ML19308A433
ML19308A433 | |
Person / Time | |
---|---|
Site: | Three Mile Island |
Issue date: | 05/08/1974 |
From: | GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT |
To: | |
References | |
NUDOCS 7910100451 | |
Download: ML19308A433 (283) | |
Text
s p ,
- T THREE MILE ISLAND NOCLEAR STATION O
UNIT 1 REACTOR CONTAINMENT BUILDING N
STRUCTURAL INTEGRITY i
2 TEST l C
I THis DOCUMENT CONTMHS l POOR QUAUTY PAGESi l
,/ E METROPOLITAN EDISON COMPANY SUBSIDI ARY OF GENERAL PUBLIC UTILITIES CORPORATION GILBERT ASS CIATES , INC.
(
RE ADING, PENNSYLVANI A ~
7910100 4I
, N/-
TABLE OF CONTENTS Section Title Page 1.0 PURPOSE 1 ;
2.0 CONCLUSION
S 2 4
3.0 THE CONTAINMENT STRUCTURE i
3.1 STRUCTURE DESCRIPTION 4 l
3.2 MATEPlALS 5 3.2.1 Liner 5 4
3.2.2 Mild Steel Reinforcement 5 3.2.3 Concrete 6 3.2.4 Tendons 6 DESIGN 6 f 3.3 4.0 CONSTRUCTION METHODS 7 f-5.0 RING GIRDER REPAIR 9 6.0 TEST REOUIREMENTS 10 i 6.1 PRELIMINARY SAFETY ANALYSIS REPORT 10 6.2 FINAL SAFETY ANALYSIS REPORT 10 f 6.3 RING GIRDER REPAIR REPORT AND ADDENDA 10 ,
I '
11 f 6.4 ADDITIONAL REQUIREMENTS 7.0 TEST PROCEDURES 13 ;
13
! 7.1 GENERAL DESCRIPTION i r l 14 l 7.2 PREPARATION 1 ,
7.3 DEVIATIONS FROM PREVIOUS COMMITTMENTS 15 ,
8.0 INSTRUMENTATION 17 j i
8.1 GENERAL DESCRIPTION 17 l
8 5
, 8.2 CONCRETE CRACK MEASUREMENT 18 l 8.3 TENDON ANCHORAGE ZONE INSPECTION 19 i C I L R L R T A S S O C I A T E S. I N C, 1
O TABLE OF CONTENTS (Cont'd)
Section Title Page 9.0 AS BUILT CONDITIONS 21 10.0 CALCULATED RESPONSE 22 10.1 GENEPAL DESCRIPTION 22 .
10.2 CALCULATED DISPLACEMENTS 23 ;
10.3 CONCPITE CRACK PATTERNS 25 11.0 MEASUREMENT, ANALYSIS.AND.-CONSTRUCTION. INACCURACIES 26 12.0 TEST DATA 27 13.0 INTERPRETATION 28 ,
25 5 13.1 DISPLACEMENTS AND STRESSES FROM MEASURED DISPLACEMENTS
~
.! l i 13.1.1 Meridional Stresses.and. Displacements. 28 ip 13.1.2 Hoop Stresses and Displacements 31
() '
13.1.3 Tancential Displacements 35 13.1.4 Tendon Anchorages 35 13.2 STPISSES FROM MEASURED STRAIN 36 j f
13.2.1 Reinforcing Bar Stresses. 36 ,
i 13.2.2 Liner Plate Stresses 38 $
- 13.3 EVALUATION OF CRACK PATTERNS 41 1 13.4 EVALUATION OF RING GIRDER REPAIR 42 i i
13.5 CYLINDER OVALIZATION 48 i APPENDICES A. Report by Brewer Engineering Laboratory ,
t 1
- i
$ l i
G I L i. E E T A 5 5 's C I A T E h, f .% C.
11
'i
i 4 .
i l l
l 3
1 O LIST OF TABLES ]
i l
l
. Table 1 - Reactor Building Ring Girder Reinforcing Bar Stresses (Ksi) ,
i I
i , i o . .,
! 'l
, .I e
t 5 I 6
l i i : I j t -
l 1
[ f l r
e .
f i
- f l g.
4 .
i , ,
!, i ! .
i & P f
i ,
I l
l l
i a
i l t
I i l -
1 i i .
4 f
I l
l' )
i h- 4 i
l GILD E R T A SSOCI A TE S, INC iii ,
m-vee < m m ,, - e g +w-r *m-4mege ri -m--,-n-----+,-&-,4w-g .e-,ews-~~ --ww -r-w es- ,ww p.---.m+ww------. . . .-_ ._. n ew--e-r-e-v?m=+------m-r+w-shir er-'W-edvvw-v *--wmrt'iWw
LIST OF FIGURES Figure 1 Reactor Building - Cross Section
, Figure 2 Pressure Versus Time for S.I.T. .
i i
. Figure 3 Instrumentation - Outside Face ,;
Figure 4 Instrumentation - Inside Face -
Figure 5 Instrumentation Equipment Access Outside Face .
Figure 6 Instrumentation Penetrations - Interior Face
- Figure 7 Liner Radii As-Built I
Figure 8 Liner Plumbness - As-Built j Figure 9 Ring Girder Surveillance ____i__-
Figure 10 thru 68 Individual Disp 1meament Plots Figure 69 Reactor Building - Finite Element Mesh Figure 70 Elliptical Ring Subjected to Internal Pressure t
I 1 I i :
I j
I i
f l ! -
- i 3
I l
l l
GILD E R T A S S OCI A T E S, INC iv
1 O 1.0 PURPOSE This report presents a detailed description of the Structural
. Integrity Test performed on the Three Mile Island Nuclear Station i i
~ ~ ~ ~ ~ -
Unit 1 reactor containment building .during March,1974. The conclusions of the Structural Integrity Test are based on the 'l '
observations and measurements made during the cast and documented 8
i
, in this report. !
1 I In addition, the report correlates the results of ring girder surveillance prior to and during the prestressing operations with the results of the Structural Integrity Test (SIT).
{ _
l . _ .
During the SIT the reactor . containment building was subjected to
.:{'..-
a maximum internal pressure of 63.3 psig. l
_-[
^
, I__
i !
i i
- I i ,
t :
i i
l l I I
i i
k 1 :
i i' GILLE E T A S S OCI A T E S. lM C
^
2
'O
2.0 CONCLUSION
S Measurements and observations recorded during the structural integrity test have been evaluated and compared with predictions of the expected structural behavior during the test. The data confirmed the expected behavior. It is concluded that the i i Thres Mile Island Nuclear Station Unit i reactor containment j building meets and exceeds the design criteria.
! Most of the test instrumentation performed well and the recorded data are considered to be valid. The few minor discrepancies in the data were noted and discussed. The number of discrepancies l was small compared to the amount of data recorded during the test.
l !
l Test results showed that stresses, strains and displacements were Q >
i within limits as discussed in this report. There was no evidence of structural instability or loss of equilibriun during the test. !
i i Whitewashed areas and other areas which were observed for cracks ,
confirmed the predictions of Appendix SE of the Three Mile Island ,
i Nuclear Station Unit 1 Final Safety Analysis Report (FSAR) that i 1
no structural cracks would. appear during the test. Strains and l displacements were generally less than the theoretical values, ,
indicating that the analysis was conservative or that the structural stiffness of the building was greater than anticipated.
> I l
It is concluded that the data for the ring girder, which was j l !
i previously recorded during prestressing operations, along with the data from the structural integrity test provides direct j
,O l l l i
G I L it T. E 7 A 6 D O C l A T F $. I N C.
6 i
5 J 1
- 1 j evidence that the ring girder fully satisfies the design require-a j ments. Tne ring girder has, as expected, successfully sustained W
the two major loadings of prestressing and pressure. ,
b i
I I
{
- I i
i !
I i s t .
I g .. .
t
.N..". ~. . $ ?
t.
5 e
l I
i n 1
e e
i !
I i
i ? j I l t
h i
- l t :
l i 4 I i j . i 4 ! i j ' 6 7 4
.f 4 8 L B E E T . A 6 $0 CI A T E $. IN C t
L
() 3.0 THE CONTAINMENT STRUCTUPI I
3.1 STRUCTURE DESCRIPTION The containment structure is a post-tensioned concrete structure I
with cylindrical walls, a flat foundation mat and a shallcw dome roof. The cylindrical walls are prestressed in the vertical and horizontal directions. The dome roof is prestressed using a enree-way post-tensioning system. In addition to the prestress, mild steel reinforcing was placed in the cylinder and dome.
The inside surf ace of the building is lined with a carbon steel liner to ensure leak tightness. The nominal liner thickness l
1s 1/4 inch for the base and 3/8 inch for the remainder of the ,
! structure. .
z p : _: . -
i
\ l The foundation mat slab is reinforced with conventional mild l
steel reinforcing. The mat bears on sound rock and is 9 feet thic' with a concrete slab 2 feet thick above the botton liner plate.
- The cylinder portion has an inside diameter of 130 feet, a wall i
- s. l thickness of 3 feet - 6 inches and a height of 157 feet from the top of the foundation slab to the spring line. The shallow dome roof has a large radius of 110 feet, a transition radius of l . 20 feet - 6 inches and a thickness of 3 feet.
l .
l 1
l -
l GILREET ASSOCI ATEL INC
7 O 4.0 CONSTRUCTION METHODS in order to describe the basis for establishing "as-built" conditions, only special construction procedures are enumerated.
l The containment liner in the cylinder and dome is erected {
independently of placement of the concrete shell. Survey control was used to ascertain actual liner and concrete shell dimensions during construction.
Flexural reinforcement is . located on the outside fece relative -
to the horizontal wall tendons and on the inside face relative to the liner. Concrete forms are .tled to the liner on approxi-mately 6 foot centers. Minimum concrete cover requirements are . _.
shown on the drawings.
() i Dome tendon conduits are pre-bent and cut to the total length .
I; required for tendons fron one trumplate assembly to the other. -
l Vertical wall tendon conduits .aze terminated at the anchor plates l in the top of the ring girder. . Dome concrete was not placed until af ter tendon conduits, trumpets, anchor plates and rein- ,
i forcing bars were installed. Anchar plates are located and l t -
j installed relative to the tendan conduits. Necessary pockets i l
i were provided itr the vertical side .of the ring girder. Dome I
tendon conduits and reinforcing steel are blocked from the liner and located relative to the theoretical location and not
- the liner.
GILB LE T A f f 0CI A TE S. INC
e O Tendons are stressed after the cylinder wall and dome concrete has been placed and cured. Vertical tendons are stressed first. ,
The stressing operation starts at four positions along the circum- i I
ference of the cylinder. The saquence of stressing .ertical +
tendons is approximately symmetrical with respect to the cylindrical I wall circumference. After completion of the vertical tendons, dome and horizontal wall tendons are installed and stressed in a t
sequence, so as to r.inirlze stress concentration in the shell.
l i
O '
I 6
i i
i i
O blL MEkt Att OEI ATES lMC
9 I
i l
l 5.0 RING GIRDER REPAIR A complete history and documentation of the ring girder repair are found in the " Ring Girder Report" and associated " Addenda" l
j for Three Mile Island Nuclear Station Unit 1. These documents 4
have been filed with the Atomic Energy Comr.ission (AEC).
i l
f .
- j !
, n i
- .j :...
l 1
I l ..
i l
, i a
4 e
t I i
- 1 4
l.
l i
3 i
a i
+
t .
{
G IL I* E lf 7 A $ 3 0 0 4 A T E S. I N C.
i
,r-, ,n- ,
, , - . . . - , , _ . , , , - - , . _ . . - . , . , , , , . ~ . - , , ,,.r---,-.w ,mm.- ,, , , ,
10 0 6.0 TEST REQUIREMENTS 6.1 PPILIMINARY SAFETY ANALYSIS REPORT The Three Mile Island Nuclear Station Unit 1 Preliminary Safety I
Analysis Report (PSAR), Section 5.0 and Appendix SF, Reactor Building Instrumentation, prouded background information on j l
initial com=itments to the AEC .on the subject of instrumentation i
to be used and measurements to be made during the structural integrity test. ,
6.2 FINAL SAFETY ANALYSIS REPORT -
! l Appendix SE of the Three Mile Island Nuclear Station Unit 1 :
i Final Safety Analysis Report (FSAR), entitled " Preliminary ~-
Report on Structural Integrity Testing of the Reactor Containment 1
Structure", provides a detailed description of all commitments i for the SIT.
l
' 6.3 RING GIRDER REPAIR REPORT AND ADDENDA i In order to as certain that the repaired ring girder would function ;
as intended in the original design, commitments were made to !
4
. perform additional inspections .of .the ring girder area in excess j 1
of previous commitments for inspection during the structural l
l integrity test. These commitments, detailed in the " Ring Girder Repair Raport" and " Addenda", included the following:
I a. Monitoring of strain gauges on reinforcing steel at additional azimuths.
f
- b. Inspection of additional whitewash areas for cracking i
, n ! within the repaired areas.
U i C II. L E & T 4 510 C i s T L S. I:t c l
l
11 O c. Visual inspection of accessible areas of concrete around the dome tendon anchorages for cracking or other indications
)
of structural discuss.
A further couanitment was made to analyze data collected during l
! ring girder surveillance prior to and during prestressing, along with that obtained from the at.ructural . integrity test, and to
- compare the data with predicted values. (See the discussion presented in Section 13.4).
6.4 ADDITIONAL REQUIREMENTS Prior to performing the test a comparison was made between the test requirements given in Appendix SE of the FSAR and those required by Regulatory Guide 1.18, " Structural Acceptance Test a for Concrete Primary Reactor Containments."
The differences between these two documents were discussed by telephone with representatives of the Department of Licensing on February 20, 1974. It was agreed that the test could be i performed in accordance with Appendix SE of the PSAR if the following additional items were accomplished during the test and/or were included as a part of the report of test results:
- a. Discuss the effect of hypothetical ovalization of a horizontal slice of the building cross section, assuming the larget diameter to ha.3 inches greater than the smaller diamter. (See Section 13.5).
O
.La' 7 .t-5 ,< * ,
- 12 i
O l; b. Provide conclusions with regard to tangential displacements I during the SIT. (See Section 13.1).
- c. Inspect the buttress-cylinder intersection area for cracking
! during the test. Discuss findings in the test report. (See i
Section 13.3).
l i d. Evaluate the stress at the cylinder-base mat location. The ;
t
- evaluation must be based on displacement measurements since no ,
strain gauges were provided in that area. (See Section 13.1). f I i
- e. Discuss in the report why strain gauges were not included with any tendon anchors. (See Sections 8.3 and 13.1.4.)
6 ,
i l
l i
I l i
1
-, 1 O l l
c s:. s t s t u s o c u r t s. r a c.
13 O 7.0 TEST PROCEDURES 7.1 GENEPJJ., DESCRIPTION The Structural Integrity Test was designed to measure, observe, check, and 0.'.rify the responses of the reactor containment building !
as it was subjected to internal pressures from 0 psig to 63.3 psig j and back to O psig. The maximum. test pressure, 63.3 psig, is 15 l percent in excess of the design. pressure, 55 psig, derived from ;
the postulated maximum loss of coolant accident.
a i
Pressurization and depressuization.were done in stages to permit
- readings and measurements at the following pneumatic pressure -
j levels: O psig, 30 psig, 45 paig, 55 psig, 63.3 psig, 55 psig, +
i 45 psig, 30 psig, and 0 psig (see Figure 2). Except for the -
maximum pressure level (63.3 psig), the pressure within the -
,! containment was increased alightly (+0.1 psig) above the level at -
which measurements were to be taken. When the specific pressure i
level was reached, the pressure was held for a minimum of one hour prior to commencing with the . measurements. The hold period ,
i allowed strains to adjust within.the structure. During this time the pressure was permitted to drop 0.1 psig to the specified l l
l level. i l
. After the hold period the pressure was maintained at the specified i
! level while the following measurements were taken and recorded:
- 1. Displacements of the principle. structural elements.
- 2. Strain measurements of selected reinforcing bars and of the .
I l
[ liner. l l
I !
l l l 6 i I
b i t.M t. at t A $ b O L 1 A T E L t h C l
1/.
O 3. Crack patterns and crack width for selected whitewash areas. ,
- 4. Visual observation of accessible areas other than whitewash areas for structural deficiencies as would be evidenced by !
. I cracking and for possible interferences. .
I A complete description of the instrumentation used to measure the I responses along with all measurements and observations made during i
she test is included in Appendix A. i Measurements and observations at each pressure level were compared j with predicted results and evaluated prior to pressurizing to the ,, j _ _
next level. -
- . . = . . . :-
Predicted measurements and observations are described in Section 10.0.
'~
The evaluation of test results compared with predictions is included "'
j as Section 13.0 of this report.
l 7.2 PREPARATION . i 1
- A detailed working procedure was written prior to the test. A i
i partial list of test preparation items which were signed off before I
pressurization is as follows:
- a. Temporary access equipment had been installed (ladders, j platforms, etc.)
l b. Instrument supports had been installed.
- c. Shelters for measuring equipment, whitewash areas, and pipe -
l for exterior invar tapes had been installed. l t
! d. All instruments necessary for measurements and pressurization I
l of the reactor containment building had been installed.
O i i
GIL B L E T A 6 p OCI A T E S, INC.
I 15 l
O e. All auxiliary equipment necessary for taking measurements was available.
I
- f. Prerequisite testing had been accomplished. I i
- 1
- g. Construction status of the reactor containment building was ready for the test. ,
I l
- h. Possible interferences had been investigated.
- i. Interior temperature of the reactor containment building had .
been stabilized.
- j. Accessible exterior concrete surface of the reactor containment .
j building and crack pattern areas had been inspected for cracks. :
i ! .
i k. Other systems and equipment listed in the procedure were ready for the SIT.
' 1. Exclusion areas had been . established.
()
- m. A test organization chart had been establihsed, f-
- n. Data sheets had been mada .available. !
i l o. SIT personnel had been assigned and acquainted with their
, assignments.
i
, A more detailed discussion of specific preparations for measurements j
! I and observations to be made during the test is included in !
1
( Appendix A.
7.3 DEVIATIONS FROM PREVIOUS COMMITMENTS Direct Current Displacement Transducers (DCDT) were used for the I l
- test instead of Linear Variable Displacement Transducers (LVDT). l i
i Section 2.2 of Appendix A describes the LVDT and DCDT and the reason for. using the DCDT.
I I
C I L b l. L T A H OWATES.INC
-16 O The second deviation fron the procedure reflected in Appendix SE of the FSAR was the rate of depressurization. The_ procedure originally intended that the building would be depressurized at 2.5 psig per hour (the same rate as pressurization) . Referring to Figure 2, the rate of depressurization, beginning at the 55 psig i !
stepdown, was greater than 2.5 psig but less then 4.5 psig. However, !
as during pressurization, measurements and observations were not recorded until a one hour hold period at the particular pressure j i level had elapsed. Because of the increased rate of depressurization, j the average temperature within the containment gradually dropped .
about 50 F, from 80 to 75 F at 0 psig return. Thia. minor interior temperature change, occurring gradually, did not affect any of the i
[:-.
! measurements with the possible exception of a minor influence on the j
()
4 strain rosettes on the inside liner surface, discussed in Section !
i !
13.2.2.
i s
I l
r l
l 1
i j ' ,
)
l :
4 1
f . '
l &lLLEt7 A S S OCI A *E > IMC I
1
17
() 8.0 INSTRUMENTATION 8.1 GENEPA DESCPIPTION Measurement and observation of the . structural behavior of the reactor containment building during the test were accomplished using the following: ,
- a. Displacement measurements
- 1. Jig transits with scales and targets.
- 2. Precision levels.
. 3. Invar tapes. ,
- 4. Direct current displacement transducers (DCDT). ,
f; l i
- b. Strain measurements -E i
! i l
- 1. Strain gauges.
- 2. Rosette strain gauges.
()
l
- c. Concrete crack measurements i 1. Optical comparators. l
- d. Miscellaneous measurements l
- 1. Electronic readout instruments for DCDT's and strain gauges. 4
- 2. The rmometers . ,
i Tne location and identification of the particular instrumentation i used for each measurement is presented in Section 2.1 of Appendix A.
I
- Installation techniques for the instruments and the data collection i
i system are also discussed in Appendix A. -
l e
i e
i
(')M q i i !
. I L b l. k 1 A t s u C 4 A 7 8 h.1 % c
18 0 8.2 CONCPITE CFACK MEASUFIMENT The accessible portions of the reactor containment building were visually inspected for cracks and crack patterns frota both the ground and available scaffolding during the test. Any observed cracks, greater than 0.005 inch vidth, were to be charted; however.
, no cracks exceeding 0.005 inches in width were observed outside whitewashed areas.
Approximately 1450 square feet of the outside surface of the reactor containment building was whitewashed for detailed measurement of spacing and width of cracks to confirm that the
, magnitude of local strains was not excessive. Whitewash areas !
were es follows: :
I . -
[ i
- a. An area of the structure approximately 6 feet wide at the j
dome to cylinder transition extending 6 feet above and below '
the ledge and including the ring girder area,
- b. Three areas of the ring girder approximately 6 feet wide and extending from elevation 439 feet - 0 inches to elevation 451 feet - 0 inches.
l ;...
- c. An area 6 feet by 6 feet on the cylinder at elevation l !
i !
360 feet - 0 inches.
)
, ._ 1
- d. An area 6 feet by 10 feet at the base of the cylinder wall, i l
{
I g e. An area of approximately 28 feet by 32 feet at one upper l j quadrant of the equipment access opening, O
r i I GIL8LRT alf0CIATtt INC
l I
. ._ _ _ . _ ___ 19 _
O A 1 foot by 1 foot grid system was laid out over the entire whitewashed area. Platforms were provided for access and protective covers shielded the .reas f rom adverse weather.
All cracks were plotted ftr each pressure level when pressurizing and at 0 psig after completion of the pressure test. Only those l
cracks with widths exceeding 0.005 inches were recorded on the plots. Optical instruments were used to measure crack width.
The original crack pattern charts are reproduced in Appendix 11 of Appendix A to this report.
8.3 TENDON ANCHORAGE ZONE INSPECTION .
The results of the structural . integrity test of the Robert E. Ginna _:_. .
j I
! Nuclear Power Station, presented .in " Structural integrity Test of l__.
, Reactor Containment Structure" prepared for Westinghouse Electric
, Corporation, Atomic Power Division, and Rochester Gas and Electric i Corporation, by Gilbert Associates, Inc., (gal Report No. 1720) ,
i ! i includes str- nr obtained from load cells installed under the +
tendon button heads and from strain gauges installed on the l
tendon bearing plates for four vertical tendons. Although the results obtained from both load cells and strain gauges were in I i
- general agreement with predicted behavior, the results did not i 1
. aid appreciably in the evaluation of the behaviour of the contain- I l
ment structure. This was due to the fact that the recorded strains ,
vere due only to the increase in tendon force resulting from the !
pressure loading. This increase amounts to only a small percentage ,
of the total force in the tendon.
O . ! l l
I m.n c u m o c u r c s, n c.
_ 20 O Tendons installed in the containment structure of the Three Mile island Nuclear Station Unit i reactor containment building exhibited behavior similar to that of tendons installed in the containment structure of the Robert E. Ginna Nuclear Power Station.
i The increase in tendon force at peak pressure during the SIT is ;
I i estimated in Section 13.1.4 from displacement data taken during the test and is found to be small.
Therefore, in addition to the testing of the post-tensioning system as described in Appendix 5B of the FSAR, the relatively small increase in tendon force during the test confirmed that -
tendon load cells and bearing plate strain gauges were not f j i i g : necessary. .
\
i t
n 5
t t
I l
> .I 1
I i i
O
- l t!iBtli A t f 0 C l .8. T E S. I N C.
i
l 3,-
21 O 9.0 AS BUILT CONDITIONS A survey of the "as built" conditions of the reactor containment building shell was performed. This included a survey of the I
liner radius at several elevations, as shown on Figure 7 l
and a survey of liner plumbness at several azimuths, as shown i i
on Figure 8. j i
i l
9
. . '...5 O j i
i t
i o
4 i
i i i i !
t G I:. t. T R I A 6 5 ts L I A T E E. I N C.
f
22 10.0 CALCULATED RESPONSE l 10.1 GENERAL DESCRIPTION The reactor containment building was reanalyzed for the 63.3 psig internal pressure load case prior to the SIT.
The reanalyses took into account the actual strength of the i
concrete based on test cylinder results. The concrete modulus of elasticity (E) used was:
6 E = 5.2 x 10 The value of Poisson's ratio (u) used was:
i u = 0.21 l ~
! l I
The following values were used for the liner:
j~ ~
6 l -
E = 30 x 10 D
u = 0.30 jl Two separate analyses were performed. First, the structure was modeled for the Kalnin shell-of-revolution program. This program, described in Section 5.2.4 of the FSAR, was used for the analysis and the structural design of the reactor containment building.
The results of this first analysis were used for two purposes.
i i
- a. To obtain theoretical (predicted) values for the various test parameters in the base mat and above the spring line including the dome. ;
f
- b. To provide moments, shears and displacements as boundary j i
conditions for the second analysis.
l l
O 3
l 6 : 1 b l. P. T 46easC6A7E4, fSt
_ 23 O The second analysis was performed using the SLADE finite element program.
This analysis was performed to provide a more accurate prediction -
of test parameters around thickened local portions of the shell which could not be mooeled into the shell-of-revolution program.
Such areas included the buttresses, equipment access hatch and personnel access hatch. l The layout of elements used .in the model is shown in Figure 69.
The model includes the entire cylindrical portion of the shell from the top of the mat to the spring line. The shell-of-revolution, $ .
3 l program was considered to be sufficiently accurate for predictions !
I of the behavior of the remainder of the structure. ,
Boundary conditions along the top and bottom edges of the model e are taken from the results of the shell-of-revolution program analysis at those elevations. l 10.2 CALCULATED DISPLACEMENTS Calculated displacements for each radial and vertical measurement point, described in Tables 1 through 4 of Appendix A, are shown on Figures 10 through 68. .The. calculated displacements at j 63.3 psig are represented by two vertical lines. The first vertical I :
! , line, labeled " theoretical displacement", represents the values r taken directly from the two analyses previously described. The second, labeled " limiting displacement" includes an increase over l I
f the theoretical value to account for the factors described in i O l V '
i I
e e :. h E E T A D S O C a A T E S INC i
r
22.
O Section 11.0. Generally, this increase is 20 percent of the
" theoretical displacement", However, in a few cases, where the t
accuracy of the instrumentation is worse than 20 percent of the
" theoretical displacemat", because " theoretical displacement" at the particular location is quite small, the " limiting l displacement" reflects an increase proportionately greater than s 1 20 percent.
The jig transit measurements are accurate to 0.01 to 0.02 inches.
(Refer to Section 4.4 of Appendix A.) In addition to possible l
inaccuracy in measurement, inaccuracy and limitations in the ,
4 analytical modeling must be considered in the " limiting displacements". i l For example, if the " theoretical displacement" were only 0.03 inches, the " limiting displacement" should reasonably include 0.015 inches j l -
for the measurement accuracy and 20 percent of 0.03 inches, or 0.006 inches, for the analytical modeling.
The " limiting displacement" at 63.3 psig for this measurement would then be:
0.030 + 0.015 + 0.006 = 0.051 inches i
In this case the " limiting displacement" is 70 percent greater than the " theoretical displacement". Clearly, however, the ,
" limiting displacement" he been computed on a reasonable and l conservative basis.
i 4
i ciu r.1 u,ocm rt :u. t l
25 O 10.3 CONCPIIE CRACK PATTEFSS 4
Stress cracking from the applied pressure leading was not anticipated due to the residual compressive stress remaining in the shell at :
63.3 psig. It was expected that . existing shrinkage cracks would +
enlarge slightly in width and propagate in length during reactor .
, containment building pressurization. In addition some new hairline l F
I cracks could have formed which had not been observed prior to i i
pressurization.
The crack pattern was expected to be random with crack width ,
enlargement of less than 0.010 inch. l '
- I I
. I. .
O o
l i
t l
l 1
I t
I i
i l
O ; j t
- .,....c.. .. -
4 2.6 )
\
0 11.0 MEASUPIMENT, ANALYSIS AND CONSTRUCTION INACCURACIES Variables which were reflected in the deterr.ination of the limits on predicted displacements included the precision of instruments; accuracy of readings; design . variables such as accuracy of design loads and analysis techniques; and construction variables such as I
variation in dimension.
l i
1 Variables concerning instrumentation and measurements are discussed l i
in Section 4.0 of Appendix A.
l 1
l t I f
- l. 2 f i
'. I 1
1 I . e i l i
i I
i l
1 i
- i i
G I L R E E T A S S O C I A T E S, ! %' t
{.
27 4
i O 12.0 TEST DATA
- a. Displacement (See Appendix A).
- b. Strain Gauges (See Appendix A). j
- c. Crack Patterns (See Appendix A).
- d. Temperature Readings (See Appendix A).
I e. Tendon Anchorage Zone Inspection (See Section 13.1.4). .
- f. General Observations for Cracking (See Section 13.3).
l f
f h.
e
, I ...'.--
l
- .::.:". I O. ;
i f
r i
i t
! l 6
l 1
, I
.i l '
i 6
1 i
' h I
CILa t h? AS$0C B A TEb.1%C
28 O 13.0 INTERPRETATION 13.1 DISPLACEMENTS AND STRESSES FROM MEASUFID DISPLACEMENTS 13.1.1 Meridional Stresses and Displacement _s Vertical displacements of the containment building were recorded for the locations listed in Tables 1, 2 and 4 of Appendiv A.
l Vertical displacement data is presented in Appendiv.II of the i
Brewer Engineering Laboratory report (Appendix A to this report).
As shown in Figures 37 through 43, vertical displacements recorded i
during the test did not exceed the theoretical displacements for the dome apex, cylinder ledge and base mat. t l
- f Residual vertical displacements for the three vertical ledge l l
j measurements were all negligible. For the done spez, the residual was less than 8 pet ent. For the base mat vertical measurements, l
e 1 the displacements were much less than anticipated, probably due to .
? .
several factors adding to the stiffness of the structure which could not be modeled into the analysis. The residual displacements at locations 31 and 33 are less than 0.02 inches. The residual at -
I location 32 is about the same as the displacement at peak pressure.
However, since the displacement is very small, there is no ,
l indication of a structural deficiency. !
i i .
- The change in the average axial meridional stress, calculated from ;
j the vertical displacements measured during the test was 300 psi at peak internal pressure. The predicted average compressive stress i :
I i
i l
4lemi.tT A*?OCIATE! F N C. J m
.._._..._ _. .....__. .-_..___ ._._ ._._ .._.. ___ .._ ___ _. 29 O in the meridional direction for the typical cylinder wall during normal operation is about 860 psi. Thus an average. compressive meridional stress of 560 psi remained in the cylinder wall at 63.3 psig.
The vertical displacement measurements for the dome, cylinder ledge and base mat are accepted as being valid and are within the theoretical and limiting displacements.
Vertical displacements along the vertical axis through the center line of the equipment hatch (see Figure 5) are less than the theoretical and limiting displacements except for the displacement indicated at location 47 (see Figures 47, 59, 61, 63, 65 and 68). '
i '
I The DCDT at location 47 for vertical displacement malfunctioned j O -
(see Table IX of Appendix A). The residual displacements at other locations on the vertical axis were all less than 0.015 inches after depressurization. These measurements are accepted as valid.
Vertical displacements along be horizontal axis of the equipment hatch are interpreted as follows:
- a. Vertical displacement at location 37 is considered to be
{ invalid due to malfunction of the DCDT (see Table IX of Appendix A). *
- b. Vertical displacements measured by DCDT's at locations 41
, and 42 are within the theoretical and limiting displacements (see Figures 55 and 47 and are considered to be valid data.
O
---r-t 3 I I I E I .% % $ " 4 I s 1 *s 5 I % s.
30 O c. Vertical displacements at locations 3S, 39 and 40 exceeded limiting values (see Figures 49, 51 and 53) at the peak pressure.
However, it can be seen, from the figures for all three locations, that the slope of the pressure-displacement curve decreases markedly at 45 psig upon pressurization, especially for locations 38 and 39 but also for 40. It is apparent that self readjustment occurred in these three DCDT's between 45 psig and 63.3 psig on pressurization.
The slope of the line for depressurization is relatively constant for the three locations, leaving residual displacements at the O psig return that are interpreted to be approximately equal to the amount of self readustment which occurred for the particular DCDT. Self- I i
l readj ustment, such as is postulated to have occurred here, is not I
uncommon in the use of DCDT's for these measurements.
, 'O !
If the displacement which is attributed to self readjustment; i.e.,
the residual displacement at zero return, is subtracted from the displacement at peak pressure, the resulting displacements are less than the theoretical and limiting in all three cases. ,
! i l The concrete surface in the area of these three locations was ;
i i closely examined. No evidence of structural distress was found.
! i l
, i Since the DCDT's at locations 41 and 42, on either side of locations }
j 38, 39 and 40, indicated negligible residual displacements, it is
,, l postulated that some effect in addition to actual building displacement 1; c vas picked up by the sensitive DCDT's. It was concluded that the ;
I !
DCDT's at locations 38, 39 and 40 experienced a self readustment j i
, j during the test.
i
! i l- t
_ _ _ . . . . . . ; r . , , ; . ; .. m .
- 31 0 13.1.2 lioop Stresses and Displacements Radial displacements of the reactor containment building were recorded for the locations listed in Tables 1, 2 and 3 of Appendix A. Rad: >.1 displacement data is presented in Appendix II of Appendix A to this report.
Plots of the radial displacement for three azimuths of the containment cylinder at each pressure level upon pressurization and for the residual displacements upon return to O psig are shown in Figures 10, 11 and 12 of Appendix A. In addition, displacements for each location are plotted individually on i
Figures 10 through 36. , ,
i l The maximum radial displacement of 0.185 inches at peak pressure O> occurred at location 8, elevation 326 feet - 0 inches, azimuth 245 degrees. The average displacement at elevation 326 feet -
0 inches was 0.149 inches. This corresponds to a strain in the concrete of 0.000191 in/in which is equivalent to a 993 psi stress in the concrete. Predicted compressive membrane hoop stress in the concrete during normal operation is 1280 psi for typical wall location. Thus, an average residual membrane compressive stress of 287 psi remained in the wall at 63.3 psig.
The examination of the cylinder displacement curves, shown in l
- e Figures 10, 11 and 12 of Appendix A, disclosed no unexpected l l sharp curvatures which could indicate unexpected moments. The displacements of the cylinder near the cylinder-base mat l
l
. : . a r s. t m e c a s. r r x , %
t
__32 . _ , _ _ _
. O intersection are small and the shape of the cylhaar displacement curves referenced above indicates a condition of fixity at this intersection as expected.
The primary contributor to the normal stresses in_the. . cylinder near the base mat is the meridional moment resulting from the fixed cylinder condition. It was estimated from the structural analytical work that the hoop membrane compressive stress would decrease by about 82 psi at elevation 284 feet .0. inches during the test. Considering the radial displacement measurements taken at locations 1, 2 and 3 at elevation 284 feet - 0 inches, the concrete hoop membrane compressive stress decreased by about 73 psi at the peak test pressure. Therefore, it is.. concluded
) that the structure was behaving as expected, indicating that the design criteria in that area of the structure were met.
The small variation in the displacement curves for the three azimuths shown in Figures 10,11 and 12 of Appendix A is attributed to differences in the stiffness of the structure at various locations around the shell and to the reliability of the instrument at each location. Displacements for azimuths 352 degrees and 108 degrees, both of which are approximately midway between two buttresses, are similar.
At locations 8 and 13, the measured displacements at peak pressure -
exceeded the theoretical displacements by 3 percent and 4 percent respectively (see Figures 17 and 22). In both cases the measured O
V t
4 e- h dI . -
. _ _ _ _ _ .. . . _ _ . _ _ . _ . . _ _ ....._ - - _ _.- . _ _ . . _ ... 33_.___
displacements were less than the lir.iting displacements and the measurements are considered valid and acceptable.
The measured radial displacement at location 22 exceeded the theoretical but was less than the lir.iting displacement. The measurements taken during pressurization and a 63.3 psig for this location are considered to be valid. The measurements for this location during depressurization, except for the O peig return value, were considered ir.vaJid and are not shown on the plot. The jig transit was located on the steel f raming inside the
~
inte.rmediate building. This 1. seal framing is tied in with the
-~
heater bay and turbine building steel framing. The gusting winds
~
blowing on these buildings during depressurization caused move- -
l -
ments at the base of the, jig transit, precluding.reliabla measure- --
I ments at 55, 45 and .50 psig during depressurization.
Radial displacemm ts measured on the vertical axis of the equipment access opening did not exceed theoretical or limiting displacement predictions. Figure 17 of Appendix A shows picts of displac2 ment data considered to be valid. Several data points .
for location 38 were considered invalid due to problems with the DCDT instrumentation. It should be noted that none of the data l l
. points for location 38, which were considered to be invalid, )
i exceeded the limiting displacement predictions.
t O
l
- i. t i e t t. T t o c c i t T n t h c.
__ ._.- _ _._ _ _ _ . 34-O Theoretical displacement predictions were exceeded at locations 37, 39, 40 and 41 (see Figures 48, 50, 52 and 54). However, the limiting displacement was exceeded only at location 37 where the limiting displacement prediction was 0.142 inches and the measured displacement was 0.152 inches, a difference of about 7 percent which is not considered to be significant. No. structural distress was observed upon inspection of this area. It can be seen from the figures for the above four locations that the correlation between actual and predicted displacements is quite good.
It was concluded that the radial displacement measurements were
, valid with the exception of some measurements at 38 radial. The ..
i
! measurements verify that the structure satisfies the design ;
criteria. ;
- b. :
Actual displacements exceeded the limiting displacements at only two locations:
- a. 37 radial at the equipment access - by 0.010 inches,
- b. 22 at elevation 439 feet - 2 inche.s, azimuth 108 degrees -
by 0.018 inches.
- i .
No evidence of structural distress or abnormality waa found upon l
visual inspection of these two locations. Displaraments measured :
1 at other locations near these two were within the 14=4 eing l
t displacement predictions, indicating that che structure did meet the design criteria.
w i;. s t. C T A 6 f o C I A T L !. f *. c
35 G 13.1.3 Tangential Displacements Measurements of tangential displacements were not recorded during the test. The test procedure provided for a total of 17 points for radial measurements. Although it was recognizad. that tangential displacements would supply additional information.for evaluation of the containment structure, it was concluded that..these measurements i were not necessary for a complete evaluation of the' structure. In addition, the magnitude of the tangential displacement would i generally have been negligible, falling below the range for which the instrument set-ups were considered to have been accurate.
3 i
' 13.1.4 Tendon Anchorages 2.
- No special instrumentation or surveillance of tendons and tendon .
__ a anchorages was conducted during the test. As discussed in
~
I
I that load cells installed under the button heads and.. strain
. gauges placed on the bearing plates did not appreciably aid i in the evaluation of the containment structure. This.was due to the fact that the strains recorded were due only to the !
! increase in tendon force resulting from the pressure _. loading.
This increase amounty to only a small percentage of the total
- t force in the tendon. .:
i :
l l The maximum increase of the force in the tendons at peak pressure !
! i
- can be obtained through displacement measurements made during I the test.
9
^
GILET ET A 5 bOCI ATLS. INC
36 O For hoop tendons, the maximum radial deflection was about 0.187 inches. The elongation translates to an increase of .about 38 kips per tendon, or 2.7 percent over the original lockoff force at 70 percent of ultimate. The percentage increase in force was similar for dome tendons and less for vertical tendons.
As expected, containment pressurization caused only very minor increases in tendon forces. Thus, the tendons, as an integral part of containment strength, experience negligible cycling of loads.
Visual inspection of the concrete in the accessible anchorage f zones was accomplished prior to the start of the test and at i
- each pressure level. Also, tendon anchorage zones which were O -
included in whitewash areas 120,131,132, and 133 were examined prior to and during the test. No unusual cracking, bearing plate displac2 ment or other unexpected occurrence was observed during i
i the test.
13.2 STRESSES FROM MEASURED STRAIN l
13.2.1 Reinforcing Bar Stresses 1
Concrete reinforcing bars were instrumented using four strain gauges at each location to determine stress in the rebars. The
. strain gauges were attached to the reinforcing layer at the outer face of the reactor containment building except as shown ,
i for the ring girder in Figure 9, where the gauges for some of the
, vertical bars were located on the vertical rebar cage at the outside f ace of the vertical tendon conduits.
wtLFLkt A b ) U E I A T E %. I Ei b l l
l l
. _ _ . . . . . . . . . . . _ . . . _ _ . . . . _ . . _ _ . . _ . . _ . . _ _ . _ . . . _ . ._ 3 L.
O A sister bar was placed next to each rebar instrunented with a strain gauge. The sister bar was oriented in the same direction as the rebar and it too was instrumented with a strain gauge.
In addition to performing as a backup should the rahar gauge have failed, the sister bar was used to corroborate the readings.
A complete description of tne strain gauge installation is provided by Section 2.2 of Appendix A. The computer system used for data acquisition converted measured strain directly into stress, assuming that the modulus of elasticity (E) of the steel to be 30 x 106 and Poisson's ratio of 0.3. The ,
meridional and hoop rebar stresses are tabulated in Table II ___._ ..
of Appendix A and are plotted graphically in Figures 21 through _ 3 _ . 3 3, . . .
t 30 of Appendix A. ;[7,_
Strain gauges measuring meridional and hoop strains were attached to reinforcing bars along the vertical and horizontal centerline of the equipment opening (see Figure 5). The mari = = hoop stress ,
i for the rebars around the equipment opening was 10,100 psi at i l
location 37 on the horizontal centerline of :he opening. This is I l
about 25 percent of the specified minimum yield stress for hoop I i reinforcing bars. Maximum stress in a vertical rebar around the ; .
equipment opening was about 5150 psi at location 40 on the 1
horizontal centerline of the opening. This is about 13 percent ;
i of the specified minimum yield. These stresses in the rebar around the equipment opening are, as expected, well within the limits of the design criteria of Section 5 of the FSAR.
O
., l a. h i 0 7 A i > fK t A 7 E 6. ! % L.
l
38 b Strain gauge data for reinforcing bars in the ring girder are discussed in Section 13.4.
The strain gauges on rebar at elevation 430 feet - 0 inches in the cylindrical part of the shell indicate a maximum meridional rebar stress of about 4300 psi and a maximum hoop stre.sa of 3700 psi.
Both of these stress values are well within the design limits for the rebar.
The reinforcement stresses and strains represent only the changes in stress and strain which occurred under the pressure loading -
of the structural integrity test. The reinforcement stresses are within the limits stated in the FSAR. Most of the rebar stresses
- -
- . a. .
have been accepted as valid. Measurements not com:W red valid l*
are listed in Table II of Appendix A. A comparison of rebar- !
sister bar data is presented in Table II of Appendix A. The correlation of the rebar-sister bar data was good. for 83 percent ;
of the locations. This good correlation lends additional credence to the rebar data and supports the conclusion that the structure satisfies the imposed design criteria.
13.2.2 Liner Plate Stresses Rectangular rosette strain gauges were placed on the liner plate ;
l around several penetrations and also on the liner away from any l
discontinuity, for comparison. The location of these rosette i
strain gauges is shown in Figures 1 and 3 of Appendix A. Liner ,
1 l plate strains, principal stresses and resultant angle were obtained ,
l x.)
4 !! in I L T 4 f 9 00 6 A ? E $. I % C.
_ . . _ . _ . . _ . . . _ _ . _ _ . _ . . . _ _ _ _ _ _ . . _ _ _ _ __ _ . . . ._ 3 9_ __
O directly from the rosette strain gauges through the computerized data acquisition system. Modulus of elasticity (E) for the liner 0
steel was assumed to be 30 x 10 and Poisson's ratio to be 0.3.
These values were used for the computer calculation of stress from strain.
l Table I, Appendix 11 of Appendix A presents a tabulation of strains, I principal stresses and resultant angle.
All but one of the rosette strair 9 ges indicated principal stresses less than the specified minimum yield of the liner plate material, 30,000 psi. The maximum liner plate principal stress . ,
i indicated by the rosette strain gauges around penetrations was , _
s about 14,700 psi at location 71, near the feedwater penetration. ~ . ; ~~
~
O The maximum principal stress indicated by the rosetta strain gauges located on the liner plate, away from discontinuities, was about 4800 psi at location 70.
The collected data appeared to be consistent with the elastic theory concerning the stress concentration and distribution around openings in an axially tensile loaded plate. - ~~ ~
i .
The maximum principal stresses given in Table I, Appendix II of l
Appendix A for the strain rosettes located on the normal liner . .
t (locations 70, 71, 72, 73, 74, 75) fell off more rapidly during depressurization from about the 45 psig level than they had increased during the pressurization. For each locatien a residual maximum principal compressive stress in the liner is shown at 0 psig return.
.; t L et E L T A l f 0 C 8 A T E S. I k C.
40 t
It is postulated that this phenomenon was due to the sharp drop :
1 in average external ambien:i temperature during the test. Referring I I
to the ambient temperature taasurements given in Tables VI and VII in Appendix II of Appendix A, it can be seen that the average temperature dropped more than 15 F from the period prior to the i test and up to about 30 psig pressurization to 55 psig pressurization !
i and thereaf ter (see T122. T123, T127) . The temperature change within the shell takes place more gradually as illustrated by the .
stress in the liner where the temperature change effect did not become fully evident until about 45 to 30 psig depressurization.
i
, The rosette strain gauge at location 96, near the feedwater l 1
_1 .
l penetration indicated unusually high local strains, with j i
l 1- ;_.
I l corresponding marimum apparent principal stress of about j
~~
97,000 psi at peak pressure. An inspection of the liner plate l i at location 96 revealed no evidence of overstress to the plate.
It is believed that this measurement reflects a gauge f ailure. i Stresses and strains of the liner plate represent the change in stress and strain of the plate during the test. Most of the rosette strain gauge indications are accepted as valid and reliable. Tne maximum principal stress of the containment liner was much less than the specified minimum yield stress of the liner plate material confirming that the liner satisfies the design criteria.
O 1
i C I L B I. h t A $ b O C I A T L S. I N G.
41 0 13.3 EVALUATION OF CRACE PATT E S i I
The results of the observations for cracking, shown in the crack pattern figures of Appendix A confirm the predictions in Appendix SE of the FSAR. The absence of stress cracking provided direct evidence that the expected residual compressive stress existed in the shell at the peak pressure of 63.3 psig.
Existing shrinkage cracks were observed to enlarge slightly in width and to propagate in length during the test. Some new hairline crackc did appear which were not observed initially.
In all cases crack patterns were random. Crack width enlarge-I ment was less than 0.010 inches except for one crack at the f 1-equipment hatch which, at peak pressure, measured 0.010 inches ,
I l n. _
wide. A close inspection of this crack revealed it to be a shrinkage crack which occurred within the surface grout left by the cement finishing operation and did not represent a stress crack into the concrete.
l Cracking shown on the surface above the tendon anchorages in l
whitewash areas at azimuchs 175, 320 and 350 degrees is all due to surface shrinkage which prohably resulted from the concrete
~
i finishing technique used. Most of these cracks existed prior l
to the start of pressurization and did not increase significantly in length or width during the test. j O
- s. I t ti f. E T 45sorta?ts.I %
_ _ _ _ . . _ . _ . _ 42 O These surf ace shrinkage cracks do not impair the ability of the concrete to function as intended in the design. Future ring girder surveillance includes inspection of these same whitewash areas.
Very little change in these surface shrinkage cracks is antici-pated over the life of the plant. Future ring girder surveillance should substantiate this prediction.
In addition to the crack inspections in the whitewash areas, other areas of the reactor containment building were inspected for cracks throughout the test. These included general inspection of accessible surfaces if the containment such as the dome and
~'
l the intersection of the buttress and cylinder. No stress cracking was observed. No cracks greater than 0.005 inches
' ' ~
wide were observed.
9 In conclusion, crack observation data collected during the test substantiates the fact that the reactor containment building satisfies the design criteria.
13.4 EVALUATION OF RING GIRDER REPAIR Due to the extensive nature of the repairs made on the ring girder concrete, a surveillance program was established to inspect the concrete in order to ensure that the repaired ring.
girder met, and was continuing to meet, the design criteria throughout the life of the plant. (Refer to Report on the 1
Containment Building Ring Girder Construction and Repair and
(
?
associated Addenda which have been previously filed with the AEC.)
O
! 64LLT.L? AtSOC14Tts.IPL w _ _ _ _ _ . _ _ _ _ _ _ _ .
l 43 l i
i 1
l O' Strain gauges and whitewash areas for ring girder surveillance, including surveillance performed during the SIT, were added in addition to the whitewash areas and strain gauges originally listed in Appendix SE of the FSAR. The loadings placed on the containment structure during the application of the prdstress and during the SIT, when internal pressure was raised to 63.3 psig ,
(1.15 times the design pressure), were the most severe that the structure would normally experience during the life of the plant.
It is therefore believed that measurements and obe....vations taken under these two load conditions can be evaluated to determine that the ring girder satisfies the design criteria. ...
The ring girder repair, which is discussed in detail in the .
l I -
A previously mentioned report, consisted primarily of removing (f ('
. i i
all defective concrete inward from the vertical face of the j ring girder to the vertical rebar cage at the outside face of the vertical conduits. Replacement rebar was cadwelded into place and concrete of the original design mix was placed.
The repair was designed so that the ring girder, upon completion I of the repair, would function as intended by the original design. ,
The north 180 degree segment of the ring girder required }
considerably more excavation of defective concrete than did the south 180 degree segment. This was primarily due to the j l ..:.
! introduction of horizontal construction joints for the south 180 degree segment to allow better access and control for i
I fiLMI'F? AS90LIATEL I AG
LL O concrete placement. Although there was some excavation of defective concrete on the south 180 degree segment, the pri=ary problem was
- the poor quality of the horizontal construction joints near the
! outside face. Extensive core drilling was done along these con- l I I j struction joints to determine the extent of the problem. Concrete ;
1 l was excavated to expose defective joint areas which were then i l I
! repaired by techniques previously used for repair of other areas.
Three kinds of information, available from the SIT and ring girder surveillance, can be evaluated to determine that the ring girder j .
meets the design criteria. ,
The first information consists of the strain gauge measurements on i
..l_- ..
the reinforcing bars. The strain gauges of interest are shown on l Figure 9. Table 1 lists the stresses in the reinforcing bars during i
prestress loading, during the SIT and the total stress in the rebars at peak pressure during the SIT. .
! l i i The stress picture within the ring girder is complex. The ring i
! i l i girder is heavily reinforced for discontinuity stresses resulting i
- rom its function as the transition between the cylinder and i
j shallow dome of the structure. Additionally, the ring girder is heavily reinforced in the vertical and dome tendon anchorage zones to permit the flow of tendon prestress forces into the structure by accounting for bursting, spalling and other effects as described in Section 5 of the FSAR.
I l
O ,
cia.s ta r 4s s ocia rts, inc
I 45 __
O Although separate reinforcing steel has conservatively been provided for each kind of stress anticipated in the ring girder
, as a result of design loadings, it is recognized that stresses due to several effects may be picked up by a given reinforcing bar depending upon the location during the application of l I prestress load. As shown in Figure 9., most of the strain gauges ,!
l in the ring girder fall within bursting and spalling zones. l Therefore it is difficult, if not impossible, to correlate stresses
- in the rebar after full prestress with the expected net membrane i i
compression expected at each section taken normal to the shell '
l I since the stresses reflected in many of the bars are bursting l , ,
and spalling tensile stresses. The only realistic conclusion j_
that can be inferred from reinforcing har stresses after full .
prestress is that since stresses in the bars are quite low !
l 3 (less than 6 ksi), there is no evidence that the ring girder is l
, not performing its function as intended in the original design. .
i The change in the stress of the rebars during the SIT is shown in Table 1. The maximum change in stress for any of the instru- ,
i mented bars was 2.0 ksi. For the majority of the bars the change i .
in stress was less than 1 ksi. The stress change in the rebars during the SIT was expected to be on the order of several ksi.
The minor changes in stress indicate that the ring girder is
, stiffer than anticipated and is functioning as expected. l I
l i
i l !
- ! : 1 i i ;
i I t j G 6LS E R T ASSOCI A TES. t hC
^
)
$ l t
i
46
. The second source of information is the displacement measurements made during the test. It is recognized that the displacements of the structure under the internal pressure h of the SIT are l
similar to, but in the opposite direction from, displacements due i to the prestress load which is applied as an external load.
Therefore, an evaluation of displacements measured during the
- SIT pressure loading also applies to the tendon prestress loading. '
l The displacement measurements have been discussed in Section 13.1. i Basically, the displacement measurements for the ring girder, i I dome and cylinder are within the limiting displacements predicted I
during the test with the few exceptions discussed in Section 13.1. i l . :.:
l The displacements indicate that the. ring girder, a critical .
structural element of the reactor containment building, is stiffer than expected. This may be due in part to the fact i that the extensive reinforcing steel throughout the ring girder could not be simulated in the analytical model. ;
?
Had there been any deficiencies praamnt .in the ring girder, it I I
! was expected that several displacements greater than predicted :
would have been measured. Instead, the displacements were .
within the predictions;'thus, giving tangible evidence that the ring girder performed its function as designed. ~
i !
i l
G I L B E R T A 6 5 0 C I A t t 5. I N C.
t
_ _ , e
- .7
. O The third, and perhaps most conclusive, type of infor=ation I substantiating ring girder fulfillment of the design criteria is the results of extensive observation made to detect evidence i
of any stress cracking in the whitewashed and other accessible areas of tendon anchorages. Crack patterns are discussed in I
, Section 13.3. Basically, observed cracking in the ring girder, 4
l as well as in other areas, falls within the predictions made in i Appendix 0,2 to the FSAR. The cracking may be characterized by the lack of any stress cracking. Cracks which did appear or were evident prior to the test were random in pattern. Most i
I were less than 0.005 inches wide. The cracks were primarily i
i shrinkage cracks which increased slightly in width as expected
~
'~
~-
during the SIT. None of the cracks observed in the ring girder O l area were greater than 0.008 inches wide.
