OF RAW DATA FDR CANOPY TREES IN STAND 5.

TURKEY STAND (A-I).

SPECIES FREQ DENSITY _

STEM BASE AREAa DIFFERENCE BETWEEN STEM BASE AREASa

'76

'79, '76

'79

'76

'79 (79-76)

AVERAGE s.e.

ARUB 4

4 5

5 1132cm2 1293cm2 160.5cm2

32. lcm 2 11.47 CCAR 1

1 1

1 159 159 0.0 0.0 CFLO 2

2 2

2 402 396

-6.1

-31 9.50 CGLA l

COVA 10 10 14 14 3705 4070 3 64.8 26.1

6. 64 CPAL CS!!A l

DVIR 1

1 1

1 I48 165 16.9 16.9 WM i

FRAX 2

2 2

2 64 2' 715 73.4 36.7 36.71 JVIR 2

2 2

2 188 1%

4.6

-23 2.31 LOCU i

LSTY 9

9 16 18 4588 5027 43'9 0 24.4 6.68 LTUL 8

8 8

8 3012 3283 271.2 33 9 12.57 NSYL 3

3 3

3 318 323 4.6 1.5 1 54 PTAE 1

1 1

1 241 234

-6.9

-6.9 PVIR 6

6 8

8 4586 4390

-195 3

-24.4 21.98 QALB 13 14 22 23 7398 7989 590. ')

25.7 9.89 QCoC 1

1 1

1 548 569 2:_.3 21.3 QFAL 11 11 14 14 24167 25405 1238.0 88.4 24.16 QtWC QRUB 1

1 1

1 580 647 66.9 66.9 QSitu 4

4 4

4.

3614 3890 275.4 68.8 20.87 QSTE QVEL 2

2 2

2 1138 1152 14.14 71 7.07 UNKN TOTAIS / stand:

107 110 56566cm2 59890cm2 3324. lcm 2 AVERAGES / tree: '

514.2" 544 5*

30. 22 a,

s.e.

103.69 107.33 5.123 18 s

=

notes a... based on 1979 density.

~

~-

I i

TABLE 4

SUMMARY

TABLE OF PER llECTARE DATA AND IMPORTANCE VALUES l

FOR CANOPY TREES IN STAND 5. TURKEY. STAND (A-I).

SPECIES DENSITY /Ha.

STEM BASE AREA /Ha.

REIATIVE DENSITY RELATIVE BA IMPORTANCE VALUE 1976 1979 1976 1979 (79-761 1976 1979 1976 1973

~1976 1979 L ARUB 31.25 31.25

?o75cm2 8978cm2 lo.o3,3cm2 047 045

.020 024

.034 035 CCAR 6.25 6.25

.993 993 0.0 009 009

.003.

.003

.006 006 CFLO 12 50 12 50 2514 2476

-38.3 019

.018

.007 007 013

.013 CGLA COVA 87.50 87 50 23154 25434 2280.2

.131

.127 065

.068

.098 098 CPAL CSilA DVIR 6.25 6.25 923 1029 105 5

.009

.009

.003

.003 006

.006 FGRA FRAX 12 50 12 50 4011 4470 458.9 019 018

.011 012

.015

.015 JVIR 12 50 12 50-1177 1148

-28.8

.019

.018

.003

.003 011 011 LOCU LSTY 100.00 112.50 28676 31420 274.8

.150

.164

.081 084

.116 124 LTUL 50.00 50.00 18822 20517 169.9 075

.073

.o53

.055

.064

.064 NSYL 18'.75 18.75 1987 2016 28.8 028

.027

.006 005

.017

.016 PTAE 6.25 6.25 1508 14 64

-43.4 009

.009

.004 004 007

.007 PVIR 50.00 50.00. 28663 27443

.-1220 5 075 073

.081 073

.078

.073 i

OALB 137.50 143 75 46238 49931 3693.3

.206

.209

.131

.133

.169

.171 QCoC 6.25 6.25 3425 3558 133.0 009 009 010 010 010

.010 I

QFAL 87.50 87 50 151046 158783 7737.4

.131

.127

.427 424

.279

.276 QMAC QRUB 5.25 6.25 3626 4044 418.0 009 009

.olo

.oll

.olo 010 OSHU

25. ?

^5 ^^

22589 24311 1721.2 037

.036 064 065 051 051 QSTE QVEL 12.50 12 50 7112 7200 88.4

.019

.018

.020

.019

.020

.019 UNKN TOTALS:668.75 687.50 353539.8 374315 5 20775.69 1.001 0.998 0 999 1.003 1.004 1.005 l

I I

o O

.O

~

I t

TABLE 5.

SUMMARY

TABLE OF RAW DATA FOR CANOPY TREES IN STAND 1. BEECH STAND ( A-II).

SPECIES FREQ DENSITY STEM BASE AREA" DIFFERENCE BETWEEN STEM BASE AREAS"

'76

'79

'76

'79

'76

'79 179-76)

AVERAGE s. e'.

l ARUB 2

2-2 3

384cm2 436cm2 52.5cm2 17.5cm2 4.98 CCAR 1

1 1

1 122 127 50 50 CFLo 3

3 3

3 5 68 536

-31 5

-10 5.

10.94 CGLA 7

7 8

10 1903 2248 334.5 34.4.

5.67 COVA CPAL CSHA DVIR FGRA 13 13 '

25 27 9009 10551 1542.2 57.1 10.07 FRAX 1

1 2

2 853 912 59 5 29.8 6.26 JVIR 1

1 1

1 448 477 29 0' 29.0 1

LOCU 0

1 0

1 77 94 16.6

'16.6 LSTY l

1 1

1 81 94 12.6 12.6 LTUL 5

6 5

6 1382 1722 339 7 56.6 15 16 i

NSYL PTAE PVIR QALB 5

5 9

9 3946 4755

., 808.4 89.8 16.49 j

QCOC QFAL QomC QRUB 0

1 0

1 77 98 21.0 21.0 I

QSHU 1

1 1

1 182 221 38.3 38.3 QSTE l

QVEL l

UNKN TOTALS / stand:

61 66 19031c3 22269cm2 3237 9cm 2

AVERAGES / tree:

288.4 337.4 49 06/ tree i

s.e.

27 58 3 2.08 5 726 13 notes:

a... if a tree had a stem area below the limit for a tree in one s

=

of the sample years its area is assumed to be 77 07cm2 for that year.

Q f(}

TABLE 6

SUMMARY

TABLE OF PER IIECTARE DATA AND IMPORTANCE VALUES FOR CANOPY TREES IN STAND 1. BEECH STAND ( A-II).

c d

d d

SPECIES DENSITY /Ha.c STEM BASE AREA /lia RELATIVE DENSITY REIATIVE BA IMPORTANCE VALUE i

1976 1979 1976 1979 (79-76) 1976 1979 1976 1979 1976 1979 ARuB 12 50 18.75 2399cm2 2727cm2 328.09ed.034

.045 020 020

.027 033 l

CCAR 6.25 6.25 760 792 31.35 017

.015 006 006 012 011 l

CFLO 18.75.18.75 3548 3351

-196.98 052

.045 03 0

.024 041 035 CG LA 50.00 62 50 11896 14M9 2152.88

.138

.152

.100

.101

.119

.126 COVA CPAL CSilA DVIR FGRA 156.25 168.75 56307 63946 9638.55 431

.409 473 474 452

.442 FRAX 12 50 12 50 5328 5701 372.11 034

.030 045 04 1 04 0 036 JVIR 6.25 6.25 2798 2980 181.47 017

.015 024 021 021

.o20 LOCU o.00' 6.25 482 586 103.88 000

.015 004 004 002

.olo LSTY 6.25 6.25 507 586 78.86

. 017

.015 004 004 011 010 LTUL 31.25 37 50 8636 10759 2123 11

.086

.091

. 073

.077 080

.084 MSYL PTAE PVIR OALB 56.25 56.25 24664 29716 5052.52

.155-

.136

.207

.214

.181

.175 QCOC QEAL QMAC QRua 0.00 6.25 482 613 131.43 000 015 004 004 002

.olo i

QSilU 6.25 6.25 1140 1380 239.42

.017

,.015

.olo

.olo 014 013 I

f QSTE QVEL UNKN i

TOTALS: 362 50 412 50 118946.4 139183 1 20236.677 0.998 0 998 1.000 1.000 1.002 1.004 l

notes:

c... the raw density and stem areas were multiplied by' 6.25 to obtain per lla.

(per hectare) values for stands 1, 3, 4. and 5.. Values for stand 2 were obtained by multiplying by 12 50 d... totals may not sum to 1.000 because values are rounded to nearest thousandth.

j

O O

O.

TABLE 7

SUMMARY

TABLE OF RAW DATA FOR CANOP'l TREES l

IN STAND 4 RAIIROAD STAND (B-I).

SPECIES FREQ DENSITY STEM BASE AREA DIFFERENCE BETWEEN STEM BASE AREAS

'76

'79

'76

'79

'76

'79 179-76)

AVERAGE s.e.

ARUB 0

1 0

1 77cm,2 89em2 12 3cm2 12.3cm2 CCAR CFLO 1

1 1

1 158 189 30.9 15.4 19.43 CGLA 2

2 5

6 1868 1952 84.5 14.1 3.95 COVA J

6 7

1997 2124 127.4 18.2 7 55 CPAL 4

4 5

6 1713 1795 81 3 13.5 3.36 CSHA 1

1 1

1 538 538 0.0 0.0 DVIR FGRA FRAX JVIR 1

2 1 _ ' ' 2' 184 234.

49.2 24.6 15 07 LOCU LSTY l

1 1

1 375 392 17.6 17.6 LTUL 7

9 7

9 2047 2232 184.9 20.6 5.62 NSYL PTAE PVIR 1

1 2

2 747 696

-51.1

-25.5 2.28 i

QALB 14

-14 36 38 13245 13917 671.4 17.7 3.50 QCOC 3

3 4

4 2384 2622 238.1 59 5 19 37 I

QFAL QMAC QRUB 1

1 1

1 1606 1772 166.5 166.5 QSHU 4

4

~4 4

2198 2407 209.1 52.3 13 26

'QSTE 1

1 3

1 467 497 29.6 29.6 QVEL 3

3 3

3 1146 1225 78.2 26.1 14.21 UNKN TOTALS / stand:

78 87 30749cm2 32679cm2 1930.0cm2 AVERAGES / tree:

349.4 371.4 21.93 s.e.

33.63 35.76 2 999 16 f

s

=

I 4

^

C

'O

^O TABLE 8.

SUMMARY

TABLE OF PER HECTARE DATA AND IMPORTANCE VALUES FOR CANOPY TREES IN STAND 4. RAI1 ROAD STAND (B-I).

SPECIES DENSITY /Ha.

STEM BASE AREA /Ha.

RELATIVE DENSITY RELATIVE BA IMPORTANCE VALUE 1976 1979 1976 1979 (79-76) 1976 1979 1976 1979 1976 1979 ARUB o.00 6.25 482cm2 559cm2 77.oc 2

,ooo

,oli 0.03 003

.002

.007 CCAR CFLO 6.25 6.25 988 1181 192 9 01) 011

.005

.006 009

.009 CGLA 31.25 7 50 11675 12203 527.9

.oM 069 061

.060

.063 065 COVA 37 50 3 75 12478 13275 796.2 077 080 065

.065 071

.073 CPAL 31.25 37 50 10709 11217 508.0

.064 069 056

.055 060 062 CSIIA 6.25 6.25

  • 3360 336b o.0 013 011 017

.016 015 014 DVIR FORA FRAX JVIR 6.25 12 50 1152 1459 307.5 013 023

.006

.007

.010

.015 LOCU LSTY 6.25 6.25 2342 2453 110.2 013

.011 012

.012 013 012 LTUL

43. 75 56.25 12792 13948 1155 9

.090

.103 067

.068 079

.o86

!!SYL PTAE PVIR 12.50 12 50 4666 4347

-319 2 026 4 023

.024

.021 025

.022 CALB 225 00 237 50 82783 86979 4196.5 462

.437

. 431

.426

.447 432 qCoC 25 00 25 00 14900 16388 1488.1

.051

.M6

.078

.080

.065 063 QFAL QMAC 11074 1040 3 013

.011 052

.054 033

.033 QRUB 6.25 6.25 10034 QSilU 25 00 25 00 13739 15M5 1307 0

.051

.o46

.071

.074-061

.060 QSTE 6.25 6.25 2919 31 6 185 3 013

.011 015

.015

.014 013 QVEL 18 75 18.75 7164 7653 489 0 038

.034

.037

.037

.038 036 UNKN TOTALS: 487.50 543 75 192181.3 204243 8 12062.50 1.001 0 996 1.000 0 999 1.005 1.002 h

s,O O

N

SUMMARY

TABLE OF RAW DATA FOR CANOPY TREES

' TABLE 9 IN STAND 3, DAM STAND (B-II).

DIFFERENCE BETWEEN STEM BASE AREAS SPECIES FREQ DENSITY STEM BASE AREA

'76

'79

~'76

'79

'76

'79 T79-76)

AVERAGE s.e.

j ARUB CCAR CFLO 2

0.46 2

4.5cm 2

203cm2 8.9cm CGLA COVA 1

1 1

2 194cm CPAL I

CS!!A DVIR FGRA FRAX JVIR 12.3 12.3 LOCU LSTY O

1 0-4 77 89, LTUL l

PTAE 3

3 4)

)

1610 1572

- 38.0

-12.7 7.83 NSYL PVIR 2

2 4

795 797 2.5 0.6 2,55 QALB 13 14 67 72 20895 22272 1376.8 19 1 2.33 QC00 1

1 1

1 208 248 40.7' 40 7 QFAL 12 12 18 18 6327 7020 693 0 38.5 14.68 QMAC QRUB

~ l 1

602 636 33.6 33 6 QSTE 1

1 1

1 182 201 18.7 18.7 QSIIU 1

1 QVEL 3

3 4

4 1686 18 6 138 3 34.6 7 99 l

UNKN 2

I 100 107 32575cnF 34862cm2 2286.98cm TOTALS / stand:

21.37 l

3 04.4 325.8 3 081 AVERAGES / tree:

21.07 22 33 s.e.

10 s

=

i

-.......~.,.,,.~.p--.;-

O

_ D EO TABLE 14

SUMMARY

TABLE OF PER HECTARE DATA AND IMPORTANCE VALUES FOR CANOPY TREES IN STAND 3. DAM STAND (B-II).

4 SPECIES DENSITY /Ha.

STEM BASE AREA /Ha.

REIATIVE DENSITY REIATIVE BA IMPORTANCE VALUE 1976 1979 1976 1979 (79-761 1976 1979 1976 1979 1976 1979 ARUB

'CCAR CFLO l

CGLA COVA 6.25 12 50 1211cm2 1267cm2 55.74cm2

.olo

.o19

.006.006

.008

.013 CPAL CSilA DVIR FGRA FPAX JVIR LOCU l

LSTY 0.00 6.25 482 559 76.96

.000 009

.002.003

.001 006 I

LTUL

~

l NSYL l

PTAE 18.75 18.75 10062 9825

-237.20

.030 028

.o49.o45

.o40 037 PVIR 25 00 25 00 4968 4984 15 83

.o40 037 402':.o23

.o32

.o30 I

OALB 418.75 450.00 130594 139200 8605 18

.670 673

.641.639

.656

.656 l

QCoC 6.25 6.25 1297 1552 254.62 010 0's9

.006.007

.008 008 QFAL 112 50 112 50 39540 43872 4331.41

.180

.168

.194.208

.187

.188 Qt.1AC QRUB OSHU 6.25 6.25 3763 3973 209 97

.olo

.009

.018.o18

.014 014 QSTE 6.25 6.25 1140 1257 116.86

.010 009 006.006

.008 008 QVEL 25 00 25 00 10535 11400 864.25

.040

.037 052.052

.046

.045 l

UNKN TOTALS: 625 00 668.75 203593 3 217886.9 14293 563 1.000 0 998 0 998 L007 1.000 1.005 l

C O

O TABLE 11

SUMMARY

TABLE OF RAW DATA FOR CANOPY TREES i

IN STAND 2. RIVER STAND (C).

SPECIES FREQ DE!!SITY STEM BASE AREA DIFFERENCE BETWEEN STEM BASE AREAS

'76

'79

'76

'79

'76

'79 T79-76)

AVERAGE s.e.

ARUB 2

3 6

7 753cm2 866cm2 112.8cm2 16.1cm2 2.22 CCAR CFLO 1

2 1

2 219 184

-35 7

-17 9 43.40 COLA COVA 1

l' 2

2 865 881 15.4 7.7 7.70 CPAL CS!!A DVIR 11.77 FGRA 7

7 11 11 5875 6161 285 9 26.0 FRAX JVIR-LOCU LSTY 3

3 5

5 1152 1230 78.0 15 6 4.16 LTUL 1

1 1

1 1791 1887 96.5 96.5 NSYL PTAE PVIR 2

2 2

2 649 732.'

83.6 41.8 0.00 QALB 5

5 5

5 4395 4935 540.6-108.1 10 97 QCOC QFAL QMAC 2

2 2

2 1182 1988 806.3 403.1 335.64 QRUB QSilU QSTE QVEL UNKU TOTALS / stand:

35 37 16882cm2 18865cm2 1983,4 AVERAGES / tree:

456.

509 9 53.61 s.e.

70. 5 77 79 20.294 9

note:.. all values are per 8 tree quadrats rather than per s

=

i 16 quadrats as in all other stands.

,Ii

' ji EUL 9 A

7 8

2 1

2 04 79 0

3 V 9 1

3 5

1 06 49 8

0

^O 10 01 0

0 0

0 3

1 1

E 1

CN ATR 6 O 7 8

1 4

1 68 82 4

2 0

2 5~

3 06 40 6

0 P 9 10 02 0

0 0

3 0

1 M 1 I-1 S

E A 9 6

0 7

7 50 92 5

1 U

B 7 4

1 4

2 60 36 0

0 L

9 0

0 0

0 01 02 1

3 A

E 1 V

V 1

I E

T C

A 6 5

3 1

8 86 80 0

9 N

L 7 4

1 5

4 60 36 7

9 01 02, 0

9 A

E 9 0

0 0

T R 1 3

R )C 0

OP(

Y M D T 9 I N I

7 9 4 4

7 57 45

.4 9

A S 9 8

5 5

9 32 53' 5

9 N 1 0

0 2

10 01 0

9 D T NS E

1 A

D 0

R AE E

T V V

AI I

1 9

7 4

39 73 7

0 D R T 6 7

2 5

1 42 54 5

0 0

A 7 0

10 01 0

E L 9 1

0 3

O R2 E 1 1

A R

F TD 2

CN c

5 EA

)

5 4 5

0 80 96 4

2 6

2 76 09 4

T 6

l 5

5 5

l S

7 R

0 6

2 4

46 56 8

2 EN 9

1 4

9 7

70 45 7

9 PI 7

4 4

1 5

92 07 0

7

(

1 3

1 16 0

4 FS 1

2

. ~

2 OEE a

m 3

ER H

c LT

/

9 2

6 7

5 93 23 4

1

~

B A

7 2

9 0

1 79 59 5

1 AY E 9 8

2 0

0 35 16 8

8 TP R 1 o

2 1

7 53 91 4

5 O

A l

1 7

12 6

2 32 YN RA E

AC S

2 M

A m

9 MR B

c UO 6

2 3 4 1

56 76 6

8 SF M 7 1

4 1

4 08 03 7

1 E 9 4

7 8

4 43 19 7

0 T 1 9

2 0

3 42 84 4

1 S

1 7

12 5

1 1

2 2

9 0

0 0

0 00 00 0

0 0

55 05 0

5 1

a 7 5

0 5

E' H 9 L

/

1 7

5 5

7 22 52 5

2

' B Y

8 2

2 3

61 26 2

6

~

A T

1 4

T I

S 6 0

0 0

0 00 00 0

0 5

0 55 05 0

N 7 0

5 5

E 9 D 1 5

2 5

7 22 52 5

7 O

7 1

2 3

61 26 2

3 1

4 S

E I~

S C

BROAALARAXRUYLLERBcLCBUELN L

E UALLVAi IRAICTUYAILoAAUI TEK A

l I

P RCF OOPSVGRVOSTSTVACFMRSSVM T

S ACCCCCCDFFJLIL! PPOQQQQOQQU O

T

TABLE 13 SIMILARITY BETWEEN STANDS USING SPECIES RICHNESS IN 1976 OR 1979 l

a.

1976 Richness:

STAND NAME & ENVIRONIENTAL CODE Turkey Beech R. Road Dam River A-I A-II B-I B-II C

s=18

.621

,667 592 519 Turkey, A-I 9

s=ll 538

.200

.600

Beech, A-II 11 7

s=15 583 500 R. Road, B-I 8

2 7

s=9 333

Dam, B-II 7

6 6

3 s=9 River,

C b.

1979 Richness:

STAND NAME & ENVIRONMENTAL CODE Turkey Beech R. Road Dam River A-I A-II B-I B-II C

s=18

.645 706

.643 519 Turkey, A-I 10 s=13

.621

.261 545

Beech, A-II l

12 9'

s=16

.615 560 R. Road, B-I 9

3 8

s-10

.421

Dam, B-II 7

6 7

'4 s=9 River,

C notes:

In each table the upper right triangular matrix contains the Sorenson Similarity Index between the row and column stands.

The index is:

2c/(A + B)

IS

=

~

Here c, the species that occur in both stands being comparted, is listed in the lower triangular matrix.

A and B are the species richness for stands A and B being compared.

The richness for each stand is listed on the diagonal.

TABLE lb.

EUCLIDEAN DISTANCE $BETWEEN STANDS O

USING TREE DENSITIES

  • IN 1976 AND 1979 a.1976 Densities:

STAND NAME & ENVIRONE,NTAL CODE Turkey Beech R. Road Das River A-I A-II B-I B-II C

0.000 2.007 1.042 3 308 1.417 Turkey, A-I 0.000 1.876 5.654 0.405

Beech, A-II 0.000 1.831 1 937 R. Road, B-I 0.000 5 523
Dam, B-II O.000 River,

C b.1979 Densities:

STAND NAME & ENVIRONMENTAL CODE

.(])

Turkey Beech R. Road Dam River A-I A-II B-I B-II C

0.000 1.988 1.005 3 299 1 330 Turkey, A-I 0.000 1 910 5 758 0.442

Beech, A-II 0.000 1.869 1.899 R. Road, B-I 0.000 5.500
Dam, B-II 0.000 River,

C l

1 notes:

  • ... the variable used to calculate E.D.

is the density of each species per 16 tree quadrats.

$... all values are standardized D2 in this table and in tables 15 and 16.

O 1

l

I)

TABIE 15.

EUCLIDEAN DISTANCE BETWEEN STAB 05

~

USING TREE BASAL AREAS

  • IN 1976 AND 1979
a. 1976 Basal Areas:

STAND NAME & ENVIRONMEhTAL CODE Turkey Beech R. Road Dam River A-I A-II B-I B-II C

0.000 4.585 4.078 3.472 4.662 Turkey, A-I 0.000 1.161 2 568 0.347

Beech, A-II l

0.000 c 765 1.178 R. Road, B-I 0.000 2.185

Dam, B-II 0.000 R iver,

C

b. 1979 Basal Areas:

STAND-NAME & ENVIRONMENTAL CODE Turkey Beech R. Road Dam River l

A-I A-II B-I B-II C

0.000 4.616 4.001 3.366 4.638 Turkey, A-I 0.000 1.201 2.623 0 369

Beech,

.A-II 0.000 0.814 1.188 R. Road, B-I 0.000 2.184

Dam, 3-II 0.000 River,

C notes:

  • ... the variable used to calculate E.D. is the total tree basal area for each species per 16 tree quadrats.

I0

./

b TABLE 16.

EUCLIDEAN DISTANCE BETWEEN STANDS USING IMPORTANCE VALUES FOR TREE SPECIES IN 1976 AND 1979 a.1976 Importance Values:

STAND NAME & ENVIRONMENIAL CODE Turkey Beech R. Road Dam River A-I A-II

_B-I B-II C

0.000 3.204 1.793 2 726 2.007 Turkey, A-I I

0 327 0.000 2 939 4.847 0 559

Beech, A-II 0.183 0.300 0.000 1.03 1 2.087 R. Road, B-I i

0.279 0.495 0.105 0.000 3.807

Dam, B-II 4

0.205 0.057 0.213 0.389 0.000 River,

C

b. 1979'Importance values:

STAND NAME & ENVIRONMENIAL CODE Turkey Beech R. Road Dam River A-I A-II B-I B-II C

0.000 3 192 1 742 2.753 1 954 Turkey, A-I 0 319 0.000 2.861 4.941 0.625

Beech, A-II 0.174 0.286 0.000 1.130 1 989, R. Road, B-I 0.275 0.494 0.113 0.000 3 814
Dam, B-II 0.195 0.062 0.199 0 381 0.000 River,

C notes:

In tables a. and b. the upper right triangular matrix or ' trellis diagram' contains the standardized E.D. for importance values.

The lower left trellis diagram contains the standard, nontransformed squared E.D.

O

0 D

D 2

Table 17.

Changes in total density and total percent cover per 64 m in the understory of each stand from 1976 to 1979.

I Total Density Stand 1976 1979 Percent Change A-I, Turkeys 1302 1275

-2%

f A-II, Beech 63 2 445

-30%

B-I, R.R.:

961 956

-l%

j B-II, Dam:

838

'833

-l%

C, Rivers 1414*

990* -30%

Total % Cover Stand 1976 %pos.

1979 %pos.

Percent Change A-I, Turkey:

1979 5 62%

1378.0 43%

-30%

A-II, Beech:

2225 0 70%

1532.5 48%

-31%

B-I, R.R.:

2178 5 68%

1472.0 46%

-32%

B-II, Dam:

1233 0 34%

507.5 16%

-59%

O, River s 3150.0* 98%

2580.0* 81%

-18%

notes

  • ... obtained by multiplying the actual values based on 16 quadrats by 2.0.

%pos.... the percent of the ground surface that would be covered if l

the understory vegetation was distributed without overlap.

All mushrooms, mosses, and lichens were excluded from summaries and analyses, for understory data.

1

llI O

i l

t

!1 lIl:!i

.'1 e

f D

)nr

/,s

(

67 10 62 12 13 89 16 85 65 52 536 32 10 92 72 0

59

  • 25 53 46 73 t

1 1

2 5

9 92 0

24 4

68 4

39 8 91 5

16 8

07 3 65 2 41 4 49 9

e 98 0

42 4 31 0

73 5 55 7

sth a

46 4 62 3 46 4

37 2 4 '3 4

12 4

13 11 14 s

a e

t v

a i

r 46 5 19 3 80 5 36 4

43 4 g

d 83 2

98 1

80 2

08 3 96 9

a

)

u i 93 4 37 8 96 1 65 7 00 1

s Q

34 1

14 24 1

21 38 1

(

9 n

7 o

9 22 2

22 2

22 2

22 2 66 6

i 1

33 3 33 3 33 3 33 3 11 1

ta a

i t

v a

e d

)

d E

t

. d a

14 41 94 12 85 r

r 8

26 79 52 95 64 a

D d

I 60 24 36 48 28 dn a

5 u

0 82 75 55 54 06 a

1 1

1 1

12 t

q t

s y

r 61 4

93 2 42. 4 14 4

78 4 h

5 12 49 2 ep o

82 7 41 8

48 t

84 4

19 9 82 4 21 9 23 7 tr s

a o

r 33 3 02 3 43 3 51 2

90 3

ff e

23 24 14 14 15 o

d s

l n

t ta u

a 5

' 38 4

93 6 94 0

gr hv r

96 4

53 3 f

d 68 8

75 1 00 4

15 5 14 5

. ie o

a d rt u

Y 01 1

99 8 08 0 68 7 48 9

e n

s Q

46 1

16 36 1

23 49 t ei i

ah s

6 l te y

7 u

c l

9 n22 2

22 2

22 2

22 2 66 6 c on a

1 33 3 33 3 33 3 33 3 11 1

l te n

a d

A s

s s

s s

c ni yr d

yr d

yr d

yr d

yr d

mf te r

te r

te r

te r

te r

t un iv o

iv o

iv o

iv o

iv o

o lo 8

so c

so c

so c

so c

so c

n oc 1

nC e

nC e

nC e

nC e

nC e

c e e R

e R

e R

e R

e R

e l D%

D%

D%

D%

D%

. e l

b "r

r r

r r

. h b

a ll e

ll e

ll e

ll e

ll e

  • T a

i aa b

aa b

aa b

aa b

aa b

T r tt m

tt m

tt m

tt m

tt m

a oo u

oo u

oo u

oo u

oo u

VTT N

TT N

TT N

TT N

TT N

se d

I I

t n I I

I I

o O

a n

t A A

B B

C S

lli i'

l l'

l i

i!!

-dD +

- +

+ -

r D

h$ -

C 9

6 0 8 0 0 2 0 2 2 4 O 0 2 5 0 01 7

5 1 3 5 2 2 0

6 y9 1

t1 is6 2 9 94 0 1 0 2 0 6 O 0 8 3 2 01 n

n7 4

4 3-1 3 0 1 3 i

e9 1

d D1 s

a e

o 9

0 5 0 5

5 0 0 5 5 5 5

5 i

r 7

c l

9 3 1 4 0 0 30 94 4 O 0 5 7 9 0 0 e

i 1

8 2 8 4 7 1 9 2 3 p

a r 2

1 1 2

1 s

R ev6 5

0 0 5 0

5 5 0 0

0 5

5 n

. o7 e

I C9 8 2 5 0 0 8 0 4 5 4 'O 0

0 0 3 0 0 0 v

1 0

74 1

8 6 2 7 3 e

B %

3 3 2 3

3 l.

er e

ev ho g D_ - + - +

- +. -

tc nCg

+

.^

h fton e

. '9 6 4 9 1 0 6 3 91 6 6 1 6 1 1 0 O yc 7

1 1 1 2 2 tr y9 ie t1 sp i

n s6 1 0 94 0 6 0 5 7 0 7 2 6 1 1 0 O et n7 1 1 2 1 1 3 1

ds e9 e

D1 lh D

ag H

9 5 0 5 5 0

5 5 0 5 5 0 5 0 5 ti C

7 oh E

9 5 5 0 50 36 1 8 5 5 8 0 30 0 '0 t

E 1

0 8 74 6 1 3 0 4 31 e

B r 1 1 2 1 3 dh e

nt v6 5 0 5 5 0

5 5. 5 5 0 5 0 5 a

I o7 h

I C9 2 1 94 0 3 0 56 4 2 6 9 30 0 0 rt 1

5 0 2 6 2 54 8 5 7 ei A %

1 1 3 1 1 5 vw o

cy g D_

+ - + +

- + + + o

+

r n

to hC

- +

nt Cg es cr 9

51 31 1 0 5 58 2 5 O 1 0 6 1 1 re 7

6 2 76 1 1 4 1 2 6

1 ed y 9 pn t 1 u

i l

s 6 3 0 6 6 6 1 8 74 2 7 O 1 0 2 2 8 ah n 7 6 2 74 1 2 1

3 tc e 9 oa D1 Te Y

9 0 5

0., 5 0

5 5 5 5 5 5 5 5 0 0

E 7

K 9

74 3 5 34 6 0 1 8 7 O 0 0 2 0 4 9

R 1

7 2 5 33 2 98 8 2

2 1

U r 2 1 1

T e e

v 6 5 5 0 5 5 0 5 5 5 5 0 5

0 0 0 l

o 7 b

I C 9 2 4 34 5 38 7 0 31 O 3 0 1 1 1 a

1 4 5 76 9 8 6,

2 6 6 1 1

6 2

T A %

2 1 1 1 1 se ie O

cd B R O A R R Y L L A X E B L B R A eo U A L V I I T U Y R A M L E L I P pC R C P O V V S T S G R A A V A V O S

A C C C D J L L N F F U Q Q S P I gg? $ a. hdSm.f

~

l

,ll

m s.

'o

'O O

Table 19.

continued.

A-I, TURKEY STAND A-II, BEECH STAND B-I, RAILROAD STAND Species

% Cover Density Chng.

% Cover Density Chng.

% Cover

_ Density Chng.

, code 1976 1979 1976 1979 fc_ D 1976 1979 1976 M fC D 1976 1979 1976 1979 (C,D C

Shrub Species:

VSTA 35 5 27 0 71 55 0.5 05 1

4 79 0 45 0 127 88 l

CAME O

O O

O 111 5 84.0 14 16

-+

0 0.5 0

1 l

GBAC 0

0 0

0 0

0 0

0 90.5 90.0 100 141

-+

RNUD 0

0 0

0 8.0 11.0 24 25 57.5 27 0 83 78 VVAC 18.0 22 5 41 19 32.0 20.5 156 38 40.0 18.5 67 49 KLAT 0

0 0

0 0

. 0 0

0 0

0 0

0 i

f l

V0PU 0

0 0

0 0

0 0

0 0

0 0

0 VDEN 24.0 8.0 21 17 1.5 1.0 3

2 4.0 3.5 7

2 f

8.5 12.0 66 90 2.0 1.5 11-8 70 6.5 33 26 CMAC Herb Species:

LFLA 448.0 270.0 275 2262

-+

0 0

0 0

0 0

o O

PACR 0

0 0

0 30 30 2

5 0

0 0

0 11 Dominant Species:

Totals:

1679 5 1107 5 1803 5 1239 5 2034.5 1304.0

% of Stand Total:

85%

80%

81%

81%

93%

89%

j 1976-1979 Species gains:

2 8

1 4

0 4

l losses:

9

'2 10 7

11 7

none:

0 1

0 0'

O O

pW%O O

Y f

i Table 19.

continued.

I s

B-II, DAM STAND C. RIVER ST AND Species % Cover Density Chng.

% Cover Density Chng.

Code 1976 1979 1976 1979 $C_ D 1976 1979 1976 1979 g D ARUB 115.0 66.0 58 66

-+

249.9 285.6 39*

4 0* + +

CCAR 0

0 0

0 18.0 8.5 1

2 38.5 57 5 2

6 ++

CPLO 21 5 4.0 15 5

I 35 67 0 2

4

,COVA 102 5 84.0 5

3

@DVIR 0

05 0

.1 0

0 0

0 f

JVIR 0

0 0

0 17 0 8.5 5

2 LSTY 0

0 0

0 168.0 75 0 18 12

[LTUL' 6.0 35 2

2 0.5 1.0 1

2 m NSYL 16.0 5.0 3

5

-+

0 0.5 0

1 0

0 0

0 91.0 39 5 2

4 l

[PGRA nFRAX 0

0 0

O 26.5 12.0 3

4

-+

l

$ UAME O

O O

O O

O O

O

  • QALB 259 0 30 5 86 172

-+

15 0.5 3

1 NQVEL 38.0 18.0 1

1

-o 0

0 0

0 SALB 50 85 10 18 26.0 9.0 8

8 05 1.5 3

4 PVIR 366.0 93 0~

36 24 IOPA 0

0 0

0 30 0

,1 0

.g

(

I O

r e

hto l

lA

.s t

ar d

au y

l q

n e

o lp s

m t

n g D a

n s

an 0

h 0 C 1 6

i 1

m 9

2 0 O 84 8 12 2 O 3 o

7 1 1 5

2 n

d y 9 1

o.e t

1 i

d sf s 6 0 0 O 0 4 0 24 0 O 6 4 70 et n 7 1

4 1 5

2 s ad D e 9 3

ar e t

N D 1 b d A

0 a a l u c T

9 5

5 0 0 05 0 0

1 5

l qi S

7 O

9 3 0 0 0 1 7 78 2 O 5 9

8 a

dn R

1 4

3 11 1

0 e

E r 5

1 el i V e rp) d I

v 6 5 5 5 05 0 5

am-R o 7 5

a C 9 0 0 0 6 1 6 66 5 O 2 7

3 290 s s(

1 5

8 4 2 4

5 9

e e

C %

6 1

u2 s

l3 a

a e

vn r

o c g D_

+

+

y e

n td d

h C o

o i e Cg s s na r o

d 9

4 0 30 4 1 0 34 O 0 eb e

7 4

4 5

0 d

u y 9 1

2 e) d r+

n t 1 i

i na(

t s 6 4 0 7 0 2 1 0 31 0 0 551 a

n D n 7 5

3 4

6 s

es o

N e 9 1

2 rl c

A D1 ea ae T

0 vt r

S 9

5 0

5 0 0 5 oo c

7 4

8 ct n 9

M 9

0 0,2 0 73 04 3 0 0 s4 8

1 A

1 8

3 1

1 e4 ed i

D r i

sn e

c 0 ea v 6 s

e 5

0 0 0 0 5 ht e

l I

o 7 e

s p4 1

ts b

I C 9 i 0 O 2 0 0 8 O4 3 e 0 0 S 2 9

092 a

1 c4 3

2 1

i

,1 d

q T

B f.

e 1 c

t 1 n n

h p

e n

a s

S p

a c

t: 9 e

S n s Sl 7s:s ie b

i l a 9ese:

.O cd u A E C D C T U N C b A R m aft 1inse eo r T M A U A A P E A rL C o t oo cisn s

pC h S A B N V L 0 D M e F A D o T 6eaoo e

S S V C G R V K VV C H L P T %

7 p gl n t

1 9S o

1 1

n

TABLE 20.

AhKUAL FRGIECTION CHANGE IN THE FIVE SAXFLE O

STANDS 3ASED ON 1976 AND 1979 COLLECTIONS OF AE0VE-GROUND PLAhT MATERIAL.

STA_ND CODE AND DATE QUAD-A-I A-I A-II A-II B-I E-I RANT PLOT 1976 1979 1976 1979 1976 1979 A

1 3 183g 7 985g 0 969g 0 932g 15 567g 3 995g 2

4.076 2 378 0.651 1.435 2.441 3.499 3

0 375 9 923 0.285 1.288 5.645 4.919 4

3.907 4.939

'O.087 0.632 2.721 7.477 total:

11 541 25 225 1 992 4.267 ao.374 19.890 B

1 1 532 3.604 1 372 1.360 4.7 27 7 553 2

1 974 2.074 0 971 1 304 12 944 4.424 3

2 920 4.436 1.666 1.201 12.642 7.420 4

0.000 0.000 0.626 1.913 3.825 11.913 total:

6.426 10.114

  • .c)3 3 776 34.138 31 310 C

1 3 813 8.627 1.610 0 975 1.012 4.441 2

9 523 6.975 0 545 2.258 1 530 0.068 3

1 943 5 193 3.699 0.481 2.658 0 940 4

0.201 5.146 0.162 0.211 0 571 0.323 total:

15 480 25 941 6.016 J.94) 5 771 5.77^

D 1

0.799 11.632 0.744 1.622 1.062 4.613

.O 2

9 042 4 968 0 517 1.228 4.328 8.73 3

3 087 9.445 18 348 0 373 0 799 3.854 4

2.048 12.375 0.298 1.887 1.225 1.184 total:

14 976 36 420 19 907 3 110

'/. '+14 18.414 Grand Total:

48.423 99 700 32 550 19 100 73.697 75 386 i

3 026g 6.231g 2.034g 1.194g-

4. 606g
4. 712g s

2 7753 3.5294 4.4376 0 5774 4.7972

3. 2821 n

16 16 16 16 16 16 Total /

200n2:

302.6g 623. lg 203.4g 119.4g 460.6g 471.25

.O

./

l TABL3 20. continued

{]}

ST AND CODE AND D ATE QUAD-B-II" B-II" C

C R ANT _ PLOT 1976 1979 1976 1979 A

1

4. 682g 5.281g 2

2.253 8.523 3

3 175 2 985 4

1.432 10 3J9 total:

120 375g 129. 017 g 11 542 27.le+

B 1

4.455 10.121 2

11.671 7 594 3

0 578 21 913 4

7 203 7.525 t'otal:

235 116g 112 505g 23 907 47 153 C

1 6.388 90.604 2

4.689 19 995 3

18.665 14.474 4

3.8%

16.277 total:

44 979g 75 972g 33.o06 141 350 O

D 1

2.126 3 331 2

11.653 21.785 3

10.010 26.109 4

6.823 6.798 total:

135 718g 248 703g 30.612 58.023 Grand Totals (536.190) (566.197) 99.667 273 710 x:

(134.048g )(141.549g) 6.229g 17.107g si

( 78.1839)( 74.7951) 4.7591 20.863 n

4 4

16 16 Total /

200m2:

536.2g 566.2g 622 9g 1710 7g l

note:

  • .. weights in B-II are based on complete 2 for biomass collections from 50m each Quadrant.

In all other stands the pigtweightsarecollectionsfrom 2m each.

D 1

N R

t APPENDIX B:

RAW DATA i

f I

(O t

i i

0 1_

i l

l

l

~ ~ -.-_....

-. ~.

l l

TABLE A.

RAW CATA FCR 1976 AhC 1979 CANCPY TREES

\\

IN STANC NUMBER 1

l CBF RECORDS ST CT LEVEL CCDE S FEC IES N AM E 1976 1979 1979 PERFORMANCE 1976 PERF.

l i

1 13A C5 C6 ARUB ACER RUBRUM 6.2 6.5 1

13A CS C6 CGLA CARYA GL ABR A 6.4 7.1 CF 1

13A C5 C5 FGRA FAGUS GRANDIF 3.9 ' 4.8 2 0F 2 MS 1

13A CS C5 FGRA FAGUS GRANOIF 4.0 5.3 10F 2 MS

$5 i

13A C5 C5 FR AX FR AX INUS CF.