If the repair had not been successful in restoring the ring
! girder to the condition required to meet the original design i
criteria, stress cracking and evidence of structural distress would have been expected during the SIT. However, no stress cracking or structural distress were observed.
i i
i l It is concluded that the measurements and observations during the '
l prestressing loading and SIT internal pressure loading confirm the ; _.
I !
success of the ring girder repair and indicate that the ring l girder has satisfied the design criteria in its function as one of the principal structural elements of the reactor containment building.
I GIL b E E T 4 5 t OCI A T E S. t hC '
48 O 13.5 CYLINDER OVALIZATION Prior to the SIT it was agreed to investigate an assumed ovalization of the containment building cross section such that the major diameter was three inches greater than the minor diameter. The purpose of the investigation was to substantiate the use of three azimuths for radial displacement measurements.
The analysis is based on the paper, " Stresses and Reactions in i
Expansion Pipe Bends", by A.M. Wahl( ).
The analytical model consists of a thin circular ring of unit axial i
i length having a radius (r) of 66.75 feet to the central line. -
i Buttresses are not included in the model. The ring is assumed . . - - -
6 initially to be in a deformed oval shape as shown by the solid I -- -
() line in Figure 70, with a difference between the major diameter (dy )
and the minor diameter (d y ) of 3 inches (dy-d2 = 3 inches) . Under ,
i l the peak internal pressure of 63.3 psig the oval shape will tend to become circular as shown by the dashed line in Figure 70.
Because of the large radius to thickness ratio, the moments
! generated at any section through the ring would be negligible assuming a perfectly round ring. The effect of the internal i
pressure on the ring would be to produce only membrane tension
~
stresses. However, with an elliptical . cross section, moments l-l in addition to membrane tension will be produced. The expression 4
- f. for the moment (M,) at point A in Figure 70 is derived in ;
i f GIL BE R T A S SOCI A T E S. t hC
49 O Appendix No. 5 of Reference (7). It is found that M = -pr6 where, p = internal pressure, 63.3 psig r = radius to centerline of ring, 66.75 ft ,
6 = initial out-of-roundness at given point,1.5 in. f f
i :
Thus, g M = -7.6 x 10 lb-in.
Considering the shell thickness of 42 inches and neglecting the _ ,
f effect of the liner, M, produces a 260 psi extreme fiber stress. ,; q ,
i The average membrane compression in the hoop direction for typical vall under normal operation is about -1300 psi and under
[ '
! SIT conditions, about -430 psi.
l Therefore a cylinder ovalization as described here is not considered l to be a problem. The as-built survey results shown in Figure 7 l confirm that any out-of-roundness was less than assumed for this investigation.
i ,
I i !
t i
i f
h CILELET A SSOLI ATES ING
_ __5 0_
O REFERENCES
- 1. Report on Containment Building Ring Girder Construction and Repair, December 1, 1971.
I
- 2. Addendun to the Report on Containment Building Ring Girder Construction and Repair, January 21, 1972.
I v
- 3. Addendum 2 Report on Containment Building Ring Girder Construction .
and Repair, June 30, 1972.
- 4. Addendum 3 Report on Containment Building Ring Girder Construction and Repair, August 23, 1972.
- 5. Addendum 4 Report on Containment Building Ring Girder Construction
- and Repair. -
- 6. Letter to Mr. A. Giambusso, United States Atomic Energy Commission I~~'
from Metropolitan Edison Company dated May 31, 1972 concerning ._! .
Docket No. 50-289. ;
i !
t
- 7. Paper: " Stresses and Reactions in Expansion Pipe Bends", A.M. Wahl pp. 336-357 ASME Pressure Vessel and Piping Design Collected Papers 1927-1959.
4 1 '
1 I
i i
i i
I i =
O i h
i G I L D E R T A S S O C I A T E S. I N C.
l l
l
!O l
m tE 1
[ REACTOR BUILDING RING GIRDER REINFORCING BAR STRESSES (KSI)
DATE 6-6-73 7-5-73 9-18-73 3-9-74 z DURING PRESTRESS DURING SIT TOTAL STRAIN 3 5 VERTICAL COLUMN 1 FULL PRESTRESS GAGE $ @ FULL PLUS FULL 63.3 PSIG &
LOCATION D I"i VERTICAL FULL D(PfE PRESTRESS PRESSURE 63.3 PSIG PRESS.
d
- 52 HOOP 435' 108 0.9 -0.5 4.3 2.0 6.3 l52 VERT. 435' 1080 6.4 3.9 1.5 1.3 2.8 53 HOOP 435' 245 0.5 0.6 4.8 1.2 6.0 53 VERT. 435' 2450 5.9 3.4 0.8 0.2 1.0 54 HOOP 435' 352* 1.3 -0.3 5.9 1.6 7.5 54 VERT. 435' 352 7.5 10.9 17.8 - -
55 HOOP 440' 108 -0.1 1.1 3.3 0.5 3.8 55 VERT. 440' 108 1.0 0 -0.6 -0.4 -1.0 56 HOOP 440' 2450 -0.1 1.0 4.1 0.3 4.4 56 VERT. 440' 2450 0.5 -0.5 -5.3 -0.8 -6.1 ,
4.9 57 HOOP 440' 352" 1.4 1.4 4.0 0.9 57 VERT. 440' 352 - - - - -
58 HOOP 446' 108 - - - 0.7 -
58 VERT. 446' 108" 3.9 4.9 4.8 0.3 5.1 _
59 HOOP 446' 245" 0.4 2.7 4.5 - -
59 VERT. 446' 245 -0.8 2.6 2.0 -0.8 1.2 60 HOOP '446' 352 -0.4 2.0 4.6 -0.6 4.0 60 VERT. 446' '352" 4.3 5.6 5.3 -0.2 '
5.1 129 HOOP 446' 30R - - - - -
129 VERT. 446' 800 1.2 2.8 3.9 -0.05 3.8 130 HOOP 446' 3200 0.1 2.4 5.2 -0.4 4.8 i 130 VERT. 446' 3200 0.3 2.8 3.1 -0.1 3.0 61 HOOP 452' 1080 0 2.4 2.7 0.05 2.6 61 VERT. 452' 108 1.6 1.4 2.0 -0.2 1.8 62 HOOP 452' 245" 0.1 2.0 -
0.4 -
62 VERT. 452' 245R 4.3 3.7 3.8 0.8 4.6 63 HOOP 452' 352R 0 2.4 2.9 0.1 3.0 63 VERT. 452' 352 2.4 2.6 3.2 -1.1 2.1 J
NOTES:
Conversion of strain to stress conservatively assumes E steel = 30,000,000 O
l -- _- . .- .. - . - . .. _ - . _ _ . - . - - . -
V C ONTAI N t> E NT PRES 5URE - P3 l ra w a b e y l D D & 7 C C O o
.1 ,!-, , . , . . . , ,
l p;
L. l- .
p '
~ l i ec.ot L - _ t !_ .
I
, o c._
s7 l- - m- ~, -
-!r o. 2 K >
! r
- 15
=
.. .. L _ .19 .._. _,_
e ao 1 : I&
,e I i !
- 7 ,, ., _ _ _ ; _ _ _ _. _ J _ _ j
'l l- 5i l
+l l
ee:b, y ,
l l \ 'l
- e
- _ , .; , w, _ _ _ ___ _ _ _ . _ _ c_ _ . .
. 5 :
sn ... ____ ___ ___ ___ _ _ _x_
p o ; l e .
s i
,c;g
- - _ _i _ _ _gI _ _ _l _.. 2, k_
aa 0
i
.,,______i_
I l _\\-
, . ---,_r.- ,
ql ,
, I C g_
...,,_ _ _ _i _ _ i t 7
__J_/ Q h00
,,: :: = _ _ _ _ _ ____ _
- oc: _______________d,, ,
S
...-.s ..
.... __ _ _ _I ____y's
- oC:n __ ___
y l O
I I
l
_i_ o r: ,
_ 3 _
I I.*
, I-6 I
o 2
- ~
O -=
5E S 2
~ E.
.l. W E
, t
a h-^ -~]
togy. 436 4*'
a
@h)I ' '
j
'9 h
- a. .
i (4 i !@I' k
h@
-Tor or RiHo ..
.fG u"1 b. -.'. 4- -
titv. 453 C,,, I h ""
" "~
I3 f'
,.1-1 1 !
~~
dlill'!J.
ses ylh~" g 0'"D"" I E ttv. 4 n-o
.3 g q .org
"~~~4' 58
. I h**-
I esif t
- - j g
,}
}'e qL \.
n,
'.L' 2 %,
M')hi
.- :11"
-S.P
.l RIN6 j
'5 I ._ _yz O*-
a ti n . - . . ___ _ _ ?,
18C mus i .a l
3,:, , , , . - EL EV. no 1,i e ,
eg - .. - . . -
a in ID ___ ,_
__ gw ,_ _
. (.J '---- -
k - 4 - -- - --- -- - ,
-2.- ,
'e ps ;4 . "
(ttv. tse' ' C o
- m. a L
"(s
", ii, .
, ' 33 27o*
. Ett v. 2 7p o' -
f ! -
' ' (
SEE F 56utE 9 Fog 32 i0,0,4s,O.f
. . 9
, 14451RubitHTATlou L AyotaT e
- ^W~
- ~- R 9 t-*
STRAllt 6Au6E OH RESHf 0RCitlG-llORlLOt41AL DIRECTIOH t 1 51RAlH GAIAGE ON RElHrORClH6-VERitCAL DIREC1 bon A ST AT iol. ELEVATeoM FOR RAblAL DISPLACEHCHTS i l T APE roR vtRTecAL DISPLACE HEt4TS f FlyED 1 ARGET FOR VERTICAL DISPLACLHE4TS RELATIVE To BASE MAT
,L )lG 1R ANSli OH LEVEL 41 ROSElT E SH APED STP.Alu G AUGE. Ott LINER StlRFACE.
89 DCDT ( R ADI AL) ih DC DT (VERTICAL) g ELEV 348 O'
['] wnnE-wA sa O
% lilERMOMETER LOCATION G y t a G d EEU gettipulatteiAtleet - Du fllDE F ACE serassy 3 l
. C >
e 'e g; e
"o
- 5 5
g Id i
h N g[
/f ' jx
/' 3b
// I Y,
. 5
[f !
'c;)
- o l; q *a
- te l
t y 3 r> .
N[ '\ i /
1 #'
I
\\ l f
./
z \. , 2 9
! '4
- O 30 3
-- GG M s'$
- . _. . - p y gg
.E 3w e ,
, gg I "'
.---_a__ .----- - -
.t s -
MS I
,cS,65)tt l C" I I
h ?
m l '
1 :
4 :
j i
@ l l i i w
u, h: $
f ,. ;
..sn . Zu W
l f:; i
~
l I 65 " 2 2
3 i
5' O O Fg M.
l "
O
- w I ,
di3 I a
~
- Zw 2
er
^^^
l I j N
- l e f
o 1
o Q z 'h
^D
.soi l "s ":s#2 iY ,E
- D 9
W l %
2 5- ww O Ud *Eg W s I
E 3=2 ms wm *w l =
sw E, l 2 *5 5 d l
2 d~ 8
\
ce.a.m i Et o; ga o
g ,,
7-
, a
~/ 'o 'e 'mf o
'h, M, Ya M $
f~
d W w w w W N d e e o e e . e e e o e o e * *
- G tuTTRtss j 32.O' SECTioN1-1 8
00 44
,9
.: E BlftTRESS hSUTTRE55
- 2Go*
32.O' 7sgo 43 ,
,o;1 4
,o! IweQ 47
,f IMOQ 46 IMOO _ __ ____ _,
.. s" ....
_...e,'
~:.- -
g 1H ++ ...
^ -
z-Oo e '. :
C)
E % o D b 42 D
".4
- D ..
g g 41 f 37f.I g
I 38I fM 2
g# I 41I " I as y EL.319 -2 a w l
.. *. e.e y m M **
i sQii 4Q4'-5\ 4*dl9 d \ It'o" _
11-o ))
2
- o
~
s' - -
... .s ~. .
9 ,
./
' *, ' ,** EL.304-Oh _
LEGEND H STRAIN GALIGE ~ON REINFORClHG - HORIZ.ONTAL DIRECTION Z STRAIN GAU6E ON REINFORCING- VERTICAL DIRECTION
, O D COT (RADI AL)
$ oc DT (VERTICAL) 1 l INSTRUMENTATION EQUIPMENT ACCESS OUTSIDE FACE
(
' FIGURE 5
l
. .. . . . , . I l
.h
- i!i
, l.
EL EVATION R-l R-7. R-1 R4 R-5 R . (, R.7 R- B R.9 R lO R-l l R l'L R.l) -14 R-15 R-It, 4 3 (,' - O" G5.CV45 G4.9(,4 G4.911 (A.911 (,5.l35 G4.901 G4.ill G4.9U) (o4.914 (A.948 G4.953 G4.9 ZZ b4.911 (,4.9 21 64.918 64.969 430'-O' 45.0 9. (A.953 44.906 G4.885 (,5.115 f,4.810 G4.880 G4.948 G4.919 (,4.9(A (,4.984 (,4.901 (,4.946 (,4.946 (,4.936 f,4.919 34 - " G5.OE6 45D51 G5.04E G5.03(, (,5.01(, f,4.94 3 f,4.914 G4.919 (,4.9 53 (,4.005 M948 (,4.911 (A.833 (A.958 (,4.919 G5.olo sov. o- 65oti fa.990 <,4., G 4 i,4.990 (,4.958 (,4.sai (,5.oio (,4.914 -
(a.948 (,4.93a G4.a9(, G4.as4 g.' l- fe.94o s4.a,o t s9 :t- us.ca (,4.m (,4.9 u v4.9au (a.su (,< .9 n (a.911 u4.9ss - <a.9zs (a.e49 G4.9as (,4.9 u,as,1 (a.ao, (s.9u e.4
'o e 4 5
W w' r3
'a .
.5 N<O<
5 c.
W c'2 9 4t
,m.'.
r ,d
..(M+
j\ 9A' cf
'4aN'N '/. -R9 LINE.R lit RAOlusi
. . . - - R- t - - - 1 = -
18 0
- qe,ge N %
/e N
/ J //
- -p E N2 Rog.
-ae.
- ===2 g
- T Et
~
s s._ . ,y da 8 -N- -
.?
ov o
t-
,0 d '6.
PLAN OF REACTOR. 8UlLDING., insen aaois ascunu recune a O 'O O
l j
W"
.u . . . .:y. 4 i i
\ / I g
'0 h! I
'\f A 0 - L . "rei il j
'V,4 /
s
(
/;
g i
_ s* #II ..
\ E . . < :./. . Ci
/ \ l .. ; . i:L &
o i
l ~ c. . ; .... =l
$. f,' y* . ." ~
l ,
s/ \ ,
!l. '
- - - - --:y!-:'
\ ;j/
\. .
-g,
'9 l - .. - - l- 5 l
'j . .**
. b '. ' .
[
l 3., . l;l s
! .- J
! \
l .* ' ' ' -* S i e y L
w=.. %,
= .
el g[
= - M - .m.
\ -
'o I - tt4 '
g o ; a I
e I
, ,s .
3 o ns . , ers gygg egy,_ ,, ,)
$C 4 i fb 4
li
,h f
k
=g u a
r$ ) ?,
=4 . < > $$ ^-4'
~ e 54 qp55
- 4'52 EN N LR & 13 omwa FxE or Rous Geoes 0 pe0 58 w
I
- 8. EaseeF9eCaseG &OC AI80seS 8800 00 3118C500M$
....................,easc COAnflPesop 30 sek staf AllOClagteses c__.__
NW_@ -4_ ,,e g===2 - -
p p -
Qs _ 7 AI, . '~ ,{
'f m ~ ,, -
. u s u._ ._ l fd'fI l I e
( l
- i i
p-
... )
e '" ( { v_ uExme meeg . -ns-
. . . . . ) -see 51
- i ss N a - -- gl.
. : r.(e
\
h p gg
- - r. %.
- iso
, . . B
".4, -
., y. ;,.
.e
- soo-
+-
r --
g .w - *
,s,, . - - m, . ,, _m s..
, __ ,m.,
b *
- SN88 W3 #
bECTitu $~ h bECTWM 'l amic casosa bECrwa 3-3 = c"*sa nnen Puu ""2',""
e 'O *
!o
~
188RSBEE - -
REA CroR BLDG. p4g7: CYL/NDER BASE GAZ L OC AY/CH No.
/
BEL SCAN No. 2 78 10 llll lill,I llllllllll11llllll
, . -- rest PAE SS. P # 63.5 psis
, ... --. ... tL _ .. -. ... ._- ...
__. 1 __ __ ,_ _ ,__
l so l
l ll' W 50 l
\
lI 'i I#
Q.
, I l
. 40 !.' '
O 'il I i
1 a )
f l
6 . ,
. LIMITING l DISPLACEMENT
I' .
! s q !
20 l
( l
~
i i l
/0
% THEORETICAL l
, DISPLACE, MENT l
! o .l .
l 0.0 0 10 0.20 0.30 l
D / S P l. A C E ME Al~r ; /NcN O *aessuaiz^'io" me,e
- -- DEPRESSURIZATION FIGURE 10 1
O 13@@ OSN REA CYOR BLDG. PART: C YL/MDER BASE i GAZ L ocAr/oM No. _ E \
BEL SCAN No. 2 79 l 1
70 lllllill,Illlllllllililllllll
, ,-- resr pae ss. p - ss.s psia l l .. -- -- ... .-. .. .rt . ... - - .. ..- ... ... -.
l I I
l I
'I i i l
@ 50 -
' 1
%s Q.
l
, i
- t i
~
s & ' '
O 5 l
I i
0 1 30 ' '
V)
I
% LIMITING l , DISPLACEMENT 5 i ;
T . l l
Q 20 ,'
i
! l g THEORETICAL DISPLACEMENT lo ,
l 0
-0. /0 0.0 C./0 C. 3o D / S P L A C E M E A/7 , /NcN O easssuaiz^rio" /roo'et
--- DEPRESsURIZATION FIGURE 11
io CR I122L C YLINDE R BASE \
REA CYOR BLDG. PART:
GAZ L oc ArtoH No. 9 l
BEL SCAN No. 280 7g =
' I lli 1111 I llllllllllllllllll '
7- TE 5 7' P A E S S. P=43.sps/G
.. __ __ ... ._. ._ _L. .,__ _ - o __
, .__ ._. __. _L __ __ ,_ _ .__
60 i
l
'i' l
l l
, g -
s I y . . . . .-
~
Q - . .-
l
-r: .
j
. 4o ,
l .
l T !
j r l '
u) 30 l LIMITING h l DISPLACEMENT
$ i I :
T i l l
- 4. 2e ,
i I t
b
/c i. ,
g THEORETICAL
' ~~
DISPLACEMENT f
i .
0 oo
-o.1o e./o 0.20 D iS pI A C E ME N7, /NCN lO .eRessURiz 1ios a42,4 /.
--- DEPRESSURiZATioN FIGURE 12 -
1 REA CYOR BLDG. PART: C YL /HDER BASE GAZ L ocAT/0H No. 4-est scan No. 291
- Illi till, lll1111ilI111ll1Ill!
,- rE S T P A E SS. P = 63.5 ps/S
._ _L __ ... .. , ._ _L _L .
@ /
! fg lI J ,
- f
\ /
Q j . ---.
l k l
- D - -
(k
\
Q h fi1 i
n I ,'
i i D ; -
I 3o )l' # : I v) ,
LIMITING l I ,s 7
DISPLACEMENT l j , i j :
k ,
j
{
t 20 w ,
j l __-
1'
/c j THEDRETICAL ,
DISPLACEMENT -
l g
i 0
O.o 0./0 d,20 d30 Q D / S P L A C E M E A/T ; /NCN-PRESSURIZATION AN/Ad
-- - DEPRESSURIZATION I FIGURE 13 l
O $@
'fL /ND ER BASE N
REA croR BLDG. P4Rr:
GAZ L ocArioH No. 5 art scan N o. 28z l
~ ~ ~ ~ ~
70 till lill, lll11111111111111lll
, - TES T PR E SS. P =63.5 ps/S
._ __ __ ._. ,_. .. L . _b __ .__ .._ ... ...
so
'l o h(
- c. i
(
e so
[l
%y }/
) l Y'I l 6 i \ ll
)
) ,
LIMITING i D13PLACEkENT [
3g d ., , . .
9 I i 1 I e 1 4 j ,
$ l f i Q 20
- ~ - -
THEbRETICAL f D13 PLACEMENT jo ..
l l }
l r l '
l O' 4,20 0,3o do o./o D / S P l. A C E M E d'7 ,, /NCN '-
RAD /AL PRESSURIZATION
- - - DEPRESSURIZATION FIGURE 14
o pgg BMGRE REA CYOR BLDG. PART: CYL/NbE BASE GAz LocarioH No. 6 BEL SCAN No. 2AB 70 illi till, I illlllll11lll1111
,- resr,pne ss. p = sa.a psis _ - _ _
._ J. __ ._. ,. _. .. .fL J_ <, __ ... .._ ._. ... _L __ __ .- - ...
l ll il
]9 l
' )b
{l ---.
N f i q , ;
, . ,& ll l ~
O iu A/
fl} . .. .. .-
T ' '
) I f 1
} :
I 30 i
M j ,
D // ! !
k I l i i il l . -.--.-------
f, '
l LIMITING DISPLACEMENT V
/0 i l , , ,, i
, THEDRETICAL DISPLACEMENT 0
O.o a10 D.20 03o D / S P L. A C E M E A/ 7 . /NCH ~~
PRESSURIZATION RAD /Al-l --- DEPRE55URIZATION FIGURE 15
O REA CYOR BLDG. PART: CYL/NDER WALL GAZ L OCAY/0H No. 7 BEL SCAN No. 284- .
llll 11ll,'l lllllllllllllllllll I l
, - TE S T PA E SS. P =63.S PS/G l
._ __ _ ... ... ._ _fL J..
..g ... A _L. > _ __ .. . .__
g f '
k I f
. l l
& I J k / r ;
/ I l
-s & !
O iu
- /
i
/
/
/
0 / :
V) 30 l,f - A 9 I l !
l t
[ f l
R -
i
,r / i
- 4. 2o ; j j i )
[ I LIMITING DISPLACEMENT to / l r
j l THEORETICAL l r DISP L ACEMENT l
/ \ -
g l b ! .
-o.or o.o o.to azo D / S p l A C E M E h/ ~T , /NCN PRESSURIZATION
- - - DEPRESSURIZATION FIGURE 16
l t
l l
l O
REA CYOR BLDG, PART: CYDMDER Ws944 GAZ L O C A7'/oM No . 8 BEL SCAN N o. ZBS llllIIII,Illlllllllllllillllll l
7 -- TE S T PR E S S. P = 63.5 ps/G
.. __ L. ... ._. .. fL . _' __ .__ .. 4 r _. J.n i
)
60 ,
/
i l /
ii' l k / L
- I f /
' I /
/
V /
W 50
% /() .
/ /
Q. : i , .
. / /
1 . ,g / -
/
/
q _ LIMITING ,,,,__, - - . _ _
[/
- j DISPLACEMENT
) l U) 30
/.'
f' ,
i 1 0) t i J/
% f j
I T i :
l
, l/
Q 20 :
p .
I s
> l --
y r -
/0 / THEORETICAL DISPLACEMENT *
/
/ ---
/
/
g/ t i ! l it 6.0 0./0 0.20 d.50 D / S P L A C E M E A/ ~T ,, //VCc4A Q PRESSURIZATION O/&
- - - DEPRESSURIZATION FIGURE 17
O REA CYOR B L.D G, P 4 R T: CYAINOEN WbAl GAI L OCAr/0H No. 9 BEL SCAN N o. .- .
286 IlllIlll, I lllllllllllllllllll
,< - TE S T P A E S S. P = 63. 5 ps/G ..
.- -- -- .-. --- . - t'
.-- --- d. --. J. -- -- --- ---
60 !,
'I # 1 l
!! // i l i (f
. f
' (
[/
W 50 N
4 //
/ '
/ ! _ LIMITING
//
! DISPLACEMENT
-. 40 l' ,
O m i i q ,
/ i ,
a > .
g y 30 g; ,
l 9 I l
% /) j l 1 lll l
. . THEORETICAL i DISPLACEMENT g e i
(
/
j
~
l _.
/0 l .-
l l g/ ! l l i 40 0,# 6.26 4.50 l D / S P l A C E M E A/'T , /NCN
/?/ID/Al -
PRESSURIZATION
- - - DEPRESSURIZATION FIGURE 18
O 1 REA CYOR BLDG, PART: CYl/ NOES WNd GAZ L OCAT/0H No. //
BEL SCAN No. 288 7g lll1lill,IlIl11lll111lllllllll y-- TE S T PR E S S. P = 63.a ps/G
._ __ . ... ,_. ._ _ f,' ,. . . __.
.J, i __ __ is . <__
[
\ ,
t
/
l W 50 }
- 8
%s // -
k ' ; i I
l I l
. ,g ,
/ 3 !
lO 10 // I Ii jg LIMITING ,
Q l j DISPLACEMENT
)
.' ),
fl l 3#
9
[
r -
ll lp THEORETIC L _
g '
DISPLACEMENT k i f{ }
l ( 20 -
l // I
//
79 /!
/ [
/
/ /
g / l i l _
-acS c'.D c.to s.2.0 D /S P L A C E ME M7, /NcM PREASURIZATION gg _ , ,
i O
REA CTOR BLDG. PART: 0 VllblOS E? WblL \
GAZ L O C AT/QH No. /2 BEL SCAN N o. 6/2 70 _.-. A llll lill,lll11llllll1111llllll TESY PAE SS. P = 65.5 PS/G __ .
- f. _ ' '
._ __ __ ... ._. .., _ . --- -- d' - C= ~ - '-~
b 60 l }l l
' ) '
n I i
, l I ' '
l l
/ /
I
, go
/
g . / l
/ i >
Q / / J 4
\ f
/ l
. ,g . l- 1 .
O iu i
/ i q
/ ,
/
...-- -1 1
3 / / i uMmuo D!$ PLACEMENT i
% 30 ; -
r
/
r M )' '
/
Q f
20 I' !
Q THEORETICNL s !
, I ! DISPLACEMENT * '
jo A l I {
/ /
/
)
/ /I t 0
~0<05 0.0 b,/0 $2p Q D / 3 p L A C E M E A/7,, /Nck PRESSURIZATION AA
- -- DEPRESSURIZATION .
FIGURE 21
O REA CYOR B L.D G. P A R T: C YLWDER WALL GAZ L O C AY/QH No . /3 BEL SCAN N o. 0/3
~ ~
70 illltill,ll 1111111lllllllllll
, - TE5 Y PAE SS. P = 63.5 ps/G _
.. -- .. ... ... .. .tL . .. ... a --- a'. .
60 r l f) - -
~
,;i g }/ - ---
s //
N }l
! f LIMITING t -
. 40
/ / D
- y, pay _EQEyT.
, r Y / b
/ 1 - --- - --
a .
- l i
l '
e ao / - ;
% ' l l \
% /; [
q l '
/
/ .
Q 20 , l
~ ^
/
/ / l f
a j _ THEORETICAL r / DISPLACEMENT jo / l i' I -
/ l V
f o A i l i l da d,/0 ek &M D / S P L A C E M E A/ 7 , /NCN ,
PRESSURIZATION N/ b -
- - - DEPRESSUR12ATION FIGURE 22
O REA CYOR BLDG. P4RT: CYL/MDER WALL.
GAZ L ocArtott No. /+
BEL SCAN N o. 0/4 1 70 Illl IIll I lIl11llll11ll1llll
- rear pre ss. p . sa.s psim
_i_
.- t'
/
lt ___ 3, _ __ ,__ ,_,
I /
60 r a
I, l
t
/
f I
& 50 )
N 4 r ]
I Q ' 1
\
q l '
/
- ,' j -
o ,
, j
- (
~l I i ! t,,,,,,,
a
/ l l$ PLACEMENT
/ , l
% 30 / /, i b l
/
l l
/ lll THEORETICAL l'Il lill j l /
l
> ' Dl5 PLACEMENT l
( 20 g r /
' / I
/ / l
! t /
10 l
//
/
r 7
/
o#*O 0 /0 6 20 d.30 D / S A L A C E M' E N T , /NCN 0 PRESSURIZATION
/d
--- DEPRESSURIZATlON FIGURE 23
O BLDG. P4RT: C VUtVDER WALL REA CYOR GAZ L oc ArtoH No. 6 BEL SCAN No. O'S I ~~
O llll lill, I,llllllllllllllllll sa.s psia
\ ,- - resr pae ss. p
._ __ __ ._. ,_. . fi '
n --
._. _U. - -- .u - ._-
I 60 ,,
,l l l 1 1
] f l .
ll .
W 50
\
N ){
r Q f g k l' O ; ** : (
i / ) _ . . _ . _ _ _ _ _
Q ( ,
LIMITING
] 8 DISPLACEMnNT -
f .
(/) 30 j ,
Ct) i lr
} l
$ i / /
4 i '
- / l t 20 ,
i / j
, THEORETICAL y f DISPLACEME,NT
< \
/
/ i io i
/
i ) - -
) /
< f .
1 o ,
6 20
-o.oS 6D o.to D / S P L A C E M E A/~r ,, /tvcM Q 9 PRESSURIZATION
-- - DEPRESSURIZATION FIGURE 24
l l
iO REA CYOR BLDG. PART: C 9'L /N D E R VVAll i GAZ L oc ArtoH No. '4 asi scan No. e x-llllllllllllllllllll
~ ~ ~ ~
llllIlll,
- - rest PAE SS. P =63.5 ps/G J m i
' ~~
._ _ ._. ... .__ f. . .
s .
g i
/ !
i / I
- N
) l 4 go i N /
i 4 r f Q ,
, , _ LIMITING .
f a DISPLACEMENT
, -~ 40 l -
i Q ,
il .
d THEORETICAL i gg [ D.$ PLACEMENT l, !
9 /
/ l N / i
/ l T / I / I R 2o ,
I ,
t )
/c
- /{
e f
( (
0 f '
4.05 00 0.10 dom D / S P L A C 'E M E H ~T , /NCH PRESSURIZATION AN/8d
- -- DEPRESSURIZATION .
FIGURE 25
I O
REA CYOR BLDG. PART: CYL/WDER WALL GAZ L OCAY/0H No. /7 BEL SCAN N o. O/7 llll lIll lllllllllllllllllllll
, -- re s T P A E S S. P = 63.3 PS/G i __t , _t t.'_ _
4 s __
so
' /
M ii P
h f
il B 50 ,
N l b 1 k !
6 I I
( "6 N t ;
/ ;
i a / :
% 30 / / :
9 / / l l
% /
T i / .
- / j/ l
}O ',
?) / _ LIMITING j / DISPLACEMENT THEORETICAL DISPLACEMEt!T j
/c ,
' /
l l 1 (
/
0 !l .. -
-a,e5 0.0 6 10 620 0 PPISSURIZATlON D / S P l. A C E M E N'T , //VcN AO/OI-
-- - DEPRESSURIZATION FIGURE 26
l
- O l REA CYOR BLDG. PART
- C YL /N' DER WAl&
GAZ L OC AY/0H No. /8 BEL SCAN N o. 0/8 70 I lllllill, llllllllllll1lllllll '- ~~
._ _ L._' ' '
___ o _. o. _L __ __ ._ _ .__
l
}
O /!!
I8 1 l
'/
D 80 Yi f .
f/
s -
l Q <
i !
-s N j d = .
I /
Q 4 ( ;
. - -. . 1
( '
u) 30 /
f
- 0) I
- )
g . i
/
r .
! LIMITING j / j DISPLACEMENT Q 20 ,
j 7 7 THEORETICAL l / f DISPLACEMENT
/,
lo l __
,'/
) )
l A/
l o >/ ,
4.os a.zo I
o.0 s.io
\
t D / S P L A C E M E N'T , /NCN ,
PRESSURIZATION [AD /dl.
--- DEPRESSURIZATION RE 27
O REA CYOR BLDG. PART: CVl/A/ DER Wall T bCMfE G41 L OC AY/OH No. 6 BEL SCAN No. 019 70 1lll lill, Illl11llll1Ill11lll y - TE S Y PM S S. P =63.3 ps/G -
.- -- -- .-. + . .-- f, 4- - -- --- --- 1 . --. L -- -- .- - <--
b
(\
J 1 k - _ __
W 50 \
s f I
h 6 I Q l \ '
l f l
} l . . . .
T !
i 3 N/ : i'
% 30 ,
(
9 1 j .
Q j j _ _ _ . _ _
Q 20 )
j _ LIMITIN G DISPLACEMENT - - -
l
( - . . .
/c
[ _ THEORETICAL DISPLACEMENT .___
f I Y '
O 1
- e,6 0.6 A/0 420 D / S P L. A C E M E M 7 , /NCH 0
PRESSURIZATlON
--- DEPRESSURIZATION FIGURE 28
lO l
\ REA CYOR BLDG. PART: OYW WbU 055
\ GAI L OC AT/OH No. 20 BEL SCAN No. MO l
l 70 ~ ~ ~ ~ ~ ~
lllllill, Illl11lllllill11lll
/- rest PRE SS. P =63.a ps/q g o f..
__ .__ ___ . _L __. J. __ __ ._ _ .__
4 bO -
') I h i I Al l f' W $0 s /
4 '
\ i I
. ,g
- I Q IU lb
,1 l
l Q q .
0 1 \ !
' N I U) 30 0) l 1 u l 4 i .
l T J I
t q, 2o ,
7 j _LIMITIN G DISPLACEMENT
, l
/c
[ _ THEORETICAL DISPLACEMENT
)
f 0
--0,05~ 8,o
'~~ "
D,/0 gy .
D / S P /_ A C E M E H7 , /M PRESSURIZATION min
--- DEPRESSURIZATION 9 FIGURE 29
O '
REA CYOR Bl.DG. PART: CWWDERWNL I .2>0mE GAZ LOCAT/0H N o. 2/
BEL SCAN N o. 02/
I!ll lill I , llllllllllllIllll
,- TE S T P,A E S S. P =45.3 Ps/S
.. __ __ ._.._. . , fL s .4 _- -- --- --- !- -- -- -- - <--
60 l.
l' l I
@ 50 ,
N h '
- q r I . .
l l -s M '
Q = !
t I
D : !
% 30 j; i
0)
I k i !
T i l 20
~ ~ ~ - ~ ~
Q j j
_ LIMITING
, i .
g l DISPLACEMENT
. t jg -,
THEORETICAL f DISPLACEMENT l
I g f I
-605 6.0 0./O 0.20 D / S P L. A C E M E A 7 , /NCN 0 PRESSURIZkTION
~~
--- DEPRESSURIZATION FIGURE 30 A
l O .
/
REA CYOR BLDG. PARY: CYL/MDER WALL f 2)o/ME GAZ L ocAr/0H No. 22 BEL SCAN No. 02% -
70 illi till, I 111lllll11111llll ~' ~l 7 - TE57 PAE SS. P =65.5 ps/4 ~~
._ __ .. ._. ... .._ L . , ; .
i t. ... ... ... __ __ .. .. . ...
\
so ) -
! L 1
W 50 s N
h 4.
\
s 4o
\
l 4 3 U
% \
) ;
\
u) 30 !
4 i!
k i t )
THEORE ICAL '
y ,
LIMITING -
l DISPLACEMENT H
I I l 0 :* -.
)
, -0.20 -M 00 0.10 i i
D / S P L A C E M E A/T . /NCH '
l ,
PRESSURlIATION FGML l
- - DEPRESSURIZATION FIGURE 31
)
O REA CYOR BLDG. PARY: CVL/NDER WML lDQME GAZ L ocArtoH No. AS BEL SCAN No. 025 l llll Illl, Illllllllllllllllll
~~ ~
, - resr par ss. p - ss.s psia
- f. _
.1 .. . .__
- 3. ... ... ... __ __ __
A '
60 If ll s so l
(l\, . _ . ..
\ i
! (
1 . q I
5 N '
C =
k !
i
\ - __. _.
\
D
' l g 30 ,
9 l k ,
ll l
_TH EOR ETIC AL
! !l
}
DISPLACEMENT EO ..-._
l LIMITING l DISPLACEMENT i i
' l
/c I
l l __.__
I 0
l
-0,20 -0,10 0.00 o./O ~ ~~ -
D / S P L A C E M E M'T , /NCN RADIA L PRESSURIZATION
- - DEPRESSURIZATION FIGURE 32
O /
REA CYOR BLDG. PART: C VL /NDER WAL L ! 130ME GAZ L ocArtoH No.
24 BEL SCAN N o. 024 70 -
Illi till, I lllllllll11ll1llll
~ ~ ~
7 - 7'E5 Y P A E $ 8. P #63.5 psis
... ._. ... L .
q . ,L .._ . .L ' ' ~ ~~
@ 1
\
i b
'N i :
B 50 ;
! l t I ...__
s '
i g h H , \
q .
I
' l
. -. 40 l .
~
O iu I Q ;
\ .
0 I
u) 30 l l
% i i
T i
~ i
( 20 _ . _ _ . _ .
1, TH EOR ETICAL ;
D!$ PLACEMENT
/c t,,,7,, ,
DISPLACEMENT g, I il
~0,2,0 -D./O O.00 0,to D / S P L A C E M E M'T . /NCN O RA D/A L PRESSURIZATION
- - - DEPRESSURIZATION FIGURE 33
O REA CYOR Bl.DG. PART: D0/71E d et'uA/ DER LE.DGE '
GAI L O C AY/0H No. 25 sei scan No. 025 70 ~~~
1 lll1lill,lllIllilll111lllll111
,-- resr pae es. p - as.s psia
._ 4 . < >. ... .-_ l L __ -- .- - ...
lg
- l \ -
ii i s n
i t \ _
D 80 s l I N I I t I
Q , '
\ \
4o i
y.
\ V
\
4 . . _ _ ~
) I
\ i \
- 4 30 ,
- ' l i
' (
% b \
j l
! I l
( 20 :
,_ THEORETICAL ( - - -
{ l D!$ PLACEMENT jg I LIMITING '
Dl5 PLACE, MENT
(
o \
l - 6.20 - 6./0 0.0 0.0S D / S P L. A C E M E d'T , /NCN O~ #
- PRESSURIZATION
- -- DEPRESSURIZATION FIGURE 34
l l
1 O
REA CYOR BLDG. P4RT: DOME [ C V'l/HDEk' MME GAZ L OC AY/OH No. M '
BEL SCAN No. 02 6 lllllill, llllllllllll!ll1llll y - rest PAE SS. P =43.a ps/S l
. r. ,__ .__ l __ ... _ J. _L __ __ ._ _ .__
l E 60 .
Il I ')
ll I k l
\
W $O v N i
, N
' q i
- n
, .,Q O m j j f,
, K . - . _ _ . _ _ _
D h g 30 '
\ '
l l ! I
)
k i I
R l lI \ ~ ~ '
Q SO , s , .e 1 i _ TH EO RETICAL l DISPL ACEME NT l
/o '
. L MITING l DISPLACEMENT g i i
~6,20 -0. /0 6D d,05" D / S P L. A C E M E M'T , /NCH O PRESSURIZATION
- ---- DEPRESSURIZATION FIGURE 35
O p5A croR BLDG. PARY:
27 MM ,YO MM UNS GAZ L ocA770H No.
BEL. SCAN N C- OE Y 70 llll lill, llllllllllllIlllIllll
,- re s r,P A E S S. P # 9 5 P S I,6 --
,_ __ _ . r . ,_.
L-I L . --- -- --- ---
h
--- - d -- -' -- ~~ '--
6o I \
y i I .\
I h
{ l\ _ _ _ .
W 50 h-N h {
Q t '
l s
\ et
-. 40 O =
l n -- -
T i i ! j I
! D I 30 J (
U) '
l
) I 9 ! t i
% ?
i ! !
T i ! I
\
THEORETICAL DISP L A,CEM ENT.
k l ( { -
1 1
( _ . . . -
LIMITING DISPLACEMENT g
1
\
1 i 0 t i
_gy -0,/0 Ab $05 O /S P L A C E ME M7, /NCN
- PRESSURIZATION AAD/Al
- - - DEPRESSURIZATION FIGURE 36
l 1
O l 1
REA CroR BLDG. PART: CYL/NDER LEbGE l GAZ L oc ArtoM No. 28 asi scAa No. ozs l
~
7#
lll1 t ill, lll111111111lllllll11
,-- resrpas ss. p - ss.s psia
.. -- -- ... ... a.. t.' ... ..w ... p . L -- -. .. . ...
l I
60 l l \
l I I l; !
/f lI l -
9 W 50 7 N '
)
a a j/ ,
D / /
! \ ?
k / / i Q ! (, / ,
~~~~~ ;
' I D !
30 1/ ; ,
u) / :
% d I \\
I f .
i T #
- I' - - - - - -j 20 7l l
I
- f \ ,
,I THEORETICAL l I
l DISPL ACEMENT '
I J l fg '
t,_'
l _ LIMITING q d DISPLACEMENT l
[
o .) ,
I
-D.!O o.o a.to 0.2o s.3o oo c.oo D / S P l. A C E M E A T . /NCN Q PRESSURIZATION VEB 7~/C 44
- - -DEPRESSURIZATION FIGURE 37
O REA CroR BLDG. P4RT: CYLINDEP LEbGE GAZ L O C AY/0H No. E'!
BEL SCAN N o. CM -
70 - -
lilllill,lll1111llll11llllllll l 7 TE S T P A E SS. P = 63.5 psis
- l 1
. ._ _fL .
- _ ._ , ___ ___ ... J. __ __ ._ _ ,__
e ' '
l
? \
! f /
gg
]
l . - -
\
N ) Y
_. .._, a I) l g i
/ ,
0 ,
/ ,
i e ao
!/ / i
' l '
) l ,
4 r -
N i;)
'] l Q 20 ;
(
IY b , -
f LIMITING
- DISP L ACEMENT
' ' ~
/0 7 TH EORETICAL DISPLACEMENT u
0 ao 0./o d.2o a30 (Mo d50 6 60 P / S p l. A C E M E M 7 , /NCN O PRESSURIZATION VE47/c#/,
- - - DEPRESSl!RIZATION FIGURE 38
O REA CYOR Bl.DG. PART: C 'r'L MfDEbg;E GAZ L O C AT/oM No. En BEL SCAN No. 29n illl lill,llllllllllllllll 7- TE S T, P A E S S. P m 6%ig ,
.- . - ... ... .-- tL ' w
. - .- I ..- .-- J. ..
l
/
i l i !
l l .
i I
W 50 N
- 4 '
, k i l
.,g I 3
~
Q
= !
D r !'
l
- 0) 30 ,
9 '
I! i k . t f
20
^^
Q ,
l
! l :
LIMITING j DISPLACEMENT THEORETICAL ,
DISPLACEMENT
- i i
g c 1
00 0.!o 6.2o 630 6 40 g4o D / S P 1. A C E M E N'T ; ~~
PRESSURIZATION VEM/c4
~ -- DEPRESSURIZATION IGURE 39
l lO l REA CYOR BLDG, PART: BASE MAT l GAZ L OC AY/0H No. 3' i BEL SCAN N o. OBI I
70 ~ ~~
Illilill,I;l1111lllll1lll111ll
, - rest PRE SS. P = 63.5 ps/G l
._. .__ ._ _L _ ___ __ m . m_ ...
4 . t __ __ ._ _ .__
I i
l ii ,
a j
l W 50 N l 4 l 4 i i h I N
b s
IU !
T !
f.I l D 2 i !
% 30 j , !
9 4 I ; ,
k l I i l q 20 THEORETICAL j DISPLACEMENT
/0 , ,
l L?MITING DISPLACEMENT l _
l l c I I
~
l -c.to 0.0 0 !O o 20 050 6 40 d.2 O / S P l. A C E M E d 7 , //VcN O PRESSURIZATION VER7~/ CAL
- -- DEPRESSURIZATION FIGURE 40
O REA CTOR BLDG. PART: BASE MA7' GAZ l. o c A rt o M N o. 32 BEL SCAN N c. 032 \
O llll IIll l lllllllllIlll1llll {
, - resr PAE SS. P = 63.S ?S/S
. __ L _ ... ... .- _L - _ J. -- m- o - --- --. L -- -- <- - .--
oo f<
l \
!> 1(
t, i1 k
W 50 1
- i !
s N : .
O = 1 l tl l D j l .
% 30 , ,
k 't .
T I i l 20 ; ,
- - - - - - - - ~
I I a .
THEDRETICAL Di$ PLACEMENT
/c l , , ,
LIMITING l DISPLACEMENT I
o
--6,/0 o,0 6./0 0.20 d.50 040 69 D / S P L A C E M E Al'T , /NCN 0 PRESSURIZATION V E R 7~/C A L.
--- DEPRE55URIZATION FIGURE 41
O REA CYOR BLDG. PART: BASE M&7~
GAZ L oc Artog yo, SS BEL SCAN N o. 03 ~4 70 l llllllil, I lIl11111111Illlllll
, - resr pne ss. p = ss.a psis
. L_ -- .-. .
7,
_ .-- f.L - _-- -- - - - - --- --. -- -- -- <- - .--
l j l
'I l e 50 ,
j
\
i q __
-. 4o l lO
= li i
j 4
l ?
t M 30
- 0) I t
I 3 l j T i l Q 20 ; 4 4 , i THEDRETICAL _
l DISPLACEMENT ,
l
. LIMITING DISPLACEMENT
/o I I l \
l g l i
^
l . _ _ . _ _ _
-o.io s.o D.io 0.2o 0.3o 6.40 e.50 D iS P L A C E ME M7, /NCH 0 PRESSURIZATION
--- DEPRESSURIZATION FIGURE 42
O REA croR BLDG. P4RT: DO/?7E /?fEA GAZ L 0 CAT /ON No. 34-BEL SCAN N o. 29/ -
70 l Illi 1111,1llll111llllllllllllll a EST r PAE SS. P # 63.s psis -_
.__ fl. L . __ . '_ n
_ ._- , ..L _ . J. __ __ ._ _ ,__
so l I l
! / l i, r r e 50
)
7 j i ~ ~-~
s q <
/ i l =
.a .
lil f /
i ~. .. -. .
$ A !
u) 30 i /(/ l !
g a / i i
N l I \
R q 20 ' . )-r) . ;
l - - -
- / ,
_ LiMiTiwo j
f) r DISPL, ACEMENT _ _ _.
l THEORETICAL f;f DISPLACEMENT
\
o/t u 6.0 azo 640 d.M l
o.sc 6.90 /.o O 's p u c e ue ar . ince O PRESSURIZATION E I/dAl
--- DEPRESSURIZATION p l
.q
REA CYOR BL.DG. PkRT EQ UtPT. >4CC E.S S OPNGr GAZ L O C A7/OH No. 3[ \
BEL SCAN N o. 292 j l
70 ~~
Illi1111, 1lll11111llll1111lll l
,- - rest PAE SS. P =63.a PS/G ~~~~~
.. __ J. ._. ._. .
p_fL - _o __ .__ ___ ... ... _L __ -- .. . . .
l 60 ,l
- l. I i
I W 50 ' '
s D 3 fi 0 l
1 I
k {l ! \
l
-s N ' I i
-- i A
{
Q !' ,
i
)} ,
- 0) 30
{1 h I * '
l % l! -
Q 20 ,
H
[
j _ LIMITING jj , l DISPLACEMENT j
~
l *
(
10 )) 4
(
,f THEORETICAL f f DISPLACEMENT f j 1 YI o I i c.0 slo c.zo c.30 i
O / S P L. A C E M E M'r , /NCH O emessuaiz 110~ an o<a t
- -- DEPREssVRIZATION FIGURE 44 I
O REA CYOR BLDG. PART: EQ U/P7'. ACCESS QPNG GAI L O C AY/0H No . M BEL SCAN N C. 2 93
~~~
l lllllill, resr pas ss. p lllllllllllllllllllll
- e i r ' ,ss.s psia _.
f6 _L - -- .-- .._ . '-. _.. '- -- -_ .- - .--
6o lj ,
l l l I
f l
W E0
\
b i q -
Y
' ) '
6 i (l. l' '
D e so
!/
i i I ! i i
[ h
% \ i ;
T i,l i i q
2e . o . .,
I j ,_,LIMITIN G l DISPLACEMENT Ill 1 10 l f THEORETICAL.
I DISPLACEMENT l t t i rv 1
g 00 fl' \ l 6/0 $20 6 50 l
D / S p l. A C E M E A/'T ; /NCH PRESSURIZATION YEMI/CAA
- DEPRESSURIZATION FIGURE 45
t O
REA CYOR BLDG. PART: EQu/P7: ACCESS OPNG.
GAI L O C AY/oM No. 36 BEL SCAN No. 29+
l 7g '
! llll lill, I l1111l1llI111Illlll
, -- Te s T P A E S S. P =63.s ps/S
._ _L . .. .__ , ._ fk . ___ __ .__ ___ .__ . . _L __ __ ._ _ .__
6o (l_
l i
Ii i
i l!
l y $g . . .- .
s , I h f l
I I s f l l I - . - - . . _
0 :
v) 30 l I
- 0) f w il ; :
N j- l l
- 4. 2o ;
- ! l l
!' _ LIMITING DISPLACEMENT Jg - ...
THEORETICAL ,
DISPLACEMENT 0
M o-/o o.zo ago Q D / S P L. A C E M E A/'T . /NCH ,
PRESSURIZATION RADML
- - -DEPRESSURIZATION FIGURE 4 l
O REA CYOR BLDG. PART: EQU/PE ACC ESS OPNG, GAI L ocArtoM No. 36 BEL SCAN No. 295 70 i
lll1till I. ll11ll11111111111ll
, - resr pae ss. p = sa.s p sia --
... -_ .._ ._. .-- L_ tL - - - __ .-- --- ---
60 i f
l W 50 I i s ,
Q. I i I l -
('
40 g .
& I I
f I ,
i I 4 30 t p i ,
9 l l i -l ,
4 l R i l l
- Fh
- 4. 20 i .
i ,
p -- -- -.
THEOR EThe =L '
DISPLACEMENT ,l
/c j . . g
_ LIMITING I DISPLACEMENT
> l
! I i l
O go '
4,/0 d.20 c.50 D / S p l. A C E M E M 7 ; /ArcN _
PRESSURIZATION
- -- DEPRESSURIZATION FIGURE 47
O REA CYOR BLDG. PART: EQ OfP 7~ ACCESS OPNG, GAZ L O C AY/0N No . 37 BEL SCAN N o. 296 70 ~~
llll1111llll11111111lllllllll
< - T,E S T, P/; E SS. P = 65,.5 ps/G __ .__
ae eue esum =-- aumm aeum e ssa= l W num o .
>mm a e aumum a=== ==* mm eum =* 8= = a==
l r
/
60
,/ l) i i
/ ;
, f /
W 50 s ,
/ / - #.
b ; s
, { / '
s
\
l
, u 40 ) '
I
' i i
/! '
7 O iu 1
l T ! r r i .
i a // t t
// I l M 30 ,
7 9 !
4 // .
~
T // l l
( 20 -
/ j j _ LIMITING
/ j
] ,
DISPLACEMENT f
)
/
l 10 / / =
[ / THEORETICAL ,
/ j DISPLACEMENT
~
g/ ) <
1 0.0 o.to azo c.30 D / S p le A C E M E A/ ~7 , /NCN 0 PRESSURIZATION
- ---- DEPRESSURIZATION FIGURE 48
O REA CYOR BLDG. PART: EQ U/ ACCES'S OPA/G.
GAZ L O C AT/0H No. 38 BEL SCAN N o. 2M 4
~
70 lilllill,lllll11lll111llI1illl
,- resr pas ss. p = sa.a psia
._ __ __ ... ._. ._ _ f.L . _a __ .__ ___ ., . __. _L __ __ ... ...
/ l bO g p
/ l J (
t, / I
/
/
l W 50 N p /
/ LIMITING y
'~'
h r
/ DISPLACEMENT f ^ ^
Q , .
/ 1:,
)
~
}
k / l
/'
i t ,
D !
M 30 / i l / ,
% A .
I w i R j-
! : )
i q.i 2o , r
- I l l ] \
/ ! l
/C r
) ;e,
) \
, ~
THEORETICAL DISPLACEMENT --
r r olo.o aio l
aw s.x D / S P l. A C E M E N'7 , /NCH ,
VERT / CAL PRESSURIZATION
--- DEPRESSURIZATION FIGURE 49
\
O REA CTOR Bl_DG. PART: EQ U/P7~ ACCESS OPNG.
GAZ L OC AY/oM No. 39 BEL SCAN N o. Boo lllllill,lllllllllllllll1llllll I
( TE S T PR E S S. ,P =63.3 PS/G
._ __ __ ... ,__ ._ _ f.L . <- g ., - .__ .._ .L. ... .J __ _- .- - ._-
i JI 60 l l
i I i / /
n go ) .
s N 4 /[/,
r Q r i . ...-
- k l' 6 i j l T '
/ I i l D 4 i t I /l / '
l M 30 / / i l l l
% / i q ./ /
ll Q 20 l . .
/ j _ LIMITING DISPLACEMENT g l
~ '
THEORETICAL
/ , DISPLACEMENT l
lo l _
/ ,
f
( . - -
l !-
! o/[ 0.0 a.to 0.zo eso -
D / S P L A C E M E A/ 7~ . /NCN
,O rees1ueiz 1iom noo ot
--- DEPRESSURIZATION FIGURE F l
l
O REA CYOR BLDG. PART: E G O/ P T. A'CC M OPNG.
GAZ L OC AY/OH No. 39 BEL SCAN N o. 30/
llll lill, I llllllll11lllllllll '
<-, T,E S T PR E S S. -
P = 6 :3. 3 P S / S ..
._ tb -,v -- .-- ---
4
!s !
l j
/ Kl l' L
!,l / l l , l l ' / ]
W 50 ,
(
s y ., ,
h / i ! l !
4 s N )
[ '
i-l !
/
1 l r i
_ LIMITING l DISPLACEMENT l, ,l l
( i i i- i ' ,i i ;
Q .
i .
D l '
v) 30 /' '
l
/
- i e ! l ,
% \ )
T / i / i Q 20 ,
~~
, j
/ ! i t
) I 1 - -_..
. r f TH EORETICAl.
DISPLACEMENT
[ l
/c ~1
/ j
} -
( I l 0l 0.0 0./O l
0.20 0 30 i'
D / S p l. A C E M E M 7' ,, /NCN O PRESSURIZATION VEm644
--- DEPRESSURIZATION FIGURE 51
1 O
REA CYOR BL DG. P/1R'r: EQu/Pr ACCESS OPNG GAI L OCAY/oM No. 40 BEL SCAN N o. SOE IlllIIll lllllllllllllllIIlll
<- TE S T, P A E S S. P = 63.s ps/S
._ __ __ ... ,_. ._ _ (1 . , -__
1
< -_ .__ ___ . .i. __. _i_ __ __ ._ _ .__
g ; 1 II
!' l I
i [
f W 50 f N
4 /
k I ! i t I i
.,g > ! I l ___
O = g :
1 - . - - _ .
'l
] ;
l a ao ',/ j '
a
^
% llf i R
q 2a // ! i -
Y ! I _.__
. i i
. LIMITING l
DISPLACEMENT ,
/c j -
g THEORETICAL DISPLACEMENT
// l I
o/J '
0RO a . . _ . . .
6.0 0./0 6.D D / S P L A C E M E N'r , /NCN Q RADML PRESSURIZATION
- -- DEPRESSURIZATION FIGURE 52
l O i REACYOR BLDG. PART: EQU/P7'. ACCESS OPNG.
GAZ L O C AY/0H No . M BEL SCAN N o. 363 l
Illl I!!l,lllllllllllllllllllll
,- - resr pae ss. p - sa.s psia
._ __ __ ._. ._. ._ _ f.% 5 _ ap , __ .__ ...
._. _L __ __ ,_ _ <__
- l 60 l ll ./ >l
/ /
w 50 s / I h /
q .
f . ) l
} l -
g*
' ~
/
G) / l, - -
i ' e
) l l
i l
u) 30 ,/ ,
9 t l
LIMITING '
f k ) i
!l DISPLACEMENT f
t Q 20 r
~
l 3
, e ii. 6
- , THEORETICAL DISPLACEMENT _ . =
' I 10 I ___ _
=
r J
g I $
0.0 0./0 62D 6 30 Q D /S P L A C E ME NT , /NCN , _
PRESSURIZATION
-- - DEPRESSURIZATION FIGURE 53
O REA CYOR BLDG, p4RT: EQU/P7~ ACCESS Q P N Gr GAZ L ocArtoM No. +1 BEL SCAN N o. So+
llll llll, lllllllllllllllllllll
, - TE S T P A E S S. P #63.3 Ps/S
._ __ __ ...._. .__ f. _ _ ___ n_ __ ... __. _L __ __ ._ _ .__
g JI f I
, 1:
- /l /
l / '/ _ _..
s so '
/
N /.
N J
/ J l
f i
- j .~ .-
O ga f fii! - - ~
) /
i T :
/ i i Q
/ '
/j ' I i a ao , ;
9 l
% ii i R ,
/ /! j -
- 4. 2o , e ,
/ { l
< r , ,
i
/ '
THEORETICAL ,
[ DISPLACEMENT . - -
/o J
- LIMITING l / / Di$ PLACEMENT
- ~ ~ - -'
/
l / I t
g ) i i i I' l
- r. o./n 6.20 g O pis p u c. w s a.,. .
mcs
- PRESSUR!IATIOM
- -- DEPRESSURIZATION t
l t
O REA CroR BLDG. P4RT: EQU/Pr JCCESS OPNG.
GAZ L OC AT/0H No. 4/
i BEL SCAN N o. 30 5 lllllill,llllllllllllI!llllllll y - resr PAE SS. P = 63.5 ps/G I '
fL r A __ . . __ ... _ J. 1 __ __ .__ ,__
l l 60 i
,l 'I j l l l l i- ! ll l i l l
! i L i i : i !
i l I e 50 f ,
N i D I ! b l 4. <
i ;
l O * ;
' ~
p .
i (1 ;
l t '. ,, .
D . !
' I i '
u) 30 j ; ,
% hl l l l \
% I ;
T !
q
- ~ ~ - ~ ~
20 ,
i !
l . --- _
I THEORETICAL l DISPLACEMENT
~~ '
/c ,
l ,, LIMITlNG l
DISPLACEMENT l }
l I l / I .
l g I le I - - - -
l d0 0 /0 d.20 0 30 0 D / S P l A C E M E A/~T ; /NCN VER TICAL PRESSURIZATION
--- DEPRESSURIZATION FIGURE 55
O REA CYOR BLDG. PART: EQU/PT ACCESS OPNG.
GAZ L ocArtoH No. 42-BEL SCAN No. %
70 jjjj
~~
tig; jjj;jjtjijjiijgiijjjj
, - rest PAE SS. P = 43.3 PS/S
._ __ __. .. .__ ._ _ t.t ., A _ I, _ .__ --- _-. --
l l
! I i! i l
}l \
(l W 50 g i s
h l k *
'* / f !
O s i; I l l a , .
! v) 30 r l
- ! ! i 9 , l i j .
k (;: l q 20 7
- LIMITING f f DISPLACEMENT I
f TH EORETICAL Di$ PLACEMENT
- j /c f
f I l I o i . I I.
0.0 0./O 0.2O C.30 Q D / S P L A C E M E M'7 , /NCN AD/Ad PRESSURIZATION
--- DEPRESSURlZATION FIGURE 56
O REA CYOR Bi DG. P.4RT: E00/PC ACCESS O PN'G.
GAZ L O C A7/ON No . O BEL SCAN N C. M ~
O I illllill lllllllllllhllllllll
, - resr pae es. p as.s psia
._ __ _ ._. . . .__ f6 _, __ .__ ._L __. _L _L -. ._ _ .--
l lt f
, e j
B 50 / i N
h !
l s
f i i !
.,@ T
/ '
O iu rj !
f
) -
/ fl f ' l l
I
% 30 ,
, j \
l 9 r / !
q I (j i' i
( 20 ;
I ! THEORETICAL DISPLACEMENT
{ }
l r 4 i
LIMITING DISPLACEMENT 4
to -_
/
l - . . _ . _ _
o /[
1
# 0*0 e.zo l3o. - . _
o's m ceu-ar.incu O VER 7~/c4L PRESSURIZATION
- -- DEPRESSURIZATION FIGURE 57
I lO EQU/P7: ACCESS O P N Gr.
\
REA CTOR BLDG. PART:
I GAZ L O C AY/0H No . 43 BEL SCAN No. 30*
O ll lll lllll lllll1 llllll
~ ~
lllllllll, 7 - TE S T PR E S S. P = 63.3 PS/S L _4 :i '
.L. _'. _J 7
so h I l 1' i: 1 i
- i
- ,j
- - - .
I I e so i s ( n 4 '
l
- 4. ,
i ,
i I l '
-. 4o -
O ..,
= l !
- I k 8 l 1 l
D f i 0 30 !
- 3 9 [ ! ! !
% v : .
% l' i'
( 20 ;[y
'I THEOR ETICAL DISPLACEMENT *
{
i i -
f LIMITING DISPLACEME,NT
/c i flI
. -x --
I l il 0 J '
6.D O./O O.20 0 39 D / S P l. A C E M E N'T , //VcN Q PRESSURIZATl0N RADML
--- DEPRESSURIZATION FIGURE 58
1 I
O REA croR BLDG. P4R : ECtJ/?E Addsss CPNG.
GAI L O C A~r/QH No . 4 l BEL SCAN No. W yg ' -
llllltllj lljijjjjjjjj;jj;;i;ljj; r- TE S T. . P. R E S S. ,
P = 63.3,ps/G . .
c L J_ i i y__g j ,j_ ._L i : is is e i l l li s i i
' l 60 ! , , , l I f i > l l l j f
'I / ,
! I i l
! i ! !
'] i l
l i @ 50
'j,1 I i ! ~~ '
s 11 .
l 1
( ! I q .
..h; .
_ g -
O. = j l ,
i i ( i l '
a i l I t D 30 h
l 1l I :
{
I t
f
.I < i .
% r ;
T l I 20 Q, ;
THEORETICAL '
f' DISPLACEMENT
- j 6ai l _a.LIMITING Dl5 PLACEMENT
/0 l l
I l '
l g i !
- l. . . _ _ . _
OO 0./0 0 20 050 Q D / S p l. A C E M E H~r , /NCN ,
PRESSURIZATION
--- DEPRESSURIZATION FIGURE 59 l
l .
O RSA CYOR BLDG, PART: EQ u!>7~ ACCESS OPN'G.
GAZ L ocAT/0M No. #
BEL SCAN No. 3'O 70 llll illl,lllllllllllllll1lllll y - res T P A E SS. P =63.3 ps/S
_l ,L . , JJ. __
i' ' '
60 ', e' , ;
l / /
!! ) r
),
,jl\ -..
e 50 s t y 4 j (
E '
! l l I f l .
O ' '
4o .
/ -
l ._ -. _ _ . _ . _ _ _ _
q , .1 ,
i i l
a i '
j w so ? , ! ,
9 I l ! !
!) '
I k i l Q I . -. _ - -
- q. 2o ; ; ,, ,, , ,,
j LIMITING I l DISPLACEMENT
-~
, THEORETIC L I ',
l Di$ PLACEMENT * - --
g
/c :
I J
l g[} !
I I
d,0 . 0./0 d20 d,.30 0 D / S p l. A C E M E M 7' ,, /NCN SAD /Al PRESSURIZATION
- -- DEPRESSURIZATiON FIGURF 60
1 O
REA CYOR BLDG. PART: EQWP7 AdCESS QPNG, 1 GAZ L O C AT/0H No . M BEL SCAN N o. 3//
llll Illl, llllllllllllIllillll 7-- TE S T P,A E S S. P = 63.5 PS/S
.. L. .. ... . . -- tL. -, J-- i -
I . L J-. L -- -- -- - --
l
' l !
60 i
~
, h l l l> ). . i I fI I
I
($ 50 7 ,
' ~
1
%s } I !
Q I ' ' i
, i I
( i l
C s !l l i a / :
/ ) ll }
y 30 r j : ; ;
4 r i
l N ,
l l k i.;
l i Q 20
';I ,
i i
t I __
it il, LIMITING
- DISPLACEMENT ' "
/c j ~ ~
THEORETICAL f DISPL ACEMENT
- i l g h -
l 6.0 0.10 6.20 C.30 D / S P L. A C E M E Al~r , /tvcN l
PRESSURIZATION VE#T/d4/.-
-- - DEPRESSURIZATION FIGURE 61
O REA CYOR BLDG. PART: EQU/Pr ACCESS OPNG.
GAZ L O C AY/0H No . 45 '
BEL SCAN N o. 3/2 70 ' ~ ~ ~
lll1 11ll llllll1ll11lllll1llll n rest PRE SS. P x 63.3 PSM
._ __ ... .__ .__ f+ . .- __
60 l ;
- I l;
0 W 50 s
4
~
-s 40 }
O
= 1
,I
- I i
q ,
i D i,
- 0) 30 D i .
4 ' ;
q ' ' '
l q 2o f
THEORETICAL DISPLACEMENT ~
[ ,_
/c f j/
, LIMITING
[ DISPLACEMENT I l 0 . . - - . - .
l 0.o o./o a:20 d.30 .
l D / S P L. A C E M E N ~T ; //Vc N RAD /4L PRESSURIZATION
-- - DEPRESSURIZATION FIGURE 62
l O
REA CTOR BLDG. PART. EQU/PM ddCESS OPNG.
GAZ L OCA7/oM No. 45 BEL SCAN N O. 3B I
l llll !IIl4 llllllllllllllllllllll 7- TE S T PRE S S. P = 63.3 PS/S i
(L I i i e i l I 60 f ,
Q [0 - --_
s / i 4 '
Q i ; . :
l I l' l l l l I ' -
I
'Y ,
R j! ,
)
l, ?
.i s u) 30 l , ,
9 l i !
4 -
- ; i T l !
i l
( 20 ; ,
, l y
I i :
I !
i i ls i. l l LIMITING DISPLACEMENT
/c ;[ ) >
1 THEORETICAL
- DISPLACEMENT l
1 e
0 '
I
! I d.O e./0 420 0 56 ~ ~ ~ ~ ~l
\
Q D / S P l A C E M E AJ 7 . /NcN VERT / CAL l PRESSURIZATION
--- DEPRESSURIZATION FIGURE 63 i
l
O REA CYOR BLDG. PART: EOUfP7~ ACCESS OPMG.
GAZ L ocArtoH No. O an scAu No. si+
l 7g ..-
llllIIII,llllllllllIllllillllll l ,- resr pas ss. p = sa.s psia
.. .. - ... ... .. . t' ' < < .
,, 60 ,
! l l l'
l< ,
f ll gg , _ _ _ ___
lie g [
(
k
~ '
If I.
f i i
' l f
. g i l - _.
Q = j l !
k l ,
I y 30 ' '
ll 9 l I
f I
l 1 '
l
l ( 20 t THEORETICAL
I DISPLACEMENT
- l i a IM'* lN G
.- g D:$ PLACEMENT (i . /0 - -
l1 f t I.
' I l l I f nt Q s 00 O*/O beh LQ D / S P L A C E M E A/7 ; /NcN EAD/A/,
PRESSURIZATION I'
- -- DEPRESSURIZATION FIGURE 64
ten Nns-j
.ser.e .s -n .v.o,.9.,.. N ,,
- = -
,soto ni ,s m a 5 :.s:v.s . '-
- 3 4 En w
f
- a" a. - :
- S- 9 U- ._
$13
$*# ::.'s:* <@ yl e @y f ~--. I O qd Ft<ONIQ M @::l/N I D$5 61 E'
g ' i 'b's % ! N:
l$.
" . =g ' tim (nX@i@ ION'd@s('EN%sm "* $i4 e: % :eeinis"'3!WA;idEG4
- .T e -
- . s?. E " E #' 'x"ii@;'. i9i
.~ i @W@d@i5W@ivJ@n@sH Si j a @e@s@d LJ@J@- J @d@M
'"~"
yI ~ ~~
ssiW@d@WOCE' aid &@de 1..
.: 4W@ad(na@d@d(FN@dh '" '" e b.
,cb ; " k c,Yd M (Eltl @.).d (@,hl(%)y . ~ - ($,y (M IMM - ~ u
~
emwn..dm:%a m% eu. .nA6n ..'t... . + 1. ,
dk5 kd1N(5Ibd E.'dh.3d$3 .c su -[r d!
h .sn ya t a c.~ A -a mem wc + n en e e. a.. ,- hm.e .4
- i, x
% 22 M $ @L: 5 fl E $5 (5' E (5':D m . s m .: 0 .Y ~,2 M *,"'e .J.
' s .)4 N.
g hYd@d@dkd(ki 'De[$(E d(*hY$
R C I l leg 6Eirw kNf *-
c, N b sl G::,6i wSe::! 4 :!. E .t.(@R.,
g d.s. ~** e. .. .j e as~ lmg.,,t.e *G C
I h. k C
% *3 k g.wi,2W s !@i@J@W 5i@d@d@v "
a
- @J @e@i&@d@MJCFMt Oe W amp.i Q. \!oW.. .,oadM ye.F.e.h3 v.3,4 tgd, gi?J rrs .nce, s n i@i _ _
.co i, a U b k -
di (I.bhi E ht .u- a Q..?\
- 1 ,o . .g .Q}Q.) y; 'sM,'if T; 5' 2 $ $ 7
~
,,, O ./ m 1
,,2 ~ ,2 y,
a Q)Ts:~.,
8 2 s,, C =c sn '-
w ,
(go.'a.W x - ;w .,- te i _e
. : i ,e,. i, Q l C's s .r,. 4 e: e.s.
w i a;,s -a
.e - .
uve< -- .t. e g.
C iC ' Cs 7M *3 k g k 'i)d4)h(,A.5/? /S ;(@L C' :- !g i,3,'p'4'JC , I,O, TSt t'W @' E -E $
.eYs .
~
35@d.M d(ME(kN @'M(s=)d(Er ','*.N k N I
.CL', 4
' m'lr , nl -m(O '([ -, .,.+ -. u
.,fs,::.;
w . r. c .w. +
. ,a r bDi@d@e@&WNh W @;~""' }b e&
y *UnCh@d@i s M%,2}ph% .*., d b
e q -
m,L .y ),.
w.
r .,4)4. ;;;
c
~ , ,s -v
,e u
mx n. 2 -
.w < s e
,C t. - **
s c . m e , e : , , 0.: a e 3'* * .< = ;N a !
%- CT:WO ' ",h WO " c 'd ::: "'SM* rd l ..,
5*
l m **) r' . .
3 [q c >
.n .r3 ,w ng
~3 I i. :::: , M ,i m . vllt .,'-(%
~h.)~i
..~.-~ . H 'lll- ' 1 $J, .bi u l a.pl ,-*
l . Q i. ~ ile .OlO- i s .v , i Qv .: ,'>'s. ,m,,OJ.' c^ :.i :e] , G 7"vti h!
s, i .s .
4 f
. - ,. , w ,, -
r a q.g 3 I T o. )* > e (spard e. : E O i s Z ll* 't wimnt M f, i. }; i M. ~1 s.
S! ? L e $. I h $ E'
- - a -
l l
lo q a? I y I
l
/
f+
l l t l
) .
yu d 9
l ELLIPTICAL RING SUBJECTED TO INTERNAL PRESSURE "f Q e x -
p(r-6)( n 7 i.
f .
\
~ ~
j p r \
l 1 .
._ ris m 2 ~ 0Kl4 QUADRANT OF PING O
CYLINDER OVALIZATION FIGURE 70
l i
i
(
1 i
i l
l we MW
.s l
APPENDIX A h~
l . .
l l
~7 ,
I i
l l
1 t.
I 1
I I
eMwm 1
i l
I I
I I
l l
l
I I
_ 2j hp- ! ; l O I d tt>}l l 1 1 BREWER ENGINEERING LABORATORIES,/NCORPORATED o()u)j, $I4lfb d-
'lNIo7"ldN!Uu'!$! s C173S
()
b,iQ1 /T ()
THREE MILE ISLAND UNIT I 4 CONTAINMENT STRUCTURAL INTEGRITY
%<-^g 9
TEST RESULTS M Er 2st g4
( {g .,p_.
'- - -~
4 h .hh g .__
N 7,-i[ ,k e- 1 ,
L' O. ' ? L -
-)-[ 'g 7) --
k A- # f[-
~
I _ Q [ h a * -
D l
- v
"<, f- - - -
N IQ q O.y 5
,L L N l
~ >< t { b . ,
k k' i i
~~~h k /4 i '
i 11 l
'/ :., .
RIC R y ,/ , __ _
' ) -
! @l SABEAN Ig ; __
l s -. . ; 9 No.2M51 ' -
-- or site
[
l - ' - -
,- p ,
Written By Approved By -
()q
,,l ll soR. -'-l{!hn
'.J e.<
/ . dv ,& L h "
- . <- Q t. , .t.e. s g I, c <
.? n,
{ Richard A. Sabcan LaVerne P. Wallace
)/
, .. c,]!,
9
)/-
l
.> ; j, l .a ' .- \ May 8, 1!)74 h{-f
- / , j, 4
.s<< . s. .
1 (~^)
t -H% .w-+4 ; '?-!
?$i s>r I r 1.i
P
,kb c_
Q my,
~ 4, .
A' _&f l ?g
\ %
(
NNv' IMAGE EVALUATION N TEST TARGET (MT-3) 1.0 ' 72 34 j! \ML I.I e po t
la 1.25 1.4 1.6 6- =
v MICROCOPY RESOLUTION TEST CHART 3 .
///\\
//j4 4%4
%@p4)7 ~
'4 of, 777 -
q a 43f< p;
. : 13 L.-----+.^.-:..._._~a.:.. -J
. : 1 --_-
Report 510 l
BREWER ENGINEERING LABORATORIES./NCORPORATED
- TABLE OF CONTENTS - ;
l 1
ITEM DESCRIPTION PAGE
- 1. O INTRODUCTION. 1 1.1 Structural Proof Test. I
- 1. 2 Test Measurements. 1
- 1. 3 Structural Integrity Test. 2 ,
- 2. 0 PROCEDURE. 3 2.1 Test Measurements. 1
- 2. 2 Installation Techniques. 4
- 2. 3 Instrunaentation. 8
- 2. 4 Test Procedure. 10
.5 Data Reduction and Analysis. 11 i - -.
RESULTS.
~~~
l 3. O 13
]* Liner Strain Gage Data.
3.1 13
- 3. 2 Containment Deflection Data. 13
- 3. 3 Reb'ar Stress Data. 14
- 3. 4 Exterior Temperature Data. 14
- 3. 5 Crack Pattern Charts. 14
- 3. 6 Sister Bar Data. 14 4.' O DISCUSSION OF RESULTS. 15 l ~
4.1 Data Acquisition System Accuracy. 15 l l 4. 2 Strain Gage Data Accuracy. 16
- 4. 3 DCDT Data Accuracy. 16
- 4. 4 Optical Measurements Data Accuracy. 16
- 5. O CONCLUSIONS. 17 5.1 Data Acquisition System. I '7
- 5. 2 Data Retrieval. I's FIGURE 1 Liner Surface Rosette Strain Gage Locations. 18 l FIGURE 2 Equipment Hatch Radial and Vertical Displace-ment Locations. 19 .
FIGURE 3 Rosette Strain Gage Layout at Liner Surface
_ Penetrations. 20 1 FIGURE 4 Equipment Hatch Hoop and Meridional Rebar Locations. 21 l
_ .g.
1 l
Report 510
' BREWER ENGINEERING LABORATORIES./NCORPORATED '
O__ ;
- TABLE OF CONTENTS -
ITEM DESCRIPTION PAGE
~
FIGURE 5 DCDT Installation Detail. 22
. FIGURE 6 Invar Steel Tape - LVDT Mounting Arrangement. 23 FIGURE 7 Liner Rosette Strain Gage Installation Con-figuration. 24 FIGURE 8 Rebar Strain Gage Installation and Wiring Schematic. 25 FIGURE 9 Series 6000 Computer Based Data Acquisition System. 26
__ FIGURE 9A Jig Transit Layout. 27
, FIGURE 10 Containment Radial Displacement. 28 i
FIGURE 11 Containment Radial Displacement. 29
__ FIGURE 12 Containment Radial Displacement. 30 FIGURE 13 Containment Vertical Displacement -
Azimuth 1320 31 m FIGURE 14 Containment Vertical Displacement -
h __
Azimuth 247 . 32 FIGURE 15 Containment Vertical Displacement -
I Azimuth 11. 33
, FIGURE 16 Containment Vertical Displacement - Dome Apex. 34 FIGURE 17 Equipment Hatch Radial Displacement. 35
, FIGURE 18 Equipment Hatch Radial Displacement. 36 FIGURE 19 Equipment Hatch Vertical Displacement. 37 FIGURE 20 Equipment Hatch Vertical Displacement. 38 FIGURE 21 Equipment Hatch Rebar Hoop Stress. 39 FIGURE 22 Equipment Hatch Rebar Meridional Stress. 40
, - FIGURE 23 Equipment Hatch Rebar Hoop Stress. 41 FIGURE 24 Equipment Hatch Rebar Meridional Stress. 42 FIGURE 25 Rebar Hoop Stress - Azimuth 108 . 43 FIGURE 26 Rebar Meridional Stress - Azimuth 108 . 44 FIGURE 27 Rebar Hoop Stress - Azimuth 2450. 45 FIGURE 28 Rebar Meridional Stress - Azimuth 2450. 46 FIGURE 29 Rebar Hoop Stress - Azimuth 3520. 47
, FIGURE 30 Rebar Meridional Stress - Azimuth 3520. 48 i
TABLE I Displacement Measurement Locations. 49 TABLE II Equipment Access Opening Displacement Locations. 50
< O
-C-
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED C
1.0 INTRODUCTION
1.1 Structural Proof Test.
_ 1.1.1 Brewer Engineering Laboratories, Inc., of Marion, Massachusetts, provided, installed, and monitored the instru-mentation for structural integrity test of the Three Mile Island Nuclear Station - Unit I, located in Dauphin County, Pennsylvania.
1.1.2 The work was conducted under United Engineers &
Constructors Inc. , Contract No. 9459.01-5-5, MEC125 entitled
" Structural Proof Tests" and BEL Proposals 278 and 278A. The work included engineering design, materials and equipment .
purchases, field installations (with the exception of normal union tradesmen's work), recording test data, and preparation of
\_./ a report of the test and results. -
1.1.3 The test procedure objective was in accordance with G. A.I. Specification No. SP-5720 and G. A.I. Report No.1710.
1.2 Test Measurements.
1.2.1 Gross radial and vertical growth measurements of the containment and local growth measurements at locations around the equipment hatch were made during the S.I.T. DCDT displacement transducers were utilized for the growth measure-ments along with jig transits and precision levels.
1.2.2 Liner strain measurements were made using rectangular Report 510 l BREWER ENGINEERING LABORATORIES./NCORPORATED d _
rosette strain gages bonded to the inside surface of the containment liner. Strain measurements were made around containment pene-trations and at three azimuths and two elevations of the contain-ment wall.
1.2.3 Concrete reinforcing bar strain measurements were made using strain gages bonded to the rebars. The rebar strain measurements were made around the equipment hatch and at five azimuths around the vessel spring line.
1.2.4 Exterior wall temperature measurements were taken during r
the S.I.T. and for one week prior to the S.I.T.
1.2.5 Crack patterns and spacing were charted at seven white-
,_- washed locations on the vessel during the S.I.T.
1.3 Structural Integrity Test.
1.3.1 Structural response and temperature data were recorded
,, prior to pressurization, at four pressure levels during pressur-ization, at three pressure levels during depressurization, and after depressurization.
_- 1.3.2 A preliminary analysis of the data was made at each t pressurization level before proceeding to the next level. -_
1.3.3 The test data have been analyzed and are tabulated in this report. Procedural information and discussions are also c'arried in this report.
O J
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
2.1.8 Exterior wall temperatures were measured at six locations.
Locations are listed in Ta.ble VII.
. 2.1.7 Containment vessel exterior cracking was charted at seven whitewash areas at five elevations, and five azimuths which included the equipment hatch. Locations are listed in Table VIII.
2.2 Installation Techniques. _
2.2.1 Displacement measurements were made using jig transits,7 precision levels, and direct current differential transformers- [
with integral signal conditioning (DCDT's) .
2.2.2 DCDT's are comprised of two functional parts; a movable soft iron core and a transformer coil with primary and split secondary windings. The primary winding is in the center of the coil with if.'ntical, symmetrically spaced secondary windings on either end. The iron core, which has controlled, homogeneous magnetic permeability, moves along the cxis of the cylindrical coil varying the mutual inductance of each secondary to the primary. The mutual inductance determines the voltage induced from the primary to each secondary. The differential voltage -
between the secondary windings is a linear function of core displacement . The integral signal conditionings allow a direct -
current excitation voltage and a direct current output signal.
DCDT's differ from LVDT's in that LVDT's do not have integral
-4
Report 510 1 - BREWER ENGINEERING LABORATORIES./NCORPORATED O
signal conditioning and LVDT's require alternating current . - - . - . - - - . -
excitation voltage and the output signal is alternating current.
2.2.3 The transformer coils, which are the stationary portion of the transducer, are encased in a stainless steel cylinder.
This cylinder is attached to the reference frame using steel collars welded to the frame. The frames in turn are appended from referencea isolated from the containment vessel; i.e., the
. equipment hatch shield. Large frames, subject to large temperature changes due to sun position for example, were insulated to _ _
prevent erroneous reading due to thermal distortion of the frames.
2.2.4 The DCDT core is attached to a spring-loaded plunger. .
The plunger was preloaded against the containment wall. As the wall was displaced, the plunger followed the movement of the wall, thereby moving the core, which in turn induced a voltage change (see Figure 5) .
2.2.5 Each DCDT was calibrated in the field prior to installation.
A precision micrometer head was used to deflect the DCDT core.
A five point calibration was used to determine the sensitivity of the individual DCDT's.
2.2.6 Vertical displacements at the dome apex were measured using invar steel tape and a DCDT (see Figure 6) . The tape was suspended from the dome apex. The DCDT core was attached to the bottom of the tape with a weight to maintain proper tape tension. The DCDT coil was gimbal mounted to
- o 1
-y --
\ -
\'
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED l
)
Q a reference frame. The gimbal mounting allowed the DCDT coil to have 5 degrees of freedom. The invar tape arrangen:ent was necessary because reference frames of the size needed were impractical. Invar steel was chosen because it has a very low coefficient of thermal expansion. The reference frame for the dome apex tape was located at Elevation 321' 0" .
2.2.7 Wall vertical displacement at Azimuth 11 was measured in the same manner as the dome apex measurement.
2.2.8 The steel containment liner was instrumented to determine inside surface principal stresses. Micro-Measurements Type EA-06-125RD-350, three-element, rectangular rosette, electrical
/n\
V strain gages were used (see Figure 7) . The 06 corresponds to the coefficient of linear thermal expansien for which the gages are compensated. The coefficient of linear thermal expansion for
-6 the liner material is 6 x 10 inches per inch per F.
2.2.9 The strain gages were bonded to the liner surface using a cyanoacrylate monomer adhesive (industrial contact cement),
certified for strain gage use. After bonding, electrical continuity and electrical resistance to ground were checked. The trans-lucent strain gage backing was visually inspected to insure that there were no voids in the adhesive. Additionally, the strain gages were monitored prior to the test to insure their performance.
2.2.10 Strain gages were installed on samples of the liner steel.
These samples were attached to the liner so that the sample ,
J O
O i
i
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED would remain unstrained during the S.I.T. The physical contact l between the liner and sample plate insured that there was no temperature difference. The gage mounted on the sample,
, the dummy gage, will experience the same temperature as the measuring or active gage. The signals from the dummy and active gages are electrically subtracted, thereby creating a signal independent of temperature.
2.2.11 The concrete reinforcing bars, rebars, were instrumented to determine the tensile stress. The rebar deformations were
~~
removed over a 6-inch length. A minimum of material was
^
removed in order to maintain a maximum cross-sectional area.
2.2.12 Four strain gages were installed at each rebar location (see Figure 8) . The strain gages were mounted in two groups 180 apart; each group had one axici gage and one transverse gage. The four gages were wired into a Wheatstone bridge in such a manner that the bending strain components canceled and he axial strain components added. Each axial gage measures the teasile strain while the two transverse gages measure Poisson's ratio or 0.30 of the tensile strain. The effective full-bridge gage factor is the sum of the strain sensit.ivities of the individual gages, which is 5.2; i.e. (1+1+0 3C +0.30) x (2.0) .
2.2.13 Each strain gage installation was waterproofed using two coats of a thiokol polymer sealing compound. After the waterproofin
- compound had cured, forming a watertight barrier, the install uon
,. was wrapped with fiberglass tape to mechanically protect tha O
Report 510 BREWER ENGINEERING LABORATORIES. INCORPORATED O
installation . The free end of the cable was waterproofed to insure that water would not enter the cable during storage or the subse-quent concrete pour. The identification code number was written on the fiberglass tape over the gage installation and also on a tag at the free end of the cable. The tag at the free cable end was protected by wrapping it with electrical tape, thereby insuring ,
that the identification would not be lost unless there was subse-quent cable damage.
2.3 Instrumentation. ~
2.3.1 All the instrumentation cables were routed to and terminated -
in the " Waste Gas Monitor Room" located at Elevation 305 of the auxiliary building. ~~
2.3.2 Prior to hooking the instrument cables into the recording system, every cable was checked for proper identification and location by elevation and azimuth. Additionally, prior to termination into the recording system, all strain gage bridge type sensors were ch* eked for open or shorted bridges and the resictance between bridge and shield, bridge and ground, and shield and ground were recorded.
2.3.3 All the rosette gages, DCDT's, and rebar strain gages were terminated into BEL's 320-channel Series 6000, computer based data acquisition system (Figure 9) with the exception of those sencors showing open or shorted bridges or resistance readings to ground of less than 10 megohms. Those sensors having good O
l l
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED bridges but low grounds were terminated into BEL bridge switching and balancing units. A BLE Electronics Model 1200 digital strain indicator was used to measure these strains.
2.3.4 The computer based data acquisition system utilizes on-line, real-time computation of rosette strain gage data, cor-rected for apparent strain due to temperature change (dummy compensated), in terms of principal stress and direction, also, computation of rebar strain in terms of stress, and DCDT deflections in terms of mils deflection. The system has the further capability of data storage on magnetic tape cassettes in engineering units , _ , _
and in report format form. The stored data when used with the .
1
" Report Generator Program" reproduces the data in the table O :.- .- -
form presented in Appendix II.
2.3.5 Radial growth of the vessel from Elevation 390' 0" and up was recorded using Brunson jig transits, Model 71H with optical micrometer, reference targets, and scales. The scales were mounted on the vessel at the specified locations. The jig transit locations were established over two reference targets mounted j on structures isolated from the vessel (see Figure 9A) . Each scale intersects a vertical plane defined' by the reference targets. .
By plunging the transit scope, each scale could be read directly in tenths of an inch and interpolated to a thousandths of an inch using the optical micrometer.
2.3.6 Brunson Precision Levels, Type 545-1 PL with optical micrometer and precision lift. were used to record cylinder
_g_
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
~
ledge and base vertical displacement of the vessel. Invar steel tapes were suspended from the ledge at the specified locations. Weights were utilized to tension the tapes. Vertical steel rods were mounted on the base. Vertically oriented scales were mounted on the steel tapes and rods. The precision level was leveled, and the height of instrument was set at the elevation of a reference target mounted on a structure isolated from the vessel. The vertical scales were read directly in
~
tenths of an inch and interpolated to a thousandths of an inch using the optical micrometer.
2.4 Test Procedure.
2.4.1 The structural integrity test was conducted 'nder the direction and supervision of the G. A.I. test coordinator.
2.4.2 The test coordinator insured that all data had been recorded and evaluated at each pressure level before proceding to the next pressure level. -
2.4.3 Prior to the start of the S.I.T., all data channels were monitored for several days to insure that a zero stability condition had been established.
2.4.4 Data were recorded at 0, 30, 45, 55, 63.3, 55, 45, 30, and O psig. During the 14 psig containment vessel inspection) those data channels being monitored by the computer based data i
f acquisition system were recorded for a system operational check, i .
1O 2
Plotted in Fi; 2res 17 thrcugh 30 for illustratirn c.a.ly.
- 10
Report 510 !
1
- BREWER ENGINEERING LABORATORIES./NCORPORATED \
l O
2.5 Data Reduction and Analysis.
2.5.1 The computer printout of the DCDT's is directly in
)
engineering units of mils. This was done by preprogramming the computer with each DCDT calibration value and initial electrical zero offset.
2.5.2 A program in the computer converts the liner rosette data to principal stresses for direct printout. The computer is preprogrammed to correct for signal attenua' tion due to long lead
~
wire lengths, transverse sensitivity of the strain gages, and apparent strain due to temperature changes.
r- 2.5.3 The computer is preprogrammed to accept the rebar strain signals and print out the data in units of streas.
The program corrects each rebar strain signal for attenuation due to long lead wires and differences in gage factor. Strain data
~
have been corrected to stress data using E = 30 x 10 psi and Poisson's Ratio = 0.30 as supplied by G.A.I.
2.5.4 The rebar and sister bar strain data recorded at the Model 1200 strain indicator have been corrected for gage factor and lead wire loss effect. Strain data have been converted to
~
stress data using E = 30 x 10 psi and Poisson's Ratio = 0.30 as supplied by G. A.I.
2.5.5 The radial growth data have been determined from the jig transit readings by subtracting the initial scale readings
. taken at zero psi from the readings taken at ca:h test pressu a level.
f Repor 510
{
BREWER ENGINEERING LABORATORIES./NCORPORATED
'O i.
2.5.6 The vertical growth data at the ledge and at the base have i been determined from the precision level readings in the same manner as the transit readings.
~
t m
1, I
6 i
l l
l I
i O
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O _
3.0 RESULTS.
3.1 Liner Strain Gage Data.
3.1.1 The calculated principal stress and directions are carried with the measured strain data as Table I in Appendix II.
3.1.2 The strain values printed have been corrected for lead wire signal attenuation and apparent strai'n due to temperature changes.
3.1.3 The angle printed is the principal stress direction from horizontal, measured in degrees. Positive angles are counter-clockwise and negative angles are clockwise from horizontal. .
r O 3.2 Containment Denection Data.
3.2.1 The containment deflection data are carried in Table III and Table V of Appendix II. Table III is the DCDT data and Table V is the transit and level data.
3.2.2 Radial growth versus elevation is plotted in Figures 10 through 12 for three azimuths.
3.2.3 Vertical growth versus pressure is plotted in Figures 13 through 16 for three azimuths and the dome apex.
3.2.4 Radial growth along the equipment hatch centerlines is plotted in Figures 17 and 18.
l l --- ._.
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
3.2.5 Vertical growth along the equipment hatch centerlines is plotted in Figures 19 and 20.
3.3 Rebar Stress Data.
3.3.1 Rebar stress data are plotted in Figures 21 through 30 and are carried in Tables II and IV of Appendix II.
3.4 Exterior Temperature Data.
3.4.1 The exterior temperature data are carried in Tables VI and VII of Appendix II.
3.5 Crack Pattern Charts. _
3 5.1 The original crack pattern charts have been reproduced and are carried in Appendix II. The whitewash area at Elevation 284' 0" (No.118) showed no evidence of cracking.
3.6 Sister Bar Data 3.6.1 Next to and oriented with each rebar, BEL installed a sister bar . This was done with the expectation that if a rebar gage installation failed for any reason, the data at that particular l point could be picked up by using the sister bar.
l 3.6.2 Figures in this report containing data points from sister bars have been appropriately identified.
3.6.3 Table VIP of Appendix II carries a comparison of rebar -
l sister bar data.
l0 l
Report 510 BREWER ENGINEERING LADORATORIES./NCORPORATED O .
l 4.0 DISCUSSION OF RESULTS.
4.1 Data Acquisition System Accuracy.
4.1.1 The Series 6000 data acquisition system is comprised of five major components. They are the scanner chassis, the controller, the power supply, the computer, and the terminal.
4.1.2 The stability and accuracy of the system rests with the A-D converter and amplifiers located in the controller unit which is the interface between the scanner modules and the computer.
4.1.3 Stability of the power supply voltage is also critical since the calibration values preprogrammed into the computer are in terms of my signal per volt of excitation on the transducer.
4.1.4 The transducer excitation is monitored by the computer through the controller and a calibration channel in one of the scanner modules. At the end of each scan printout the calibration (dependent upon constant supply voltage) is verified or not depending upon the supply voltage as checked agaiast the previous scan. If the two voltages are not within one-half of one percent, the calibration is not verified. At no time was the
, calibration not verified.
4.1.5 In order to monitor and assure proper operation of the A-D converter and amplifier, a BLH Electronics Model 625 precision mv/v calibrator was connected into one of the rebar scanner module channels. A precalibrated DCDT, mounted in a calibrathn stand such that it could be displaced known increments, was wired into one of the DCDT scanner module A channels.
Report 510 l BREWER ENGINEERING LABORATORIES./NCORPORATED O
4.1.6 The DCDT standard was displaced known increments periodically during the S.I.T. and compared with the terminal printout. Deviation between known input and computer printout did not exceed 0.002 inch at any time during the S.I.T.
4.1.7 The rav/v calibration was changed periodically
_ during the 3.I.T., and the computer printout.was compared to the known input. At no time did the deviation exceed 1.5%.
4.2 Strain Gaga Data Accuracy.
4.2.1 Zero stability of the liner rosette gages and the rebar , ,_
gages was monitored for several days prior to the start of the S .I .T . At each pressure increment, two sets of scan data were taken for comparative purposes. Based on the zero data prior to testing and the comparative data during testing, it is believed that the stability and accuracy of the data are equal to or better than the anticipated two to five microinch per inch.
4.3 DCDT Data Accuracy.
4.3.1 The installed DCDT's were also monitored for several days prior to start of the S.I.T., and likewise two sets of data were taken at each pressure increment for comparative purposes.
Based on stability and field calibration data, the DCDT accuracy is within the anticipated 0.002 to 0.005 inch.
4.4 Optical Measurements Data Accuracy.
4.4.1 All optical measurements are believed to be accurate to within 0.010 to 0.020 inch.
()3
Reper: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
5.0 CONCLUSION
S .
5.1 Data Acquisition System.
5.1.1 The Series 6000 computer-based data acquisition system performed without fault during the S.I.T.
5.1.2 The system proved to be an expedient means of data retrieval because rosette data are printed for immediate interpre-tation without further need for calculations. This also holds true for the rebar stresses and DCDT deflections.
5.2 Data Retrieval.
5.2.1 Data from 95% of the measuring locations were retrieved
~ :.~
during the S.I.T. Data channels not recorded due to malfunctions ,
are carried in Table IX of Appendix II.
5.2.2 The majority of lost data channels were rebars and sister bars located in the dome. These rebars were found to have shorted or grounded bridges due to poor protection techniques during the long period of time the bars were installed prior to the S .I .T. The cable installations to these rebars were found to be badly cracked from being alternately exposed to water, sun, freezing, and thawing in unprotected junction boxes in the dome. Dome rebars were installed in April 1971.
6 l
l l.
l I
i - - -
, /~N _
. V' 7 47' 30" 331 39' 50" 0
0 108 245 352 0 90 180 270 l I I
. 468' 4-1/2"-: ,
e I g e
' 3 ,74 ,75
- -a _ , , ,
i
' :o
. -a 70 _ _ ,71 _ _ ,72 l '1 2
l .
El. 337' 8" O Main Steam Penetration Equipment Access {
31G' 1-11/1G" O-Feedwater. Penetration + -O El. 317' G"
. I + Personnel Access l ,
Typical 12" Penetration El. 270' 0" FIGURE 1. LINEll SUllFACE ROSETTE STRAIN GAGE LOCATIONS.
e j :i .
> b
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _______ _ _ _ _ __ ___ _ o
Repo:-t 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O I --
ffll:$..:s.ss.g.;.FV
%4*E%9ll 37
~
Section 1-1
% 290 44 o CL Buttress 320 l,4'0" % Buttress 260 48ol
_ 47ol [ 4' 0"
, 4 ' 0" 46 olI o '
l , ,4'0" i I
45 o ,
7'0" -
~
l 43 o
_ 12' 0"
'k1 1 7 41 37 38 39 40 42 35 y El. 319' 2" o-o-o_..o - o o t o -
~
- - - 7 ' 6 '.'
4' 0" 8 4' 0" 36 2:3" 2' 3" ~12 ' 0 '.'---
2' 0" l
_ l FIGURE 2. EQUIPA1ENT HATCH RADLAL AND VERTICAL DISPLACEMENT LOCATIONS.
O
neper: MS LEGEND BREWER ENGINEERING LABORATORIES./NCORPORATED Alain S ea:n R = 23" (A-N= 76-89)
O Feedwater R = 23" (A-N=90-103)
Typical 12" Penetration R = 10" (A-N= 104-117) i
_. ,iK_ . _ _ _ . . _ . _ _ _
L o-
~ '
H7 AI
/ I a N s
/ i o~
s A
o lB o C ID E , F a --o a 7 o l l -
j , I ,
i
! N' l
. , e
. G l --- R
. I ,
i 1
NR + 5" '!
=
R + 15" :
^
,- R + 18" = -
~_ ,
=- - R + 2 4 " -- -- --- - --
l
= --
R + 36" FIG URE 3. ROSETTE STRAIN GAGE LAYOUT AT LINER SURFACE PENETRATIONS.
O
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O ~
M'#.,:F:fNk.s.Y!b
.r 6 .e
'.;YbY 3y Section 1-1
- T 290 0 4', Buttress T, Buttress 260 320 48 o l 4' 0"
- 47 o 4' 0"
. 46ol m 4' 0" i i 45 o l 04' 0" 44 a ,
c 3' 6"
, l -
l 43 a 3 12' 0" 1 1h
_. 37 38 39 40 41 42- .35 y El. 319' 2" o-o -- o- o -o- o + o ,
l ll l lj
'4 ' 0 " 036 8
4' 0"
-4' 0"
-2 ' 0" ~1 ' O L
~
-5'0" FIG URE 4. EQUIPMENT II ATCH HOOP AND MERIDION AL REBAR LOC ATIONS.
Repor: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O -.
Heferenee Braeket b;*q;..
@* 0:4 1.?!h.
'I:. .Idf:
~
Spring Loaded f :.
Core =
_ ::0 . _
cm , <2@
... 4
-l Mounting Collar 9
, , , , o. j I
i l l '
i . )
% c T. :a l
~
li l .ll /
i l i
~
Reference Frame ,
- '-Containment Vessel i
l t ;
x DCDT
( ll i
=_
me+.
- FIGUltE 5. DCDT INSTALI. ATION DETAIL.
O Report 510 l BREWER qGINEERING LABORATORIES./NCORPORATED !
o
~
i o
y i
N Suspended Invar Steel Tape 1
6 '
l
)
e~
T~~
DCDT L _ ..
1 i 3 i Swing Arm Assembly
%s k\ R M.
7 f od End
) Vif' i, _ __ h --
= = ---
(
k - - -,.
I
_ a..^7 L.b, ll l c3 ca
!.'l FC ik
- l
- L.-
~
)
l Tape Tensioning Weight t%
~
-1
/ -
t
~ ^'
, O FIG URE 6. INVAR STEEL TAPE - LVDT MOUNTING ARRANGEMENT.
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
y-%
/ \
/ \
/ \
/ \ Three-Element Rectangular
- I '
\ Rosette Strain Gage - _ _
f -
3 ;L
-M a 1
1 I .[]3 '
1 -
o' . 1 .c ,
3 I ,
I Bondable Ter.ainal g . .
r t . w l 0 \ )( ! Four-Conductor Shielded Cable
\ ll
/
\ / /
\ /
\ /
N
\
f ^\ /
/
}/
s Waterproofing Compound __
FIGURE 7. LINER HOSETTE STRAIN G AGE INSTALLATION CONFIG UR ATION.
O
Repor: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED l Rebar Deforrnations Removed
! and Surface Polished
. ./ Tn m
! A W2 1:t g n
\
c 0 ,r I
4.'. o!i R L-j!.;o e
IiJ sc T r >
Q-
\\\
+
"*y \ : \\ ' \ !
\ ~~ \ s/ --
Strain Gages Bonded --
Waterproofing Compound to the Rebar im U
Axini Gage N
% Transve-se Gage
,/
G'
% 8 Axial Gage Transverse Gage O FIG URE 8. ItE13All STil AIN G AGE INSTAT,1 ATION .TND WIRING SCIIEM ATIC.
T i
i i i Q1 M
m E
m R
- .m .,, , -,,;
47 3 =-1$a= & "~~~~~ Q k
- - g
/ N
' h *o e / r- in to
/ b]
' p N . / $Z C3 g'
/
.a
$2 Scanner Motiules o
- (320 Channels) 3 ff ' #
m Power Supply -@
Computer g Controller o o
M Terminal $
2 b
N e
FIGURE 9. SEltIES 6000 COMPUTER BASED DATA ACQUISITION SYSTEM.
I ! b
\ ll <
'l of li _ __ . .
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O _
- N .
\ '
O-
- scete Ietersectim, Vertical Plane I
ll.
. . ,r - ] 7,t} / y ,ay<
Reference 1 f Targets
/ y
\
~- /
O
\
l l
FIGURE 9A. JIG TRANSIT LAYOUT.
_ 27 _
Rep::: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
Elevation Azimuth (ft) 108 g 460 - -63. 3 psi
- 4,.p,y o 55 psi
- j g 45 psi 440 - 30 psi i') o
- -Spring Line o
~~
o O 420 - *
':e I -
9 l
_ l.
$ Zero Return s [
. 400 -
'sy
, l i
$ 380 - I i.7
.p- l o I w, 360 - l o o o co
- g 30 psi, I
?i; \
?
1 \
340 - ..
g- \ so psi y \ \lo
- t. o o oo I
320 - 55 psi /
6 I
'.)
r I 63.3 psi 300 -
- l p1 .j o oo
...?
?
A i
'b
\o o//o o 279 . . -
N 5 -0,10 0 0.10 0.20 w
$) Displacement (in)
FIGUllE 10. CONTAINMENT RADIAL DISPLACEMENT.
O l
R eper: 5 *. D BREWER ENGINEERING LABORATORIES./NCORPORATED O .
Elevation Azimuth (ft) 245 460 - r-63. 3 psi 4
55 psi
~
.a. o o oo o M 4 -45 psi o
30 psi Yl. 440 -
o
['.[aN m
y (Spring Line
\
s o
- . h o M 420 - t
.+ I
.4
>:4 !
Y.i 7 400 -
- 5. . o o ao o w
380 -
, Eald 4P. <
41 l If 360 - o o o o o ,
I I 55 psi fi] !
i k
- 340 - 145 psi - I FT I 30 psi i o \o o o o )
- L)
$ 320 - ,
d I
- r. .
~
s
<-s a
i . o f
I o
/
l o i
i I 63.3 psi J;.}
f.v.1 9 d oo/o I
- .g.fh,:d 1 279 l l l
- :vA. 4 T,2.*M.
ex -0.10 0 0.10 0.20 l f Displacement (in) )
l l FIG URE 11. CONTAINMENT RADIAL DISPLACEMENT.
I O
- l l
Repr: 510 BREWER ENGINEERING LABORATORIES INCORPORATED O
Elevation Azimuth (ft) 352 460 -
,63. 3 psi ooooC# DD psi y,4 -45 psi 1 440 - o-30 psi f Sp:ing Line .
, 420 - *
'l; I
': i
~ l l f
3
[ 400 -
I i \ \
l y o oo*
.f . -
p/'~
Y 380 - I C
S; l v.
I '.4 }
a i.9 360 - ,I , , , ,
+ 3 w I q l 55 psi l%
.a 340 - 30 pst
-x l x
l(' ' l , ,
O o o o o h 320 - }
[
\
n I 63.3 pei, f 300 - g i i e o oo o
-N b-
\ //f Ah ki . f . .
t -0 10 0 0.10 0.20
')
+
Displacement (in) '
FIGURE 12. CONTAINMENT R ADIAL DISPf,ACEMENT.
O l :
l l
t
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
Displacement (in)
O.150 - * -
0.125 - -
O.100 - -
( \
/?
os /
0.075 - - / '/
/ ,
/
/
/
0.050 - -
.- 7
/
/
/
0.025 - - / -
/
l
/
/
7 . - . . ~
/ :_- _'
O l --
l l l l -
10 20 30 40 50 60
/ Pressure (psig)
/
/
m -0. 025 - FIGURE 13. CONTAINMENT VERTICAL DISPLACEAIENT -
s) AZIMUTTI 1320 l
m l
P.ep:-: 5c BREWER ENGINEERING LABORATORIES./NCURPORATED O
l
_ Displacement (in) 1 0.150 - -
o
~
x 0
/
- 0. 125 - - # '
~
/
/
/
o /
/ /1 0.100 - -
f
~ / .
/ -
Q
/ -
0.075 - - <
/
- /
/
/
_ 0.050 - --
/
/
/ ..
/
0.025 - - '
//
/
/ _-
/
/
0 ,' : ; ; : : -
u 10 20 30 40 50 00 l't esstire (psig)
FIG URE 14. CONTAINMENT VERTICAL DISPLACEMENT -
w AZIMUTII 2470 .
l t
Repor: 510
- BREWER ENGINEERING LABORATORIES./NCORPORATED O
~
Displacement (in)
_ 0.150 " "
0.125 --
O.100 - -
O~
0.075 - -
O.050 - - o -
,, /
/
/
_ 0.025 - - f f . _ . _
0 l l l ; ; -
0 10 20 30 40 ~0 i 60 I'rcssure (psig)
FIGURE 15. CONTAINMlfNT VERTICAL DISPLACEMENT -
AZIMUTII 11".
Report 510 BREWER ENGINEERING LABOPATORIES./NCORPORATED O -
Displacement (in) 0.30 - -
0 0.25 - -
/
/
/
0.20 - -
,/ . - , _
~
/
v
/
. / _ . _ _ _ _ _ _ . _
O.10 --
/
/
/
/
O.10 - -
/ 'o
~
J . .-
0,00 - - ,
/ l ..
07 : : : : : -
l 0 10 20 30 40 50 60 Pressure (psig) l FIG URE IG. CUNTAINMENT VERTICAL DISPLACEMENT - l IXn1E APEX.
l 1
l
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
~
cm la m
m o .-
m Yb O
m e d O y O
h
.p
- .p-g*
C h
g O m "
e.o -
0;Q 'O y O O
\ Q ,
O O O O M
?f Q C I
)h:D
~
] b C?k
\ l O :8 g C O OO O O O s 10
- ' m NNN 'O 'O 'O
\ \O
\ es 4@it S
~O C I
N ] *h -
.5 0
- * ;;ag a l g.. i.np - .- - - - @ _ .--
' f w
00 O O O DM.: ! U
, - O C,.- =
a
, b
.- sg N
2
.L D
CY M
1 N
1 o C
O O 'O O O O D
M
- O.'6.*O *:Ol:
Z C
'O :p D-he.
- C 0^
U. e o. ~
,5 3 e
i e
a a
- 4. o -go O' h i
..tS:
O O O o ,[o -
X
~
2 S 8 ,$. .D. '9@,
g g g n om j O
35 -
l
Reper: 510 BREWER ENGINEERING LABORATORIES./NCURPORATED Distance from Centerline O' (ft) c cc.55 DSi 'o o o
~ .!
3 0 p s i 7i o o o ,o
! 14 psi 30
/ 1 'I j
/ / /.
7 o C o o
- ) .i.
m /
i ' t,
/l f o oo o o 1
.D.I D \ /
3 N h' j .
20 o o# - o 'T45 psi 6 *E /
h [63.3 psi
, . _ oq o o o oo o 10 [-----
0 - - -
~ --
O 10 --- - - - - - - - -
RG 3;*dd.7;C
\ 63.3 psi
?.O$*
gy 20 --
l
%9
$$I C? SO ' ' - - - - - -
1
- ~~ ~~~
S b[0 E
id 0 0.025 0.050 0.075 Displacement (in)
O FIG URE 18. EQUIPMENT HATCII IT ADIA L DISPLACEMENT.