5.6 6.0 t

1 13A CS C4 FRAX FRAXINLS CF. 11.7 12.0 1

13A C5 C5 LTUL LIRICDEhDRCh 3.9 4.3 NEW7 5555 1

138 C6 C6 CGLA CARYA GLABRA 9.3 9.8 I

138 C6 C5 FGRA FAGUS GRANCIF 4.7 4.9 1 0F 2 MS 55,1 0F 2 1

L30 C5 C6 FGRA FAGUS GRANCIF 7.8 8.3 1

138 C6 C6 FGRA FAGLS GRANCIF 8.3 9.0 2 0F 2 MS

$$,2 0F 2 1

13R C5 C5 LCCU RCBINIA PSEUC 3.9 4.3 LOCLST?,NEh,1 0F 2 F$$$$

1 14A C5 C5 CGLA CARY A GLABR A 3.9 4.1 NEW

$$$5 1

14A C5 C6 CGLA CARYA GLAERA 6.3 6.6 1

14A C5 C5 FGRA FAGLS GRANOIF 3.9 4.0 AEh

$$55 1

14A C5 C5 FGRA FAGUS GRAADIF 6.7 7.1 1

14A C6 C6 QALB CLERCUS ALBA 5.5 10.2 l

14A C6 C6 QALB CUERCUS ALBA 10.4 11.5 1

148 C4 C5 CCAR CARPINLS CARC 4.9 5.0

$5 1

140 C5 C5 FGRA FAGUS GRAA0!F 6.7 7.2 1

140 C5 C5 LTUL LIRICDEhCROh 4.2 4.7 55 1

158 C6 C6 CGLA CARYA GLAERA E.1 8.7 EDEF 1

158 C5 C5 FGRA FAGUS GRANDIF 6.4 7.0 1

158 C6 C4 FGRA FAGUS GRAhDIF 7.1 7.8 EDEF 1 0F 2 MS 1

150 C5 C6 FGRA FAGLS GRANDIF 7.4 7.9 1 OF 2 MS 1

158 C6 C6 FGRA FAGUS GRANDIF10.2 11.3 2 OF 2 MS,ECEF 2 0F 2 MS 1

15e C6 C6 LTLL LIRICDEhDRCh IC.7 11.4 EDEF 1

16A C4 C5 FGRA FAGLS GRANDIF 4.1 4.6 1

16A C6 C4 FGRA FAGLS GRANDIF11.2 11.7 L

16A C6 C6 CALB CLERCUS ALBA 7.2 7.7 1

16A C6 C6 QALB CUERCUS ALBA 7.4 8.3 1

16B C5 C5 FGRA FAGLS GRANOIF 7.1 7.6 ADD 1

168 C6 C6 QALB CUERCUS ALBA 12.0 12.8 1

17A CS C6 CGLA CARYA GLA2RA 4.8 5.2 1

17A C6 C6 FGRA FAGLS GRANDIF11.0 11.9 1 0F 2 MS CF 2 MS 1

17A C6 C6 QALB CLERCUS ALBA 6.1 7.0 10F 2 MS 1

17A C4 C6 QALB CLERCUS ALBA 6.6 7.0 2 0F 2 MS 1

17A C6 C6 CAL 8 QUERCUS ALBA 9.5 10.9 CN EDGE 1

17B CS C5 ARUE ACER RUERUM 3.9 4.1 NEW 5555 1

17B CS C6 ARU2 ACER RURRUM 4.7 5.2 NEW7

$$,X 1

172 C4 CS CFLC CCRNUS FLCRIC 4.9 4.8 X

1 178 C5 C5 FGRA FAGLS GRANCIF 4.5 4.8 X

1 178 C6 C6 LTUL LIRICDEh0R0h 9.0 10.2 0

PART DEF 1

17C C5 CS CGLA CARYA GLAERA 3.9 4.'8 l

l

(~N 1

17C C4 C5 CGLA CARYA GLA2RA 5.1 5.5 DEF l

1 17C CS C6 CGLA C ARY A GLABR A 6.5 7.4 NEw?

OEF 1

17C C4 C5 FGRA FAGUS GRANCIF 4.1 4.2 X

1 17C CS C5 FGRA FAGLS GRANOIF 4.7 5.6 10F 2 MS X

1 17C C5 C5 FGRA FAGUS GRANDIF 6.8 7.0 X

l 17C C5 C6 FGRA FAGUS GRANDIF12.9 14.0

\\

l l

f TABLE A.

R A 'n CATA FCR 1976 ANC 1979 CANCPY TREES

(,

IN STANC NUMBER 1

C2h RECCROS ST CT LEVEL CODE SPEC IES NAM E 1976 1979 1979 PERFORMANCE 1976 PERF.

j L

17C CS C5 QRUB CLERCUS RUBRA 3.9 4.4 NEW,CF 1

18A 05 C5 CFLC CCRNUS FLCRIC 4.9 5.0 20EF,0 1

18A CS CS CGLA CARYA GLABRA 4.6 5.1 DEF i

18A C6 C5 JVIR JLNIPERLS VIR 9.4 9.7 0

1 18A CS C6 CShu CLERCUS SHUMA 6 0 6.6 C,aDEF 1

100 C5 C6 FGRA FAGUS GRAN01F E.7 9.4 1

IdB C5 C6 LTUL LIRICDEh0FCh 4.4 5.4 1 OF 2 PS 06/5 L

188 C6 C6 QALB CUERCUS ALBA 12.6 13.9 CN EDGE,0UT7 1

19A C5 C5 FGRA FAGUS GRANCIF 7.8 9.1 1

19A C6 Cd FGRA FAGLS GRAN0!F13.5 14.5 1

19A CS C6 LSTY LIQUIDAFeAR S 4.0 4.3 1

19A CS C6 LTUL LIRICDEh0ECh 5.0 6.0 L

192 C5 CS CFLC CCRNUS FLCRIC e.0 7.6 00,1 0F 2 MS,BOTH 00 1

198 C5 C5 FGRA FAGUS GR AhD IF 7.7 9.2 1

198 C5 C5 FGRA FAGUS GRANOIF E.9 9.7 L

198 C6 C6 FGRA FAGUS GRANDIF13.2 14.3 (79 DROPPED QAL8 06 (IN 79 PUL l

)

TABLE B.

RAW DATA FCR 1976 ANC 1979 C ANGPY TREES t

IN STANC NUMBER 2

C2H RECORDS i

l ST CT LEVEL CCDE SPEC IES NAME 1976 1979 1979 PERFOPMANCE 1976 PERF.

l 2

13A C5 C5 ARUB ACER RUERUM 4.3 4.5 2

13A CS C5 ARUE ACER RUERUM 4.6 5.0 2 0F 3 MS 2 CP 4 FS 2

13A C5 C6 ARU8 ACER RU8 RUM 5.2 5.6 1 0F 3 MS 1 OF 4 MS 2

13A C5 C6 FGRA FAGLS GRAN0!F 8.3 8.8 i

2 13A C6 C4 CALB CLERCUS AL8A 1C.4 11.5 2

13A C6 C4 QMAC CLEPCUS MACRCIC.8 16.2 IN?

i 2

130 C5 C5 ARUB ACER RUERUM 4.3 4.5 2

L38 CS C5 ARUS ACER RUERUM 4.6 5.0 C5/C6,1 0F 3 MS 2 0F 4 MS 2

13e C5 C6 APUB ACER RUEPUM 5.2 5.6 2 0F 3 MS 1 CF 4 MS 2

138 C4 C4 CFLC CCRNUS FLCRIC 3.9 4.5 2

13B CS C6 FGRA FAGUS GRANDIF 8.3 8.8 2

132 C5 C6 LSTY LIQUIDANBAR S 6.6 6.7 (NOT IN CTHER PLOT 1 2

130 C6 C6 QALB CUERCUS ALBA 10.4 11.5 2

132 C4 C4 QMAC CLERCUS MACRCIC.8 11.4 IN?

2 14A C5 CS FGRA FAGUS GRAN0!F 5.1 5.2 2

14A L6 C6 FGRA FAGUS GRAN0!F 9.4 9.6 2

14A C6 C6 FGRA FAGUS GRAN0!F18.4 18.9 DEF, PHCTC 2

14A C6 C6 QALB CLERCUS ALBA 13.5 14.4 l

2 14B C5 C5 A3U8 ACER RUBRUM 3.9 4.2 NEW,MS 2

148 CS C6 FGRA FAGLS GRANDIF11.0 10.3 IN PLOT PIN 479-80

(

2 148 C6 C6 FGRA FAGLS GRANCIF11.6 11.8 2

148 06 C6 QALB CUERCUS ALBA 16.6 17.0 2

15A C5 CS CFLC CCRNUS FLORIC 5.3 4.0 NEW

$$$$,IN 76 2

LSA C5 C5 LSTY LIQUIDAF8AR S 4.8 5.0

$$$$,1N 76 2

LSA C5 C4 LSTY LIQUIDAFEAR S 8.3 8.6 SHOULD BE IN PLOT

'7 2

15A C5 C6 PVIR PINUS VIRGINI 8.0 8.5 2

158 C4 C4 FGRA FAGLS GRANOIF11.4 11.7 IS IN, TOPPED

$$$$,TOPPE 2

158 CS C5 LSTY LIQUIDAMBAR S 4.8 5.0 2

152 C5 C6 LSTY LIQUIDAFBAR S E.3 8.6 2

ISE CS C6 PVIR PINUS VIRGIh! 8.0 8.5 2

16A C5 C4 FGRA FAGUS GRANDIF 8.9 9.3 2

16A C6 C6 LTUL LIRIODENORCh 18.8 19.3 EDEF 2

16A C6 C6 QALB CUERCUS ALBA 13.9 14.6 2

ISE CS C6 COVA CARYA TCMENTC 7.5 7.7

$$,0EF 2

168 C6 C6 CCVA CARYA TCMENTC10.7 10.7

$$,0EF 2

168 C5 C5 FGRA FAGUS GRAN0!F 6.2 6.5 E DEF 2

168 C5 C5 FGRA FAGUS GRANDIF 8.1 8.8 X

l l

l

__4..

. -.. _.. ~. -

TABLE C.

RAW CATA FOR 1976 AhD 1979 CANOPY TREES

(

IN STAND NUFBER 3

C2H RECORDS ST C T LEVEL CCDE SPECIES NAME 1976 1979 1979 PERFORMANCE 1976 PERF.

3 C9A C5 C5 CCVA CARYA TCMENTC 3.9 4.0 NEW

$555 3

09A C5 C5 COVA CARYA TCMENTC 4.8 4.9 3

09A C6 C6 QALB CLERCUS ALBA 9.0 9.5 3

09A C5 C5 QFAL CLERCUS FALCA 5.0 5.2 3

C9A C6 C6 QFAL QUERCUS FALCA11.8 12.2 3

CSB C5 C5 QALB CLERCLS ALBA 3.9 4.0 NEW

$555 3

C98 C6 C6 QALB CLERCUS ALBA 5.4 5.5 3

C98 C6 C6 QALB QLERCUS ALBA 6.0 6.1 2 0F 2 PS 2 0F 2 MS 3

CSB C6 C6 QALB QUERCUS ALBA B.8 9.2 3

C9R 06 C6 QALB CLERCUS ALBA 9.6 10.0 10F 2 MS 1 0F 2 MS 3

092 C6 C6 QALB CLERCUS ALBA 11.1 11.0 3

C9B C6 C6 QFAL CLERCUS FALCA10.0 10.2 3

10A C6 C6 PTAE PINUS TAECA IC.9 10.8 X

55 3

10A 05 05 PVIR PINUS VIRGIhI 4.9 4.8 X

3 LCA C6 C6 PVIR PINLS VIRGIhl 5.4 5.4 X

3 1CA C5 C5 QALB QLERCUS ALBA 3.9 4.0 NEW 5555 3

1CA C6 C4 QFAL QUERCUS FALCA 5.6 5.9 3

10A C6 C6 QFAL CLERCLS FALCA 5.9 6.1

{O 3

1CA C6 C6 QFAL QUERCUS FALCA 7.9 8.3 3

10B C6 C6 QALB CUERCUS ALBA E.7 8.8 1 CF 2 MS 3

1CB C6 C6 QALB CLERCUS ALB A 9.1 9.3 1 OF 2 MS 3

108 06 C6 QALB CLERCUS ALBA 13.3 13.9 1 0F 2 MS 3

10B C6 C4 QFAL CLERCUS FALCA B.O 8.3 3

11A CS C5 PTAE PINUS TAEDA 4.4 4.4 55,0CING P 3

11A C6 C5 QALB CUERCUS ALBA 5.0 5.2 2 0F 3 MS 1 0F 3 MS 3

11A C6 C5 QALB QUERCUS ALBA 5.5 5.7 1 0F 3 MS,390 0 2 0F 3 MS 3

11A C6 C6 QALB CLERCUS ALBA 5.6 5.8 3

11A C6 C6 QALB CUERCUS ALBA 7.C 7.1 3

11A C6 C6 QALB QLERCUS ALBA 7.9 82 3

11A C6 C6 QALB CLERCUS ALBA 7.9 82 3

11A C4 C4 QALB CLERCUS ALBA 10.5 10.7 3

11A C6 C4 QFAL CLERCUS FALCA 7.8 8.2 3

11B C5 C!

CALB CUERCUS ALBA 3.9 4.0 5555 3

112 C6 C6 QALB CLERCUS ALBA 6.4 6.6 1 0F 2 MS 1 0F 2 MS 3

118 C6 C6 QALB CLERCLS ALBA 6.B 7.4 3

118 C6 C6 QALB CUERCUS ALBA E.1 8.5 3

110 C6 C6 QALB CLERCUS ALBA 10.8 11.1 3

118 C6 C6 QFAL CLERCUS FALCA 7.1 7.0 3

11B C6 C6 QVEL CLERCUS VELLT 7.2 7.5 3

12A C6 C6 QFAL CLERCLS FALCA 6.8 6.9 3

128 CS C5 LSTY.LIQUICAFBAR S 3.9 4.2 5555 3

128 C5 C5 QALB CUERCLS ALBA 3.9 4.0 1 GF 2 PS,2 AD 0,NEW $555 3

128 C6 C6 QALB CLERCUS ALBA 6.8 7.0 3

12B C6 C6 QALB CLERCUS ALBA E.7 9.2 1 0F 3 PS,(79 CROP C3 0F 3 MS

/"'

3 122 Ce C6 QALB QLERCUS ALBA B.8 9.2 3 OF 3 MS 2 OF 3 MS l)

3 128 C6 C6 QAL8 CLERCUS ALBA 8.9 9.3 2 CF 3 MS 1 OF 3 MS 3

12B C6 C6 QALB CLERCLS ALBA IC.2 10.2 2 0F 2 FS 1 OF 2 MS 3

12B C6 C6 QALB CUERCUS ALBA 12.0 12.0 1 0F 2 MS 2 0F 2 MS 3

13A C5 C5 QALB CLERCUS ALBA 4.4 4.4 3

13A C6 C6 CALB CLERCUS ALBA 4.7 5.0 2 CF 3 FS 2 CF 3 MS

TABLE C.

RAW OATA FCR 1976 AAC 1979 CANOPY TREES IN STANC NUMBER 3

CBH RECCROS ST CT LEVEL CODE SPEC IES NAM E 1976 1979 1979 PERFOPMANCE 1976 PERF.

3 13A C6 C6 QALB CUERCUS ALBA 5.1 5.2 L OF 3 MS 1 0F 3 V3 3

13A C6 C6 QALB CLERCUS ALBA 5.8 6.0 1 0F 2 HS 2 0F 2 Md 3

13A C6 C6 QALB CLERCUS ALBA 60 6.3 2 0F 2 MS 10F 2 MS 3

13A C6 C6 QALB CLERCUS ALBA 8.8 9.2 3

13A C6 C6 QFAL CUERCUS FALCALC.6 10.7 3

138 C5 C5 CALB CLERCUS ALBA 4.4 4.4 2 0F 2 MS 2 0F 2 MS 3

13B C4 C6 QALB CLERCUS ALBA 4.7 S.1 10F 3 MS 2 0F 3 MS 3

138 C6 C6 QALB CUERCUS ALBA 5.2 5.2 2 0F 3 PS 1 0F 3 MS 3

138 CS C5 CALB CLERCUS ALBA 5.3 5.4 1 0F 2 MS 1 0F 2 MS 3

112 C6 C6 QALB CLERCUS ALBA 5.5 5.6 3

13B C6 C6 QALB CLERCUS ALBA E.7 9.2 3

132 C4 C6 CALB CUERCUS ALBA IC.9 11.2 3

132 C6 C5 QCOC QUERCUS CCCCI 6.4 7.0 CF 3

130 C6 C6 QFAL QLERCUS FALCA 7.C 10.1 3

13B C6 C6 QFAL QLERCUS FALCA10.7 10.9 3

138 C6 C4 QSTE QUERCUS STELL 6.0 6.3 3

14A C6 C6 PTAE PINUS TAECA 13.4 13.2 3

14A C6 C5 QALB QUERCUS ALBA 4.2 4.2 2 0F 2 MS 1 OF 2 MS 3

14A C5 C6 QALB CUERCUS ALBA 5.5 5.7 POSITIVE NO T QSTE

$5

{O 3

14A C6 C4 QALB CLERCUS ALBA 6.1 6.3 3

14A C6 C6 QALB CLERCb5 ALBA 9.4 9.7 1 OF 2 MS 2 0F 2 MS 3

140 C6 C6 PVIR PINUS VIRGINI 7.1 7.1 2NEED 3

148 C6 C6 PVIR PINUS VIRGINI 7.3 7.4 3

142 C6 C6 QFAL QUERCUS FALCA 5.7 5.9 3

140 C6 C6 QFAL QUERCUS FALCA 8.3 9.0 3

142 C6 C6 QFAL CLERCUS FALCA13.2 13.9 3

15A C6 C6 CALB CLERCUS ALBA 5.6 5.7 3

15A C6 06 QALB CUERCUS ALB A 7.3 7.3 2 OF 2 MS 10F 2 MS 3

ISA C6 C6 QALB CUERCUS AL9A 7.5 8.0 3

15A C6 C6 CALB CLERCUS ALBA E.6 9.0 10F 2 MS 2 CF 2 MS 3

15A C6 C6 QALB CLERCUS ALBA 16.5 17.1 0

3 15A C6 C5 QFAL CUERCUS FALCA 5.0 5.0 00, FEW LVS BN ON IT 3

150 CS C5 QALB CUERCUS ALBA 3.9 4.0 1 OF 2 MS,TCPP ED

$$55 3

152 C6 C5 QALB CUERCUS ALBA 4.4 4.5 2 0F 2 MS 10F 2 MS 3

158 C6 C5 QALB CUERCUS ALBA 6.8 6.9 10F 3 MS 3

158 C6 06 QALS QUERCUS ALBA 7.1 7.5 2 OF 2 PS 2 CF 2 MS 3

ISB C6 C6 QALB CUERCUS ALBA 7.3 7.8 3

15e C6 C6 QALB CLERCUS ALBA 76 8.1 3

158 C4 C6 QALB CLERCUS ALBA 8.4 0.9 3

158 C6 C6 QALB CLERCUS ALBA E.7 9.1 1 0F 2 MS 1 0F 2 MS 3

ISB C6 C6 CALB QUERCUS ALBA E.8 9.2 10F 2 MS 2 CF 2 MS 3

16A C6 C6 QALB QUERCUS ALBA 4.5 4.6 10F 2 MS 1 0F 2 MS 3

16A C5 C6 QALE CUERCUS ALBA 5.0 5.1 3

16A C6 C6 CALB CLERCUS ALBA 5.5 5.6 10F 2 MS 1 0F 2 PS 3

16A C6 C4 QALB CUERCUS ALBA 7.0 7.2 2 0F 2 PS 2 0F 2 MS

/~'

3 16A C6 C6 CALB CLERCUS ALBA 9.1 9.4 I-k 3

16A C6 C6 CVEL CLERCUS VELLT 9.1 9.5 C

3 16A C6 C6 QVEL QUERCUS VELLTIC.9 11.1 0

3 16E C4 C6 QALB CLERCUS ALB A 4.5 4.5 2 CF 2 MS 2 OF 2 MS 3

168 C6 C5 CALB CUERCUS ALBA 5.4 5.5 10F 2 MS 1 MS OF 2 3

162 C6 C6 QALB CLERCUS ALBA 5.9 6.3 l

t

= _. --,-.

h TABLE C.

RAW OATA FCP 1976 AAC 1979 CANCPY TREES IN STANC NUMBER 3

C2H RECCROS ST CT LEVEL CODE SPECIES NAM E 1976 1979 1979 PERFORMANCE 1976 PERF.

3 168 C6 C6 QALB CLERCUS ALBA 6.0 6.0 3

168 C6 C6 CALS CLERCUS ALBA 7.C 7.0 1 0F 2 PS 1 OF 2 MS 3

168 06 C6 QALS QLERCUS ALBA S.1 9.3 3

16B C6 C6 QFAL QUERCUS FALCA 7.6 7.9 3

16e C6 C6 CSHU CLERCUS SFUFA 1C.9 11.2 5555,FM 76 3

160 C6 C6 QVEL CLERCUS VELLT E.9 9.5 X

i i

I

'O l

t s

.. ~... _ _.. -. _

()

TABLE D.

RAW DATA FCR 1976 AND 1979 CANCPY TREES IN STANC NUMBER 4

C2H RECCROS ST CT LEVEL CCOE SPELIES NAME 1976 1979 1979 PERFORMANCE 1976 PERF.

4 CXA C6 C6 LTUL LIRICOEh0RCA 8.5 9.1 OXA C6 C6 QSHU QUERCLS SFUMA 6.6 7.4 4

CNB CS C5 COVA CARYA TCMENTC 5.0 5.1 0

4 OXB C4 C4 CPAL CARYA PALLICA 3.9 4.4 C NOTE 1 CCVA 4.0 OCS$$$

4 CXB C6 C6 CPAL CARYA PALLICA 6.4 6.7 C

l 4

CX8 05 C5 QALB CUERCUS ALBA 6.8 6.9 ARCHED CVE 4

CxB C6 C6 QALB CUERCUS ALBA S.3 9.6 4

OXB C6 C6 CALB QLERCUS ALBA L3.8 14.0 l

4 CXB C6 C6 QCCC CUERCUS CCCCI 8.2 8.8 4

CYA C6 C6 CPAL CARYA PALLICA 8.7 8.9 4

CYA C6 C5 QALB CUERCUS ALBA 4.0 4.0 2 OF 2 MS,NEW,STUMPH2 OF 2 STU 4

CYA C5 C5 QALB CUERCUS ALBA 4.1 4.1 i

4 CYA C6 C6 QALB QUERCUS ALBA 6.2 6.4 1 0F 2 WS 1 OF 2 STU 4

CYA C6 06 QALB QUERCUS ALBA 7.5 8.0 4

CYA C6 C6 QALB CLERCUS ALBA 7.6 8.1 POSS OUTSICE 4

CYA C6 C6 QSTE CLERCUS STELL 9.6 9.9 4

CYB C5 C!

CPAL CARYA PALLICA 4.8 5.1 4

OYB C6 C6 CPAL CARYA PALLICA 7.3 7.4 4

OYB C5 C6 LTUL LIRICDEhDRCh 4.4 4.6 X

4 CYB C5 C5 QALB CUERCLS ALBA 3.9 4.0 AEW 4

OYB 05 C6 CALB QUERCUS ALBA 4.1 4.3 1 0F 2 MS 4

CYB C5 C6 QALB CLERCUS AleA 4.3 4.5 4

CYB C5 C6 CALB QUERCUS ALBA 4.8 4.9 i

4 CYB C6 C6 QALB CUERCUS ALBA 5.2 5.5 (CROPPE0 79 QALB 6.4 4

C44 C4 C4 CFLC CCRNLS FLCRIC 3.9 4.7 4

04A C5 C4 COVA CARYA TCMENTC 4.0 6.1 4

C4A C6 C6 CPAL CARYA PALLICAll.4 11.4 4

04A C5 C6 QALB CLERCUS ALBA 6.7 6.6 4

C4A C4 C6 QALB CLERCUS ALBA 6.8 6.9 4

C4A CC C6 QALB QUERCUS ALBA L2. 5 13.1 4

C4A C6 C6 QALB CUERCUS ALBA 12.9 13.3 4

CAA C6 C6 QALB CLERCLS ALBA 13.0 13.4 4

C48 C6 C6 LSTY LIQUIDAMBAR S 8.6 8.8 4

048 C6 C4 QALB CUERCUS ALBA 4.4 4.2 TOP O BACK (79 CHG FM f

4 048 C5 C5 QALB CUERCUS ALBA 4.4 4.4 4

C48 CS C6 QALB CLERCUS ALBA 5.6 5.7 4

C40 C6 C6 QALB CLERCUS ALBA E.C 8.5 4

CSA CS C5 LTUL LIRICOEh0RCA 4.4 4.6 4

CSA C6 C5 QALB,CLERCUS ALBA 6.4 6.6 4

OSA C6 C6 CALB CLERCUS ALBA 13.1 13.6 4

05B C6 C6 CSHA CARYA OVATA 10.3 10.3 BARK SHAGGY,FIRST OB 4

C50 CS C5 CALB CLERCUS ALBA 54 5.5 4

CSS C6 C6 CALB CLERCUS ALBA 14.3 14.5 4

C6A C5 C5 ARUB ACER RUEFUM 3.9 4.2 1 OF 2 MS,AEW N

4 C6B C6 C6 CGLA CARYA GLABRA 11.4 11.5 4

C6B C5 C5 CCVA C ARY A TCMENTO

.9 4.0 NEW s

4 C6B C5 CS CCVA CARYA TCMENTC 4.4 4.4 i

4 068 C4 C4 JVIR JLNI PERLS V IR 3.9 4.8 NEW i

4 06B C6 C6 LTUL LIR!COEADRCh 6.8 7.1 4

C6B CS C!

44LB CLERCUS ALBA 4.7 5.1

..... -.. ~

- -... ~

(( )

TSBLE D.

RAW OATA FCR 1976 AAC 1979 C ANCPY TREES IN STAND NUMBER 4

C8H RECCROS ST CT LEVEL CCOE SPECIES NAME 1976 1979 1979 PERFORMANCE 1976 PERF.

4 C68 C5 C6 CALB CLERCUS AleA 5.9 6.1 4

11A C6 C6 COVA CARYA TCMENTC 9.6 10.0 4

11A C4 C6 QALB CLERCLS ALBA 14.1 14.5 ACT IN PLOT 4

11A C6 C6 CRUB QUERCUS RUBRA 17.8 18.7 GOOD 10 4

112 CS C5 CGLA CARYA GLAERA 3.9 4.1 NEh,IN 11-B-2 4

118 C5 C5 CGLA C ARY A GL ABR A 5.3 5.4 ARCHED OVE 4

lie C6 C4 CGLA C ARY A GL AER A 7.2 7.3 10F 2 MS 1 0F 2 MS 4

118 C6 C6 CGLA CARYA GLABRA 7.3 7.6 2 0F 2 MS 2 0F 2 MS 4

lie C6 CE CGLA CARYA GLA2RA S.5 9.8 4

118 C5 C5 LTUL LIRIODEh0R0h 3.9 4.5 NEk?

4 11B C5 C5 CALE GLERCUS ALBA 4.9 4.9 4

11B C6 Cd CALB CLERCUS ALBA 8.6 8.7 4

12A C5 05 JVIR JLNIPERLS VIR 4.6 4.8 C

4 12A CS C5 LTUL LIRICOEADR0h 3.9 4.3 X,

NEW

$$$5 4

12A C6 C6 PVIR PINUS VIRGIh! 7.8 7.5 CD 4

12A C6 C6 PVIR PINUS VIRGIh! 9.3 9.0 X

4 12A CS CS CALB CLERCUS ALBA 3.9 4.3 NEW 4

12A C5 C5 QALB CUERCUS ALBA 4.2 4.3 1 0F 2 MS 4

12A C6 C6 QALB CLERCUS ALBA 12.2 12.2 rO 4

12A C5 C6 CCCC CLERCUS CCCCI E.3 8.4

$$, LEANING 4

12A C6 C6 QCOC QLERCUS CCCCI S.7 10.5 k-4 122 C5 C6 LTUL LIRICOEh0RCh 4.2 4.3 4

12B C6 C6 QALB CLERCUS ALBA 12.4 12.4 FORKED ABC 4

128 C6 C6 QCOC QUERCUS CCCCI15.5 16.1 55 4

12P C5 C5 QSHU CLERCUS SFUMA 4.7 5.2 4

13A C4 C4 CFLC CCRNUS FLCR IO 4.0 3.9 (NOT MEAS,ACDEC) 1 4

13A C6 C6 CGVA CARYA TCMENTO 9.8 10.3 0

4 13A C6 C6 CGVA CARYA TCHENTC10.5 10.7 4

13A C5 C!

LTUL LIRICOEhDRCA 5.2 5.3 4

13A C6 05 QALB CUERCUS ALBA 7.2 7.2 1 0F 3 MS, REST 00 1 0F 3 MS 4

13A C6 05 QALB CLERCUS ALBA 7.3 7.4 00 4

13A C6 C6 QSHU CLERCUS SFUMA14.2 14.8 ss 4

132 C6 C6 LTUL LIRICDEh0ROA 13.1 13.4 4

13e CS C5 QALB CUERCLS ALBA 6.9 7.0 4

138 C6 06 CSHU QUERCUS SHUMA12.8 13.2 C

I l

l l

l

.I l

(')

TABLE E.

RAW DATA FCR 1976 AAC 1979 CANOPY TREES IN STANC NLMBER 5

CEF RECCROS ST CT LEVEL CCOE SPECIES NAM E 1976 1979 1979 PERFORMANCE 1976 PERF.

5 03A C6 C6 ARUB ACER RUERUM 7.3 8.0 5

C3A C6 C6 COVA CARYA TCHENTC 6.3 7.6 NEW 5

03A C6 C6 QALB QLERCUS ALBA 7.5 9.4 5

C3A C6 C6 QFAL CUERCUS FALCA40.2 40.9

$$$$,FM PL 5

C32 C6 C6 ARUP ACER RUBRUM 7.2 8.0 5

C3B CS C6 COVA CARYA TCMENTC 7.5 8.1 5

032 C5 C6 COVA CARYA TCMENTC 7.9 8.2 5

03B C6 C6 COVA CAR'YA TCMENTC 8.1 8.2 5

C36 CS C5 PVIR PINLS VIRGIh! 7.B 7.5 CO 5

C3P Ge 06 CALB QUERCUS AL8A 9.5 9.5 5

032 C6 C6 QFAL CLERCUS FALCA4C.2 40.9 VAR. PAG 00AEFOLIA 2 MS ABOVE 5

C4A CS C5 LSTY LIQUIDAPBAR S 3.9 4.1 NEW 5

C4A C5 C5 LSTY LIQUIDAMBAR S 6.5 6.5 5

C4A C5 C5 LTUL LIRICCEh0RCh 4.1 4.1 C

5 C4A 06 06 PVIR PINUS VIRGI AI11.5 11.5 0,X 5

C4A C5 C6 QALB CUERCUS ALBA 6.7 6.7 0,05/06 5

C4A C6 C6 QALB CLERCUS ALBA 9.3 10.0 5

C4A C6 C6 QALB QUERCUS ALBA 11.1 11.5 5

C4A C6 C6 QFAL CLERCUS FALCA10.1 10.7 rOs 5

04A C6 C6 QFAL CLERCLS FALCA13.8 14.4

\\-

5 C48 C6 C6 COVA CARYA TCMENTC 7.1 7.4 5

C48 CS C5 LSTY LIQUIDANBAR S 4.0 4.0 5

C48 C6 C6 LTUL LIRICOEh0RGA 8.4 8.6 5

C4B C6 06 PVIR PINUS VIRGIh! 10.5 10.5 WITNESS TREE CCPNER PCS 5

C48 C6 C6 PVIR PINLS VIRGINI12.2 12.0 5

048 C6 C6 CALB QUERCUS ALBA 7.7 7.B 5

C4R C6 C6 QALB CUERCUS ALBA 9.4 9.5 5

C4e C6 C6 QSHL CLERCUS SHUMA13.7 14.6 5

CSA C5 C5 LSTY LICUIDAMBAR S 4.2 4.3 5

CSA CS C6 LSTY LIQUIDAFBAR S 5.5 5.8 05/C6 5

CSA C5 C6 LSTY LIQUIDAPSAR S 6.4 7.5 NEW7

$$$$,FM PL 5

CSA C6 C6 LTUL LIRICDEh0PON 6.4 6.7 1 0F 2 MS 5

CSA C6 C6 QALB CUERCUS ALBA 6.3 6.5 x

5 05A C6 C6 CALB CLERCUS ALBA 7.9 8.2 5

C58 C5 C5 ARUB ACER RUBRUM 4.1 4.5 5

05B C6 C5 COVA CARYA TCMENTC 6.2 6.5 5

058 C6 C6 CCVA CARYA TCMENTC 9.2 9.8 (DFOP MEAS COVA 9.7 5

CS2 C5 C5 LSTY LIQUIDAPBAR S 3.9 4.1 l

5 C52 C5 C6 LSTY LIQUIDAMBAR S 6.4 6.6 05/06 l

5 058 C6 C6 LSTY LLCUIDAMBAR 512.2 12.9 5

C5B C6 06 CALB CUERCUS ALBA 5.5 6.5 5

058 Ce C6 QALB CLERCUS ALEA 6.3 6.5 5

C58 C6 C6 QALB CLERCUS AL8A 11.1 11.5 NEW7,QRUB 6.0 IN PLO 5

CSE C6 C6 QFAL CUERCUS FALCA16.1 16.9 CN ECGE 5

C6A C5 C5 CFLC CORNUS FLCRIC 6.3 6.4 REPL

$$,1 CF 3

\\

5 C6A CS C5 LSTY

8. I C U I D A M B AR S 4.1 4.5 5

CeA C5 C5 LSTY LIQUIDAFBAR S 4.5 5.3 5

06A C6 C6 LSTY LIQUIDAFOAR S 5.5 5.5 5

06A C6 C6 LSTY LIQUIDAMBAR S 5.9 5.7 10F 2 MS 10F 2 MS 5

C6A C6 C6 LSTY LIQUIDAP8AR S 7.2 7.6 2 0F 2 PS 2 0F 2 PS

()

TABLE E.

RAW OATA FCR 1976 AhC 19 79 C ANCPY TREES IN STANC NUMBER 5

C2h RECCROS ST C T LEVEL CCDE SPECIES NAME 1976 1979 1979 PERFORMANCE 1976 PERF.

5 C6A C6 C6 LTUL LIRICDE60RCA L3.6 14.4 i

5 C6A C6 C6 PVIR PINUS VIRGIh!13.E 12.5 X,IN #2PLCT 5

C6A C5 CS CALB CLERCUS ALBA 3.9 4.0 NEW

$555 5

06A C6 C6 QFAL QUERCUS FALCAll.5 11.9 5

06B C5 C5 CFLC CCRNLS FLCRIC 6.3 6.1 1 CF 2 PS 51,1 CF 3 5

C6B C6 C6 CCVA CARYA TCMENTC 8.1 9.5 5

C6B C6 C6 LSTY LIQUIDAP8AR S 7.7 7.9

('79 DROP 5

06B C6 C6 QALB CLERCUS ALBA 11.5 12.2 5

C6B C6 06 QFAL CUERCUS FALCA 6.4 6.5 5

11A C6 C6 CCVA CARYA TCHENTC 5.1 5.2 5

llA C5 C6 DVIP 010SPYRCS VIR 5.4 5.7 00?,CF 5

llA C6 C6 FRAX FF AX INLS CF.

7.6 8.5 ssss,FM 76 5

llA C5 C5 NSYL NYSSA SYLVATI 4.3 4.3 NEW7

$1 5

llA C5 C6 QALB CLERCUS ALBA 5.3 5.6 5

11A C6 C6 CRUB CLERCUS RLBRALC.7 11.3 5

llA C6 C6 CSHU CLERCUS SFUMA 9.2 9.8 5

118 C5 C6 CCAR CARPINUS CARO 5.6 5.6 (A00E0

'06' INFO) 15,1 CF 3 5

118 CS C5 COVA CARYA TCMENTC 4.7 4.8 5

llB C5 CS CCVA CARYA TCMENTC 4.8 5.1 X,0 (O' '

5 118 C6 06 LSTY LIQUIDAPBAR S 8.8 8.9 5

118 C4 C6 QFAL CLERCUS F ALC A 9.1 9.8 5

12A C6 C5 JVIR JLNIPERLS VIR 4.0 4.0 C,X CYING 5

12A C6 C5 NSYL NYSSA SYLVATI 4.9 4.9 TEETH 5

12A C6 C6 PTAE PINUS TAECA 6.9 6.8 X

$5 5

12A C6 C6 PVIR PINUS VIRGINI 7.3 7.3 X,0 5

12A C6 C6 PVIR PINLS VIRGIhll2.6 12.8 5

12A C6 C5 QALB QUERCUS ALBA 6.3 4.2 0,X 5

12A C6 C6 QALB CUERCUS ALBA 9.5 9.8 10.0 QALBA CUT 7 5

128 C6 C6 COVA CARYA TCMENTC 7.0 7.0 5

12B C6 C6 FRAX FRAXINLS CF.

8.3 8.3 5

128 C6 C6 LTUL LIRICDEh0RCA 6.6 6.7 5

128 C6 C6 QCCC CLERCUS CCCCIl0.4 10.6 55 5

128 C6 C6 QFAL QLERCUS FALCAll.0 11.2 5

12e C6 C6 QFAL CLERCUS FALCA15.7 16.2 5

13A C6 C6 LTUL LIRICDEh0RCA 4.6 5.2

('79 CNG 0 5

13A C5 C4 QALB CLERCUS ALBA 4.4 4.5 TOP O 5

13A C6 C6 QALB CLERCUS ALBA 6.8 6.9 5

13A C6 C6 CFAL CLERCUS FALCA 7.5 7.8 5

13A C6 C6 QFAL QLERCUS FALCA13.0 13.3 5

13A C6 C6 QSHU CLERCUS ShuPA16.C 16.2 55 5

138 C6 C6 COVA CARYA TCMENTC 8.6 8.8 20EF 5

L32 C6 C5 NSYL NYSSA SYLVATI 4.5 4.6 5

138 C6 C4 QALB CLERCUS ALBA 9.4 9.7 5

13E C6 C4 CFAL CLERCUS FALCA 69 9.2 5

14A C6 C6 CCVA CARYA TCMENTC E.6 8.8 p'

5 14A CS C6 JVIR JUNIPERLS VIR 4.6 4.5 0,NC NEEOLES,05/06 N

5 14A C6 C6 LSTY LIQUIDAF8AR 511.1 11.6 5

14A C6 C6 LTUL LIRICDEh0RC A 13.6 13.9 5

14A C6 C6 CALB CUERCLS ALBA 9.3 9.7 5

L4A C6 C6 QSHU CLERCUS SEUMA13.6 14.0 is 5

142 C6 C6 ARUE ACER RUERUM 4.9 4.9 2 CF 2 MS 1 0F 2 MS

({])

TABLE E.

RAW DATA FCR 1976 AAC 1979 CANCPY TREES IN STAND NUMBER 5

CEH RECCRDS ST C T LEVEL CODE SPEC IES NAME 1976 1979 1979 PERFORMANCE 1976 PERF.

5 14B C6 Cd ARUB ACER RUERLM 8.8 9.1 1 CF 2 PS 2 0F 2 MS 5

148 C4 C6 LSTY LIQUIDAPBAR S11 2 11.7 1 OF 2 PS 5

148 C6 C6 LTUL LIRICDEhDP0h 5.6 6.3 5

14B C6 C6 PVIR PINUS VIRGIh! 7.1 7.1 5

140 C5 C5 CALB CUERCUS ALBA 4.1 4.1 X

5 148 C6 06 QALB QLERCUS ALBA 7.3 7.8 5

140 C6 C6 QFAL CLERCLS FALCA 7.6 8.4 e

f to l

i

0

TABLE F.

RAv CATA FCR 1976 ANC 1979 S A PL ING, SHRUS, Abt NCN-WCODY S P EC I ES IN STAND NUMRER 1

[

LE%EL D ENS ITY CCVER 1979 PERFORM ANCE 1976 PE RFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 1

13A 1 HI GALI 4

I FR,P,X 1

13A 1 GL GRAS 1

I hAR LF 1

13A 1 h1 PACR 2

2 ss 1

13A L F2 PACR 5

2 C

1 13A L Cl ROSA 1

1 Y,P 1

13A 2 H1 C1 CMAC 7

6 1.

1 EALF FR,0 1

13A 2 C4 C4 COVA 1

1 6

5 P,1.2" ss 1

13A 2 C2 FRAX 1

2 CEF 1

13A 2 C4 FRAX 1

4 SU BASE,X,0EF 1

13A 2 H1 GALE 1

1 BALVS 1

13A 2 H1 GALI 1

1 P

1 13A 2 Gl G1 GRAS 8

1 1

1 CLUMP,NAR LF 1

13A 2 C4 C4 LTUL 1

1 3

C CC OA TA UNK 1

13A 2 G1 PANI 1

1 G,CF 1

13A 2 H1 PBIF 1

1 00 1

13A 2 C1 SRCT 1

1 DEF 1

13A 2 02 SRCT 1

1 DEF 1

13A 2 Cl UNKS 1

1 1

13A 2 02 UNKS 1

1 1

13A 2 C3 UNKS 1

4 P, SHARP TOOTH, RUGOSE

/'

1 13A 2 C1 VROT 2

1 1

13A 2 01 01 VVAC 6

2 1

1 CEF,0 ss 1

138 1 01 CAME 1

1

~0EF 1

13B 1 C2 CAME 3

2 P

1 138 1 03 CAME 1

4 SEV HEAR STEMS 00 1

132 1 04 CAME 1

4 CEF, HAIRY TWG,LG BN 2U0 1

138 1 H1 H1 CCAN 2

1 1

1 BA LVS,CF MITTEN BALVS 1

13B 1 C1 CFLO 1

1 S

1 138 1 C1 FGRA 1

1 S

1 130 L H1 El GALI 2

3 1

1 FR,0 1

132 1 H1 GAL 6 5

1 I

138 1 G1 G1 GRAS 1

1 1

1 C,NARO LF

$5 1

130 1 F2 LICO 1

1 FR,00,WILO LICORICE 1

138 1 L1 MCSS 1

1 CN CD WOOD 1

138 1 GL PANI 2

1 CF,0 1

138 2 01 ARUB l

1 S

1 138 2 H1 BVIR 1

1 Y B ALF, BROAD CISSECT ICNS 1

138 2 H1 BVIR 1

1 CF,Y/G, FINE CISSECTICNS 1

138 2 C1 CCAR 1

1

$s,S 1

138 2 C4 CCAR 1

3 CEF 1

138 2 C4 C4 CFLG 4

1-4 4

PS,0EF MOST DEF 1

13B 2 H1 CMAC 2

1 1

138 2 C3 FGRA 1

3 X

1 138 2 G1 G1 GRAS 3

2 1

1 CLUMP,NAR LF ss 1

132 2 H1 HUNK 1

l S

l 138 2 H1 HUhK 1

1 S

Cs 1

130 2 C1 C1 JVIR 1

1 1

1 Y

S 1

138 2 C1 01 NSYL 1

1 1

1 P,5U ss,S 1

132 2 C1 01 NSYL 1

1 1

1 F,5U

$$,5 1

138 2 C4 C4 NSYL 1

2 4

5 ECEF

$5,0EF

./

.I

TABLE F.