I:
F.ep:: : 510 BREWER ENGINEERING LABORATORIES./NCORPORATED o
V I t i a:
m z v3 O O O
~
M _
Oni 50% i, .
MP7 \ ? 7@8 $
//I .m s
yp W 3
=
. A . W././ 'o N\ ./l
'o 'o o o
\
oN y! he9'
- D O:6 s
==
\N \
O ..lc o 0{ <
s ; \ N o.'.f*.Q! .Q<
c.
m
=
x=o ,
4 m m
.8 o
,t o_ ,
t . ._ , .. ..p
- 4. _ ._
v C m &
Ox b
- _ _ _ y 2
E 3
G l ' e m ,
a o
o
@ H. ; .n ,, c e
~
.6 U... 0: 3'
_ .5 y
- . ca
- = E R a g
.;5 4 Z
S
- i s ..:
- A _____c____.
@ o o o o 2. j( O o ", N
~, ~.
.G [
3 o e o .; O' 5:<
a O
- n.
1
Reper: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED Distance from Centerline I{t) 45 psi G3. 3 psi o o o N o e' si
)98
, 30 W'! /// ' '
$f d
2 o.C I A' D:' oo co o Q@M,@,*iy 5
}o ;
20
- '////
/
o oo o o o
?~ ,I ?
lS 14 psi j j
'f a'e o oo1 o ox 10 x 55 psi ~ - - - - -
0 -- - - - - -
10 3F qi*d,. o o o co o
, 20 _
D.*
N.. *v
- . 30
. i ~.
M pg O 0.025 0.050 0.075 Displacement (in)
FIG URE 20. EQUIPMENT HATCH VERTICAL DISPLACEMENT.
i Reper: Mu
- BREWER ENGINEERING LABORATORIES./NCORPORATED O
Stress (psi) 10,000 - - --
,* 63. 3 psi fo 55 psi 7,500 - " -- - ----
t i
-
- 45 psi 5,000 - - -- - -
i1j o
, , 30 psi 2,500 - - - - - -
o jo 14 psi o /* 9 0 10 0 .0 Distance from Centerline (ft) i b?. U. E-Qwg. ,
4... Myc '55 0 ..
hh b -
I FIG URE 21. EQUIPMENT ITATCH llEUAll liOOP STRESS.
I'.eper: MC BREWER ENGINEERING LABORATORIES./NCORPORATED Stress (psi) 6000 "
o 4000 - - - - - - - - - - - -
o C
o
\o .a 63. 3 psi
-~
2000" " '
- o
\o o 55 psi
-f o o 45 psi c N o
/
N
\
N o-o 30 pai O o- - o-o o
0 p -lo 'To so 14 psi 0 10 20 30 Distance from Centerline (ft) l
.~x ..
) ,
s -
I r;
A er 3...
. a ....
n .s.
ASMR.Tg FIGUITE 22. EQIIII) MENT II ATCII ItEU AIt M Elt1DION AT, ST11ESS.
O
_ 40 _
l l
Reprt 510 BREWER ENGINEERING B01METORIES5JNQGRPORATED Ut) g%
l4 O .5 350 o b- --- - R- 9' b o o o SP ! ! '/,X #o
~
hb 340 o
!- o
?f$?."% ? o{ o sYQh /
d oI \
n e* :0 - '
330 - -
14 psi 30 psi 45 psi 55 psi 63. 3 ps 320 - - - - - - - .
310 - - ----
G3.3 psi
. . P,9j;(
' O' C o o o o A-o .
h.O* *Qj 5500 psi e .a A :. : *:
p..' Y. 300 - - - - - - - - - - -
? a:
h?
o$
"de .
48 f ).jo.. 200 - - -
i;
.. . c:,
o.. (C ,
M 279 ; ; ; ,
0 1000 2000 3000 4000 Stress (psi)
O FIGURE 23. EQUIPMENT HATCH REBAR HOOP STRESS.
i i
..ep::: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED Elevation (ft i 3
O, *d l l l 63.
30 psi ! 45 psi 55 psi . psi.
- f C 350 ' ' * * ' -
w
$yo.
d a I
3 o
e 7 340 / Il i\
jg gg -14 osi
_ pgC?Q,. o ao oo o awk p W l / U//
o oooC d?$ikA l %
NA6'$$ 0 330 320 - t- ,
~ ~
_ _ __1 310 - -
g VMsco e o o o o o Q o*j 63.3 psi I
,o o
e 300
~
@ *' 290 Of.
O
,, y - - -
f)
.79 e a e t 0 -1000 -2000 -3000 -4000 Stress (psi)
FIGURE 24. EQUIPMENT HATCH REBAR AIERIDIONAL STRESS.
.c, :r: 5.;
BREWER ENGINEERING LAB 0itATORIES./NCORPORATED
~
Elevation (ft) '
--452 Q'f.'hhf*NN Q
Og g
g I 00-,.-
e* g'.
h 3;OD ai .O OQg .g g..
l \ ~%6? c?
~ 446 o *# -
014 ..*6
~~~
@. ' ., .. ,o o^ --440
\
co o-- oco
/
o A.h.p.
'N D,..,.f. i I
o .Q,isf
@qtq *(
--435
'I o - oo- o oo k.
Q*p,4 14 psi [d0 )
l
$9- .O I so
--430 o- -o - o o o-o Loo'- 6.C 45 30 55 63.3 ?? dj
_ i a
osi psi , psi psi ,
e
(*~ d.
-2500 0 2500 5000 Stress (psi)
FIGUltE 25. IIEI3All ITOOP STitICSS - A/,IM tiTII j ogo ,
,O v
P.epr: n0
- BRE?!ER ENGINEERING LABORATORIES./NCORPORf,TED
.o
~
- p,";G ,
Elevation
- ~
00 (ft) t
- .Dy;,s.T.,4?O.
-o 0* 010 6
-452 em- .D coq :
4
) :. =QB
_ ( io Dc?,f*%..g'$b?e[*-
\
- f. G *h *o .
y,; . % "6., .
--446 oc f, p
%o ga. y s W.
I
, )
f C .
by
-- 440
- - =
o y - -- - -- ---- ,
h.E3h.3..
e.w.c ..
< .yQ c
r- i
-435 o- o- o- o d
(
14 psi-- ,
63.3 psi
\ 3Ibif F
m -o o -o_o MU [k
-430 30 psi 55 psi D8i - -
d e
-2500 0 2500 ~ 5000
- Stress (psi)
FJGURE 26. REB AR MEMIDIONAL STRESS - AZIMUTH 1000 .
O
- .t .; .
' ep=: ! ~. :
BREWER ENGINEERING LABORATORIES./NCORPORATED Elevation . .. : ,
- W g.gogg [ ' "" O
= -
452 .- : o-j'! i .'. .. o!0 -
~~
t*0 h ,g.o. . ,
- l 3 p,p
= 446 ...
/ .t:h @$?
q .
.. ( _
f 4..t .
- Sister Bar Data
, . , o o%*. .
440
- d%
I % o, .000 l h?.90Dh/;g?D o 00 0 00 435 :
=D o l -
. .a .
~
14 psi Q 55 psi * ;.,g f
q ?.kGj oo -o o o- o 430 i 30 45 63.3 psi . . ....
7
, psi psi , ,
-2500 0 2500 5000 Stress (psi) --
~
1 i FIGURE 27. REBAH HOOP STRESS - AZIh1UTH 245".
l Repr: 510 BREWER ENGINEERING LABORATORIES./NCORPORATED Elevation (ft) 30 45 55 psi
--458 1 o o -
63.3 ---
-- ps psi .g G[b-l . . . - .. :Q.b4
~
l 2 ohd b~
b lN'r '
j ooooo j$$6.I -[r$jb*Io'$
-*452 vo a gg,k p.w
^
gq.O.g-og -
$8
.e
~446 *h o
. .o hhb
~
--440
(\ *O$$ g 9b0 o
\\ ty&p ^' i
\ ,o
'oy,f .
--435 o-o oo-o S I
/'/ o
/ 55 psi @
l
/ ,
h* ?
--430 - .
14 30 45 G3.3 psi h*s s ;
l , psi psi psi , ,
-2500 0 2500 5000 Stresa (psi)
O V FIG URE 28. REBAll MERIDIONA L STRESS - AZIATUTII 245 .
! Rep: : Ele I BREWER ENGINEERING LABORATORIES./NCORPORATED l
l
~
1 l
t
- d.D
- #. '
[ Elevation .,...'*
g l
(ft) o: .
h ..?S f D5Sl $l. @ % NT$ 0 $ $
5.
--452 o - wo --
f.f o* *
- b : ^ 6$!$.he3. 'W 9y0;g*
\U a-Qc'ghgg*RO2 i ; i*Go. ..h:
y
=:.
(
t*h5WD*
h ? - '? .fif:h
- c'
- .?oQ*
.. ,i '"'?s-ly':..o?. } :. . e.
u: ._q_ ,=
[ ~446 ll' .O
.o . . .
nr_-
l -- - - - -
\ ,Q$ &bi ,_.,:*'.
?.
^ '
\ . . chgg.q* Foo_ r
\
xp :_-- o 9::$k'.*Y6 no l ao. Do
_440.._o.o__o.co .
_ o*
I
- g
^
-w
\
--435 o-oo-oo ?M* d2
- I P.o ;
.o l 14 psi -55 and 63.3 go".; -
psi fg.
-- 45 psi -e
--430 ja - -oo -
- . . .o
~ ~~- -
30 psi ,- p
~~
l l l
-2500 0 2500 5000 Stress (psi)
FIGURE 29. ItEBAR HOOP STRESS - AZlh1UTH 352".
47
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED l
Elevation . g'd (ft) 45 psi n 4
i 96 .;
y30 psi ) <2 e' o go c, u..
?
--4 5 2 -m d-f14 psi e
, Q* *"
o q~ >'g. ~ * # ' *c 9,*. ,
'a o, ~.
" ~
.$,Q [.h*p .'
G3.3 psi I gg 30 ,p . .o .'
.o *.s'oro,. EMo c5 psi
~~446 l
woo
' *: *S -- - - -
.~ $9. . * *M q f*
o_ \ me e Sister Bar Data
'# ,c,k N.. h h,
- 440 - ,
-e-
- . . e, . .
3 9, /5 .,
) .?g - ,--
e-... - e..
/ ( h[i .*.- 4
--435 14 psi 63.3 psi gQ
.g
- .j l 55 psi h l I
?*
-- 430
?
o -o-f _oo 30 psi 45 psi f*
M.!!fg*, <
-2500 0 2500 5000 Stress (psi) l FIC UTf E 30. ftEBAR MERIDIONAL STRESS - AXIMUTII 352".
l
Rep::: SIC BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE I DISPLACEMENT MEASUREMENT LOCATIONS Instrument Number Elevation A zimuth Orientation L 1 (122) 284' 0" 108 Radial
~ L 2 (123) 284' 0" 243 Radial L 3 (124) 284' 0" 352 Radial L 4 (125) 294' 0" 108 Radial
_ L 5 (126) 294' 0" 2430 Radial L 6 (127) 294' 0" 3520 Radial L 7 (128) 326' 0" 1080 Radial L 0 (129) 326' 0" 2430 - Radial ~ ~ ~ '
-Q L 9 (130) 326' 0" 3400 Radial L 10 (131) 358' 0" 1080 Radial L 11 (132) 358' 0" 348 Radial L 30 (134) 453' 6" 11 Wall Vertical L 34 (135) Dome Apex Vertical NOTE: 1. Brackete 1 numbers correspond to Table III of Appendix II.
a O
Rep::: f10 BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II EQUIPMENT ACCESS OPENING DISPLACE.S.IENT LOCATIONS Instrument Distance from Direction from Orientation Number Centerline Centerline L 35 (136) 12' 0" Left Radial 12'0"
~~
L 35 (137) Left Vertical L 36 (139) 12' 0" Below Radial _ -_
L 36 (138) 12' 0" Below Vertical L 37 (140) 29' 9" Left Radial L 37 (141) 29' 9" Left Vertical L 38 (142) 27'6" Left Radial L 38 (143) 27' 6" Left Vertical L 39 (144) 23' 6" Left Radial L 39 (145) 23' 6" Left
~
Vertical -
L 40 (146) 19' 6" Left Radial L 40 (147) 19' 6" Left Vertical L 41 (148) 32' 0" Left Radial L 41 (149) 32' 0" Left Vertical L 42 (150) 12' 0" Left Radial L 42 (151) 12' 0" Left Vertical L 43 (152) 12' 0" Above Radial 12' 0"
~
L 43 (153) Above Vertical' L 44 (154) 35' 6" Above Radial L 44 (155) 35' 6" Above Vertical -.
L 45 (156) 19' 6" Above Radial L 45 (157) 19' 6" Above Vertical L 46 (158) 23' 6" Above Radial L 46 (159) 23' 6" Above Vertical O
1 l
Report 510 l
BREWER ENGINEERING LABORATORIES./NCORPORATED l
l 1
TABLE II (CONTINUED)
EQUIPMENT ACCESS OPENING DISPLACEMENT LOCATIONS Instrument Distance from Direction from Orientation Number Centerline Centerline 1
L 47 (160) 27' 6" Above Radial L 47 (161) 27' 6" Above Vertical L 48 (162) 31' 6" Above Radial i L 48 (163) 31' 6" Above Vertical - ~
NOTE: 1. Bracketed numbers correspond to Table III of Appendix II.
h h
"*^N W w .- .
O
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE III CYLINDER WALL AND DOME RADIAL DISPLACEMENT Instrument Number Elevation Azimuth T 12 390' 0" 108 0 T 13 358' 0" 2450 T 14 300' 0" 2450 T 15 390' 0" 352 T 16 422' 0" 108 0 T 17 422' 0" 245 422' 0"
~
T 18 3520 108 0
~
T 19 432' 0" T 20 432' 0" 2450 T 21 432' 0" 352 T 22 430' 2" 108 T 23 430' 2" 245 0 T 24 439' 2" 352 T 25 453' 6" 108 T 26 453'6" 245 T 27 453' 6" 352 0 4
hep; : 510 BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE IV CYLINDER LEDGE AND BASE VERTICAL DISPLACE.TIENT Instrument Number Elevation A zimuth T 28 453' 6" 139 T 29 453' 6" 24h T 31 2798 0" 131o T 32 279' 0" 2480 T 33 279' 0" go
(
i
[
W i
O
Reper: 5:0 BREWER ENGINEERING LABORATORIES./NCORPORATED O
TA BLE V LINER STRAIN GAGE LOCATIONS Identification Approximate Approximate Number Elevation Azimutn __ _
70( 1) 35S' 0" 108 71 ( 3) 358' 0" 245 -
72 ( 5) 358' 0" 3520 l
73 ( 2) 390' 0" 1080 -
74 ( 4) 390' 0" 245 0 75 ( 6) 390' 0" 3520 76 ( 7,' 337' 0" 7 47' 30"
, et( 8) 337' 0" 70 47' 30"- ~ - - -
l s 78 ( 9) 337' 0" 70 47' 30" l 79 (10) 337' 0" 7 47' 30" 80 (11) 337' 0" 70 47' 30" 81 (12) 337' 0" 70 47' 30" 82 (13) 337' 0" 70 47' 30"
! 83 (14) 316' 1-11/16" 7 47' 30" i
84 (15) 316' 1-11/16" 70 47' 30"
~85 (16) 316' 1-11/16" 7 47' 30" 86 (17) 316' 1-11/16" 70 47'30" 87 (18) 316' 1-11/16" 70 47' 30" 88 (10) 316' 1-11/]6" 7 47' 30" 89 (20) 316' 1-11/16" 7 47' 30" 90 (21) 316' 1-11/1G" 70 47' 30" 91 (22) 31G' 1-11/16" 70 47' 30" -
92 (23) 316' 1-11/16" 7 47' 30" 93 (24) 316' 1-11/16" 70 47' 30" 94 (25) 31G' 1-11/16" 70 47' 30" 95 (26) 316' 1-11/16" 7 47' 30" O
R e,::-: 5:0 BREWER ENGINEERING L/.BORATORIES./NCORPORATED O-TABLE V (CONTINUED)
LINER STRAIN GAGE LOCATIONS
~-
Identification Approximate Approximate Number Elevation Azimuth 96 (27) 316' 1-11/16" 70 47' 30" 97 (28) 316' 1-11/16" 70 47' 30" 98 (29) 316' 1-11/16" 70 47' 30" 99 (30) 316' 1-11/16" 70 47' 30" 100 (31) 316' 1-11/16" 70 47' 30" 101 (32) 316' 1-11/16" 70 4 78 30" 102 (33) 316' 1-11/16" 7 47' 30" 103 (34) 316' 1-11/16" 70 47' 30" 104 (35) 317' G" 331 39' 50"
_ 105 (36) 317' 6" 3310 30' 50" 106 (37) 317' 6" 331 39' 50" 107 (38) 31 7' 6" 331 0 39' 50"
_ 108 (39) 317' 6" 331 39' 50" 109 (40) 317' G" 3310 39' 50" 110 (41) 317' 6" 3310 39' 50" 111 (42) 317' 6" 331 30' 50" -- - - - - - -
112 (43) 317' 6" 3310 39' 50" 113 (44) 317' 6" 3310 39' 50" 114 (45) 317' 6" 331 39' 50" 115 (46) 317' 6" 3310 30' 50" 116 (47) 317' 6" 3310 39' 50" 117 (48) 317' 6" 331 0 39' 50" l
l NOTE: 1. Bracketed numbers correspond to Table I of Appendix II.
O Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED r
(
TABLE VI REBAR STRAIN G AGE LOCATIONS Identification Approximate Orientation
~ . .
Number Elevation Appr xi ate A .tmuth 35 319' 2" Equipment Access Opening Hoop 35 319' 2" Equipment Access Opening hieridional 36 ( 2) 307' 2" Equipment Access Opening Hoop
~
36 ( 3) 307' 2" Equipment Access Opening A1eridional 37 ( 4) 319' 2" Equipment Access Opening Muug 37 ( 5) 319' 2" Equipment Access Opening Meridional
_ 38 ( 6) 319' 2" Equipment Acce.ss Opening Hoop ex 38 ( 7) 319' 2" Equipment Access Opening Meridional O 39 319' 2" Equipment Access Opening Hoop
_ 39 ( 8) 319' 2" Equipment Access Opening Meridional 40 ( 9) 319' 2" Equipment Access Opening Hoop 40 (10) 319' 2" Equipment Access Opening Meridional 41 (11) 310' 2" Equipment Access Opening Hoop 41 (12) 319' 2" Equipment Access Opening Meridional 42 (13) 319' 2" Equipment Access Opening Hoop 42 (14) 310' 2" Equipment Access Opening M eridional 43 (15) 331' 2" , Equipment Access Opening Hoop 43 (16) 331' 2" Equipment Access Opening Meridional 44 (17) 334' 5" Equipment Access Opening Hoop l 44 (18) 334' 5" Equipment Access Opening Meridional l 45 338' 8" Equipment Access Opening Hoop 45 (19) 338' 8" Equipment Access Opening M eridional 46 (20) 342' 8" Equipment Access Opening Hoop 46 (21) 342' 8" Equipment Access Opening M eridional 47 (22) 346' 8" Equipment Access Opening Hoop 47 (23) 346' 8" Equipment Access Opening Meridional 48 (24) 350' 8" Equipment Access Opening Hoop 48 (25) 350' 8" Equipment Access Opening Meridional 49 (26) 430' 0" 108 Hoop 49 (27) 430' 0" 108 Meridional p
I Report 510 l
BREWER ENGINEERING LABORATORIES./NCORPORATED O i TABLE VI (CONTINUED)
REBAH STRAIN GAGE LOCATIONS Identification Approximate . . .
Number Elevation APProximate Azimuth Orientation 50 (28) 430' 0" 245 Hoop 50 (29) 430' 0" 2450 Meridional 51 (30) 430' 0" 352 Hoop
_ 51 (31) 430' 0" 352 Meridional 52 (32) 435' 0" 1080 Hoop 52 (33) 435' 0" 1080 Meridional
_ 53 (34) 435' 0" 24d Hoop p 53 (35) 435' 0" 2450 M eridional V 54 (36) 435' 0" 352 Hoop 54 435' 0" 352 M eridional 55 (37) 440' 0" 108 Hoop 55 (38) 440' 0" 108 Meridional 56 (39) 440' 0" 245 Hoop 56 (40) 440' 0" 245 Meridional 57 (41) 440' 0" 352 Hoop 57 (42) 440' 0" 352 M eridional 58 (43) 446' 0" 108 Hoop 58 (44) 446' 0" 108 0 Meridional 59 446' 0" 245 Hoop I 59 (45) 446' 0" 245 Meridional 60 (46) 446' 0" 352 Hoop 60 (47) 446' 0" 352 M eridional '
61 (48) 452' 0" 108 0 Hoop !
61 (49) 452' 0" 108 U Meridional 62 (50) 452' 0" 245 Hoop 62 (51) 452' 0" 245 Meridional G3 (52) 452' 0" 3520 Hoop 63 (53) 452' 0" 352 Meridional 64 454' 0" 108 Hoop 64 454' 0" 108 Meridional Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE VI (CONTINUED)
REBAR STRAIN GAGE LOCATIONS Identification Approximate Number Elevation Approximate A::imuth Orientation 65 454' 0" 245 Hoop 65 454' 0" 2450 hieridional 66 454' 0" 3520 Hoop 66 454' 0" 352 Meridional 67 (59) 458' 0" 108 Hoop 67 (60) 458' 0" 108 0 A1eridional 68 458' 0" 2450 Hoop p# 68 458' 0" 245 Meridional l 69 458' 0" 3520 Hoop I 69 (62) 458' 0" 352 M eridional 129 446' 0" 80 0 Iloop 129 440' 0" 80 Meridional 130 446' 0" 320 Hoop 130 446' 0" 320 M eridional NOTE: 1. Bracketed numbers correspond to Table II of Appendix II.
l l
l l
l
Report 510 BREWER ENGINEERING LABORATORIES,/NCORPORATED O l TABLE VII AMBIENT TEMPERATURE LIEASUREMENT LOCATIONS Instrument Number Approximate Elevation Approximate Azimuth 122 300' 0" 247
~
123 358' 0" 352 0 124 358' 0" 1080 125 453' 0" 352 126 453' 0" 175 '
l 127 308' 0" 352 l
l -
t I
O
~~
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE VIII WHITEWASH AREA LOCATIONS A rea I. D. Approximate Elevation Approximate Azimuth 118 284' 0" 1750 119 360' 0" 175 120 453' 6" 175 121 310' 2" Equipment Hatch 131 445' 0" 220
( 132 445' 0" 3200 133 445' 0" 350 l
l
... _ . 1 __ . _ . _ _
1 l
l Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
t APPENDIX I l
PIIOTOGRAPIIS OF TEST O
l l
l O
i a
3 e s :-
.c T
2 .
.e
.?. - I;;td re.:w
.g ,, !
5
{
6 M o 2 <
I
';; O O :*e sun'5)
+ ; g 1 3.e = ., - . . . . _ ,, .
g, .~. V , w u - y ,y.
, . s. .
.c
'( 4#,J * # m. s._.f' *Dm w'V U '
i . F. re -
-r -
.t
^
e ' N - s -ie -
- i-my su .-g to:'.
. w v.0b ,c v.w ).,.e',. v ye : tui a \s - aci . , ~
"' 4 a/d'"I diTw.G ~ IJ @fQ E.C\,% G.3/Q\Z T,. '$s e m;s
- -- M .
i s , ,..... . e6we l C ,2
- .--,., '.Ig~f'./h)*./W.,l =.f. (3,9(Q (F;;<' ~) M'; ' ! S20*
. ~ , ,
l
, w. .
s:.nc J, 5 s.
en s s_ ...imz Ps - m c W!& =e)(n c :: a fE m._ . . "@ 44@g:.-@hf@P@F@ W 43 2 4! s.
a
,,,...,. WisukK e,=-,7 n - n W @P@*@F& . " " * . - . . . . - -~
\ ., u. , , . .. .. . .
.n m - i V .wOmOw= ,
m.
,e
- e. s~.
- -. =...
.m w_;g, e~. m, m_ . tyw. cmyg
.- m ,
4 ,? I g g i .h3.E'.d. s; 6.'..t,'E'd%'.
we; x--ji so/: t ,'Os iG f.(c :@.d, WE@ sj
- g?
s 8
9?@P@?@P@P@?@P@*@ ' l W- - @w- @f @?@2@?@F@- e
's- ,.., .
Ww~ ~ @r@_ _w
/ .. ,.,,,. _@ @_ _ _@r_@ :
~ ,.e e
k m.,e a m* & @/ im s
b i.a. ssA mW n i) v- F du a b n e . s o' ;$ k ,,. . . i@P@FE PEP @F@?@?@ F@ f
- @POF@f@F@FEF@?@f@' l?
% s.. ,.
TP@P@P@F@ F@P@P@FE !'
I g.
megpi c.'i L a_ g; gs'v i GJi @w,Is pe =e/ e2~
i4u s. *
,I.,_;g,-.n ..,:,. ,m,.e .. e.s i
s ,,e, s., p<t p p. .w~,im,e, m le
.< ('
' P. * ?- .e=.e,4 .< + rg io +pE to. ,.
9 .
A :2,a
' hsIt h- )b5. a ;s] so- Qi*g.,,3 gg
. L/** :27 ss?. W:9hm b- ru .
~
=. h),Qit k4 Q h us.e* h "
.E) h [
M ,* ... .m. .rp e s!FP@s@Fe @P@PP "* 9 u, .. ,
g_ ,,,. m p.,=~ymL mx = m~, w. .
B u
e e.4..v.
s.,...
e w e m uc e) w #y- *- rx , s :~
E s. * ,. ,e,. i@P@EliD P@P@P@ P@P@P%
- T b m.m. *@p@F@p1PJP@P@i@PP 5
....... '@F@F@F@P@F@P@P@P@ 5 !
lH Es sa. 5@P@P@F@P@P@P@P@F.@ !4 l? ,m .s. '@F@?@F@F@F@P@!@P@:
l
!, "., , 14.70t* ! L' .I N
,,,, g -
-.g - a tb k :l V i bIh. S .
I
,f3 ,\.%)
s l D 1 V IM N'
- U'a k
!;; {,, i
- e. "
lrw'~l I e, g E!!
e @R E 5 5 i it I i 5 0 tr$
[g 8'
,, b
- S h
- E.: @ I*, d.e. f. S'
- t t7 et o S'
= , , ,
ELCV. ':7&' .trav f, :5'. 210.ti '
[<,ELIs'.
s 43G) ,
I I t
. l
l l
\jk P
/
- d. M i
. _ - . . _-......-_m_.
I if
- ,s -
I ELLIPTICAL RING SUBJECTED TO INTERNAL PRESSURE O
"fQ~r n
- p(r-6) Q , 7 l
g f
i r \
._ \ ,
ris m 2=QKid QUADRANT OF RING lO CYLINDER OVALIZATION FIGURE 70
a m-- nm-e -a - - -
1 I
i
(
\
1 t
I i
j APPENDIX A l
i t
l I
l
X f( > i A- ,$ f V - / <. \ -4
__. ;b/p ,
){3 J
- BREWER ENGINEERING LABORATORIES,/NCORPORATED 1 i ..
. <: )V y i
~/\) f 1 's ~I
'ENISO"*$[*'[Ov'N! ,
s a <1 s/T j 's ()
f THREE MILE ISLAND UNIT I UM IL- CONTAINMENT STRUCTURAL INTEGRITY
-b d-
-i-
~ TEST RESULTS f _3 ._.
\\ - - - . .
(, r6 mc w '
! hd
.'T / -I) >$ . ...
77 -T-x.y . . :s Sg'@:]; i
[ef-s af f-u g -
5j dd Nd' j )[;l 3 (lIif
. 1 L '
- ')/
~
fI/a .i il
... ... .. lh
- ,) ); --
ps or f
~ ~ ~ ~
/ RICHARD
./ .
l /=g A. I;
-D ! $ SABEAN @ [ ~~ ~~'
'N _ . . No.23651 ' *
--a Os sit f
Written By Approved By . _ .
.. ._,. _/_. -
k l' - - t]'Je<-/ ' '\ . . hv,,1 bq (cyr ).vs je /
s 4,4e..l(lhg-
)1! lc_. '
,a n, l ;..c[:, y Richard A. Sabean LaVerne F. Wallace l 'Il> }
(.
l j ' .- } May 8, 1!)74
-,f24 ,Y_- .>
fJ -k p v 4..g (, ; i f
- c. )f I t 1.t l
~
Report 510 I
.- BREWER ENGINEERING LABORATORIES./NCORPORATED O
i
- TABLE OF CONTENTS -
ITEM DESCRIPTION PAGE INTRODUCTION.
- 1. O 1 1.1 Structural Proof Test. I
- 1. 2 Test Measurements. I
- 1. 3 Structural Integrity Test. 2
- 2. 0 PROCEDURE. 3 2.1 Test Measurements. 3
- 2. 2 Installation Techniques. 4
- 2. 3 Instrumentation. 8
- 2. 4 Test Procedure. 10 r- 2. 5 Data Reduction and Analysis. 11 I
i
- 3. O RESULTS. 13 :
3.1 Liner Strain Gage Data.
13 Os' 3. 2 Containment Deflection Data. 13
- 3. 3 Reb'ar Stress Data. 14
- 3. 4 Exterior Temperature Data. 14
- 3. 5 Crack Pattern Charts. 14
- 3. 6 Sister Bar Data. 14
- 4. O DISCUSSION OF RESULTS. 15 4.1 Data Acquisition System Accuracy. 15
- 4. 2 Strain Gage Data Accuracy. 16 l
- 4. 3 DCDT Data Accuracy. 16 _
- 4. 4 Optical Measurements Data Accuracy. 16
- 5. O CONCLUSIONS. 17 5.1 Data Acquisition System. 17
- 5. 2 Data Retrieval. 17 FIGURE 1 Liner Surface Rosette Strain Gage Locations. 18
_ FIGURE 2 Equipment Hatch Radial and Vertical Displace-ment Locations. 19 FIGURE 3 Rosette Strain Gage Layout at Liner Surface
_ Penetrations. 20 FIGURE 4 Equipment Hatch Hoop and Meridional Rebar Locations. 21
-B-l t
~
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O- l
- TABLE OF CONTENTS -
4 ITEM DESCRIPTION PAGE
~
FIGURE 5 DCDT Installation Detail. 22 t FIGURE 6 Invar Steel Tape - LVDT Mounting Arrangement. 23 FIGURE 7 Liner Rosette Strain Gage Installation Con-figuration. 24 FIGURE 8 Rebar Strain Gage Installation and Wiring
_ Schematic. 25 FIGURE 9 Series 6000 Computer Based Data Acquisition System. 26
' __ FIGURE 9A Jig Transit Layout. 27 FIGURE 10 Containment Radial Displacement. 28 I
FIGURE 11 Containment Radial Displacement. 29 FIGURE 12 Containment Radial Displacement. 30
/_ FIGURE 13 Containment Vertical Displacement -
I Azimuth 1320. 31 FIGURE 14 Contaimnent Vertical Displacement -
0, - Azimuth 247c . 32 FIGURE 15 Containment Vertical Displacement -
Azimuth 11. 0 33 FIGURE 16 Containment Vertical Displacement - Dome l Apex. 34 l .- FIGURE 17 Equipment Hatch Radial Displacement. 35 l g FIGURE 18 Equipment Hatch Radial Displacement. 36 l FIGURE 19 Equipment Hatch Vertical Displacement. 37 FIGURE 20 Equipment Hatch Vertical Displacement. 38
, FIGURE 21 Equipment Hatch Rebar Hoop Stress. 39 FIGURE 22 Equipment Hatch Rebar Meridional Stress. 40 f - FIGURE 23 Equipment Hatch Rebar Hoop Stress. 41
, FIGURE 24 Equipment Hatch Rebar Meridional Stress. 42 FIGURE 25 Rebar Hoop Stress - Azimuth 108 . 43 FIGURE 26 Rebar Meridional Stress - Azimuth 108 . 44 FIGURE 27 Rebar Hoop Stress - Azimuth 2450 45 FIGURE 28 Rebar Meridional Stress - Azimuth 2450 . 46 FIGURE 29 Rebar Hoop Stress - Azimuth 3520.
47
, FIGURE 30 Rebar Meridional Stress - Azimuth 3520. 48 TABLE I Displacement Measurement Locations. 49 TABLE II Equi l. ment Access Opening Displacement Locations. 50 0
-C-
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O-
1.0 INTRODUCTION
1.1 Structural Proof Test.
._ 1.1.1 Brewer Engineering Laboratories, Inc., of Marion, Massachusetts, provided, installed, and monitored the instru-
_ mentation for structural integrity test of the Three Mile Island Nuclear Station - Unit I, located in Dauphin County, Pennsylvania.
1.1.2 The work was conducted under United Engineers &
Constructors Inc. , Contract No. 9459.01-5-5, MEC125-entitled
" Structural Proof Tests" and BEL Proposals 278 and 278A. .The work included engineering design, materials and equipmentI purchases, field installations (with the exception of normal union tradesmen's work), recording test data, and preparat_ ion of' a report of the test and results. -
1.1.3 The test procedure objective was in accordance with G. A.I. Specification No. SP-5720 and G. A.I. Report No.1710.
1.2 Test Measurements.
1.2.1 Gross radial and vertical growth measurements of the containment and local growth measurements at locations around the equipment hatch were made during the S.I.T. DCDT di'splacement transducers were utilized for the growth measure-ments along with jig transits and precision levels.
1.2.2 Liner strain measurements were made using rectangular O
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
rosette strain gages bonded to the inside surface of the containment liner. Strain measurements were made around containment pene-trations and at three azimuths and two elevations of the contain-ment wall.
1.2.3 Concrete reinforcing bar strain measurements were made using strain gages bonded to the rebars. The rebar strain measurements were made around the equipment hatch and at five azimuths around the vessel spring line.
1.2.4 Exterior wall temperature measurements were taken during -
the S.I.T. and for one week prior to the S.I.T.
1.2.5 Crack patterns and spacing were charted at seven white-washed locations on the vessel during the S.I.T.
1.3 Structural Integrity Test.
1.3.1 Structural response and temperature data were recorded prior to pressurization, at four pressure levels during pressur-ization, at three pressure levels during depressurization, and
. after depressurization.
1.3.2 A preliminary analysis of the data was made at each i
pressurization level before proceeding to the next level. } _
l 1.3.3 The test data have been analyzed and are tabulated t
l in this report. Procedural information and discussions are also carried in this report.
O 1
)
i
Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
2.1.6 Exterior wall temperatures were measured at six locations.
. Locations are listed in Table VII.
. 2.1.7 Containment vessel exterior cracking was charted at seven whitewash areas at five elevations, and five azimuths which included the equipment hatch. Locations are listed in Table VIII.
2.2 Installation Techniques. -
2.2.1 Displacement measurements were made using jig transits 3 _
l preclaion levels, and direct current differential transformers with integral signal conditioning (DCDT's) . :-:2 .
2.2.2 DCDT's are comprised of two functional parts; a movable ~
soft iron core and a transformer coil with primary and split secondary windings. The primary winding is in the center of the coil with identical, symmetrically spaced secondary windings on either end. The iron core, which has controlled, homogeneous magnetic permeability, moves along the axis of the cylindrical coil varying the mutual inductance of each secondary to the primary. The mutual inductance determines the voltage induced from the primary to each secondary. The differential voltage ~
between the secondary windings is a linear function of core - {7 -
\
displacement. The integral signal conditionings allow a direct ~ -
current excitation voltage and a direct current output signal.
DCDT's differ from LVDT's in that LVDT's do not have integral O
- , _ - _ _ _ , - - w i,.
Report 510
- BRC'NER ENGINEERING LABORATORIES./NCORPORATED O
signal conditioning and LVDT's require alternating current excitation voltage and the output signal is alternating current.
2.2.3 The transformer coils, which are the stetionary portion of the transducer, are encased in a stainless steel cylinder.
This cylinder is attached to the reference frame using steel collars welded to the frame. The frames in turn are appended from references isolated from the containment vessel; i.e. , the
_ equipment hatch shield. Large frames, subject to large temperature changes due to sun position for example, were insulated to prevent erroneous reading due to thermal distortion of the frames.
2.2.4 The DCDT core is attached to a spring-loaded plunger.
The plunger was .preloaded against the containment wall. As the wall was displaced, the plunger followed the mover nt of the wall, thereby moving the core, which in turn induced a voltage change (see Figure 5) .
2.2.5 Each DCDT was calibrated in the field prior to installation.
A precision micrometer head. was used to deflect the DCDT core.
A five point calibration was used to determine the sensitivity ,
1 of the individual DCDT's.
2.2.6 Vertical displacements at the dome apex were measured using invar steel tape and a DCDT (see Figure 6) . The tape was suspended from the dome apex. The DCDT core was attached to the bottom of the tape with a weight to maintain proper tape tension. The DCDT coil was gimbal mounted to O
v
m l I l
l
- - l l
I
- O
- j
,, I 1
\
- .. )
i t
I # v5
- m n 0
- r <
). a. .a a 2
'*=
1
.W # =~~qs:.. ?.:MG. m a
?
.egm^Q.%.
. g ,, s+i ; p1.h: .
.i.a h. -
e s i rw- om:%..i. --r n&;, .2. d .
y p.nj :y
~
N
\
1 e
et 9:: .n.-
99;^q,[ ,,
'iI'M W .,l' m
\
l $$Y l . &[h$~:.b _
- A??S p 6%+.
C j .g'-ljj5 e 5 2
m -
A yt yy.)
e v1 O
y w(;)7",'
. 7. . =
- b. ~. ,,
rm Q y;t . ; ,-
a p .hi$
- u.. O q
i k..% _ -
J:'**
K;, .;;,:
s l. r. .'.2. 7,2-2 pg gM;. s%
- ~~ $
- ~
., f -_ 't ++J- ~ -
, y y ,.,.p,. ,.. - -
_ p 3 e ,
. 5 --
y ,- - G y
Z 8 . _C "d.
I t'
I;',J.TE P gyd ' --
M _ E5d M ' _
m
- p m -- .
r * , ..
m
- .a
. =,+
J
~; -f, H w.cs.
rs e ,;n -
.w.,
, . g
W44
. p "' ' , a -
- .4~~ V2 r - ...; * * , "*
- e. f
",,5*.'+.*
s
- s'.;r
. - 2,h%%,4;;A;gQg. %20!Ni[ ^' ' $4,{
'T '. !.4 5 jN' ." 't . .. . .; .
l E' ,
l$ ,.- ' 3),4Ndh.'%y
.. w s. r$.3 w 555/NM'. " '
mgg bl.g ;g. .*. , c &q,
'.4'., ; ,-
. +, cqC;!
7.,;q 4,$g TN
- t,,,'f.
g.yr$
77 w.A g 3
m; . y;.y L .
~
y,.
O
- ~' *-
,, -,_. s
[+D; *' .7,(;c.t f .f . . - .
I
_ _ _ _ _, ' T */ [
' h. .m _ - ._, . _ _ . _ .
..,w _,,,,,,,..,.%
- - - = - * - . + _ - .
o
O 04 O
-s,.y ,. . ._ , . -
- . . .. +.j. 2 7. 2 W *+ '
,o . ..p e '
e
' IJ. l x . --
3
' . y. ,, _ . . 4 I t j);
-~-
\ l
~ .,
s j '
I .
,/ \
1 t
/
< ! r- I I l
i i
- )
i @
1 ti@ \
d l -
~ ,
' r- i
. :: !, .rl.I p
r PIGURE 4- ROSETTE GAGES AT TYPICAL 12" I>ENETRATION.
C .
Q y
/ -
14 YSn g.$ ~
g' '
M*;T r.ti'2'*.,.9h.
W
,g . , .
w
~
,.>..,, .+ *:2 G n,
- n. . :s; c.O W.@ ::.nM.- -w.M@ m hg vy :p. --
.. E b y@s-s :. & +g9;9Tx:.i . ~
u.
y ' k:;w*Na y:
Q.ppvL.c+&c-N4* T,'.f .e i
- ta v t,C e
- .
i Y . N; n.. 4e y: - .:
- '; . :7. *
+ ._
'u.. .sp.;< i: pJ . . .
s'iQ .L c .
.. . i. "
--_. w *w ,
- ig we . ,,
y.,a
..s.m:=. - -2....-~.
. .ts + :}u.:r,
..c.Jses. .e,w<:.v.u. ?. r. . .
.: z .- - 4, ..
..t .
2;
,159 a -- ,
q, t , . 4, , , .
- o, e.r.o.o. .,s ., yv...-vs:.; - . .e,r . .w-
.-f.e-
.. s 3.u
,wu:m . 34.4, n < .2 e ne,c. f: . .
w , ., . - ;-
- y+ .
,; +. r. . ..
..; a s., , . .- -<
'*'c{.. .
' p.gp.p#.*
,, t,;,, ; _
.,p - .. g: w q w
, e '*
,'.,w s
.cn l ~*i : ' % i ;j .
{
-.. .5 e '
s h& :p &A A
~
^
a O - * :..
, [I hg a
g f E
.~m . . ,.2pDQ . .
f P 74 " Y? &
. " 5 u}f . $y.%g ..g, --
, [' ,$ a un,n %m .,: .n w..
s?f.i.Njy". . \: ,.=.
w-- -
m.
o a
k 4' ' . ,9 I k. .
w+-
y: }
i .
M .9 f: .$ , ,
e
. :. '.. g v .~
.. o i
higp-i;ig 2
.'1,.,_
'.y fi ~;
l;p w,; O'(
k NjgQ,s).~.O
~
lO}e.. ,k..f, .-
er . . ta
- 4.
- .s - ..; 3. . %,s.-g, . . s,wy'.. q- 3.
..f Wv,/;. '? /.;tm., M . V ,'. v ;;.
, . 2 y$' . y . k,r.
.Jgw.,n-s w. 1'. .. .;
s.{ l .% M cc-
- .4 p 4. .c,-:
- g. ' ej s. . .;. .e
. .+ + y <, .
s-
- .a,
.:Y ' 0 , . , .,. t l Y *-
~.
. l a . .< A. kNI r W
.* 'l W+.
. :..R :6:I .-
. .&.d..Q. G."l $- $. :? @1 . b? l~ . W*
3 l
- 'e.. . . = ,6 '4 '4 . .
,7,*. Ll}R . Cu ' e
". .I. **
Q h. ..,y'
-L'* W}..sq?[ ?.:.J. . 4 ,w - . ...w,.. *V. :.
,_ 3 ~f *4 '3 T *L,'_*W -;L ' ,,
- ? , - * ? i . > ;b$.
[ i_!<
((:: Y $s f5 . f}*Q
~. ..
,, K. .(QQQ Q!._,;gCy' Q
-: l: f ' .y 'Q ?
. 1 -
t? ~{g
. -. .p -
y: 4.; W m .gy.pn.aMgwising.wqyg
+
l I Q as.%w.
7i q.-
l p gi c ,.- I
-.9.; ., . [ .
&~ /
. ,4 i' p.:;.-g_
.. . :V
. y, ~
- 7. . . ,d -r .
~
L. .#-
pg., 4. , .
..m g 3 "
. T., ,
l
+ N:~.} . . ,.
,.6:; w - ,
NSLE$) #. g JWS
- puur s. .
o
- . .c b g'. 4 .e
} .: ..:}
a
.. -.;-[.q, .
7
]
' ~ . Y. "
.:. 5 O. n.m.w n. .. E
. g _.
n mJ .a, iw , ,
o 4 ,
- 4 U N. '
9 f -> - >T.
3 j
- 3. y . @.. .
6._.4 7Mk. .
'> .Iff,xl ;
a i Q* ' 5:2_*J '
WC7td
- 6
+. ~. - - -
o 7
k@,4 4. %2 9 f . , P's.' m (, _ _ - _
.- m m
i1 .
n . ..
{
'** 6 , , . . - age ,-
- l sy- -'_
-n l y;g .".' ,> e,** _
f s,
r.' . .
- 3 0
$ , . e :. :, [
> j ..
- _ -p*
, . ::r . <:a ..
-g n d ,
w-m:.
l
_: 9 j g4 ;gw9. Q,f~.;yft-, < [ -Q.
V y;'fJf. ,,
.w.. c; i.,.. -
w e i- l - ' " {3- .
l J'. . T: '. = , p %Tg;, . . u .: ; . ' , .
0
( .; ., : ,:
~?'.*;[ ! j'.i.l: l l[*,~, L .$=r~ 7 ." C'.'
- , ; 7 , . ..n.,.,,,___
l -) b. /.; ' . .[ )' $ ' ' - ;} ,, > 4 *= _ * , . ,
lg p y n e.na " 9 9 i i
fe v ju l u a .u _ .. I i
__. _ _ _ - . . L , . s _ . .. -. ; . .>-.. :.._ _ u. - - - . -
y- ,m
- - '~ ;
~ ^ ^
{ -
gg .
g *,..M 4 ?pEQ' +,Q q ..r .
c-
- . .'; V6 N .Qg ,y .- e
?r0 ^.},.,-l~-** ..
4'.-
+ $ y %y. ry -
+
k *
[ d- J+, f ;. ' - U .
'".A .N . J. ; .,
[.5..4k . % 2
'f -
.g
% ~? g ,*- ,8, - .g , *
~ 7 [l 2
_4..
9.,
. *"' .. A I [ " .. " '
- $r y -
'N :
$ 'h $ j -
% , , t... }h*l ,,_ \;,. Y-kj0 7
- i. M[*Ak- '
+ ,y ..? * ,-a
. j -,,3,, j. A ,a.,
n= ,
- a ~ p. , 4. e.w . .g ,
-I..] ?' 4 g .
W,,& .lY
'. . W f :^ . - ?
-4 ':
~ b N a. ht. i
.. .g? e,
.N2
., .e .
'3p. g ) Y'
. - , l k [ * * .- -l t ,
. ) iE h . , i I [.'"'
- y j .
,: '[ -3 . i ,*
$ .gN f . ~ . ^
- 5. [ .~
Md.M ; ; h - ., ' .
.\ *, [; j. I es.L 4 [fl .5 W V5 .
l 'e
- hk l h .
.{ ' c; ,
$hg. '; *hR 5-Q
~
I"h b .Y. h ;
khhh
- r. ,.
Y .. - ~ ~ . 'e-& &/
l
- h. ,.
- h,+ ? : l
-1l L . ~
?: \
- 'L._. .. ,4i. -
.-y'-. D s." %* * ** .
1 O .k ~g&. . _ Q.,.rj
- ,5 L h.,} *. .. ? ' '.'* 3 l ' Yh $ zN*,,' ;' & * -
S' p '
Mj i~ ;f'* .J D k* % r& R'yOY. 4 . '- Q ' : . 5 y pi ' N O i ^ * ' s7#. '
-* .7 k ,
{,C Z
l I
% 4 Q ' @* Q fg n.g w ~ }. 2. ;wp p ; 3Ls- {,g"m ar y( J
@ y -(.J. 3w% #1% , ;. ~- .; ' t V is -
J; W l 4,
+.
. s.
( ..
-~
' ' .~ r'y .' f * .' <
- .. .: ' . *y
,'.~
+
> I rg
,7 % , ,- g " .y ,
=:
g, ._
, .-p
- ^ ', , , ->g'
$ - l '-' -
~~
~hQ.f;
( . '.L.*Q
. g.
e m - c a. Ze
(-
. . - , . , . g.
_... .s_ 7 g .._4 O
. . , ; 4,. y .
q .
- es ^- .,
_( _ :. .
3 x . .- . .;, _
am *[ '.
k.
d h i).M h .
[' s
, ; 1.[g - j ,
'. p y
. . m
, p. '.3f.g.'.e -Qg r.
y * +[4,k ,4
~ .[ .-f( -
h ,
-S N '. ' "
g 2, Q .,. ' .,,Yk V &. ,A
- .. ? .h - , ' [fhf\.{ M*
- .fg. f,,+*] .
yeg,. m_y s
- t. ,. '- e-
- .c,* $. s sp r.~
f ..s , , O
>4 7%l5 v , 5h'- ?'
- 4. --
b elh, 0*l *l/~~h r .g
- + n.
- h
.. 3 M;iL . 7 ab*~ . ,'..y .-. ' t . -- U7; b* -
- I ' * . , '
c y *. 1 r .n .:, . ;Q : &, . - ^ '
~%
~ vg , . * .+i g ' . ] ,. .
. ,&~.. n R.2 .c.g-m
.. ,- T . p- .~
, ~ . * . . ,k - w
- c. n
. 8
.... ' z '
.. -4. .. .
- w. .. s .
g
- -y ..
a.,*', , .-a ., . :, fw _ '
- p:
- .. 3, .a
~
r 1 ?-- t, M
( ',
a)- -(w # ' ,k # l
[g . [.u
, . , -c. -
-s p ,. d-3
, b' " "
4 >
. , ~ ' ' ' gj .
g' .% a 9:
i '
.i .e , .
-p ,- -> ; . .,
1 I *c. .3_ t. , .
. + '
,g- - .
.y -
l '
- . , , *g - y. ,, t y
^
j ,-
., 2
.V ,
, , j ' :, . #- - *. ,. , $- +
.,.e
?
, [ , p
. ' /[ ,; ,, U
'h... o f ,34 y !* *.j, *,7 . . % e ' ,
., .[w -
.g *. 'f ' . * . M*,*,',' Ad [ U , E h ' E jA~ :
-# g , f 'w , ;
- O - }, 95: C - '
. y@ ' 'g
- 4 , '*h G ' : '
. ' ' " h, k Q { ,,.; q -...h ,.{-.2. E ? c;y .
. -~ f# .~. .
- g. . *s';
. . . - y .
- w j pw . .-g
~.... m.
,( [ ..f* . l *= $ 3 ,_ n. h , ..'; .
3 S-
'~ , .. f, , , '. M *g. ~ . ' . *%k C k h h h 0 [l I?. Y . a m~m ' f. $ h k . .Y. hf W.' Q,w6@,$wwc%a?% j#
- y. . u n Ah . 4, W.h. $.
- .y/.w$e n
-6f-.b w Ms. ,. w...a
- j. Wn 7 ..
D(y}@ i -
_ , _ _ _.2 , - _ . , _ . _ . . _
l O
- g~ s ..e b
,. '""',M-i -
. .. a ..
3 l -
A. E ..
$ k ,..
p ~h u; ; y,
,. f. - - s- - . = _ ,
)
-^~'
, g..
f !
'QBOk0
?
i ,
.,j '
-[ .
~
. . .. ; t
- I g
. .f 5
- A" .b a.. ' ._:=,,. .. .( - }a,.". .
t, d "' 9 , os .
' ] ?4 u2ER. ,M' .- -
..s .
O ?
f
&: .:l fiY.;;'. mv _5 5 ;
l?
7g3Q
- ;:l aut?.p[;.;M .52 K'?
~ _ .-;.;e'- .
k . F h. , s,
,[
s.d. r W *G..$ J*
. , - p_m.1 a..- /
^4Ge f .(-
l **' . + , e Q, ,
j ., . g% $
, w..~, :.1 -
, '% "A y
~,-- -
q.
_ 5
,. o nea s .
- i_ ,
g , T,' # ,' , ys**
- I ,
~('~' .
,l 4.(. _. { '-l '
. 3, _ y-y,.,; . g~ r.,
_ , . ,.,...:~T .l~ .
j" c . ;w ..
r~'
, _ . [4,TdQ}: PAN ~ ...j- -
j
.~~***I- M ' . '
, e.
~l, v l, - ,
.7, f
. b . g.-*
. . +
. Ap
~
st:;
hfa. ,._ ,f..s '
O% f.,.%.,
z' . r . .:; 4 ~ ;=.r s .. .,
T.
,.' :.@l6 Q . nf?,.qslD
?
- q
- %;:ppy;::Qpkg
- y. , a ^
.. 7.psm:q9My.
4..-- -
FIGURE 8. EXTERIOR LEVEL SHELTER.
9 O .
J%g If 4
h f
/
i{ { ,Tgy
- ' - ~-- --- ~ -
f ;/; in.
fUp -l
<* ..,7 3 ,
l]
l s'
l Akh:
,% &$Yh$6M35'.e -; ?
. :u, M.735m e jf.js
~'qghsj m ,.
.l
" I' b e. . ._2
// ,, gl.
.:;f55 ' e. W=~.
4
.' [
- ,n Alf e -
j s j
- :h.' f - - - -. .
w ;aJr
- w ^
[
, ,]
m,c gwra l;, .
. ** W r.. f- ,
! ' .~
k"*, ' 2 . .s ~j
'y ;.sm;.
&. b' \.
O
- R,2.Y - *~
"f. , y . -
- y
/ c
,. ,f
_,., i
,x n 1 ,
g *
.;%- , .,- . ) s! . * -
, e; a: * '
a.
a <
.,,,%,?' j,
/ ..
t.waqr, f : . .
s '~f
- m. .
3 -
.. ., }
e
.N .
.t-i'\
. ~
- 5 %
e, s
.[
c,y*;,,s. 'f,^--Lu.,'.,
g
. f ,
~
~f '
v
's.
h, !
e \
. l'A p j' \
' i Ir .
- e. .
~ ' ,;
~ . ,
,t Y<
'D w, N
[, ,
,7' p . ,
. }.
. i'; * , M_ ~;'s ;
~
f v g
e
(.hy ,v , } m . . . iI '
+ .k'Wh.
s ), .
m g- . ;t
-y; g .
s; a ' ,.
-1.. y ,i.ej&} ~-}jy -(- L,,
!I
- 1Lln;& ~ f $.> k'
- 4 c
- .ll. '
-~..- '- ^~"q . -
w h
r~' *. : s L ,, i
- ~
FIGu n g 'M MEITaygy
.,,,,i,m_. _a A. J-Ad
- l 1
l O pgg- _
e-
,f '. . '
I .
-l.f...
g .
. .n 3 . . .
.? ,
f'j' .
'N
! n. G .. m l1 - J.
[ . .
- hR <
4 e
r .
fr, ; ,
g - - -
? s' k ' ' Y
- '1 j.yy _ _ . . . _
it,A .;. I
. t 3
,, m
! lA l;'[il;.'
. b
~
l!?,Ak'hS$1!# -
- z a
(
l W"
y:
I
(
'_i
,.Q, _
D 9
6 M
- erme j a-
" M:. =
s n / . .- , r*:-
y ;;,. g w ,... - i I 4 :::;::; -
I?N,k-' i, j." l 1 .a
- -:. ; > .. , < ? {} *
.. ;? g Cy
- f T
{,0.-l.,'.,.;_ ^ ,
- q (diC;)
~
~
5
~
~
j l.l
! l .: ~ . gggg %?$k- ' '
f .
c ..
, g i 4
. ^n J. .
- i c- + ==e B
iO bb -
t .- - __ .- -- ._ - . -
l O O O i
i 1
y:
--~.--..(._
i l
1
- f@ l '. }
'i *
)
of a I
i f
Hv' ,e - d '
,,. p '1 fl/ .
N
.c l $
..#, ; a l
,'Y s
s FIGURE 11. CIIARTED CRACK PATTERN AT EQUIPMENT IIATCII.
p,_ . , . . _ ~ - - - . . , , , . . _ __ ~.
.7 7 . m3_ _ . . _ _
"* ,I
<, . -- b ~ [ -
-. c ,.4.m .
. , ~. .c,- _ W . 9 9'% ft,-
5 t ; _e. [*' f .
- 'M #.
~
..[ -
.l , , , .
- ) '. W h :, j'.'& r,f + ,
.q_;,, .
.j - -=M. .?:'~',
-. '" . [
(
c 4 f *??y~0.] .? w w s w + = % y g %p.--@2 i
l .. ~
. r- ; .
L 't * ~e
. , ~
l \ .\ 2" :,.,: (. N 5$ $p.,5- h ;*.
- g- y * -- 4. ' p g,,
(
{ ,- --
,-4--
(
- t 1
.: s .7; i
5
- g. ..9 .c, C. g.- . t. r.v.~ .w,. - -
s - a . .
{ 8 A M l- [.....1 - ..~i , ,;.F.._
n > :.
.w.;f a- _- g . . . ' , z I
, - j:b*:';W5-h Q A .
- . 3. cwa.; % -
a l
f g_.. '
i !~ -( f y
- _ ,::Q. a3.;; ;[Q
_ g
._..J,._. ....__s-4 -
rm --
u) s -
m - . . . . , , A*; U2
$4 , ., s, _ k7 " . '.l G c;c,* 4.,,)?: 'f. W g _#
,. , s ,.
4 . t;'F05 '-* D i_ >=
, f, . . .
'*- ~ ~~.
. ~.e. ]
.._ . .) '~ ~ ' . . , _ p'f ' ";D ?M_'-P .p P. Me &'" ~*
~, . _.$.
- .: .:" .. . ,W. . T.'Q:, .,
7 4
. "J'Is. - Ia G -$';,$*A _ . <
~
s 3
%.:.e;; 4 1g '.-
e.- ~c ,,
W-
. , . _ . . - - .. . m. , ,-~.;,
y t
m g
en.g T :,'
e
- n \ \ _
\ -
'r; .
F- 3 .
-, Ag .cn.; .~. .- m* <=:~
a -
TE .
~
e.e i
l-
. f. i
.- + - #6h f. -:ne WW
, . p- g 3 . .a... . :.
h
.ssI ..** . ; [ 2.
n, a,.,
g;7,*.L*#n,
[ Q
,. - ,- l
,' .( '7.'5 '
, .. ~ .
}
,4 h'; _ ;'"'*: ~. ., ; 'l-
. %%%n.. % 'ffQ- ,
(tl
-ps .__ _
g e-o i
-r
- , ..e
~.~wr*
ht'.] g.
[
. . : .: w..; .c ,j{t.*' g .p l
3 ;j' e
~ '
l
< ' ** :b ** '* V:
^
& pp**l S.W . J$a% l- ,y s
,{'j s 2q}-}sf.j.
1 ,y : .
.,s
'sif + 1; ~
Wygf Q~ ff 2 i
5ll ~ 2NY'- 7D.M. f@i w .f.M,.3#S' -i _
w [
~~
w ;.. m. en :
,-^ -
. ~ ,. . y ..
, .;s..?.,Q9 l .
A
, gjt * -
. _ _ _ (. -
l p' i. . < '
. g .M y~ g j ' g.-gR,
" fe ,
l h'}?.
o
- . . . ~ . .
~~
m&a,' .
{
AQ O D
~%~
oe o .A. a 1 .
3 Report 510 BREWER ENGINEERING LABORATORIES./NCORPORATED O
i l
i 1
APPENDIX II DATA REFULTS -
l 1
1
)
O !
l l
l
)
i l
I i
1 l
O ,
1 i
Report 510 Appendi>: Il BREWER ENGINEERING LABORATORIES./NCORPORATED
/
n \
Iv)
TABLE I LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA r_ 4 ::
- - e_ n w- i .., vs
. .r.11 n .m. =sp sqq. i-GTC,E tiUMBE?: 1 (Loc 70)
O.00 -6. 0 0. 0 0. 0 32.0 -199.n 116.0 74.9
- n. 00 - 1. 0 3. 0 5. 0 179.0 -56.0 117.0 74.9 30.00 42.0 16.0 -10.0 1296.0 -323.0 in4.0 0. O Jn. 00 4~ 0 16.0 -10.0 1301.0 -323.0 912.0 0. 0 4 . ou 1 nu. 0 57.0 13.0 3021.0 426.0 1297.0 0. 0 45.00 99.0 55.0 11.0 2978.0 354.0 1311.0 0. 0 0.nu 123.0 68.0 13.0 3695.o 4 n2. 0 1646.0 0. 0 55.00 117.0 6?. 0 T. 0 3526.0 236.0 1645.0 0. 0 63.29 160.0 96.0 32.0 4918.0 :>97. 0 1915.0 0. 0 63.29 157.0 93.0 29.0 4732.O d:93. 0 1919.0 - 0.0 --
55.00 132.0 76.0 20.0 3534.0 619.0 1632.0 0. 0 55.00 130.0 73.0 18.0 3927.0 569.0 1679.0 0. 0 45.00 79.0 30.0 -14.0 2A62. 0 -421.0 1392.0 0. O s 45.00 73.0 25.0 -19.0 2197.0 -SSI . 0 1389.0 0. 0 (e)
'd 30.00 19.0 -13.0 -4 2. n 556.0 -1287.0 922.-0 0. 0 30.00 19.0 -17.0 -46.0 545.0 -1407.0 976.0 0. O
- n. 00 -79.0 -79.0 -79.0 -239?.0 -E403.0 5. O ". 0 4 . 9 0.00 -75.0 -76.0 -76.0 -2265.0 -2293.0 16.0 -- 15. 0 G:vW NUME:ER: 2 (Loc 73)
O.00 2. 0 -4.0 - 9. 0 66.0 -293.0 182.0 0. 0 0.00 11.0 6.0 - 1. 0 ::4 2. 0 -45.0 19?.0 15.0 30.00 41.0 16.0 -24.0 1231.0 -74 6. t- 999. U 0. 0 30.00 39.0 6. 0 -25. U 1157.0 -T59.0 939.0 0. 0 25.00 98.0 52.0 -2. 0 2969.0 -56.0 1513.0 0. 0 15.90 92.0 46.0 -3. 0 27'70.6 -97. n 1433.o 0. 0 55.00 117.0 59.0 -4. 0 3517.0 -121.0 1519.0 0. 0
~5. 0 0 113.0 $ 3. 0 -15.0 340,0.0 -392.0 1991.0 0. 0 63.29 156.0 87. U 11.0 47 d6. O' 361.0 2172.0 0. 0 63.20 150.O 90.0 6.0 4509.0 217.0 2142.0 0. 0 55.Ou 123.0 67.0 3. 0 3349.0 103.0 1 D72. 0 0. 0 55.00 129.0 65.0 0. 0 3t:T8. 0 -4.0 1941.0 0. 0 15.90 74.0 23.0 -31.0 2218.0 -929.0 1574.0 0. 0 45 n0 66.0 12.0 -39.0 2001.0 -1176.0 1599.0 --
O. 0 3 0. ou 15.0 -19.0 -57.0 4s?. o -1730.0 1096.0 0. 0
- .: 0. U O 9. 0 -27.0 -65.0 267.0 -J961.0 1114.0 0, 0
- 0. n0 -70.0 -76.0 -90.0 -1106.0 -2795.0 314.0 15.0 0.90 -e,T . 0 -74.0 - B6. 0 -20?8.0 -2614.o 292.0 15.0
,q l
\m .I
Report f.10 Appendi>: II BREWER ENGINEERING LABORATORIES./NCORPORATED (m) v TABLE 1 (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA c+E3: El E2 E3 3 MAX I'11 N 3 HEAP Ar4GLE GA.3E HUMBER: 3 (Loc 71)
O.00 4. 0 0. 0 -17.0 183.0 -593.0 386.0 15.0 15.O 0.00 3. 0 -1.0 -19.0 142.0 -635.0 3 ~ 3. 0
~; 0. 0 0 52.0 12.0 -26.n 1595.o -793.0 1197.0 0. 0 30.00 54.0 14.n -24.0 1624.0 -717.0 1130.0 6. 0 23.00 103. A 47.0 1. 0 31US.0 42.0 1532.0 C. 0 45.00 103.0 46.0 0. 0 31 02. 0 12.0 1544.0 0. 0 55.00 114.0 47.0 - E. 0 3446.0 -80.0 1763.0 6. 0 55.00 112.0 46.0 - 3. 0 3403.0 -102.0 1756.0 0. 0 63.29 143.0 67.0 14.0 4336.0 413.0 1961.0 0. 0 63.29 143.0 66.0 13.0 4344.0 390.0 1977.0 0. 0 55.00 101.0 31.0 -15.0 3084.0 -473.0 1731.0 0. 0 55.00 99.0 30.0 -14.n 3026.0 -465.A 1747.0 0. O e 5. 00 36.0 -23.0 -61.0 1130.0 -1AT5.0 1503.O U. 0 45.00 35.0 -23.0 -61.0 1 nw4. 0 -?8?6.0 1435.0 0. 0 30.00 -26.0 -70.0 -97.0 -784.0 -?963.0 1089.O _ 0.JL _ m
[(),
~ ~ ~
30.00 -25.0 -69.0 -96.0 -742.0 -2914.0 1025.0 0. O
- 0. On -110.0 -120.0 -13::. 0 -3312.6 :;374. 0 331.0 0. 0 0,00 -109.0 -120.0 -13 L . 0 -32B6.6 --??64.0 339.0 0. O G:tGE NUMBEP: 4 (Loc 74)
O.00 1.0 6.0 5. 0 205.0 -1. 111.0 59.9 0.00 0. 0 -1.0 3. 0 176.0 -68.. 122. n 120.0 30.00 48.0 14.0 -12.0 1453.0 -37 3. n 919.0 0. 0 30.00 50.0 16.0 -11.0 1515.0 -356.0 935.0 0. 0 45.00* 99.0 52.0 8. 0 29 36. U 252.A 1367.0 0. 0 45.00 105.0 51.0 6.0 3165.0 210.0 1477.0 0. 0 55.00~- 117.0 55.0 0. 0 3539.0 15.0 1761.0 0. 0 55.00 109.0 54.0 -1.0 3273.0 -24.0 1643.0 0. 0 63.29 149.0 77.0 14.0 44:;3.O _439.0 2021.0 0. 0 63,29 149.O T6.0 13.0 4476.0 425.0 2025.0 0. 0 .__
55.00 107.0 43.0 -13.0 3228.0 -397.0 1813.0 0. 0 55.00 108.0 44.0 -11.0 3250.0 - 3 3 ?* . 0 1794.0 0. 0 4". 00 41.0 -10.0 -56.0 1242.0 -1706.0 1474.0 0. O _.
45.00 41.0 -10.6 -57.0 1235.0 -1700.0 1477.6 0. 0 00,00 -26.0 -6n.0 -91.0 -789.0 -275A.0 983.0 0. 0 30.60 -24.0 -59.0 -96.0 -752.0 -R722.0 935.o 0. 0
- 0. n o -107.0 -112.n -115.0 -3343.0 -3478.0 117.0 -15.O
- n. 00 -103.0 -113.0 -116.0 -3255.U --3495.0 120.n 0. O n
/ i Repxt 5'0 i
Appe.:niix II BREWER ENGINEERING t.ABORATORIES./NCORPORATED TA!EE I (CONTINUED)
LINER ltOS1;TTE STitAIN AND P111NCIPAL STitESS DATA
-RE3s El E2 E3 r1AX P!Iri IHE6R 4t3LE 343E HIJMBEP: 5 (Loc 72)
O.00 -8. 0 0. 0 1. 0 69. U -271.0 169.0 74.9 0.00 -10.0 -2. 0 C. 0 22.0 -323.0 185.0 74.9 3n. nn -2. n -17.0 -48.0 -33.O ~ 1494. U 730.0 15.0 30.00 - 1. 0 -17.0 -49.0 -16.0 -1533.0 759.0 15.0 45.UO ST. 0 31. 0 -16.0 1773.0 -520.U 1146.0 15.O f
45.00 57.0 31.0 -15.0 1772.0 -511.0 1142.0 15.0 55.00 75.0 42.0 -14.0 2308.0 -a41.0 1400.0 15.0 55.00 74.0 40.0 -16.0 2274.0 -530.0 1402.0 0. 0 6 3. ? :' 113.O T4. 0 6.0 3460.0 159. u 1650.0 0. O
! 63.29 113.0 74.0 6.0 3447.0 157.0 1644.0 15.0
'I 55.00 51.0 19.0 -43.0 if.2 0. 0 -1360.0 1490.0 15.O 55.00 52.0 20.0 -42.0 1643.0 -1346.0 1494.0 15.0
- 25. 00 -30.0 -57.0 -110.0 -856.0 -3372.U 1257.0 15.O b
V 45.00 -29.0 -58.0 -110.U -83:::. 0 -3384.0 1272.0 15.O 15.0 30.00 -109.0 -126.0 -162.0 -3219.0 -4928.U 854.0 30.00 -106.0 -125.0 -161.0 -3158.0 -4904.o 969.0 15.0 0.00 -215.0 -212.0 -212.0 A362.0 --6517.0 77.0 59.?
0.00 -215.0 -21l:'.0 -213.U -6376.0 -6347.0 35.0 60.O rpr3E rpmpro: 6 (I.oc 75)
O.00 -6. 0 -6. n -6.0 -130. n - 1 . * *. . n 7. O e.9
- v. Oo - 7. 0 -7. o -7.o - f. J 3. n -c 1:3. 0 5. n -14.9 30.00 -4.O -25.0 -53.9 -133.6 -1Ai3.0 .'4 5. 0 0. 0
- 0. 0 0 -5. 0 -25.0 -54.0 -146.0 -1s 35.0 744.0 0. 0 45.00 55.0 24.0 -19.0 1673.0 -572.0 1122.0 0. 0 45.00 57.0 25.0 -16.0 1722.O ~512.0 1117.0 0. 0 55.00 71.0 33.0 -16.n 2162.0 -Sil.0 1337.0 0. O SS.00- 65.0 31.0 -1G. 0 19?:4.0 -573.0 1279.O n. 0 6:. 29 106.0 62.O t. 0 1205. n 81.0 1561.0 0. 0 6 3. 2 f 10 .0 6 3. U 4. 0 32ds. 0 11 ::. 0 1554.O U. 0 54.40 39.0 1. 0 -50.0 115::5. 0 -1952.A 1359.O n. 0
- $. 0 6 36 n 1.0 -i l . 0 11/7.0 -- 156 3, n 1373.0 6. 0
.; r. , n ri -47.0 -7?. n -117.0 -14?6.0 -J:5 14. A 1 n53. 0 0. 0
- 45. no -48.O ~77. 0 -117. A -1459. n -::55 4. 0 1 v 4: . O n. O pa. On -123. 0 - 14 3. n -164 n -3 :52, n -5038.0 ( ??. o O. 0 On. Ist -129.0 -14..n -1 TO. n :-A . U -517.'3.0 67.7. O n. 0 .
O.00 -230,0 -2R. G .-: 2 .:. . o 4 P74. o -634 7. n 36.n 59,9
- n. 6 0 -2a.l. 0 -? ?1. 0 -?29. A -6517.n ~7006. A 44.8 -G . 9 d
. . , ,2 .: . .
BREWER ENGINEERING LABORATORIES./NCORPORATED
/
e
..... y .
J IL;'L..,
A 4 . . A 4........
tk.,,..- s i. .N - J LL*:ER ROSETTE STRAIS !.N-v pn!.':cIp/st srn;ss DA7a I
h e j a *.' ((} { 7 J.[ 9 }_ j
- 9 { E E'
~T6E 'tV'GEP: T (Loc 76)
- u. 00 0. 0 - 3. 0 -6. 0 15.o -20~.O I09.0 0. 0 0.00 2. 0 0. 0 -4.O i T. 0 -131. n 109.0 C. 0 90.00 0. 0 -22.0 -33.0 -19.0 -1209.0 52B. 0 0. 0 36.00 C. n -21.0 -3:.v -15.0 - 11 ::7. 0 555.0 C. 0
- 8. . o. n. e e . n. .: e.. n.
. : . n. i. .. . . . o.
.. . 4. . n. : .:. :.... n r . si .
45.00 54.0 24.0 - 3. 0 1642.0 -92.6 667.0 0. 0 55.0H 67.0 32.0 -1.0 2v15.0 - 2 '. 0 1023.0 0. 0 55.00 63.0 33.0 1. 0 2054.0 36.0 10 v B. 0 9. 0 63.29 100.0 61.0 23.0 3026.0 709.0 1159.0 6. 0 63.29 99.0 60.0 22.0 29b9.0 673.0 1!53.0 0. 0 55.00 4T. 0 1T. G -17.O 1417.0 -522.0 975.0 0. 0 55.00 49.0 17.0 -!T.o 1491.0 -513.0 002.0 0. 0 45.00 -15.0 -43.0 -71.0 -4%.0 -2135.0 84 :.0 C. 0 45.00 -15.6 -43.0 -71. A - 4 ". .:: . 0 -2142.0 541.0 0. 0
- 30.00 -TT. 0 -95.0 -113.0 -2341.0 -3418.0 533.0 6. 0
(] 30.00 -TT. 0 -96.0 -114.0 -2342.0 -3442.0 550.0 0. O v 0.00 -159.0 -157.0 -157.0 -4722.A -4734.U 21.0 5 9. ?
0.00 -160.0 -159.0 -159.n - 4774, n -4e59.0 42.0 59,3 f GWE ttUMBEP: 9 (Loc 77)
O.00 0. 0 0. 0 -4.0 20.0 -172.0 96.0 29.8 0.00 1.0 2. 0 -1.0 99.0 -106.0 102.0 29.3 30.00 21.0 4.0 -6. 0 655.0 -19 E. A 424.0 0. 0 30.06 13.o 4.0 -6. 0 3?6.0 -19.3.0 294.0 0. 0 45.00 87.0 64.0 4 ?. 0 2627.0 1320.0 653.0 0. 0 45.00 86.0 63.0 42.0 261?.0 1176.0 66 B. 0 0. 0 55.00 111.0 31.0 55.0 3336.0 16A6.0 9 3-* . 0 0. 0 55.00 114.0 85.0 59.0 3435.0 1781.0 927.0 -
- 0. 0 63.29 148.0 114.0 S1.0 4459.0 2455.0 1001.0 0. 0 63.29 146.0 113.O 80.0 4415.0 2426.U 994.0 0. 0 55.00 99.O T2. 0 4T. 0 2989'A . 1442.O 773.O n. 0 55.60 99.O T2. 0 4T. 0 2?39.0 1442.A PT3. 0 0. 0 45.60 35.0 14.0 -1.0 105T. A -36.0 547.0 0. 0 45.00 35.0 14.0 -1.0 105'::. 0 - 34. A 547.0 0. 0 30.00 -23.6 -33.0 -37.0 -689.0 -1155.0 233.0 -15.0 30.00 -24.0 -35.0 -40.0 -729.0 -1218.0 244.6 -15.0 0.60 -89.0 -82.0 -97.0 -- 24 :* 4 . A -2831.0 163. A 44.?
0.00 -91.0 -86.0 -90.0 -i597.0 -2871.0 137.0 44. ?
/s
\vl i
1 -
S-(
, .--w.
Reprt 5'O Appe:uli:: II BREWER ENGINEERING t.ABORATORIES./NCORPORATED s
TADL1; I (CONTINUED) 1 LINER ROSETTE STRAIN ANI) PRINCIPAL STRESS DATA WE- ~ El EE E3 :t1 AX R1IH iriEAR intiGLE G A.~.E fiUMBER: 9 (J.oc 78)
O.00 -4.0 -6. 0 -4.0 -96.0 -181.0 47.0 134,9
- v. 00 -2. 0 - 3. 0 - 2, 0 -28.0 -1 o?. 0 40.0 -44.9 30.00 90.0 -11.0 -75.0 2:56.0 -22D9.0 2373.0 0. 0
- 0.60 90.0 -11.0 -76.0 2453.0 -2 ;13.0 2335.0 0. O a *. 0 0 153.0 3B 0 -46.0 4792.0 -1430.0 3111.0 0. 0 4'.On 157.0 37.0 -47.0 4755.0 -1459.0 3107.0 6. 0 55.60 180.0 45.0 -70.0 5404.0 - ? fi95. 0 3750.o 0. 0 55.00 184.0 50,n .-4 5. 0 5566.0 -1390.0 9478.O n. 0
- . 29 224.O TS. 0 -24.0 4771.A -762.0 3767.0 0. 0 63.29 222.0 77.0 -25.0 6128.0 - 7 .;1 . 0 3760.0 0. 0 55.00 172.0 39.0 -67.0 5206.0 -2027.0 3617.0 0. 0 5~. 00 171.0 30.0 -69.0 $1 ~
- 2. 0 -2ICA. 0 ?654.0 0. 0 45.00 100,0 --31.O ~124.n a o50. U .:701. 0 3415.0 0. G 4*. 00 99.0 -32.0 -125.0 3032.0 -3793.0 3412.0 0, o
~
30.00 23.0 -82.0 -160.0 719.0 -4 ::44. 0 2791.0 C. 0 30.00 21.0 -95.0 -1A3.0 656.0 -49P8.O ??92. 0 0. 0 0, no -152.0 -159.6 -16a.6 -4575.0 -4955.A 199.0 0. 0
- 0. n0 -154.0 -162.0 -166.0 -4e.55.0 5n15.0 179.6 -15.0
. .9: ti NPEP:. 1o (l.oc 7D)
U. Oli 0. U :. 0 -12.0 15.0 -- r T T . n 136. r. 15.O
- u. n0 2.0 0.0 -9. 0 93.0 - 9 66. n 200.0 15.0 30.60 -19.0 17.0 9. o 637.0 -:!26. 0 792.0 59.9 30.60 -20.0 15.n 7. 0 330.0 -959.0 775.0 59.9
, .. . n. n : :. n.
. . ....n. . : . o. .oe 4 :- -.n t.. e. . n.
. 1 (3c. : . r> e o. . c..
45.n0 20.0 72.O T 1. 0 2480.U 994.0 10:42. 0 59.9 55.40 21.0 93.0 ST. 0 2954.0 3n3. 0 1325.0 - 75.0 35.00 26.0 89.O ?2.0 3114.0 472.0 1319.0 75.0 6:.29 50.0 117.0 124.0 4055.0 1203.0 1423.O T5. 0 63.29 49.n 116.0 12I. 0 4023.0 1 isT. 0 1429.0 75.0
$5.60 8.0 74.0
- 77. n 2699. n
-1 ns. 0 1402.0 75.0
- r. _
..f. ,e V
- t. . O t.. . n ., e...
. ., U .' .
... ., n. - ) ., i! . n 1 :'- .:4 r. 0
. ;. . O
.: 5. O n -52.0 .0 12.U 692.U -194B.n 1306.0 75.0
- 47. 60 -52.0 :. n 11.0 .;.te . n -1.4A.n 1315.O T5.O Jn. no -97.0 '.u. 0
. -45.0 - ! 16*4 0 - : h.B . n 1001.0 75 n
- e. n0 -i no. 0 '.1. 0 -4 T. 0 - 1 1.-* 4 . n -:.d i. j . n i n28. 0 75.O
- n. nn -17 0. n .1 A4. n - 1 ".5. n t . c.4. n ..e.- :7.1 ?;.a. O p.9
- n. On -1T1.0 - 1., : . 0 - 1 4. n '..2.U
. t . 4. e cs n. U 3. 9 1
i l
Repo: t 510 Appm:lt:. II BREWER ENGINEERING LABORATORIES./NCORPORATED u
TABLE I (CONTINilED)
I.INER ROSETTE STRAIN AND PRINCIPAL STRESS DAT/i c?E:: El E2 E3 MM :Mih I HE;i? ANGLE e,r,gg rignpgp: 11 (Loc 80)
O.00 -2. 0 -1.0 -5. 0 -32.0 -192.0 79.0 29.8 0.00 6. 0 1.0 -1.0 56.0 --114.0 85.0 29.8
- 30. ou -47.0 -30.0 -14.0 -445.0 -1422.0 4 E:3. 0 89.?
30.00 -49.0 -31.0 -16.0 -503.0 -!474.o 435.0 9 ?. 9 a .~. 0 0 -14.0 5. 0 27.0 931.0 -4 R5. U 62 3. n 89.9 45.00 -14.0 5. 0 27.O B 39. 0 -- 4 3 9 . f. 6 38. . . . 29.9 55.60 -17.0 2.0 33.0 97e..n 544.n 761.U ::9.9 55.00 -11.0 7. 0 33.0 1157.0 - M 1. 0 759.0 90.9 63.29 10.0 30.0 65.0 2003.0 2 ~- l . n
. 956.0 105.0 63.29 10.0 29.0 64.0 1958.0 278.o 840.0 99.9 55.00 -27.0 -10.0 21.0 668.0 -556.0 762.0 105.0 55.00 -31.0 -15.0 19.0 607.0 977.0 792.A 105.0
- 45. 00 -86.0 -72.0 -41.0 -1200.0 - %51.0 725.0 105.0 45.00 -89.0 -72.0 -42.0 -1252.9 -2691.0 714.0 105.O 30.00 -126.0 -116.0 -89.0 -2666.0 -3861.0 597.0 105.0 v
A) 30.00 -128.0 -117.0 -91.0 -27n3.6 -??21.0 609.0 105.0 6.00 -173.0 -169.0 -156.0 -4676.0 -5259.0 291.0 105.0 0.00 -172.0 -167.0 -153.0 -4605.A - M31.A 313.0 105.0 64~,E NUMBED: 12 (Loc 81)
O.00 -4.0 -7. 0 -5. 0 -92.O ~226.0 67.0 -45.0 0.60 - 1. 0 -4.0 - 1. 0 14.0 -130.0 72.0 -44.9 30.90 -46.0 -12.0 -5. 0 -156.0 -l a A 0. 0 622.0 99.9 30.00 -43.O -25.0 -4.n -146.0 -1446.0 650.0 39.9 15.00 -11.0 23.0 51.0 1562.0 -352.0 957.0 99.9 45.00 -12.0 23.0 51.0 1543.0 -367.0 957.A 39.9 55.00 -13.0 31.0 63.0 1921.0 -422.0 1171.0 90.0 55.00 -7. 0 33.0 70.0 2124'0 . -243.0 1183.0 90.0 63.29 15.0 e7. 0 103.0 3114.0 443.0 1332.0 90.0 63.29 14.0 66.0 102.0 3093.0 420.0 1331.0 90.0
- 55. 0n -26.0 22.0 58.0 1754.0 -798.0 1276.0 89.9 "5.60
. -30.0 19.0 52.0 1602.0 d29. 0 1266.0 99.9 4=. 00 -99.0 -43.0 -8.0 -256.U -26.::9. 0 1216.0 99. ?
- 42. 00 -90,n ~45.A -10.o -3n9.0 -2719.0 1104.0 99.9
- v. 9 6 -134.0 -95.0 -A4.o -1941,6 4 635. n 1646.0 89.9
- U. n0 -133.o 45.0 - 6 ?:. o -1909.n -4 0 n4. H i n t a. 0 39.9
- n. 00 .19 ?. 0 -1A7.0 - 14: . U -441? n .W.n " . ? 5. 0 :::9. 9 0.00 -190.0 -164.o -145.A -* 39 ^:: . n -5224.n s i 1. O F:9. ?
O d
_y_
Report Mn Appedi . Il BREWER ENGINEERINCr LABORATORIES./NCORPORATED s
v
)
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DAT/6 PRE!! El E2 E3 Ir w I.M I ri SHE A;- ANGLE 3A3E NUMBEP: 13 (Loc 82)
O.00 -2.0 -8. 0 -10.0 -59.0 -323.0 132.0 -15.0 0.00 1.0 -3. 0 -5. 0 63.6 -1D7.0 125.0 -15.0 30.00 39.0 -8. 0 -56.0 119E.0 -16S1.0 1434.0 0. 0 30.00 37. 0 -10.n -59.0 1124.0 -1769.0 1446.0 0. 0 45.00 113.0 42.0 -27.0 33?5.0 -6:23.0 2109.0 0. 0 45.00 113.0 42.0 -27.U 3393.0 - E. 0 E . 0 20?5.0 0. 0 55.60 - 139.0 52.0 -34.0 4157.n -1 GA ?. 0 25E:9.n O. 0 95.00 145.0 60.0 -27.0 4 35U. 0 -SO4. n 2577.0 0. 0
- 3.29 100.0 9n. 0 -9. 0 5701.0 -279.0 299 0. n O. U
- .3. 29 189.0 90.0 -10.0 5658.0 :07.0 29?:":. 0 0. 0 55.00 132.0 43.0 -47.O ~:97A. 0 -141 .u 2695.n O. U "5.00
. 127.0 39.0 -51.0 3031. 0 -1542. n h.9 7. 0 0. 0 45.On 51.0 -Ps. 0 -10. 0 1534.0 -31 P.. 2311.U .0. 0 45.00 49.0 -23.6 - i n.? . 0 14::4.0 -M37. 6 2361.0 0, a _
?O.00 -28.0 -86.0 -144.0 -s'45.6 -4044.0 1739.0 0. O j ': 0. 0 0 O.00
-26.0 -A4.0 -142.0
-1 A 3. 0
-Anc.0 - 4.%7. 0 1733.O n. 0
-149.0 -166.0 497.n ".309.o 505.0 0. 0 0.90 -145.0 -162.0 -179.0 - B79.n - 10:70.0 435.O n. O G'3E NUMP:EP: 14 (l.oc 80) 6.00 -5. 0 -4. 0 -6. 0 -1::. 0
. -510,0 37. U 45.0 0.00 -7. 0 0. 0 0. 0 62. n -301.0 181.0 59.9
- 30. ou 24.0 -7. 0 -51.0 729.0 -1547.n 1139.0 0. O
?O.00 21.0 -11.0 -53.0 64 n. 0 -1619.U 1129.0 0. 0 45.00 99.0 43.0 -26.0 3007.0 -8A5.0 1906.0 0. 0 45.00 100.0 44.0 -25.0 2035.0 . 3 3. A 1394.0 0. O "S.00 129.0 59.0 -29.0 3569.0 -t:94. A 2381.0 0. 0 55.00 134.0 66.0 -25.0 4069.0 -769.0 2418.0 0. 0 63.29 131.0 101.0 -4: . 0 5476.0 -273.0 2877.0 0. 0 63.29 190.0 101.0 -8. 0 5460.0 -26 ?. 0 2965.0 0. 0 55.00 117.0 43.0 -43.0 3542.0 -1327.0 2435.0 0. 0 55.On 114.0 46.0 -47.O ?453.0 -143".0 2443.0 0. 0 45.00 2S. 0 -24.0 :.7. O A67. 0 -?952.0 1910.0 0. O AS.00 25.0 -??. 6 -1 no. 0 772.0 -3n32.n 1i02.0 0. 0
- U. O n -57.0 -89.0 -132.0 -1.'26. I: .:95 U. n 1132.0 0. 0
-o.00 -59.0 -05. U -129.n 645.0 -39a9.n 1127.O n. O
- n. OU 17~.0 -165.0 - 1 A2. 0 16.0 -? 7 ?i. n 171.0 9 0. n 0, n n -.16 a. 0 -161.O ~ 1 %. n 4 717. n -.u ?!:. 0 19 0. n 90.O
\
\
I l
l .
Repe-t 510 App:mdm 11 BREWER ENGINEERING LABORATORIES./NCURPORATED p
b TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCTPAL STRESS DATA PRES 5 El E2 E3 IMAX JMIri IHEAR ANGLE 695E fiUMPEP: 15 (Loc 84)
- u. 00 -5. 0 -9.0 -8. 0 -121.0 -297.0 88.0 -29.8 0.00 0. 0 -3. 0 -1.0 92.0 -I11.0 97.0 -45.0 30.00 9. 0 3. 0 -57.0 575.0 -2023.0 id99. n 14.9 30.00 7, 's 2. n -60.0 534.0 - 2 1 1 .' . 0 1324.0 14.9 45.00 69.0 59.0 -36.0 2512.0 -1566.0 2044.0 14.9 45.00 69.0 60.0 -34.0 2544.0 -1501.0 2022.U 14.9 55.00 85.0 77.0 -41.0 3200.0 -1368.0 2534.0 14.9
.5.00 91.0 84.0 -37.0 3390.U -1755.0 2572.0 14.9 63.29 127.0 118.0 -21.0 4564.0 -1371.0 2967.0 14.9 63.2? 127.0 118.0 -20.0 4564.0 -1350.0 2957.0 14.9 55.00 75.0 69.0 -55.0 2946.0 -2345.0 2645.0 14.9 55.00 73.0 68.0 -55.0 2900.0 -2357.0 2629.0 14.9 45.00 0. 0 0. 0 -106.0 636.0 -3865.4 2250.0 14.9 45.00 -2. 0 -2. 0 -108.0 559.0 -3913.O E236.0 14.9 x 30.00 -72.0 -65.0 -139.0 -1621.0 -4753.0 1566.0 30.0
\
J I. O . 0 0 -67.0 -61.0 -135.0 -1494.6 -4616.0 1561.0 30.O O.00 -168.0 -157.0 -163.n ~4719.0 -5244.0 :'62. 0
. 60.0 0.00 -163.0 -152.0 -157.0 -4561.n -51UG. 0 274.0 60.O GAGE fiUMBER: 16 (I.oc 85)
O.00 -5. 0 -11.0 -11.0 -123.0 - % '. 0 129.n -14.9 0.00 1. 0 - 3. 0 -4.0 81.0 -168.0 125.0 -15.0 30.Ou 25.0 3. 0 -65.0 424.0 -2134.0 1".29.0 15.0 30.00 23.0 1.0 -66.0 8::1. u -21?9.0 1530.0 15.0 45.On 91.0 56.0 -48.0 2998.0 -1694.0 2336.0 15.0 45.00 91.0 57.0 -46.0 2994.n -1647.0 2320.0 15.0 55.00 112.0 73.0 -55.0 3713.0 -1?97.0 2355.0 15.0 55.00 118.0 78.0 -50.0 3877.0 -1830.0 2854.0 13.0 63.29 161.0 112.0 -36.0 5192.0 -1427.0 3309.0 15.0 63.29 160.0 113.0 -35.0 5197.0 -1429.0 3308.0 15.0 55.00 104 0 61.0 -68.0 3443.0 -2064.0 2903.0 15.0 35.00 105.0 62.0 -68.0 3469.0 -2?54.0 2912.0 15.0 45.00 24.0 -9. 0 -117.0 '1007.0 -3802.0 2404.0 15. n 45.00 22.0 -1 n. 0 -118.0 947.0 -3345.0 2396.0 15.0 30.00 -57.0 -74.0 -146.0 --15 06. u -4 15.0 1554.0 15.0
- 30. n0 -52.0 -70.o -142.0 -1370.n -44??.0 1561.0 15.O
- u. 60 165.0 - 1 A 1. 0 --165.0 -4862.H -5045.0 114. A 44.Y 0.00 -162. U -158.0 - 1 A d' . n -4/T9.n - 4 9.' . " 1 UA. 0 44.9 m
f V
i
Repr: 510 App:mdi:. II BREWER ENGINEERING LABORATORIES. INCORPORATED
,m k
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAI, STRESS DATA P1Iri PPEOS El E2 E3 If1AX ::HEAo Afi.3LE 3A3E tiUMBER: 17 (Loc 86)
O.00 -6. 0 -7. 0 -5. 0 -160.0 -223.0 31.0 120.0
- 0. O n O. 0 0. 0 1.0 45.0 -16.0 30.0 104.9 30.00 28.0 -4.0 -35. O B4 5. 0 -1062.0 9".4. 0 0. 0 30.06 26.0 -5. 0 -37.0 733.0 -1135.0 962.0 0. 0 45.00 94.0 44.0 -7. 0 2334.0 -212.0 152?.0 0. 0 45.OV 95.0 45.0 -5.0 2377.0 -161.0 1519.0 0. 0 55.00 121.0 59.0 -T. A 3653.0 - 2 2 :'. U 1941.0 0. O
- 0. 0
^
55.00 127.0 63.0 -2. 0 3?10.0 -55.0 1932.0 63.29 16P. 0 94.0 17.0 5053.0 550.0 2251.O U. 0 6 3. :'e '69.0 94.0 17.0 5074.0 550.0 2261.0 0. 0 55.00 115.0 47,0 -23.0 34??.0 -686.0 2080.0 6. 0 55.00 117.0 49.0 -20.0 35?4.0 -61 *:: . 0 2068.0 0. 0
- 0. 0 45.00 43.0 -16.0 -70.0 1299.0 -2342.0 1821.0 45.00 43.0 -17.0 -79.n 1293.U -2372.0 1932.O n. O rm 30,00 -34.0 -76.0 -119.0 -1048.U -3582.0 1266.A 0. O I
30.60 -31.0 -73.0 -116.0 -940.n :512.0 1295.0 6. 0 0.00 -149.0 -154. 6 -163.O ~4484.6 -4908.0 212.6 4. O I 0.00 -147.0 -155.0 -161.0 -4413.0 -4% 3. 0 219.0 0. 6 343E liU'iPEP: 18 (I.oc 87)
- 0. O U -8. 0 -12.0 -7. 0 -10 0. U -377.0 138.0 134,9 0.00 - 1. 0 - 5. 0 0. 0 103.0 -154.0 129.0 134.9 30.00 10.0 -17.0 -34.0 319.0 -1058.0 699.0 0o
? A. 00 8. 0 -19.0 -35.0 265.0 -1691.0 678.0 0. 0 45.00 69.0 28.0 n. 0 2104.0 3. 0 1050.0 0. 0 45.00 71.0 30.0 2. 0 2176.0 55.0 1060.0 0. 0 f 5. 00 92. C 39.0 1.0 2T81.0 27.0 1377.0 0. 0 55,40 96.0 44.0 6. 0 2?25.0 193.0 1366.0 0. 0 6 3. 2'? 136.0 74.0 29.0 4127.0 382.0 1622.0 0. 0 63.29 137.6 74.0 29.0 4142.0 099.0 1626.0 0. 0 55.00 90.0 25.0 -14.0 2445.0 -454.0 1449.0 0. 0 55.00 83.0 20.0 -21.0 2516.0 -634.0 1575.0 0. 0 45.00 4.0 -41.0 -75.0 150.0 -2278.0 1214.0 0. O 45.00 4.0 -41.0 -75.0 15 J . 0 -2231.0 1?16.0 0. 0 i ' _
3n. 00 -67.0 -9 >. 0 -120.n -2011.0 -i.639.O S13.0 0. O l
I ;: n. O n -64.0 -97.6 -11 ?. 6 -1935.0 - N 1:::. n 841.0 0. O i:. mi -16).0 - 175.0 - 17.t: . U ~~d 95. 0 132. f' -29.i
- n. 66 - 1 s* t : . 0 -174 u - 171. U ~'. n -:U 0. O' . ;, 7. O
- 09u.
t :3. a -29 e l
u f
Repm t 510 Appendi:: II BREWER ENGINEERING LABORATORIES./NCORPORAWD
(_)
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL ST11ESS DATA PRE 33 El E2 E3 3M9X 3r1Iri 3 HEAD A't3LE GAGE riUMBER: 19 (Loc 88)
O.00 -17.0 -11.0 -11.0 -300.0 -565.0 134.0 75.0 0.00 2. 0 -3. 0 -3. v 121.0 -136.0 129.0 -30.0 30.00 35.0 -9. 0 -59.0 1060.0 -1755.0 1407.0 0. 0 30.00 33.0 -10.0 -59.0 100?.0 -1791.0 1400.0 0. 0 45.00 103.0 39.0 -34.0 3096.0 -1031.0 2064.0 0. 0 45.00 106.0 41.0 -32.0 3191.0 -931.0 2096.0 0. 0 55.00 131.0 52.0 -39.0 3947.0 -1166.0 2556.O A. 0 55.00 136.0 57.0 -35.0 4106.0 -1074.0 2590.0 0. 0 63.29 180.0 90.0 -19.0 5425.O ~552. 0 2089.0 0. 0 63.29 180.0 91.0 -19.0 5427.0 -547.0 2957.0 0. 0 55.00 122.0 41.0 -57.0 3679.0 -1724.0 2701.0 0. 0 55.00 125.0 44.0 -55.0. 3774.6 -1660.0 2717.0 0. 0 45.00 46.0 -22.0 -109.0 13??. 0 -3301.0 2349.0 0. 0 45.00 47.0 -21.0 -109.0 1439.0 -320.-:.0 2356.0 0. O 30.00 -29.0 -79.0 -144.0 g) t N
30.00 -28.0 -79.0 -144.0
-079.0
-844.0
-4559.0
-43A1.0 1740.0 1759.0
- 0. O
- 0. 6 0.00 -146.0 -160.0 -179.0 -4418.n -5401.0 49-1.0 C. 0 O.00 -145.6 -159.0 -179.O d4336.0 -M 93.0 503.0 0. 0 699E NUMBEP: 20 (Loc 80)
O. O A -9. 0 -8. 0 -5.A' -144.0 -269.0 62.0 105.0 0.00 0. O ' O. 0 2. 0 83.0 -45.0 67.0 120.0 30.00 29.0 -11.0 -44.0 630.0 -13i:6.0 1108.0 0. 0
~
30.00 27.0 -13.0 -45.0 8::2. 0 -1383.0 1108.0 0. O 45.00 96.0 36.0 -12.0 2917.0 -375.0 164e. 0 0. 0 45.00 99.0 38. 0 -10.0 2992.0 -309.0 1645.0 0. 0 55.00 124.0 48.0 -10.0 3734.0 -331.0 2032.0 0. 0 55.00 128.0 53.0 -7.0 3373.0 -212.0 2042.0 0. 0 63.29 170.0 83.0 15.0 5143.0 467.0 2337.0 0. 0 63.29 171.0 64.0 16.0 5165.0 499.0 2338.0 0. 0
.- 55.00 109.0 31.0 -27.0 3306.0 -922.0 2064.0 0. 0 55.00 111.0 34.0 -25.0 3375.0 -761.0 2069.0 0. 0 45.00 31.0 -35.0 -94.0 974.0 -2559.0 1766.0 0. 0 45.00 33.0 -34.0 -83.0 1007.0 -2529.0 1769.0 0. 0 30.00 -45.0 -93.0 -126.0 -1061.6 ->:12. 0 1225.u 0. 0 30.00 -46.0 -9?.0 -126.6 -i 376. u -3322.0 12!.-2.0 0. n i
- n. 00 -!65.0
-174.6 -172.68 -4915.0 -%230.0 102.0 -29.8
- 0. n0 -164.0 - 1 7 ': . 0 -171.0 -4 :.-:77. 0 -57:43. A 102. n - 2v. 5 i <
i t
b 1
l -
1 1 l
Report 510 App:m di>: 11 BREWER ENGINEERING LABORATORIES./NCORPORATED t'
(
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PRE 35 El E2 E3 3MAM 3r1IN SHEAR ANGLE GAGE hut 1BER: 21 (Loc DO)
- 7. 0 0.00 -13.0 -6. 0 -34.0 -392.0 179.0 134.9 0.00 0. 0 -5.0 1. 0 205.0 -169.n 197.0 134.9 30.00 15.0 - 1 5 . e. -33.0 475.0 -1170.0 823.0 0. 0 30.00 12.0 -1 . 0 -41.0 387.0 -1235.o 811.0 0. 0 45.00 70.0 24.0 -15.0 2110.0 -459.0 1285.0 0. 0 43.00 71.0 27.0 -13.0 215?.0 -392.n 1272.0 0. 0 55.00 90.0 34. 0 -16.0 2704.0 -489.0 1597.0 0. 0 55.00 94.0 39.0 -12.0 2847.0 -357.0 1602.0 0. 0 63.29 133.0 67.0 3. 0 3993.0 111.0 - 1941.0 0. 0 63.29 134.0 69.0 4.0 1037.0 140.0 1948.0 0. 0 55.00 83.0 22.0 -33.0 2517.0 -9?6.0 1756.0 0. 0 35.00 37.0 26.0 -30.o 2610.0 -915.0 1763.O U. 0 45.00 19.0 -36.0 -73.0 587.0 -f ~;75. 0 1491.0 0. 0
/
45.00 21.0 -33.6 -76.0 647.0 -2313.U 1480.0 6. 0 -
~; 30.00 -42.0 -84.0 -111.0 -1262.6 -3361.0 1049.0 0. 0 -_
J 30.00 -42.0 -95.0 -112.0 -1269.0 -1407.0
-46,1.0 1069.0 9. 0 0.00 -137.0 -154.0 -147.0 -3~.27.0 367.U -d9.3 0.00 -136.0 -151.0 -140.0 -3910.0 -4n6. O ? ~:7. 0 -29.8 34GE HU'dPEP: 22 (Loc 91)
O.00 -21.0 -12.6 -10.0 -281.0 -A81.0 200.0 74.9 0.00 -13.0 -?. 0 -2. 0 -6 3. A ' -407.0 171.0 89.9 30.00 29.0 -1.0 -40.0 896.0 -1207.0 1052.0 0. 0 30.00 27.0 -4.0 -43.O Bis. 0 -1294.0 1055.0 0. 0 45.00 95.0 42.0 -14.0 2371.0 -415.0 1643.0 6. 0 45.00 97.0 44.0 -12.n 2922.0 -365.0 1644.0 0. 0 55.00 121.0 59.0 -14.0 3661.0 -424.0 2043.0 0. 0 55.00 125.0 60.0 -10.0 3769.0 -295.A 2032.0 0. 0 63.29 170.0 97.0 10.0 5105.H ::17. 0 2314.0 0. 0 63.29 170.0 S7. 0 10.0 5120.0 331.0 2394.0 0. 0 55.00 121.0 42.0 -30.U 3650.0 -920.0 2285.0 0. 0 55.00 123.0 44.0 -29.0 :707.0 - 86 9. U 2288.0 0. 0 45.60 53.0 -16.0 -82.0 1613.0 -24A2.0 . 2047.0 0. 0 .
45.00 56.0 -14.0 -30.0 1694.0 -2411.0 2052.0 0. 0 30.Au -10.0 -63.0 -119.0 -336.0 -38 9 .0 16c:1. 0 0. O
?O.00 -12.0 -64.0- -120.0 -396.0 ~: . 31. : 1622.0 0. 0 0.04 -150.D -151.0 -157.0 -44Y9.C --4 ;'/.d . o 1 31. 0 15.O U. 00 -148.0 -150.0 -155.6 -4460.0 - 4 6 9 *. . U 117.0 15.O l
O.