RAb CATA FOR 1976 AND 1979 S APLING, SHRUB, AhC NCh-h000Y SPECIES Ih STAND NUMBER 1

\\_

LE)EL D ENS ITY CCVER 1979 PERFCRMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 1

138 2 01 CALB 1

1 S

1 13B 2 01 RNUD 2

1 C

1 138 2 C1 RUBU 1

1 Y

l 138 2 01 01 SGLA i

1 1

1 C

$$,5 1

138 2 C4 VITI 1

3

$$,0EF 1

138 2 Cl 01 VPRU 2

2 1

1 MS,0 S

1 138 2 C1 VRCT 1

1 X

1 138 2 01 Cl VVAC 1

1 1

1 CEF

$$,3CEF 1

L4A 1 C3 CAME 1

4 I

14A 1 C3 CCAR 1

2 X,0EF 1

14A 1 C4 CCAR 1

4 C,0EF 1

14A L C1 CGLA 1

1 S

1 14A 1 C3 C3 FGRA i

1 4

4 C,YEL 1

14A L C1 01 NSYL 1

1 1

1 Y,30EF

$$,Y l

14A L C1 Cl QALB 5

1 1

1 SU FM'(20 03 S

1 14A 1 Cl RNUO 1

1 SCEF 1

14A 1 C1 C1 SGLA 2_

4 1

1 C

$$,5 1

141. 1 C1 Cl VVAC 1

1 1

1 CEF,MS,0

$$,3CEF t

14A 2 H1 AHYE 4

1

$$,BALF 1

14A 2 CS CGLA 1

5 33IN OBH,MOST DEF 1.

14A 2 C1 C1 COVA 1

1 1

1 S

$$,5 OI 1

14A 2 C4 FGRA 2

6 14A 2 C5 FGRA 1

5 2.3" 1

14A 2 F1 GALI 1

1 CHLOROTIC 1

14A 2 C2 JVIR 1

1 Y

1 14A 2 C1 PSER 1

1 G

1 14A 2 C1 CALB 3

1 S

1 14A 2 C1 ROSA 1

1 S

1 14A 2 C4 RRAD 1

2 CEF,CN CARYA 4.1" 1

14A 2 Cl VVAC 2

1 1

148 1 D2 AHYE 1

1

$$,30EF 1

140 L F1 BVIR 1

1 CF,G 1

148 1 C2 C2 CAME 1

1 2

2 CEF DEF 1

146 1 03 CAME 1

3 CEF 1

148 1 C4 CCAR 1

5 GC00 10,0EF,3 STEMS,1 OL 1

148 1 hl DNUD 1

1 S

1 140 1 03 FRAX l

2 55,0EF 1

140 1 H1 GALI 1

1

$$,5 1

142 L G1 GRAS 4

1 C,NARO LF 1

14B 1 L1 MUSH 1

1 PS,8N CAP 1

148 1 03 CSTR 5

4 MSOF SAME AS C4,CE 1

140 1 04 CSTR 3

4 OEF 1

14B 1 Hi Hi PBIF 1

2 1

1 Y

Y 1

148 1 Cl PSER 3

1 SU,P 1

148 1 C1 Cl RNUD 12 9

2 2

F,0

$$,0K 1

148 1 01 SRCT 1

1 Y,5 1

148 1 HI UNKH 2

1 Y, ALT LF,WINGE0 PET, TOC O1 1

148 1 Cl VROT 1

1 Y,30EF 148 1 Cl 01 VVAC 4

3 1

1 Y,MS 1

140 2 03 C3 CCAR 1

3 4

4 CEF

$$,2CEF i

142 2 C4 C4 CCAR 3

3 6

4 CEF

$$,0EF

.. ~....

TABLE F.

RAv CATA FOR 17/6 AND 1979 SAPLING, SHPUB, AAC NCh *nC00Y SPECIES IN STAND NUMBER 1

I LE\\EL D ENS ITY CCVER 1979 PERFCRMANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79 L

148 2 01 CFLC 1

1 I

14B 2 C1 COVA 1

1 S

i 1

148 2 01 C1 EAME 2

1 1

1 F

1 148 2 04 FRAX l

5

$0.DEF,K OF 1 00 S 1

148 2 HL GALI 1

1 C,Y L

148 2 C1 C1 RNLD 2

1 1

1 P

$$,Y l

148 2 C4 04 SRCT 3

1 3

1 P

DEF, LIANA, COVER ES 1

148 2 C3 VAES 1

1 P

1 148 2 C3 VBRN 2

4 OEF 1

15A L C4 CGLA 1

3 OEF 1

15A 1 C3 C3 FGRA 3

7 5

6 30EF,<1" X

1 15A 1 C4 FGRA 1

6 X

1 15A L CS FGRA 1

6 2.6" 1

15A 1 Ll MUSH 1

1 GREY l

15A 1 04 CCCC 1

4

$5,X 1

15A 1 05 CCCC 1

4 2.9",C,30EF 1

15A 1 C1 RUBU L

1 Y,X l

15A L C4 UAME 1

4 I

15A L C5 UAME 1

5 2.5",CF 1

15A L 01 VVAC 1

1

$$,X 1

15A 2 H1 AHYE 1

1

$$,BALF O1 1

15A 2 C2 ARUB 1

1 F,Y,MS 15A 2 C4 CCAR 1

4 1.8" 1

15A 2 C3 C3 CFLO 1

1 3

2 SUCKERING,0,0EF DEF,CATA UNKN 1

15A 2 C4 C4 CFLO 1

1 4

5 CEF 30EF 1

15A 2 F1 CNUD 1

1 C

1 15A 2 C2 FGRA 2..

1 S, LEAF PRES 1

15A 2 04 FGRA 1

5 X

1 15A 2 C4 C4 FRAX 3

1 5

4 C,0EF

$$,0EF 1

15A 2 01 NSYL 1

1 TEETH,P,SU 1

15A 2 C2 NSYL 1

1

$5,0EF 1

15 A 2 03 NSYL 2

4

$s,0EF 1

15A 2 C4 04 QSHU 2

1 5

6 2.1,1.9,2 0F 2M S

$$,MS CF SAME BASE 1

15A 2 H2 SCUT 2

1 FR 1

15A 2 C2 UNKS 1

1 55,0EF i

15A 2 02 VBRN 1

1 OEF 1

15A 2 C2 C2 VV'AC 5

4 3

2 CEF,0

$$,3CEF 1

158 1 C2 C2 CAME 2

1 1

1 MS,P EDEF,CF AMELANCHIE 1

158 1

.C4 CCAR 1

6 1MS: 8 LIVE STEMS:2 1,1.

I 158 1 04 FGRA 9

6 ALL SAME MS 1

158 1 02 FRAX 1

1

$$,S 1

158 1 03 FRAX 1

2 C,0EF 1

158 1 L1 MOSS 1

1 Ch OLC-BURNEC LOG 1

158 1 03 C3 QALB 1

1 2

3 P

1 158 2 C3 C3 ARUB 2

1 4

2 X,20EF SOEF 1

158 2 C1 COVA 1

1 S

1 158 2 C3 CSTC 1

3 OEF (v')

L.

ISB 2 C4 C4 FGRA 1

1 5

5 SUCKERING,30EF

'X i

158 2 H1 GALI 1

1

$s,S 1

15B 2 C4 LTUL 1

4 OEF 1

ISE 2 C3 NSYL 1

4 ECEF

TABLE F.

rah DATA FCR 1976 ANC 1979 S APL ING, SHRUB, m

AAC NCN-WOODY S P EC IES IN STANC NUMBER 1

LE%EL DENSITY CCV ER 1979 PERFCRMANCE 1976 PEAFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 1

150 2~F1 UNKH 1

1 55,G L

158 2 C1 LNKS 4

1

. $$,K L

158 2 C2 VAES 1

1 C,EDEF l

ISB 2 C4 VRCT 1

3 OEF 1

16A 1 C2 ARUB 1

1 CEF 1

16A 1 C2 C2 CAME 2

2 1

2 P

Y,0EF 1

16A l'C3 C3 CAME 5

3 6

4 CEF,0 DEF 1

16A 1 C4 CAME 3

5 CATKINS EXTENDING,0EF 1

16A 1 G1 CARY 1

1 I

16A 1 C3 C3 CFLU 1

1 3

3 CEF SOEF L

16A 1 C2 COV A 1

1 F,YEL i

16A 1 H1 DNUO 2

1 00,Y L

16A 1 02 NSYL 1

1 Y,P,MS 1

16A 1 C2 GSTR 1

1 UNK CCVER 1

16A 1 C3 CSTR 2

3 I

16A 1 G2 C2 QPRI 2

2 2

2 C,NOT DEF,CF Y,X 1

16A 1 C1 C1 RNUD 6

5 2

2 P,1NS BR

$5,X 1

16A 1 C2 02 RNUO 2

3 1

2 F, INS BR

$$,X 1

16A 1 Cl C1 RUBU L

1 1

1 P,Y,3-LF S,EST COVER 1

16A 1 02 RUBU-2 1

X 1

164 1 C1 C1 VDEN 1

1 1

1 C

X O1 16A 1 03 03 VITI i

1 3

1 FEALTHY VINE,MS 55,0EF 1

16A 1 C3 VPRU 1

1 (INFO ADDED)

I 16A 1 C1 C1 VVAC 6

1 2

1 CEF

$5,0EF 1

16A 1 C2 02 VVAC 4

4 2

2 CEF

$$,0EF 1

16A 2 C1 CCAR l

1

$$,5 1

16A 2 H1 01 CMAC 1

1 1

1 Y

Y 1

16A 2 C4 FGRA 1

7 4.10BH 1

16A 2 C1 NSYL 1

1 SU OF 00 03 1

16A 2 C2 QALB 1

1 CF,0EF 1

16A 2 06 QALB 1

7 7.408H 1

16A 2 01 RUBU 1

1 I

16A 2 C1 VRCT 1

1 Y

L 16A 2 C1 C1 VVAC 5

1 1

1 C,Y

$$,3CEF 1

168 1 01 C1 COVA 1

1 1

1 SU FM 00 02,0EF ss,0EF,BR 1

168 1 C2 CSTO 2

2 DEF 1

168 1 C3 CSTO 3

3 OEF 1

168 1 FL EVIR 3

1 FR 1

168 1 F2 EVIR 6

1 MS,FR 1

168 1 01 LTUL 1

1 S

1 168 1 03 LTUL 2

4 OEF 1

168 1 C4 C4 LTUL 1

5 4

C 00,25U DEF 1

168 1 C4 C4 NSYL 2

3 6

6 1.1,0.9",0EF

$$,0EF l

1 168 1 01 RNUD L

1

$$,X l

1 16B 1 C1 RUBU 1

1 Y

l 1

168 1 C1 CL SGLA 2

2 1

1 C,1G is,X 1

168 L C1 Cl VITI 1

1 1

1 CEF

~$5,0EF

(~'

1 168 2 Cl ARUB 1

1 OEF A

1 168 2 C1 CCVA 1

1 C,30EF,5 l

1 168 2 C3 C3 NSYL 2

2 4

3 ECEF,C

$5,3CEF,MS l

168 2 Cl PSER 1

1 S

TABLE F.

PAb CATA FCR 1976 ANO 1979 S APL ING, SPROB, AhC NCN-WOODY S P EC IES IN ST AND NUMBER 1

'O LE\\EL D ENS ITY CCVER 1979 PERFORMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 1

168 2 07 C2. CVEL 1

1 2

2 INS BR,0,NON-CEF Y,X 1

168 2 C1 C:. SGLA 1

2 1

1 C

$ $,7.

1 16B 2 02 UNKS 1

2

$5,0EF 1

16B 2 Cl VVAC 5

2 CEF 1

16B 2 C2 C2 VVAC 4

3 2

2 DEF

$$,0EF 1

17A 1 C1 C1 CCAR 1

1 1

1 Y

$$,5 1

17A L C1 CFLO 2

1 K

1 17A 1 C4 C4 CFLO 2

1 6

6 1.4,.8,.8",MS 5 0,i F 1

17A 1 C1 CCVA 1

1 S

1 17A 1 C1 EVIR 1

1 C

1 17A 1 C2 EVIR 1

1 C

1 17A 1 L1 RUSS 1

1 C

1 17A 1 C4 C4 VAES 1

1 3

3 RCCTEC VINE,1CM

$$,TFICK LIANA TO 1

17A 2 C1 CFLO 1

1 CEF i

17A 2 C4 C4 CFLO 4

1 6

6 1.6,1.2,+2MS DEF 1

17A 2 C1 C1 EAME 1

1 1

1 C

X 1

17A 2 Cl FGRA 2

1 5

1 17A 2 01 LTUL 1

1 X,5 1

17A 2 04 04 LTLL 2

1 4

3 1.1",0EF DEF 1

17A 2 C1 NSYL 2

L Y

l 17A 2 C1 QUER 1

1 CEF 1

17A 2 01 C1 VVAC 2

1 1

1 20EF,MS

$$,X O1 178 1 F1 hl AHYE 1

4 1

1 EA LVS DEEP GP. E EN, UN CER $$,BALVS 1

178 1 F2 AHYE 1

1 FR,0 1

172 i C1 CCAR 1

1 SCEF 1

178 1 01 C1 CFLO 1

1 1

1 S,30EF S

1 178 1 21 CFLO 2

3 MS,0EF 1

178 1 C3 CCVA 1

2 C,CEF 1

178 L Ci EAME 1

1 1

17E L C1 CGRA 2

1 S,YEL L

17B 1 El G tLI 1

1 Y

l 178 1 Cl J\\lR 1

1 S

1 17B 1 C1 NSYL 1

1 Y,YEL 1

178 1 03 NSIL 1

2

$5,0EF i

178 1 H1 PBIF 1

1 SPEARS NEW L

178 1 C1 PSER 1

1 S

1 178 1 C1 RUBU 2

1 I

178 1 C2 RUBU 1

1 BR,5DEF 1

178 1 C2 VAES 1

1 SU,YEL 1

17B 2 03 ARUB 1

2 POORLY 1

17B 2 05 ARUB 1

5 31N CBH 1

178 2 C4 C4 CFLC 1

1 2

0 1.C,CC 1

17B 2 C1 COVA 1

1

$5,5 1

178 2 C2 COVA 1

1 DEF 1

17B 2 C1 C1 EANE 6

4 1

1 C

1 178 2 01 Cl JVIR 1

1 1

1 S

1 178 2 01 SAL 9 1

1 YEL,30EF l

178 2 C1 Cl VPRU 1

1 1

1 Y,MS Y

x' 1

17C 1 01 ANEL 1

1 S

1 17C 1 Cl ARUB 1

1 Y,X 1

17C 1 F1 CNUD 1

1

4 TABLE F.

rah CATA FCR 1976 ANC 1979 SAPLING, SHRUB, Aht NCN-WOC 0Y SPECIES IN STAND NUMBER 1

~

LENEL D ENS ITY CCVER 1979 PERFCRM ANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 L

17C 1 C1 01 EAME 2

3 1

1 C

X 1

17C 1 C1 FGRA 2

1 S

1 17C 1 C1 LSTY 1

1 S

1 17C 1 01 LTUL 1

1 S

1 17C 1 C2 LTUL 1

2 20EF 1

17C 1 C3 LTUL 3

4 OEF 1

17C 1 04 LTUL 1

4 OEF 1

17C 1 Cl RRAD 1

1 YEL 1

17C 1 01 SRCT 1

1 C

1 17C 1 02 C2 SROT 1

1 1

1 C

BR 1

17C 1 01 VPRU 1

1 Y

I 17C 1 C1 VSTA 4

1 CEF,MS 1

17C 1 02 NSTA 1

1 ss EST COVER 1

17C 1 01 VVAC 3

1

$5,0EF i

17C 1 02 VVAC 3

2 ss,0EF 1

17C 2 04 04 ARUB 1

1 5

6 1.8" X

1 17C 2 C1 CFLO 1

1 30EF 1

17C 2 01 CGLA 2

1 OEF,X 1

17C 2 02 CGLA 1

1 OEF,K WITH THE 0-1 1

17C 2 H1 CL CMAC 1

1 1

1 G

1 17C 2 C1 CPUM 3

1 Y

(~/ 1

%1 17C 2 C2 CPUM 1

1 Y,SU OF OLO

\\_

17C 2 C4 CPUM 1

3 1.1" 1

17C 2 02 CSTO 1

1 1

17C 2 C3 CSTO 3

3 OEF 1

17C 2 H1 CNUO 2

1 YEL,30EF 1

17C 2 C1 FGRA 4

2 Y

1 17C 2 C2-FGRA 2

1 S

1 17C 2 C4 FGRA 1

4 30EF 1

17C 2 H1 F1 GALI 2

1 1

1 C,Y ss,FR,0 1

17C 2 01 RNUD 1

1

$$,Y 1

17C 2 01 01 UNKS 4

1 2

1 S,LG TEETH, CILIATE PETI 0ss,0EF 1

17C 2 C1 Cl UNKS 4

3 2

1 CEF

$5,0EF 1

17C 2 01 VITI 1

1 Y

1 17C 2 C1 01 VVAC 7

3 2

1 30EF,MS

$5,&CEF 1

17C 1 C3 CFLO 1

4 I

17C 1 C1 CGLA 3

1 S

1 170 1 C3 CGLA 1

3 I

17C 1 C1 C1 EAME 4

2 1

1 C

1 170 1 F1 EVIR 2

1 C

1 170 1 Cl FGRA 1

1 G

1 17C 1 C1 C1 JVIR 1

1 1

1 Y

S 1

170 1 C1 LTUL 1

1 G, HEART-LF 1

170 1 L1 MUSH 1

1 FRESH, CAP GILL l

1 170 1 C1 PSER 1

1 S

1 170 1 01 VVAC 3

1 CEF l

1 17C 1 02 VVAC 1

1

-$$,0EF O-) 1

/'N 170 2 C4 04 ARUB 1

1 3

1 2.3", LEANING CUTSIDE PLO 1

17C 2 01 C1 CFLO 1

1 1

1 20EF,5U OF 00 S

1 170 2 C3 CFLO 1

O CC 1

17C 2 04 C4 CFLC 1

1 5

5 2.3,1.5",2 CF2 MS i

i

TABLE F.

R A ', CATA FOR 1976 ANC 1979 S A PL ING, SHRUB,

{}

AhC NCN-WOODY S P ECI ES IN STAND NUMBER 1

(

LE%EL DENSITY COVER 1979 PERFCRMANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79 1

170 2 HL HL DNUD 2

3 1

1 Y, WITHERING Y

1 170 2 C1 Cl EAME 1

2 1

1 C

BR 1

170 2 C1 FGRA 1

1 5

L 170 2 H1 GALI 2

1

$$,FR 1

170 2 G1 GRAS 1

1 C, NARC LF 1

170 2 L1 MUSH 1

1 TAN 1

170 2 C3 NSYL 1

2 CEF 1

170 2 01 CALB 1

1 S

1 '170 2 C2 C2 QALB 2

1 2

1 EDEF Y,30EF 1

170 2 Cl RNUD 4

1 Y

1 170 2 C1 RUBU 1

1 Y

1 170 2 02 RUBU 1

1 I

170 2 C2 SALB 1

1 30EF,Y l

17C 2 C1 VDEN 1

1 S

1 170 2 CL VITI 1

1 DEF 1

17C 2 01 VVAC 1

1 20EF 1

170 2 02 VVAC 1

1

$5,0EF i

18A 1 C1 CCAR 1

1 ss,K 1

18A 1 03 CCAR 2

4

$$,0EF 1

18A L C3 CFLO 1

1 CF,0 1

18A 1 C4 CFLO 1

3

()1 18A 1 H1 ONUD L

1 EST COVER 1

18A L 01 01 EAME 35 12 2

1 CEER BR 1

18A 1 Cl 01 JVIR 1

1 1

1 S

S 1

18A 1 C2 NSYL 1

1 20EF i

18A 1 C1 C1 VPRU 1

1 1

1 C

S 1

18A 2 El AHYE 1

1 S, CUT OF ROTTING BRAhCH 1

18A 2 03 ARUB 1

3 I

18A 2 C4 C4 ARUB 1

1 5

5 1.3",30EF i

19A 2 C4 CGLA 1

4 EDEF 1

18A 2 HL CNUD 1

1 YEL L

ISA 2 C1 Cl EAME 9

8 1

1 C

1 18A 2 02 FRAX 1

1 SU CF ROOTSTK L

18A 2 hl GALI 2

1 CNE FR,0 1

18A 2 Cl NSYL 1

1 FS,0,30EF 1

18A 2 C1 PSER 2

1 C,5 1

18A 2 Cl VAES 1

1 20EF 1

LSA 2 C1 VITI 1

1 CEF 1

18A 2 Cl-VVAC 1

1 CEF,0 1

18B 1 C1 CAME 2

1 CF,Y l

188 1 03 C3 CFLO 1

1 4

4 DEF 20EF I

188 1 C1 CCVA 1

1 S

1 188 1 FL ONUD 1

1 YEL 1

188 1 C1 Cl EAME 13 4

1 1

C 1

18B 1 C3 03 FRAX 1

1 2

2 CEF,0 ss,0EF i

18e 1 El GALI 2

1 YEL L

188 1 C3 LSTY 1

2 CF,0EF

()1 18B 1 C3 NSYL 2

3

$5,0EF i

1 188 1 hl PBIF 1

1 00 l

1 ISB 1 C1 C1 PSER 1

1 1

1 5

ss,S l

1 182 1 C2 PSER 1

1

$5,S l

N

~

TAB LE y, rah CATA FCR L976 ANC 19 79 SAPLING, SHRUB, g-)

AhC NCN-hC00Y SPECIES IN STANO NUMBER 1

V LE%EL D ENS ITY CCV8R 1979 PERFCRMANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 I

188 1 Cl 01 CALB 1

1 1

1 SU S

1 18R L Cl RUBU 1

1 Y

1 188 1 C3 RUBU 1

1 00 C ANE 1

188 1 CL SGLA 1

1 X

1 188 1 04 UAME 1

5 20EF 1

188 1 C3 VITI 2

1 RCBUST a.5" VINES 1

188 1 C4 VITI 3

4

$$,Oh ELM L

L88 2 C4 C4 CFLO 1

L 5

4 X,30EF 30EF 1

19B 2 H1 F1 DNUD 1

1 1

1 YEL 00 1

ISB 2 01 C1 EAME 6

1 1

1 C,YEL L

188 2 C1 JVIR 1

1 Y

1 180 2 C2 JVIR 1

1 Y

I 198 2 C4 LSTY 1

6 CF,3.4" 1

188 2 CL NSYL 1

1 20EF,5U OF 00 03 1

188 2 C3 NSYL 1

3

$$,30EF L

188 2 Cl CALB 1

1 S

1 18B 2 C3 QALB 1

3 CF DEAD AT TOP 1

180 2 05 QALB 1

6 23IN DBH 1

188 2 CL CMIC 3

2 S

1 188 2 C1 CPRI 1

1 S

1 188 2 04 RRAD 1

1 CN 3.4 TREE O1 18B 2 03 SMIL 1

1 3CEF,X,NAR LF 1

ISB 2 C1 VPRU 1

1 Y,C 1

188 2 C1 Cl VVAC 99 4

2 2

EDEF 1

188 2 C2 VVAC 1

1 1

19A L H1 BVIR 1

1 Y,BA LF 1

19A 1 G1 CARX 2

1 1

19A 1 C4 C4 CFLO 2

1 4

0 CD SOEF 1

19A 1 F1 DNUD 1

1 Y

1 19A 1 C1 EAME 3

1 C

1 19A L C1 FGRA 1

1 S

1 19A 1 C3 LTUL 1

3 CEF 1

19A 1 03 NSYL L

1 ss, BENT CVER BY BR L

19A 1 C3 RUBU 4

1 00 CANES 1

19A 1 HI UNKH l

1

$$,5 1

19A 1 C1 C1 UNKS 1

1 1

1 SU FM 00 02

$5,K,X 1

19A 1 C1 VAES 1

1 SU L

19A 1 C4 VAES 1

3 ss,0EF 1

19A 2 C1 Cl CFLO 1

1 1

1 S

S 1

19A 2 C1 C1 EAME 18 16 1

1 C

1 19A 2 Cl FGRA 1

I

r., 5 1

19A 2 C3 C3 FGRA L

1 4

4 L, YELL L

ISA 2 H1 H1 GALI 3

2 1

1 C

1 19A 2 C2 NSYL 1

2 50EF,5U CF 03 BROKEN 00W L

ISA 2 C3 NSYL 1

4

$$,0EF i

198 1 C1 C1 EAPE 2

10 1

1 C

1 198 1 C2 C2 EAME 2'

2 1

1 C

^ l 198 1 L1 PUFF 25 2

ON SIN BCLE N

1 198 1 C1 C1 V0EN 1

1 1

1 C

Y 1

198 2 H1 CNUD 1

1 00 1

198 2 01 C1 EAME 2

3 1

1 C

l

./

TABLEy, RAb CATA FCR 1976 ANC 1979 SAPLING, SHRUB, AhC NCN-WOC 0Y SPEC IES IN STAND NUMBER 1

i LEVEL DENS ITY COVER 1979 PERFCRM ANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 1

198 2 C4 C4 FGRA 2

1 7

6 2-2" l

1 ISO 2 H1 GALI 2

1 1

198 2 L1 MOSS 1

1 ON STUMP TOP 1

198 2 C1 VITI 1

1 Y

1 ISB 2 03 VITI L

3

$5,0EF 1

192 2 C4 C4 VITI 2

2 4

3 31-2CM VINES ss,0EF 1

5A C 01 VVAC L

0

$$,X e

O i

HO

-+r

~

._.,,__.7_-

TABLE G.

FAh CATA SCR 1976 ANC 1979 S A PL IN G,

SHRUB, Ah[ NCN-h000Y SPECIES Ih STAND NUMBER 2

i LESEL DENSITY COV ER 1979 PERFCRM ANC E 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 2

13A 1 03 C3 CCAR 1

1 4

3 20EF,G000 10

$$,aCEF 2

13A 1 C1 EAME 1

1 PS 2

L3A L C4 FGRA 1

5 IN?, YELL 2

13A 1 C2 C2 KLAT 10 10 4

4 X

2 13A 1 C3 C3 KLAT 15 9

6 6

X,MS,CCUNTING STEM 2

13A 1 C2 LSTY l

2 OEF 2

13A 1 C3 LSTY 1

2 2CEF,5U FM OLD OC 2

13A 1 C4 C4 LSTY 1

1 4

3 DEF 20EF 2

13A 1 Cl SALB 1

1 CEF,Y 2

13A 1 02 SALB 1

1 SU FM 03 00,0EF 2

13A 1 03 SALB 1

4 OEF 2

134 1 C3 SALB 1

2 DEF 2

13A 2 03 C3 ARUB l

1 5

2 SU FM 00 03/4 OEF 2

13A 2 G1 CARX 1

1 2

13A 2 F2 CNUD 2

1 C,FR 2

13A 2 Cl EAME 2

1 C

2 13A 2 C2 C2 EAFE 1

1 2

1 C,30EF 30EF 2

13A 2 C2 FRAX 1

1 CEF 2

13A 2 HL GALI 1

1 2

13A 2 G1 G1 GRAS 2

2 1

1 hAR-LF O' 2 13A 2 C2 C2 KLAT 8

3 3'

3 C

X 2

13A 2 03 03 KLAT 3

3 5

4 C

X 2

13A 2 C2 LSTY 1

1 20EF 2

13A 2 04 C4 LSTY 1

1 5

C 2.4",0,CF DEF 2

13A 2 Cl LTUL 1

1 Y,50EF 2

13A 2 Hi PACR 9

4

$5 2

13A 2 F2 PACR 7

3 C,F2/H1 2

13A 2 C1 QALB 1

1 Y

2 13A 2 01 CHAC 2

1 Y,50EF 2

13A 2 C1 C1 CPEE 2

2 1

1 Y, GREEN LFS Y,5 2

13A 2 C1 SRCT 1

1 S

2 132 1 C1 ARUB 1

1 C,SU CF OLDER 00 2

138 1 C3 C3 ARUB 1

1 4

3 C,CEF OF 2

138 1 C4 C4 CFLO 1

1 5

5 1.2",30EF,0 DEF 2

13B 1 H2 EVIR 2

1 CD,FR 2

138 1 C3 C3 FRAX 1

1 3

2 CEF

$$,0F 2

138 1 04 C4 FRAX 1

1 4

1 CEF( A00E0 COV)

$5,0F 2

13B 1 C2 C2 KLAT 36 10 5

4 C

MS STEMS 2

138 1 03 C3 KLAT 1

3 3

3 0

X 2

138 1 C2 LSTY 1

1 20EF,0 2

13B 1 C3 C3 LSTY 2

1 4

2 30EF,0 3DF 2

132 1 03 QSHU 1

4

$$,3CF 2

132 1 C4 CSHU 1

4 CF,aCEF,0 2

130 1 C2 SALB 1

1 EDEF 2

130 1 C3 C3 SALB 1

1 2

2 CEF,0 DEF l

2 138 1 C3 VDEN 2

3

~X,0RYING E YELLOWI

(~T 2 13B 1 C4 C4 VDEN 1

1 4

4 PS,30EF,0 X

2 138 2 C1 C1 ARUB I

3 1

1 5

Y,X 2

138 2 C2 CFLO 1

1 ECEF,Y 2

138 2 F2 DNUD 4

1 FR STALKS + PLANT

TABLE G.

R4h CATA FCR 1976 ANO 1975 S APL ING, SHRUB,

(~h AhC NCN-WOODY S P EC I ES Ih ST AND NUMBER 2

Y f

LENEL DENS ITY CCVER 1979 PERFORM ANCE 1976 PERFORP.

ST CT # 76 79 SPEC. 76 79 76 79 2

138 2 H3 DNUD 1

1 FR STALK 2

138 2 C1 C1 EAPE 2

1 1

1 C

X 2

138 2 C1 FRAX 1

1

$$,Y 2

138 2 Hi H1 GALI 1

1 1

1 4 LF

$$,FR 2

138 2 03 10PA 1

2 X

2 138 2 C1 KLAT 11 2

Y CK 2

130 2 C2 C2 KLAT 14 4

3 2

C 2

138 2 03 C3 KLAT 8

7 5

6 C

X 2

138 2 C3 03 LSTY 1

1 1

2 EDEF EST CATA 2

130 2 C4 04 LSTY 1

1 3

4 1.5",0EF 2

138 2 C5 LSTY 1

5 2

138 2 H1 HL PACR 5

6 2

2 C,MAINLY 2

13 P. 2 C1 PSER 1

1 S

2 138 2 01 RNUD 2

1 C

2 138 2 02 RNUD 1

1 C

2 138 2 01 SROT 1

1 C

2 14A 1 C1 Cl ARUB 3

5 1

2 CEF,Y S

2 14A 1 H1 C1 CMAC 6

4 1

1 C

2 14A 1 C2 C2 COVA 1

1 2

1 DEF DEF 2

14A 1 C3 COVA 1

2 CEF,0 2

14A 1 C1 01 EAME 37 18 2

1 BR O2 14A 1 C2 C2 EAME 2

5 1

1 C

2 14A 1 H1 H1 EVIR 1

3 1

1 00 2

14A 1 C1 FGRA 1

1 Y

2 14A 1 03 FRAX 1

3 CEF,IN?

2 14A 1 G1 G1 GRAS 2

1 2

1 C

FR, TCPS 00 2

14A 1 G1 G1 GRAS 2

1 2

1 hARO LF POA FR, TOPS 00 2

14A 1 C1 C1 LSTY 2

2 1

1 Y, REDDEN ING Y,30EF 2

14A 1 C2 C2 LSTY 5

1 2

1 EDEF,Y 2

14A 1 C1 LTUL 1

1 S,50F 2

14A 1 C2 NSYL 1

1 CF,0EF 2

14A 1 H1 H1 POTE 5

2 1

1 EALVS BALVS 2

14A 1 01 PVIR 3

1 S

2 14A 1 C2 PVIR 2

1 Y

2 14A 1 01 Cl CPHE 1

1 1

1 Y

S 2

14A 1 C3 RCCP 2

4 20EF,FR 2

14A 1 C6 RCOP 3

5 20EF 2

144 L C1 SA LB 2

1 OF 2

14A 1 C2 SALB 1

1 DEF,MS 2

14A 1 C3 SALB 1

2 C,0EF 2

14A 1 C6 SALB 2

3 OEF 2

14A 1 CL SGLA 1

1 Y

2 14A 1 C1 VDEN 1

1 S

{

2 14A 1 03 V0PU 1

2 CEF,MS,0 2

14A 1 C2 VSTA 1

2 CF,GOEF,REODISH TWIGS 2 -14A 2 Cl ARUS 2

1 S,Y 2

14A 2 C3 ARLS 1

3 CEF

((_ ) 2 2

14A 2 H1 C1 CMAC 1

14 1

1 FR 14A 2 G1 G1 GRAS 3

1 1

1 PS CLUMPS 2

14A 2 C2 C2 KLAT 5

5 3

3 C

2 14A 2 C3 C3 KLAT 3

2 4

3 C

TABLE G.

RAb CATA FCR 1976 ANC 1979 SAPLING, SHRUB, AhC NCN-WOODY SPECIES IN STAND AUMBER 2

{

LENEL DENSITY CCVER 1979 PERFORM ANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 2

14A 2 02 LTUL 1

1 DEF 2

14A 2 C1 PVIR 1

1 5,2-NEEOLES 2

14A 2 01 SALB 1

1 S,CF 2

140 1 C3 ARUB 1

3

@DEF 2

148 1 04 C4 ARUB 3

1 6

6 2.6,1.1,1.4,1.0",ALL MS DEF,3 0F 4 MS 2

148 1 F1 C1 CHAC 6

7 1

1 SCPE FR 2

148 1 C2 LSTY 2

2 SOF 2

140 1 C1 SALB 1

1 SU,0EF 2

148 1 C2 SALB 1

1 OF 2

140 1 C1 V0PU 3

2 CEF 2

148 1 C2 C2 V0PU 10 1

5 2

CEF

$$,FR BLACK,0F 2

14B 1 C3 C3 V0PU 2

6 3

3 EIG GREENISH BUDS,CEF

$$,3CEF 2

148 2 Hi ANEG 1

1 EALVS 2

140 2 C1 CFLO 1

1 Y,SCEF 2

148 2 H1 C1 CMAC 33 27 2

1 FR,0 FR 2

142 2 C1 01 EAME 3

4 1

1 C

X 2

140 2 HL EVIR 3

1 00 2

148 2 H2 EVIR 4

1 CD 2

148 2 05 FGRA 1

7 11.0 OBH OF 2

148 2 G2 GRAS 1

1 CLUMPS,FR.0 2

14B 2 C1 KLAT 4

2 X

O2 148 2 C2 C2 KLAT 12 3

4 3

PS,0 X

2 14B 2 C3 KLAT 3

3 PS,0 2

148 2 Li MOSS 1

4 FR 2

148 2 C1 PVIR 1

1 2-NEED,Y 2

148 2 H1 SOLI 1

1 BALVS 2

14B 2 01 UNKS 1

1 TCOTHED ALT,S 2

15A 1 03 C3 ARUB 3

1 5

4 30EF,0 20F 2

15A 1 C4 C4 ARLB 3

2 5

5 1.2,1 M S + l. 3" X OF SAME, 50F 2

15A 1 C2 CCAR 1

1 X,C TOP 2

15A 1 C1 01 EAME 4

4 1

1 C

2 15A 1 C2 EAME 2

1 2

15A 1 C2 FGRA 1

2 X

2 15A 1 G1 GRAS 1

I hAR-LF 2

ISA 1 F1 El HVIR 10 14 2

2 C

2 15A 1 C3 JVIR 1

3 X

~

2 15A 1 C4 JVIR 1

3 X,1.0" 2

15A 1 C1 KLAT 5

3 2

15A 1 C2 C2 KLAT 5

2 3

3 C

2 15A 1 03 C3 KLAT 4

2 5

5 C

X 1

2 15A 1 04 04 LSTY 1

1 5

5 1.9" 30EF 2

15A 1 02 02 CALB 1

1 1

1 C,Y Y

2 15A 1 C1 C1 SRCT 2

2 1

1 IS,CF S

2 15A 2 C1 ARUB 3

1 5,X 2

15A 2 C2 ARUB 6

1 S,30EF 2

15A 2 H1 CMAC 4

1 X

l 2

15A 2 G1 GRAS 3

1 C

l 2

15A 2 H1 F1 HVIR 2

2 1

1 1G

$$,X P~

2 ISA 2 02 C2 KLAT 30 1

5 2

C X

2 15A 2 C3 C3 KLAT 5

8 5

5 C

X 2

15A 2 L1 L1 MCSS 1

1 5

5 C,(A00E0 1/X)

./

TABLE G.

rah CATA FCR 1976 ANC 19 79 S APL ING, SHRUB, A A C NCN-WOODY SP EC I ES IN STAND NUMBER 2

f*

LEVEL DENS ITY CCV E R 1979 PE RFCRM AN C E 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 2

15A 2 H1 El PACR 1

2 1

1 1G SS 2

15A 2 01 CSPP 1

1 S,0EF 2

15A 2 C2 RNLD 1

1 C

2 15A 2 01 SRCT 2

1 S

2 15A 2 C1 VVAC 1

1 55,0F 2

158 1 03 ARUB 2

5 CEF 2

158 1 C4 ARUB 2

5 CEF 2

158 1 01 COVA 1

1 S

2 150 1 F1 CNUD L

1 2

158 1 01 Cl EAME 7

3 1

1 0

BR 2

158 1 02 EAME 1

1 C

2 ISB 1 C3 EAME 1

1 2

158 1 F2 EVIR 1

1 C

2 ISB 1 H1 F1 FERN 1

1 1

1 C

NOT PARI 2

ISB 1 hl G ALI 1

1 4 LF,0 2

158 1 G1 G1 GRAS 10 6

2 2

C EST CENS.

2 158 1 Hi H1 HVIR 16 18 2

2 C

$$,BALVS 2

158 1 C1 KLAT 10 3

2 158 1 C2 C2 KLAT 3

3 2

3 C

2 158 1 C3 03 KLAT 1

1 3

2 C

2 ISB 1 H1 NREP 2

1 02 158 1 H1 PACR 2

2

'$5 2

ISB 1 HZ PACR 2

1 C

2 ISB 1 02 QSHU 1

1 Y,CF 2

158 1 01 PNUD 1

1 55,BR,Y 2

158 1 02 RNUD 1

1 C,0EF 2

158 1 C3 C3 RNUD 7

1 5

1 CF,FR,0 55 2

152 1 04 C4 RNUD 2

2 4

5 CF,FR,MS,0,CEF

$s 2

158 1 01 SRCT 1

1 S

2 158 1 Cl V/PA 1

1 G LF 2

152 1 Cl VVAC 2

1 30EF 2

ISB 2 H1 hl AHYE 1

2 1

1 C

$5,BALF 2

ISB 2 C1 01 ARUB 3

4 2

2 CEF S

2 152 2 C2 C2 ARUB 2

2 2

2 CEF 30F,Y 2

158 2 C3 ARUB 1

2 C,CEF 2

ISB 2 C4 ARUB 1

4 CEF 2

152 2 C1 COVA 1

1 S

2 158 2 C1 EAFE 1

1 C

2 ISB 2 H1 EVIR 2

1 CD 2

158 2 F2 EVIR 6

1 FR,00 2

158 2 GL G1 GRAS 3

2 1

1 hAR LF 2

158 2 F1 F1 HVIR 8

7 2

1 C,1G

$5,BALVS i

2 158 2 C3 JVIR l

3 2

158 2 C1 KLAT 20 3

2 158 2 02 02 KLAT 20 10 0

5 C

ST DENS.

2 158 2 03 C3 KLAT 11 6

5 5

2 158 2 L1 LICH 2

2.

(O'2 158 2 LL L1 MGSS 1

1 1

2 ESP CN ROCKS,(ACCEC 1/X) 2 150 2 H1 PACR 9

4

$5, SPORES 2

158 2 F2 PACR 6

2 C

2 158 2 F2 SOLI 2

1 YELL l

TABLE G,

R A 's DATA FOR 1976 ANC 1979 SAPLING, SHRUB, AhC NCN-WCC0Y SPECIES IN STAND AUMBER 2'

('

ST CT 4 76 79 SPEC. 76 79 76 79 LENEL D ENS ITY COVER 1979 PERFORMANCE 1976 PERFORM.

2 158 2 F1 TIAR 1

1 C,BALVS,#

2 158 2 H1 UMBE 1

1 S

2 15B 2 H2 UMBE 1

1 0

2 158 2 C2 VVAC 2

1 CEF 2

16A 1 04 ARUB 14 5

OF.K FROM 1 BASE 2

16A 1 05 ARUB 1

5 3.6,2.8"+ SMALLER MS 2

16A i C2 CFLO 2

1 C,0EF 2

16A L CS COVA 1

6 3.8" 2

16A 1 C2 KLAT 10 3

2 16A 1 C3 C3 KLAT 20 1

0 3

C 2

16A 1 C6 LTUL 1

7 EST D ATA,18. 81 N OB 2

16A 1 C1 QALB l

1 S

2 16A 1 C1 GRLB 1

1 Y

2 16A 1 02 CRUB 2

2

$$,Y 2

16A 1 03 CRUB 1

2 C,Y 2

16A 1 C1 SA LB 1

1 S

2 16A 1 CL C1 SGLA 5

1 1

1 Y,WT FLECKS

$$,S 2

16A 1 H1 UNKH 4

1 CC,@DEF 2

16A 2 Cl ARU8 2

1 EDEF,5 2

16A 2 C2 ARUS 1

1 OF 2

16A 2 C2 CFLO 1

1 SDF O2 16A 2 HL EVIR 4

1 00,COLNTING CLUMPS 2

16A 2 F2 EVIR 5

1 CD 2

16A 2 02 FGRA 1

1 Y

2 16A 2 H1 h1 HVIR 2

1 1

1 C

$$,BALVS 2

16A 2 01 JVIR 2

1 S,X 2

16A 2 C2 JVIR 1

1 Y,0 2

16A 2 C2 C2 KLAT 30 6

4 5

C 2

16A 2 03 C3 KLAT 9

3 4

4 C

2 16A 2 C4 KLAT 1

4 2

16A 2 L1 MCSS L

2 C

2 16A 2 C1 CRO8 1

1

$$,5 2

16A 2 02 CRUR 1

1 C,Y 2

16A 2 C1 SRCT 2

1 5,X 2

16A 2 C2 VDEN 1

1 Y

2 160 1 C4 CFLO 1

4 C

2 16B 1 C1 FGRA 1

1 S

2 168 1 01 KLAT 1

1 S

2 168 1 02 C2 KLAT 13 1

3 1

2 16B 1 03 C3 KLAT 6

4 7

5 C

2 168 1

.C1 CPHE 1

1 S

2 168 1 01 SALB 1

1 Y

2 168 1 01 SGLA 1

1 Y

2 16B 2 C1 ARUB 1

1 S

2 16B 2 01 ARUG 2

1 S,CF,ALNLS/HAMMAMALIS 2

168 2 C3 ARUG 2

3 C F ALNUS/H AMM AM ALIS 2

168 2 G1 CARE 3

3

$$,LARGE BROAO LEA 2

168 2 G2 CARE 2

2 C,FR LG N-2 16B 2 H1 EVIR 10 1

00 2

168 2 H2 EVIR 7

1 2

16B 2 01 JVIR 1

1 S

TABLE G.

rah CATA FCR 1976 ANC 1979 S'A P L IN G, SHRUB, AhC NCN-WOC 0Y S P EC I ES Ih STAhD NUMBER 2

LEVEL D ENS ITY CCV ER 1979 PERFORM ANCE 1576 PE RFOR M.

ST C T 4 76 79 SPEC. 76 79 76 79 2

168 2 01 KLAT 1

1 S

2 160 2 C2 C2 KLAT 3

4 3

2 C

K 2

168 2 C3 C3 KLAT 2

1 5

3 C

2 168 2 04 C4 KLAT 1

2 4

4 C

2 168 2 L1 MOSS 1

4 CN SCIL 2

168 2 03 SUNK L

1 20EF 2

168 2 C1 VPRU 1

1 S

2 16B 2 02 VSTA 1

1 CF,30EF,NOT HUCK 2

16B 2 C1 VVAC 2

1

$$,X 2

168 2 C2 VVAC 1

1

$$,X i

I i

l l

l

TABLE H.

RAk CATA FOR 1976 AND 1979 S APL ING, SERUB, Aht NCN-WOODY SPECIES IN STAND NUMBER 3

('

LE%EL DENS ITY CCV ER 1979 PERFCRMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 3

CSA 1 Cl 01 ARUB 2

1 1

1 S

S 3

09A 1 H1 C1 CMAC 2

2 1

1 C,Y NO FR 3

CSA 1 HL CREP 1

1 MS 3

C9A L L1 LICH I

1

+ MOSS, ON STUMF HQ 3

CSA 1 03 C3 PVIR 1

1 4

3 BENT OVER 3

C9A 1 C1 C1 QALS 2

1 1

1 S

S 3

C9A 1 Cl QFAT 1

I S

3 C9A 1 C1 VVAC 6

1 55 3

CSA 1 C2 VVAC 1

1 3

CSA 2 C4 04 ARUB L

1 6

5 C

30EF 3

C9A 2 H1 C1 CMAC 4

1 1

1 C

3 CSA 2 HL OREP 1

1 3

CSA 2 C2 C2 GBAC 13 3

3 2

C

$$,80EF 3

C9A 2 C3 GBAC 1

2 C

3 C9A 2 G1 GRAS 1

1 C

3 C9A 2 L1 MCSS 1

1 CLUMP 3

C9A 2 02 NSYL 1

1 Y

3 CSA 2 G1 PANI L

1 3

CSA 2 G2 PANI 1

1 FR 3

CSA 2 C2 PTAE 1

1 C,3 NEEDLES

'3 CSA 2 C3 PTAE 1

3 ss s

3 C9A 2 C1 CFAT 1

1 S

3 C9A 2 C1 Cl SGLA 1

1 2

1 0,Y

$$,NCT Y 3

C9A 2 C2 VAES 1

1 30EF 3

CSA 2 01 VVAC 10 2

ss,30EF 3

C9A 2 C2 VVAC 7

1 ECEF 3

C98 L C1 Cl ARUB 4

8 2

1 S

S.Y 3

CSB 1 C2 C2 ARUB 1

1 1

1 C

Y 3

C9B 1 C3 CFLO 1

4 MOST DEF 3

C 9 P.

I hl Cl CMAC 20 9

1 1

SCHE FR SCME FR 3

CSB 1 hl F1 CNUO l

1 1

1 C,CF 3

CSB l C2 GBAC 10 2

C 3

CSB 1 C3 GBAC 3

1 C

3 C98 1 L1 LICH 1

1 CN WOOD 3

C98 1 L1 MCSS 1

2

+ LECH 3

CSB 1 C2 NSYL 1

1 SU GF A MEDIUM ONE OC 3

C98 1 C3 NSYL 1

3

$5,0EF l

3 C98 1 04 NSYL 1

1 2.4",0

.3 CSB 1 G1 PANI 1

1 FR 3

C98 1 C1 Cl QALB 1

9 1

1 S

S 3

098 1 C5 CALB 1

7 5.60BH 3

CSB 1 C1 C1 SGLA 17 4

2 1

ECEF

$5 l

3 CSB 1 C2 SGLA 1

1 SOEF l

3 C98 1 El UNKH 1

1 55,B ALVS TOO THED

)

l 3

C98 1 01 VSTA 6

2

$5 l

3 C98 1 C2 C2 VSTA 22 2

4 1

ACCED 5$,X, RED LF r')s3 C98 2 01 ARUB 1

1 S

Is-3 C98 2 C2 ARUB 1

1 3

CSB 2 H1 CMAC 1

1 3

09B 2 C2 C2 GBAC 10 12 3

3 C

51,(FM VBRN 20 3 S

.I o

i TABLE H.

rah CATA FOR 1976 AND 1979 S APLING, SHRUS, AhC NCN-h000Y S P EC I ES IA STAND NUMBER 3

LE%EL D ENS ITY CCVEP 1979 PERFCRMANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 3

CSS 2 03 C3 GBAC 3

5 3

3 C

ss,( FM VBRN 5 2 SP l 3

CSC 2 H1 PCTE 2

1 5-Y

)

3 CSB 2 C3 PVIR 1

2 C,2 NEEDLES l

3 CSB 2 04 PVIR 1

4 3

C98 1 C1 01 CALS 2

2 1

1 5

S 3

09B 2 C2 02 CALB 2

1 1

2 C,WT FUNGUS ONE CEAD PRCB 3

C98 2 01 CFAL 1

1 S

3 CSB 2 C2 C2 QFAL 1

1 1

1 3

C9B 2 Cl RUBU 1

1 C

3 C98 2 02 RUBU 1

1 3

C98 2 C1 SRCT 1

1 3

C98 2 C2 C2 VSTA 10 9

3 2

C

$$,(FM VBRN 20 3 S 3

090 2 03 C3 VSTA 2

7 3

3 C

$5,[FM VBRN 5 2 SP 3

LCA 1 01 ARUB 1

1 S

3-ICA 1 C3 C3 ARUB 1

1 2

2 C

3 10A 1 H1 Cl CMAC 5

6 1

1 C

NO FR 3

1CA 1 L1 MUSH 1

1 TAh 3

1CA 1 C5 PVIR l

5 3

1CA 1 01 CALB 1

1 S

3 1CA 1 02 CALB 1

1 SU OF TREE 3

1CA 1 C5 CALB 1

7

/'

3 10A 1 C1 QRUB 1

1 S, INS BR

\\

3 1CA 1 C1 Cl SALB 3

4 2

1 5

Y,0NE LF STILL ON 3

1CA 1 C2 SALE 3

2 Y

3 10A 1 C2 UNKS 1

2 MS,TCCTHED L F,3 STRChG V 3

1CA L Cl VSTA 2

1 C

3 1CA 1 C2 C2 VSTA 1

1 1

1 C

$$,3CEF 3

LCA 2 HL Cl CMAC 16 14 1

1 MOST FR,0 SCME FR 3

1CA 2 L1 LICH 1

2 CN ROTTED PINE LOG 3

1CA 2 L1 L1 MOSS 1

1 2

1 CN ROTTED PINE LOG

+L ICH 3

1CA 2 L1 MUSH 2

1 TAN 3

1CA 2 Li MLSH 1

1 BN 3

10A 2 01 PVIR 1

1 S

3 10A 2 C3 C3 PVIR 2

2 5

4 STUNTED,2N 3

1CA 2 04 PVIR 2

6 3

LCA 2 01 CFAT 1

1 S

3 1CA 2 L1 RUSS 1

1 FE0 3

108 1 H1 Cl CMAC B

9 1

1 C

SOME FR 3

108 1 C2 CMAC 1

1 FR,0 3

1CB 1 G2 PANI 2

1 3

1CB 1 C2 PVIR 1

2 3

1CB 1 C1 01 CALB 1

5 1

1 S

S 3

1CB 1 Cl 01 RUBU 2

1 1

1 3

108 i C1 01 VSTA 1

2 1

1 C

$5 3

LCS 2 G1 CAPX 2

1 3

1Ce 2 C1 GBAC 1

1 3

1CB 2 C2 GBAC 4

2 C

'3 1CB 2 L1 MUSH 1

1 CORAL FUNGUS x

3 1CB 2 02 r: R 1

1 LEAh5 OUTSIDE PLO 3

108 2 01 C1 QALB 4

17 1

1 S

3 1CB 2 C2 C2 CALB 3

4 2

2 Y

TABLE H.

FAv CATA FOR 1976 ANC 1979 SAPLING, SHRUB, AhC NCN-h000Y SPECIES Ih STAND NUMBER 3

(O LEVEL D ENS ITY CCV ER 1979 PERFCRMANCE 1976 PERFORM.

ST CT # 76 79 SPEC. 76 79 76 79 3

1CB 2 02 CFAL 1

2 C

3 1CB 2 01 01 RUBU L

4 1

2 C

5 3

1CB 2 C2 RUBU 2

1 3

1CB 2 01 SALB 1

1 INS BR, S 3

1CB 2 C1 SGLA 2

1 C

3 1CB 2 C3 VCCR 1

2 CC 3

1CB 2 CL C1 VSTA 7

1 2

1 55,3CEF 3

1CB 2 C2 C2 VSTA 8

6 3

2 C

55,30EF 3

1CB 2 C1 VVAC 1

1 3

1CB 2 C2 C2 VVAC 3

10 2

3 CEF SS 3

11A 1 C3 C3 ARUB 1

1 3

3 C

3 11A 1 Hi C1 CHAC 1

2 1

1 C

FR 3

11A 1 04 04 COVA 1

1 5

4 C

3 11A 1 CS C5 COVA L

1 6

6 C

3 11A 1 C1 DVIR 1

1 Y,NO TEETH 3

11A 1 G1 GRAS 1

1 C

3 11A 1 C1 CALB 3

1 S,Y 3

11A 1 C6 CALB 2

7 5.6,7.9 3

11A 1 01 CFAT 1

1 55 3

l'L A 1 C2 CFAT 1

1 C

3 11A 1 C1 C1 VSTA 1

1 1

1 C

55 3

114 1 C2 C2 VSTA 1

1 2

1 C

55 O3 11A 1 01 VVAC 1

1 Y,5 3

11A 2 L1 LICH 1

1 SMALL FR CLONE, CU 3

11A 2 L1 POSS 5

1 CLON ES 3

11A 2 L1 L1 MLSH 1

5 1

1 C,WT 3

11A 2 C1 PVIR 1

1 S

3 11A 2 C2 C2 PVIR 1

1 1

1 2N,LCNG NEEOLE S

3 11A 2 C1 C1 CALB 5

6 1

1 S

3 11A 2 01 01 CRUB 1

2 1

1 Y,CF S

3 11A 2 C1 C1 VSTA 3

3 1

1 C

55,0EF 3

11A 2 C2 C2 VSTA 2

7 2

2 C

55 3

110 L H1 CL CMAC 2

2 1

1 C

NO FR 3

112 1 HL DREP 1

1 S

3 118 1 C2 PVIR 1

1 Y,<1YR 3

112 1 C3 C3 PVIR 2

3 3

4 STRAGGLY BUT NOT 0,2 HEED 3

118 L C1 01 CALB 4

9 1

2 C,WT FUNGUS CN LEAF S

3 118 1 C1 CFAL 1

1 S

l 3

118 1 C2 VSTA 1

1 C, YELL 3

112 1 C2 VVAC 1

1 CEF,MS 3

118 2 L1 CLAD 1

1 CN RCT WC00 3

lie 2 H1 C1 CMAC 11 10 0

1 C,SCME FR l

3 118 2 Li LICH 1

1 FLAT Cup 3

118 2 LL MOSS 1

I 1 CLUMP 3

118 2 C2 PVIR 1

1 X,2NEEOLES 3

118 2 C1 C1 CALB 1

1 1

1 S

S 3

LIB 2 C2 CALS 1

1 Y

.p 3 12A 1 C2 ARUB 1

1 Y

's) 3 12A 1 H1 C1 CMAC 8

3 1

1 C

CNE FR 3

12A 1 L1 L1 LICH 4

6 2

2 GREY 4 CLCNES, ALPINE T 3

12A 1 L1 L1 MOSS 1

3 1

1 1 CLLSTER f

TABLE H.

AAb CATA FOR 1976 AND 1979 S APL IN G,

SHRUB, AhC NCN-WOODY SPECIES IN STAND NUMBER 3

O t

LE%EL DENS ITY COVER 1979 PERFORMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 3

12A 1 01 01 CALB 15 29 3

2 C,5 S,50ME LT 1 YR 3

12A 1 02 CALB 2

1 C

3 12A 1 C1 CFAL 1

1 S

3 12A 1 L1 RUSS 1

1 CF 3

12A 1 02 02 VSTA 2

1 1

2 MS

$5 3

12A 1 01 VVAC 1

1 Y,5DEF 3

12A 2 G1 CARX 1

1 3

12A 2 h1 C1 CMAC 4

6 1

1 C

NO FR 3

12A 2 C2 C2 GBAC 11 4

3 2

C 55 3

12A 2 Li MCSS 1

1 C

3 12A 2 L1 MUSH 3

1 PIhK 3

12A 2 04 C4 PVIR 1

1 5

3 X,1.3",2 NEEDLES 3

12A 2 C1 01 CALB 5

21 1

2 C,5 S

3 128 1 Cl ARUS 1

1 S

3 128 1 C2 02 ARUB 1

1 1

1 C

S 3

128 L H1 01 CMAC 3

7 1

1 C

FR 3

128 1 C1 C1 CALB 2

4 1

1 C,5 5

3 128 1 06 CALB 1

7 6.70BH 3

12B 1 L1 RUSS 5

1 CF 3

12B 2 C3 C3 ARUB 1

1 2

1 C

3 128 2 02 CFLO 12 2

DEF 3

128 2 C3 CFLO 3

2 C

O-3 128 2 H1 CMAC 5

1 NO FR 3

128 2 H1 OREP 2

1 3

128 2 C3 C3 LTUL 1

2 2

C 3

12B 2 H1 El POTE 8

3 1

1 BALVS BALVS 3

128 2 C3 C3 PVIR 1

1 3

2 STRAGGLY, 2N EEOL ES 3

128 2 C1 CALB 1

1 S

3 128 2 06 CALB 2

7 MS 3

128 2 C1 SALB 1

1 S

3 128 2 C2 C2 SALB 4

5 1

1 S

S 3

12R 2 H3 SOLI 2

1 FR 3

128 2 C1 VSTA 2

1 3

128 2 C2 D2 VSTA 6

4 2

2 C

ss,5CEF 3

128 2 01 VVAC 6

1

$5 3

128 2 D2 VVAC 4

1 X,50EF 3

13A 1 C1 C1 ARUB 1

1 1

1 S

S 3

13A 1 H1 Cl CMAC 10 9

1 1

Y NO FR 3

13A 1 C3 C3 PTAE 1

1 2

2 STUNTED,3NEECLES 3

13A 1 01 CALB 2

1 S

3 13A 1 C3 C3 VDEN 1

1 2

2 3

13A 1 C2 C2 VSTA 21 29 3

3 C, GOOD CCNO.

3 13A 1 C2 WTLF 1

1 Y,C,WT UNDER LF 3

13A 2 C1 01 ARUB 6

11 1

1 S

3 13A 2 C2 02 ARUS 1

2 1

1 S

3 13A 2 El Cl CMAC 9

10 1

1 2 FR SEV FR 3

13A 2 H1 HUNK 1

1 S

s 3 13A 2 H2 h2 HVEN 1

1 1

1 FR

$$,FR

\\

3 13A 2 L1 MOSS 1

1 EUNCH l

3 13A 2 C1 CA LB 1

1 S

3 13A 2 C1 C1 CFAT 1

1 1

1 S

$$,5 s

i

TABLE H.

FAh CATA FOR 1976 AND 1979 SAPLING, SHRUB, AAC NCN-h000Y SPECIES Ib STANO NUMBER 3

bf" LEVEL D ENS ITY CCV EP 1979 PERFCRMANCE 1976 PERFORM.

ST CT # 76 79 SPEC. 76 79 76 79

=-

3 13A 2 Cl 01 RUBU 1

1 1

1 Y,CF S

3 13A 2 C1 SALB 1

1 Y

3 13A 2 C2 VRCT 1

1 NO LVS 3

13A 2 C1 VSTA 1

1 YELL 3

13A 2 C2 VSTA 2

1 3

13A 2 C1 VVAC 1

1 55 3

13A 2 C2 C2 VVAC 1

1 1

1 SOEF SS 3

138 1 C1 01 ARUB 3

7 1

1 Y

3 130 1 C2 C2 ARUB 3

4 1

1 3

138 i H1 C1 CMAC 28 27 1

1 MCST CN TIP-UP MOUNO 3

138 1 H1 DNUD 1

1

~

3 136 1 H1 OREP 1

1 3

138 l'

L1 LICH 1

1 GREY 3

138 1 L1 MOSS 1

2 4 FATCHES 3

138 1 el POTE 2

1 EALVS 3

138 i C1 PSER 1

1 Y

3 138 1 02 C2 PVIR 1

1 1

1 3

138 1 C3 C3 PVIR 3

2 5

3 STUNTED (+100),2NEEOLES 3

132 1 01 CALS 1

1 3

138 1 Cl CFAT 1

1 S, INS BR 3

138 L C1 VSTA 1

1 55 3

138 1 C2 C2 VSTA 1

5 1

1 YELL 55

'O3 138 1 01 VVAC 1

1 PS 3

132 2 C1 ARUB 14 1

S 3

132 2 H1 Cl CMAC 13 5

1 1

1 FR ONE FR 3

138 2 C2 COVA 1

1 S,0EF 3

138 2 C2 KLAT 1

3 PS,.

3 13B 2 C3 KLAT 1

2 PS 3

138 2 F1 MCNO 1

1 CD,FR,BRN 3

138 2 03 C3 PVIR 1

1 4

2 STUNTED 3

138 2 C1 QALB 2

1 S

3 138 2 C1 C1 CFAT 4

2 1

1 S

3 138 2 H1 FL UNKH 1

3 1

1 LAX,FR, TRIFOLIATE S

3 13B 2 C2 VSTA 4

3 3

13B 2 C3 C3 VSTA 3

4 4

3 55,LG PLANTS 3

14A 1 02 ARRO 1

2 CF.0VIR,NOT *nT UNDER-3 14A 1 01 01 ARUB 2

4 1

1 Y

S 3

14A 1 C1 C1 CFLO 2

1 1

1 20EF MS,Y,0EF3 3

14A 1 H1 CL CMAC 9

6 1

1 C

FR 3

14A 1 L1 LICH 1

1 CN 0C BRANCH 3

14A 1 L1 L1 MCSS 1

1 2

1 Ch 00 BRANCH QLICHEN CUP, ON RO 3

14A 1 L1 MUSH 2

1 TAh 3

14A 1 Cl PTAE 1

1-CYING B ACK, X,3NEEOL ES 3

14A 1 02 PTAE 1

1 55,Y 3

14A 1 Cl 01 CALB 2

2 1

1 S

S 3

14A 1 C1 C1 QFAT 2

4 1

1 55,5 3

L4a 1 01 VSTA 1

1 55 q3 14A L 02 C2 VSTA 9

7 3

2 YEL

$5 h_/ 3 14A 1 02 VVAC 17 2

WT INFECTED LF 3

14A 2 Cl ARUB 1

1 S

I 3

14A 2 H1 01 CMAC 10 9

1 1

SCME S NO FR

TABLE H.

RAb CATA FCR

'976 ANC 1979 SAPLING, SHRLB, 1

fg AbC NCN-WOODY SPECIES IN STAND NUMBER 3

V LENEL DENS ITY COV ER 1979 PERFCRM ANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79 3

14A 2 L1 L1 LICH 1

1 1

1 PATCHES ON PINE STUMFWOOON STUMP BARK, EST 3

14A 2 Li MOSS 1

1 Ch STUMP WOOC 3

14A 2 LL NUSH 1

1 TAN 3

14A 2 01 NSYL 1

1 Y

3 14A 2 C2 NSYL 2

3

$$,a0EF,00 LNG PCOR 3

14A 2 03 NSYL 1

2 CY'ING BACK,CF 3

14A 2 C1 C1 CALB 5

5 1

1 Y,5 S

3 14A 2 01 Cl QALB 1

5 1

1 Y,5 S

3 14A 2 01 SALB 1

1 OEF,5 3

14A 2 C1 C1 VSTA 2

5 2

1 3

14A 2 C2 C2 VSTA 9

7 3

2 3

148 1 01 Cl ARUB 2

3 1

1 S

S 3

148 1 C

CMAC 9

I 1 FR 3

14B 1 H1 CMAC 12 1

SOME FR 3

14B L H1 OREP 3

1 Y

3 148 1 G1 GRAS l

1 3

L40 1 L1 Li LICH 1

2 1

1 EUNCH ON SG I L, HOR N S-GR A Y 3

148 1 L1 L1 LICH 1

2 1

1 BUNCH CUP, ON BARK OF LO 3

148 1 C3 C3 PVIR 1

2 2

2 X,2 NEEOLES 3

148 i C4 C4 PVIR 1

1 3

3 X

3 14B 1 Cl 01 QALB 2

3 1

1 S

S

(_') 3

/~

148 1 C1 C1 CFAT l

1 1

1 S

$$,5 3

148 1 02 RCCP 1

1 30EF 3

140 1 C3 LNKS 1

1

$$,0EF 3

148 2 Cl Cl ARU2 2

3 1

1 S

S 3

142 2 C3 C3 ARUB 1

1 3

2 C

i 3

140 2 HL Cl CMAC 29 9

1 1

1 FR 3

148 2 02 CCVA 1

1 S,0EF 3

14B 2 G1 G1 GRAS 4

4 1

1 CLUMPS 3

148 2 L1 LICH 1

1 EUNCH 3

14B 2 C1 PVIR 1

1 S

3 14B 2 02 PVIR 1

1 Y

3 142 2 C1 Cl QALB 1

1 1

1 5

5 3

14B 2 C3 03 CVEL 1

1 5

4 C

3 142 2 C2 SALB 1

2 Y,C 3

142 2 C2 UNKS 1

1

$$,0EF 3

15A 1 Cl ARUB 1

1 S

3 15A 1 H1 C1 CMAC 12 22 1

1 FEW'FR FR 3

ISA 1 G1 G1 GRAS S

2 1

1 3

15A 1 L1 LICH 2

1 3

15A 1 L1 MUSH 1

1 3

15A 1 03 C3 PVIR 4

4 5

3 2 hEEC,ALL X +1 C

3 15A 1 Cl 01 QALB 1

5 1

1 S

S 3

15A 1 Cl QFAT 3

1 S

3 15A 1 CS CFAT 1

5 3

15A 1 OL VSTA 2

1 Y

3 ISA 2 01 ARUB 1

1 5

3 15A 2 H1 C1 CMAC 18 13 1

1 SCPE FR SOME FR q(m-3 15A 2 HL DNUO 1

1 FR 3

15A 2 G1 GRAS 1

1 EUACH l

3 ISA 2 03 C3 LTUL L

1 2

1 20EF 1

I

TABLE H.

RAv CATA FOR 1976 AND 1979 SAPLING, SHRUB, Ab t NCN-WOCCY S PEC IES IN STAND NUMBER 3

(I LE\\EL DENS ITY CCVER 1979 PERFCRMANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79 3

15A 2 G1 G1 PANI i

1 1

1 FR,CF 3

15A 2 C1 01 QALB 5

12 1

1 S

3 15A 2 C4 CALB 1

1 TOPP ED A T 04-5 3

15A 2 L1 RUSS 1

1 RUSSET 3

15A 2 C1 01 VSTA 15 14 2

3 C

3 15A 2 C2 C2 VSTA 2

5 1

2 C

$5 3

ISP 1 H1 01 CMAC 12 3

1 1

Y SCME FR 3

158 1 F1 DNUD 1

1 Y

3 158 1 L1 LICH 1

2

+ MOSS ON ROT LCG, 3

ISB 1 01 PVIR 1

1 S

3 158 1 02 PVIR 1

1 3

ISB 1 03 PVIR 1

1 3

158 1 01 01 CALB 4

10 1

1 Y

S 3

158 1 C1 C1 CFAL 1

1 1

1 Y

Y 3

158 1 C1 CFAT 3

1 S

3 15B 1 C1 VSTA 2

2 55 3

ISB 1 C2 C2 VSTA 4

5 3

3 C

3 158 1 C3 C3 VSTA 2

6 3

3 C

3 158 2 Cl 01 ARUB 2

3 1

1 S

S 3

ISB 2 03 C3 ARUB 2

2 4

2 TALLER IS X 3

156 2 H1 C1 CMAC 3

4 1

1 NO FR

(~ ) 3 ISB 2 G1 G1 GRAS 4

2 1

1 3

150 2 L1 LL LICH 1

1 2

1 CN CLO OAK CTUMP BASE ON RCT LCG, EST.0E 3

ISB 2 L1 Li MOSS 1

1 1

1 CN OLO 04K STUMP SASE ON RCT LOG, EST.0E 3

ISB 2 L1 MUSH 3

1 TAh,1WT 3

15B 2 L1 PCLY 1

1 3

ISB 2 h1 POTE 1

1 EALVS 3

IP.B 2 03 PVIR 2

4 3

ItB 2 C1 CALB 1

1 S

3 158 2 C4 CALB 1

5 ONE CF 3 MS 3

158 2 01 CRUB 1

1 S

3 1 58 2 C1 RUBU 5

2 3

158 2 C2 VDEN 1

1 3

158 2 C3 VDEN 1

1 C

3 158 2 C1 VVAC 4

2 3

158 2 C2 C2 VVAC 9

11 3

2 30EF 3

16A 1 01 01 ARUB 2

3 1

1 C,5 S,X 3

16A 1 C2 ARUB 1

1 C

3 16A 1 01 CCCR 1

1 Y,0EF 3

16A 1 G1 G1 GRAS 4

1 1

1 7

16A 1 Li MUSH 3

1 FIhK + WT 3

16A 1 G1 PANI 1

1 FR 3

16A 1 G2 PANI 4

1 3

16A 1 02 QALB 5

2 K OF OYING 3

16A 1 04 CALB 1

4 CYING 3

16A 1 C6 CALB 1

7 9.1 CBH 3

16A 1 C2 C2 VDEN 1

1 1

1 C

-Y 0' 3 3

16A 1 C1 VSTA 1

1 C

t 16A 1 C2 VSTA 1

1 C

3 16A 2 C1 Cl ARUB 2

1 1

1 S

S 3

16A 2 L1 L1 CLAD 1

3 2

2 FR,CN OLO PIAE WOOD MOST CN CONIFER LC l

TABLE H.

R A '. DATA FOR 1976 ANC 1979 S APL ING, SHRUB, AhC NCh-WOODY SPECIES IN STAND NUMBER 3

LE%EL DENSITY CCVEF 1979 PERFORMANCE 1976 PERFORN.

ST CT # 76 79 SPEC. 76 79 76 79 3

16A 2 H1 01 CMAC 4

5 1

1 1 FR FR 3

16A 2 El PONO 1

1 CLUMP,DD,BRN 3

16A 2 L1 L1 MOSS 1

3 3

3 CN OLO PINE WOOD GROUND 3

16A 2 LL MUSH 1

1 RCTTING, BLK 3

16A 2 02 PVIR 1

2 Y

3 16A 2.

Cl CALB 1

1 S

3 16A 2 C6 QVEL 1

5 9.4 CBH 3

16A 2 C1 UNKS 1

1 55,Y 3

16A 2 01 VSTA 2

1 3

168 1 L1 CLAV 1

1 CRANGE 3

16B 1 H1 CMAC 2

1 NO FR 3

168 1 C2 C2 COVA 1

1 1

2 0

X 3

168 1 H1 DREP-1 1

MS,0ECUMBENT 3

168 1 L1 LL MOSS 2

2 1

1 C, HAIR CAP 3

168 1 L1 MUSH 4

I hT 3

168 1 C2 PVIR 1

2

$$,BRCKEN TOP + ST 3

168 1 03 PVIR 1

2 X, STUNTED,2 NEEDLES 3

168 1 C1 C1 CALB 3

3 1

1 C

S 3

168 1 01 SALB 3

1 C

3 16B L 02 C2 VSTA 2

2 2

1 C

3 16E 2 C2 CEAN 3

1 FR,MS=3,BR 3

168 2 C1 CFLO 1

1 S

\\

3 168 2 C1 CHAC 1

1 C

3 160 2 H1 El CNUD 1

1 1

1 C

3 168 2 G1 G1 GRAS 2

3 1

1 3

168 2 L1 LICH 1

1

+ MOSS, ON STUMP HG 3

168 2 L1 MOSS 1

1 CN STUMP HOLE WOOD 3

162 2 Ll MUSH 1

1 WT 3

168 2 D1 QALB 8

2 C,WT FUNGUS 3

16B 2 C2 C2 QALB 1

1 1

1 C,hT FUNGUS Y

3 168 2 C1 SALB 1

1 S

3 168 2 01 C1 SGLA 2

2 1

1 Y

3 168 2 02 SGLA 3

1 55

TABLE I.

R A ', CATA FOR 1976 ANC 1979 SAPLING, SHRUB, AhC NCri-hCC0Y SPECIES IN STAND NUMBER 4

LE\\EL DENSITY CCVEP 1979 PERFCRM ANCE 1976 PERFORM.

~ ST C T 4 76 79 SPEC. 76 79 76 79

==----------

4 C)A 1 Cl GBAC 2

1 0

4 CXA 1 Cl NSYL L

2

$$,Y 4

OXA 1 C3 C3 NSYL 2

2 5

3 CEF,P

<1"

$$,X,0F 4

CXA L C1 CALB 3

1 S

4 CXA L C1 C1 VSTA 9

8 2

2' P

4 OXA 1 C2 VSTA 11 4

4 OXe 2 Cl ARUR 2

1 S,X 4

OXA 2 C1 C1 COVA 1

1 1

1 P

Y,CF BR OR 00,EDEF 4

C)A 2 Cl QALB 1

1 S,X 4

C)A 2 C2 CALB 1

2 SU OF 03 00 4

CXA 2 C3 QALB 1

2 Y

4 0)A 2 C1 SALB 1

1 5

4 CXA 2 C2 02 VSTA 1

1 1

1 F

4 OXA 2 C1 Cl VVAC 6

2 2

1 P

$$,2CEF 4

OXB 1 C1 CFLO 1

1 Y

j 4

CXB 1 Lt CLAV 2

1 CD CF STRICTA 4

CXB 1 H1 CMAC' 1

1 4

CXE 1 H1 FL MCNO 31 6

1 1

RED COLOR

$$,FR, CLUMP 4

CXB 1 03 NSYL 1

2

$$,0EF 4

OXB 1 Cl OL QALB 4

8 1

1 WT FUNG ON LF, ALL S S

(]4 CXB 1 C4 QSHU 1

4 1 7"CBH

\\m-4 OXB 1 03 CVEL 1

2 Y,K CF LARGER 4

CXB 1 C4 CVEL 1

4 4

CXB 1 C1 01 VVAC 1

1 1

1 ECEF 4

CXB 2 Cl ARUB 1

1 S

4 CXB 2 C4 C4 CFLO 1

1 4

2 SCEF 4

CXB 2 C1 C1 COVA 1

1 1

1 S

S 4

0)B 2 L1 LICH 1

1 CUP TYPE 4

CXB 2 L1 MOSS 1

1 1

4 0)B 2 C1 CALB 4

1 S

4 CXB 2 C1 Cl SALB 1

2 1

1 S

S 4

OYA 1 Cl Cl ARUB 2

3 1

1 S

S 4

CYA 1 06 ARUB 1

4 4

CYA 1 C3 CFLO 1

5 CEF 4

CYA L C6 CFLO 1

5 SOEF 4

CYA 1 F1 C1 CMAC 1

2 1

1 C,1FR 4

CYA 1 C1 C1 GBAC 10 19 2

3 C

$$$$, SPLIT VBRN 20 4

CYA 1 02 C2 GBAC 7

8 3

2 C

$$$$, SPLIT VBRN 15 4

CYA 1 01 NSYL 1

1 YEL 4

OYA 1 C2 NSYL 1

1

$$,0EF2 4

CYA 1 C1 QALB 5

1 S

~

4 CYA 1 02 C2 QRUB 1

1 1

2 C,Y Y'

4 OYA L C6 QRUB 1

2 4

CYA 1 C1 RUBU 1

1 Y

4 OYA 1 C2 SALB 1

2 SU OF OLO 03 4

CYA 1 C6 SALB 1

2 OEF 4

CYA 1 C1 Cl VSTA 10 10 2

2 C

$$$$, SPLIT VBRN 20 k(~_.}/4OYA 1 C2 C2 VSTA 7

2 3

1 C

$$$$, SPLIT VBRN 15 4

CYA 1 C1 Cl VVAC 1

1 1

1 CEF 4

CYA 2 C4 CFLO 1

4 ECEF,<1"

i TABLE I.

RAv CATA FOR 1976 ANC 1979 SAPLING, SHRUB, AAC NCN-WCC0Y SPECIES IN STAND NUMBER 4

}

LE\\EL DENS ITY CCV ER 1979 PERFCRMANCE 1976 PERFORM.

1 ST CT # 76 79 SPEC. 76 79 76 79 4

CYA 2 H1 C1 CMAC 1

1 1

1 5

4 CYA 2 C1 C1 COVA 1

3 1

2 ECEF DEF,5 4

CYA 2 C2 C2 COVA 1

1 2

2 Y

DEF,Y 4

CYA 2 C3 C3 COVA 1

1 4

3 C,5U FM OLDER 00 8ASE DEF 4

OYA 2 El DNUO 3

1 5

l 4

OYA 2 L1 MUSH 0

1 Ch STUMP OF MS 2 TREE IN 4

CYA 2 01 NSYL 1

1 S

4 OYA 2 C1 PCUI 3

1 OEF 4

CYA 2 C3 CALB 1

4 K OF LG TREE 4

CYA 2 06 CALB 1

6 ESIN OBH 4

CYA 2 C3 CVEL 1

2 0

4 CYA 2 C1 SALB 1

1 S

4 CYA 2 C1 VSTA 3

1 EDEF 4

CYA 2 Cl C1 VVAC 1

2 1

1 CEF

$5,(CATA ADDED) 4 CYA 2 02 VVAC L

L 4

OYB 1 01 ARUB 1

1 S

4 CYB 1 h1 CMAC 4

1 NO FR 4

OYB 1 C1 COVA 1

1 S,0EF 4

CYB 1 02 C2 GBAC 30 40 5

5 C

4 CY8 1 C3 GBAC 4

2 C

4 CYe 1 G1 GRAS 1

I hAR LF

()4 CYB 1 Cl NSYL 1

1 S

4 CYO 1 C2 NSYL 1

2 MS,X 4

CYB 1 C1 PSER 6

1

$$,S,Y 4

CY2 1 C1 Cl CALB 4

7 1

1 S

Y,5 4

OYO 1 C2 C2 QALB 1

1 1

2 MS 4

CYB 1 C1 QVEL 1

1 Y

4 OYB 1 C2 CVEL 1

1 Y

4 CYB 1 C3 CVEL 1

2 4

CYB 1 01 VVAC 5

1 4

OYB 1 C2 C2 VVAC 4

9 2

2 EDEF SS 4

GYB 2 04 C4 COVA 1

1 4

4 1.3" OEF 4

CYB 2 C1 C1 GBAC 2

11 2

2 55,0EF 4

CYE 2 C2 C2 GBAC 9

3 3

2 C

$$,0EF 4

CYB 2 C2 LTUL 2

1 EDEF 4

CYB 2 C3 C3 LTUL 1

2 4

4

<1",0 4

CYE 2 C4 C4 LTUL 1

1 5

5 1.2",C 4

CYB 2 01 CALB 3

1 S

4 OYO 2 C2 C2 QALB 8

5 3

2 SU FM OLDER S+ K 4

CYE 2 03 CALB 1

2 X

4 CYE 2 C4 04 CALB 1

1 4

0 2.5",00 4

CYB 2 01 CRUB 1

1 S,CF 4

OYB 2 C1 CVEL 1

1 5

4 CYB 2 C2 QVEL 1

2 C,POSS SU 1

l 4

CYB 2 C3 QVEL 1

2 Y

l 4

CYB 2 C1 SALB 1

1 Y

l

'4 CYe 2 02 SALB 1

1

.Y g4 CYE 2 Cl C1 VVAC 6

4 1

1 ECEF x_j 4 OYB 2 C2 VVAC 2

1 55 4

C4A 1 C1 C1 ARUB 1

1 1

1 S

S 4

C4A 1 C3 CFLO 1

4

TABLE I.

rah.CATA FOR 1976 ANC 19 79 S A PL ING, SHRUB, Abt NCh-h00DY S P EC I ES IN STAND NUMBER 4

)

(

LEVEL DENSITY CCVER 1979 PERFORMANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 4

C4A 1 C1 CMAC 2

1 C

4 04A 1 C2 COVA 1

1 INS BR 4

C4A 1 C3 COVA 1

2 DEF 4

C4A 1 C4 COVA 1

6 4

04A 1 F1 CNUD 4

1 C

4 C4A 1 C2 PSER 1

1 4

04A 1 C1 C1 QALB 12 2

2 1

WT FUNGUS (1 TREE IN PLOTS 4

04A 1 C2 02 QALB 2

1 1

2 FS OF OLD 4

C4A 1 D1 CCCC 1

1

$$,5 4

C4A 1 C2 CCCC 1

2 PS OF OLC 4

04A 1 C1 VSTA 25 3

C 4

C4A 1 02 C2 VSTA 25 4

3 2

BL-3FLRS

$$,(CATA ADDED) 4 C4A 1 C1 VVAC 2

1

$$,5DEF 4

C4A 2 Hi AHYE 1

I 1 eALF 4

04A 2 C1 C1 ARUB 1

3 1

1 S

S 4

C4A 2 C2 CAME 1

1 BRCKEN OFF BY ME 4

C4A 2 C3 CFLC 1

3 2DEF 4

C4A 2 H1 CMAC 3

1 4

C4A 2 C3 CCVA 1

2 CF 4

C4A 2 C4 COVA 1

6 3.1",0 4

04A 2 H1 DNUD 1

1 5

{'\\

4 C4A 2 C2 PSER l

1 C

4 C4A.2 D1 C1 QALB 2

11 1

2 WT FUhGUS MOST S

4 C4A 2 C2 CALB 2

2 4

C4A 2 C6 QALB 1

7 36IN CBH 4

C4A 2 C2 QRUB 1

2 DYING 4

C4A 2 C1 CSPP 1

1 S

4 04A 2 C1 QVEL 1

1 S

4 C4A 2 C1 V/PA 1

1 HEART-LP G 4

C4A 2 01 Cl VSTA 28 3

3 2

CF,aDEF,X 4

C4A 2 C2 C2 NSTA 2

1 1

1 2DEF,X 4

C4A 2 D1 VVAC 4

1 2CEF 4

048 1 Cl ARUB 7

1 S

4 C4B 1 02 ARUB 1

1 4

C4B 1 C3 C3 CFLO 1

1 5

4 aDEF,X DEF 4

C48 1 HL C1 CMAC 3

3 1

1 FR 2 IN FR 4

C48 1 C1 C1 COVA 1

1 1

1 S

S 4

C48 L L1 L1 LICH 1

1 1

1 EARK LICHEN,CNLOG SLAT IFLAT CN LOG 4

048 1 C4 C4 NSYL 1

1 5

5 20EF 4

C4B 1 C2 C2 QALB 5

1 2

1 C

4 048 1 C1 CRUB 1

1

$$,5 4

CAB 1 C2 QRUB 1

2 Y

4 C48 1 C1 CVEL 1

1 C,5 4

04B 1 C2 CVEL 1

2 4

C42 1 FL SRAC 1

1 YEL 4

C42 1 C1 VSTA 2

1 C

4 CAB 2 C1 C1 ARUB 2

4 1

1 S

['T4 04B 2 D2 C2 ARUB

.1 1

3 1

Y 4

CAB 2 03 C3 ARUB 2

3 4

3 C

(

4 CAB 2 Cl CFLO 1

1 Y

4 04B 2 01 Cl CCVA 1

2 1

1 S

S

TABLE I.

RAk CATA FOR 1976'ANC 1979 SAPLING, SHRUB, AhC NCh-WCC0Y SPECIES IN STAND AUMBER 4

LE\\EL D ENS ITY CCVER 1979 PERFCRM ANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 4

04B 2 El DNUD 1

-1 G

4 C4B 2 C1 GBAC 1

1 PECDENING 4

C4B 2 C2 GBAC 2

2 REDDENING 4

C4B 2 Li LICH 1

1 FLAT GREEN 4

C48 2 -

C1 hSYL 1

1 C,Y 4

C48 2 01 01 CALB 4

3 1

1 S

S 4

C48 2 C2 C2 QALB 1

4 1

2 SU OF 03 4

C48 2 03 C3 CALB 2

1 4

1 C,5U IS APPEARING FRCM B 4

C48 2 C4 CALB 1

6 4

C48 2 C5 C5 CALB 1

1 6

7 3.2" 4

C4B 2 C1 Cl VSTA 10 12 3

3 YELL 4

04B 2 C2 C2 VSTA 4

5 3

3 YELL

$$,5CEF 4

04e 2 Cl VVAC 2

1 ECEF 4

C48 2 C2 VVAC 5

3

$$,3DEF 4

05A 1 C3 C3 ARUB 5

2 5

4 2+3 0F 4MS

<1" 4

CSA L C4 C4 ARUB l

1 6

7 1 CF 4 MS 2.4" 4

CSA 1 C1 COVA 1

1 S

4 CSA 1 H1 CNUD 1

1 Y

4 05A L Cl LTUL 1

1 G,CF 4

CSA 1 03 LTUL 1

1 DEF,MS OF SEV FROM 4

CSA 1 C1 PSER 1

1 S

05A L C1 Cl VDEN 1

1 1

1 S

S

[)44 C5A 2 Cl D1 CCAR 3

1 1

1 S

$$,5 4

CSA 2 01 CFLO 2

1 Y

4 CSA 2 C2 C2 CFLO 3

1 2

2 C

4 CSA 2 HL C1 CMAC 1

1 1

1 C

4 CSA 2 C2 C2 COVA L

3 2

2 FRIMARILY SU FROM OD X,Y 4

CSA 2 H1 H1 DNUD 5

7 1

1 S,Y MOST S 4

CSA 2 Cl FGRA 1

1 5

4 05A 2 0,1 LTUL 1

1 G, HEART LF 4

CSA 2 C3 C3 LTUL 2

4 3

3 SU FM 03 CD 4

CSA 2 C2 02 NSYL 1

3 1

2 SU FM DD INCLUDING DC 035$,Y 4

CSA 2 03 C3 NSYL 2

L 5

3 20EF

$$,MS CF 1 S P-OUT,

4 CSA 2 C1 PQUI L

1 DEF 4

CSA 2 C1 C1 CALS 2

2 1

1 S

S 4

CSA 2 02 02 QRUB 1

1 2

1 Y

$$,X,Y 4

05A 2 C2 C2 CRUB 1

1 2

2 STUNTED

$ 5,X,Y 4

05A 2 L1 RUSS '

1 1

PEC CAP 4

C5A 2 Cl SALB 3

1 S

4 CSA 2 C2 C2 SALB 1

1 1

1 SU FM 00 X,Y 4

CSA 2 C3 SALB 1

3 LEANING 4

CSA 2 Cl VAES 1

1 Y

4 058 1 Cl Cl ARUS 1

4 1

1 S

S 4

CSB 1 HL C1 CMAC 3

2 1

1 C

FR 4

058 1 C1 C1 COVA 1

2 1

1 C,Y S

4 058 1 C2 CCVA 2

2 DEF 4

058 i FL CNUD 4

1 Y TO S 1

4 CSB 1 C2 GBAC 3

1 C

[)4 CSB 1 G1 G1 GR AS 2

2 1

1 hARRO LF 4

058 1 L1 MCSS 1

1 Ch ROTTING LCG 4

058 L L1 MUSH 12 2

TAN TO REDDISH BN CN ROT i

l

TABLE I.