Report 510 Appendix II BREWER ENGINEERING LAB 6RATORIES./NCORPORATED O _
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PRE 35 El E2 E3 3 MAX OMIN 3 HEAP AN'3LE GAGE NUMBER: 23 (Loc 92)
O.00 -7. 0 -8. 0 -4. 0 -119.0 -264.0 72.0 120.0 0.00 0. 0 0. 0 5. 0 181.0 -14.0 97. A 104.9 30.00 255.0 79.0 -16.0 7828.0 -653.0 4240.0 -15.O to. 00 252.0 76.0 -11.0 7794.0 -543.0 4169.0 -15.0 45.00 369.0 137.0 14.0 11322.0 210.0 5555.0 -15.0 45.00 371.0 139.0 13.0 1139. 0 199.0 55?6.0 -15.0 55.00 420.0 155.0 20.0 12923.0 ?47.0 6288.0 -15.0 55.00 423.0 158.0 23.0 13014.0 444.0 6284.0 -15.0 63.29 482.0 192.0 39.0 14775.0 914.0 6930.0 -15.0 63.29 482.0 192.0 39.0 14784.0 933.0 6925.0 -15.0 55.00 429.0 151'.0 8. 0 1321J.0 -25.0 6617.0 -15.0 55.00 431.0 152.0 9. 0 13265.0 -30.0 6648.0 -15.0 45.00 356.0 95.0 -41.0 10971.0 -1501.0 6236.0 -15.~0
- 45.00 355.0 97.0 -41.0 10930.0 -1483.0 6207.0 -15.0 30.00 236.0 35.0 -83.0 7242.0 -2633.0 4937.0 0. O V 30.00 235.0 33.0 -92.0 723'6.0 -2624.0 4930.0 -15.0 0.00 -111.0 -124.0 -135.0 -3369.0 -4076.0 353.0 0. 0 ,
- u. 00 -10?. 0 -122.0 -135.0 -3302.0 -4066.0 379.0 0. 0 GAGE flUMBER: 24 (Loc 93)
O.00 -2. 0 -5.0 0. 0 103.0 -168.0 135.0 120.0 0.00 0. 0 -1.0 4.0 215.0 -49.0 132.0 120.0 30.00 24.0 94.0 39.0 2834.0 -?15. 0 1875.0 44.9 30.00 25.0 95.0- 41.0 2874.0 -867.0 1870.0 44.9 45.00 69.0 153.0 83.0 4609.0 -1.0 2305.0 44.9 45.00 72.0 156.0 87.0 4718.0 98.0 2310.0 44.9
~
55.00 80.0 169.0 95.0 5101.0 194.0 2458.0 44.9 55.00 79.0 169.0 94.0 5090.0 170.0 2459.0 44.9 63.2? 108.0 199.0 123.0 6012.0 952.0 2530.0 44.9 63.29 113.0 205.0 129.0 6179.0 1140.0 2519.0 14. 9 55.00* 75.0 165.0 89.0 4975.0 -16.0 2496.0 44.9 55.00 78.0 169.0 92.0 5069.0 78.0 2495.0 44.9 45.00 14.0 103.0 30.0 3110.0 -1749.0 2430.0 44.9 45.00 15.0 104.0 31.0 3148.0 -1728.0 2438.0 44.9 30.00 -42.0 35.0 -18.0 1095.0 -2915.0 2000.0 44.9 30.00 -41.0 35.0 -19.0 1091.0 -?894.0 1993.0 44.9 6.00 -144.0 -131.0 -122.0 -3.72.0 -4466.0 347. 0 9 n. 0 0.00 -142.0 -12 ?. 0 -120.0 -3633.0 -4305.0 335.0 on. 0 3
(V
Repr: 510 Appendix II m
BREWER ENGINEERING LABORATORIES./NCORPORATED U
~
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA
- RE3I El E2 E3 3 MAX SMIN SHEAP ANGLE GAGE tiUMBER: 25 (Loc 94) 0.00 0. 0 -2.0 -2.0 44.0 -109.0 77.0 -14.9 0.00 5.0 1.0 0. 0 173.0 7. 0 82.0 -14.9 30.00 -47.0 -45.0 -35.0 -1041.0 -1456.0 207.0 105.0 30.00 -45.0 -42.0 -33.0 -y99. 0 -1400.0 205.0 105.0 45.00 -16.0 -13.0 -4.0 -121.0 -509.0 193.0 105.0 45.00 -13.0 -10.0 -1.0 -21.0 -412.0 195.0 105.0 55.00 -12.0 -11.0 -1.0 -4.0 -429.0 212.0 105.0 55.00 -12.0 -11.0 -1.0 -13.0 -428.0 207.0 105.0 63.29 5. 0 8.0 18.0 577.0 146.0 215.0 105.0 63.29 11.0 13.0 24.0 784.0 315.0 234.0 105.0 55.00 -31.0 -29.0 -18.0 -522.0 -983.0 230.0 105.0 55.09 -29.0 -26.0 -15.0 -435.0 -889.0 227.0 105.0 45.00 -94.0 -90.0 -79.0 -2358.0 -2854.0 247.0 105.0
- 45.00 -93.0 -89.0 -77.0 -2315.0 -2834.0 259.0 105.0
' (^}
v 30.00 30.60
-132.0
-132.0
-126.0
-127.0
-118.0
-119.0
-3578.0
-3593.0
-3990.0
-3993.0 205.0 200.0 89.9 89.9 6.00 -172.0 -164.0 -156.0 -4709.0 -5175.0 232.0 89.9 0.00 -170.0 -162.9 -154.0 -4641.0 -5123.0 240.0 99.9 GAGE riUMBEP: 26 (Loc 95) 0.00 -4.0 -4.0 1.0 87.0 -155.0 123.0 104.9 0.00 0. 0 5.0 5. 0 187.0 -49.0 118.0 75.0 30.Gs -48.0 -20.0 -8. 6 -205.0 -1488.0 641.0 74.9 30.00 -45.0 -16.0 -6.0 -122.0 -1435.0 656.0 74.9 45.00 -17.0 18.0 27.0 953.0 -649.0 801.0 74.9 45.00 -13.0 15.0 32.0 1002.0 -430.0 716.0 90.0 55.00 -15.0 27.0 33.0 1279.0 -591.0 935.0 74.9 55.00 -14.0 30.0 38.0 1323.0 -628.0 975.0 74.9 63.29 6.0 51.0 63.0 2042.0 85.0 978.0 74.9 63.29 12.0 49.0 68.0 2098.0 334.0 882.0 74.9
, 55.00 -30.0 13.0 28.0 954.0 -1012.0 983.0 74.9 i
55.00 -28.0 11.0 32.0 1003.0 -880.0 942.0 74.9 45.00 -93.0 -47.0 -29.0 -812.0 -2894.0 1040.0 74.9 45.00 -93.0 -53.0 -28.0 -850.0 -2821.0 985.0 90.0 30.00 -133.0 -98.0 -69.0 -2082.0 -4010.0 964.0 89.9
- 30. UO -134.0 -102.0 -70.0 -2137.0 -4046.0 954.0 89.9 O.00 -171.0 -152.0 -129.0 -3?O9.0 -51 5.0 628.0 89.9 O 00 -169.0 -151.0 -127.0 -3335.0 -5094.0 630.0 99.9 l
- O l v l
\
Ee==: C; I.p pe.nd a. II BREWER ENGINEERING LABORATORIES./NCORPORATED m
~
TABLE I (CONTINUED)
LINER ROSETTE STRAIN liND PRINCIPAL STRESS DATA DPEM El E2 E3 SMAX 3 MIN IHEAR ANGLE SAGE NUMBER: 27 (Loc 96)
- 0.00 -S. O -12.0 -5.0 -72.0 -376.0 152.0 119.9 0.00 -7.0 -10.0 -4.0 -33.0 -328.0 147.0 120.0 30.00 -93.0 -130.0 -149.0 -2759.0 -4510.0 375.0 -15.0 30.00 -90.0 -128.0 -145.0 -2679.0 -4427.0 873.0 -15.0 45.00 1074.0 1023.0 992.0 32374.0 293?1.0 1271.0 0. 0 45.00 1031.0 1027.0 935.0 32565.0 29930.0 1317.0 0. 0 55.00 2651.0 2594.0 2551.0 7?794.0 76761.0 1516.0 0. 0 55.00 2653.0 2594.0 2552.0 80035.0 76782.0 1626.0 0. 0 63.29 3224.0 3150.0 3094.0 97029.0 93106.0 1961.0 0. 0 63.29 3225.0 3151.0 3095.0 97065.0 93142.0 1961.0 0. 0 55.00 3098.0 3031.0 2935.0 93242.0 89827.0 1707.0 0. 0 55.00 3104.0 3034.0 2936.0 93441.0 $9344.0 1798.0 0. 0 45.00 2814.0 2750.0 2715.0 84752.0 81664.0 1543.0 -15.0 45.00 2316.0 2753.0 2715.0 84781.0 31683.0 1549.0 0. 0 30.00 2316.0 2269.0 2251.0 69787.'O 67651.0 1067.0 -15.0
) -
(_#4 30.00 0.00 2315.0 2207.0 2268.0 2185.0 2245.0 2182.0 69720.0 66511.0 67518.0 65596.0 1101.0
~462.0
-15.0
-14.9 0.00 2215.0 2189.0 2188.0 66807.0 65724.0 541.0 -14.9 GAGE riUMBER: 28 (Loc 97) 0.00 0. 0 -3.0 -4.0 -1.0 -136.0 67.0 -15.0 0.00 5. 0 4.0 3. 0 168.0 99.0 34.0 -15.0 30.00 168.0 71.0 66.0 5570.0 1474.0 2047.0 -14.9 30.00 173.0 73.0- 67.0 5740.0 1496.0 2121.0 -14.9 45.00 265.0 135.0 108.0 3424.0 2811.0 2806.0 -15.0 45.09 269.0 137.0 110.0 8549.0 2859.0 2844.0 -15.0 55.00 312.0 157.0 114.0 9322.0 3029.0 3396.0 -15.0 55.00 312.0 159.0 118.0 9809.0 3135.0 3336.0 -15.0 63.29 376.0 206.0 147.0 11674.0 4087.0 3793.0 -15.0 63.29 381.0 205.0 145.0 11861.0 3987.0 3936.0 -15.0
. 55.00 325.0 162.0 116.0 10225.0 3074.0 3575.0 -15.0 35.00 329.0 159.0 114.0 10371.0 2965.0 37 n3. 0 -15.0 45.00 241.0 93.0 67.0 7820.0 1475.0 3172.0 -15.0 45.00 242.0 91.0 66.0 7864.0 1415.0 3224.0 -15.0 30.00 154.0 35.0 40.0 5458.0 409.0 '2524.0 -30.0 30.00 152.0 29.0 35.0 5429.0 232.0 2598.0 -30.0 l 0.00 -105.0 -123.0 -115.0 -2915.0 -3727.0 405.0 -29.8 l
0.00 -105.0 -121.0 -113.0 -2906.0 -3671.0 382.0 -39.S i
i
(~)<
u-Report 510 Appendir. II BREWER ENGINEERING iABORATORIES./NCORPORATED G
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA CPES3 El E2 E3 3r1AX CMIN SHEAP ANGLE GAGE NUMBER: 29 (Loc 98) 0.00 -6.0 -4.0 1. 0 54.0 -213.0 133.0 105.0 0.00 1.0 3. 0 6. 0 207.0 46.0 90.0 105.0 30.00 74.0 51.0 9. 0 2268.0 236.0 1015.0 15.0 30.00 76.0 52.0 6. 0 2337.0 147.0 1094.0 15.0 45.00 150.0 109.0 26.0 4607.0 702,0 1952.0 15.0 45.00 152.0 110.0 28.0 4669.0 756.0 1956.0 15.0 55.00 175.0 124.0 17.0 5420.0 379. 0 2520.0 15.0 55.00 179.0 127.0 21.0 5516.0 511.0 2502.0 15.0 63.29 226.0 165.0 33.0 6996.0 844.0 3076.0 15.0 63.29 224.0 168.0 31.0 6917.0 793.0 3062.0 15.0 55.00 173.0 120.0 4.0 5366.0 -8. 0 2697.0 15.0 55.00 171.0 118.0 3. 0 5316.0 -53.0 2684.0 15.0 45.00 93.0 53.0 -46.0 2356.0 -1370.0 2163.0 15'.-0 45.00 91.0 52.0 -42.0 2910.0 -1417.0 2163'.0 15~.~0 30.00 12.0 -5. 0 -63.9 515.0 -2050.0 1282.0 15.-0 x,) 30.00 7. 0 -10.0 -67.0 347.0 -2150.0 1249.0 15.0 0.00 -146.0 -135.0 -146.0 -4079.0 -4734.0 327.0 44.9 0.00 -145.0 -133.0 -144.0 -4018.0 -4696.0 339.0 44.9 9 AGE NUMBER: 30 (Loc 09)
._ 0.00 -9.0 -27.0 -5.0 397.0 -824.0 611.0 134.9 0.00 2. 0 0. 0 5. 0 241.0 -16.0 129.0 120.0 30.00 25.0 3. 0 -70.0 959.0 -2306.0 1632.0 15.0
~
30.00 27.0 5. 0 -69.0 1014.0 -2246.0 1630.0 15.O 45.00 94.0 54.0 -54.0 3052.0 -1864.0 2459.0 15.0 45.00 95.6 56.0 -53.0 3096.0 -1829.0 2462.0 15.0 55.00 120.0 49.0 -64.0 3883.0 -2196.0 3040.0 15.0 55.00 123.0 73.0 -61.0 3983.0 -2102.0 3043.0 15.0 63.29 167.0 105.0 -51.0 5320.0 -1909.0 3564.0 15.0 63.29 169.0 106.0 -49.0 5366.0 -1717.~0 3541.0 15.0
_ 55.00 112.0 59.0 -81.0 3647.0 -2705.0 3176.0 15.0 55.00 119.A 62.0 -75.0 3908.0 -2476.0 3142.0 15.0 45.00 37.0 -2. 0 -121.0 1389.0 -3930.0 2659.0 15.0 45.00 40.0 0. 0 -119.0 1491.0 -?879.0 2680.0 15.0
, 30.00 -38.0 -62.0 -146.0 -934.0 -4651.0 1958.0 15.0 l 30.00 -35.0 -59.0 -143.0 -851.0 -4549.0 1849.0 15.0 0.00 -141.0 -137.0 -154.0 -4095.0 -4834.n 369.0 29.8 O.00 -140.0 -136.0 -153.0 -4060.0 -4798.0 368. 0 29.8 s
I V
=jh*
I l
Report 5!0 )
Appendix II BREWER ENGINEERING LABORATORIES,/NCORPORATED .
i
\
J TABLE I (CONTINUED)
LINER ROSETTE STRh1N AND PRINCIPAL STRESS DATA PRE 33 El E2 E3 SMAX SMIN OHEAR ANGLE GAGE NUMBER: 31 (Loc 100)
__ 0.00 -5.0 -7.0 -3.0 -36.0 -239.0 101.0 120.0 0.00 5. O 5.0 0. 0 191.0 -46.0 118.0 14.9 30.00 30.0 1. 0 -33.0 914.0 -994.0 954.0 0. 0
~
30.00 32.0 1.0 -31.0 977.0 -948.0 962.0 0. O 45.00 93.0 49.0 -4.0 2819.0 -146.0 1482.0 0. 0 45.00 94.0 52.0 -7. 0 2868.0 -224.0 1546.0 0. 0 55.00 116.0 64.0 -13.0 3516.0 -417.0 1967.0 0. 0 55.00 120.0 67.0 -9.0 3641.0 -313.0 1977.0 0. 0 63.29 158.0 96.0 14.0 4775.0 430.0 2172.0 0. 0 63.29 160.0 98.0 14.0 4837.0 418.0 2209.0 0. 0
- 55.00 110.0 52.0 -19.0 3322.0 -578.0 1950.0 0. 0 _
55.00 116.0 57.0 -19.0 3512.0 -572.0 2042.0 0. 0 45.00 42.0 -9.0 -73.0 1266.0 -2200.0 1733.0 0.- 0 -
45.00 44.0 -5.0 -72.0 1339.0 -2193.0 1766.0 -0. O 30.00 -28.0 -65.0 -114.0 -842.0 -3434.0 1296.0 - 0. 0
{-. 30.00 -24.0 -61.0 -112.0 -735.0 -3391.0 1327.0 0. 0 0.00 -131.0 -140.0 -154.0 -3963.0 -4662.0 349.0 0. 0 O.00 -130.0 -139.0 -152.0 -3925.0 -4594.0 334.0 0. O GAGE NUMBER: 32 (Loc 191)
- 0.00 -5.0 -2.0 1.0 37.0 -153.0 95.0 89.9 0.00 -5.0 -3.0 0. 0 23.0 -176.0 100.0 89.9 30.00 26.0 9.0 -19.0 312.0 -617.0 714.0 15.0
~
30.00 27.0 11.0- .' 7. 0 849.0 -552.0 701.0 15.0 45.00 86.0 61.0 12.0 2659.0 317.0 1170.0 15.0 45.00 83.0 57.0 2. 0 2544.0 244.0 1150.0 15.0 55.00 99.0 68.0 7. 0 3048.0 173.0 1437.0 15.0 55.00 102.0 71.0 17.0 3140.0 303.0 1418.0 15.0 63.29 147.0 108.0 39.0 4493.0 1n95.0 1698.0 15.0 63.29 147.0 109.0 39.0 4497.0 1128.0 1684.0 15.0
- 55.00 101.0 66.0 4.0 3105.0 80.0 1512.0 15.0 55.00 100.0 64.0 2.0 3060.0 24.0 1517.0 15.0 45.00 25.0 -2.0 -53.0 808.0 -1648.0 1228.0 15.0 -
45.00 26.0 -2.0 -52.0 838.0 -1613.0 1225.0 -0.0 30.00 -46.0 -64.0 -96.0 -1366.0 -2946.0 790.0 15.0 30.00 -43.0 -63.0 -96.0 -1288.0 -2924.0 817.0 0. 0 0.00 -148.0 -151.0 -146.0 -4338.0 -4555.0 108.0 135.0 0.00 -146.0 -149.0 -143.0 -4221.0 -4493.0 136.0 120.0 l
J
~
Report 520 Appandix II BREWER ENGINEERING LABORATORIES.lNCORPORATED
("')
V TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PPE5; El E2 E? OMAX 3 MIN SHEAP ANGLE GA3F. HUMBER: 33 (Loc 102)
_ 0.00 -6.0 -7.0 -1.0 -10.0 -249.0 119.0 120.0 0.00 -3.0 0. 0 3. 0 116.0 -116.0 116.0 89.9 30.00 27.0 -10.0 -43.0 S19.0 -1290.0 1054.0 0. 0 30.00 29.0 -11.0 -44.0 888.0 -1337.0 1113.0 0. 0 45.00 B7. 0 33.0 -15.0 2632.0 -466.0 1549.0 0. 0 45.00 86.0 30.0 -20.0 2599.0 -598.0 1599.0 0. 0 35.00 102.0 47.0 -13.0 3090.0 -404.0 1747.0 0. 0 55.00 106.0 50.0 -12.0 3182.0 -367.0 1775.0 0. 0 63.29 147.0 77.0 6. 0 4429.0 197.0 2116.0 0.0 63.29 149.0 77.0 5. 0 4497.0 189.0 2148.0 0. 0 55.00 100.0 28.0 -33.0 3030.0 -?95.0 2012JO 0. 0 55.00 100.0 29.0 -33.0 3005.0 -932 n 1998;0 0. 0 45.00 24.0 -30.0 -81.0 719.0 -2449.0 1584.0 . 0. 0 -
45.00 28.0 -35.0 -36.0 846.0 -2599.0 1723:0 . 0. 0 _
-s 30.00 -45.0 -84.0 -119.0 -1372.0 -3583.0 1105.0 0. 0
()
~
30.00 -44.0 -91.0 -126.0 -1315.0 -3310.0 1247.0 0. 0 .;
0.00 -140.0 -151.0 -153.0 -4233.0 -4761.0 264.0 0. 0 0.00 -139.0 -149.0 -156.0 -4190.0 -4700.0 260.0 0. 0 GA6E NUMBEP: 34 (Loc 103) 0.00 -2.0 -2.0 -7.0 -39.0 -235.0 97.0 14.9 0.00 4. 0 4.0 2. 0 139.0 54.0 41.0 14.9 30.00 38.0 1.0 -47.0 1150.0 -1425.0 1287.0 0. 0 30.00 36.0 0. 0 -49.0 1118.0 -1509.0 1314.0 0. 0 45.00 103.0 53.0 -12.0 3120.0 -399.0 1755.0 0. 0 45.00 99.0 50.0 -19.0 3013.0 -564.0 1788.0 0. 0 55.00 132.0 74.0 -29.0 4072.0 -950.0 2526.0 15.0 55.00 134.0 79.0 -10.0 4105.0 -363.0 2234.0 0. 0 63.29 176.0 110.0 15.0 5337.0 439.0 2448.0 0. 0 63.29 176.0 111.0 16.0 5332.0 474.0 1429.0- 0. 0 55.00 116.0 54.0 -30.0 3529.0 -945.0 2237.0 0. 0 55.00 117.0 55.0 -28.0 3537.0 -873.0 2205.0 n. 0 t
45.00 45.0 -11.0 -96.0 1370.0 -2608.0 1989.0 0. 0 45.00 39.0 -17.0 -90.0 1186.0 -2736.0 1961.~0 0. 0 30.00 -32.0 -77.0 -193.0 -974.0 -4011.0 1518.0 0. 0 30.00 -39.0 -81.0 -139.0 -1168.0 -4196.0 1514.0 0. 0 O.00 -142.0 -160.0 -178.0 -42D7.0 -5479.0 546.0 0. i.
0.00 -141.0 -157.0 -176.0 -4249.0 -5 3 U6. 0 528.0 0. 0 (o)
Itepert 510 Appendix II BREWER ENGINEERING LABORATURIES./NCURPORATED O
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PRESO El E2 E3 IMAX ; MIN THERR ANGLE GAGE riUMBER: 35 (Loc 104) 0.00 1. 0 3. 0 0. 0 107.0 -49.0 78.0 29.3 0.00 0. 0 2. 0 0. 0 73.0 -37.0 55.0 45.0 30.00 13.0 -22.0 -49.0 414.0 -1493.0 953.0 0. 0 30.00 15.0 -19.0 -44. 0 454.0 -1410.0 932.0 0. 0 45.00 58.0 7. 0 -23.0 1763.0 -901.0 1332.0 0. 0 45.00 60.0 9.0 -27.0 1821.0 -321.0 1321.0 0. 0 55.00 47.0 8. 0 -36.0 1438.0 -1104.0 1271.0 0. 0 55.00 72.0 13.0 -31.0 2171.0 -956.0 1563.0 0. 0 63.23 102.0 34.0 -17.0 3082.0 -526.0 1804.0 0. 0 63.29 104.0 36.0 -14.0 3142.0 -434.0 1788.0. 0. 0 55.00 60.0 3.0 -39.0 1825.0 -1195.0 1510.0 0i0 35.00 60.0 3. 0 -39.0 1812.0 -1203.0 1508 0 OJO 45.00 0. 0 -46.0 -81.0 -11.0 -2457.0 1222.0 0. 0 45.00 0. 0 -45.0 -80.0 -19.0 -2421.0 1200;0 0. 0 e 30.00 -56.0 -86.0 -110.0 -1712.0 -3323.0 305.0 0. 0 g
(_)i. 30.00 -55.0 -84.0 -106.0 -1676.0 -3203.0 763.0 0. 0 0.00 -122.0 -126.0 -125.0 -3.631. 0 -3821.0 94.0 -29.8 0.00 -121.0 -124.0 -123.0 -3615.0 -3751.0 67.0 -29.8 GAGE NUMPEP: 36 (Loc 105) 0.00 -3.0 2. 0 1.0 92.0 -135.0 113.0 59.9 0.00 -1.0 4.0 3. 0 153.0 -95.0 124.0 59.9 30.00 -3. 0 -44.0 -65.0 -221.0 -2000.0 889.0 0. 0 30.00 -7.0 -40.0 -62.0 -200.0 -1907.0 853.0 0. 0 45.00 30.0 -16.0 -45.0 921.0 -1471.0 1196.0 0. 0 45.00 31.0 -14.0 -46.0 955.0 -1426.0 1190.0 0. 0 55.00 36.0 -19.0 -56.0 1133.0 -1720.0 1427.0 0. 0 55.00 41.0 -15.0 -52.0 1263.0 -1589.0 1426.0 0. 0 63.29 65.0 11.0 -32.0 1977.0 -971.0 1474.0. 0. 0 63.29 72.0 3.0 -39.0 2210.0 -1218.0 1714.0. 0. 0 55.00' 39.0 -21.0 -57.0 1234.0 -1763.0 1498.0 0. 0 55.00 23.0 -23.0 -59.0 859.0 -1807.0 1333.0 0. 0 45.00 -29.0 -74.0 -105.0 -845.0 -3194.0 1174.0 0. 0 45.00 -28.0 -76.0 -107.0 -824.0 -3261.0 1218.0 0. 0 90.00 -85.0 -105.0 -127.0 -2564.0 -3324.0 629.0 0. 0 30.00 -82.0 -109.0 -130.0 -2489.0 -3925.0 718.0 0. 0 0.00 -139.0 -122.0 -120.0 -3543.0 -4271.0 363.0 74.9 0.00 -137.0 -120.0 -118.0 -3480.0 -4234.0 377. 0 75.0 m
l l
t %. >
Report 510 Appemlix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PF E !! El E2 E3 SMAX 3 MIN CHEAR ANGLE G~<GE NUMBER: 37 (Loc 106) 0.00 3.0 2. 0 0. 0 104.0 -32.0 68.0 15.0 0.00 6. 0 5. 0 -3.0 133.0 -124.0 178.0 15.0 30.00 64.0 37.0 -32.0 2069.0 -1113.0 1591.0 15.0 30.00 68.0 41.0 -33.0 2216.0 -1151.0 1633.0 15.0 45.00 126.0 85.0 -9.0 3952.0 -439.0 2195.0 15.0 45.00 127.0 87.0 -14.0 4003.0 -599.0 2301.0 15.0 55.00 144.0 94.0 -21.0 4520.0 -834.0 2677.0 15.0 55.00 148.0 99.0 -15.0 4643.0 -663.0 2653.0 15.0 63.29 189.0 131.0 5.0 5857.0 -15.0 2936.0 15.0 63.29 183.0 125.0 -1.0 5680.0 -220.0 2950.0 ~ 15.0 55.00 146.0 96.0 -22.0 4584.0 -863.0 2724.^0 '15.0 55.00 144.0 95.0 -22.0 4541.0 -870.0 2705.0 15.0 45.00 80.0 41.0- -63.0 2621.0 -2121.0 2371.0 15.0 45.00 79.0 41.0 -67.0 2622.0 -2233.0 2430.-0 15.0 (C
(_)
30.00 30.00 21.0 19.0
-2.0
-4.0
-89.0
-94.0 890.0 836.0
-2930.0
-3074.0 1910.0 1955.0 15.0 15.0 0.00 -110.0 -102.0 -118.0 -3069.0 -3319.0 375.0 29.8 0.00 -103.0 -100.0 -119.0 -3003.0 -3857.0 426.0 29.8 G96E NUMBER: 33 (Loc 107) 0.00 -1.0 0. 0 -5.0 6.0 -208.0 107.0 29.8 0.00 6.0 7.0 3. 0 236.0 31.0 102.0 29.8 30.00 -46.0 -70.0 -75.0 -1322.0 -2362.0 520.0 -15.0 30.00 -40.0 -65.0 -69.0 -1128.0 -2182.0 526.0 -15.0 45.00 -27.0 -63.0 -68.0 -682.0 -2222.0 770.0 -15.0 45.00 -26.0 -62.0 -68.0 -669.0 -2192.0 761.0 -15.0 55.00 -33.0 -74.0 -83.0 -861.0 -2649.0 893.0 -15.0 55.00 -31.0 -71.0 -79.0 -824.0 -2526.0 851.0 -15.0 63.29 -8. 0 -56.0 -67.0 -118.0 -3184.0 1033.0 -15.0 63.29 -7.0 -55.0 -65.0 -64.0 -2136.0 1036.0 -15.0 55.00 -47.0 -83.0 -94.0 -1205.0 -2761.0 777.0 ' -14.9 55.00 -45.0 -83.0 -84.0 -1159.0 -2757.0 798.0 -14.9 45.00 -107.0 -131.0 -122.0 -2908.0 -4006.0 549.0 -29.8 45.00 -104.0 -129.0 -120.0 -2317.0 -3956.0 569.0 -29.8 30.00 -146.0 -159.0 -143.0 -3937.0 -4?S9.0 426.0 134.9 30.00 -144.0 -157.0 -133.0 -3797.0 -4731.0 467.0 135.0
- 0. 0n -131.0 -129.0 -104.0 -3088.0 -4061.0 496.0 105.0 l 0.00 -132.0 -129.0 -106.0 -3105.0 -4 0B 0. 0 487.0 105.0
/~T l
l
\~)
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCURPURATED TABLE I (CONTINUED)
. LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA DPE*M El E2 E3 3 MAX 3 MIN SHEAR ANGLE
%GE tiUMBER: 39 (Loc 108)
O.00 -4.0 -1.0 1. 0 43.0 -130.0 87.0 89.9 4.00 1. 0 5.0 - 1. 0 176.0 -183.0 179.0 29.8 30.00 70.0 -20.0 -16.0 2750.0 -1106.0 1928.0 -30.0 30.00 74.0 -16.0 -15.0 2827.0 -1037.0 1932.0 -30.0 45.00 99.0 10.0 18.0 3652.0 -124.0 1988.0 -30.0 45.00 98.0 11.0 7. 0 3460.0 -251.0 1856.0 -14.9 55.00 110.0 12.0 3. 0 3300,0 -368.0 2084.0 -14.9 55.00 113.0 16.0 6. 0 3976.0 -265.0 2070.0 -14.9 61.29 122.0 37.0 29.0 4074.0 4?4.0 1790.0- -14.-9 63.29 122.0 35.0 32.0 4160.0 501.0 1929.0 -14.9 55.00 128.0 9. 0 7. 0 4550.0 -466.0 2508.0 -14.9 55.00 127.0 10.0 3. 0 4432.0 -501.0 2467.0 -14.9 -
45.00 123.0 -38.0 -38.0 4729.0 -2151.0 3440.0 -30.0 45.00 125.0 -39.0 -34.0 4850.0 -2119.0 3484.'O -30.0 p_
30.00 104.0 -82.0 -71.0 4459.0 -3461.0 3960.0 -3 0.~ 0 V 30.00 107.0 -77.0 -73.0 4434.0 -3466.0 3920.0- -30.-0 0.00 9. 0 -126.n -112.0 1352.0 -4442.0 2997.0 -30.0 0.00 9. 0 -124.0 -110.0 1320.0 -4377.0- 2849.0 -30.O GAGE NUMBEP: 40 (Loc 109)
O.00 2. 0 2.0 0. 0 90.0 -32.0 61.0 14.9 0.00 2. 0 0. 0 - 1. 0 68.0 -60.0 64.0 -15.0 30.00 -5. 0 -54.0 -40.0 399.0 -1768.0 1083.0 -29.8 30.00 -4.0 -53.0 -40.0 391.0 -1746.0 1068.0 -29.?
45.00 -11.0 -44.0 -29.0 129.0 -1368.0 749.0 -29.8 45.00 -15.0 -48.0 -33.0 37.0 -1507.0 772.0 -29.8 55.00 -21.0 -64.0 -50.0 -122.0 -2028.A ~952.0 -29,8 55.00 -20.0 -59.0 -45.0 -110.0 -1379.0 884.0 -29.8 63.29 -17.0 -43.0 -30.0 -94.0 -1338.0 621.0 -29.8 63.29 -16.0 -41.0 -27.0 -59.0 -1259.0 599.0 -29.8 55.00 -18.0 -68.0 -50.0 61.0 -2147.0 1104.0 -29.8 55.00 -21.0 -72.0 -54.0 28.0 -2294.0 1161.0 -29.8 45.00 -20.0 -109.0 -87.0 312.0 -3570.0 1941.0 -29.8 45.00 -17.0 -106.0 -83.0 391.0 -3455.0 1923.0 -29.8 30.00 -15.0 -128.0 -108.0 571.0 -4291.0 2431.0 -29.8 30.00 -16.0 -129.0 -110.0 526.0 -4335.A 2431.0 -29.8 0.00 17.0 -111.0 -117.n 1234.0 -4237.0 2736.0 -14.9 0.00 19.0 -109.0 -114.n 1255.0 -4138.0 2e97. 0 -14.9 O
v e
l
? -
Rep =t CO
~
Appe..f.ix II BREWER ENGINEERING LABORATORIE5blNCORPORATED
,-~
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PREI3 El E2 E3 IMAX EMIN SHEAR ANGLE GAGE NUMBER: 41 (Loc 110) 0.00 -1.0 3.0 0. 0 109.0 -175.0 142.0 44.9 0.00 f.0 3. 0 0. 0 102.0 -73.0 97.0 44.9 30.00 ??. 0 -11.0 -44.0 396.0 -1338.0 1117.0 0. 0 30.00 34.0 -13.0 -46.0 1041.0 -1403.0 1222.0 0. 0 45.00 72.0 19.0 -27.0 2171.0 -309.0 1490.0 0. 0 45.00 70.0 15.0 -31.0 2113.0 -940.0 1527.0 0. 0 55.00 70.0 17.0 -37.0 2109.0 -1125.0 1617.0 0. 0 55.00 74.0 23.0 -31.0 2246.0 -936.0 1591.0 0. 0 63.29 108.0 44.0 -16.0 3247.0 -496.0 1972.0 0. 0 63.29 103.0 44.0 -17.0 3262.0 -518.0 1890.0 0. 0 55.00 74.0 12.0 -42.0 2235.0 -1272.0 1754.0 0. 0 55.00 68.0 18.0 -37.0 2046.0 -1127.0 1586;0 0. 0 45.00 9.0 -29.0 -78.0 291.0 -2354.0 1323.0 0. 0 45.00 13.0 -33.0 -81.0 399.0 -2457.0 1428.0 0. 0 30.00 -39.0 -70.0 -107.0 -1197.0 -3245.0 1023.0 0. 0 .
- 0. 0 (C) 30.00 0.00
-40.0
-135.0
-69.0
-122.0
-107.0
-125.0
-1204.0
-3638.0
-3234.0
-4198.0 1015.0 279.0 59.9 0.00 -134.0 -119.0 -121.0 -3521.0 -4179.0 328.0 59.9 GAGE NUMBER: 42 (Loc 111) 0.00 0. 0 0. 0 -3.0 4.0 -106.0 55.0 15.0 0.00 0. 0 0. 0 1.0 72.0 0. 0 36.0 120.0 30.00 30.0 2.0 -26.0 903.0 -737.0- 945.0 0. 0 30.00 28.0 2.0 -26.0 867.0 l-795.0 831.0 0. 0 45.00 83.0 39.0 -5. 0 2500.0 160.0 1330.0 0. 0 45.00 79.0 35.0 -11.0 2377.0 l334.0
,- 1356.0 0. 0 55.00 96.0 41.0 -15.0 2899.0 -451.0 1675.0 0. 0 55.00 103.0 48.0 -13.0 3096.0 -397.0 1747.0 0. 0
, 63.29 138.0 73.0 8. 0 4160.0 263.0 1948.0 0. 0
! 63.29 137.0 72.0 5. 0 4138.0 ;190.0 1973.0 ~ 0. 0 f 55.00 94.0 39.0 -18.0 2834.0 .
'546.0 1690.0 0. 0 55.00 99.0 43.0 -16.0 2994.0 -496.0 1745.0 0. 0 45.00 37.0 -5.0 -53.0 1110.0 -1602.0 1956.0 0. 0 -
45.00 33.0 -8.0 -55.0 1016.0 -1654.ri 1335.0 0. 0
- 0. 0 30.00 -29.0 -54.0 -84.0 -875.0 -2525.0 825.0 -
30.00 -27.0 -52.0 -83.0 -836.0 -2522.0 842.0 0. 0 0.00 -120.0 -117.0 -112.0 -3367.0 ,3616.0 124.0 105.0 i 0.00 -117.0 -114.0 -109.0 -3283.0 -3533.0 124.0 105.0 l p) q.
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED G
V TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA DPE!3 El E2 E3 SMAX 5 MIN SHEAR ANGLE GAGE NUMBER: 43 (Loc 112) 0.00 5. 0 2.0 0. 0 160.0 -22.0 91.0 0. 0 0.00 2.0 0. 0 17.0 676.0 -60.0 368.0 120.0 30.00 9. 0 -12.0 -90.0 480.0 -2920.0 1700.0 15.0 30.00 14.0 -7.0 -83.0 631.0 -2725.0 1678.0 15.0 45.00 44.0 18.0 -96.0 1663.0 -2?16.0 2289.0 15.0 45.00 44.0 18.0 -87.0 1673.0 -2963.0 2318.0 15.0 55.00 45.0 18.0 -103.0 1760.0 -3497.0 2628.0 15.0 55.00 48.0 22.0 -97.0 1874.0 -3329.0 2601.0 15.0 63.29 60.0 44.0 -89.0 2425.0 -3301.0 2863.0 14.9 63.29 74.0 . 46.0 -87.0 2696.0 -3079.0 2887.0 15.0
_ 55.00 42.0 23.0 -101.0 1794.0 -3568.0 2681.0 15.0 55.00 37.0 18.0 -105.0 1633.0 -3632.0 2658.0 15.0 45.00 -17.0 -27.0 -141.0 37.0 -4923.0 2430.0 14.9 45.00 -16.0 -25.0 -139.0 77.0 -4771.0 2424.0 14.-9 30.00 -59.0 -59.0 -159.0 -1198.0 -5357.0 2079.0 14.9
( <)-
~
30.00 -60.0 -60.0 -157.0 -1225.0 -5356.0 2065.0 30.0 O.00 -125.0 -113.0 -120.0 -3404.0 -4005.0 300.0 44.9 0.00 -124.0 -113.0 -119.0 -3393.0 -3966.0 296.0 44.9 GAGE NUMBER: 44 (Loc 113)
_ 0.00 3.0 -1.0 -3.0 122.0 -115.0 118.0 -15.0 0.00 2. 0 4.0 -6.0 175.0 -291.0 233.0 30.0 30.00 26.0 7.0 -58.0 985.0 -1919.0 1452.0 15.0 30.00 33.0 9. 0 -53.0 1122.0 -1738.0 1430.0 15.0 45.00 78.0 49.0 -46.0 2595.0 -1646.0 2120.0 15.0 45.00 78.0 41.0 -47.0 2499.0 -1570.0 2034.0 15.0 55.00 89.0 51.0 -62.0 2946.0 -2121.0 2534.0 15.0 55.00 94.0 55.0 -57.0 3083.0 -1969.0 2526.0 15.0 63.29 127.0 84.0 -39.0 4093.0 -1444.0 2769.0 15.0 63.29 129.0 97.0 -46.0 4227.0 -1708.0 2968.0_ 15.0 55.00 95.0 57.0 -62.0 3157.0 -2172.0 2664.0 15.0 55.00 91.0 56.0 -62.0 3051.0 -2196.0 2624.0 15.0 !
45.00 31.0 5. 0 -101.0 1271.0 -3385.0 2329.0 15.0 :
45.00 32.0 6.0 -102.0 1329.0 -3437.0 2383;0 15.0 i
~
30.00 -20.0 -40.0 -117.0 -396.0 -3772.0 1687.0 15.0 30.00 -20.0 -37.0 -119.0 -332.0 -3374.0 1770.0 15.0 ,
0.00 -118.0 -113.0 -118.0 -3421.0 -3698.0 139.0 44.9 l
, 0.00 -117.0 -110.0 -119.0 -3329.0 -3791.0 230.0 44.9
%)
Report 510 Appendu: II 3REWER ENGINEERING LABORATORIES./NCURPORATED J
TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PRE 30 El E2 E3 SMAX SMIN 3 HEAR AN6LE GAGE NUMBER: 45 (Loc 114) 0.00 2. 0 1.0 2. 0 116.0 35.0 40.0 134.9 0.00 1.0 0. 0 0. 0 87.0 -22.0 54.0 -44.9 30.00 21.0 3. 0 -30.0 682.0 -953.0 820.0 15.0
_ 30.00 26.0 3. 0 -26.0 795.0 -810.0 802.0 0. 0 45.00 T1. 0 29.0 -7.0 2130.0 -232.0 1191.0 0. 0 45.00 70.0 33.0 -9.0 2113.0 -271.0 1195.0 0. 0 35.00 S1. 0 38.0 -15.0 2448.0 -450.0 1449.0 0. 0
- 0. 0 55.00 86.0 40.0 -9.0 2586.0 -278.0 1432.0 63.29 126.0 73.0 14.0 3784.0 458.0 1662.0 0. 0 63.29 118.0 64.0 7. 0 3558.0 242.0 1657.0 0. 0 55.00 80.0 35.0 -13.0 2428.0 -400.0 1414..'O 0. 0 55.00 80.0 35.0 -12.0 2426.0 -370.0 1398.0 0. 0 45.00 16.0 -16.0 -59.0 500.0 -1760.0 1130.0 0.- 0
,xy 45.00 14.0 -20.0 -59.0 435.0 -1797.0 1116.0 0.:0 (N i 30.00 -40.0 -58.0 -87.0 -1203.0 -2639.0 718.0 0. 0 30.00 -41 '. 0 -61.0 -88.0 -1246.0 -2655.0 704.0 0. 0 0.00 -117.0 -103.0 -105.0 -3165.0 -3549.0 192.0 74.?
0.00 -118.0 -110.0 -106.0 -3197.0 -3561.0 182.0 74.9 GAGE NUMBER: 46 (Loc 115) 0.00 5. 0 -4.0 -5.0 211.0 -204.0 207.0 -14.9 0.00 4.0 5.0 4.0 152.0 94.0 29.0 44.9 30.00 38.0 41.0 32.0 1277.0 865.0 205.0 29.8
. 30.00 36.0 46.0 37.0 1407.0 801.0 302.0 44.9 45.00 90.0 96.0 65.0 2796.0 1976.0 460.0 15.0 45.00 86.0 87.0 65.0 2753.0 1924.0 464.0 30.0 55.00 97.0 98.0 67.0 3130.0 1921.0 654.0 30.0 55.00 104.0 99.0 69.0 3269.0 1955.0 .656.0 15.0 63.29 143.0 132.0 94.0 4415.0 2730.0 342.0 15.0 63.29 136.0 131.0 93.0 4269.0 2630.0 S19.0 14.9 l
55.00 101.0 99.0 68.0 3200.0 1990.0 655.0 14.9 55.00 99.0 102.0 71.0 3228.0 1904.0 661.0 30.0 45.00 39.0 51.0 29.0 1581.0 460.0 560.0 29.9
_ 45.00 39.0 52.0 29.0 1584.0 428.0 577.0 45.0 30.00 -17.0 7.0 -3.0 260.0 -896.0 578.0 60.0 30.00 -18.0 S. O - 1. 0 310.0 -925.0 617.0 59.9 0.00 -111.0 -100.0 -94.0 -7.839.0 -?393.0 271.0 74.9 0.00 -111.0 -98.0 -92.0 -2770.0 -3379.0 304.0 74.9
Repr: 510 AppIndix II BREWER ENGINEERING LABORATORIES./NCORPORATED (D
%J TABLE I (CONTINUED)
LINER ROSETTE STRAIN AND PRINCIPAL STRESS DATA PPE05 El E2 E3 SMAM IMIN SHEAP ANGLE GAGE NUMBEpr 47 (Loc 116)
_ 0.00 0. 0 -1.0 -1.0 -28.0 -59.0 14.0 0. 0 0.00 9. 0 7. 0 2. 0 273.0 3 ?. 0 119.0 14.9 30.00 35.0 -17.0 -77.0 1069.0 -2322.0 1695.0 0. 0 30.00 40.0 -13.0 -71.0 1214.0 -2155.0 1695.0 0. 0 45.00 81.0 8. 0 -65.0 2433.0 -1969.0 2201.0 0. 0 45.00 81.0 9. 0 -67.0 2448.0 -2013.0 2231.0 0. 0 55.00 92.0 9. 0 -74.0 2780.0 -2223.0 2502.0 0. 0 55.00 94.0 12.0 -70.0 2836.0 -2106.0 2471.0 0. 0 63.29 126.0 35.0 -54.0 3303.0 -1609.0 2706.0 0. 0 63.29 126.0 34.0 -57.0 3795.0 -1725.0 2760.0 0. 0
_ 55.00 86.0 1.0 -79.0 2592.0 -2368.0 2480.0 0~. 0 55.00 89.0 4.0 -78.0 2672.0 -2346.0 2509.0 0. 0 45.00 32.0 -44.0 -120.0 954.0 -3619.0 2237.0 0. 0 45.00 31.0 -45.0 -122.0 933.0 -3657.0 2295.0 0. 0 30.00 f -25.0 -86.0 -149.0 -784.0 -4476.0 1845.0 0. 0 -
)
/
?O.00 -24.0 -85.0 -145.0 -734.0 -4369.0 1817.0 0. 0 -
0.00 -119.0 -119.0 -122.0 -3578.0 -3701.0 61.0 14.9 0.00 -116.0 -116.0 -121.0 -3482.0 -3699.0 103.0 30.0 GAGE ilVMBER: 48 (Loc 117) 0.00 1. 0 0. 0 0. 0 71.0 -13.0 42.0 -29.8 0.00 2. 0 0. 0 2. 0 133.0 14.0 62.0 -44.9 30.00 44.0 60.0 24.0 1893.0 187.0 848.0 29.3 30.00 41.0 59.0 23.0 1833.0 122.0 855.0
- 29.8 45.00 89.0 103.0 59.0 3216.0 1260.0 977.0 29.8 45.00 87.0 101.0 56.0 3156.0 1161.0 997.0 29.8 55.00 90.0 101.0 52.0 3220.0 1094.0 1063.0 29.8 55.00 92.0 104.0 54.0 3290.0 1130.0 1079.0 29.8 63.29 126.0 135.0 81. 0 4285.0 1991.0 1147.0 29.8 63.29 127.0 135.0 83.0 4295.0 2075.0 1110.0. 29.8
_ 55.00 91.0 104.0 57.0 3281.0 1207.0 1037.0 29.8 55.00 91.0 104.0 55.0 3282.0 1156.0 1063.0 29.S 45.00 36.0 61.0 9. 0 1901.0 -489.0 1195.0 29.8 45.00 37.0 54.0 10.0 1725.0 -269.0 997.0 29.8 30.00 -10.0 11.0 -26.0 383.0 -1476.0 929.0 45.0 30.00 -13.0 S. O -29.0 281.0 -1584.0 932.0 45.0 0.00 -115.0 -114.0 -112.0 -3374.0 -3485.0 55.0 105.0 0.00 -114.0 -113.0 -111.0 -3348.0 -3446.0 43.0 105.0
, /~S l N-]
l
~
l .
l
Repor: 510 Appendix II
- BREWER ENGINEERING LABORATORIES,/NCORPORATED -
(~ .
4 TABLE H HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
_ GAGE HUMBER: 1 (r.w/v Calibration) O.00 -18.0 0.00 19.0 30.00 19.0 30.00 -56.0 45.00 0. 0 45.00 -79506.0 55.00 -29439.0 55.00 -6.0 63.29 -13.0 -
_ 63.29 -29453.0 -
55.00 -29453.0 55.00 -49.0 45.00 -29439.0 '
- 45.00 -29396.0 - -
30.00 -29410.0 30.00 -49.0 0.00 -6.0 0.00 0. 0
_. GAGE tiUMBER: 2 (Loc 36) HR 0.00 6. 0 0.00 3. 0 l
30.00 2179.0 30.00 2182.0 45.00 3551.0 45.00 3556.0 55.00 4663.0 55.00 4660.0 63-29
. 5536.0
- 63.29 5542.0 -
55.00 5199.0 55.00 5208.0 45.00 4669.0 45.00 4666.0 30.00 3724.0 30.00 3721.0 0.00 1933.0 0.00 1839.0
Repx 510 Appendix II BREWER ENGINEERING LABORATORIES./NCURPORATED O _
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi) i
' ~
GAGE tiUt1BER: 3 (Loc 36) MR 0.00 0. 0 0.00 12.0 4
30.00 -414.0 30.00 -423.0 45.00 -1077.0 45.00 -1094.0
- 55.00 -2063.0 55.00 -2069.0 63.29 -3351.0 -
63.29 -3351.0 -
55.00 -2973.0 _
55.00 -2973.0 ~
~
45.00 -2261.0
45.00 -2261.0 ~~ ~
30.00 -1351.0 30.00 -1342.0
- 0.00 -235.0 0.00 -241.0
~
G6GE ilVMBER: 4 (Loc 37) HR 0.00 6.0 0.00 6. 0 30.00 3653.0 30.00 3646.0 45.00 5969.0 45.00 5962.0 55.00 8053.0 55.00 9059.0 63.29 10109.0 63.29 1010:<. 0 55.00 9003.0 55.00 9003.0 45.00 7284.0 45.00 7290.0 30.00 4797.0 30.00 4791.o 0.00 617.0 0.00 617.0 I
1 l
Report 510 Appendbc II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTE2 EAR STRESSES PRESSURE STRESS (psi)
GAGE HUMBEP: 5 (1.oc 37) MR 0.00 -5.0 0.00 0. 0
- 30.00 953.0 30.00 944.0 45.00 1706.0 45.00 1703.0 55.00 2456.0 -
55.00 2459.0 .
63.29 3129.0 ,
63.29 3137.0 -
55.00 3009.0 -
55.00 3020.0 ' '
_ 45.00 2729.0 ~'~._ ~
T' 45.00 2729.0 ~
30.00 2059.0 ,';'
30.00 2059.0 0.00 568.0 0.00 573.0 GAGE NUMBER: 6 (Loc 38) HR 0.00 -5.0 0.00 0. 0 30.00 2039.0 30.00 2034.0 45.00 3314.0 45.00 3300.0 55.00 4435.0 -
55.00 4433.0 -
63.29 5599.0
- 63.29 5607.0
- 55.00 4923.0 55.00 4923.0 _
45.00 3919.0 45.00 3?22.0 30.00 2498.0 30.00 2501.0 0.00 211.0 0.00 203.0 M
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED f
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
- G9GE NUMBER: 7 (Loc 38) MR 0. 00 -5. 0 0.00 -S. O 30.00 976.0 30.00 970.0 I
45.00 1675.0 45.00 1675.0 55.00 2377.0 .
55.00 2395.0 63.29 2971.0 e3.29 2962.0 55.00 2951.0 ,
_~
) 55.00 2866.0 .
, f - 45.00 2557.0 - '
45.00 2548.0 30.00 1914.O
_. 30.00 1916.0 0.00 548.0 0.00 549.0 eAGE NUMBER: 8 (Loc 39) MR 0.00 3. 0 0.00 *
- 6. 0 30.00 1145.0 30.00 1139.0 45.00 1925.0 -
__ 45.00 1914.0 55.00 2662.0 55.00 2665.0 63.29 3376.0 e3.29 3393.0 l 55.00 3180.0 55.00 3183.0 2781.0
, 45.00 45.00 2737.0 30.00 2056.0
_ 30.00 2053.0 0.00 545.0 0.00 553.0 0
l
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCURPORATED O
TABLE II (CONTINUED)
~
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE NUMBEPs 9 (Loc 40) HR 0.00 9. 0 0.00 12.0
_ 30.00 26.0 30.00 26.0 45.00 0. 0 45.00 -5. 0 55.00 210.0 '
55.00 216.0 63.29 344.0 63.29 358.0 r 55.00 376.0 -e 55.00 379.0 -
. 45.00 425.0 ,
45.00 446.0
' 30.00 521.0 i
30.00 513.0 0.00 714.0 0.00 722.0 GAGE NUMBER: 10 (Loc 40) MR 0.00 0. 0 0.00 0. 0
_ 30.00 1614.0 30.00 1608.0 45.00 2662.0 45.00 2647.0 3847.0 55.00 55.00 3853.0 .
63.29 5143.0 63.29 5161.0 55.00 4916.0 55.00 4922.0
. 45.00 4395.0 45.00 4398.0
, 30.00 3419.0 l 30.00 3422.0 0.00 1439.0 0.00 1439.0 O.
~
Rcport 510 Appendi>: II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REDAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
~
GRGE riUMBER: 11 (Loc 41) HR 0.00 3. 0
- 0. 0 'J 9. 0 30.00 -969.0
.0.00 -??5. 0 45.00 1022.0 45.00 719.0
_ 55.00 -975.0 55.00 -975.0 63.29 -972.0 63.29 -969.0 55.00 58.0 __
55.00 50.0 ._
45.00 -66.0 .
45.00 -63.0 _
f) 30.00 -957.0 N/ 30.00 -972.0
_ 0.00 -972.0 0.00 -963.0 GAGE NUMPER: 12 (Loc 41) MR 0.00 -14.0 0.00 0. 0 30.00 1433.0 30.00 ~ 1430.0 45.00 2409.0 45.00 2412.0
_ 55.00 3291.0 55.00 3297.0 63.29 4139.0 63.29 4142.0 55.00 3877.0 55.00 3879.0 45.00 3405.0 45.00 3411.0 30.00 2610.0 30.00 2607.0
_ 0.00 1107.0 l 0.00 1104.0 l
~
Reper: 510 Appendix II
.. BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE riUMBER: 13 (Loc 42) HR 0.00 6.0 0.00 6. 0 30.00 -217.0
~
30.00 -220.0 45.00 -459.0 45.00 -465.0 55.00 -539.0 55.00 -535.0 63.29 -611.0 63.29 -619.0 55.00 -517.0 55.00 -503.0 l 45.00 -299.0
,_ 45.00 -305.0
- 30.00 6. 0 30.00 9. 0 0.00 569.0 4 0.00 577.0 GAGE tlUMBER: 14
- G_ac 42) MR 0.00 -2.0 0.00 -5.0 30.00 1014.0
~
30.00- 1014.O 45.00 1912.0 45.00 1806.0 55.00 E464.0 55.00 2470.0 1 63.29 3091.0 63.29 3631.0 55.00 2828.0 55.00 2834.0 45.00 2423.0 45.00 2420.0 l 30.00 1742.O j 30.00 1739.0
- n. 00 609.0 0.00 615.0
~
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE tiUMBER: 15 (Loc 43) HR 0.00 3. 0 0.00 0. 0 30.00 127?.0 30.00 1270.0 45.00 2477.0 45.00 2480.0 55.00 3412.0 55.00 3419.0 63.29 4278.0 63.29 4280.0 '
55.00 3805.0 --
55.00 3913.0
__ 45.00 3134.0 .:
7 45.00 3122.0 .:
30.00 2159.0 30.00 , 2162.0 0.00 545.0 0.00 542.0 G96E ftVMBER: 16 (Loc 43) MR 0.00 9. 0 3.00 6.0 30.00 -128.0 30.00 -134.0 45.00 -198.0 45.0U -194.0 55.00 -188.0 55.00 -188.0 63.29 -182.0 63.29 -197.0 55.00 -128.0 55.00 -111.0
_ 45.00 32.0 45.00 26.0 30.00 181.0 30.00 181.0 0.00 442.0 0.00 447.0 ,
l
Report 510
. Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
- GAGE NUMBER: 17 (Loc 44) HR 0.00 14.0 0.00 20.0
_ 30.00 1042.0 30.00 1037.0 45.00 1699.0 45.00 1693.0 55.00 2146.0 1 55.00 2140.0 63.29 2484.0 ^ .
63.29 2481.O ,
55.00 2249.0 55.00 2258.0 -
[
45.00 1908.0 45.00 1911.0 30.00 1372.0 30.00 1375.0 32:3.0 0.00 0.00 380.0 GAGE NUMBER: 18 (Loc 44) MR 0.00 3.O i 0.00 8. 0 30.00 -150.0 30.00 -159.0 l 45.00 -33.0 1 45.00 -33.0
~~
55.00 89.0 55.00 87.0 63.29 187.0 63.29 176.0 55.00 207.0 ~
55.00 207.0 45.00 238.0 45.00 240.0 30.00 265.0 30.00 268.0 0.00 459.0 0.00 455.0 O
L.)
l
Report 510 Appendi>: II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
, HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE NUMBED: 19 (Loc 45) M]R 0.00 52.0 0.00 3. 0 30.00 -393.0 30.00 -406.0 45.00 -290.0 45.00 -306.0 55.00 -96.0 55.00 -94.0 63.29 -36.0 ,,
- 63.29 -117.0 ,,
55.00 -96.0 55.00 -96.0 -
- 45.00 26.0 t'% 45.00 -45.0
(_) 30.00 95.0 30.00 172.0 0.00 470.0 0.00 464.0
_ 393E NUMBEP: 20 (Loc 46) HR 0.00 -5. 0 0.00 -5.0 30.00 687.0 30.00 679.0 45.00 1316.0 45.00 1313.0 55.00 2073.0 55.00 2071.0 63.29 2512.0 63.29 2515.0 55.00 2249.0 55.00 2255.0 45.00 1911.0 45.00 1906.0 30.00 1299.0 30.00 1310.0 0.00 81.0 0.00 39.0
_ Ecpo: r 51G Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED
- O TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi) I l
GAGE NUMBEo: 21 l
, (Loc 46) MR 0.00 -7. 0 j 0.00 -10.0 30.00 -281.0 l
~~
I 30.00 -295.0 45.00 -209.0 45.00 -217.0 55.00 -35.0 ..
55.00 -35.0 63.29 70.0 63.29 56.0 .)
55.00 73.O J 55.00 67.0 45.00 109.0 -5 45.00 93.O ^l I
30.00 109.O 30.00 131.0 0.00 36.0 0.00 36.0 9 AGE NUMBER: 22 (Loc 47) HR 0.00 20.0 0.00 28.0 30.00 -1203.0 30.00 -1209.0 45.00 -2290.0 45.00 -2307.0
- 55.00 -3363.0 55.00 -3366.0 63.29 -4037.0 63.29 -4034.0
, 55.00 -3594.0 55.00 -3576.0 45.00 -2947.0 45.00 -2941.0 30.00 -1924.0 en. U0 -1924.0 0,00 73.0 l
0.00 67.0 l
O Note: Gage Number 22 data should be po.;itive.
O
Report 510 Appendix II BREWER ENGINEERING LABORATORIES,/NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REDAR AND SISTER BAR STRESSES PRESSURE _ h'.SS (psi)
GAGE NUMBER: 23 (Loc 47) MR 0.00 0. 0 0.00 0. 0 30.00 913.0 30.00 908.0 45.00 1593.0 45.00 1601.0 55.00 2439.0 .
55.00 2439.0 63.29 2998.0 63.29 3001.0 .
55.00 2671.0 55.00 2677.O !
45.00 2261.0 -"
45.00 2369.0 30.00 1623.0 30.00 1626.0 0.00 78.0 0.00 73.0 GAGE NUMBER: 24 0.00 -10.0 (Loc 48) HR 0.00 -5.0 90.00 344.0 30.6G 335.0 l 45.00 933.0 c 45.00 939.0 55.00 1595.0 l 55.00 1598.0 1 63.29 2001.0
, 63.29 1998.0 55.00 1786.0 55.00 1797.0 45.00 1500.0 45.00 1506.0 30.00 1028.0 l
30.00 1028.0 0.60 -119.0 0.00 -116.0 Note: Gage Number 23 da'.a should be negative.