RAv CATA FCR 1976 AND 1979 SAPLING, SHRUB, AhC NCN-h00CY SPECIES Ih STAND NUMBER 4

('

LENEL DENS ITY CCV EF 1979 PERFCRMANCE 1976 PERFORM.

l ST CT s 76 79 SPEC. 76 79 76 79

=

4 C5B 1 04 C4 NSYL 1

1 4

5 ECEF ss,ECEF 4

CSE 1 C1 Cl QALB 7

11 1

2 S

S 4

CSB 1 C2 C2 QALB 2

3 2

2 2MS OF 00 03 Y DATA WAS MISSING 4

058 1 C3 QALB 1

2 Y

4 C58 1 C2 QVEL 2

2 Y

4 CSB 1 D3 CVEL 1

2 Y

4 CSE 1 C4 04 QVEL 1.

1 5

4 C

i 4

C58 1 Cl VAES 1

1 ECEF 4

05B 1 01 DL VVAC 2

6 1

2 EDEF 4

CSB 1 C2 VVAC 10 3

4 CSE 2 Cl ARUB 5

1 S

4 C 58 2 C2 C2 ARUB 1

1 1

1 Y

Y 4

C52 2 Cl CCAR 1

1 S

4 CSB 2 C1 CMAC 1

1 S

4 C5B 2 Cl 01 COVA 1

2 1

2 Y

S 1

4 058 2 C2 C2 COVA 1

1 2

2 Y

DEF,Y 4

CSB 2 Cl GBAC 11 2

Y 4

C58 2 02 C2 GBAC 4

6 2

2 C

$5,X 4

052 2 01 LTUL 2

1 G,CF 4

CSB 2 Ll MOSS 1

2 CN OAK BARK CC 4

C5B 2 Cl Cl PSER 3

1 1

1 S

$5,Y

(] 4 CSB 2 Cl Cl QALB 8

11 2

2 S

S N-4 C5B 2 C2 C2 QALB 2

1 1

1 Y

Y 4

C58 2 03 CALB 2

2 X

4 CSB 2 01 SALB 2

1 S

4 05B 2 C2 SALB 2

2 SU OF 00 C3 4

C58 2 C3 SALB 1

3 X

4 C5B 2 bl SRAC 1

1 Y

4 05B 2 Cl Cl VVAC 11 6

2 2

MS,3CEF

$5,aCEF 4

05B 2 C2 C2 VVAC 2

2 2

1 MS,EDEF

$5,0EF 4

C6A L C1 01 ARUB 1

1 1

1 Y

S 4

C6A 1 C1 C1 CFLO 1

4 1

1 ECEF Y

4 C6A 1 C3 CFLO 1

3 ECEF 4

C6A 1 C4 CFLO 1

4 EDEF 4

C6A 1 H1 C1 CPAC 5

3 1

1 Y

4 C6A 1 C1 COVA 1

1 S

4 C6A 1 C2 D2 COVA 1

3 1

2 Y,EDEF Y,0EF 4

C64 1 C3 COVA 1

2 DEF i

4 C6A 1 F1 DNUD 1

1 Y

(

4 C6A 1 C2 FGRA 1

1 Y,X 4

C6A 1 C1 NSYL 1

1 55,5 4

C6A 1 02 NSYL 1

0

$5,5CEF 4

C6A 1 C3 C3 NSYL i

1 5

5 aCEF

$$,DEF 4

C6A L 04 hSYL 1

5

$$,0EF 4

C6A 1 bl PBIF 1

1 TINY,1 LF 4

C6A L C1 PSER 3

1

$$,Y 4

C6A 1 D1 CALB 1

1 SU OF LG 00 4

C6A 1 C2 QALR 1

2 s-4 C6A 1 CL SALB 1

1 Y

4 C6A 1 C1 LNKS 9

1 EDEF,NOT PSER 4

C6A 1 C1 VDEN 4

1 Y

e

_ ~_

TABLE I.

rah C AT A FGR 1976 ANC 1979 S APL ING, SHRUB, AAC NCA-WOC 0Y SPECIES IA STAND NUMBER 4

([.

LE%EL DENS ITY CCVER 1979 PERFORMANCE 1976 PERFORM.

., ST C T # 76 79 SPEC. 76 79 76 79

=-

4 06A 1 C3 C3 VDEN 2

1 2

2 MS X

4 C6A 1 Cl VROT 2

1 Y,50EF 4

C6A 1 02 VRCT 1

1 ECEF 4

06A 2 C2 ARUB 1

1 Y

4 C6A 2 C5 05 ARUB 2

1 7

6 1 0F 2 MS,3.6" E3IN.,MS OF SAME 4

C6A 2 C1 CCAR 1

1 5

4 C6A 2 C1 CFLO 1

1 3CEF,Y 4

C6A 2 C3 C3 CFLO 1

1 3

2 3CEF ONE ALSO DEAD 4

C6A 2 H1 C1 CMAC 3

1 1

1 Y

NO FR 4

C6A 2 C2 CCVA 1

3 DEF 4

C6A 2 C3 CCVA 1

2 YELL 4

C6A 2 C1 C1 EAME 15 9

1 1

C

.4 C6A 2 Cl LTUL 1

1 G.CF 4

06A 2 04 C4 LTUL i

1 4

3 1.9"0BH SOEF 4

C6A 2 C1 POUI L

1 OEF 4

06A 2 C1 Cl QALB 1

1 1

1 S

S 4

C6A 2 C1 GRUB 1

1.

Y 4

C6A 2 C2 CRUB 1

1

$$,Y 4

C6A 2 C1 Cl RNUO 32 26 3

2 INS BR 4

C6A 2 C2 C2 RNUO 2

1 2

1 INSBR 4

06B 1 01 ARUB 1

1 S

4 C6B 1 C2 ARUB 1

1 YEL

.3

/4 C6B l C4 04 ARUB 1

1 5

5 0.B" X

4 C6B 1 01 Cl CCAR 4

2 1

1 S

$$,5 4

C6B 1 C4 CFLO 1

5 SOEF 4

06B L bl C1 CMAC 4

5 1

1 S

4 C6B 1 CL COVA 1

1 OEF,S 4

C6B 1 C2 COVA 1

1 Y

4 C6B 1 F1 CNLO 1

1 Y

4 C6B 1 01 GBAC 8

2 4

C6B 1 C2 GBAC 7

2 C

4 C6B 1 C4 C4 JVIR 1

1 4

2 (INFO A00EO)

P ART DEAC, _0NCE 2 4

C6B 1 L1 LICH 1

1 4

C6B 1 L1 MOSS 1

1 4

06B 1 C1 NSYL 1

1

$$,5 4

C6B 1 C3 ASYL 2

3

$$,0EF 4

C6B 1 C4 C4 NSYL 1

2 4

6 1.C,1.4"0BH

$$,X 4

C6B 1 El PBIF 1

1 S

4 C6B 1 Cl Cl PQUI 1

3 1

2 ECEF DEF 4

C6B 1 C1 C1 QALB 1

1 1

1 S

S 4

C6B 1 C1 CCCC 1

1

$$,5 4

C6B 1 C2 CCCC 1

1 Y,C 4

C6B 1 C2 C2 CFAT 1

1 1

1 Y

$$,Y 4

C6B 1 C1 C1 SALB 1

1 1

1 S

S 4

C6B 2 C1 ARLB 1

1 S

4 048 2 C2 ARUB 3

2 SU OF 03 0 4

C6B Z 03 C3 ARUR 1

2 4

2 BENT OVER,0 C l SU FRCM DENSITY GUESSED 4

C6B 2 C4 C4 ARUB 1

1 1

5 1.9",0 k )4 C6B 2 Cl CCA3 1

1 5

4 C6B 2 CL CFLC 1

1 C

4 C6B 2 01 C1 COVA 1

2 1

1 SU OF 00 01 DEF,5

T ABLE I.

RAv CATA FOR 1976 ANC 1979 SAPLING, SHRUB, AAC NCN-WOODY SPECIES Ih STAND NUMBER 4

O-t LENEL DENS ITY CCV ER 1979 PERFORMANCE 1976 PERFCRM.

ST C T 4 76 79 SPEC. 76 79 76 79 4

C6B 2 04 C4 COVA i

1 4

3 X,SDEF 3DEF 4

C6B 2 Hi HL ONUD 2

2 1

1 Y

OYING 4

C6B 2 C1 C1 EAME 3

1 1

1 C

4 C6B 2 01 C1 FGRA 2

1 1

1 S

S,IDEF 4

C6B 2 C2 FGRA 1

1 C,Y 4

C6B 2 Cl LTUL 1

1 G,FEART LF 4

C6B 2 C2 LTUL 4

2 SU FM DD 04 4

C6B 2 Cl hsYL 1

1

$$,DEF 4

C6B 2 C1 PSER 1

1

$$,5 4

06B 2 01 CALB 1

1 K OF DEAD D4 4

C6B 2 C4 QALB 1

4 4

C6B 2 C2 CRUB 1

2 C,CF 4

C6B 2 C1 RNUD 3

1 4

C6B 2 01 SALB 1

1 S

4 C6B 2 01 UNKS 1

1

&CEF 4

C6B 2 C2 UNKS 1

1 ECEF 4

C6B 2 Cl VPRU 1

1 S

4 C6B 2 Cl VRCT 2

1 3CEF,Y 4

11A 1 HL F1 AHYE 2

1 1

1 REDDISH-GREEN 3ALF

$$,BALVS 4

11A 1 01 JRUB 1

1 S

4 11A 1 C3 ARUB 1

1 O4 4

11A 1 01 CFLO 4

1

@DEF ilA 1 C2 CFLO 5

1 SCEF 4

LIA 1 C1 COVA 1

1 S

4 ILA 1 C4 CCVA' 1

5 DEF 4

llA 1 F1 CNUD 1

1 Y

4 LIA 1 C1 Cl EAME 21 20 1

1 C, DEER BR SOME S 4

11A 1 C2 C2 ICPA L

1 1

1 C

Y 4

11A 1 L1 MOSS 1

1 CA DOWNED LOG 4

11A L Cl NSYL 1

1 5

4 11A 1 C2 NSYL 1

1 MS OF D3 DD,5DEF 4

LIA 1 C4 NSYL 1

5

$$,DEF 4

11A 1 F1 P9IF 1

1 Y

4 11A 1 C1 C1 CALB 1

1 1

1 S

S 4

11A 1 02 02 CRUB 1

1 1

2 C

$$,Y 4

11A 1 C1 RNUD 1

1 INS BR 4

11A 1 C1 C1 SALB 2

1-1 1

C, YELL K OF LARGER DD 4

LIA 1 C2 SALB 2

1 C, YELL 4

11A 2 C4 CCAR 1

4 1.6",1.5",MS 4

11A 2 C1 C1 CFLO 6

4 2

2 30EF 4

LIA 2 C2 C2 CFLO 9

2 2

2 ECEF 4

llA 2 C4 CFLO 1

5 DEF 4

LIA 2 C2 CCVA 1

2 C, YELL,CF j

4 11A 2 C3 COVA 1

3 DEF 4

11A 2 F1 F1 CNUD 2

1 1

1 S

ONE FR 4

LIA 2 F2 CNUD 1

1 CEER BR 4

11A 2 C4 FGRA 1

5 X,MS CF 2 Os 4

llA 2 L1 NCSS 1

1 CN ROTT ING C ARY A WCOC 4

11A 2 01 PINE 1

1 G

4 11A 2 Cl P(UI 2.

1 CEF 4

lla 2 C1 C1 CALB 1

1 1

1 Y

S f

./

T A8LE I.

R A 'a CATA FOR 1976 AND 1979 SAPLING, SHRUB, AhC NCN-h0C0Y S P EC I ES IN STAND NUMBER 4

O i

LEVEL DENS ITY CGVER 1979 PERFCRMANCE 1976 PERFORM.

' ST C T # 76 79 SPEC. 76 79 76 79 4

11A 2 C2 CRUB L

2 C

4 11A 2 Cl RNUD 2

1 INS BR 4

11A 2 C1 SALB 1

1 S

4 IIA 2 02 02 SALB 1

1 1

1 Y

Y 4

11A 2 01 SGLA 1

1 S

4 11A 2 Cl VSTA 1

1 SCEF 4

11A 2 02 C2 VSTA 5

3 3

2 aCEF

$$,30EF 4

llB 1 C1 Cl CCAR 1

1 1

1 5

$$,0ATA UNKN 4

118 1 Cl CFLO 2

1 Y

4 118 1 C4 CFLO 3

6 2 MS:3.0,1.9" 4

118 1 H1 Cl CMAC 2

1 1

1 Y,C 4

118 1 Cl CCVA 1

1 S

4 118 1 bl DNUO 1

1 4

112 1 C2 FGRA 1

2 C

4 11B 1 H1 MREP 9

1

,5 4

118 1 L1 MUSH 1

I hT CAP 4

118 1 C2 C2 NSYL 1

1 1

2 C,Y, TEETH

$$,80EF 4

110 1 C4 NSYL 2

5 4

118 1 Hi F1 PBIF 1

3 1

1 Y

Y 4

112 1 C1 PSER 1

1 5

4 118 1 C1 C1 CALB 1

3 1

1 S

S 4

118 i C2 C2 CRUB 1

1 1

2 C

$1,Y O4

\\

118 1 Cl QVEL 1

1 4

11B 1 C1 RNUO 4

1 INS BR 4

118 1 01 SALB 1

1 S

4 118 1 01 V/PA 3

1 GERN WITH HEART LF CCTYL 4

118 1 01 VVAC 2

2

$5,80EF 4

118 L C2 VVAC 2

2 20EF 4

ILB 2 Cl CCVA 2

1 S,CF 4

118 2 05 COVA 1

5 33IN OBH 4

11B 2 Cl HEAR 1

1 G,FEART LF G 4

118 2 L1 MCSS l

1 CN BARK 00 4

118 2 01 01 CALB 1

1 1

1 YEL S,0 ENS UNKN 4

118 2 C2 CSHU 1

2 Y

4 118 2 C1 C1 RNUD 13 12 2

2 C

ss 4

118 2 C2 RNUD 2

1 C

4 118 2 L1 AUSS 1

1 REC 4

118 2 01 CL SCLA L

2 1

1 Y

$$,Y 4

LLB 2 C1 Cl VAES 1

3 1

1 3CEF 4

12A L C1 CFLO 1

1 4

12A 1 C3 CFLC 1

4 4

12A 1 02 COVA 1

1 OEF,Y

+

4 12A 1 C1 EANE 2

1 C

4 12A 1 C1 C1 GBAC 8

4 3

2 C

$5,0EF 4

12A 1 C2 C2 GEAC 1

4 1

2 C

$$,2CEF 4

12A 1 C1 01 CALB 3

2 1

1 S

S 4

12A 1 C2 C2 CALB 2

3 2

2 Y

Y 12A 1 C3 QALB 1

3 p(_)4 4

12A 1 C1 CCCC 1

2 4

12A 1 C1 CL SALB 10 19 2

2 S

S I

4 12A 1 C2 SALB 2

1 Y

s

TABLEI.

R4h CATA FCR 1976 ANC 1979 SAPLING, SHRUB, AAC NCN-WCC0Y SP EC I ES IN STAND NUMBER 4

LENEL DENSITY CCV ER 1979 PERFORMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79

=- ------ --

=--

4 12A L C1 SGLA 1

1 5

4 12A 1 C2 SUNK 1

1 OEF 4

12A 2 C2 C2 ARUB 1

1 1

1 Y

Y 4

12A 2 C3 C3 CFLO 1

1 3

2 BENT CVER BY 00WNEC JVIR30EF 4

12A 2 C4 CFLC 1

6 30EF 4

12A 2 L1 CLAV 2

1 C

4 12A 2 C1 CMAC 1

1 S

4 12A 2 C1 CCVA 1

1 Y,CF 4

12A 2 C2 COVA 1

2 Y

4 12A 2 03 COVA 1

2 EDEF 4

12A 2 Cl Cl EAME 24 15 1

1 ER DEER 4

12A 2 C2 MVIR 1

1 Y,BR 4

12A 2 C3 NSYL 3

5 ss,0EF 4

12A 2 C4 NSYL 1

3 EDEF 4

12A 2 C1 PQLI L

1 OEF 4

12A 2 01 CALB 1

1 4

12A 2 C2 CALB 1

1 Y

4 12A 2 C1 CCCC 1

1 S

4 12A 2 C1 CRUB 1

1 S

4 12A 2 C1 Cl RNUD 4

4 1

1 C

$5' 4

12A 2 CL C1 SGLA 2

2-1 1

C 55,5 O' 4 4

12A 2 C2 SGLA 1

1 C

12A 2 C1 VAES 1

1 20EF 4

12A 2 C2 VBRN 2

2 4

12A 2 C1 C1 VVAC 1

1 1

1-DEF,MS ss,0EF 4

12A 2 C2 C2 VVAC 2

2 2

1 aCEF

$1,30EF 4

128 1 01 ARUB 1

1 S

4 128 1 C3 C3 ARUB 1

1 3

3 STUNTED 4

128 1 H1 CMAC 1

1 FR 4

128 L H1 F1 CNUD 6

8 1

2 C,SCME S MOST S 4

128 L C1 EAME 2

1 C

4 12B l C1 C1 GBAC 13 9

3 3

C 4

128 1 02 C2 GBAC 8

4 3

2 C

ss 4

128 1 C1 QALB l

1 S

4 128 1 C2 QALB 1

1 SU OF 00 02 4

128 1 05 35 QALB 1

1 6

6 3.7"C8H 4

128 1 Cl QRUS 1

1 5,CF 4

122 L Cl CL SALB 2

9 1

2 Y

K OF LARGER DEAC 4

12B 1 C2 C2 SALB 1

2 1

2 C

K OF LARGER DEAC 4

128 L Cl SGLA 1

1 C

4 128 1 02 SGLA 2

1 4

12B 2 01 ARUB 1

1 S

4 128 2 C2 C2 ARUB 7

5 2

3 (4MS OF S AM E C3 C1 MOST MOS OF CRCWN 4

128 2 C2 CFLO 1

1 SCEF 4

128 2 C3 CFLO 1

2 4

120 2 C1 CCVA 1

1 2CEF 4

128 2 C2 C2 COVA 1

2 1

2 EDEF DEF

'T

  • L28 2 H1 CNUD 2

1 S

(d 4 128 2 01 Cl EAME 11 17 0

1 C

4 128 2 Cl JVIR 1

1 5

4 128 2 C1 C1 LTUL 2

1 1

1 Y-S S

TABLE I.

RAk CATA FCR 1976 A N C.19 79 SAPLING, SHRUB, AAC NGN-WCODY SPECIES IN STAND NUMBER 4

LE\\EL DENSITY CCVER 1979 PERFCRMANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 4

12B 2 Li MOSS 1

1 CLUMP 4

12B 2 C1 Cl NSYL 1

1 1

1 SCEF ss,5CEF 4

128 2 C2 C2 NSYL 3

1 3

1 SCEF

$5,DEF 128 2 01 PQUI L

1 OEF 4

128 2 Cl PSER 3

1 S

4 128 2 01 QRUB 1

1 S

4 128 2 C6 QRUB 1

7 4

128 2 C1 C1 RNUD 1

3 1

1 C

4 128 2 C2 C2 RNUD 8

7 4

2 C

$5 4

128 2 C1 Cl SALB 4

1 2

1 C

S 4

128 2 C2 SALB 2

2 C,(1 SU FM LARGER) i 4

128 2 H1 SRAC 1

1

$$,Y 4

13A 1 H1 AHYE 1

1

$$,8ALF 4

13A 1 01 AMEL 1

1 S

4 13A 1 C2 ARUB 1

1 CF,CEF 4

13 A 'l C2 CFLO 2

1 4

13A 1 C3 CFLO 1

4 MOST DEF 4

13A L C4 C4 CFLO 2

1 5

3 1.1"CBH MOST DEF 4

13A 1 C1 01 COVA 1

3 1

1 S

S,0EF 4

13A 1 C2 CCVA 1

1 Y, P.

4 13A 1 H1 DNUD 1

1 S

)4 13A 1 C2 FGRA 1

1 5,DEF

- 4 13A 1 C1 C1 LTUL 1

1 1

1 G

S 4

13A 1 Li NCSS 1

1 C

4 13A 1 H1 PBIF 2

1 S

4 13A 1 01 CALB 1,.

1 S

4 13A 1 C1 C1 VAES 1

1 1

1 P

S 4

13A L Cl VVAC 2

1 4

13A 1 02 VVAC 2

1 PS,0EF 4

13A 2 C1 C1 CCAR 1

2 1

1 S

55,5 4

13A 2 C2 C2 CFLO 2

2 1

1 PS 4

13A 2 H1 C1 CMAC 1

3 1

1 1 FR S

4 13A 2 C1 CL COVA 3

1 1

1 Y,DEF S DEF 4

13A 2 C2 COVA 1

1 F

4 13A 2 C2 FGRA 1

1 Y

4 13A 2 hl F1 GALI 3

7 1

2 FR,4LF 4

13A 2 Cl QALB 1

1 S

4 13A 2 C2 QALB 1

1 Y

i 4

13A 2 C1 VROT 1

1 Y,P 4

138 1 03 ARUB 1

4 4

138 1 C1 COVA 1

1 P

4 13B 1 03 COVA 1

2 DEF 4

13B 1 C1 GBAC 1

1 P

4 138 1 C2 GBAC 1

1 F,C 4

138 L C1 LTUL 1

l G

4 138 L Cl CALB 2

1 S

4 138 1 C1 CFAL 1

1 5

OJ' 4

138 1 C1 Cl PNUO 17 11 2

2 C

$$,Y 4

13B L C2 C2 RNUD 2

3 2

2 C

$5,Y 4

138 1 C3 C3 RNUO 1

1 4

3 C

4 138 1 C2 02 SALB 3

3 2

2 5,YEL Y

TABLE I.

RAk CATA FCR 1976 ANC 1975 SAPLING, SHRUB, Aht NCN-h0 COY S P EC I ES IN STAND NUMBER 4

O LENEL C ENS ITY CCVER 1979 PERFORM ANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 4

138 1 C3 C3 SALB 1

1 3

2 C

Y 4

132 1 C1 VSTA 10 2

$1,3CEF 4

138 1 02 C2 VSTA 3

8 2

2 P

4 138 2 H1 AHYE 2

1

$$,BALF 4

138 2 CL 01 CFLO 3

1 1

1 S

4 138 2 C2 CFLO 1

1 MS 4

138 2 C4 CFLO 1

5 EDEF 4

138 2 C2 COVA 1

L Y

4 13B 2 Hi DNUD 3

1 Y

4 13e 2 C2 GBAC 1

1 P

4 13B 2 GL GRAS 2

1 SHORT+ NARROW 4

13B 2 Cl LTUL 2

1 G, HEART LF 4

138 2 Cl 01 PSER 1

1 1

1 S

$$,Y 4

132 2 C2 PSER 1

1

$$,BR 4

138 2 Cl CL CALB 1

1 1

1 S

S 4

138 2 Cl QFAL 1

1 S

4 138 2 Cl RNUD 1

1 C

4 138 2 01 VAES 2

1 P

4 13B 2 02 VAES 1

1 4

138 2 Cl VROT 1

I lY 4

13E 2 C1 Cl VVAC 1

1 1

1 CEF,0 4

138 2 02 VVAC 2

1 DEF,0 O

0

./

TABLE J.

RAv CATA FOR 1976 AND 1979 S APL ING, SHRUB, Aht NCN-h0C0Y SPECIES IN STAND AUMBER 5

O LE%EL C ENS ITY CCV ER 1979 PERFORMANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79

= = = _ _ _

5 C3A 1 Cl Cl ARUB 11 8

2 2

F,5 S

5 C3A 1 Cl BNIG 1

1 S

5 03A L C1 CCAR 1

1 S

5 C3A 1 C2 CCAR 1

1 X,P 5

C3A 1 01 CFLO 1

1 5

C3A 1 C2 CFLO 1

1 FS 5

03A 1 C1 CMAC 1

1 C

5 C3A 1 H1 F1 DNUD 3

5 1

1 S

S 5

C3A 1 El H1 LFLA 16 9

2 2

C 5

C3A 1 C1 LSTY 2

1 5

5 C3A 1 Cl NSYL 2

1 Y,P 5

C3A 1 C1 PSER 2

1 S

5 03A L C1 C1 QALB 1

1 1

1 S

S 5

C3A 1 C1 QFAT 2

1 S

5 C3A 1 Cl UNKS 1

1

'S, TOOTH-LF 5

C3A 1 Cl VAES 1

1 P,Y 5

C3A 1 Cl C1 VRCT 1

1 1

1 S

S 5

C3A 1 Cl VSTA 1

1 P

5 C3A 1 C2 VSTA 2

1 55,0EF 5

03A L 01 VVAC 1

1 CEF,MS n5 C3A 2 C1 C1'ARUB 1

2 1

1 S

S

(_) 5 C3A 2 C4 ARUB 1

5 1.5",0EF 5

C3A 2 C1 CCAR 1

1 5

5 C3A 2 C2 CCAR 1

1 Y

5 C3A 2 02 C2 CFLO 4

3 2

3 FS,P SOEF 5

C3A 2 C1 CCVA 3

2 S/Y 5

C3A 2 H1 DNUD 4

1 S

5 C3A 2 02 FRAX 1

1 CEF 5

03A 2 hl HL LFLA 200 19 5

4 C,5 CME SPORE SCME FR EST.0ENSIT 5

C3A 2 Cl LSTY 1

1 G

S C3A 2 Cl LTUL 1

1 Y,FEART COTYL 5

C3A 2 C1 C1 NSYL L

2 1

1 P

S 5

C3A 2 C2 NSYL 1

2 P

5 C3A 2 04 NSYL 1

4 5

C3A 2 01 C1 CALB 1

2 1

1 S

S 5

C3A 2 C2 C2 QALB 1

1 1

1 Y

Y 5

C3A 2 Cl CFAT 2

1 S

5 C3A 2 C2 C2 V0EN 1

1 1

1 C

5 C3B 1 Cl C1 ARUB 15 9

2 2

Y/S S

5 C3B 1 03 ARUB 1

2 5

038 1 Cl CCAR 1

1 Y/S S

C3B 1 C2 C2 CCAR 2

1 2

2 P, STUNTED 5

C3B 1 C1 C1 CFLO 2

4 1

2 P

l 5

C3B 1 C4 CFLO 1

4 SOEF 5

C30 L HL Cl CPAC 3

4 1

1 C

5 C3B 1 F1 F1 CNUD 5

2 1

1 Y

.5 5

C30 1 01 JVIR 1

1 S

]

s 5

C38 1 Hi H1 LFLA 24 5

3 2

C,100 IN PLOT 5

038 1 C2 LSTY 1

2 FS,5U FRCM C3-4 CD BASE 5

C3B 1 C4 LSTY 1

4 '.

2DEF

1 TABLE J.

RAk CATA FOR 1976 ANC 1979 SAPLING, SHRUB, A AC NCN-h0C0Y SPEC IES IA STAND NUMBER 5

O, LE%EL DENSITY CCVER 1979 PERFCRMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 5

C3B 1 C1 NSYL 3

1

$s,5 5

C39 1 C2 NSYL 1

1 F

5 C3B 1 C4 C4 NSYL 1

1 5

6 1.0",P

$5,aCEF 5

C38 1 C1 C1 PSER 2

3 1

1 C,1

$$,5 5

C32 1 C1 CFAL 1

1 S

5 03B 1 C1 SALB 1

1 S

5 038 1 01 UNKS 1

1 S, SPEAR LF,TCOTH 5

C3B 1 01 VBRN 2

1 1

5 038 1 C2 VBRN 8

3 30EF 5

038 1 C3 VBRN 1

2 5

C3B 1 C2 VVAC 5

2 F,C 5

038 1 C3 VVAC 1

2 F,C 5

C3B 2 02 CCAR 2

1

$5 5

C3B 2 C1 CFLO 2

1 5

C3B 2 C2 C2 CFLO 4

1 2

1 P

5 C32 2 Cl CGVA 2

1 5

5 C38 2 F1 DNUD 3

1 S

5 C3B 2 bl HL LFLA 77 14 4

3 C

SOME FR 5

C3B 2 01 Cl LSTY l

1 1

1 Y

S,0EF 5

C3B 2 C2 LSTY 4

2 K

5 C3B 2 C3 C3 LSTY 1

2 3

3 SU CF 00 03-2" MS g

5 C32 2 C4 04 LSTY l

1 5

6 2.6",0

(

5 C3B 2 02 NSYL 1

1 F

5 032 2 C3 C3 NSYL L

1 3

2 CEF

$$,20EF 5

C3B 2 LL RUSS 1

1 CN COWNED TRUNK 5

03B 2 02 02 VPRU L

1 2

1 CF,P,(A00E0 INFO) 5 03B 2 02 C2 VPRU 1

1 2

1 P

5 C3B 2 Cl VSTA 1

1 F

5 C3B 2 02 VSTA 1

2

$ 5,.

5 C4A 1 02 C2 ARUB 1

1 2

1 F

5 C4A 1 C1 CFLO 1

1 Y

5 C4A 1 C2 C2 CFLO 2

1 1

1 CEF 5

C4A 1 H1 Cl.CMAC 6

5 1

1 C

NOT FR 5

C4A L C1 CCVA 3

1 OEF,5 5

C4A 1 C2 COVA 1

1 CEF 5

C4A 1 03 CCVA 2

4 OEF 5

C4A 1 H1 hl CNUD 5

16 1

1 S

S 5

C4A 1 F2 CNUD 3

1 FR 5

C4A 1 F3 DNUD 1

1 FR 5

C4A 1 C1 Cl JVIR 1

1 1

1 S

S 5

C4A 1 H1 El LFLA 70 6

4 2

SCME CLDER OC 5

C4A 1 C1 LSTY 1

1 S

S C4A L C4 LTUL 1

5 2.3" 5

C4A 1 C5 LTUL 1

5 20EF 5

C4A 1 C3 hSYL 3

3 CEF,X 5

C4A 1 C1 CALB 2

1 5

5 C4A 1 C2 CAL 9 2

1 K FRCP OEAD 04 5

C4A 1 Cl QFAL L

1 S

j ()5 C4A L C2 C2 CRUB 1

1 1

1 Y

S 5

C4A 1 CL SAL 9 1

I S

5 C4A 1 C1 CL SGLA 3

1 1

1 C

ss

TABLE J.

rah CATA FOR 1976 AND 1979 S APL ING, SHRUB, A AC NCN-WOC 0Y SPECIES Ib STAND NUMBER 5

O LE%EL DENS ITY COV ER 1979 PERFCRMANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 h, RED PETICL E 5

C4A 1 C1 UhKS 2

I 5

04A 1 C1 C1 VDEN 1

1 1

1 C

S 5

C4A 1 C2 C2 VDEN 1

1 1

1 C

5 C4A 1 Cl VITI 2

1 CEF 5

C4A 1 01 Cl VSTA 2

4 1

1 P

5 C4A 1 C2 C2 VSTA 1

1 1

1 P

5 C4A 2 Cl ARUB 5

1 S

5 C4A 2 C2 C2 ARUB 1

4 1

2 P

S 5

C4A 2 C2 CFLO 2

2 5

C4A 2 C3 CFLO 1

2 5

C4A 2 El CMAC 1

1 5

C4A 2 Cl 01 COVA 1

1 1

1 S

DEF,5 5

C4A 2 H1 DNUD 1

1 S

5 C4A 2 h1 F1 LFLA 100 19 6

5 C,50ME SPORE SCME FR EST.D 5

C4A 2 Cl LTUL 1

1 G,FEART-LF 5

C4A 2 HL Cl MREP 50 11 1

1 EST.0ENSITY 5

C4A 2 C1 C1 CALB 2

1 1

1 S

S 5

C4A 2 C1 Cl SGLA 4

3 1

1 C

$$,5 5

04A 2 C1 C1 VSTA 1

3 1

2 C

5 04A 2 C2 C2 VSTA 2

1 2

2 C

S' 04A 2 03 VVAC 1

2 PS,0,P

()5 C48 1 C1 C1 ARUB 4

4 1

2 Y,P S

5 C48 1 C2 02 ARUB 1

1 1

1 Y

S 5

C48 1 C2 CFLO 1

1 Y,P 5

C48 1 C1 CMAC 1

1 C

5 C4B 1 01 01 COVA 3

1 2

1 S,(INFO ADDE D)

S,DEF 5

C48 1 C3 COVA 1

2 DEF 5

C48 1 H1 F1 CNUD 1

1 1

1 Y

S 5

CAB 1 G1 G1 GRAS 1

1 1

1 C,NARRO LF 5

C48 1 H1 HI LFLA 150 15 5

5 C,SCME 00,5CNE SPORE 5

C4B 1 01 LSTY 1

1 S

5 CAB 1 C1 LTUL 4

1 G,FEART-LF 5

CAB 1 H1 hl MREP 50 7

1 1

C, GREEN ESTIMATEC DENSITY 5

C48 L C1 Cl QALB 3

1 1

1 Y,BN LF S,CNE IN 3EC T BR 5

C48 1 C1 CFAT 3

1 S

5 C48 1 Cl SALB 2

1 5

5 C48 1 01 C1 SGLA 4

5 2

1 Y

5 C48 1 C1 Cl VDEN 1

1 1

1 Y

S 5

048 1 C2 C2 VDEN 1

1 1

1 INS BR,MS 5

C48 1 01 VSTA 1

1 (INFO A00EO) 5 C48 2 C1 Cl ARUB 1

1 1

1 S

S 5

CAB 2 Cl Cl CCAR 1

1 1

1 S

$$,Y 5

C48 2 C2 CCAR 1

1 P

5 C48 2 C2 C2 CFLO 1

1 1

2 P

5 C48 2 Cl CMAC 3

1 C

5 CAB 2 C1 COVA 2

1 S,P 5

C4B 2 H1 F1 CNUD L

6 1

1 S(ARE FALL GERMINANTS?) EST BCTH

()5 C48 2 H1 bl LFLA 150 20 5

5 5

C48 2 C1 C1 LSTY 4

6 1

2 Y,G S

5 C48 2 C2 C2 LSTY 1

1 2

1 P

S l

5 C48 2 C2 02 NSYL 1

1 2

1 CF,0EF

$s,30EF

TABLE J.

R4h CATA FCR 1976 AND 1979 SAPLING, SHRUB, AhC NCN-h000Y SPECIES IN STAND NUMBER 5

O t

LE\\EL DENS ITY CCVER 1979 PERFORMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79

=

=_

5 C48 2 Cl CFAL 1

1 S,CF 5

C48 2 C1 C1 CPRI 7

1 2

1 S,CF S

5 C48 2 C2 02 CPRI 8

4 3

2 C,NAME?

S 5

C48 2 C3 CPRI 1

1 F,1NS BR,NAME?

5 CAB 2 Cl VAES 1

1 P

5 C48 2 Cl VITI 3

1

$$,Y,0EF 5

CSA 1 Cl 01 ARUB 2

1 1

1 S

S 5

CSA 1 C3 C3 CCAR 1

1 1

2 P

s s E ST B OTH 5

CSA L C1 CFLO 3

1 F

5 C5A 1 C2 C2 CFLO 2

2 1

1 P

SDEF 5

CSA 1 C1 CMAC 3

1 5,Y 5

C5A 1 C1 COVA 2

1 S

5 CSA 1 C2 COVA 1

1 S

5 CSA 1 H1 H1 DNUD 1

2 1

1 YELL 5

CSA 1 Hi HL LFLA 118 19 5

4 C,SOME SPORES SCME FR 5

CSA 1 01 LSTY 7

1 5

5 CSA 1 C3 C3 LSTY 1

1 1

1 EDEF EST BCTH 5

05A 1 C1 LTUL 1

1 S

5 C5A L C1 QFAT 1

1 S

5 CSA 1 C1 FOSA 1

1 S

5 CSA 1 02 ROSA 1

1 SOEF 5

CSA L C1 Cl SGLA 1

1 1

1 CEF

$5

. s) 5 CSA 1 C2 C2 VDEN 3

1 1

1 C

EDEF 5

CSA 1 Cl VSTA 1

1 CEF 5

CSA 1 C2 VSTA 1

1

$$,0EF 5

CSA L C1 VVAC 1

1 CEF 5

CSA 2 C2 ARUB 1

2 MS 5

CSA 2 C3 ARUB 1

2 'P 5

CSA 2 C1 CFLO 2

1 CEF 5

CSA 2 C2 C2~CFLO 6

2 2

1 P

DEF 5

C SA -2 03 C3 CFLO 1

2 4

3 P

1 DEAD, 30EF 5

05 A 2 Cl C1 COVa 1

1 1

1 S,YEL,P S

5 C5A 2 C3 C3 COVA 1

1 2

2 CEF DEF 5

05A 2 FL ONUD 9

1 Y

5 C5A 2 Cl FGRA 1

1 5

5 CSA 2 H1 FL LFLA 86 14 4

3 C,SOME SPORES SCME FR 5

CSA 2 01 CAL 8 2

1 5

5 CSA 2 C1 C1 CCCC 1

1 1

1 S

$5,5 5

05A 2 C2 SGLA 1

1 55, 5

05A 2 Cl VDEN 1

1 INS BR 5

CSA 2 C1 Cl VSTA 2

1 1

1 55 5

05A 2 C2 C2 VSTA 1

2 2

2

$5,aDEF 5

C58 1 C3 CFLO 1

2 P

5 CSB 1 C6 CFLO 1

2 EDEF 5

058 1 HL C1 CMAC 2

1 1

1 C

5 CSB 1 F1 CNUO 2

1 Y,5 5

05B 1 01 C1 EAME 5

14 1

1 C

SDEF 5

C5B 1 C2 EAFE 4

2 BRALL,DEF PART (O 5 C50 1 C3 EAME 3

1 C

5 058 1 Cl FRAX 1

1

$$,DEF 5

C5B 1 C2 FRAX 1

1

$$,S,DEF

./

^

TABLE J.

FAh CATA FOR 1976 AND 1979 S AP L IN G,

SHRUB, 1

AhC NCN-h0CDY SPECIES IN STAND NUMBER 5

O L %EL D ENS ITY COV ER 1979 PERFORMANCE 1976 PERFORM.

ST C T 4 76 79 SPEC. 76 79 76 79 1

5 C58 1 H1 F1 LFLA 59 7

3 2

C,SOME BR,FR 5

C5B 1 b2 PTCM 1

1 S7,P 5

C58 i C2 CPHE 1

1 S,20EF 1

5 CSB 1 Cl SGLA 5

1 S

5 CSB 1 Cl SRCT 3

1 5

058 L D1 VROT 1

1 5

C58 L C1 El %STA 6

2 1

1 INS BR 5

058 1 C2 VSTA 1

1 C,F 5

C58 2 C1 C1 ARUB 1

1 1

1 S

S 5

C58 2 C3 C3 ARUB 1

1 3

2 P

5 C5B 2 01 CCAR 2

1

$$,5 5

CSB 2 01 CFLO 1

1 5

C58 2 C2 C2 CFLO 2

1 2

1 P

5 058 2 H1 01 CMAC 6

1 1

1 C

SOME FR 5

C5B 2 C1 C1 COVA 1

1 1

1 S

DEF,5 5

058 2 C1 hl DNUD 16 33 1

1 S

S 5

C5B 2 H3 DNUD 2

1 DD,IhFL 5

C58 2 C3 FRAX 1

3 5

058 2 H1 FL LFLA 16 20 5

5 C,SOME SPORE SCME FR 5

CSB 2 C1 QALB 2

1 5

5 C58 2 C1 C1 CFAT 2

1 1

1 S

$$,5 5

CSB 2 Cl UNKS 1

1 Y,CPP LF, ENTIRE, REC F ET I

,( ) 5 C5B 2 C1 C1 V0EN 1

1 1

1 C

S.

5 C5B 2 01 VITI 1

1

$$,DEF 5

C6A 1 C2 C2 ARUB 2

2 1

2 F

Y 5

C6A 1 C2 C2 CCAR 1

1 1

1 Y,P 5

C6A L C2 C2 CFLO 2

1 1

1 CEF 5

C6A 1 C1 CMAC 1

1 FR,0 5

C6A 1 01 COVA 1

1 S

S C6A 1 C2 COVA 4

2 Y,.Y E L L, P 5

C6A 1 C3 CCVA 1

2 P

5 C6A 1 hl FL ONUD 3

15 1

1 Y/S S

5 C6A 1 C2 02 FRAX 1

1 1

1 CEF

$$,S,OEF 5

C6A 1 C3 C3 JVIR 1

2 3

2 C

5 C6A 1 H1 H1 LFLA 200 18 5

4 C,SOME SPORE SCHE FR 5

06A 1 C2 LSTY 2

2

~

5 C6A 1 C3 C3 LSTY

.1 2

3 2

PS OF 2,P j

5 06A 1 Cl LTUL 2

1 S

5 C6A 1 Cl NSYL 1

1 S

5 06A L C3 NSYL 1

3 DEF,D 5

C6A 1 Cl CALB 1

1 5

C6A L Cl SUNK 1

1 OEF 5

C6A 1 03 SUNK 1

5 DEF,MS 5

C6A 1 C3 VPRU 1

2 DEF 5

C6A 2 01 ARUB 1

1 S

5 C6A 2 C2 C2 CCAR 1

1 1

1 CF,X,CEF 5

C6A 2 H1 C1 CMAC 12 9

1 1

FP,0

.SCME FP.

5 C6A 2 C1 CL COVA 1

2 1

1 S

S 7g gj5 C6A 2 F1 DNUO 3

1 S

5 C6A 2 C1 Cl ICPA 2

3 1

1 5,2G S

5 C6A 2 C4 C4 JVIR 1

1 5

3 X,3.2"

TABLE J.

PAb CATA FOR 1976 AND 1979 S A PL ING, SHRUB, A AC NCN-WOOCY SPEC I ES IN STAND NUMBER 5

LE\\EL CENS ITY COV ER 1979 PERFCRMANCE 1976 PERFORM.

ST C T A 76 79 SPEC. 76 79 76 79 5

06A 2 Hi H1 LFLA 125 17 4

3 C,SOME 00,50ME SPORE 5

C6A 2 C1 C1 LSTY 1

1 1

1 SU OF 00 02 S

5 C6A 2 C2 C2 LSTY 2

2 2

2 SU FRCM 00 5

06A 2 C3 03 LSTY 2

2 3

2 X

5 C6A 2 C4 LSTY l

5 5

C6A 2

?! PBIF 2

L YELL,Y 5

06A 2 C6 PVIR L

6 5

C6A 2 C1 C1 CALB 1

L 1

1 S

S 5

C6A 2 C1 SGLA 1-1 C

5 C6A 2 Cl UNKS 1

1 INS BR,Y, CILIATE OPP LF 5

06A 2 C1 VDEN 1

1 S

5 C6A 2 Cl VVAC 1

1 CEF 5

068 L C1 Cl ARUB 1

1 1

1 P

S 5

C6B 1 C2 ARUB 1

1 F

5 068 1 C1 CCAR 1

1

$$,5 5

06B 1 C1 Cl CFLO 2

1 5

1 Y,MS 5

068 1 C3 CFLO 1

1 LARGE BUT BENT OVE 5

C6B 1 C4 CFLO 1

5 1.3.1.5",MS 5

C6B 1 C1 CMAC 1

1 C

5 C6B 1 C1 COVA 2

1 S,YEL 5

C6B 1 C2 C2 COVA 1

1 1

2 CEF,0 DEF,Y O5 5

C6B l C1 CSPP 1

1 S

C6B 1 H1 F1 CNUD 3

8 1

1 Y/S S.

5 060 1 h1 H1 LFLA 150 15 4

3 C

5 C6B 1 C1 LSTY 1

1 G

5 C6B 1 C2 LSTY 1

1 Y

5 068 1 Hi F1 MREP 50 6

1 1

C FR 5

C6B 1 Cl NSYL 1

1 CEF,Y 5

C6B 1 C1 Cl CALB 1

5 1

1 S

S 5

060 1 C2 QALB 1

1 P

5 C6B 1 C1 CFAL 1

1 S

5 C6B 1 CL SGLA 1

1 Y,0 5

C6B 1 C1 SUNK 1

1 S

5 C6B 1 Cl VDEN 1

1 S

5 062 1 C1 C1 VSTA 1

4 1

1 P

ss,0EF 5

068 1 03 VSTA 1

2 55 5

C6B 2 Cl 01 ARUB 2

1 1

1 S

S 5

C6B 2 C4 C4 ARUS 1

1 3

2 C,P,CK IF IN PLOT,CN EDG 5

C6B 2 01 C1 CCAR 2

2 1

1 Y

ss,S 5

068 2 C3 CCAR 1

2 CEF 5

C6B 2 C1 C1 CFLO 3

3 1

1 S

S 5

C6B 2 H1 C1 CMAC 3

6 1

1 2FR,0 5

068 2 Cl COVA 4

2 C,P 5

C6B 2 C2 C2 CCVA L

1 1

1 F

5 C6B 2 El DNUD 1

1 C

5 C6B 2 Cl FRAX 1

1 CEF 5

C6B 2 C3 03 FRAX 1

1 1

2 DEF 55

/~

060 2 H1 bl LFLA 150 16 4

3 C

l-} 55 C6B 2 03 C3 LSTY 3

2 3

2 C,5U FM OLCER 00 5

C6B 2 C1 01 hSYL 1

1 1

1 Y

$$,5 5

C6B 2 C2 NSYL 1

1 C,CEF l

~

TABLE J.

rah CATA FCR 1976 ANC 1979 S APL ING, SHRUB, Abt NCN-WOODY S P EC I ES IN STAND NUMBER S

LE\\EL D ENS ITY CCVER 1979 PERFCRM ANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 5

C6B 2 HL HL PBIF 1

1 1

1 YEL S

5 C6B 2 01 PQUI 1.

1-S 5

068 2 C1 C1 CALB 2

8 1

1 S

S 5

C6B 2 02 CALB 1

1 S

5 C6B 2 02 QRUB 1

1 C

5 C6B 2 H1 UNKH 1

1 Y, CRENATE OPP LF 5

C6B 2 C1 LNKS 1

1 5

5 06B 2 02 VBRN 2

2 EST DENS 5

C6B 2 C2 VVAC 1

2 MS,0,0EF 5

11A 1 01 ARUB 6

1 S

5 IIA 1 H1 Cl CMAC 1

9 1

1 C

5 11A L C1 C1 COVA 1

1 1

1 S

S 5

11A L C2 C2 COVA 3

1

'2 2

Y 5,0EF 5

llA 1 H1 bl DNUD 4

10 1

1 Y

5 llA 1 C1 Cl EAME 3

5 1

1 C

5 llA 1 C1 JVIR 1

1 S

5, 11A 1 C3 JVIR 1

2 X

5 11A 1 H1 bl LFLA 54 8

4 2

C SOME FR,SOME AT LO 5

11A 1 L1 LICH 1

1 5

11A L C1 LSTY 1

1 S

5 LLA 1 01 LTUL 1

1 S

5 11A 1 L1 MOSS 1

2

()5 ILA 1 C2 C2 NSYL 2

1 3

1 EDEF

$5,0EF 5

llA 1 El C1 PSER 1

1 1

1 S

$$,5 5

llA 1 01 C l PVIR 1

1 1

1 S

ON RCTTING LOG,5 5

11A 1 C1 C1~ QALB 1

2 1

1 S

S 5

11A 1 C1 Cl CFAT 1

1 1

1 5

$$,5 5

llA 1 Cl VDEN 1

1 Y

5 11A 1 C2 VDEN l

1 5

11A 1 C1 VSTA 1

1 C

5 11A 1 C2 02 VSTA 5

1 3

1 C

5 llA 1 C2 VVAC 1

2 PS,20EF 5

11A 2 C2 C2 CCAR 1

1 1

1 SU OF OLDER

$5 5

lla 2 C1 CFLO 3

1 Y

5 11A 2 C2 CFLO 1

1 5

IIA 2 C3 CFLO 1

2 MS,30EF 5

llA 2 bl CMAC 4

1 5

11A 2 C1 CCVA 2

1 S,YEL 5

11A 2 C3 CVIR 1

3 OEF 5

11A 2 C4 DVIR 1

5 DEF 5

llA 2 C1 C1 EAME 64 43 2

1 C

5 11A 2 02 C2 EAME 2

2 2

1 C,BR OEF,BR 5

llA 2 C2 JVIR 1

2 5

11A 2 C3 JVIR 1

2 STUNTED,0 5

llA 2 H1 LFLA 9

1 5

11A 2 C4 NSYL 1

4 CF,0EF,<l" 5

11A 2 C5 C5 NSYL 1

1 5

3 C F,0, X CEF 5

11A 2 Cl Cl PSER 1

1 1

1 S

$$,5

(]) 5 5

llA 2 C1 01 CALB 1

2 1

1 Y

S 11A 2 C1 CRUB 1

1 CF,5 5

11A 2 C2 CRUB 1

2 CF, STUNTED l

t

T ABLE J.

RA> CATA FCR 1976 ANC 1979 SAPLING, SHRUB, AhC NCN-WOODY SPECIES Ih STAND NUMBER 5

LENEL DENS ITY CCVER 1979 PERFCRM ANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 5

11A 2 C1 Cl VDEN 1

2 1

1 C

5 11A 2 C1 C1 VSTA 2

13 1

2 ECEF

$$,30EF 5

ILB 1 01 ARUB 1

1 S

5 118 1 C2 CCAR 1

1 Y

5 11B 1 C3 C3 CCAR 1

1 5

3 C

5 118 1 C1 CFLO 6

1 5

lie 1 C2 C2 CFLO 1

6 1

2 EDEF 20EF 5

11B 1 C3 CFLO 2

2 CEF 5

118 1 H1 Cl CMAC 4

4 1

1 C

SCME S 5

118 L Cl Cl COVA 2

2 1

1 S,30EF S

5 112 L F1 CNUD 11 1

FAINLY S 5

118 1 F2 DNUD 1

1 ECEF 5

118 1 C1 JVIR 1

1 S

5 118 1 H1 F1 LFLA 12 8

1 2

C 5

118 1 Cl LSTY 2

1 S

5 11B 1 C6 LSTY 1

7 5

llB 1 01 LTUL 1

1 G

5 118 1 01 PQUI 1

1 CF,0EF 5

118 1 Cl CALB 3

1 S

5 11B 1 C1 CBLK 1

1 CF,0EF 5

118 1 Cl CFAT 1

1 S

O5 11B 1 Cl SALB 1

1 S

5 118 1 01 VITI 1

1

$$,0EF 5

118 1 C1 Cl VSTA 7

L L

1 PS 5

118 1 C2 VSTA 1

1

$$,30EF 5

11B 2 01 C1 ARUB 2

1 1

1 S

5 118 2 C2 C2 ARUB 2

3 2

2 ECEF 5

118 2 03 ARUB 1

2 ECEF 5

119 2 C1 Cl CCAR 1

2 1

1 5

$$,5 5

118 2 01 01 CCAR 3

2 1

1 S

$$,5 5

118 2 H1 C1 CMAC 2

3 1

1 C

5 118 2 C1 C1 COVA 1

1 1

1 S

DEF 5

118 2 02 C2 COVA 1

1 1

1 EDEF,Y Y,DEF 5

112 2 C3 COVA 1

2 C,EDEF 5

lie 2 H1 F1 CNUD L

2 1

1 Y

5 112 2 05 FGRA 1

6 5

118 2 Hi HL LFLA 20 10 3

2 (CCUNTING BUNCHES OF SPR 5

118 2 C1 C1 LSTY l

5 1

1 G

S 5

118 2 C1 LTUL 1

1 G

5 118 2 01 hsYL 1

1 S,CF 5

lle 2 C1 QFAL 1

1 S

5 118 2 C2 CPRI 1

1 S

5 112 2 01 SALB 1

1 5

5 11B 2 Cl CL SGLA 3

2 1

1 C

5 118 2 C1 VPRU L

1 S

5 118 2 C1 VSTA 1

1 5

12A 1 C2 AMEL 1

1 5

12A 1 C1 CFLO 2

1 ECEF

!.s.

5 12A L C2 C2 CFLO 1

4 2

2 EDEF Efr BOTH l

l 5

12A L C3 CFLO l

2 ECEF l

5 12A 1 LL CLAV 1

1 CRANGE

.I

TABLE J.

rah CATA FCR 1976 ANC 1975 S APL ING, ShRLB, AhC NCN-wCCDY S P EC I ES IN STAND NUMBER 5

O LE%EL DENS ITY CCVER 1979 PERFCRMANCE 1976 PERFORM.

ST CT 4 76 79 SPEC. 76 79 76 79 5

12A 1 H1 01 CMAC 1

2 1

1 C

FR 5

12A 1 C3 C3 COVA 2

1 2

2 CEF DEF 5

12A 1 Hi DNUD 4

1 Y

5 12A 1 H2 DNUD L

1 0

5 12t 1 C2 10PA 1

2 C

5 12A 1 C3 C3 ICPA 1

1 4

3 C

5 12A 1 Cl LTUL 2

1 G,HEARTLF 5

12A 1 L1 MOSS 1

1 GN WCOD 5

12A 1 02 PSER 1

1 ECEF 5

12A 1 Cl RNUD 1

1 CF 5

12A 1 L1 RUSS 3

1 RED 5

12A 1 C1 C1 SGLA 9

7 1

1 C

$5,5 5

12A L C2 02 VSTA 5

3 2

2 2CEF 5

12A 2 C1 CFLO 1

1 5

12A 2 C2 CFLO 1

1 5

12A 2 01 01 COVA l'

1 i

1 S

5 12A 2 C1 C1 COVA 1

1 1

1 5

5 12A 2 C1 10PA 1

1 Y

5 12A 2 C2 C2 IOPA 1

1 1

1 C

5 12A 2 C4 JVIR 1

4 D

5 12A 2 03 LSTY I

3 5

12A 2 Hi Hi PREP 32 16 3

1 C

'( ) 5 12A 2 C3 C3 NSYL 1

1 3

3 2CEF 5

12A 2 C4 C4 NSYL 1

1 5

5 2.0,SDEF 5

12A 2 Cl PSER 3

1

$$,5U 5

12A 2 C1 C1 CFAT 1

1 1

1 5

$$,5 5

12A 2 C1 C1 SGLA 6

4 1

1 C

$$,S 5

12A 2 C2 SGLA 1

1 C

5 12A 2 Cl 01 UNKS 1

1 1

1 S,RUGATE, CRENATE 5

12A 2 C3 C3 VDEN 1

1 3

1 C

5 12A 2 C2 C2 VVAC 41 5

4 2

ECEF 5

12B l Cl ARUB 2

1 3DEF,5 5

128 1 C1 CFLO 3

1 5

128 L C2 C2 CFLO 4

3 2

1 C,&DEF,(INFO ADDED) 5 128 L C3 C3 CFLO 2

3 3

3 C,20EF 5

128 1 C4 C4 CFLO 1

1 5

6 1.6",0 DEF 5

122 L C1 CMAC 1

1 Y

5 128 1 C1 C1 COVA i

1 1

1 S

5 128 1 02 C2 COVA L

1 1

1 Y

5 128 L C2 C2 DVIR 1

2 2

2 CF,20EF DEF 5

128 1 C3 DVIR 1

3 CF,DEF 5

128 1 C4 C4 CVIR I

1 5

4 1.6",3DEF,X,CF 5

128 1 01 IOPA 1

2 5

128 i Cl LTUL 1

1 G,C 5

128 1 H1 FL PBIF 2

2 1

1 YEL,Y S

5 128 1 C2 PSER 1

1 5

128 1 CL SGLA 2

1 Y,C 5

126 1 Cl C1 VSTA 15 2

1 1

ECEF,0

$5,MCST DEF I( ) 5 5

17G 1 C2 VVAC 2

2 CEF,C 128 2 Cl Cl ARUB 2

3 1

1 S

S 5

128 2 C2 C2 CFLO 5

6 3

2 ECEF

\\

TABLE J.

RAk CATA FCR 1976 ANC 1979 SAPLING, SHRUB, Ab C NCh-h0C0Y S P EC IES IN STAND NUMBER S

O LE%EL D ENS ITY CCVEP 1979 PERFCRMANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79 5

12B 2 H1 01 CMAC 4

6 1

1 C

FR 5

120 2 C1 CCVA 1

1 S,YEL 5

128 2 C2 C2 CCVA 2

1 1

2 Y

5 12B 2 03 C3 COVA 2

1 5

2 SOEF 5

12B 2 C5 CS COVA L

1 6

6 3.9",YEL aDEF 5

12B 2 H1 HL CNUO 3

5 1

1 Y,5 S

5 128 2 H2 CNUO 1

1 5

128 2 C2 C2 10PA 1

1 1

1 Y

5 128 2 C1 JVIR 1

1 S

5 12B 2 H1 H1 LFLA 22 3

2 2

C EST COVER 5

128 2 LL MCSE 1

1 CN DEAD WOOD 5

12B 2 C1 Cl CALB 3

9 1

2 S

S 5

12B 2 C2 QALS 1

1 Y

5 128 2 C1 01 QFAT 1

1 1

1 S

$$,S 5

128 2 02 POSA 1

1 5

128 2 C2 SALB 1

1 5

128 2 01 Cl VDEN 1

1 1

1 Y

Y 5

128 2 C2 C2 VSTA 4

3 2

2 EDEF 3

13A 1 C2 C2 ARUB 1

1 1

1 ECEF 5

13A 1 C2 CFLO 1

1 5

13A 1 C3 C3 CFLO 1

1 2

2 ECEF,MS r-5 13A 1 hl Cl CMAC B

13 1

1 SCNE FR

(

5 13A 1 C1 COVA 1

1 5

5 13A 1 Cl LSTY 1

1 S

5 13A 1 C2 PQUI 1

1 5

13A L C1 Cl QALB 1

1 1

1 ECEF,Y S

5 134 L C2 C2 CALB 3

1 2

2 PS,a0EF 5

13A 1 C2 QFAL 1

1 EST BCTH 5

13A 1 C2 C2 VDEN 1

1 1

1 ECEF 5

13A 1 C3 VCEN 1

1 20EF 5

13A 2 Cl ARUB 2

1 5

5 13A 2 C3 03 CFLO 2

2 3

3 3CEF

+ 1 DEAD 5

13A 2 C4 C4 CFLO 2

2 5

4 20EF 5

13A 2 LL CLAV 1

1 TAh,00 1

5 13A 2 C1 CMAC 1

1 C

5 13A 2 C2 NSYL 1

1 CF,30EF,Y 5

13A 2 LL RUSS 1

1 RED CAP 5

13B 1 C4 C4 CFLO 2

2 6

6 1

8",2.0" 5

13B 1 H1 C1 CMAC 1

5 1

1 1 FR, REST S 5

138 1 C2 COVA 1

2 5

13B 1 Cl DVIR 4

2 CF,30EF 5

13B 1 C3 C3 JVIR 1

1 2

2 X, STUNTED BROKEN & PART DEA 0 5

13B 1 L1 MUSH 2

1 5

138 1 02 PSER 2

1 5

138 1 01 PVIR l

1 S

5 138 1 C2 CFAL 1

1 5

13B 2 C3 C3 CCAR 1

1 3

1 ECEF,X 5

138 2 C1 CMAC 1

1 S

(

5 138 2 C2 C2 CCVA 2

1 2

2 NS,YEL BASE SPROUTS FROM S

13B 2 C3 C3 COVA i

1 2

3 CEF, TOP 00

+ ONE DEAD & BASE l

5 138 2 C3 JVIR 1

2

TABLE J.

rah CATA FCR 1976 ANC 1979 SAPLING, SHRUB, AhC NCN-WOCCY SP EC I ES IN ST AND NUMBER S

O LE\\EL DENSITY CCVEP 1979 PERFCRMANCE 1976 PERFORM.

ST C T # 76 79 SPEC. 76 79 76 79

=--

5 138 2 01,CALB 1

1 S

5 138 2 C1 Cl CFAT 1

1 1

1 S

$$,5 5

138 2 02 CPRI 1

1 5

138 2 C2 QRUB 1

1 Y,CF 5

13B 2 01 CL SGLA 5

3 1

1 S

$5 5

138 2 C2 SGLA 1

1 Y

5 132 2 C1 UNKS 1

1 Y,

BRCAC OPP LF,WT UhCER 5

13B 2 01 Cl VSTA 8

4 2

1 C

5 132 2 C2 NSTA 2

1 ECEF 5

14A 1 h2 AASP 1

2 YEL,0,CK 10 5

14A 1 01 ARUB 3

1 S

5 14A 1 L1 CLAV 1

1 TAN 5

14A 1 H1 Cl'CMAC 6

1 1

1 Y

SOME FR S

14A 1 C2 COVA 1

1 CEF 5

14A 1 03 COVA 1

2 DEF 5

14A 1 h1 F1 DNUO 2

1 1

1 YEL S, INS.SR 5

14A 1 01 DVIR 1

1 C F,DEF, SU OF C3 CD 5

14A 1 C3 DVIR 1

3 DEF 5

14A 1 C2 FRAX 1

1

$$,OEF 5

14A L G1 G1 GRAS 2

1 1

1 C,hARRO-LF 5

14A 1 C1 01 LTUL 2

1 1

1 G,bEART LF S

5 14A 1 C1 Cl QALB 6

8 2

2 S

S gg

(_j 5 14A L C2 QALB 2

1 Y

5 14A 1 L1 RUSS 4

1 FED TCP 5

14A 1 Cl SALB 1

1 YEL,S 5

14A 1 01 C1 SGLA L

1 1

1 Y

5 14A 1 FL UNKH 1

1 C, SPATULATE LF 5

14A L C1 Cl VDEN 1

1 1

1 Y

5 14A 1 02 VPRU L

1 OEFS 5

14A 1 01 VRCT 1

1 YEL-GR,Y 5

14A 2 Cl 01 ARUB 1

2 1

1 C,Y,5 S

5 14A 2 C1 C1 CFLC 2

1 1

1 EDEF,Y S

5 14 A 2 C1 C1 COVA 1

4 1

2 20EF,1 SU OF 03 5

5 14A 2 C2 C2 COVA 1

1 1

2 EDEF Y

5 14A 2 C1 C1 DVIR 1

2 1

1 CF,Y DEF 5

14A 2 C1 01 EAME 17 16 1

1 C

BR E XTEN SI VE LY 5

14A 2 Cl JVIR 1

1 S

5 14A 2 F1 C1 MREP 7

11 1

1 RED FR,0 5

14A 2 Hi F1 PBIF 1

1 1

1 YEL S

5 14A 2 C3 PSER l

2

$$,DEF 5

L4A 2 C2 02 CPRI 3

1 3

1 CF,X Y

5 14A 2 C1 QRUB 1

1 SU OF 00 D2-3,CF 5

14A 2 03 QRUB 1

2 CF, INS BR 5

14A 2 C1 VITI 2

1

$$,DEF 5

148 L HL AHYE 1

1 EALF 5

148 1 C1 COVA 2

1 2CEF,Y t

5 148 L C3 COVA 2

3 EDEF 5

148 1 C1 C1 EAME 20 7

1 1

C l0, 5 148 L C2 EAME 1

1 C

5 148 1 C3 C3 IOPA 1

1 5

3 C

5 148 1 C4 C4 JVIR 1

1 3

2 x,07

TABLE J.

R4h CATA FOR 1976 ANC 1979 SAPLING, SHRUB, AhC ACN-h0CDY SPECIES IA STAND NUMBER 5

( ;

LENEL DENSITY CCV ER 1979 PERFCRMANCE 1976 PERFORM.

' ST C T # 76 79 SPEC. 76 79 76 79 5

148 1 Hi Cl MREP 7

7 1

1 C

5 148 1 L1 MUSH 1

I hT 5

148 1 C1 C1 PSER 1

1 1

1 Y

$$,S 5

14B 1 Cl 01 QALB 1

1 1

1 S

S 5

148 1 Cl D1 QSHU 1

1 1

S,CF

$$,5 5

148 1 06 QVEL 1

7 5

148 1 C1 CL SGLA 2

1 1

1 Y

$$,5 5

142 1 D1 V0EN 1

1 5

142 2 01 ARUB l

1 S

5 148 2 C2 CCAR 1

1 CF,aOEF 5

L48 2 CL CFLO I

1 S

5 148 2 hl Cl CMAC 2

8 1

l FR,1G WITH SPREAC NARR0NO FR 5

142 2 C2 COVA 1

1 S

5 the 2 C3 COVA 1

2 TOP 00,<1" 5

148 2 C4 COVA.

1 3

DEF 5

148 2 HL ONUD 2

1 YEL,lS 5

148 2 Cl FGRA L

1 S

5 148 2 C3 FGRA 1

3 C

5 148 2 01 FRAX 1

1

$$,S,DEF 5

14B 2 C2 FRAX 1

2 CEF 5

148 2 G1 GRAS 1

1 O' 5 148 2 Cl IOPA 1

1 S

5 148 2 C2 IOPA 2

2 C

5 148 2 C5 C5 LTUL 1

1 7

5 2.7" EST BCTH 5

14B 2 Cl NSYL 2

1 Y

5 148 2 04 NSYL 1

4 CF 1.7",@0EF 5

148 2 C1 Cl PSER 1

1 1

1 S

$$,5 5

148 2 02 QALB 2

1 Y

5 148 2 01 CL QFAT 3

1 1

1 S

$$,5 5

14B 2 C1 Cl SGLA 1

2 1

1

$$,5 5

148 2 Cl VDEN 1

1 Y

5 148 2 C2 VDEN 2

1 S

5 148 2 C3 VDEN 1

3 5

14R 2 01 VPRU 1

1 S

5 148 2 Cl VRCT 1

1 S

5 148 2 D1 NSTA 3

1

$$,DEF 5

140 2 C2 VSTA 1

1 FS I

o O

l

TABLES K-0.

NET ANNUAL PRODUCTION MEASUREMENTS FROM STANDS A-II(#1), C(#2), B-II(#3), B-I(#!4),

AND A-I(#5).

1979 DATA.

STAN0=1

--c,-----------

.U PLUT SUB-Sot 01ES PLANT-S nC'O T LEAF-M A S S-' -- N 3 T ES----- - - --

~

A 1

EAOE 10 10 32 0.633 g.

.;ysy g

-_...--2--"

6- ~

0. 2 9 9 -- --- --

=-

a 2

ARJ3 1

1 2

0.010 A

2 OCAR 1

5 6

0.063

-a

- d ---

AME -

- 2 9 - -- -- -- 3 2 -- -- - --- 110 -.

1. 3 6 2 --- ---

4 3

EAwE 14 15 64 0 887 o

3 4044 1

1 4

0.401 s

A 4

EAME

  • 4-----

4-18-0.109-1 A

4 TJu 1

7 2

0.523 i

d 1

EAw!

1 2

6 0.056 g

. g..

n g..-- _.-

g.....

....- 3 0

0 062---

)

e 1

EAME 1

2 4

0.084 6'

l '...... E A M E

... g........

1-4 - --0.033 1

1 5

0.081 g

g.

gag ei 1

EAME 1

1 1

0.059 b

1 EAME 1

1 3

0 047 B

- " -- 1 -'- - - E A M E ------ l -

5

---0.094 5

1 EAME 1

1 1

0.015 B

1 EAME 10 10-32 0.633 6

1 --

DAM - - - - --

1 - - -- - -

6 -- 0.114-B 1

2 ART 1

1 6

0.082 B

2 EAME 1

1 5

0.108 B-

. 2 --

AME-1

--- -- l - ----- --."- 5

-0.035 t

2 EAME 1

1 4

0.021 8

2 EAME 1

3 7

0.066

,g E A M E-

-.1

'-- 2 ---- 0. 0 8 7 d

0 2.'

E A M E-1 2

7 0.110 0,

2 EAME

'l 3-5 0.122

-EaME 1

I 4

0.081 6

2 EAME 1

1 1

0.011 6

2 EAME 4

4 11 0.136 g

. -. E A M E-- -- -- - l - ---- 2 6 - -0.075-h 2

rGRA'

.1 1

2 0.129 n

2 RU3d 1

1 3

0.062 9

g.

q u.3.,

-g

....g

... g. --.. g, g y g _

6 2

SR3T 1

1 2

0.038 6

2 SR3T 1

1 6

0.059 e

-- 2 -- --- - V I T I - -- -----l 2

0.089--

S-3 EAME' 1

2 6

0 076 6

3 EAwE 1

1 1

0.026 y.., - - -3.- - -.-. g p 5- _ -.. _. g -

- g.-

-.g-- n,ggs e

3-EA%E 1

1 2

0.038 0

3 EAME 1

1-2 0.077 y

3_ _... g p g--_ _.... g _ _._.. 2 -- - ---- 7 --- 0.17 8 -

0 3

FGRA 1

1 1

0.076 B

J 3A 4 5

5 999 0.034 g... -.. - 3

_. N S Y t--

-1

-E

--- O

-06116 B

3

$AuS 1

32 13 0 454 A(./ B 4

EAME 1

1 5

0.017

.6

- E A M E-

.--l - -

2-== --

-- 4 -- 0. 0 8 7 0

4

~ EAME 1

1 5

0.051 5

4 EAME 1

1-4 0.015 E-- - - - 4

- EME 1

1 3

3.01-8 6

4 EAME 1

l' 6

0.191

TABLE K-0. CONTINUED sni----..---------------------- siaN0=1 ---- ----------------------_----- -----

oL 3T SUB bPECIES PLANI SHOOT 1.E A F M A SS- -

N37ES'

,b o

4 EAME.

1 1

2 0.014 e

u 4---

E A M E --" - -- 1 ~ -

1 3

0.020 -

57 o

4 EAME 1

2 4

.0.097 se e

4 EAME -

1 1

2 0.020 39 o

._ 4

_.- - E t ME -- -" -- - 1"

- - - 0 4 0 52--

50 b

4 EA%E 1

1 2

0.034 51 o

4 EAME 1

1 2

0.046 g

e 4

EA4E -

1 1--~"

3' O.101--

5.1 o

4 EA4E 1

1 3

0.071 54 e

4 EA4E 1

1-2 0.026

,,3 g.._..... g g y g... _....... g

-- 2 '- - -- '- - - 0. 1 7 8 -

So

'n 4

EA 4E 1

2 0

0.021 57 3

4 EAME 1

1 4

0.048 g.

d 4- - -- - E A M E' i -- "- ---- 1"- --" - - --" 0. 0 6 9 -

~ " - " - ' -

59 o

4 EA9E.

I 1

6 0.029 70 o

4 EAME 1

1 2

0.008 71 --

1 ------ 4 f4ME 1

1


6 0.062,

~

72 d

4 EAME 1

1 4

0.032-73 s

4 EAdE 1

1 0

0.022 74 g

.. q.._.... E A M E' "- --- -

1------1---"-~

'0.032 76 d

4 EAME 1

1 6

0.093 l

76 B

4 FGRA 1

1 2

0.162 7 7 -....

3.....

4

__. g ggy. -

g._.-_ _..g_

999 _.

0.017 78-s e

4 GA 4 1

1 999 0.178 7 Q '-' u~~ - - 4 d

GAw4 1

, 1 999 0.022 50 4

--P5ER '" - "-" - - -- - ~ 2 - --- 0. 0 4 5

-M

^--

S1 b

4 SROT 1

1-1

, 0.015

)

92 C

1 EA9E.

10 10 42 0.954 3 3..... t...-

_ g. _____ _.p 3 g

--...g......

g 3

-0.021 64 C

2 CMAC 2

2 099 0.212 SS L

2 CMAC 2

2 999 0.212 0 F4UITIN3 36 C '-- ' 2 --" ' -- ' E A M E" -"

'~6-'.

-o -

0.389 87 C

2 EAME 1

1 4

0.088 66 C

2 PSER 1

11 19 0.382 39 c.

. -.. 7 g3 g

.g. _ ____.-

3. ___.._.

2 04065 90 L

2 QFAI 1

1 2

0.168' 91

.C 2

U A '4 E 1

14 8.

0.234 9g g

2 -- - - UAME t-5~~-~~-

4

- 0.068 93 L

2 U AME '

1 4

3 0.109 W

L 2

UA9E

'l 2

2 0.C13 93 C

- '- -- 2

--UAME 1'- -

-S-11 0.-189 93 C

2 UAME 1

2 3

0.089 91 C

3 EAME 7

7 30 0.443 g

c 3_

3,g,g..__.

g_ _

g.

_. 1 -~~ - 0. 0 3 8 79 C

4 EAME-3 3

15 0.160 00 C

4 Sa3T 1

1 2

0.051 01 u-

-1 C o v a -- -- --- I-- - "

1---~0.043 02 u

1 COvA 1

1 1

0.037 03 0

1, EAME 1.

'l 4

0.018 Otm 0

~~ " T -"

E A M E--

1 7

6 --" 07T7 0 O!J U

1.

EAME 1

1 2

0.025 De u

1 EAME 1

1 2

0.055 07-

'D i

EA4c.

4 1

--2 07059 tb U

1 EAME 3

3 6

0.083

'1

--. o

\\

TABLE K-0. CONTINUED


$14ND=1 U O aLUT SUG --- S21.01ES -' PLANT SHUDT -

LEAF--' HASS N O T ES-

\\_)

139 0

1 EAME 2

4 8

0.331 110

'O I

E A M E" "- - ~~

3 3

14 0.094--

111 0

1 EA4E

.2 2

6 0.094 112 0

1 EAME 2

2 6

0.166 113 0

"- 1 ---- ~ E A v E--~~-"

' 2.

2-- --~

8 -- 0. 0 5 9

- -----' ~

114 D

1 JV1R 1

1 999 0.008 115 0

1 Sx3T 1

1 2

0.207 gg3 g

g.

~

5CT- - -

1 --

r -- -- --

2 0.173 -

117 0

2 EAwE 1

1 5

0.068 115 0

2 EAME 1

- 1 9

0.061 119 0

c--

E A v !

1 - - -- - - --- l -- - -- - 0.046 120

'O 2

EAME 1

1 6

0.071 121 0

2 EaME 1

1 4

0 036 2

I?2 0

2 - -- ' E A M E -- -

r - ~ -- -

1" ".--

5 -

0. 0 7 4 123 u

2 EAME 1

1 5

0.100 124 0

~2 EAME 1.,

4 0.032

^D

"- "--- 2-- -- - E A M E-1

-- 1

  • --- 0. 0 61 125 ~

D 2

EAME 1

1 1

0.011 i?S 127 0

2 EAME 2

2*

5 0.025 2-'--

EAME'

-" - - ~3 -

3 - -- - ' 0 '" ~ ' O.146 I?B D

129 0

2 EA96 1

1 5-0.107 130 0

2 EAME 2

2 2

0.116,

131 0

2-- -- E AME '

2 2- ~

7----- 06166 17 ~

D 2

EAME 2

- 2 1

0.075 1

0 2

2SER 1

1 2

0.033 le 0

3 ----

E A ME-

-1

-- -- l-- ---

-- l '- - -- ~ 0 '. 0 1 7 135 0

3 EAME l'

1 5

0.047

~

EAME 1

1 2

0 046-136 0

3 13/ -

D~--~~3-EAME-T 1

1--- 0.008

~~~

13B D

3

.EAME 1

1 3

0 016 139 D'

3 EAME 1

1-2 0.044 3

~ E AS E-

""1 1 - -- -- - 2 07048 140 0

141 0

3 EAME 2

2, 8

0.092 142 0

3 25E9 1

1 2

0.026 143 0

3---- ~~ 2 S E 4 - -

' -1 1 -"- ~~ - - -" 0.~ 0 2 9 144 D

4.

ARJB

'1 1

2 0.004 145 D

4 4RJ3 1

1 5

0.036

"" - 0.005-146 D

4-

"" A R *J S- -

-"1---

1-147 D

4

CCAR, 1

1 1

0.010 146 0

4 EAME.

1 1

2 0.052 149 D


4--

"EAME 1-1"- - -

3 0.026 150 u

4 EAME 1

1 1

0 004 151 D

4 EAME 1

1 6

0.043 152 0 -

4-----

E A M E -" --- - - r- -- - - ~

4---- 0i033 153 0

4 EAME 1

1 8

0 048 154 0

4 EA*E 1

1 4

.0.156 155.

9 g

EAME-l- - -- -- ~ 1

-- - 4 '

06028---

156 0

4 EAME 1

1 4

0.045 1;7 D

4 EAME 2

2 4

0.093 10 o- -~~- -

^"5 2 - -- - - r t- "--~~~ ~~ ~ ~ 2 a*a3' 1.

D 4

2SER 1

1 2

0.015 150 0

4 SR3T 1

1 6

1.255-4 g>

e-WNe 9 9eM 4 Bene a-ese w

n eup

1Y' TABLE K-0. CONTINUED sia.40=2------------------------------------------

n'L.iT v

Sun ~ SPE~IE5'

~ PLANT" ~ S H O O T', ~~ LEAF

MASa

~~~~ 4 3 T E S e.

1 ARJ6 l'

1 2

0.062 A

3 3

..BDIS'-~

1 - -" ' ~ l ' ~ ~ ~'

9'

~ 0. 0 71~

A 1

CCAR l'

58 4

0.451 4

1 CHAC 12 12 999 1.060 2 F9UITING

.-. N 5 A 1

' - -* 1 2 ---~~~ ~' ~ ~~ ' - ~ l ~ - ~ 0. 9 4 3 -~~ "--- -- --- ~ ~ ~ ~ - - '

A 1

PSER 1

".3 4

0.093 PSER 1

=

1 1

3 0.049

'"--' -'~-'

s.

1

~ G tc. B ' "" i--

1~~"

9' 3

~

0.995--"

A 1

OPME 1

2 5

0.084 a

1 UPiE 1

2 1

0.041

~~'

- - - - - " - - - ~

' - ~ ~

g y

.. 3 P H ET" " -

1 3 '"

2 '-"" 0. 0 5 0" A

1 OPIE 4

7 2.

0.195 A

1 QSDP 1

7-0 0.056 4

7... _.. -.. Q V T.-- ~ ~ -

l-

'-'4~--~

2 0.260---

A 1

SR3r 1

1 2

0.052

~

4 1

543T 1

1 1

0.065 3

7. _. S ' 3 T '- - '- ~ ~ l - ---~~

1-

-I

'0. 0 48--

R A

1 SR3T 1

l' 1

0.034 A

1 SR3T 1

1.

3 0.068 g

. g.

___. SR3T-'

~ 1" - - - - ' ~ 1 * -

1---

0. 0 31-"

' - ~

a

't SH3T 1

1 1

0.019 A

L vv4C 1

52

.9 0.554 g.

2 A R'J 8-~~--

I

~ ~ ~ ' 4 - * -- - - ' 0 ' - ' O.074 (O ^

2

.ARJ8 1

1 3

0.19e A

2 ARJB 1

1 0

0.119 g,....2

- AR JB--

5 -----' -- 3 4 -' * -- ---- 6~

3'.060-801S 1

1 999 0.128 A

2 5

5 999 0.278 0 F4U111NG a

2 CM AC-3 2'-~~-

F G 4 A r - ~ ~ "" 5".

' O ' -- ~ 0.15 6"--""

A 2

FGRA 1

5 8

0.195 tw A

2 FG4A 1

2 3

0.040 A

' 2 -~~ ' G A. r4- ~-- ' '- " 1- ' ~ ~ -- 999 '~ ' 0 i OS0 6

2 sv!R 1

.1 999 1.210 A

2 PDTE.

I

1. -

999 0.050 a

g.-._.

PDTE

' - -'" 1 '2 - *

~ 1 '2--*--* * - 9 9 9 ' - -~' 0'.16 0 -

A 2

POTE 5

5 999 0.081 A

2 OPHE 1

4 3

0.146

-~~" -- '

A 2' '- GP'iE

'1--'----'-'-

3

' ~ ~ 10 - '

0~. 310- = - -

A 2

JPME 1

3 1

0.104 1

8 21 0.615 GPiE A

2 a QP'id


1^--'

4'

'-~1 0.17 2---

~;-" - " -

a 2

QVEL 1

1 4

0.087 A

2 RU3U 1

1 3

0.037 A

2 * --- - R 'J 3U -- "- " ' ' l ~ ~ " " -" 1 ---- -- ' 9 9 9 - 'O'.025--

-~~

A 2

SR3T 1

1 4

0.547 a

2 SR3T 1

1 1

0.079 A'

2 ----~~ 3 4 3 T-~ --

--'- 1 1-- -' --

~~' 2 -'

0 -~ 2 49- -

4 2

543T 1

1 3

0.142 5R3T 1

1 2

0.033 4

2

', g.- _..._.g

-. y. --.

0 - - 04177 a..

..g -

a 3

A.MfE l'

1 999 0.041 FRUITING a

ARJ8 T

2 1

. 0.095 3._ -....

3 aWJ8 1

1 3-0.054 A

3 Ad)B

,1 1

4 0.012

TABLE K-0. COIITINUED

'Y' c, T A N 3 :: d - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- PLANT -

SHOOT--

LEAF- - MASS

-- N 3 T E S-RJT GUH a

2 A

3 8015 1

1 999 0.137 2

n 3

8015- -- -

1-999 -

0.005

/

a 3

BOIS 1

1 999 0.007 s

A 3

BOIS.

1 1

999 0.105 A

3

- - - Et. i P -- ---- -

1----

1---

999 -

0. 2 4 2 - --

)

A 3

JVIR 1

999 0.963 a

3 JPiE 1

3 0.070

'I

?

a 3 -

uP iE '- -

1 1

5-0.076 - -

3 A

3 QPME-1 1

3 0.05B

+

A 3

'JPHE 1

3 0

0.0*9

!i n

3-403U-- -

-~ 1 -

1 999 -

0.073 --

3 A

3 SR3T 1

1 7

0.271 T

.A 3

SR3T 1

1 2

0.050 3

g 3__.

.S43T-1-

- -- " - - - -. 1

- 0. 0 8+ 3-

=" ~~

2 0.105 A

3 SR31 1

1 J

A 3

SR3T 1-1 2

0.124.

- - - ~ - - - -

g g

.3..

.SR3T 1 - ~ -- --- - 0. 0 4 0 2

A 3

SR3T 1

'l 2

0.013

  • 3 A

3 VVAC 1

i 45 0

0.306 g

a 3.. -.. V V A C--- -

'l- ~-----

0 - -

0.026-5 A

4 ARJB 1.-

2 2

0.507 4'

ARJB 1-3 1

0.390 b

4

...._....q__'

393g g

. _. g.. _ _ _.

3 __.

O.010-7 g

8 Q A'

4 ARJ8 I

1 3

0.009 9(

A 4

ARJ8 1

1 1

0.098 0

A

- AfcJ8 -

- l --- -- - 0. 0 6 6 1

4 ARJ8' 1

1 4

0.050 2

4 4'

ARJ8 1

1 4

O.141' 3

g

..._ g ag.;g_ _ __g__

_ _ g.

,3 g,. 0 4 3 -

4 A

4 CMAC 7,

7 999 0.716 2 FRUITING 3

A 4

FGRA 1

5 8

0.121 A

-- - - 4 FGWA

-I 2

-1 0'.016

/

4 4

LJAP 1

1 999 0.078 b

A 4

LJAP.

I 1

999 0.139 y

4 "4-NSTL

'1 4 0-1.513 DA_8

.1 1

3 0.057 0

'a 4

i A

4 OAw0 1

4 15 4.171 e

a

4. - -- - Q A';,8 1- -'

1 0.239 J

a 4

'3A_8 1

7 0

0.760 1

2 11 0.284 a

4 OPME 5

..g.