Report 510 Appendi>: II i
BREWER ENGINEERING LABORATORIES./NCORPORATED i
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE HUMBED: 25 (Loc 48) MR 0.00 14.0 0.00 25.0 30.00 -1284.0 30.00 -1296.0 45.00 -2430.0
- 45.00 -2436.0 55.00 -3682.0 __
55.00 -3685.0 63.29 -4495.0 63.29 -4498.0 _
55.00 -3947.0 ,,
55.00 -3944.0 ,
C' 45.00 -3219.0 .
s_ ) 45.00 -3212.0 30.00 -2075.0
- 30.00 -3075.0 0.00 257.0 0.00 243.0 GAGE NUMBED: 26 (Loc 49) HR 0.00 -5. 0 0.00 -S. 0 30.00 915.0 30.00 912.0 45.00 2220.0 45.00 2235.0 55.00 3390.0 i 55.00 3384.0 )
63.29 3706.0 63.29 3706.0 55.00 3333.0 55.00 3351.0 45.00 2683.0 ll 45.00 2636.0 30.00 1603.0 30.00 1579.0 0.00 250.0 1
0.00 247.0 a
'2 _ - -
Report 510 Appendix II BREWER ENGINEERING LABORATORIES,/NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES
~
PRESSURE STRESS (psi)
GAGE NUMBER: 27 (Loc 49) MR 0.00 -8. 0 0.00 3. 0
_ 30.00 993.0 30.00 1002.0 45.00 2289.0 45.00 2296.0
~
55.00 3417.0 -
55.00 3417.0 63.29 3832.0 63.29 3941.0 55.00 3441.0
~=
55.00 3444.0 45.00 27?O.0 45.00 2767.0 -r N 30.00 1727.0 30.00 1709.0 0.00 63.0 0.00 72.0 GAGE NUMBER: 28 (Loc 50) HR 0.00 -2. 0 0.00 -5.0 30.00~ 463.0 30.00 457.0 45.00 1525.0 45.00 1531.0 55.00 3074.0 55.00 3074.0 63.29 3716.0 63.29 3710.0 55.00 3250.0 55.00 3259.0 45.00 2720.0 45.00 2723.0 30.00 1947.0 30.00 1938.0 I 0.00 -1407.0 0.00 -1363.0 I
f'd
Repar: 5:0 Appandi). 11 i
BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
_. GAGE NUMBER: 29 (Loc 50) MR 0.00 0. 0 0.00 6.0 30.00 689.0 30.00 692.0 45.00 1628.0 45.00, 1625.0 55.00 2556.0 55.00 2550.0 -
l 63.29 3039.0 -
63.29 3086.0 55.00 2732.0 55.00 2732.0 --
45.00 2298.0 -
- 45.00 2293.0 _:
30.00 1552.0 :
30.00 155E.0 0.00 -357.0 0.00 -839.0
__ G9GE NUMBER: 30 (Loc 51) IIR 0.00 -2. 0 0.00 -2.0 30.00 805.0 30.00 796.0 45.00 1649.0 45.00 1643.0 55.00 1912.0 -
55.00 1909.O
! 63.29 1941.0 63.29 1944.0 55.00 1734.0 55.00 1737.0 45.00 1459.0 -
45.00 1462.0 30.00 1000.0 30.00 1003.0 0.00 -11.0 0.00 0. O I
l 1
Report 510 Apper.dn: 11 BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE II (CONTETUED)
HOOP AND LIERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE NUMBEP: 31 (Loc 51) MR 0.00 -8.0 0.00 3.0 t
30.00 1310.0 30.00 1301.0 45.00 3014.0 45.00 3023.0 55.00 3913.0 55.00 3915.0
~
63.29 4289.0 63.29 4277.0 55.00 3812.0 ~
55.00 3812.0 -
- - 45.00 3212.0 '
45.00 3214.0 -
% 30.00 2402.0 30.00 2393.0 0.00 695.0 0.00 709.0 32 3 AGE NUMBER:
(Loc 52) HR 0.00 -8. 0 0.00 3. 0 30.00 42.0 30.00 30.0 45.00 890.0 .
45.00 896.0 55.00 1790.0 55.00 1790.0 63.29 1958.0 63.29 1949.0
- 55'.00 1772.0 55.00 1778.0
-- 45.00 1405.0
. 45.00 1399.0 I
30.00 731. 0 30.00 713.0 0.00 -155.0 0.00 -131.0 O
v
Repor: 510 Appendir. II BREWER ENGINEERING LABORATORIES./NCORPORATED
)
TABLE II (CONTINUED)
IIOOP AND MERIDIONAL RE13AR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE fCJMBER: 33 (Loc 52) MR 0.00 -5. 0 0.00 -2.0
_ 30.00 75.0 30.00 66.0 45.00 629.0 45.00 638.0 55.00 1330.0 55.00 1333.0 -
63.29 1492.0 63.29 1492.0 -
55.00 1426.0 ' r 55.00 1439.0 - =
45.00 1305.0 -r 45.00 1302.0 =
Q -
30.00 30.00 969.0 951.0 0.00 39.0 0.00 : 1. 6 GAGE NUMBEP: 34 (Loc 53) IIR 0.00 -2. 0 0.00 0. 0 30.00 -9. 0 30.00 -20.0 45.00 367.0 45.00 370.0 -
55.00 1012.0 55.00 1012.0 -
63.29 1154.0 63.29 1145.0 55.00 974.0 55.00 933.0 l
~
45.00 329.0 -
45.00 823.0 30.00 530.0 30.00 521.0 0.00 -1325.0 0.00 -1239.0 9
m l
Repe : M0 Appa:r.lin II BREWER ENGINEERING LABORATORIES.lNCORPORATED
\
TABLE II (CCNTINUED)
~
HOOP AND MERIDIONAL REDAR AND SISTER BAR STRESSES
~
PRESSURE STRESS (psi)
G+3E F4UMBEP: 35 0.00 3. 0 (Loc 53) MR 12.0 0.00 30.00 1974.0
.0.00 1959.0 45.00 1612.0 45.00 1610.0
- 55.00 562.0 55.00 543.0 157.0 63.29 63.29 148.0 -
55.00 -14.0
-r 55.00 -20.0 45.00 -230.0 .:
)
45.00 -230.0 -
30.00 -373.0 30.00 -387.0
- 0.00 1648.0 0.00 1619.0
. GAGE riUt1BER: 36 (Loc 54) HR 0.00 3. 0 0.00 9. 0 30.00 210.0 30.00 204.0 45.00 1267.0 4
45.00 1273.0 .
- 55.00 1551.0 55.00 1551.O I 63.29 1509.0 63.29 1503.0 55.00 1415.0 55.00 1412.0 -
45.00 122?.0 45.00 1225.0 30.00 1048.0 30.00 1051.0
- 0.00 50?.0 0.00 517. 0 i
l
[
i ..
1 !
heport 510 Appendix 11 BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE fiUMBER: 37 (Loc 55) HR 0.00 -5.0 0.00 -14.0 30.00 -510.0 30.00 -501.0 45.00 -182.0 45.00 -167.0 55.00 445.0 55.00 451.0 63.29 499.0
-- 63.29 509.0 ~-
55.00 472.0 ,
55.00 484.0
- 45.00 493.0 -
45.00 499.0 O 30.00 30.00 391.0 367.0 0.00 -261.0 0.00 -249.0 GAGE NUMBER: 38 0.00 -8. 0 (Loc 55) MR 0. 0 0.00 30.00 -354.0
?O.00 -360.0 45.00 -342.0 45.00 -345.0 55.00 -267.0 55.00 -270.0 63.29 -411.0 63.29 -420.0 55.00 -405.0 ~
55.00 -405.O 45.00 -324.0 45.00 -321.0 30.00 -231.0 30.00 -337.0 0.00 -44.0 0.00 -41.0
_ Report 510 Appendix U BREWER ENGINEERING LABOR'4 TORIES./NCORPORATCD t
TABLE II (CONTINUED) i HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
G tGE NUMBEP: 39 (Loc 56) HR 0.00 -11.0 0.00 -5.0 30.00 -1211.0 30.00 -1214.0 45.00 -849.0 45.00 -836. 0 55.00 214.0 55.00 220.0 63.29 296.0 63.29 287.0 .--
55.00 398.0 --
55.00 404.0
- 45.00 545.0 [-
i O 45.00 30.00 536.0 518.0 30.00 518.0 0.00 -1369.0 0.00 -1343.0 t
GAGE NUMBEP: 40 (Loc 56) MR 0.00 0. 0 0.00 0. 0 30.00' -345.0 30.00 -857.0 45.00 -848.0 ,
45.00 -845.0 55.00 -678.0 55.00 -675.0 l 63.29 -781.0 63.29 -792.0 55.00 -705.0 55.00 -705.0 .
45.00 -500.0 45.00 -500.0 30.00 -222.0 30.00 -216.0 0.00 -11.O l 0.00 -S.0
.. Report SJD Appendit: II BREWER ENGINEERING LABORATORIES.INCURPORATED TABLE II (CONTINUED)
IlOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
- : GAGE tfUt1BEP: 41 (I (Loc 57) HR 0.00 -14.0 0.00 -11.0
. 30.00 -431.0 30.00 -431.0 45.00 414.0 45.00 417.0 947. 0
~
- - 55.00 55.00 944.0 63.29 883.0 63.29 888.0 ~ .
, 55.00 894.O _,
55.00 897.0 .
_ 45.00 870.0 '.
45.00 858.0 30.00 970.0 30.00 982.0 O.00 787.0 l 0.00 796.0
. ., . GAGE r!UMBEP: 42 (I 0,00 -200.0 (Loc 57) MR 0.00 -236.0 30.00 -8324.0
( 30.00 -8348.0 45.00 -22287.0 45.00 -22535.0 55.00 -43181.0
- 55.00 -43323.0 63.29 -62240.0 63.29 -62429.0 -
, 55.00 -74125.0 55.00 -74362.0 l -81039.0 45.00 1 45.00 -81180.0 30.00 -84353.0 30.00 -84400.0 0.00 -89940.O s 0.00 -99893.0
(
Report 52 0 Appen:lix Il BREWER ENGINEERING LABORATORIES./NCORPORATED G
V TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi) f GA3E tiUMBEP: 47 (Loc 60) MR 0.00 23.0 0.00 6. 0 30.00 -31. 0 30.00 -37.0 45.00 -255.0 45.00 -241.0 55.00 -235.0 55.00 -232.O ~
63.29 -197.0 63.29 -177.0 55.00 -159.0 '"
55.00 -139.0 45.00 -101.0 -
45.00 -101.0 .,
30.00 -136.0
- 30.00 -116.0 0.00 -130.0 0.00 -130.0 34GE NU'1BEP
- 48 (Loc 61) HR 0.00 3. 0 0.00 9. 0 30.00 371.0 30.00 362.0 45.00 312.0 '
45.00 309.0 55.00 153.0 55.00 165.0 63.29 47.0 63.29 29.0 55.00 -37.0 55.00 -9n. 0 45.00 -94.0 45.00 -94.0 30.00 -126.0 30.00 -120.0 0,06 -167.O j 0.00 -155.0 '
l l
t
R: . r E .
J.p. 2ndi : II BREWER ENGINEERING LABORATORIES./NCQRPCRATED l TABLE II (CONTINUED)
~
r HOOP AND MERIDIONAL REBAR AND SISTEli BAR STRESSES PRESSURE STRESS (psi)
~
j GAGE t'UMBEP: 4?
, 0.00 12.0 30.00 -134.0
- 30.00 -143.0 45.00 -2?6.0 45.00 -29?.0 55.00 -290.0 55.00 -299.0 63.29 -137.0 63.29 -184.0
, 55.00 -143.0 .--
1 55.00 -149.0 -
l 45.00 21.0 -
45.00 i
29.0 -
30.00 71.0 30.00 79.0 0.00 -31.0 0.00 -25.0 GAGE tlUMBER: 50 (Loc SI) MS 0.00 3. 0 0.00 3. 0 30.00 112.0 30.00 100.0 45.00 229.0 .
45.00 232.0 55.00 350.0 55.00 353.0 63.29 433.n 63.29 437.0 55.00 431.0 55.00 424.0 45.00 404.0 45.00 3?6.0 30.00 324.0 1
30.00 331.0 0.00 149.0 0.00 146.0 s
1 6
-, ,m - -e- -.-- ,- - - . ,
, Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED
\
TABLE II (CONTINUED)
~
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES
~
PRESSURE STRESS (psi)
- GAGE riUMBEP: 51 (Loc 62) MR 0.00 0. 0 0.00 0. 0
_ 30.00 421.0 30.00 416.0 45.00 596.0 45.00 596.0 55.00 709.0 55.00 714.0 63.29 809.0 63.29 803.0 55.00 657.0 55.00 662.0
' 45.00 505.0 1 45.00 499.0 30.00 258.0 30.00 261.0 0.00 -171.0 0.00 -168.0
- GAGE tiU9BER
- 52 (Loc 63) HR 0.00 -19.0 0.00 -22.0 30.00 297.0 30.00 274.0 45.00 192.0 45.00 172.0 -
55.00 79.0 55.00 96.0 63.29 108.0 4
63.29 52.0 55.00 20.0
- 55.00 -8. 0 45.00 -75.0 45.00 -92.0 30.00 -194.0 30.00 -209.0 0.00 -413.0 0.00 -410.0
_ Report 510 Appendix II BREWER ENGINEERING LABORATORIES,/NCORPORATED TABLE II (CONTINUED) i
~
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
- SAGE riUMBER: 53 (Loc 63) MR 0.00 0. 0 0.00 0. 0 30.00 -290.0 30.00 -302.0 45.00 -698.0 45.00 -704.0 55.00 -1056.0 55.00 -1039.0 63.29 -1135.0 63.29 -1147.0 55.00 -999.0 55.00 -992.0
- 45.00 -935.0 _
45.00 -844.0 30.00 -614.0 30.00 -611.0 0.00 -212.0 0.00 -212.0 G4GE I40MEEP: 54 (Loc 130) HS 0.00 12.0 0.00 6.0 30.00 -600.0 30.00 -605.0 !
45.00 -1097.0 ~
45.00 -1100.0 55.00 -1203.0 l 55.00 -1206.0 i 63.29 -1259.0 ^
63.29 -1259.0 55.00 -1063.0 '
55.00 -1069.0 .
45.00 -864.O i 45.00 -961.0 l
. 30.00 -611.0 l 30.00 -617.0 0.00 -55.0 0.00 -49.0 l
__ Report 510 Appendi:< II SRLWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES l
- 1 PRESSURE STRESS (psi) l GAGE NUMBER: 55 0.00 0. 0 0.00 9. 0
_ 30.00 -956.0 30.00 -959.0 45.00 -1003.0 I 45.00 -994.0 1 55.00 -764.0 55.00 -764.0 ='
63.29 -661.0 i
63.29 -664.0 l 55.00 -496.0 -r 55.00 -491.0- --
_ 45.00 -279.0 -
-. 45.00 -279.0 ,-
/^N 30.00 -70.0 d -
30.00 -70.0 0.00 -152.0 0.00 -149.0 GAGE NUMBEP: 56 0.00 3.0
- 0. 0U 6. 0
. 30.00 -211.0 30.00 -220.0 45.00 -579.0 45.00 -579.0 i
55.00 -1200.0 55.00 -1070.0 63.29 -1247.0 63.29 -1356.0 55.00 -1183.0
, 55.00 -1215.0 i
_ 45.00 -806.0 45.00 -826.0 30.00 -626.0 30.00 -714.0 0.00 26.0 0.00 -143.0 Note: Identification of these two gages could not be made from the UE&C cable pullers notes O __
1
- Report 510 Appendix II BREWER ENGINEERING LhBORATORIES./NCORPORATED 1
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE HUMBER: 57 (Loc 62) HS 0.00 6.0 0.00 14.0 30.00 264.0 30.00 258.0 45.00 430.0
_ 45.00 430.0 55.00 595.0 55.00 592.0
~
63.29 702.O 63.29 702.0 ..
55.00 731.0 _
55.00 734.0 .
^ 45.00 757.O -
760.0
] 45.00 30.00 734.0
.. 30.00 737.0 0.00 611.0 0.00 611.0 GAGE flUMBER: 58 (Loc 62) AIS 0.00 3. 0 0.00 11.0 30.00 576.0 30.00 573.0 45.00 800.0 45.00 906.0 55.00 972.0 55.00 972.0 63.29 1098.0 63.29 1095.0 i 55.00 952.0 -
55.00 955.0 45.00 300.0 45.00 797.0 30.00 550.0 30.00 553.0 0.00 96.0 0.00 9e.0 1 .
l
- Report 51n (
Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED O
v TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE NUMBER: 59 (Loc 67) HR 0.00 12.0 0.00 0. 0 30.00 191.0 30.00 194.0 45.00 686.0 45.00 706.0 55.00 2072.0 ..
55.00 2061.0 63.29 1693.0 63.29 1704.0 __
55.00 1690.0
- 55.00 1699.0 1230.0 45.00 :
45.00 1222.0 30.00 50s.0 30.00 4B3.0 0.00 212.0 0.00 244.0 GAGE NUMBER: 60 (Loc 67) MR 0.00 -14.0 0.00 -20.0 30.00 1369.0 30.00 1351.0 2552.0-45.00
- 45.00 2558.0 55.00 4133.0 .,
55.00 4130.0 63.29 44?2.0 63.29 4492.0 55.00 4009.0 __
55.00 4018.0 45.00 3279.0 45.00 3265.0 l
30.00 2131.0 30.00 2113.0 0.00 -97.0 0.00 -81.O
Reprt 510 Appenclix II l BREWER ENGINEERING LABORATORIES./NCORPORATED \
TABLE II (CONTHiUED)
~
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES l PRESSURE STRESS (psi)
GAGE HUMBEP: 61 (I.oc 63) flS 0.00 9.0 0.00 0. 0 30.00 451.0 30.00 434.0 45.00 364.0 45.00 355.0 55.00 280.0 55.00 269.0 63.29 271.0 ((
63.29 268.0 55.00 181.0 [
55.00. 181.0 0 45.00 45.00 128.0 122.0 30.00 -8. 0 30.00 -5.0 0.00 -232.0 0.00 -235.0 GAGE rtVMBER: 62 (Loc 68) MR 0.00 -10.0 .
0.00 -13.0 30.00 1112.0 30.00 1107.0 45.00 2001.0
- 45.00 1990.0 55.00 3010.0 55.00 3008.0
, 63.29 3541.0 l 63.29 3549.0 55.00 3102.0 i
55.00 3111.0 e' 45.00 2649.0 45.00 2652.0 30.00 1792.0 30.00 1733.0 0.00 -340.0 0.00 -
-332.0 0
lieport 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES l PRESSURE STRESS (psi)
GAGE NUMBER: 63 (Loc 129) MS 0.00 9. O 0.00 -S. 0 30.00 -1203.0 30.00 -1218.0 45.00 -926.0 45.00 -829.0 55.00 -261.0 --
55.00 -258.0
- 63.29 -179.0 63.29 -179.0 55.00 -28.0 :=
55.00 -31.0 ,
45.00 59.0 45.00 44.0 30.00 127.0 -
30.00 115.0 0.00 356.0 0.00 350.O GAGE NUMBER: 64 (Loc 67) HS 0.00 6. 0 0.00 - 0. 0 30.00 306.0 30.00 312.0 45.00 , 939.0 45.00 357.0 55.00 2314.0 55.00 2314.0 63.29 1996.0 63.29 1902.0 55.00 1381.0 -
55.00 1884.0 45.00 1392.0 45.00 1381.0 30.00 648.0 30.00 618.0 0.00 365.0 0.00 392.0 e
l l . _ _ .
Report 510 Appendi>: II BREWER ENGINEERING LABORATORIES./NCORPORATED e
U TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi) 596E NUMBER: 65 (Loc 69) HS 0.00 0. 0 0.00 3. 0 30.00 533.0 30.00 539.0 45.00 1010.0 45.00 1013.0 ~~
55.00 2317.0 '~
55.00 2311.0 63.29 2011.0 63.29 2011.0 -
~'
55.00 1966.0
- 55.00 1972.0 45.00 1657.0 -
N 45.00 1660.0 30.00 1354.0 30.00 1336.0 0.00 665.0 0.00 695.0 G96E NUMBEP: 66 (Loc 129) MR 0.00 -11.0 0.00 -11.0 30.00 -1215.0 30.00 -1209.0 i 45.00 -705.0 .
! 45.00 -711.0 35.00 -105.0 55.00 -99.0 63.29 -46.0 63.29 -49.0 -
55.00 -2.0 55.00 -5.0 45.00 -2.0 45.00 -2.0 30.00 -14.0 30.00 - 31. n 0.00 S2. 0 0.00 94.0 O
Repa: 510 Appendi>: II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
~
GAGE fiUMBER: 67 (Loc 130) HR 0.00 6. 0 0.00 0. 0 30.00 -939.0 30.00 -939.0 45.00 -873.0 45.00 -973.0 55.00 -664.0 55.00 -673.0
_ 63.29 -576.0 63.29 -576.0
55.00 -379.0
~
55.00 -379.0 45.00 -214.0
~
45.00 . -217.0 30.00 -17.0 30.00 -20.0 0.00 483.0 0.00 499.0 GAGE NUMBER: 69 (Loc 130) MR 0.00 -20.0 0.00 -17.0 30.00 -909.0 30.00 -912.0 45.00 -650.0 .
45.00 -655.0 55.00 -346.0 -
55.00 -346.0 63.29 -402.0 i 63.29 -396.0 l 55.00 -340.0 55.00 -335.0
, '45.00 -217.0 l 45.00 -208.0 1
30.00 135.0 30.00 144.0 0.00 777.0 0.00 796.0 l
- Report 510 Appendi>: U BREWER ENGINEERING LABORATORIES. INCORPORATED .
T TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
~
GAGE HUMBER: 69 i
(Loc 35) HS 0.00 .14.0 0.00 17.0 30.00 -196.0 30.00 -196.0 45.00 -446.0 45.00 -454.0 55.00 -702.0 55.00 -696.0 63.29 -915.0 63.29 -921.0 t
55.00 -769.0
- =
'_~
55.00 45.00 45.00
-766.0
-506.0
-509.0 :
x 30.00 -158.0 -
~
30.00 -166.0 0.00 317.0 0.00 311.0 GAGE NUMBER: 70 (Loc 35) MS 0.00 -8.0 0.00 -5. 0 30.00 1086.0 30.00 1086.0 45.00 2074.0
- 45.00 2071.0 55.00 2932.0 55.00 2932.0 --
63.29 3732.0 63.29 3743.0 55.00 3355.0 55.00 3352.0 -
45.00 2732.0 i 45.00 2726.0 30.00 1819.0 30.00 1928.0
- 0.00 4T2.0
! 0.00 472.0 O
l l
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REDAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
G4GE NUMPEP: 71 (I oc 36) HS 0.00 3. 0 I
6.00 3. O 30.00 2322.0 30.00 2325.0 45.00 3761.0 l 45.00 3756.0
) 55.00 4924.O 55.00 4?30.0 j 63.29 57?2.O l 63.29 5770.0 .
55.00 5415.0 .,
! 55.00 5415.0 45.00 4328.0 45.00 4839.0 30.00 3M9.0 30.00 3366.0 0.00 1967.0 0.00 1972.0 GtGE NUMBEP: 72 1
(Loc 36) MS 0.00 11.0 0.00 14.0
- 30.00 713.0
? 30.00 710.O q 45.00 12?5.0 .
4 45.00 1295.0 i 55.00 1735.0 ,
i 1' 55.00 1790.0 63.29 2162.0 63.29 2173.0 55.00 1974.O l 55.00 1977.0
- 45.00 1651.0 .
, 45.00 1649.0 )
- 0. Ou 1 1.':. :. 0
.se. O n 11 :G. 0 0.00 :4 :. U 0.00 ::42. 0 4
b u
Report 510
/sppentli>: II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REDAR AND SISTER BAR STRESSES t
PRESSURE STRESS (psi)
GAGE riUMEER: 73 (Loc 37) HS 0.00 0. O
! 0.00 6. 0 l
30.00 37?3.0 30.00 579?.O i 45.00 6295.0 45.00 6306.0 55.00 8730.0 -
55.00 8742.0 63.24 10955.0 .
63.29 10966.0 55.00 9586.0 .<
55.00 9592.0 :=
45.00 7641.0 ~ .
]- 45.00 7641.O 30.00 4914.0 30.00 4903.0 0.00 645.0 0.00 647.0 GAGE NUMBER: 74 (Loc 37) MS 0.00 -S. 0 0.00 -2.0
_ 30.00 1075.0 30.00 1073.0 45.00 1916.0 *
~
45.00 1922.0 55.00 2793.0 55.00 2303.0 63.29 3518.0 l
63.29 3524.0 l 55.00 3437.0 55.00 3443.0
_. 45.00 31T5.0 45.60 31?5.0 30.00 2452.0 30.00 2455.0 ,
O.00 S10. A '
O.00 407.O l l 1
Report 520 Appendi.s: II BREWER ENGINEERING LABORATORIES./NCORPORATED 1
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
G6GE riUr1BER: 75 (Loc 38) IIS 0.00 6.0 0.00 14.0 30.00 23?O.0 30.00 2332.0 45.00 3759.O
_ 45.00 3759.0 55.00 4914.0 55.00 4914.0 63.29 6024.0 63.29 6024.0 55.00 5396.0 55.00 5396.0 45.00 4452.0 45.00 4444.0 30.00 2995.0
_ 30.00 3003.0 0.00 509.0 0.00 505.0 G6GE riUMBER: 76 (Loc 38) AIS 0.00 - 2. 0 0.00 14.0
- 30.00 1104.0 30.00 1099.0 ;
45.00 1923.0 ~
1 _
45.00 1920.O !
55.00 2539.0 55.00 2541.0 l'
63.29 3023.0 63.29 3018.0.
55.00 2384.0 55.00 2892.0
- 45.00 2601.0 45.60 2590.0 30.00 1991.0 30.00 1995.O I U. 00 ,33.0 l 0.00 636.O i
._ . . . .-1 l
. Reper: 5'O Appendh: II BREWER ENGINEERING LABORATORIES./NCURPORATED l
TABLE II (CONTINUCD)
HOOP AND P.iERIDIONAL REBAR AND SISTER BAR STECSES PRESSURE STRESS (psi)
~'
'3FiGE fiUMBEP: 77 (Loc 39) HS 0.00 0. 0 0.00 9. O
~
30.00 374.0 30.00 371.0 45.00 1351.0
__ 45.00 1340.0 55.00 1999.0 55.00 1905.0 i
63.29 240?.0 63.29 2409.0
- 55.00 2216.0 i 55.00 2223.0 i
45.00 1969.0
( T 45.00 1954.O V 30.00 1498.O
_ 30.00 1489.0
- 0. A 0 62s.0 0.00 632.0 343E rlUMBEP: 78 ,
(Loc 39) MS 0. U0 -2. 0 0.00 3. 0 30.00 121T.0 30.00 120?.0 45.00 2007.0 .
. 45.00 2007.0 55.00 2709.0 55.00 2717.0
~
63.29 3379.0 63.2? 3373.A 55.00 3160.0 55.00 3175.0 45.00 2794.0 45.00 2776.0 90.00 2694.0 30,00 2035.O
! 0.00 609.0 0.00 612.O i
l
Report 510
.i Appandix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
~
GAGE tiUMBER: 79 (Loc 40) IIS 0.00 -2. 0 0.00 0. 0 30.00 47.0 30.00 39.0 45.00 50.0
_ 45.00 41.0 55.00 249.0 55.00 265.0 63.29 405.0 63.29 390.0 55.00 428.0 55.00 437.0 45.00 486.0
} 45.00 30.00 475.0 548. 0 30.00 550.0 0.00 716.0 0.00 722.0
~
GAGE tiUMBEP: 80 (Loc 40) MS 0.00 -14.0 0.00 -2.0 30.00 1721.0 30.00 1719.0 45.00 2966.0 -
i 45.00 2360.0 55.00 4252.0 55.00 4270.0 63.29 5943.0 63.29 5537.0 55.00 5599.0 55.00 5601.0 45.00 4960.0 45.00 4954.0 30.00 3793.0 30.00 :7M.0 0.00 1515.0 0.00 1529.O t
k l
Reperl .*,10 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL RE13AR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE fiUMBER: 81 (Loc 41) 11S 0.00 0. 0 0.00 15.0 a
30.00 18.0 30.00 6. 0 45.00 -40.0 45.00 -49.0 55.00 67.0 55.00 73.0 63.29 126.0 63.29 114.0 55.00 146.0 55.00 149.0
~
45.00 284.0 45.00 284.0 30.00 498.0 30.00 498.0 0.00 925.0 0.00 940.n j
! 39GE NUMBED: 02
! (Loc 41) MS 0.00 -11.O
- 0.00 -2.0 1584.0 30.00 30.00 1575.0 45.00 2635.0 .
45.00 2629.0 I 55.00 3534.0 55.00 3546.0 63.29 4413.0 63.29 4407.0 l
55.U0 4161.0 55.00 4164.0 45.On 3675.0 45.00 3669.0
- 0. On 2952.0 30.00 3846.0 0.00 1321.0 0.00 1332.v O
Hep r: 510 Apper.Q:: II BREWER ENGINEERING LABORATORIES./NCORPORATED
- TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES
, PRESSURE STRESS (psi)
~
GAGE NUMBEP: 83 -
(Loc 42) HS 0.60 -11.0 0.00 9. 0 30.00 -1?!:.0 30.00 -204.0 45.00 -426.0
. 45.00 -432.0 55.00 -470.0 55.00 -456.0 63.29 -544.0 63.29 -559.0 55.00 -447.0 55.00 -444.0 45.00 -224.0 45.00 -219.0 30.00 41.0
_ 30.00 92.0 0.00 659.0 0.00 671. O G;tGE NUMBED: 84 (Loc 42) MS 0.00 -8.0 0.00 -2.0 30.00 1171.0
, 30.00 1162.0 l 45.00 2026.0 .
j s
45.00 2023.O d
55.00 27;:2.0
, 55.00 2785.0 63.29 3443.0 63.29 3443.0 55.00 3156.6 55.00 3148.0 45.00 2714.0 45.00 2711.0 30.00 19 3P. 0 30.On 1 M i;. 0 0.00 750.0 0.00 741.0 h
_ _ _ _ _ . . . ,_ = _ _
Reprt 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REDAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
~
G9GE tiUMBEP: 85 (Loc 43) HS 0.00 17. 0 0.00 14.0 30.00 1565.0 30.00 1554.0 45.00 2926.0 45.00 2931.0 55.00 3990.0 55.00 3993.0 63.29 4943.0 63.29 4940.0 55.00 4437.0 55.00 4437.0 45.00 3705.0 45.00 3691.0 ld j -.
30.00 30.00 2649.O 2649.0 O.00 963.0 0.00 863.O GAGE fiUMBER: 86 (Loc 43) MS 0.00 20.0 0.00 14.0 30.00 -27.0 30.00 -47.0 45.00 34.0 45.00 34.0 55.00 93.0 55.00 98.0 i
, 63.29 149.0 63.29 145.0 55.00 210. 0 55.00 215.0
' 45.00 335.0 45.00 33?.0 30.00 444.0 30.00 441.0 0.00 7 04. 0 0.00 704. 0
'O l ,
l
\
Repor: 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED O
TABLE II (CONTINUED) l IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GA9E NUMBER: 87 (Loc 44) MS 0.00 30.0 0.00 11.0 30.00 657.0 30.00 645.0 45.00 1227.0 45.00 1230.0 55.00 1680.0 55.00 1677.0 -
63.29 2064.0
'~
63.29 2061.0 55.00 1837.0 -
55.00 1389.0 -
45.00 1590.0 45.00 1571.0 30.00 1081.0 30.00 1075.0 0.00 315.0 0.00 318.0 GAGE NUMBER: SS (Loc 45) IIS 0.00 -13.0 0.00 -25.0 30.00 100.0 30.00 39.0 45.00 591.0 -
45.00 593.0 55.00 1201.0 55.00 1204.0 63.29 1439.0 63.29 1434.0
! 55.00 1279.0 55.00 1282.0 45.00 1031.0 45.00 1081.0 30.00 797.0 30.00 803.O <
0.00 232.O I 0.00 235.0 l \
i l
Report 510 Appendi>: II
) -
BREWER ENGINEERING LABORATORIES./NCORPORATED i
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
C, AGE NUMBEP: 89 (Loc 45) MS 0.00 -9. 0 0.00 -2.0
] _ 30.00 3. 0 30.00 -5. 0
! 45.00 -5. 0
~
45.00 -9. 0 55.00 6. 0 55.00 -10.0 63.2? -16.0 63.29 11.0 55.00 -2.0 55.00 -13.0
. 45.00 -2. 0
'() 45.00 11.0 -
30.00 -8. 0 30.00 11.0
,~ 0.00 -2.0 0.00 -13.0 GAGE NUMBER: 90 (Loc 46) lIS 0.00 6. 0 0,00 0. 0
- _ 30.00 833.0 30.00 833.0 45.00 1478.0
- 45.00 1484.0 55.00 2249.0 55.00 2249.0 63.29 2691.0 63.29 2695.0 55.00 2395.0
_ 55.00 2411.0 45.00 2062.0 45.00 2062.0 30.00 1464.0 30.00 1464.0 ,
0.00 210.0 l 0.00 226.0 l l
l l
l l
Rc;er: : 20 Appt.-Q:. II :
l BREWER ENGINEERING LABORATORIES./NCORPORATED i
TABLE II (CONTIIsUED) i l HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES I
PRESSURE STRESS (psi) l GAGE NUMBER: 91 (Loc 46) AIS 0.00 3. 0 0.00 0. 0 30.00 -192.0 30.00 -139.0 l 45.00 -136.0 45.00 -130.0 55.00 53.0 55.00 50.0
~
63.29 129.0 63.29 126.0 . _
J 55.00 117.0 ' '
55.00 131.0 45.00 165.0 .
45.00 169.0
, 30.00 215.0
_ 30.00 212.0 0.00 156.0
- 0.00 169.0 3 AGE NUMBER
- 92 (Loc 47) HS 0.00 -16.0 C. 00 -13.O i
30.00 1495.0 ,
30.00 1499.0 45.00 2643.0 2655.0 45.00 l 55.00 3317.0 55.00 3820.0
( 63.29 4529.O <
63.29 4529.0 55.00 3976.0 55.00 3987.0 45.00 3309.0 l 45.00 3311.0 )
30.00 223n.0 30.00 223::.O
- u. 00 9 9:. o 0.00 115.0 I
- - -- -- -y,. ,,- -. w,.. , ,- .- , . y--:
Repr 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED
/
1 TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
G43E tiUMBER: 95 (1 oc 48) MS 0.00 -2.0 0.00 0. 0 30.00 1470.0 30.00 1467.0 45.00 2627.0 45.00 2635.0
- 55. n o 3870.0 55.00 3873.O
_ 63.29 4641.0 63.29 4647.0 =
55.00 4088.0 55.00 4038.0 -
T 45.00 3375.0 45.00 3375.0 30.00 2238.0 30.00 2244.0 0.00 -G6.0 0.00 -90.0 GAGE NUf1BEP: 96 (Loc 49) HS 0.00 -5.0 0.00 -5. 0 30.00 B 11. 0 30.00 841.0 45.00 23?S.0 .
45.00 2417.0 55.00 3920.0 55.00 3911.0
- _ 63.29 '?16.0 63.29
- 19.0 55.00 3?44.0
~
55.00 3747.0 45.00 294.1.0 45.UO 2937.o i: n . O il 1476.0
'-: 6. if n 14Sd 6 0.00 - 71 . 0
- 0. Gli - A 3. O
Report 530 Appendix II BREWER ENGINEERING LABORATORIES,/NCURPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES l
~
PRESSURE STRESS (psi) l GAGE flVMBER: 93 (Loc 47) MS 0.00 0. 0 0.00 6. 0 30.00 -622.0 30.00 -614.0 45.00 -1357.0 45.00 -1365.0 55.00 -2097.0 55.00 -2109.0 63.29 -2642.0 63.29 -2659.0
. 55.00 -2380.0 --
55.00 -2371.0 -
45.00 -1972.0 -
45.00 -1966.0 30.00 -1312.0 30.00 -1312.0 0.00 154.0 0.00 156.0 GAGE NUMBEP: 94 (Loc 48) HS 0.00 - 7. 0 0.00 -2.0 30.00 397.0 30.00 405.0 45.00 1003.0
- 45.00 1009.0 55.00 ,1654.0 55.00 1657.0 63.29 2015.0 63.29 2017.0
! : 55.00 1797.0 ll '
55.00 1808.0 45.00 1526.0 45.00 1520.0 30.00 1059.0 30.UU 1056.0 0.00 -102.0 0.00 -36.0
\
Report Te10 Appendix II BREWER ENGINEERING LABORATORIES /NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAll AND SISTER BAR STRESSES PRESSURE STRESS (psi) 999E NUMBER: 97 (Loc 49) MS 0.00 -14.O j 0.00 -2.0 i -
30.00 1264.0 30.00 1264.0 45.00 2713.0
- 45.00 2728.0 55.00 3933.0 -
55.00 3933.0 t 63.29 4467.0 .
e3.29 4470.0 l 55.00 4039.0 i 55.00 4093.0 l .- 45.00 3409.0 -
t 45.00 3400.0 _e 30.00 2356.0
_ 30.00 2344.0 0.00 696.0 0.00 703.0 GAGE riUMBER: 98 (Loc 50) HS 0.00 -S. 0 0.00 -5. 0 30.00 301.0 l 30.00 298.0 45.00 1330.0
_ 45.00 1348.0 55.00 2734.0 55.00 2737.0 63.29 3333.0 1
63.29 3336.0 l 55.00 2931.0 l 55.00 2931.0 l
45.00 2374.0 l 45.00 2368.0 30.00 1535.0
. 30.00 1524.0 0.00 -1931.0 0.00 -1436.0 l
. Report 530 Appendi>: II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES i
~
- PRESSURE STRESS (psi)
G;tGE ttVMEER: 99 (Loc 50) MS 0.00 9. 0 0.00 21.0
- ::0. 0 0 1033.0 30.00 1024.0 45.00 2199.0
- ._ 45.00 2199.0 55.00 3350.0 55.00 3365.0
~
53.29 4021.O 63.29 4027.0 .
55.00 3697.O _.
55.00 3697.0 ~ [.
r 45.00 3256.O - ,.
45.00 3250.0 30.00 2437.O
_ 30.00 2494.0 0.00 -55.0 4
0.00 -37.0
~
G: IGE fiUMBER: 100
, (Loc 51) HS 0.00 -2. O
! 0.00 12.0 30.00 953.0 30.00 944.0 45.00 1560.0
_ 45.00 1566.0 55.00 2086.0 55.00 2092.0 63.29 2740.0 63.29 2749.0
. 55.00 2673.0 55.00 2684.0 45.00 2439.0 45.00 24E7.0 30.00 1965.0 30.00 1971.0 0.00 817.0 0.00 903.9
Report 510 Appendi:: II BREWER ENGINEERING LABORATORIES./NCORPORATED
- O TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi) 5f1GE fiUMBER: 101 (Loc 51) MS 0.00 -5. 0 0.00 -5. 0 30.00 991.0 30.00 995.0 4 5 . 0,0 2456.0 45.00 2462.0 55.00 3208.0 55.00 3199.0 63.29 3392.0 63.29 3396.0 i
55.00 3010.0 55.00 3016.0 .-
2527.0 45.00 45.00 2507.0 30.00 1856.0 30.00 1850.0 0.00 515.0 0.00 527.0
~
G3GE t fiUMBEP: 102 (Loc 52) HS 0.00 -5. 0 I ~
0.00 -2.0 30.00 30.0 30.00 30.0 45.00 917.0 45.00 926.0 55.00 1950.0 55.00 1850.0
_ 63.29 2030.0 -
63.29 2033.0 55.00 1838.0 55.00 1950.0 45.00 1480.0 45 " 1465.0 36.09 749.0 30.00 7 31. 0
-0.00 -201.0 0.00 -192.0
- 7G -
Report 510 Appendix 11 BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE NUMBER: 103 (Loc 52) MS 0.00 -14.0 0.00 -5. 0 30.00 0. 0 30.00 -3.0 45.00 526.0 45.00 535.0 55.00 1131.0 55.00 1134.0 63.29 1293.0 i o3.29 1293.0 55.00 1209.0 - -
55.00 1230.0 -
- 45.00 1089.0
' 45.00 1074.0 .
30.00 725.0
~
30.00 722.0 0.00 -264.0 0.00 -252.0 GAGE NUMBER: 104 (Loc 53) HS 0.00 -20.0 0.00 -17.0
- 30.00 -3534.0 30.00 -4250.0 45.00 -564.0 45.00 -564.0 55.00 -170.0 55.00 -173.0 63.29 -267.0 63.29 -270.0 55.00 -1012.0 55.00 -1000.0
_ 45.00 -1653.0 45.00 -1680.0 30.00 -2401.0
~
30.00 -2416.0 0.00 -4912.0 0.00 -4891.6 G
j i
Rr po-t 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
~
GAGE riUMBER: 105 (Loc 53) MS 0.00 -S. 0 0.00 0. 0 30.00 63.0 30.00 65.0 45.60 565.O
_ 45.00 577.0 55.00 1172.0 55.00 1172.0 63.29 1396.0 63.29 1986.0 55.00 1301.0 55.00 1916.0 :-
45.00 1198.0 45.00 1186.0 -
30.00 936.0-
, .. 30.00 336.0 0.00 -509.0 0.00 -499.0 943E riUMBER: 106 (Loc 54) IIS 0.00 0. 0 0.00 6. 0 30.00 260.0 30.00 251.0 45.00 1421.0
- 45.00 1430.0 55.00 1720.0 55.00 1711.0 *
~
63.29 1648.0 63.29 1648.0 55.00 1538.0 55.00 1533.0 45.00 1322.0 45.00 1361.0
'3 0. D O 1101.0 30.00 1104.0 0.00 453.0 0.00 500.O 1
Repori 510 Appendi:: II BREWER ENGINEERING LABORATORIES./NCORPORATED a.
I TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
G; IGE NUMEEP: 107 I
(Loc 54) MS 0.00 -5. 0 O.00 0. O 30.00 45.0 30.00 51.0 45.00 9 Fi. 0
_ 45.00 9 ?S. 0 55.00 1367.0
, 55.00 1364.O I 63.29 1484.O t 63.29 1497.0 55.00 1421.0 ,
55.00 1424.0 ~
- 45. fs 0 1286.O 45.00 1 E77. 0 30.00 1068.0 30.00 1069.0 0.00 494.0 0.00 500.0 G9GE NUMBEP
- 108 (Loc 55) HS 0.00 6.0 0.00 13.0 30.00 -423.0 30.00 -417.0 45.00 9. 0 1 45.00 12.0 55.00 689.0 55.00 699.0 63.29 769.0 63.29 759.0 55.00 695.0 55.00 712.0 45.00 704,0 ;
45.00 689.O I 30.00 556.0 '
30.00 553.0 0.00 -173.0
- 6.00 -155.O l 1
, l
I!cpo: t 510 Appendix 11 BREWER ENGINEERING LABORATORIES./NCORPORATED
(
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GAGE NUMBER: 109 (Loc 55) MS 0.00 -14.0 0.00 -5.0 30.00 -511.0 30.00 -517.0 1 45.00 -482.0 45.00 -470.0 55.00 -373.0 55.00 -379.0 63.29 -573.0 63.29 -573.0 ..
55.00 -579.0 ..
55.00 -567.0 .
,, 45.00 -476.0 45.00 -485.0 30.00 -364.0 30.00 -361.0 0.00 -140.0 0.00 -131.0 GAGE NUMBER: 110 (Loc 56) HS 0.00 -2.0 0.00 0. 0 30.00 -1285.0 30.00 -1292.0 45.00 -897.0 ..
45.00 -885.0 35.00 200.0 55.00 203.0 63.29 339.0 63.29 344.0
, 55.00 450.0 l 55.00 471.0 45.00 627.0 45.00 615.0 30.00 609.0 30.00 606.0 0.00 -1282.U 0.00 -1256.0 1
Rcport 510 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED) l HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES
- PRESSURE STRESS (psi)
+343E ttUMBER: 111 (Loc 56) MS 0.00 -2. 0 0.00 3. 0 30.00 -967.0 30.00 -967.0 45.00 -1015.0 45.00 -1006.0 55.00 -844.0 55.00 -853.0 63.29 -997.0 63.29 -983.0 '
55.00 -923.0 -~
l 55.00 -906.0
< 45.00 -711.0 -
, 45.00 -732.0 -
30.00 -455.0 30.00 -449.0 0.00 -296.0 0.00 -295.O G93E riUMBER: 112
! (Loc 57) HS 0.00 -20.0 0.00 -23.0 30.00 -436.0 30.00 -436.0 45.00 476.U 45.00 470.0 55.00 1053'.0 55.00 1056.0 63.29 10n2.n 63.29 999.0 55.00 1020.0
- 55.00 1017.0 45.00 990.0
, 45.U0 990.0 30.00 1005.0 30.06 996.0 0,00 9ns.0 l 6.00 909.0 i
i l
- _ - . _ ~ - .
Repo-t 510 Appendi>: I!
1 BREWER ENGINEERING L4BORATORIES./NCORPORATED
(
TABLE II (CONTINUED)
IIOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES i PRESSURE STRESS (psi)
GAGE fiUMBEP: 113 (Loc 57) MS 0.00 30.0 O.00 27.0 30.00 610.0 30.00 619.0 45.00 993.0 45.00 999.0 4
, 55.00 1110.0 .'
55.00 1107.0 63.29 1424.0
, 63.29 1430.0 l 55.00 1804.0 i
, 55.00 1819.0 -
l 5 45.00 2013.0 -
45.00 2001.0 30.00 2331.0 30.00 2393.0 0.00 2998.0 0.00 3019.0 G6GE fiUMBER: 114 (Loc 58) HS 0.00 3. 0 0.00 6.0 30.00 456.0 30.00 471.0 45.00 609.0 45.00 609.0 55.00 724.0 55.00 724.0 63.29 833.0 63.29 842.0 55.00 793.0 55.00 907.0 45.00 754.0 45.00 739.0 36.00 630.0 30.00 645.0 0.00 359.0 0.00 371.0 b
J 1
l -
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCURPORATED i
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
(
GAGE riUMBED: 115 (Loc 58) MS 0.00 6.0 0.00 6.0 30.00 397.0 30.00 386.0 45.00 433.0 45.00 433.0 55.00 430.0 55.00 424.0 63.29 433.0 63.29 439.0 -
55.00 341.0 '
55.00 353.0
', 45.00 303.0 45.00 298.0 30.00 197.0 30.00 197.0 0.00 41.0 0.00 53.0 GAGE NUMBEP: 116 (I.oc 59) HS 0.00 11.0 0.00 14.0 30.00 -423.0 30.00 -423.0 45.00 -575.0 45.00 -573.0
, 55.00 -598.0 55.00 -601.0 63.29 -610.0 63.29 -610.0 55.00 -475.0 55.00 -469.0 45.00 -303.0 45.00 -314.0 30.00 -117.0
- 30.00 -114.0 0.00 166.0 0.00 172.0
,s I
i
_ Report 510 l
Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE II (CONTINUED)
~
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES
~
1 PRESSURE STRESS (psi) 4 G9GE riUMBER: 117 (Loc 59) MS 0.00 6. 0 0.00 9. 0 30.00 -968.0 30.00 -971.0 45.00 -813.0 45.00 -805.0 55.00 -591.0 ~~'
55.00 -591.0 63.29 -570.0 63.29 -559.0 ~
55.00 -491.0 -
~
6 55.00 -472.0 45.00 -306.0 ~
l 45.00 -323.0 -
30.00 -131.0 30.00 -125.0 0.00 -22.0 0.00 -2.0 G6GE tiUMBEP: 118 (Loc 60) HS 0.00 23.0 0.00 20.0 30.00 39.0 30.00 38.0 45.00 44.0 45.00 50.0 55.00. 175.0 55.00 172.0 63.29 236.0 63.29 245.0 55.00 396.0 i 55.00 405.0 45.00 568.0 45.00 562.0 30.00 760.0 30.00 766.0 0.00 1113.0 0.00 1130.0 s
'}
Report 510 Appendix II BREWER ENGINEERING LABORATORIES./NCURPURATED
(
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES PRESSURE STRESS (psi)
GRGE tiUr1BER: 119 (Loc 60) MS 0. J O 15.0 0.00 6. 0 30.00 6. 0 30.00 3. 0 45.00 -200.0
_ 45.00 -194.0 55.00 -174.0 55.00 -185.0 63.29 -124.0 e3.29 -107.0 55.00 -75.0 55.00 -66.0
45.00 -34.0 45.00 -34.0 -
30.00 -51.0 30.00 -60.0 0.00 -?2.0 0.00 -78.0 GAGE NUMBER: 120 (Loc 65) MS 0.00 11.0 0.00 3. 0 30.00 562.0 30.00 556.0 45.00 724.0 45.00 730.0 55.00 870.0 55.00 870.0 63.29 1101.0 63.29 1112.0 55.00 10?2.0 55.00 1101.0
- 45.00 964.0 45.00 955.0 30.00 744.n 30.00 T39.0 0.00 33T. 0 0.00 343.0 1
l l
1 l
~
Reprt 510 Appendix II
- BREWER ENGINEERING LABORATORIES./NCORPORATED O _
TABLE II (CONTINUED)
HOOP AND MERIDIONAL REBAR AND SISTER BAR STRESSES i PRESSURE STRESS (psi)
_ G43E NUMBER: 121 (Loc 61) MS 0.00 9. 0 0.00 9. 0 30.00 -34.0 30.00 -40.O i 45.00 -199.0 45.00 -196.0 55.00 -246.0 55.00 -243.0 63.29 -167.0 63.29 -161.0 55.00 -161.0
, 55.00 -155.0 - -
45.00 9. 0 45.00 3. 0 30.00 71.0 30.00 68.0 0.00 -9. 0 0.00 -8.0 4
m 4
m ao O
l l l
J
~
Report 510 <
Appendix II
.. BREWER ENGINEERING LABORATORIES./NCURPORATED i
i TABLE III J
} CONTAI!GiENT VESSEL DEFLECTIONS i
PRESSURE DEFLECTION (mils)
GAGE fiUMBER: 122 (Loc 1) O.00 2. 0 l 0.00 1. 0 J _
30.00 5.0 30.00 5. 0 45.00 3. 0 45.00 B. 0 55.00 9.0 1
55.00 9. 0 63.29 11.0 63.29 12.0 55.00 10.0 ' -
l . . 55.00 10.0 -
_ 45.00 9.0
- 3. . .*
30.00 5. 0 I O.00 1. 0 0.00 0. 0 O
i l
- i -
1l .
.i j
.l _
y ---m-.--_ . - - , - . . . , . . , _ , _-.-...w . . _ _ , , _ . .,e,,__. .,_r--_,._ , ..~ , . , , - _ , , , - . - - , , , ...~ - - , +
~. _ _ - - . . - - . - -
Report 510 Appendix II l
BREWER ENGINEERING LABORATORIES./NCURPORATED O
i TABLE III (CONTINUED)
CONTAINMENT VESSEL DEFLECTIONS
~.
PRESSURE DEFLECTION (mils)
GAGE ttUMBER: 123 (Loc 2) 0.00 1. 0 0.00 1. 0 30.00 8.0 30.00 S. 0
, 45.00 13.0 45.00 12.0 55.00 11.0 -
55.00 12.0 63.29 11.0 63.29 12.0 -r-55.00 9. 0 55.00 8.0 .-
I 45.00 4. 0 .:
45.00 4.0 30.00 -1.0 30.00 -1.0 0.00 -10.0 0.00 -10.0 GAGE fiUMEER: 124 (Loc 3) 0.00 1.0 0.00 1.0 30.00 6. 0 i 30.00 6.0 45.00 11.0 45.00 10.0 55.00 12.0 55.00 13.0
- 63.29 14.0-63.29 15.0 55.00 13.0 -
55.00 14.0 45.00 12.0 -
l 45.00 12.0 30.00 4.0 30.00 0. 0
- 0. H 0 1.0 0.00 1. 0 0
Repe:: 510
/sppen:li>: II
} -
BREWER ENGINEERING LABORATORIES./NCURPORATED TABLE III (CONTINUED)
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils) 396E NUMBER: 125 (Loc 4) O.00 3. 0 0.00 2. 0 30.00 33.0 30.00 33.0
~
45.00 50.0 45.00 50.0 .
55.00 60.0 55.00 61.0 63.29 72.0 63.29 72.0 -
55.00 64.0 55.00 65.0 45.00 53.0 45.00 54.0 J
2
~
30.00 36.0 30.00 36.0 l 0.00 1. 0
! 0.00 2. 0 G9GE NUMBER: 126 (Loc 5) 6.00 3. 0 0.00 2. 0 30.00 41.0 30.00 41.0 45.00 63.0 45.00 63.0 55.00 79.0 I 55.00 78.0 63.29 90.0 63.29 91.0
)! 55.00 81.0 l' .. 55.00 92.0 45.00 67.0 45.00 63.0 30.00 4 3. f 30.00 f.J 0.00 -i . t O.00 el.0 l 89 -
t
Report 510 Appendir. II
- BREWER ENGINEERING LABORATORIES,/NCORPORATED TABLE III (CONTINUED) I CONTAINMENT VESSEL DEFLECTIONS ;
PRESSURE DEFLECTION (mils)
GAGE tiUMBER: 127 (Loc 6) 0.00 5. 0
_ 0.00 4.0 30.00 29.0 30.00 29.0 45.00 44.0 45.00 44.0 -
55.00 55.0 55.00 55.0 63.29 65.0 63.29 65.0 55.00 60.0
,_ 55.00 60.0 -
~
45.00 51.0 -
n 45.00 51.0 30.00 37.0 30.00 37.0 0.00 7. 0 0.00 7. 0 GAGE fiUNSER: 129 (Loc 7) 0.00 -2.0 0.00 -3.0 30.00 64.0 30.00 64.0 45.00 93.0 45.00 9?. 0 55.00 110.0 55.00 110.0 63.29 124.0 63.29 124.0 55.00 105.0
_ 55.00 105.0 45.00 82.0 45.00 32.0 30.00 48.0 30.00 48.0 0.00 -16.0 0.00 -17.0 l
s
.--m.-- .
_ _ , , ..._._._.-_,.r___.y - _ , -
- ,+. . ,.,
t
< Report 510 Appendix II
- BREWER ENGINEERING LABORATORIES./NCURPORATED J
i a
TABLE III (CONTINUED) i CONTAINMENT VESSEL DEFLECTIONS 4
4 PRESSURE DEFLECTION (mils)
GAGE NUMBEP: 129 l (Loc 8) 0.00 0. 0 O.00 -1.0 30.00 33.0 30.00 83.0 45.00 128.0 45.00 128.0
- 55.00 15S.0 '
! 55.00 153.0 63.29 185.0 63.29 185.0 -
55.00 168.0
- 55.00 168.0 -
=
45.00 139.0 45.00 139.0 30.00 88.0 30.00 99.0
, 0.00 -3.0 0.00 -3.0 i GAGE NUMBER: 130 0.00 0. 0 (Loc 9) 0.00 -1.0 30.00 58.0 30.00 53.0 45.00 94.0
- 45.00 93.0 t
55.00 113.0 55.00 119.0 63.29 139.0 63.29 139.0 55.00 123.0 55.00 124.0 45.00 100.0
- 45.00 100.0 i 30.00 ".9 . 0 3n. 00 60.0 0.00 -9653.0
- 0. O fl -N 5 3. 0 l
-a .: . c.e Appar.n . ::
BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE III '(CONTINUED)
~
CONTAINMENT VESSEL DEFLECTIONS i
PRESSURE DEFLECTION (mils)
GAGE riUMBER: 131 i (Loc 10) 0.00 -1. 0
~
0.00 -1.0 30.00 72.0 30.00 T1. 0 45.00 98.0 45.00 93.0 55.00 109.0 ..