_ gag g.

_g 7._.

07223 5

4 4

QPHE 1

1 3

0.073 7

A 4

QPiE 1

1 4

0.061 g.;

4

-S R 3 T --- -- -- ' - - 1

--- ---- --- 2 --- 15 7 3

~

9 A

4 SR31 1

1 0

0.108 0

a 4

SR31 1

1 1

0.028 t

3...

...g Sagg ___.. ____ g._ _ _

g_ n _

0 --

0.-119 l2 A

4 SR31 1

1 3

0.198 e

1 ARJB 1

1 0

0.022 3

3... '... g __. - _. a 9 m

- - -- l ------

- l- -. - - -

0 "0.024 y

5 e

1 ARJS 1

1 1

0.016

-1:

1 1

0.041 6

d 1

ARJB 7

u - -- --- ' 1 APUt?

-1 1

3 07113 o

e 1

ARJ8 1

1 1

0.011

TABLE K-0. CONTINUED l*Y' 51AND-2 ----------------------------------- --.-.

. ;, I 3uff ~ SPECIES'

  • P ANT' SHOOT" LEAF -~

M A 5 5----- N 3 T E S %

L 9

1.._amUS.

1_.

1 4

0.060 Aggg l

_. g. _

6 0. 0 1 3 --- ~~~- --~~~ ~ - ~ -

5 1

ARJ3 1

1 0

0.065

..1.._...

LMAC 10

... 1. 0 999 1.305 4 F4UITING 3

3 3

g._ _

. g g 9...

0.012"- -

~ - - " ' -

?

1 0ALS 1

1 2

0'.907 4

1

's A L 3 1

9 16 3.644

~ " - -

3 1

L:ME-' --" -

1-1

~

3 0. 0 7 5" --'"

3 1

'JPhE:

1 6

15 0.707

~ ~4 1

RUWJ 1

1 999 0 118 g

3..

qqgj

..... 3..

. g...... _. 9 9 9

- 0. 0 7 0- -~~

- - ~ ~ ~

3 1

h u B J-1 1

0 0.077 3

1 RuBJ-1 1

999 0.122 g

3

. S R O T"- -~

1-I - ----

1 0.058-a 1

SROT 1

1 1

0.032 2

0.'036

?

I 5'r< 0 T 1

1 g

. y

.._..SFOT-- ~~--"I

,' ~

-I 1

0.060 3

1 SKOT 1

1 1

0.032 d

1 SROT 1

1 2

0.093

---~~

)

5R*a'~-'

' l'~ - ~ ~ ~ ~ ~ ~ -- ~ ^ 1 - ~

2 0.T66 3

1 5 ROT 1

1 4

1.001 i

3

.. 1. -

SROT-I'-

1 4

0.796 gg

__....g..___._...g__._

3

~~0 320 h

1 VSTA 1

2 0

0.055 3

1 V V AO-1 26 2

0.074 g

2 7ARU3 T- ' " - " ' ' l-' - -- ~ ~ 0"- -" O'. 0 1 0

~--

0 2

AR' 3 1

1 2

0.062 J

3 2

ARO3 1.-

1 0

0.006.

p

-- 2

-- tM A c 1 1-- - ---" - - 1 1

'999---

3.15e 5 740ITING-~ ---

0-

'0.171 3

2 COVA 1

1

.999 0.530

?

2 LJAD 1.

1 3

-'2'-

'N SY..

1--"

2 1

'O;86e 4

2

,JALS 1

3 0

0.846 9

2 QPHI 1

1 2

0.114 g.

2 R U ITJ --- ' - ~ ~ 1- ~---- " 2 999 -

'O'898---~

-~

~

9 2

'm u6 J 1

2 5

0.059 b

2 RUBJ 1

1 4

0.029 2 ~ ~- ~~ ~ ~ S R O T- - ----' l ' - -

' ' ~ l' ' -- -- --" 2 ~ ~ ~- 0. 0 2 8 '

~ - - -

2 S

2 dROT 1

2 7

0.603 4

2 SROT 1

1 1

0.025 2

2

-" SRO T

- -- 1 1

1 0.05u 9

2 SROT 1

1-1 0.032 3

2 vDE4 I

1 3

0.035 g

2 -"-

'/ D E V- - * - -

1---~ - --- I 2 - -- -

0.070 3

ARU3 O

30 999

'+. 0 4 9 1/2 4

3 3

ARUB 1

999 92 10.448 2/2 g.

3 -

-'A R U 3-- -"- -'1

~."---" ' 2 -- - --- -

1 - ~ -- 0. 0 6 2---

- ~~~

s 3

ARU3 1

1 2

0.029

( m b-3 ARJ3 1

1 4

0.024

.W3 -- - - -

3-ARus 1~

-" 1 3

0;019 l

3 3

4RU3 1

1 2

0.013 3

3 ARUS 1

1 2

0.055

- " - - -.3 ARU3

- I-1 3

0;00o 3

3 ARJ!

1 1

2 0.056

?

l l

I fe J TABLE K-0. CONTINUED 6

.......................... __ STAND-g _...... _........ -_-_......--__.--....

Or

<ue

- os i cS

- nLAsr s oor tt Ar-4 A Ss- ---

s3TES---

n 3

ARJB 1

1 0

0 018

~~~~'

o 3

AWJU ~

1 1

0 0. 0 0 9 --~ -

n 3

CFLO 1

4 1

0.069 o '.

3 CF 0 1

2

.0 0.032 3

3_"--

C F LO -~ ~-

1 ~ ~ ~ ~ ~ ~ " ' 8 G ' - ---"- - 2 6 - "

3.011-~~' -

o

.3 CFLO 1

2 0

0.014 0

3 CF LO 1

2 0

0.021 d

3' CFLO - - -

1---

5~ - - - -

0-0.10 7- " ~ " " --

~

o 3

CHAC 5

5 999 0.613 1 Fau1 TING o

J Q A f4 1

'1' 4

0.457

-- -- ~ ~ ~ -

6 3 - ---

  • rJr.H-" ~ ~ ~

1 -"

~~ r- -

3'-

0.354 e

3 QFa1 1

1 1

0.039 6

3 QPHE 1

6 23 0.878

~

3_ __.. Q P H E" - -" " '- " I-- - - ~ ~ 5 - - -

4~

0.179-o 3

QPHE 1

2 6

0.068

.o 3

QPHE 1

2 0

0.156

- ~~

u 3 -- --- Q P i E - - - -" " 1 -- ' - -

1 - - " -- - - - 7 0.153--

d 3

QPHE l'

2 1

0.061 3

3 QPME

'1 1

2 0.093 3 ~.. - _. S R 3 T '

-- - - ' I'- - - ~~

1

-~~2 0.066 o

3 SR3T 1

1 2

0.070

____..g..____... 3___._.._ g. 'O.036

-1 1

1 n

3 SR3T

- - ~ ~ ~ ~ ' '

0.031 g....

3

. g g ),-

ha 3

SR3T 1

1 1

0.033 L

3 SR3T 1

1 1.

0.026 3.s.-

SR3i 1


~ 1 - ~

3-~- 'O.i46 d

3

. SR3T 1

1 1

0.014 6.

3 SR3T' I

1 1

0.052 d - '"-' 3-SR3

~ ~ "I - -- 7 1-~~0.037

-~-"-i 3

SR3T 1

1 2

0.105 o

c 3

SRDT 1

1 1

0.023 g... _.

3._ _ _ g 9 3,..

._..g__.

.g

.g 0.033

- ~ ~,

d 3

SR3T 1

1 2

0.075 d

3 SROT 1

2 2

0.053 3

..__g.

-.. A R J 8"-- --" 1""--

1

- ~- 0. 0 63 2

4 8.R J B 1

l' 1-0.056 o

4 ARJB 1

2 1

0.058 1

3 g

- -- A R J tr- --

1-3"--

0.015

= - - - -

o 4

ARJ6 1

1 3

0.011 o

4 ARJB-1 1

2 0.013 3

._....g.,

. ag.jg g

...g___

__.___ 3 0.032-

---f o

4 ARJB 1

1 4

0.010 o

4 CMaC ',

5 S

'999 0,.438

~1 FR ITING e

g..

COVA l --" - -- - 3 1 -"--- -- -

0-~

2.074

~ - - - -

o 4

FGRA.

1 3

0 0.082 1

1 2

0.012

_ g, __' _ _ _ _ 3

.e 4

LSTY

_7_.ag.336

.g

. g g_,p,__

4 QP1E 1

1 5

0.056 o

4 QDHE 1

1 4

0.057-O.d

_..,... g _ _ __ _ y p y g. __.._. _. _ g. _ =

3 --

- =0.186 l

8 4

'QPHE 1

3, 0

0.048 o

4 QPME 1

1 4

0.042

.4 - -

3P1E 1

i-7 0.5 47 Q HE 1

4 14 0.513

?

d i

l i

i l

lJ TABLE K-0. CONTI!iUED

________'J.____________ t.1e.a-a _________________ ____.c ________________

'.vi' sue -

  • 53ECIES PLANT' SHOOT ""LE AF " ~ 'HASS ~~ 90TES-

-i 3

4

. SGLA 1

1 1

0.043 g

4....

3 R O T " -- --~ --~ ~~ l ' -

1 2 '-- -- " 0. 7 4 8 '"-- - "

~

4-SR3T 1

1 1

0.045 s

5 4

SR3T 1

2 0

0 103 g

4

" SR3 s

--'1""---'

1-

~~" 1 0'.050 -

~

S 4

SR3T 1

1 2-0.384 6

4 VSTA 1

6 1

0 151 9

4 VSTA' l'

~

38 -

B -'-"

0'.488

- ' ~ " " '

6 4

VS1A 1

31.

1 0.862 C

1 ARJ3 1

1 3

0.016 C

'I'------'

ARJ3--~~~'

r ~~~

~ 1--

~~ ~ ~ 4 ' ----~ 0 ' 0 31

' - ~ " - -

C 1

ELEP 1

1 999 0 382 C

1 ELEP 1

1 999 0.484

~ ~ ~

C 1

-' ELEP' r-.

1 - - "~ 9 9 9 -- 0.09(

C 1

103A 1

999, 999 35.761 C

1 103A 1

999 999 47.810

'----~~

C

"- I

- 103A

-- 1 ---

1-3

" 0 '. 5 2 2-C 1

losA 1

4 11 2.681 C

1 103A 1

2 11 1.194

'-~

C

~~-'

l'---

~~'P i-1 --' -

7

~~ 2 3----" 0. 5 7 3 C

1

'JPiE 1

1 5

0.139 C

1 3 pie 1

9 1

0.147 c._.._.

3

_.._.) p.g g -

.3__

_ _ g_

4

~0.097 C

1 2 P M E-1 11 11 0.379 1

1 1

0.291 C

1 SROT

,O C

~2 -

, - 3'J 3-

-I

- -- 1 4-0.304

- - - - ~ ~ -

~ ~ - ~

C 2

ARJB 1~

1 3

0.006 C

2 ARJS 1

3 7

1.799 C

'--~~2' El IP 1'

~ '2-99j "0.477

~

C 2

103A, 1

2 6

1.012 C

2 10DA 1

3 14 1.597 C ' --- 2

-'- 10 3 A-

--- T e

le 1~ 853 C

2 95YL l'

99 2

10.179 C

2 35ER 1

1 3

0.057

~

C " -- -' e

% _B' - =

3 3

U ~.' 8 2 4 C

2 3P1E 1

10 14 0.416 i

C 2

QPiE 1

3 11 0.230 C

2-

-" ~ S R J T -----

'I--"~~~-' ' 1 -- '- --- " l ~ - -

O. 0 4 4~

7 0.445 C

2 SR3T 1

1 7

0.750 C

2 VDEN 1

2 i

C.

---'3

~AR U B '--

1-=


1 3

0~.006 1

0.022 i

C 3

ARJS 1

1 C

3 ARJB 1

1 0

0.038 i

C " - -- ' ARUS---- ' -

1 1- ~

0- - -

O'.' 6 2 8 T"

C 3

ARJB 1

1*

0 0.048 2

C 3

. ARJB 1

2 0

0.034 y

c.__.-- 3 --- a 9 J u ----- 1---

2 ---

6-0.'296 C

3 ARJS 1

5 3

0.627 i

C 3

CMAC 8

8

.999 1 126 C'----

3

- TR A r-

~~-

r ~~~

--~ ' ' B-0 3.994 9

C

'3 I O 3. A 1

6 18 2.506

' {'s C

3 LJa?

1 3

26' O.119 1

7 C-7 3Fai i

i e

u.185

~

C 3

'a P HE 1

4 7

0.355

TABLE K-0. CONTINUED t

r,iANO=p'________ _____ __________~. _____...._____.

aLDT SUR-'-

53ECIES PLANT SHUDT' LE AF" -

MAS 5

- -' N 3 T E S' "- ~ ~

C

'3

.; P, E 1

1 6

0.157 C

3 3 P -t E

'I l'

7 0. 0 5 4- --- ~ ~ ~ ~

C 3

3P,E 1

3 14 0.285 C

3 2P,i 1

1 6

0.033 C

3 - ~~ -~ ~s P i !""-- - --

Y " - "

1----'

4"

O.102"

~~

C 3

3vE.

1 2

6 1.386 C

3 SR3T 1

1 3

0.081 4

C J

VDEN 0

12 999 0. 4 9 0 '"-- 1/ 2" " -

C 3

vDEN 1

999 40 1.902 2/2 C'

4 ARJS 1

4 0

1.268 C

4

~

ARJ3 l'-

3 8'

O.254"=

~ - -

C 4

ARJ3 1

1 2

0.019 C

4 fPJB 1

.1 5

0.012 C

4 -~~'--

ARJB - ~ ' -

1-

~

1 1 --

  • 0. 0 08 -

C 4

aRJS 1

1.

4 0.029 C

4 A P.J B 1

1 7

0 151 C

4'" -- AR U3'

~1'--~~-" - ~ 7 - ' ---

4 "-

0 378

~

C 4

OPJM 1

4 8

1 136

~

C 4

ELED 1

2 999 0 255 C

4

'RIR

~1 1- - -" ~ 9 9 9 ' '-

8.040'

~ ' - -

~-'

C 4

_TJL 1

1 0

0.636 C

4-DVIR 1

1 999 0.021-C ~ ~ - ' '- ' '4 '-- ~~ ~ 3 P i e.

l ' ' -~

2---

3---

0.0377

- ~ ~

C 4

3PHE 1

1 4

0.067

~

C 4

QPHE 1

12 31 1.324 OC -- -

4 ---

> P 4 E

- i-----

14- ---

7 e -- =2 35 e-C 4

avEL 1

1 2

0.219 C

4 SR3T 1

3 3

0.067 O " - -~ - ' 1 ----- - A R U S ------ I' --~ ~- ~ - --- - l--

--I

'07144 D

1

'ARJB 1

2 0-0.051

~

D 1

ARJB.

1 2

5 0.066 9-

.g---

ARJ8

" 1 ' --

3 1

M 081 0

1 ARJ3' 1

l' 2

0 135 0

1 aRJB 1

1 2

0 178 g

. g _____. a J s -

--1 i

2' O.022

~U 1

ARJB 1

17 20 1.202 D

1 OMAC 3

3

999, 0.108

.O

~

1 - - --

3 0 T E

1 5 -- ~ - - ' -" 1 $ ~-- - ~

9 99 ' ' ~ 0.182--

0 1

30TE 1

1 999 0.030

~

0 1

3Pii 1

1 5-0.087

.D'

'l

' 903J l

~

1--"---

9 9 9 "~ 0. 0 5 8 1

RUBJ 1

1 999 0~.061 U

0 1

RU3J 1

1 999 0.178

.g....

3. _..

9,g g.g __.......

1_g_.

999 _ 0.082 D

1 SR3T 1

1 2

0.089 D

L SROT 1

1 2

0.049

....-0

--1 S 4 0 T -- - -~ ~ -----'

t----

2

-0i137 D

1

'54DT 1

2 4

0.144 0*

l' SR31 1

1 2

0.099 1

0'-

' -- ' ~ 1 - - -" "J N T N - - - -- - ~ 1 -" --"

9 9 9 -

~~999 07148 l

n0 2

ARJB 1

1 2

0.021

~

VD 2

ARJB 1

20 50 6.276 '

'D-

-~2 ARUB

-1 1

2 07021 0

2 ARJB 1

12 0

0.785

\\

weo e-

.ow..

,9% -

~

~

TABLE K-0. CONTINUED

.......------------.......--,gAu3-2---------------------------------....----

') I sus hoECIES PL' A N T Sn001 LEAF 4 ASS' NOTES 2

44Ub 1

12 0

0.345 u

2 L5TY 1

21

~

11 6.709

- ~

u 2

L5TY 1

14 35 2.673 0

2 LdTY 1

1 5

1.180

~

u

" d~ '- -- -'- @ ' ' -'-

1 1

4 -'-

0. 6 5 B-- ~ - -

- - * ~ ~

b 2

GkHE 1

1 5

0.105 b

2 r,Pnt 1

31 5

1.396 L.

P

%50 1

4 0

0.195 '

u 2

OVEL 1

1 3

0.452 v

2 av60 1

1 0

0.040 U

2

~ QJ60 i

7

'-' 9'9 9' "--- 0. 0 5 2 '

~~-

u 2

oJBU 1

1 2

0.092 o

,2 SALB 1

2 4

0.770 g

2 -- ' ' -'- 's R O T ' ' - " - ' - 1 "" -- - ~ - " ' l~

. 7 1- ----- O '. 015 '

---~~

D 3

ARUB i

'l 2

0.057 0

3 Adud 1

1 4

0.024 0

3 C M A C- ~ ~ '~~ ~ 5 --- - ' ' b 999 0. 6 8 4 ~

1 F R'J.I T I N G- ~~

~ ~ '

FGRA -

1 1

4 0.121 u

3 0

3 F3RA 1

1 2

0.168 3 - ; _-._ O T E'-- " ~ ~ ' 3 ' - - - - ~ 3 " ~ - ~ ~ 9 9 9-0.029'-----

-~

~~ -

g p

0 3

QALB 0

999 4

0.911 1/2-O

,.3...-- onLB -

1

.74 999 9.65B 2/2

'- ~~ ~ - -

g 3

3'~~'~~-'

1'-

1.0 '. 0 9 4 - ~ ~ ~ ~ ~

0 3

QALB 1

2 1

0.413

)

p 7

.. 0.388 i

. 3__.-

C P H E 1

7

    • -'-- ~

O '. 0 7 9 ---

v 3

OPHE 1

3 10 0.209 D

3 OPHE 1

1 2

0.079

~

0 a

OEPP

- ~~ l ' -

1 " - - -- -

0' " " " 0. 1 1 5"-- - ----

U 3

OSPP 1

1 0

0.101 0

3 RUBU 1

1 3

0.121 g.

..... -. 3 s'RO:

~~ 1 ' - - -

1

~ ~d -- - -

0'.028 0

3 SROT 1

1 4

0.1,40

  • 0 3

540T 1

1 9

0.379 0

T ---- ~SRO l' " - ' - " m T---- -

5~

~

0.337

~

0 3

SWOT 1

1 3

0.080 u

3 VITI 1

1 0

0.293 0

3 - - '

V V A C' 0~---~-'

11 "-

2 0.075-

'1'/7' R AMETS

- ~ - -

D 3

VVAC 0

57 4

0.205 2/7 RAMETS U

3 VVAC.

0 16 0

0.029 3/7 4AMETS 0

3 ' "-

QV A C----

0-5---"'

O 0.541

" 4/7"1 A'4ETS 0

3 VVAC' 0

.5 0

0.370 5/7 RAMETS 0

3 vvAC 0

38

  • 2 0.279 6/7 RAMETS 0

3 -- -"- 0V A C - --" '

1- " ~' ' '. 4 3 ~

2- '-- " 0.10 2 -"

7 / 7.W A M E T S - "---~

0 4

Akus 1

3 4

0.313 J

4 a<uB 0

36 999 1.690 1/2 2.M H'IGH.

3

__4 -

p.g

-- 3_..

9 9 9 --._

g..--.. g. 8 7 5 2'/2-2 WH I GW ----

O 4

CMAC 6

6 999 0.616 1 FRJITING l

,.0

...g._. _._EAME

..__-.3.-_.--.

5'

-' ' O. 3 5 7 4

23 23 3

0.359 g, g,,

l 4

QPHE

]

1 4

0.065 g*

l 4

OPHE 1

1 6

0.158 0'

4-QFHE

---T-

.7

--" 16 ---'

1. 2 29 p

4 s5 0T 1

1 2

0.084 l

e

-=~

~.

4 TABLE K-0. CONTINUED

..__-.._-...____..._--.-------- s1AND=2 ---------------------------------- ------

3

%DT

SUR, SLECIES '

PLANT SHOOT "-' LE AF MASS ~"

N3TES 39 D

4 SR3T 1

1 1

0.021 1

.0 D

4 SRDT-""'

1 2

2'- -

0.031 - -

- ~ ~ "

________.i.____...:--___.____.STarm-3__------__---...___..--..-..__...-_.

P.Di '

SJM SPECIES PL T

SHOOT LE F 4 ASS NOTES I

C L1A0 132 132 999 13.668 15 TRUITING a

0 CMAC 15 15 999 13.668 a

0 Lava-l' 3

12

0. 487 "-

l ' B J0- --

A 0

eb<A 0

20 999 l'.311 1/2 a

0 FGRA 1

999 76 B.806 2/2 3

0-

-- P V I T--- - ~ ~ 1 - --

1-999"'

O'060 a

0 OAL3 0

24 999 2.791 1/2 1-999 86 15'.753 2/2 a

O CALB

. 0 - - ""--

9-- -- 9 9 9 0.353 - ~1/2 3

g....,, g gg-a 0

QALB 1

999 16 1.948 2/2 e

0 QAL3 0

30 999 3.223 1/2' a

0-u AL9-l ' --

'--999-

- 92 17.920 ~-- 2/2-a 0

UAL3 1

2 2

0.046 4

0' UAL3 1

1 3

0.055 3....

g 9ggg.__..._.

3..__ _.1.- - --1 0.027 -

7 a

0 QAL3 1

1 2

0.055 0

QAL3 0

19 999 1.393 1/2 O' a a

0--

"J AL3 --

1""-

9 9 9-- - -

.4 9' 9.118-2 / 2 =--

~

a o

DaL3 1

1 3

0.030 3

0.136 o

0 UALB 1

l 3

.. __. 0 ---" - D ALS

-- l ---- - " 0.10c 4

0 UALB 1

1

~3 0.048 A

0 LAL3 1

1 3

0.101 a

--- ' 0:- ---- t A L 3- "-- -

1 "--

1 1

'0.043 -

1 2

0.107 a

0 QALB 1

i a

0 OAL3 1

2 2

0.079 a

- 0

- -Oats 1 - - ' " - - - ' l -

-'- 2

- 0.111 a

0 UALB 1

1 3

0.081 A

0 QAL3 1

1 2

0.048 3

0'---

2 a L 8--- -

1 1 -- - - -- -

--- 0. 2 2 9 A

0 LAL3 1

1 3

0.176 a

0 QALS 1

3 7

1.094 a

u-O A L B - -- - --- -- l - -

-- 1 -- - -- 3 --- - - 0. 0 7 6 -

A 0

- QALS 1

1 2

0.169 4-0 WAL3 1

2

.11 2.021 a

0

- L AL9

-- -- ---- - - -- - - - 0. 2 8 8 a-0 UaL3 I

1 4

0.324 a

0 DAL3 1

2

-8

't.381 a -- --- -~~a C 00

--0----

7 ---- 9 9 9 -- - --- 9. 4 5 7 1/2 a

0 DC00,-

1 99.9 21

'+. 3 21 2/2 a

o OVEu 1

1 2

0.110 Oa 0 ----- u v ir -

1- --- -

l--- -

! -- " ~ 0 ; 150 1

a o o4o o

s^'3 A

0 5AL3 1

1 3

0.175 a-

- - or SALS 1

1 7-0- 5 %

a O

SAL 3 0

13 -

999 0.637 1/2

./

l

i TABLE K-0. CONTINUED c1c.39:3

___________________________________c LLM c,v 5 5PECIES

_ ANT SHOOT LEAF M A SS ' ~~" NOT ES ' - ~

A 0

SAL 6 10 999 SO 3.568.

2/2 a

u

' SAL 6 "~

""~0 7

999 0.354~ - ~ ~ 17 2'

~ ~ ~ ~

t.

D SALB 1

999 47 6.124 2/2 A

u S A1.8 1

1 6

0.442 3

n...._. 5 A L IT - -~ '"- ' l' - '-

~1

~

T

' O.540 -

u U

SALB 1

1 5

0 226 A

0 SaLB 1

1 6

0.531

~

~ - - - ' - ~ ~ - ~ "

A 0

SALE 1

1 9

1.247" A

o VVAC 0

30 0

0.211 1/10 RAMETS A

0 VVAC 0

16 0

0 081 2/10 RAMETS 3

g....

V V A C~- - -- - 0 ~ --"" ~ 13'

~

0~~~

0 115--

3/10~ RAMETS-"~~"

A 0

VVAC 0

8 0

0.047 4/10 RAMETS A

e VVAC 0

32 0

0.086 5/10 RAMETS y

g

_ _ _.V C "'- ~

---~ 0 14 " ~

~ ' 3 ~~

0.12 4~ -- "6 /10~ R AMETS "

a 0

VVAC 0

24 0

0.327 7/10.RAMETS, A

0 VVAC 0-11-0 0.074 8/10 RAMETS A

' 0" VVAC D

h

~6 - " 0.042 9/10' R AMETS-~ ~

A 0

VVAC 58 15 1

0.118 10/10 RAMETS 6

0

... C H A C... -.._. 4 3..

43 999 5.805

.g 97 B

C GBAC 0

62 999 0.717 5 RAMETS/50 3RP U

4 bdAC -

0 999 145 1.561 5 RAMETS/50 GRP 6

0'

-'GbaC-~~~-

0-- ~~ ~ 9 9 9-l'05' 1~.803 5 R AMETS/50-" 3RD 6

. O GbaC 0

56 999 0~.358 5 RAMETS/50 3RP 6'

O 66AC

'O 68 999 0.384 5 R~AMETS/50 GRB 6

0 '~ ~

GBAC -

0 -- ~ ~ ~ 9 9 9 ' -- " ~

2 0 0-~ 2',0 8T S' R AMETS/50- 3R9

~

b 0

GBAC 0

94 999 0.671 5 R!.aETS/50 GRB b

o GBAC 0-999 346 4.128 5 RAMETS/50 GRB 6

0' GBIC

~0

~ 6 5' ----" 9 9 9 0.507 "5 RAMETS7 D 3RB b

0 G~dAC 0

999 176 2.103 5 RAMETS/50 3RE b

0 GBAC 0

45 999 0.714 5 R'AMETS/50 3RB 0~

GDAC-0"'"~ " 9 9 9 194 2.'84~3-"T R AHETS/50 ' 3RE b

0 GBAC O

33 999

'0.226 5 RAMETS/50 GRB

_'O GBaC 0

999 120 1 512 5 RAMETS/50 3R8 6

g g.---- G B A C-- ~--

'O.

69

~ 9 99 -- 0.' 812-- 5 R'AM ET 5750- 3R8 G' AC 0

'999 134 2.949

$ RAMETS/5'O 3R d

o 4

o

'O GBAC 0

95 999 1.289 5 RAMETS/50 3R g

o G9AC" 0--~- ' 9 9 9 7 ~

335~ ~~47441 5 11AMETS750 3R 6

0.

GdAC 0

89 999 0.777 5 RAMETS/50 3R o

u GHAC 509 999 325 4.336 5 RAMETS/50 GR 999..... 999._...

3.430 d

0 OALB 1

1 3

0.165 0

0 QAL8 1

'l 3

0.154 6

0 " ~ -- ~ ~- Q A L B ' - " " "'~~ ~ 1 ~ ~

1~~

~~2' O.034

--9 H

0 QALB 1

1 1

0.015 0

.O QALB 1

1 3

0.082 R

0 M B --"- - "' 1 ~

- l'

~4 0.150

' ' ~ ~

B 0

QALB 1

1 4

0.100 d

0 Q AL8' 1

1 1

0.061 B

", 0 -~~

O ALB -'" --

1"-- --~ 1

-" - l- - 04028 1

8 0

UAlb 1

1 1

.0.040 O's H

0 QAL6 1

1 3

0.074 B'

u-oM S-1 1

3 0716U e

0 UALB 1

1 3

0.181 g

..~._...-..

TABLE K-0. CONTINUED 0

_____.______________________.._____qnyo_;___________________________________.

2_0 T b)B SPECIES P_ ANT SH 30T '~'

LEAT MASS NOTES'~~"-

Od u

uAL9 1

1 3

0.066 5

0 QALH 1--

l' ' '

5 0 253 -

- ~ ~ '

3 D

f>ALB 1

I 1

0.029 3

C OALB 1

1 2

0.087 5

0~~

~

QALB ~~ ~ ~ ~ ~

1" "-

1 1

0. 0 61 "-~ -~ ~ --

0 QAL9 1

1 2

0.029 3

G GALB 1

1 3

0.191

- ' " ~ ~ ~ ~ ~ ~ '

3 0

CAL 6 1

1 3

0.060 3

0 CAL 8 1

1 2

0.144 6

0 L' VEL 1

1 3

0.213 S

0 OVEC- -

0"

~"

12 999 1.502' "

1/2 0

DVEL' 1

999 46 22.057 2/2 g

S 0

kubu 1

6 14 0.413 3

0 - ' --

S A L B -~~~ ' ~~ 0 - -" - - -

4

9 9 9 ~ -- ~ ~ 1.993

'1/2-"2 M MIGH ~

3 0

SALB 1

999 41 7.368 2/2 2M iIGH B

D SALB O'

17 999 1 349 1/2 g

,g._..

. S A L B- - "-" 15-

- 999' 132----

8.' 817 -- ~ 2/2-

- ~ ~ ~ -

3 0

SALB 1

1 1

0.043 3

0 SALR'

]

'2 8

0.281 3

0' SALB~~ -" "1"~~-

"" 1" - ~ ~ ~ -

3'--'

' 0. 4 71-~~ ~~ ~-

~~

d O

SALB

'l 1

4 1.418

~

3 0

SALB 1

1 5

0.305 3:

0'.

Y S T A- - ~ ~ ~ ~~ T - ~ ~ ~~ ~

8-~~

24 " 1. 0 2 2 -"

,h 0

VSTA 1

12

,15 0.519 0

V 1

11

'25 0.776 3

y. _ _ _.

S T A _ _..

0 13 " -

999 -"- 0.182 T/20/105~7A4ETS-3 3

0 VVAC 0

4 999 0.038 2/20/105 RAMETS 12 999 0.036 3/20/105' RAMETS d

~ 0 VVAC 0

3 0-'*~ VVAC'~~-""~0--

~ 21-"-"

9 9 9-~ ~ 0. 0 7 5'-

4/20/105"RAMETS-d 0

VVAC 0

17 999 0.208 5/20/105 RAMETS 3

0 VVAC 0

30 999 0.091 6/20/105 RAMETS 3

3 '- -

/VAC-

~

0 2

999' O.029-7/20/105 7AMETS-B 6

VVAC 0

15 999 0.058 8/20/105 RAMETS VVAC 0

12 999 0.050 9/20/105 RAMETS 3

0 ' - " VVAC ~ ~~--' 0 - - "~~ ~- - -~~ 6 - -" 9 9 9 "--~" 0. 0 2 0----

10 /2 0 /10 5 ' R A " E T 5 3

0-b b

VVAC.

0 3

999 0.013

,11/20/105 RAMET@

s J

VVAC U

36 999 0.208 12/20/105 RAMET@

3 G

V V A C'

- 0" ~ '-' ~

29 999 0.375--- 13/20/105 R AMET@

~

b 0

VVAC 0

5 999 0.033 14/20/105 RAMET@

'd

')

vyAC 0

5 999 0.008 15/20/105 RAMET@

g g _ __

__.V V A C-0 - - - '" 18

~

9 9 9 --'

O.038 -- 16/20/105' RAMETS d

v VVAC 0

9 999 0.020 17/20/105 RAMETE d

G VVAC 0

57 999 0.286 18/20/105 RAMET@

3 0.'~

V V A C -~ ~- ~ ' ~

0 - - -" - ~ ~ 1 0 -

999 ~ ~~ ' O.102 -

19/20/105 R AMETS 19 999 0.093 20/20/105 RAdETS d

0 VVAC 0

0 1183 999 5.701 REM. 85/105 RAME 3

0 VVAC

-- 5 3- ~ ~ " 9 9 9 - ~-

4 9 8 "-- ' 3'. 63 3- " T O T A L. t. EAVES'r0R g

g-.-

7VAC 3

0 VVAC 0-l'7 18 0.540 1/18/128 RAMETS

,3 0

VVAC 0

10 3

.0.089 2/18/128 RaMETS 3

n.

VV AC---"

  • D- - -' - - - - - ' 7 - - ' 0 "' - " 0. 0 5 0 - - ~3 /18 /128-RAMETS-l 39 0

VVAC 0

~36 1

0.187 4/18/128 RAMETS l

d 0

VVAC 0

, 30 6

0.209 5/18/128 4AMETS l

D' VVAC

-- o

-27 6

0-103 6/18/128-RAMETS-d 0

VVAC 0

7 2

0.045 7/18/128 RAMETS

.s

r TABLE K-0. CONTINUED tY'

!..---------------- _ --------- - sisND=3 l

'l 508

~ ' SPL'Cl ii PLtNT'~~ SHOU 1 L E. A F ' "

' M A 5 5' ~~ ~ N O T E S~ " " -~

0 VVAC 0

51 17 0.444 8/18/128 RayEIS 3

0

'VVAC-~

0

~ ~

9 4

0.057-9/18/128 RAMETS'~

l 3

0 VVAC 0

12 0

' O.025 10/18/128 RAv.ETS 3

S 0

VVAC 0

2S 0

0.356 11/18/128 7AME15 3

0 ' --~VVAw G

= - "- - ' 7 --- -

' 0 ~-

0 '. 012--"

12/18/128 ' R A ME TS- -

b 0

VVAC 0.

4 11 0.574 13/16/128 RAMETS 8

'u vvaC 0

12 1

0.058 14/18/128 UAMETS 3

0 VVeC-0~

9-3 0.037 -

15/18/128 RAMETS

'3 A

VVaC 0

.33 0

0.099 16/18/126 RAMETS 3

0 VVAC 0

18 7

0.137 17/18/128 RAvETS 3

0

~ ~ ' V V A C-- ' "--- 4 0' 34--

S" -

0.2 50--' 18/1 B/128' R A ME T 5 '

C O

ARub 1

1 2

0.094 0

0 APUB 1

1 2

0.047 C

0 ' --"-" A R O S - ~ -- -~ ~ 1

~~~1'~~~--

3 ' - --' O. 0 7 4-C 0

CMAC 40 40 999 3.535 1

999 0.178 C-O PVIR 1 _. _.. 9 9 9

~-"

)..

99 5.172 g.....--_ p y g C

0 PVI4 1

999 999-16.911-C 0

QALB 1

1 1

0.099 C'

'0

' - " 0 A1. 3~~ ~ "

1--

1"-~~

" 3 ' --- - 0. 0 3 3----

~ ' ~ ~

C 0

QALB 1

1 2

0.191 C

0 UALB 1

1 3

0.108 C~~-

0 - "

OAL B " -- -

1-- - " ~

1-1 ~ ~ ~ ~ 0. 01 7 ----

0 QALB 1

1-E 0.157 0

OALB 1

1 3

,0.347

~

0' " - " ~0 A C o -

1


~"I'"'-'-

4 -.'

'O 096"-

c 0

OALS:

1 1

3 0.121 C

0

'OALB 1

1 5

0.150 C~~

- ~ 0-- --" 0 A ES---" - ~ 1 - ~ -

-- I

'l - 0.058 C

0 0ALs 1

1 2

0.118 C

0 OALB 1

1 2

0.105 A

~~~.5

~0.092 C-O'

- - QA o 1

L C

0 QALB 1

1 3

0.099 0

0 Q A L B' 1

1 5

0.144-C c-C AUS

--~~~1-'"-

I-- -- - -~ ~ ~ 2-~ ~ - 0 ~. 0 51 C,

0 QALo 1

l' 2

0.046 C

0 OALb 1

1 3

0.103

-- - l'

~5"

" 0.391 C

0 Q ALB- --- --

I C

0 C A.3

'l 1

3 0.099 i

C 0

QALR 1

1 2

0.116 C

n'

-- 0AC's l - -

1--- - -

2- - 0.1 7 0 --

C.

0 Q AL s.

I 1

3 0.199 C

O OALd 1

3 7

'O.593 C

C '- -- -- 0 4 8' --~ ~ ~ ~ - " 1 - ~ ' -~~ ~

' ' l '- -- ~~ -' ' ' 3 '

O.155-~~

0 0

QALB 1

1 4

0.092 C

0 QALB 1

. 1 3

0.205 C

0 - "-- O Ard 1

-- - -" 1 -

~3 0.'154

~ ~ ' '

OAL5 1

1 1

0.078 C

0 0

QVEL 1

1 3-1.624

[

l h 0 - - --- 0 V E C"--

T

- ~ ~-~ T-- -

.s 0.393 9

d 0

OVEL 1

l' 3

0.279' 0

SALs 1

5 32 4.977 5 FEET HIG4 C

~

O'-

SsCB r

4 34 5 834 21E TE95-Hi mi C

0 SALB I

1 5~

0.425 i

TAELE K-0. CONTINUED

.Y a s14Nn=3

_______________________________________c

.07 TJH SF Ft.1 E S PLANT SH30T LE AF -" -

M A S S --~ ~ ' ~"

N O T E S O

6 SA S 1

1 7

0.742 C

0 SeLB l'

1 6'

O. 2 2 3 --" - --~ ~ --- ~ - -- ' " - '

J 0

' S a L 3' 1

1 3

0 221 C

0 SA_B 1

3 9

0.183 C

0 SALB~ -

1 ~"

- 1

~

3-~~'

O. 0 81-- --

0.185 C

0 SALB 1

1 3

C 0

Sawd 1

1 1

0.026 C

0 S t,'_ b 1

l' 7

0 570 C

0 S a '_ s 1

1 5

0.548 C

0 Sr_o 1

1 5

0.176 C

0 SAL 9'-

' 1 -

1 ~ - - ~ ~ - - " 8 "" - l'.,0 8 3 --

- - ~ ' - - ' -

C 0

SA_b

- 1 1

4 0.030 C

0 SALB.

1 1

7 0.277 C

0 S A CB --"- ~T-" ' -- -" " 1"-- ~- --" 8 -" - ' 1 2 0 6 --"

C 0

SALd 4

4 37 1 534 C

0 VSTA 0'

355 999 4.512 43 RA9ETS 1/2 C

0 VSTA

--- 31 --~ ~,' ~~ 9 9 9 1069 " 20.123

= 43' R AMETS~ '2/2 ~

D 0

ARJS 1

1 4

0 065 0

0 ARJ8 9

19 11 0.589 0

n - - --

ARJB"~~""-'1"-~

~

" 1- -

  • -~ 3 0.223

=

~~ "

3 9

0.286 D-0.

ARJB 1

.h 8

999 0.549 1/2 D

o AmJ3 0

D

- ~ ~ 0 -- --~ A R US

"- -- T-

/ - ~ 9 9 9 -- -"- 4 6'

'4'.537 2/2 0

0 C.F L O 1

16 999 1 000 1/2 7

3 0

CFLO 1

999 6

0.362 2/2

.....-~0--

Crt0

--0

--- 2 9 ~ ~-"" 9 9 9 ---"' 1. 3 61

-1/2

~]

D 0

CFLO' 1

999' 23 0.995 2/2 0

'O CMAC 82 82 999 12.227 4 FRUITING D'

O ~ " - ' G 9 A C~-- - -~ ~ " 999-879 12'.268 4 5-R A ME T S-~ 1 / 2 --"

D 0

GBAC 25 221 999 3.013 45 RAMETS 2/2 D

0 GRAC U

15

'999 O.155 1/28 RAMETS D

"-- O "-

G B A C~ -"-~" 0 '------ " ' l'4 999 0'.~ 0 6 8 2/28-RAMETa 13 999

'0.130 3/28 RAMETS 0

0 G8AC 0

D-0 G9AC 0

11 999 0 089 4/28 RAMETS D'

0 '--

G 9 A C- ~ - ~ ~ 0 "" - " ~ ~ ~ 9 - -- -

999--

07 0 7 0- ~ 5 /28-9 AMET S--*

D 0

GBAC 0

2 999 0 070 6/28 RAMETS D

u G8AC 0

5 999 0.027 7/28 RAMETS O

O

~ ~'GLAC-~

O'" -"--'24 999---"- 0 171 8 /2 8" R A ME TS'-- ---

D 0

GBAC 0

3 999 0 099 9/28 RAMETS D

0 GBAC 0

2 999 0.012 10/28 RAMETS D'

n "--'" GP A C

- ~-~~ 0

"-~4 999 -

0.086---

11/28-R A M ET S---

0 0

G9AC 0

5 999 0 027 12/28 RAMETS D

o GBAC 0

2 999 0 033 13/28 RAMETS D. -

' 0 ~- ~~ -" G P AC -

0 -

2-

' 999 '-~~ 0 4 0 81 14 / 2 8-R A M E T S-----

0 0

G9AC 0

2 999 0.030 15/28 RAMETS 0-GaAC 0

6 999 0.055 16/28 RAMEls U

D-0-- - - G a A C -- - ~~ ~-" 0 --- -

1

- ~ 999 -

0'4 0 63-17/28-RAMET5 U

u GBAC' O

1 999 0.053 18/28 RAMETS

. 0 0

6BAC 0.

6 999 0.015 19/28 RAMETS j.

...0-~'

' GBAC-~~

0 -- - -- - -" ~ 8 - - - - - 999" --

0.056 20 /28-* R AME T S i

D

'O GBAC 0

2 999 0.071 21/28 RAWETS

{D n

GBAC 0

18 999 0 169 22/28 RAMETS D ~ ' '-- -

T,---- "-' G B A G

-- 0 3

999 v.018 23/28-R AMET 5 GRAC 0

2 999 0.078 24/28 RAMETS 0

0 e

./

_........ ~.... _..

..7.__....._,

TABLE K-0. CONTINUED 3,"

sianD=3 1

~ ~~

~:

D un 5.> s

'5PELIEs' D_nNT SH30T

' L E/J MA3S ~ NOTES' O

O eGbAC' O

4 499 0.044 25/28 RAMETS s

3 0'

" ' G:s A C ~ ~

~'

~0

'~

9 999 0.14 9' ~~" 26/ 28-R A M EiT S ' " ""

)

0 GbAC 0

9 999 0.053 27/28 RAMETS GBA 0

1 999 0 003 28/28 RAMETS 3

0..__._. g. C

. _.. g g.

g 9 _ _

6 2 5 ~ ~ - ~

8'. 2 6 8 T O T'AL-T.E'A V E S~ F O R-

)

0 GbAC 0

999 734 12.757 54 RAMETS 1/2 170

  • 999 2.710 54 RAMETS 2/2 -
  • )

0 GbAC 21

~~

S 999 ~'-

0.21~-'-"l?3-PL' ANT al' 3

0 NSYL

'0 4

D u-NSYL 0

12 999 0.676 2/3 PLANT #2 3

0

..aJ S Y L 2

999 52

.P.866 3/3 TOTAU LE AVES

~ ~ ' - ' ~

P S F.R ~~--

"-I-

~ ~ '2 0 ' -~ ~36 1 ; 64 6-~~

3 0

PVIR 1

131 999 12.755 3

0 PVIR 1

4 999 0.930 0

0

~ '-~ 'Oh L B 1 ~ ~ -" ~ ~~1

~

2' 0;13C

~

0 QALB l'

1 4

0.171

)

3 0

OALB 1

1 2

'0.0'31

,)

g

.. g,Lg

-_ _3_ _

y

. " "" 2 0 087 3

0 UALB 1-1, 3

0.1751 3

0

.uALB 1

1 3

0 082

)

G A i. B- - - ' ' ~ ~ 1 " ~ ' - ~ ~" 2- -- ~-- 2

~ 0.254 D

C OAL8 1

1 3

0.180 1

6 0.152 OALB_..__ _..

3...._..._.2. __

2"~

.J n

)

g g

0. m

...]

O GALB 1

1 2

0.089, O'.

DALB._._..__.I._____...

1. _._.. 2

._._0.343 O

3 0

QALB' 1

1 1

0.024 0

0 QALB 1

1 3

0.084

'O r,

oALB

-- 0

~~~~999

~ 7 9'2 51.61'3' 2-M' RI'Gn72 0

0 QALB 1

114 999 10.724 2 M HIGH 2/2 3

0 051 E o

11 999 1.631 1/2 D

0 """- O S T E 1

"999 41 8 ' 5%

272 0

0 SPOT 6

6 999 41.516 ST_A 5

999 172 2.879 2/2 3

n V

)

g.

..._....7_..._____.5-~~

-3 0'.'070 3

u VSTA 0

999 158 1.560 1/2 3

0

_..VSTA 5.

21 999 0.218 2/2

)

2 '~ ~- - ~~ ~ ~ ~0 ' 1 M

~~

~~

D 0

VSTA 1

5 5

0.058'

  • D 0

VSTA 0

6 999 0.067 1/10 RAMETS 3

0 ~ -~ ~~ ~ ~ S T K O'. ~"

7

' 9 9 9.- ~~ - " ' 0.~0 6 6 271T RXHETS--~~

V

~

5 999 0.102 3/10 RAMETS 3

0 VSTA 0

16 999 0.273 4'/10 RAMETS 0

0....._..V S T.A_ -

. _. 0...--

10 -~~ ~~9 99 ~- -- '0.112 "- 5710 RIMET 5' 9

3 0

VSTA 0

4 999 0.084 6/10 RAMETS VS b

29 '

999 0.205 7/10 RAMETS' 0.__.

_.y.T A 0~-"----~~--

1 9~----~~ 9 9 9 ' --- ~~ ~' 0 ; 2 5 3 ts/TD RANETS 0

)

D 0

VSTA 0

16 999 0.139 9/10 RAMETS 9

0 VSTA' O

11 999 0.138 10/10 RAMEiTS 0- --~~V S T A----

0 112'

- ' 9 9 9- --- ~ 1. 9 0 0 REMAINING SH03T5-O, o

vs'A is 999 854 19 ses to7a' 'cA<cs De a

'O VSTA 0

999 100 2.784 1/2 3'"

~ 0 ~~~7 5 T A T--

28-

'99v 0 322 c:/2 3-0 VSTA 0

18 999 0.079 1/2

'3'Ug

TABLE K-0. CONTINUED D

___.........__..____________.___ - STAND-3

-,-----------------------------------c ki 31 5.i e SPECIES -' DLAN1 SHOOT"

~ LE AF - - ' 54 ASS -- ~ NOT ES

'~

u V 5 Tis 1

999 43 0.690 2/2 0

0 VSTA--"

0

~41 999 0.222 '- 1 / 2 - ~ ~-- -

t) 0 VSTA 1

999 B7 0.884 2/2 0

0 VSTA 0

. 58 999 0.313 1/3 RAMETS U

C ' "- '

V S T A "- "~ ~ ~ 0 3 2 ~~ -

9 9 9 -

0 220-"-" 2/3 RAMETa 0

0 VSTA 0

9 999 0.503 3/3 RAMETS 1

0 0

VSTA 1

999 394 5.037 TOTALLEAVES3RAN 11

'0

'VSTI S

S'2 999 0.712 1/ 2 - - ~~--

u O

vvAC 0

16 999 0.109 1/2 l) 0 VVAC 1

999 54 0.537 2/2 D

0 V V A C -" ~"-

1 3-

- ~ ~~ 3 0 119-

~

U 0

VVAC 1

4 7

0.100

~

D 0

VvAC 1

8 8

0.130 0

0 '. -"' V V A C - "- ~ ~ 0 -- - --- -

6 3 - - - 999

0. 417 - ~ 10/110R A 4ETS D

0 VVAC 0'

63 999 0.559 10/110 RA4ETS O

O VVAC 0

88 999 0.661 10/110 RA4ETS D

0-V V A C-~ ~

u

~~101 999 -" 0.438 10/110"RAMETS- " -"

u 0

VVAC 0

150 999 0.723 10/110 RAMETS 0

'O VVAC 0

76 999 0.620 10/110 RAMETS-0

~

0

' ' " V V A C'" ' ---

0"---

220 - --" 999 0. 6 9 0 - -- 10/110 RAMET S-0 0

VVAC 0

220 999 0.690 10/110,RA4ETS D

0 VVAC 0

144 999-1.051 10/110 RA4ETS D

0- ---- '" v v A C -

0- -- - 115' 999'- " ).286 --30/110-R AMETS-TOTAL LEAVES 11 D

U VVAC 52 999 240 2.064

___________.__________------------ STAND =.4 o

U U S.-

P _0 T-- SUB---

SP E CT E S----" PL A N 1 -., SHOO T--

1. E A F- - -.M A SS NOTES-681 a

1 COA 9 1

1 1

0.029 gg g.

g._.. _. _ j g g 4 7_..._.. g 6 - -- 0 143 583 A

1 GBAO 1

2 1

0.046 b64 A

1 VSTA 1

13 42 0.b73 Bd 5-A'-"--

1 V S T A- -- - ~ ~

1--- - - 15

- 56 0.99u.

Bu s.

A 1

vyAC 1

47 34 0.495 887 A

1 VVAC 1

13 1

0.021 BBS A-

'- ' l 6 -- } V A C - --- - -- 1 --

1 -- -

0.009- -

Bbv A-1 v v A C-1 6

0 0.011 B90 a

1 VVAC

'l 6.

2 0.084 g9; 3.

g vv 1

-- - - - -- 0. 0 0 2 bv2 A

1 Vva:

1 15 7

0.172 B93 A

1 VVA0 1

24 6

0.156

393, c,.

3.___...VVAC 1

-- 2 6 - -- -- -" 1 - - 0.099

= - - -

595-A 1

VVAC 1

4 0

0.029 b9 5:

A 1

VVAC 1

14 0

1.036

.g97.

g... _.- FGR A--

-1

--- 41 ----'- ---- 0 --- 1 6 b 40 1-t MIGH o99 A

2 LTUu 1

2 3

0.122 599 A

2 LTULi.

1 3

5 0.869 9

... 2---' -- u A L-9 1-'-

--' - - l- -- -- -- -- M 19 2

=-

! p A

2 GrAT 1

1 3

0.206 l

v2 A

2.,

SALS 1

1 5

0.072 l

903 --

A --

2-VSTA 1

-- 5 07035 l

904 A

2 VSTA 1

30 5

0.154

...me.e...

  • =.eemus.

e.g.

m..

D e..

.====e--..,.amn

...we..

~

f TABLE K-0. CONTINUED c1aND=4

.T Sua SPECI55 PLANT ShDOT LEAF-M A SS - "

NO T ES----

2 vva0 1

7 15 0.100 2'

- VV A 0 n - ~~ -" 1 15 4

0. 0 51 ~ --

a A

P VVAC 1

11 3

0.038 A

3 FGRA 0

33 999 0.396 1/2 A

3

'- F 3*J A"-"-- -

1--

999_-

81 -- 2.302'.

2/2

- - ~ ~ -

A 3

63AC 1

9 7

0.086 t.

3 GdA0 1

1 4

0.057 r

3 GBAO-1 1

.3

- 0.035 A

3 G3AO 1

3 3

0.120 A

3 GdAC 1

4 5

0.104 3

G d A O ' - --- -' ^ ~' l-

'2 - ' - -- -

-4 0 '.' 10 4'-

~ ~ ~ -

A 3

G3AC 1

2 6

0.249 A

3 GBAC 1

4 10 0.117 4

3 '- - G3 A C-1

'-'"""~3--'-"~~7---

01127 A

3 GB A C-1 2

2 0.042 LTULt 1

1 4

0.063 4

3 4-3 -- -- N 5Y L, 1

10

~0' Oil 72 A

3 SAL 3 1

2 9

0.898 a.

3 VSTA 1

. 1 2

0.047 a

4-' --' - -

G d C - ' - -- - - - ' r

---'-' 1 9 31 0.501

"- - 1 A

4 GdA0 1

10 11 0.286 A

4 GdA0 1

4 11 0.168

---" ~ ~ ~

A 4-G3A0 "-

1 2

6 0.099 A

4 bdA0 1

1 2

0.142 4

GBAC 1

7

. 7-0.150

^

(]

4_.

-.. G3AC-1 5-7- ~ " 0.19 2

,G3AC 1

1.1 0

0.063 4

A 4

GSAC 1

3 3*

0.106 i;

4-

NSYD,

- - - -- 4 0 ~ ~

12 TJS13

~ ~ ^ -

A 4

QAL3 1

1 3

0.057 A

4 QALS 1

4 15 4.171

'A

~4" "---" Q A L 3 1

--- T 1

0.029 3

1 GBAC 1

14 34 0.655 1

4 3

0.243 b

1 GBAO 3

g

-.g 3 37.-

7 9

_7--

0.108-1 1

1 GBAO 1

4 5

0.071 5

1 63AO 1

9 27 0.544 g

...G3AC

-I 2 4- ~~ " - -- 5 --" 0.178 -

l 9

1 G3AC 1

20 44 0.783 0

1 G3AO 1

17 44 0.872 q

.G3Ag 1

6'---- " 2 0' - ~ - 0. 3 91- -

- - - ~ ~ - -

3 1

GdAC 1

9 11 0.269 l

3 1

G3AO 1

3 5

0.128 z

g...

.. G 3 A C "-.~ --

l- ~~ -- ---" B --- - - - 18

- 0.387-3 1

GBAC 1

18 18 1 048 l

d 1

GsAO, 1

4 6

0.065 l

3 1

G 3 A C- ~~

" T- -

-- ' 1 1----

19 ---- 0. 5 3 3 m

1 NSY.

1 33 0

0.750 1 4 HIGH 4

1 PSER 1

1

'3 0.045

(

6. - - 0 ~. 0 0-7 1

vvAC 1

13 2

0.108 1

.8 1

0.144 1

VV.AC

,........3..

VvA I

e 0

0.02*

3 1

vvAC 1

8 4

0.122

=

..L-

~

TABLE K-0. CONTINUED

1cs3=4 P._3T.

SUB SPECIES-'~ PLANT SHOOT ~ " LEAF MASS-N O T E S "-'

O 1

vvAC

.1-e2 2

0.078 d

2'

~ ~ ~' ' O M C ' - -- - -

4 4

" ---' 999 0. 1 9 8 '"- ~ --- --

=-"

d 2

C3VA 1

1 1

0.233 3

2 L TUL-1 1

1 0.045 3

2' L T U'_ -

~

~1 ~

'1

-~~ - --'

2~"

0. 058 ~

s 2

N5YL 1

1 1

0.399 b

2 NSY -

1 3

0 0.061 9

2 N5Y_

1 1

2' O. 0 8 0 -~ ---

~

1 2

PSER 1

1 2

0.029

~

s 2

P5E4 1

2 7

0.133 3

2 -'

- PSE9 1 ~ ' -' - --

1-

' - ~ ~ ~ - 4~

0.177 ~ ~~

-" ~

2 0 AT 1

1 3

0.195 b

2 USHJ 1

1 4

1.754 3

2-~*'-

0 VE _. - ~

-' l --'- : - -

l ' -~

- ~

2""'

O.102~

3 2

5AL3 1

4 10 0.960 e

'3

,CMAC 2

2 999 0.040

....d - ---- -3

- - C3V A - -

1 -- " - --" 1- '-- --- IV-"- ' 1. 2 4 5-"-

'- --" ~

d 3

G3AO 1

2 6

0.126 3

'3 G3AC 1

6 1

0.129 g.

_3 GBAC~ "'- -

1-

'~'- - - --- ~ 12---

O'. 3 3 5-

---'- ~

d 3

GBAO 1

5 13 0.269 b

-3 GBAC 1

11

'29 0.719 3.

3._

333, 3..... __. g.. ~ ~ --- " 1 1 ' -" 0 '. 2 7 6- --

S 3

GBAC 1

21 55 0.892 3

GdA0 1

10 15 0.389-

.3--

LTUL.

- T '-" l ' 1 4-~-

0.031

~ - - - ~

3' QAL3 1

1 4

0.301 3

3 OSHJ 1

1 2

0.134

3. -.

.._3_ _ __.. y y g. __ _

g..._.-

28 -

~ 2 -

~ 0.1'7 0 -'- ~

B 3

VVaC 1

21 T.

0.410 B

3

  • VVAC 1

22 5'

O.107 g

.3

gyg,

_. 1- " - " 1 6 "--

15 0^.212 3

3 VVAC 1

9 12 0.240 3

3 VvAC 1

1 5

0.378 E

3~ -- VV A O-

' ' 1" -"- " - ~ 1 5-

'26'-" 1.017

-' ~~

3 4

C3VA 1

3 5

0.616 3

4 C3VA 1

5 47 2.984 3

3.._., g g g...__ _

7_.

- 1 0 -- - " - ' 1 4 -~ 0.324 --

~ ~ ~ ~

3 4

33AC 1

B 1

0.039 m

4 GBAC 1

9 3

0.175'

.g 4- _. _, 3 g g _ -- --- - -- - _ _ g

_. _. 2 4 -- ' 0.632 3 4 A'4ETs s

4 G3AC I

d 13 0.226 3

4 G3AO 1

21 25 0.798 g.

..g.

..g33g______

3_.._._

gg__. _ _. 25--~ 0.367 3

4 63A0 1

9 14 0.256 3

4 GB A O.

1 31 66 1.109

-- -5 0.08'4

__4

,.U3ac

-- - 1 ' -- --

i 3

4 G3AO 1

10 14 0.219*

3 4

G3AC 1

3 13 0.249

..g

..gg g _..

.g _..._. _..

9._..

19~

m 2b

~4 G3AC 1

13 6

0.086 4

GBAO 1

2 2

0.082 3

4-~

53AC 1

2 o

07147

~

s 4

GdAC 1

3 5

0.06,0 e

N

  • '**h

=.,*-we.

....m.

f '-

TABLE K-0. CONTIliUED s1Ls3-u ----------------------------------- ----------<

Rt.01

'2 J 6 bdEC1ES~

P ANT SHOOT

' L E A F - - M A S S ' ' --~4 D f E 5 - '

O 4

GetC 1

e2 10 0.284 o

4 G3AC

~ 'I

~

16

~"~~43-0.787'- '-

~ ~ ~ ~ " '

=

4 Jv1R 1

1 999 0.037 s

4 NSYL 1

5 0

0.074 g

4

.-..g g y _.._ ___.. __ g

.. 1 2 ~ - ~' ' ' ' '- " ' 2 0.324- - ~

~

b 4

NSYL 1

6 1

0.130 6

4 osER 1

1 4

0.145 i,

4

~

'0a -3 1-l' 2

0.336~'~

~~ "

~

e 4

DVEL

'l 2

3 0.489 6

4 QvEL 1

1, 3'

O.235

_ __.... y. # C ' ' ~ ~ ~ ' - ~ ~ r

~2.-" "-~~~0 - ~0'.033-

~- ---

o 4

vvAC 1

9 0

0.015

.b 4

v.v A C.. _..

1 _ ___.-.._2 8 0

0 243

~~'

g gg-5 ' - ' - --

0 07089~

C 1

ARUS 1

1 0

0.050

.' C. --.-.1 A408 1

.1 7

0.408

~ - - ~ ~

g.

3

g. g

= -.. 1 4

6 073'04 g

C 1

ARUB 1

4 13 0.695 C

]

ARJB 1

2 2

0 113 C

~ 1" -

49JB 1--'-- --

5

~19 1.32t

-~

C 1

C3VA 1

1 3

0.227 C

GBAC 1

7 12 0.247 1._-..

P S D e..

3 7

= 1--

4-~-

O';055 l

C 1

QVEL.

1 1

3 0.308

/

1 VSTA 1

18 0

0.105 1 - - VVAC' 1

41---' '--- ~ 12 ---~ " 0. 513' 2

UNKN 1

1 1

0.068 C

3 QAL8 1

1 1

0.033 C--'-

'3

- SR3F 1

1

~2--~~0.896 C

3 VSTA 1

2 1

0.011

.C 4

FGRA 1

2 6

0.191 g. - - _-. 4 45R 1

5-6 -~ ~~ 0.13 2-~

" - - ~ ~

D 1

GBAC 1

4-14 0.204 0

1 GBAC 1

3 7

0.045 D-

--~~1 JO F l'

1 999-- -'0.530

~ ~ " ~ ~ ~ ~

D 1

JVIR 1

1 9

0.530 0

1 Nb,YL 1

5 1

0.147 0

1

-~ NSYC ~

1

~4----'--'

0'- ~ 0 128

- ' - ~

- " ~ ~ ~ -

D 1

0 AT 1

1 1

0.127 0

1 UFAT 1

1 3

0.394

' D '- ' - ' ' '. I-

' 0 F A T- ~~

T "---~

1 " ~ ~~ ~~ ~ ~ 2 - -' 0 '. 0 5 3 l

D 1

.SRDT 1

1 2

0.309 l

0 1

SROT 1

1 1

0.452 g._

7.._. SRDF

' 7' - ~ ~~ ~ " - ~ l ~ - -' -- - '- ' 3

-'0;43f

- - - ' - - - ~

D

'l VSAT 1

54 0

0.202 D

1 v5TA 1

9.

1 0.447:

D"" ~

1"--"

V5TA 1--

2-0

=0.012 t

D 1

vv4C 1

12 0

0.039

.D 1

vvaC 1

11 3

0.058 t

i

.. 3.. _ __ _ V V A C ~ ~ - - " ' l -'

14 0

0.056

--- - - H 1

vvAC 1

40 13 0.207 1

vvAC 1

2 2

0.056

-.,-"- - - I VV k C'---"---

1 e

2 0~.' O 57 D

1 vvAC l'

6 0

0.002

- ~.. -. -, - ~..,.

TABLE K-0. CONTINUED f

s. I a c-4 2'

-) T 5135 SPEClES 3_ ANT SHOOT LEt.F 4 A SS-NOTES-~

~

l vvtC 1

2 6

0.141 D

2 CFLO l'

1 3

0.066'

' - - ~ ~

U 2

COVA 1

1 11 0.471 0

2 boAC 1

5 4

0.129 D

2 GBl.C 1

13-

~ ~ ~

7"-

0.163 --

0 2

GbAL 1

25 24 0.526 b

2 GoAC 1

12 20 0.287 U

2 GBAC 1--

15 32 -

0.332 - ' - - - - - - - - -

GesAC

^ 0 50 999 0.241 1/2

,0 2

0 2

GUAC 1

999 26 0.969 2/2 U

P N S Y L l--- --- - 11

- - - - 2

--- 0.15 5--~ ~

0 2

NSYL 1

17 0

0.279 u

2 NbYL 1

10 0

0.132 U

2.

- NSYL-" --

1""------

5 - ' - - 0. 2 9 8 - --- - '

= - - " - - -

D 2

NSYL 1-3 0

0.029 U

2, NSYL' 1

9

\\

0 0.118 0

2 ----- N S YL-~ ~ ~~ - -- ' ~ -

3 0

0.048 0

2 IJSYL 1,

28

~0 0.755 0

2 PSE.R 1

6 12 0.452 D

2-

"- 0ALO - ' -~'

1 - ---' -- '

1 - -- - ----" 1 --

0.099 - -

D 2

QFAT 1-2 6

1.727 D

2 QFAT 1

2 2

0.421 D'

2 VVAC-

--~ ~ 1-1"---

1---

0.051-0 2

VVAC 1

8 2

0.081 2

VVAC 1-24 0

0.076 p....

VVAC

'- l-

-" 15 ',~ -"

--"-2'--'

O.059-2 vvAC 1

2 4

0.096 D

d VVAC 1

17 8

0.239

__.g..

_ _ _..g _ _ _.. 0. 1 5 3 -.

9

....g__

y y g g.._ _... _

g. _

D 2

vvAC 1

8 0

0.007 U

2 vvAC 1-1 1

0.128 U

2

' " V V A C' -- - -~ ~ ' l -"- " ~ ' "-" 1 -

0 M 067~

~

D 2

VVAC 1

3 2

0.015; U

2 VVAC 1

7 3

0.074 0

3 ~ ~ --- AR U B 2 - ---

3-0-

O.191 =

-~

u 3

CMAC 1

1 999 0.051, 0

3 COVA 1

1 0

0.029 '

D 3

' - " J S Y C - - -- ~

1 4--

15~~"

0.139-

~ -----

u 3

NSYL 1

13 0

.0.166 1 M HIGH U

J NSYL 1

45 0

0.929 2 4 HIGH D

3- - -- N S Y C --" - -- " 1 21 - - - -- -

0---

0.533 2 M-H I GH--~-

O 3

SHOT 1

1 0

0.360 0

3 SHol 1

1 O

0.591 0

3 - -- VV A C-- --

0 - - ~ - -"- ~ 5 ---"- - - 9 9 9 - - - 0.050 E ACH IS-tNE 9AME.T u

3 VvAC 0

5

999, 0.025 2/9 0

3 vv4C 0

7 999 0.021 3/9

,.3

. vV A C--

- -"- 0 " - ----- -- - 9 9 9

- - 0.' 0 0 7 4/9 g

D 3

VVAC 0

44 999 0.016 5/9 0

3 vvaC 0

8 999 0.083 6/9 l

(.

3 -- ~ ~~~ V V A C - '

--"0"----- " --- - 999-- - - 0.046 7/9 I g 3

VVAC 0

6 999 0.098 8/9 V

3 VVAC 0

39

- 9.99 0.060 9/9 0

-~~3-VVAC 0

999-60 0-369 22-R AME T S-' REM A I NI D

3 VVAC B

130 999 0.090 22 RAMETS REMAINI

. ~ ~.

a r.

TABLE K-0. CONTIllUED sia 0=4


c stui SuA~

SaE:IES PLANT SHOOT" LEAF

~ H A S S~

~ 70TES - ~

~

D 4

4 R J 3 __

1 1

1

-0.001

~ " - - " '

g 3'-'

3 ' ' - --

0.027 ~

g D

4 NSYL 1

1 1

0.084 1

4 0.564 95 Y L _._._.-._. )1 D

4

... _. ~ ~ ~-

5-"-

~ 0. 0 7 7'

~

g D

4

'NS Y L 1

1 1

0.050 0

4 NSYL 1

4 0

0.050 g.

4 Y.

1

~

~3 5 "'

0.082 0

4 VSTA 1

4 8

0 159 0

4 VvaC 1

1 0

0.032

~

D

~ *-~ -~ v v 4 C ~ ' ~ ~ ~ - ~ 1 "- ~ '--

3' - - '

~2 0. 0 6 0 '--

- ~ ~ - -

. - - - - - -.;- );..:.,.c.; ; ::::

S T A N D = $

4 - - - - - - - - -

' -~ - " - - -T ~ ~~T

- ~ v - - - - - - - c DLol Sud SP501ES PLANT SHOOT LEAF 4 ASS NOTES A

1 ARJB 1

12 41 0.989 2

0.012 A

1 ARJB 1

1 A~-

l' C

  • A C" " "

1 1 "- ~ ~

1 1- -

999

'l.223 2 F RO I T I N G---"

4 1

CovA 1

5-0 0.110 A

CovA...__ _.. 1g... _....... ' g.

l 21 0.773 4..___.. 1

~ ~ - ' - "

2 -~~- ' 0 '. 0 3 8 ~

A '

1 NSYL 1

2 0,

0.019

^

........1..

NSYL 1

1 2

0.090

' ~ ~

Sh

--~ ~1

- -"' ~l'--~~ ~-" "-~ ~3----

  • 0. 5 9 3 '

1 NSYL 1

9 0

0.127 A

.1

.PVIR

}

999 999 0.151

..4-gg 2

2 0.066-A 1

QALB 1

2 2

0.098

~

A 1

VSTA 1

2 3

4.137 A- ~ ~ - ~ ' ' l -

- VSTA 1

i ~ --- 9 6 1.37 A

1 VSTA 1

1 3

0.J54 1

VSTA 1

21 45 1.323 A -

3-.__.._..V5TA~~

l"-

" -~~ 6-~-~ ---- ~ 1 9 -'" ' O. 3 6 9

-- "~

4. _. _.

A 1

VSTA 1

29 92 1.622 4

2 ARJB 1

1 1

0.004

3.. __

. 2 '- ~~

C'4 a C --"-- ' 3

~

3 "---" 7 9 9-~ ~ 0.483

" - - ~

o 2

COVA 1

3 0

0.086 A

2 OA. s 1

1 11 1.538 4.......

2-0'AIB l' - ~~

'2 - ~-

7+

' O'. T 6 6 '

~'

]

A 2

SALB 1

1 4

0.054 A

2 VR3T 1

2 4

0.045

'13 ' " - "-- 13 9 9 9-~

0 9 4 0 --~ 0 F RUI T ING-- --~ --"

,..... 3

- ~ C M'A'C s

A 3

COVA 1

3 26 0.797 A

3 100A 1

1 6

0.593 l

3...-._ _'3 T'A 2

-- - '2

'-~ -- -- 4 0'.030 7

A-3 PVIR 1

1 999 0.041 4

3 Pv1R 1

1

. 999 0.017 i

3 PVIR 1

T -'~-

9 9 9 ---- 0. 0 9 0

-- " N

' ~ "

(m' 3

QA 8 1

1 4

0.312 3

OALB 1

1 3

0.131 A

3 VSTA 1

. ~1 0.03a

~ ~ ' -

~3' 57 6 A

17 63 0.959 e

e

.m.

e.

_w.--

TABLE K-0. CONTINUED JA*!

siA.40=>-------------------------------------------

j

'A St a 5

1E5 6LANT b

01

~

LEAF A s s " ~~ ~ N 3 T E S' -"

A 3

VSTA-

'I~"

3 13 0. 2 6 7 - - ~~ - -~ ~ --~ ~ - -

A

.1 VSTA 1

4 8

0.'185 A

3 VSTA 1

4 17 0.377 4

3

  • ~VSTA " " " -' 1 - ~ " -

2"

' 6 ~ ' - O '. 0 7 2 --- ~ ~~"

A 3

VSTA 1

9 35 0.471

~

A 3

VSTA 1

11 14 0.289 4

3 v5TA 1

13' 17' O.330.~~ ~

A 3

VSTA 1

3

~ 8 0.219 3

VSTA 1

12 42 0.529 1

A 3

VSit

'- " ~ -

12 " -"- ~ ~ 5 2 - "' O. 5 6 3 ' ~ ~ ' ' -- "--" - --- " "

  • A 3

.v5TA 1

7 37 0.429 A

3 VSTA 1

8 33 0.481 A

.3

'- " V S T A "-

= ~1-~ ~ ~ ~ ~ ~ 1 0 - ~-- 2 (

~~0.350 A

3 VSTA 1

1 3

0.151, A

3 VSTA 1

3 12 0.209 A

3'

~~

VSTA 1"-

"'4 10 0.16 3'- -- ---

~ ' - ' " '

  • A 3

VSTA 1

11 21 0.259 A

3 VSTA 1

1 5.

0.1.35 4

4..

gg jg..

s.

.g.

__ ~ - ~ 1 - "- -

5 0.070 -"

~~!

A 4

ARJ8 1

1 2

0.013 A

4 CF O 1

1

. 2 0.082-g.

. C F ' O-- " - ~~- ~ l ' - - " -- -

1* -- -- -

2 -"-" 0. 0 3 6-- -~~-

=-"- ^"

4 4

CF O 1

1 2

0.067 O'.

4 CFLO 1

1 4

0.165 4. _..CMAC 13--- ~~~ 13~ ~ -"~" 9 9 9- - - 0.' 6 8 2

-~~"*~

l

'4 PSER 1

1 4

0.*144 A

4 PVIR 1

1 999 0.067 g....

4. _

g g. B ---" ~~"- " 1 ----

T 3

0'.181,

A 4

04.8 1

1 2

0.074 A

4 QALB 1

1 2.

0.068 A

-~ '"

4---

0 A CD- - -- - T- ~ ~

-1 3

OTTOs A

4 SAL 8 1

1, 4

0.235 A

4 SA,8 1

1 2

0.022 9

4... _ _ g 3. B"

' l--- - ~~ -~ 1 -

-- ~ -' 4- ~~- O '. I 9 8

' - ~ ~ ' ~ ~

A SA;d 1

1 3

0.055 A

4 SALB 1

1 7

0.464 g

4 5 g. g_.

.--'-"1----~"

1

' - * * - ~ 5"--

0. 4 9 9 '---

4 4

S A' B 1

1 6

0.407 A

4 SALB 1

1 4

0.553

,g

,, _ _ __ g g,9_ -.. _._ g......

g_.

S' 0'.478

~ ~ - - - -

A SA B 1

1' 4

0.178 A

4 SA 8 2

2 8

0.096 g

.CMAC-~"-

' 3 " - ~ ----" 3 -- -- - 9 9 9 ' - 0. 8 7 5 -

1. F 4U I T I NG-"-~ ~ -' "

b

'l COVA 1

5 0

0.056 o

1 COVA 1

4 0

0.120 g

... -.. g.

_. C O V A -~ '

1- - ---- ' 2

~ 0 ---" 0 '. 0 6 9 I

o 1

NSYL 1

5 0

0.071 1

NSYL 1

14 0

'.384 0

a

(

) _ _.... y g y g _ _ _ _ _,. g _._.

..3...--.-.0

'0"083

- " - ~ ~ - - ~ ~

1 NSYL 1

21 0

1.565 1

OALB 1

1 2

0.127 o

l' -.---S ats 1

1 4-0 036 8

1 SA b 1

1 1

0.044

J :-

TABLE ? -0.

CONTINUED

,ToSp=5 ---- -...---- ----------------------------

? L ')T

%R "

SPE~1ES PL 4NT Sn00T LEAF -'

4 A S S ' ----

  • NOTES 1

V S i t.

2' 4

7 0.079 3

1-V v A C -- - - - -

3' 11 0. 0 9 5 - -- -~ ~ ~

d 2

CFLO 1

4 0

0.052 o

2 CF O 1

6 2

0.062

~~

d 2

'--- N S Y L "l'

16' " '

0-"~

0. 3 2 8 ---~~ ~

u

'2 PSER 1

1 2

0.027 e

?

5A B 1.

1 5

0.149 H

2 SP3T*

2 2'

9 0. 8 6 8 " - - - - - -~ -'- ~" '

2 v0EN 1

2 5

0.120

'.050 b

2 VSTA 1

2 3

0 6

2

~ V S T A - -'

1 - --

2--

- - - ' 5-"

0 '. 319 - -"~~

o P

VVAC 1

4 2

0.079 o

4 ARJB 1

1 3

0.049 U

4'

'- ' ' D N J D --~"

l' - ~ ~ "" - l ' - "~ "-- " ~ 6'-- - ' O. 0 3 8

- ' ~ ~~ "

o 4

LSTY 1

1 2

0.013 1

1 3

0.317 o

QFAT

- - ~

6 ~ - '-

7 V E --- -------- 1* - --- - - - ~6 0.817 d

4 v51A 1

1 5

0.250 o

4 VSTA 1

8 26 0.446

.d

- / s M--- ~ ~ - ' - ~ 1' 2 '- '

y O '.15b

~ - - ^ - -

d 4

VSTA' 1

3 3

0.126 o

4 VSTA 1

15 44 '

O.816 d'

'--~~4-

~ VSTA

-" - ' I' '-- ' -

1 9 " ' ' ' -

3 7 0.624 u

4 VVAC 1

9 14 0.118 s

4 VVAC 1

10 25 0.166

. 3 _... 3 g 3 g_._..

7_-._._. 6 -- - ~

12--- 'O.361 5

5 999 0.705 0 FRUITING C

1 CMAC C

1 DVIR 1

7 6

0.373 C-1 NSYL 1~

- - ~

0 0.242-C 1

NSYL 1

5 6

0.281 C

1 QALB 1

3 5

0.404 C,

" 1 '- ~ -- L At u

- " ' l--

1 2

"D.' 1 13 "

C 1

QALB I

1 6

0.642 C

1 CALS 1

4 8

0.692 C

1--'

-.CALS


I "e

-- - -- 2 0.152 C

1 GAL 6 1

1 4

0.345 1

CALS 1

3 0

0.074 C

~

C 1

W B ----

l'-'-~~~~~'-

l ' '-

~ ~ '

  • 4 ' -~ ~ 0.1 19~

C 1

SALB 1

2 4

0.298 C

1 SA B 1

1 4

0.242 C

'l

-~ V S TA

' l ~ '~ ~ - '

' 1"

' ~

3-- - 0 '.10 3 -'

- - - ~ ' -

C 1

VSTA 1

1 4

0.148 C

1 V ST A 1

10 21 0.249 C'

1 '-- --' V S TA

~ ~ ~" 1 "~~

" 2 ~ -- ~ ~ --- ' 8 0'.163 C

1 VSTA 1

3 8

0.273 C

1 VSTA 1

4 15 0.412 g.

. _.. 3. _.

V S T A-1~

1--"1-

-- 8

  • 0.279 C

1 VSTA 1

3 12 0.214 C

1 VVAC 1

14 27 0.244


l

... 3._... __.y y g

_- _ g _ _.-. _ _.. 7 _

. 13 0'.107 l

C 1

VVaC 1

4 14 0.306 1

VVAC 1

5 13 0.200 C '- - -" - ' 1 VVAC 1

e 13 07113 l

C 1

V,VAC

'l 2

8 0.064 1

TABLE K-0. CONTINUED

+ Ja sias0=5


c Of SUB 93 EC 1 E S' PLANT SHOOT LEAF--

M A S S- -- - NOT ES- -

1.

vvA0 1

1 3

0.051

,1 VVA0~~

1 2

6 0.046'

--" ~

C 1

VVAC 1

3 14 0.044 0

)

V V A".

1 3

8 0.071 7

g

.... y y p........ -... g._.-. -

2---~

5 '" 0. 0 7 0 --- - ""-

0

)

SVAC 1

6 10 0.121 0

1 vvAC 1

7 8

0.085 0

1

~

vv40 1-"'--

12 -

22' O. 0 81 ' - ' - " --

0 1

\\VAC 1

2 7.

0 140 0'

2 tA J3 1

1 2

0.017 2'

/WU 3

~~-'-"0"-

~ ~

23

- 9 9 9 -~ 0.228~~

1/2

-~

2 ARJ8 1

999 50 2.466 2/2 0

2 CHA0 13 13 999 0.679 0

2

- ' S T Y------ - -- 1 -' - - -

1 ' '- ~

-I 0. 0 0 8----

~~

~

C 2

NSYLt -

1 9

0 0.165 C

2 NSYLi 1

2 1

0.037 -

0 2 ~~~~~ NSYCi

--"" 1

~~

3 ' - -"-

~ 1 "--" 0.~ 4 51 --- "-- -

0 2

SAL 3 1

4 15 1.886 0

2 SAL 3 1

1 2

0.147 0

2

~~~ ~ ~ S A L 3 1 - - ~ ~."

1 - ~- - --- " 3---

O. 0 3 8 -

~ ~ ~ ~ ~ " "

0 2

SAL 3 1

1 7

0.617 0

2 v5TA 1

2 12 0 236 3 _ _..ggg3 g--_.--- 7s _--.

3_.

0.171-~"- -

,C 3

CCAR.

1 2

1 0.114

!]-

3-.-_. COVE 1 -

2 - - -~ "

2"--

0.151*

3 CHA0 3

3 999 0 172 NONE FRUITING c.

3 COVA 1

1 2

0.009

.0 3

COVA 1

2 0

0.047

__.'3

= = COV A-1

~ - 1 ~ - - ~ ~ ~ " 6 --~ U.227

~~

-~ ~

0 3

FGRA 0

29 999 0.627 1/2 C

3 FGRA l'

999 72 2.493 2/2 g

...3 PSE r * -- 1

--~ 1 - - - - O '. 0 0 6 C

3 UAL3

.I 1

2 0.089 C

3 QAL3 1

1 4

0.054 0

3 ---

S A C 3--- '- - -" " ~" ' 0. 8 9 8 0

3 SAL 3 1

1 5

0.032 0

3 UN<N 1

2 2

0.060 0

3

"-' V S T A - - - "- -- I l' - -

2 0.043

~ - - "

C 4

ARUS

,1 24 42 2.832 0

4 CFL3 1

1 2

0.024 C

4 CHA,

~2---"---

2-~

999 0 171 1 FR'JITING

'- ----l 1

0 4

N5Y' ;

1 1

1 0.032

.7 4

NSYI

.1 17 2

0.204

., g...

NSYL7~

1-- '" ~~~" "1.

4 ~ ~ 0. 31 ti

~~ ~

O 4

UAL3 1

2, 8

0.804 0

2AL3 1

1 4

0.319 4

S AL 3' 1~ - -" - ~ ~ " ' ' 2 - ~ ~~~~-

4 0.126 0

4 5' A L 3 1

2 4

0.063 4

S.AL3 1

1 1

0.255 g.. -...-.@ A C- - -- -

~15-

- -~ I S " ---" 9 9 9' 1;290 P

1 DNU) 1 1

4 0.045 1

DNUT 1

3 8

0.054 3 " - -" l'


O N U 3-l' 2

6 0.060 l

3 1

LTU t 1

1, 3

0.021' I

D

< * = -

ee.

d^

TABLE K-0. CONTINUED

'~

4 O=3.---------------------------------.--- -- --q s

2-li SUb 53ECTES PLANT 5400T LEAF MASS SUTES O

s 1

NS(L - '

1 1

2 0.012 i

mg 1

26 10 ' " "

3. 0 0 9 - ~ - - -- ' "- ~

J l

Ovil 1

1 3

-0.020 0

1 SA 6 1

1 4'

O.077

~'

~~~

.. ~ S T 4 " - -." 1 - ~ ~

~39' 61" ---" 1. 6 7 2 ----

g V

u 1

VSTA 0

72 999 0.363 1/2.

999 66 0.d71 2/2 u

1 V5fA 1

~ "- 5 6" ~ ~

999 1.091" - 1 / 2"--

'~

3 1

v5TA'

'0~

0 1

v5TA 1

999 178 3.087 2/2 2

2 999

0. 143 0 rRU1 TING 3

2 OMAC g

2

'-'E P-- '- - '- - - l' ~

=1

~ 9 9 9.'- ' ~ 0.660" 0

2 SRDT 1

1 10 1.973 0

2 SROT 1

1 1

0.535 O

2 ~ --~ ~'"v m- --' - ~~~'- ' 1 W--' - ~ ~ ~~ 4~0~--

G 2 0 3 --

0 2

VSTA i

1 2

0.254 0

3..

.CMAD-...... 6.. _.. __.. 6 999 0.637 1

RUITING

-~~~~

=3 0 l'09-g d'

3 LSTY 0

24 999 1.377 1/2 0

3 LSTY 1

999

'73 5.223 2/2.

D

-7

~~ C T J L- '" ~ ~, ' l'~~ ~ ~

l' 1

0'.056- -

'-~ ~ "--

U 3

PSER 1

1 2

0.026 0

3 PSER 1

1 3

0.056 j

,)..

._ 3 "0 A is


'1'------'3,---

4--"

0.840

'- ~ 7 0

1 Qa B 1

2 6

1.014 3

5A D' 1

1 2

0.107

~~

G JB 1

' l - --- -- ~~~ ~ ' 2~ -~ -"~ ~ 0. 0 6 8 4

ARJB 1

3 7

0.364 i

~

L 4

CMAC 7

7 999 1.167 3 FRUITING

(,

~-

~ 4 ~-

c 0T/a,

1 1- - --

o O'.033 "R

~

l D

4 NSYL 1

5 1

0.223 V

4 PSER I

1 2

0.044

- '- - -'-Q'S qu 1

3 11 G368 9

~~

D 4

0 4

SALB 1

1 5

0.079 U

4 SALB 1

1 5.

0.013

~ " ' ' '1

4... _ _g.A LB -~ ' ---

l -

- 1 3

~0.018 u

4

.SALB 1

1 l'

O.018 J

4 VSTA 1

10 38 1.'134 i

3

' 4 ~ ~ ~ ~~ V S T A " - "

1 --- - -- ' - --- 3 9

'O'552'

~1 v

4 VSTA l'

3.

11 0.289 b

4 VSTA 1

13 21 0.604 D

4 VS TA 1

11 33

~ 0'683" --

' - - ~ 9 0

4 VSTA 1

8 17 0.426 0

4 VSTA 1

3 5

0.100 3

. 4 _. - - 7 5 n~- *' ~~ -- - ~ 1 ---' '- ~~~'---' s 0-- -" 0.099' D.

4 VSTA 0

65 999 0.673' 1/2 U

4 VSTA 1

999 143 2.945 2/2:

--- ~

g 4 -

9g O '-' --"-" ' 17 - -~~ 9 9 9 0.252---~T/2 U

4 VSTA 1

999 52 1.223 2/2 b

O l

....-...--.s__.

G

=

  • w

~,e.-

..n

-