55.00 109.0 ,
_ 63.29 113.0 63.29 112.0 55.00 91.0 '
55.00 92.0 ~'
70.O 45.00 '
) 45.00 70.0
, / 30.00 35.0 30.00 35.0 0.00 -9935.0
- 0. 0v -36.0 GAGE fiUr1BER
- 132 (Loc 11) 0.00 -2.0 0.00 -2.0 30.00 58.0 30.00 59.0 45.00 92.0 45.00 91.0 55.00 115.0 55.00 115.0 63.29 133.0 63.29 133.0 55.00 119.0 55.00 119.0 45.00 98.0 45.00 97.0
- 30.00 61.0 30.00 61.0 j 0.00 -17.0 3 0.00 -17.0 1
O l
Repor: 50 Appendix II BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE III (CONTINUED)
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils)
G9GE riUtil:ER: 133 Calibration Channel 0.00 0. 0 0.00 0. 0 30.00 0. 0 30.00 0. 0 45.00 0. 0 45.00 100.0 ~
55.00 -102.0 ~~
55.00 -102.0
_ 63.29 -2.0 63.29 99.0 55.00 31. 0 55.00 '
-2.0 45.00 -27.0 45.00 -27.0
-[
30.00 -6.0 30.00 22.0 0.00 22.0 0.00 22. 0 69GE fiUf1BER: 134 (Loc 30) 0.00 -2. 0 0.00 -2.0 30.00 -37.0 30.On -37.0 45.00 -52.0 -
- 45.00 -52.0 55.00 -62.0 55.00 -62.0
~
63.29 -70.0 6?.29 -70.0 35.00 -66.0 55.00 -66.0 45.00 -54.0 45.00 -55.0 30.00 - 3 '. 0 30.00 -37.0 0.00 -2.0 0.00 -2. 0 .
Note: Values indicated for gage Number 134 should be positive.
I l .. l 1
l
I Report 510 Appendix II
- BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE III (CONTINUED) ;
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils) 6.
390E fiUMBER: 135 (Loc 34) 0.00 0. 0 0.00 0. 0 30.00 -104.0 30.00 -104.0 45.00 -189.0 45.00 -189.0 55.00 -226.0 .
55.00 -226.0 63.29 -267.0 63.29 -267.0 55.00 -267.0 55.00 -267.0 ..
45.00 -243.0 ~ ,
45.00 -245.0 30.00 -152.0
> 30.00- -152.0 0.00 4.0 0.00 4.0 i GAGE NUMBEP: 136 0.00 4.0 (Loc 35) Radial 4.0 0.00 30.00 43.0 i 30.00 43.0 45.00 62.0 45.00 62.0 -
55.00 73.0 l
55.00 73.0 63.29 87.0 63.29 37.0 55.00 78.0 l
55.~00 78.0 l 45.00 64.0 45.00 64.0 30.00 45.0 30.00 45.0 0.00 9.0 l 0.00 9.0
~)
(V Note: Values indicated for gage Number 135 should be positive.
Deprt 510 Apper.6.ix 11
- BREWER ENGINEERING LABORATORIES./NCORPORATED i
TABLE III (CONTINUED)
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils)
C, AGE riUMBEP: 137 (Loc 35) Vertical 0.00 2.0 0.00 2.0 30.00 16.0 30.00 16.0 45.00 26.0 45.00 26.0 55.00 34.0 __
55.00 34.0 63.29 40.0 63.29 41.0 . ~
55.00 39.0 55.00 37.0 .
45.00 31.0 ~.
45.00 31.0 30.00 21.0 30.00 21.0 O.00 6.0 l 0.00 6.0 G9GE riUNEER: 139 (Loc 36) Radial 0.00 4.0 0.00 4. 0 30.00 29.0 30.00 29.0 45.00 37.0 45.00 36.0 1 55.00 36.0 l 55.00 36.0 l 63.29 38.0 !
63.29 39.0 l 55.00 32.0 55.00 33.0 45.00 24.0 45.00 25.0 l 30.00 16.0 ,
30.00 15.O l i
0.00 -2. 0 l 0.00 -2. 0
Eepor: 510 Apper.d::: 11 BREWER ENGINEERING LABORATORIES./NCORPORATED 4
TABLE III (CONTINUED)
~
, CONTAINMENT VESSEL DEFLECTIONS
~
PRESSURE DEFLECTION (mils) i GAGE NUMBER: 139
! (Loc 36) Vertical 0.00 2. 0 O.00 2. 0 30.00 14.0 l 30.00 13.O
! 45.00 20.0 45.00 20.0
! 55.00 32.0 55.00 32.0 63.29 34.0 63.29 35.0 55.00 33.0
55.00 33.0 -
45.00 30.0 l 45.00 30.0 -
30.00 24.0 30.00 24.0 0.00 15.0 0.00 15.0 GAGE NUMBER: 140 (Loc 37) Radial 0.00 7.0
[
0.00 6. 0 30.00 76.0 30,00 75.0 45.00 113.0 45.00 113.0 55.00 133.0 55.00 134.0 63.29 153.0 63.29 159.0 55.00 144.0 55.00 144.0 45.00 120.0 4'. 00 120.0 30.00 34.0 l Sii. On 34.O o.00 21.0 0.00' 21.U l
?.ep::: - ~ ' .
Appe:r.0: ::
1 -
BREWER ENGINEERING LABORATORIES./NCORPORATED 1
4 TABLE III (CO::TINUED)
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils)
GAGE riUMBEF* 141
- (Loc 37) Vertical 0.00 -354.0 0.00 -363.0 30.00 -200.0 30.00 -243.0 45.00 -400.0 45.00 -370.0 55.00 -402.0 55.00 -337.0
_ 63.29 -329.0 63.29 -327.0 -
55.00 -344.0 55.00 -344.0
, 45.00 -289.0 -;
45.00 -300.0
?O.00 -309.0 30.00 -327.0 O.00 -104?9.0 0.00 -364.0 GAGE NUMBER: 142 (Loc 38) Radial 0.00 4. O 0.00 3. 0
- 30. 0 :e -104.0 30.00 -104.0 45.00 93.0 j
45.00 ?2. 0 55.00 -10045.0 l 55.00 -50.O i
_ 63.29 131.0 63.29 131.0 55.00 117.0 55.00 117.0 45.00 96.0 45.00 ?6.0 30.00 64.0 30.00 64.0
- 0. U0 12.O i 0.00 13.0 1
1
% i l
j i
Iteport 510 Appendi>: !!
BREWER ENGINEERING LABORATORIES./NCORPORATED .
TABLE III (COdTINUED)
~~
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils)
-~
GAGE NUMBEP: 143 (Loc 38) Vertical 0.00 3. 0 0.00 3. 0 30.00 49.0 30.00 50.0 45.00 79.0 45.00 79.0 -
55.00 145.0 55.00 146.0 63.29 194.0 e.3. 29 194.0 55.00 194.0 194.0 55.00
- 45.00 193.0
, 45.00 183.0 .
30.00 159.0 30.00 150.0 0.00 130.0 0.00 130.0 GAGE NUMBEP: 144 (Loc 39) Radial 0.00 7. 0 l 0.00 7. 0
- 30.00 68.0 30.00 67.0 45.00 99.0
~
45.00 99.0 55.00 110.0 55.00 111.0 l 63.29 1 31. 0 63.29 131.0 4 55.00 119.0 55.00 113.0
-. 45.00 97.0 45.00 97. 0 30.00 65.0
- 0. 0 0 65.6 s939.0
~
0.00 0.00 14.0
~
e-l l
Repo:t 510 Appendix II i
BREWER ENGINEERING LABORATORIES,/NCORPORATED i
TADLE III (CONTINUED)
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils)
' ~
GAGE HUMBER: 145 (Loc 39) Vertical 0.00 5.0 0.00 5. 0 30.00 61.0 30.00 61.0 45.00 93.0
_ 45.00 93.0 55.00 171.0 55.00 172.0 l
-~
63.29 229.0 i 63.29 229.0 -
55.00 224.0 -
l 55.00 224.0 =
45.00 211.0 -
45.00 210.0 30.00 181.0 30.00 131.0 0.00 149.0 0.00 149.0 GAGE NUMBER: 146 (Loc 40) Radial 0.00 6. 0 0.00 6. 0 30.00 53.0 30.00 53.0 lt 45.0'i 79.0 l
- 45. ( ' 77.0 55.00 85.0 55.00 34.0 l
63.29 101.0
~
l
! 63.29 101.0 l l
55.00 90.0 ,
55.00 89.0 l 45.00 72.0 l 45.00 72.0 30.00 47.0 1 3 0. vi.i 47.0 0.00 ?. 0 0.00 7. 0
Report 510 Appendix II BREWER ENGINEERING LABORATORIES /NCORPORATED l
TABLE III (CONTINUED) i CONTAINMENT VESSEL DEFLECTIONS l
l PRESSURE DEFLECTION (mils)
GF1GE riUMBER: 147 l (Loc 40) Vertical 0.00 6.0 0.00 6.0 30.00 39.0 30.00 39.0 45.00 58.0 45.00 58.0 55.00 97.0 -
55.00 93.0 63.29 133.0 63.29 134.0 55.00 123.0 55.00 128.0 -
.J 45.00 119.0 45.00 120.0 30.00 100.0 30.00 100.0 0.00 79.0 0.00 79.O Gcl5E flVMBER: 148 (Loc 41) Radial 0.00 6.0 6.00 6.0
$2 0. 00 75.0 30.00 75.0 45.00 113.0 45.00 113.0 55.00 135.0 ,
55.00 135.0 -
63.29 156.0
. 63.29 156.0
! 55.Ov 142.0 55.n0 143.0 45.00 120.0 45.00 12n. 0 30.00 86.0 '
1 30.00 86.0 l 0.00 23.0 !
U. 00 22.0
)
1 i
- 100 -
4 .
ncper: c10
, Appendix It i,
BREWER ENGINEERING LABORATORIES./NCORPORATED J
I j
TABLE III (CONTINUED) l ' CONTAINMENT VESSEL DEFLECTIONS i
PRESSURE DEFLECTION (mils) i GAGE riUt1BER: 14D I (Loc 41) Vertical 0.90- 4.0 l 0.00 4. 0 i 30.00 20.0 30.00 20.0 45.00 29.0 45.00 30.0 55.00 34. O
- 55.00 34.0 .
63.29 37.0 63.29 37.0 55.00 35.0 55.00 35.0 ,
45.00 30.0 '_
1 45.00 30.0 30.00 23.0 30.00 23.0 O.00 11.0 0.00 11.O I
GAGE Nur1BER: 150 (Loc 42) Radial 0.00 1. 0
, 0.00 1.0 30.00 16.O
- 30.00 16.0 45.00 26.0 45.00 26.0 55.00 35.0 55.00 35.0 63.29 41.0 63.29 40.0 l 1
55.00 33.0 55.00 3S. 0 ~
, _ 45.00 34.0 45.00 33.0 i 30.00 24.0 '
30.00 24.O !
' u. 00 5. 0 1 O.00 7. 0
- - 101 -
i . .. .._ . . _ . .._ ._, . - _ . _ . . _ __ __ _ . _ _ . _ _ _ . . _ . . . ,_ ,. _ _ . _
~~
ppandir. II
-. BREWER ENGINEERING LABORATORIES./NCORPORATED
)
TABLE III (CONTINUED)
~
, CONTAINMENT VESSEL DEFLECTIONS l
PRESSURE DEFLECTION (mils)
GAGE fiUMBEP.: 151 (Loc 42) Vertical 0.00 5. 0 0.00 6.0 30.00 43.0 30.00 42.0 45.00 5.L . 0 4 45.00 60.0 55.00 66.0 55.00 66.0 l 63.29 74. 0 63.29 75.0 i 55.00 65.0 55.00 65.0
~ '
45.00 53.0 45.00 53.0 -
- 36. 0 30.00 30.00 36.0 0.00 5. 0 0.00 4. 0 SAGE riUMBEP: 152 (Loc 43) Radial 0.00 4.0 0.00 4. 0 30.00 25.0 30.00 25.0
! 45.00 31.0 i 45.00 31.0
! 55.00 31.0 l 55.00 32.0
.I 63.29 41.0 63.29 41.0 55.00 39.0
- 55.00 39. O
- . 45.00 33.0 l 45.00 34.0 i 30.00 25.0 30.00 35. U O.00 8. 0 0.00 8. 0
- 102 -
- - - - - - - - - . , - - + - - - . _ .
e -- , - - . . , . . , - - , , , , , - - - - ,,-,n, , , --- --,, ,y-- --,
Report 510 Appendix II BREWER ENGINEERING LABORATORIES,/NCORPORATED TABLE III (CONTINUED)
! CONTAINMENT VESSEL DEFLECTIONS 4
PRESSURE DEFLECTION (mils)
GAGE fiUMBER: 153 i
(Loc 43) Vertical 0.00 0. 0 0.00 0. 0 4
30.00 9. 0 30.00 9. 0 45.00 15.0 45.00 15.0 55.00 20.0
! 55.00 20.0 63.29 26.0 63.29 26.0 ,
55.00 25.0 55.00 25.0 ~
l 45.00 20.0 45.00 20.0 -
30.00 13.0 30.00 12.0 0.00 1. 0 0.00 1.0 1 GAGE riUMBER: 154 (Loc 44) Radial 0.00 -4.O
- n. 00 -3.0 j 30.00 27.0 30.00 27.0 45.00 48.0
- 45.00 . 48.0 55.00 23.0 55.00 28.0 63.29 5. 0 63.29 50.0
! 55.00 41.0 55.00 40.0 45.00 2?. 0 45.00 29.0 l 30.00 19.0 l
10.00 17.0 l
0.00 b:3. U 0.00 21.0 .
e-
- 103 -
_ Report 510 Appendix II 4
BREWER ENGINECRING LABORATORIES./NCURPORATED TABLE IU (CONTINUED)
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION ! mils) f GAGE fiUMBER: 155
- (Loc 44) Vertical 0.00 1.0 D. 00 1. 0 30.00 10.0 30.00 10.0 45.00 23.0 45.00 22.0 55.00 32.0 55.00 31. 0 63.29 43.0 .
' 63.29 42.0 55.00 39.0
)i -
55.00 39.0 -
45.00 32. O ~
45.00 32.0 30.00 23.0 30.00 23.0 0.00 6. 0 0.00 7. 0 GAGE fiUr1BER: 156 (Loc 45) Radial 0.00 4. 0 0.00 3. 0 30.00 29.0 30.00 29.0 45.00 33.0 45.00 37.O 1
55.00 35.0 55.00 36.0
'I 63.29 45.0 il 63.29 45.0 1
55.00 41. 0
'i 55.00 42.0 j 45.00 35.0 45.00 35.0 30.00 26.0 30.00 25.0 0.00 12.0 0.00 12.O l ,
3
- 104 -
bp t. hi: I 1
BREWER ENGINEERING LABORATORIES./NCORPORATED l TABLE III (CONTINUED)
~
CONTAINAIENT VESSEL DEFLECTIONS f
PRESSURE DEFLECTION (mils)
GAGE riUMBER: 157 (Loc 45) Vertical 0.00 0. 0 0.00 0. 0
- 0. 0 0 7.O S0.00 7. 0 45.00 12.0 45.00 11.0 55.00 15.0 55.00 16.0 63.29 21.0 63.29 21.0 55.00 21.0 -
55.00 ' 21.0 -
_ 45.00 17.0 .
45.00 17.0 -
30.00 10.0 30.00 9. 0
) O.00 1. 0 l 0.00 1. 0 G96E NUMBER: 158 (Loc 46) Radial 0.00 2. 0 0.00 3. 0 30.00 30.0 1 30.00 29.0 45.00 41.0 45.00 40.0 55.00 32.0.
55.00 33.0 j 63.29 45.0 l'
63.29 45.0 55.00 40.0 55.00 41.0 l
45.00 33.0 45.00 34.0 i 30.00 25.0
' 30.00 24.0 O.00 14.0 0.00 14.0 l
i
~
l -
105 -
1 I
- , Report 510
~
Appendix II
- BREWER ENGINEERING LABORATORIES /NCORPORATED
- TABLE III (CONTINUED)
~~
CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils)
G9GE NUMBER: 159 (Loc 46) Vertical 0.00 0. 0 0.00 1. 0
_ 30.00 9. 0 30.00 9.0
, 45.00 16.0 45.00 16.0
! 55.00 17.O
! 55.00 17.0 63.29 25.0 63.29 25.0 55.00 23.0 55.00 23.O _
45.00 10.0 ~
45.00 19.0 30.00 13.0 30.00 12.0 0.00 5.0 0.00 5. 0 G9GE flUMBEP: 160 (Loc 47) Radial 0.00 2. 0 0.00 2. 0 30,00 31. 0 30.00 30.0 45.00 44.0 45.00 43.0 55.00 31.0 55.00 31.0
, 63.29 47.0 63.29 49.0 55.00 41.0 55.00 41.0 45.00 32.0 45.00 32.0 30.00 23.0 30.00 22.0 0.00 16.n -
O.00 15.O
- 106 -
r
_. , . , _ . _ . - , , , _ , _ _ _ , , _ - . . , . _ _ _ . , , , . . _ , , , , ,m .
! Ecp::: 510 Appenriir II
_. BREWER ENGINEERING LABORATORIES./NCORPORATED i
TABLE III (CONTINUED)
~
CONTAltG1ENT VESSEL DEFLECTIONS i
PRESSURE DEFLECTION (mils)
~~
GAGE riUMBER: 161 (Loc 47) Vertical 0.00 0. 0 0.00 0. 0 30.00 -165.0 30.00 -165.0 45.00 18.0
_. 45.00 17.0 55.00 -152.0 55.00 -151.0 63.29 -142.0 63.29 -141.0 55.00 -145.0 -
55.00 -145.0 -
45.00 -150.0 .-
45.00 -150.0 30.00 15.O
_ 30.00 14.0 0.00 3. 0
- 0. 00 7. 0 GAGE fiOMBER: 162 (Loc 48) Radial 0.00 -1. 0 0.00 -1.0 30.00 29.0 30.00 E?. 0 45.00 47.0
_ 45.00 46.0 55.00 32.0 55.00 32.0 63.29 51.0 o s. 29 51.0 55.00 43.O
- 55.00 43.0 45.00 33.0
- 45.no 3?. O
- i
- 0.04 22. O
- . 36.00
- 2. 0 3 0.00 .:: U . U 0.60 19.6
\
\
- 107 -
~.er:::: C: -
Appe:.dio: II i
j - BREWER ENGINEERING LABORATORIES./NCORPORATED 1
i TABLE III (CONTINUED)
~
CONTAINMENT VESSEL DEFLECTIONS 4
PRESSURE DEFLECTION (mils) )
G; IGE riUMBEP: 163 (Loc 48) Vertical 0.00 0. O
! o iO 0. 0 l
30.s0 8. 0 30.00 3. 0
- 15. 00 19.0
~
45.00 19.0 55.00 16.0 j 55.00 26.O j 63.29 36. 0 __
{
-63.29 36.O j 55.00 32. O i 55.00 32.0 -
45.00 27.0
'O--
J 4s oo 30.00 27 o 19.O 30.00 19.0 0.00 7.0 0.00 7.0
.I 1
i 5
i j
4 , . I A
,1 +
P j ,
i e
i 4
4
'I 1
eme>
- 108 -
Re ::: 510 Appe: dix II
.- BREWER ENGINEERING LABORATORIES./NCORPORATED .
4 s
i i
TABLE III (CONTINUED) i CONTAINMENT VESSEL DEFLECTIONS PRESSURE DEFLECTION (mils) 996E NUMBER: 163
~
I (Loc 48) Vertical 0.00 0. 0
, 0.00 0. 0 30.00 8.0 l 30.00 3.0 45.00 18.O 45.00 19.0 55.00 26.0 55.00 26.0 63.29 36.0 63.29 36.0 -
! 55.00 32.0 i
55.00 32.0 i -
45.00 87.0 45.00 27.0 30.00 19.O 30.00 19.0 0.00 7.0
-l 0.00 7.0
~
I 4
m
)
~
4 i
1
- e i
3
- 108 -
3
o .
q . , , , , o. ,
TABLE IV IlOOP AND AIERIDIONAL REBAR STRESSES of Pressure (psi)
Gage Location 14 30 45 55 G3.3 55 45 30 0 a
g 4
Stress (psi) m 44 IIS 312 842 15G9 2100 2527 2331 199G 1500 692 g 45 IIR 138 254 819 1408 1639 1535 1315 1073 542 g G 1 HS 19G 335 312 173 4G 104 -173 -254 9 >~
. G3 A1S -35 -3G9 -773 -1073 - 1131 -958 -785 -554 -150 Q .h G4 IIS -139 -796 -1084 -1430 -
13G2 -11G5 -969 208 254 W =?
O S
G4 AIS GG HS 185
-150 139
-G81 277
-935 277
-1200 -
439 1085 439
-935 369
-762 219
-519 -185 12 g h(L 69 AIS 12 1431 2527 3GG9 4177 3G00 2988 2053 -G9 0 130 HS -519 -842 -738 -438 -3G9 -219 -115 69 508 N 130 A1S -831 -727 -34G 35 -GP -4G 35 439 1004 E S1 3
-GS8 -427 69 600 508 G12 508 681 2G5 'g SD22 -139 -G00 -1108 -1258 -
1315 -1131 -958 -715 -219 g n
D C
NOTES: 1. I. D. undeterminable; maybe shear bar in ring beam, located Azimuth 108 , Elevation 450'
- 2. 1. D. undeterminable; maybe shear bar in ring beam, located Azimuth 352 , Elevationg450'g ts 8 5 g 4
Repor 510 A nen:iix II e=ceooeooeeeooo==cO==
CT CD CO M M O C) vC v c0 N N ON -CO *O
[- ~c-N OM "e)C-M C CN N =N N O= T o g s e eCeeoeoeCeooeee=cooeo .=
. . . . . . . . . . . . . . . . . . . . . g COOCCOCCCoCC I
CCCCoCC CC y e a I 4 e a a I e a f e e e I g h I t1 I tn ta tn o O ooO Oo oo oO oo c 1 CO CO Co f* f* - o* N Co c2 t* N C CD f* *% l
- CCNNv t= co CD vc oO N- T ce
- l OCoOC i Ooo I CC 8 Oo I oC I CO C Co . . . . .
OCOOC OCO OO OO CC CC
. . p .c'. l
- .C *O I I I e 8 1 L tc ,
O to 1 O ]
6 -
~
toocLaOOOOOOOOOOCoCOooo O C cc - C) to - v to t* c) v cc t- c.c o N LO v Lo co N t* C **
O O to N LC C) t* N - CC N t= tw N - ~ CO N O C) CD N U to T OCCooC--oOCooOOoooooo DC tt QCOOCOOOOCCCCCCOOCOOO e=
;
e i e e e e a a w
- C C 0 0 L tC C m to to to o o ooo OO OO OC OC C. E O ^
- to to o CD c3 N - co o C.c C) o La vN
- g i g to o v N cc - v co - cc C) - o co N t- C.D to
- ^ 40 D A 0 oooo- e --- t Oo e oo e oo e oo c ca Q f . . . . . . . . . . . . . . . . DC U N
s e c ***** *** ** ** **
99 oy c-
% o - p 6 c 3o
, 3 .O U =
p m -
g
_ N to $o in oLato O O o o o o O O O O O C C C C O o .9 p p e co mcNovemvcovNomoNCOMvh g CM L
A N %
- o v ce C) co - E- tw - cO O C) - N - (3 - ce to co cc COCO-~~~~o-OC 0000000O O-g A J M o . . . . . . . . . . . . . . . . . . . . .
< c Q e
_ y C oi ic o c o o O O O o o O o O c o oe O i eO i O. O. oE 2
Z 'D e 4 om b 6 d OccOOCOOOCCCCOOOOOCOO c4 m tw N - v o C - co to C) t- NccC) o in c v t- N o .y Z c O N ce to L*) - to co o CD t* CC C C - T co N t.D tw 10 CO
< C ocoo-----oCoocoOCoooo C CD c W o00000oo00000000 0 000 o c P i i i i o. nL
'o c te cm O
cOOtoOOOOOOCCCCOCooOOO OE
- - CD o co N C) CD to o t- co o o t- L*) co o N C) O C.
- O O O N CO o C) N N CO to t* f* O O C v N N CD Lo v to O o000-o-~00000oo000000
. . . . . . . . . . . . . . . . . . . . . m*
OOOOoOOOOOOOOOOOOOOOO s a a e s e e e "dg-c 3#
O *a*
= to to O m to to O O O C C C O O O O O O O O O O (C C t-N N cl) CD C to to t* t- o to - C) to o - v - cc - , - -
- C v CD c3 C C to v cc to - N O-O-MNN O DC co oOOCoo--oCoOCOOOoOOOO g r, OOOOOoOOOOOOOOOOOOOOO e e C 2 e i e e ** p C
Qo
. N g - N ce cc C) N M e in cD t- cc e) O - N co v in c3 t- %
MMMNN---~~~- - NNNNNNNN g 4 ccc:85mmmmmmmmmmmmmmmm Z
- 110 -
4 O , . . . . 0, , , ,
. O, ,
TABLE VII of TEMPEIIATURE DATA M 4
Pressure (psi) m o
I. D. 0 30 45 55 G3.3 55 45 30 0 %
til fit Temperature ( F) g 4
, T 122 84 56 48 42 43 41 42 49 44 9 E' y
- T 123 G4 49 41 35 38 40 41 48 43 b 3V U T 124 75 75 73 G8 67 70 68 70 68 $ d $.
- T 125 G3 G1 61 G2 62 G3 G3 G2 64 $Em ,
T 126 71 66 G7 G8 72 73 73 74 74 y d .:
T 127 58 52 42 39 42 42 44 47 44 g
.Ol c
n V
. O b
b N
o
i 42 AIS 331 1117 202G 2782 3443 315G 2714 1982 750 43 IIR 424 1279 2477 3412 4278 3805 3134 2159
$ @ h-.
545 g 3 ,o 43 IIS 542 1565 2926 3990 4943 4437 3705 2649 863 43 Allt -G8 -128 -188 -188 -182 g it "
-128 32 181 442 [$
43 'ilS -77 34 98 148 210 335 444 704
~
44 IIR 422 1042 1G99 2146 2484 2249 1908 1372 383 ;;j 44 IIS 310 840 1570 2100 2525 2330 1995 1500 692 .M 44 MR -183 -150 -33 89 187 207 238 265 458 %
44 MS 232 G57 1227 1680 2004 1887 1580 1081 315 @
45 IIR -440 255 820 1410 1640 1535 1315 1073 542 y 45 IIS -553 100 591 1201 1439 1279 1081 797 232 o 45 AIR -578 -383 -280 -9G -3G -9G 2G 95 470 $
45 MS -5 3 -5 G -10 -2 -2 -8 -2 Q
<!G i;." -357 689 131G 2073 2512 2249 1911 1299 81 0 4G IIS -259 833 1478 2249- 2691 2395 2062 1464 210 46MR -524 -281 -209 -35, ,
70 73 109 109 3G 4Gl MS -513 -193 -136 53 129 117 165 215 15G 4Y IIR 251 -1203 -2290 -3363 -4037 -3584 -2047 -1924 73 4 IIS -1G1 1495 2643 3817 4529 397G 3308 2230 98 l 1 i ,
_n_ - - - - - _ _
O .
. , , O , .
, , O TABLE VIII (CONTINUED)
REBAR - SISTER BAR COMPARISONS Pressure (psi) g m
Gage Location 14 30 45 55 63.3 55 45 30 0 4
Stress (psi) R m
47 MR -27G 813 1598 2439 2998 2G71 22G1 IG23 78 m 47 MS 305 -G22 -1357 -2097 -2G42 2388 -1972 -1312 154 3 48 IIR -535 344 933 1595 2001 178G 1500 1028 -119 h 3,
, 48 IIS -533 397 1003 IG54 2015 l'i 97 1526 1059 -102 g gj ,o
- 48 MR 288 -1284 -2430 -3682 -4495 -3947 -3218 -2075 257 ts '? o
~
4088 O ui 48 MS -209 1470 2G27 3870 4641 3375 2238 -8G N: 1
' 49 UR -3GG 815 2220 3390 370G 3333 2G83 1603 250 " El 49 IIS -413 841 2398 3920 431G 3744 2843 1476 -72 0 49 MR -65 993 2289 3417 3832 3441 2770 1727 G3 E 49 MS 15 12G4 2713 3983 44G7 4089 3409 235G G9G ,$
50 HR -1589 403 1525 3074 371G 3250 2720 1947 .-1407 g 50 IIS -1695 301 1330 2734 3383 2031 2374 1535 - 19fil Q 50 MR -702 688 1G28 255G 3089 2732 2298 1552 -857 :p 50 MS -G79 1033 2199 3350 4021 3697 325G 2487 -55 $
51 IIR 104 805 IG48 1912 1941 1734 1459 1000 -11 g 51 IIS 402 953 15G0 208G 2740 2G78 2439 1965 817 g 51 M R -2 1310 3014 3018 4289 3812 3212 2402 695 ts 51 MS -428 891 2456 3208 3392 3010 2527 185G 515 52 IIR -GG4 42 890 1790 1958 1772 1405 731 -155 52 IIS -G97 30 917 1850 2030 1838 1480 749 -201 52 MR -414 75 G29 1330 1492 142G 130S 909 39 52 MS -429 0 52G ,1131,o 1293 1209 1089 725 -2G4
..ni i.i ,
. 4 i 6
Report 510 Appendi:< II.
-. BREWER ENGINEERING LABORATORIES./NCORPORATED TABLE VI OUTSIDE TEMPERATURES PRIOR TO TEST Thermometer Number Date Time 122 123 124 125 126 127 Temperature (OF) 2/20 09:00 42 42 77 58 73 35 2/20 17:30 51 45 73 58 73 38 2/21 08:30 40 34 65 54 73 26 _
2/21 16:30 53 54 74 62 70 44 2/22 08:30 53 53 66 60 74 47 2/22 16:30 68 67 65 78 72 60 2/23 No personnel on site to take readings ::
2/24 No personnel on site to take readings 2/25 08:30 Readin Missing 56 72 20 2/25 17:30 31 Missing Missing 59 72 29 2/26 10:00 25 Missing Missing 63 70 21
~
2/26 16:30 41 31 72 64 72 30 2/27 No readings taken 2/28 07:30 34 34 70 59 77 30 2/28 18:15 52 52 75 67 78 49 3/01 08:30 40 39 71 62 76 39 3/01 16:00 50 45 73 63 76 44 3/02 08:45 37 35 70 63 78 35 3/02 16:00 44 38 73 63 78 40 l 3/03 08:30 43 40 72 64 79 39 )
3/03 16:00 61 60 73 66 79 59 l 3/04 08:30 46 42 72 66 78 42 l 3/04 16:00 73 75 76 62 71 73
_ 3/05 08:30 61 61 74 65 73 61 l 3/05 16:30 58 56 72 63 74 58 j 3/06 08:30 48 42 73 64 75 40 1 3/06 16:30 52 Missing 75 65 75 55 3/07 08:45 48 Missing 74 65 75 52 lO
- 111 -
l
\ .
l
~
. O , .
O. , , , O, .
TADLE VIII (CONTINUED)
REBAR - SISTER BAR COMPARISONS cs M
Pressure (psi) g m
30 #
Gage Location 14 45 55 G3.3 55 45 30 0 4
Stress (psi) S k
m 53 IIR -1102 -8 3G7 1012 l'. 54 974 829 530 -1325 m 53 IIS -1486 -3584 -564 -170 .J 7 -1012 -1653 -2401 -4912 N 53 b1R 2513 1974 1622 SG2 157 -14 -230 -378 IG48 h y, w i
53 MS -788 G8 SGS 1172 1386 1301 1198 88G -508 o o r>
C 54 IIR -517 210 1267 1551 1509 1415 12?3 1048 503. N 33
- 54 IIS -582 260 1421 1720 1648 1538 12. 2 2 1104 4118 o c5 3 55 IIII -691 -510 -182 445 499 472 493 391 -2G1 i.
E
55 IIS -G97 45 892 G89 708 695 70G 556 -173 0 0 55 AIR -300 -354 -342 -2G7 -411 -405 -324 -231 -44 E 55 ?.lS -505
-2295
-423
-1211
-482
-848
-373 -573 -579 398
-47G -3G4 -140 )
5G IIR 214 206 545 518 -1369 I SG IIS -2348 -1285 -897 200 339 450 627 609 -1282 Q SG MR -857 -845 -848 -678 -781 -705 -500 -222 -11 2
> SG MS -941 -967 -1015 -844 -997 -923 -711 -455 -296 s 57 HR -860 -431 414 947 888 894 870 870 787 g 57 IIS -891 -436 47G 1053 1002 1020 990 1005 900 g 57 A111 -5575 8324 -22287 -43181 -G2240 -74125 -81038 -84353 -89940 t3 57 A1S 215 610 993 1110 1424 1804 2013 2381 2998 58IIR 206 380 48G 574 665 612 553 43G 191 58 IIS 256 456 609 '724' '833 798 754 G30 359 58 AIR 94 294 321 30G 318 212 138 21 -lGI 58 MS 147 397 433 430' ';433 341 303 197 41 6'. i, 4
- I ,,
~
. , , - . i
, , i +
1 i TABLE VIII (CONTINUED)
REDAR - SISTER DAR COMPARISONS as i
2 Pressure (psi) Q Gage Location 14 30 45 55 G3.3 55 45 30 0 m ,
4 Stress (psi) h m
59 MR -498 -782 -853 -773 -7G5 -G47 -486 32 59 MS
'71 $
-707 -8G8 -813 -581 -570 -475 -306 -131 -22 g 60IIH
-127 -346 -5G4 -567 -576 -4G2 -340 -174 14G 9 sn GO IIS 64 38 44 175 236 -481 5G8 1113 7G0 $ 2 .@
- 60 MR 102 -31 -255 -235 -197 -159 -101 -13G -130 g $ .';'
4 60 MS -182 -423 -375 -598 -GIO 39G -302 -117 IGG g p ;,',
G1 IIR 200 371 312 153 47 -87 -84 -12G -107 61 IIS 195 "35
, 310 170 4G -90 -105 -173 -254 g .; g, y
61MR G5 -134 -200 -290 -187 -143 21 71 -31 Q G1 MS 127 -34 -199 -246 -167 -lG1 9 71 -Il .M G2 IIR G 112 229 350 433 421 404 324 149 %
G2 IIS 126 2G4 430 585 702 731 757 734 Gil 8 32 MR 126 421 59G 708 809 C57 505 258 -171 y G2 MS 207 57G 800 972 1098 952 110 0 550 HG C G3 IIR 149 297 192 79 108 20 -75 -104 -413 $
63 IIS 280 451 3G4 200 271 181 128 - 11 -232 M G3 liR 26 -290 -698 -1056 -1135 -998 -835 -G14 -212 D G3 MS -35 -370 -770 -1070 -1130 -900 -785 -554 -150
.l. .9 ll '
l'. ... I g o'
'l
Iteport 510 A pper.dir II BREWER ENGINEERING LABORATORIES, INCORPORATED O-TABLE IX PRETEST DATA CHANNEL FAILURES Identification Approximate Approximate Orientation Number Elevation Azimuth _
L 3" 319' Equipment Hatch Vertical Displacement L 36 319' Equipment Hatch Radial Dispiscement L 47 319' Equipment Hatch Vertical Displacement -
L 35 319' Equipment Hatch Hoop Strain '. ,
O L 35 310' Equipment IIntch Meridional! Strain
( L 39 319' Equipment Hatch Hoop Strain L 45 338' Equipment Hatch Hoop Strain L 64 454' 108 Hoop Strain L G5 454' 245 Hoop Strain L 66 454' 352 Hoop Strain L 64 454' 108 Meridional Strain L 65 454' 245 Meridional Strain L 66 454' 352 Meridional Strain -
L 67 458' 108 Hoop Strain L 69 458' 352 Hoop Strain L 67 458' 108 Meridional Strain
~
L 68 458' 245 Meridional Strain L 69 458' 352 Meridional Strain i
l
- 118 -
e*
e .e a y e - as - e es e e e - es .
l 8
m . ,
! i e i
,i . . , ,. .;
i i
, 4. .
i l' :
I i i i ' l
[
O !' t O
y g l C U
! f f i t
! ' I Pi M l l
. i i . !.
g ;
= , l l
- i l l l 9 i i i
- ~ M '
=
~
> en Es se -
en e e e =
z - -
g . . . . . . . . . . e o . . .
s
~ ~
I ' > #
.I. . . -
- 8 g ! t i
~
=
- 1 E
{ l l !
g i -
}n 3 M ! e i E
sI e
- l 4 ;
i M N
' I' '
g . .
t
- i , ,
i i ,
! ! ! l O, , i 2
E 5
=
0 e
e e
_L:
Er g
==
n
e e3 w**
~
- s. ~d . =
L. t .* 3 E 4 Em I w
e le W
9* 4 3
- =
w '*'
t, 4
Og 4
52 3
1 a
3'
= '
i I l ; = !! ! ! E l l l l l i l l l I
[ e N e i , . e
- l "
i : g 1%
- h l l' l e
. . . . . .-- -- s, kl ai e C 4 & 49
- - - - - . . - & = _ . . .
e g.
3 ' =
2 3C-q u u E
its 3 0 g a
2
( ' 4
- l P t'"
= n n e a e e e n n o e o e e 4 2d
- 4 e 4
. g U
. n o e.
~
4 t ' l' I
.4 g I g . 4 g
- - : i ie i i i = 'l ' '
4
(
....... f.
Q ' '
U 1 N
-..e o. .-. *g u i e
- a. .
. ---- . . . . - .. -. _ .. . - 3 as N = d
- 4 4
- O -
E O k. *
, n =
} d ad "*
u Y C , ,
3 e e
ee . . .. . -
- 1 4 0 4
( g i 1 o
= n n o e e e o ao n n o a e p e 4
ef 9
J
- 2. :. -
3a
{3.
.t:
s<a 3 J ,. n ~~.,n y ,i i
. __ _ 4. . _ . . . . -
'......_.),
ini
-= h h_n
~ -. . . _ V - .. . ..-
8 l 5 \,$
u ;}* WM, , OV 7W _. .._ .-
l a l' 7,n
~~
, Y* L _ ..'3l
,. i
< i i
$% V ; !): i2 ! ' '
- - = . . . ., . - = > . . .. . -
e . , . --
.= -
.O -
i.
2
. . .a
. t e-
.es E
'e ' I ' ' ' '
I i i l I l l E
=
l !
2 ist ! ! l l i
' 8 P.
a 1
, , . 4
- o .
x.
! I f I
. h n*
- o
- m , e i ,
< j , . . , '
- a. z
- 2 i p. i I '
aw 2 <
. ...n s a>
, - , m
- a. e. n,. ,a.
- e. . . .
o o e o e a e o o a- - - o e o
? 2 ,;,
. 6 8 - s -
{ 74 5 * = .
A 5 5 "& M e I 5,
,d a
- e 1 e 4.,, = 5 s, /- - '
i
%M -
Nwo
,' [l;'r:
I ' i i !
l l
>J ,.j #g% H . O d' i :
r: _!!
i
.i_. . ' '- ; '
jg
- I k.___ - - _ . . .
I
. + j q' '
4 eN
.o : ;, l! -
2T -
l l } <s<
- a. . . ; . - _ . _ . _ . _ . , . . . _ -
l 7,.
i!
q"'(
i O, -_'._:7.
I i i i . an! I i l .
< .l i
.v Y ,/, '
l r , j d,
_._...-.=*
M M 9 e .<. r.
.,, -E> M *
- g d $8 *" # 3 =
O. ---
- T.
- 8. -
."" - 2 e
~
.R < a
. . o J
de 2
- I '
l i l ! l ! i
. w - . . . . .
N I
f__.,.
C ! l
, , l i I'
, i 4
_ - . ._., ^
I g i l l . < ' , e '
l
- o . e. . . n a. e o n e.
- e. e
,. ,. n,. c. .. *= e. - e. g g a . 4 3 O O 3 O O O
- O O- O O O O- O 2 g, ,J c
u ,t t .5e =
}
- 5se iu zs t
J e p O
1
~ ~ ~ ~ ~ - - - ~. ~ _ _. ..
I l
M=#
$ ,9,
-1.
fs? t-
=<
j A, e) . . .. . -
A
~ e.- t _.
a
' h $&%_ N*Q
.6 i . _ .
t -
}* (\[% % ._ .
e f O tb * *
< .p g g O, ;g- -- 1:
7 O
_ - ,, ,. . ..< - . . - = . , , _ .g . . . .g . . ._ . . .
g g a.e
- m. . a. ,
- a. .o n.
- e. a. e. a. .
.m.b O < -
",; o a
t *
- j 3 /
=
J-l
- h. ,
l l l I l l l I * ' i ; i 5 a i !
l l l 1 l l 1
l- . I; i
E
=
a . I ,
8 g
- .t . _ - . . . , -_ _. =
7 u (, i i .
l
,2 3 -
. 6
= i; . -
, =
esi 3 O I'
l 1
< i i 1 , I l .- <
,. .. ._ . . . , . _ _ . .. .. .. . a
. . . . .. ;o = 4
. 6 .
- a. u 4 a
3 z .- e 2 .t o . E e 1. <: t .u .-
e e : e r
- 1. :.
Ee a J d MIT! q } l 1I i l I i' l i l i !u E l 5 [ ~! - 35 h h @ = bc ! '
d !, ; ;
i ,
! .!..; . . ....i. :
._.' 3 --- ...
a l 5 D' ._ i n ,7 !
il l 5 -
W . ,
u 'll r.
J. ..j. v._fw. l .: ; i
=
I %., . Y #
8,.k . %'g '
- 4 i'e~ M N .
/3 5 , i' [ u ll ! , !
_z
._ =
- --- _ w__ , , . . , , . .. ._ .
- - .- - ., , ,. _ r
. - z 1 oz a o n a a 3 s . e ,
s.
, 1 i, i ,
l
.a i
.=
u \ l l
) i i .- <
... . 6.. ,
1
< ji ' i li i i :
l
~,
no l 3
! w. $. U j a 1: 1 "Gt "t i
e i
l O
1 9*9
-- -- -- -. .- --. _w . . - _ . _ . .. -
n "- e M se m - es n
- e ea H e A - 80 g "* 4 - 9e M e e e se o 9 n. e
- n
,e
- m , og- e.a.
- Pe te M N #e M P4 fe N N M 8'9 n s4
g-
[ p. ;<
=gg
.j . . - . . . .,
re s
.. .. ... . . - .. s... - . _ .-.- ,
>. (
n . .
s : ._ . . . . . . .. . . . _<
> )
- 3 .. ., I
=.
- r. .v- . . - . , '*
o s ,
e x'... .
7.-1 3 . . - . . .
! l l 4 i I i i ! I t.i-' I r a b
- l 4 } 4 I ! I I I : I t 1 e
C
- i
,' .. : .i e
]
- i j '
- t j '
t .
E % 6 ! -
+... - .. . W
.4 i 3 a , 6 j l s%
I . l 4 i
, .....'..J. =
u i
g
..a, ,
. m,.
h
- e i ;
f a 3
C
, e
$. w a . . _ . ._ f ,
e g , -- /
, i i.
a 3 N
g, ;
e M.
. . . . .6 . . .. l. . ,' . d g .
U E a g
... . - ~ . , . ' a g
. : i , i e -
0 u
N~
e N
G Z
= :::
o e o e e e. e. eeo- es ,ne .e. o e. eo -N 'C s
- nn w e e n. . n. . e n e,e e. as S
.. . - - es a re n es n nn g e.e t*
s . a t ' . e ,
i i
- i 4
4
< , l , p4 t . .e e ! . e a
. 2 N i i % c. U
> t e j i e
3 $ =
.. _ U o
M e l l
.. . g 3 . .
. I W
., m f
80 . -
w
-- ,--.,-r._. ... .._... .. - =
7 r ' 7 3
a tt . . .i . ' . .I . .e . -,. .'..- .
- a. -.
- i
.e..+
_..- s m
- . .. o O 8 l ..l ! I "
l 4 1 .-.'s . e A Ll Z s i i 2 - - . - Ni .,'.. .
B
. l, %
a ,
~.. . e.. m y - h -l d
g
, . f l w
b,
.. 4 e+.
t O
g i._4 46
- i. t 0
w.
l
- e e. .e e . . b.. . . . .
f I 6
0
n= ---. . . . . e - ,,,, . . ._ _ . - .- . . . ... .,. .,. . . .
- g,, , , -
- s. .- .. . ~-. p _.. , ,
w< = = . . . . - . .
.w..._.-..,.
y 4,. _
> f.
. . . .d . ,. . - . . . . . . . .. . . . .
A s . . . . . . . . . , , . . . ._.
i
> . , ._I_..
-. .. t .. . . . . . .
\- . . _ i . . ... . ..._.
r w ,rs . ._ . .
e .\,.
a ,
..i,... .. . . .
. p. , . . . f.i , . I I ! .,
i . i . . . . =
6 i
.. . .i .-. } }_ )s_4 [ j t J__4.
i . : -
g
_L _J !.i i _ L ..i .i . .i ..: . 7
-
Z g g . M
.. .' . _. . . =
x .
i
_. . . . ..s ..
N! -
.2
. .! ..1 .. , .
. 3 .
-- ,. L_. ,
!l . . - . .
4_ ' g
~ . . ,. . ,
. ..t.....,.
-. 2
+ -
, i . k 4
J, - F
.. : .. -t - .
3 s _ ~. _.
a z
}
., se ;
- , a. >
- s. . 1 7. + - . _.
e , i : - = --
m t -- , i +- , 8,- P. %
- e i I w
=
- 4. es.
u e
~ e 5 b
= -
-~n. a.-. ..-~~...-...
.... - ~ ~
.... ..a.-nn
~~n g
x u
E
= t h i i n
- 1 i i i
}
i ,i. Q .i_ t. s. I 1 .i . i [ .
i IiI
!. .. ,..: I ,e i) . = v 4 i i ,. . . , i : \ , ,.. i .. r t
. ...w. : - , .
, s 1
/.. g ..-
> ; i , , ,
i ,
- *M 'l - t~~~-
j M i
{ ' i i * '.' ? -- 14. . -* 4 - ~
... . ... / ..'. ,,
3o =
l i 4 .\ -i - .
N I I f I
.a
. . .e .[. ,e _ .
= 4
'.'_.......-..'/... 1ii '
i ' , ;
D Q
\f ' I M
_. - -. . .....l . .- - =
b k ,i I
..__.__..k. 3 9
lif3 i (g, ' '
.! \ "E
= - .
v
_ ~ . . . _: u a
!,, . J ; : I . \. . . !
p!_.-- ._.._.. !. _.! ;
i
, , i
, , _I_g. l . _ _ ,
i !
. ' i -t
, g C
=
s.
_' _1 1' l . *. i 1' . . .a. 4 , J-
. 6
=.-
=
. - . - 4 E * \ %l l l J 4 1 I l
' . - f _.%
r
.!i i' . 1' L. .
. i i i -
" i- - , l '!-
. ,I j .,
- i e i c g .
....Y ,. . .
.i +
. . . . . . , hh a ; , . , i
- l 6
.2
. . _ . , 4' .
l
. 4 .a .
- j , 1 4 1
' ' l f r
l O
l S ,
00 .
~L i <tt O
- . : ! /Ns. 5 ;- it -
j\ N
~
1/ 1 1 i;i :
,t,y';. icy y i lj i ; i s i y. "..
.../n \ k
_ _ _ _ _ _ . . _ _ . .N ll '
o, 8
.. / , i.
T i
c l l ,. / ' / .- ' l ,.
g
.\ C; .. 1 t =
U
{ 'k'.
1 J \
.g ,( '
a
~ w N" L,' .
,(
Fp ,: -
P
.m ;_ 3 s,_
a 1
- v1 -
3 i\ i / Q ,; 'g l N" := 3
- =
3 M
_ . 5 5 f .E l * :!$ "
-, 1/j b '
p--)'.-p r: .' 6 ai!- - ! E L.
i n , g g N _ _.
1 3
-,, K
,N
, ,- l I.
l u )I
!/i- C; __
_1 a :
g
- _ is s
^'
( xNlt
.p.
/(l . _ _!G t'
( .
l Q't.'
3
=-
4 l l \.
v N l/
i .
i . .
r.#
I s.N/
O
- ~ ~ ===. - _e .- . . , , ..
a i
t 1
.= -
23: )
11-L
& <E Z L g
_ 5: ,,. 5 n
.e a: =
~ ' ~
, I /I ll l {\ iAl{ '
l V i !!j l
> !,4 N' Np' m i
' j s \
f I i
- m' T ! ;
= _ T. l !,( (. ,m/ ! *,
' h i -
5
. .. ... ..: G' p, . n s O
f_ Ib - , (' /s i
{
-' n N
b
- I 5
m !Y /
,m
'x .i: - - - -
- i l'!
,g/ , -
2g : y I s --
- I l \ i, A i !
b% . i ' s ,*.
't , j
- e
=p
<k d M
- u
- i k .u 2 -
a
. > c 5R 5 1 5 r 2 ::5= c t b5*
e m i/
i \ C))! r ! / I.Q.
t
V . i::i .
i sag s/
/ ,[//ki '\ Nvi 'j
,! / i, l \
' d I j i a T K P l '
'I , /
E u
]\
i f ,
~
R b \
e__k. _
=>
f =
~!
.Y , [f!Af1-
..\
'U j ,/
) \,/I
-~
y ibii l i !! \
- ~,
N O
er i _ _. - -_ _ __ __ _ _ .
f O
3 *2C 1-LLS Ett O
_ - == = .. , ,e = s =
i
%2 / i 4 G ~ii i
( k ,':\) fW 1
4 ?!
s'x u 'O
- o>lun 1 x ] ;w s
- .-
>- i . .
- i I
f NJ ii 1!,
~
lio
! VM. s/ ,
Y"
- 2 i s 3
~
g t ', t <
<! w!i/
lO i ,\ A s
- i: 's y
\o 1 5
1 P
\
i a a
> $ E
, - - 5R -
3 . 32 :5= = [ g "b --
[- g f\ O ' ! lh.l--._ . l$
ll:
U
~~ I d f !
^
'l h
" l j
i '
); .: \,p '"i - ;; y TN l/ n ili, - ;
o { M\, / T :A i
" ~
~
bi '
, ! i
!,! i .
=
1l
~
<!b m
I o /'
l\
/N/lO! j '
'\/
!D.'
l, q, i
i Y t O'
- * * " " * * = * - . . . ,_ _ , _ ,
=
vs lh 9
~"
., a ==s - .
6'ii tD l/ h' '
}
- 4> x o\'l{\,' ') ,,+3 c i
\
3 i's / VM '
!II :: i 1
& R 0! ^o Ll !
,I I 1i m -J !
, ),i, s
- d. J (.
\(J\ ; I . c e.
\/ ,\\,,
=
.=t-
< -<_U lj
!!/ \
O I\c. \,I :
%v ' .i
- a i G s -
=.a . w==>= : M
- - - - - ,... ==, >
3 t
% lX O! \ l i i !
O Nc ;' W/L
^~ ^
I sx / &w> f\\ u , '_
o jix on e n!
4 o
3-- m(
i .
l s i- -
e sI j' E?d.i3
=
- i' c .ii.
V- e
, i j j . ,)\ 1 1 M, , -l, V i
a ,
or( s .:
4' ^- ,N a
,s l ,
,i /g'72 ,
. , e, ,. . ,- .
= ,'
' ;\ , , j , e;'
< i,.lll i
- I T =*i--q' i l i .
. 52 ..5 2 :55 : .,-
TT-Il /l !fr l l ri -
~
I 3- I 2
' i '
m I ll\ l i rl -Jml is, l : ! ! ,
it s -
f]rY iin!
- -l i i l J 'g l
! _t.- . I i
- o'#4 [i V ; v
^ : .
! l! W ; J i e '
= i i l k ,' j h :' i.
3; . l i..,lI ! -
4 i 1 -l l 1 ,
i e 2 ~
- ut t 5
- a
_ .52. . . . 5 2 :55 : yy ~
" m!il I il li /l I
l ii-r l
a I
J- l, ,l"'
i e,.
5
[, . v
- 2
= l l l~Is j, l -,, i i
- u i .'
..lI!fs,' h! lJ l
g --- - - -
j
. j B i; @
u i. ,,m i j ,'m: ; )'i n< ,n e i~, + - . .:
., I I\i
! : M qi j i
'~ _ , . . _ _ _ ;
< a:
si l u. i i
j 2,
,q iv i I
8
_ .52. . . . 5 2 : !! =
x
~% lal l --
p - O I. j P l,
! , , I :ri I l 1 .,3r l
- : i .
l iii)l j_Nll hv i~
l.!-
.. _1 y j l
- I '^ l , R
,I -e i ! We ,
l i .
, ; l ji l<
F9 ; ! .,,,.' " ' ~~
- N f I -
.. ii i ." i l l / . I i O
. . . . . --. = = = = = - . . . . . . . . , . . _ , . ..
i
Report 510 BREWER ENGINEERING LABORATORIES,/NCORPORATED D6 M
=e APPENDIX III QUALITY ASSURANCE O l l
l t
+ -emme. . - - , ,.
N""' ha 6
mm *m memm' l
l O i
~
l
Report 510 Appendix III ,
BREWER ENGINEERING LABORATORIES./NCORPORATED
'./ i QUALITY ASSURANCE INTRODUCTION.
The purpose of 'his document is to describe the quality control procedures that are used t; assure proper calibration of the inctruments and sensors used in the cenduct of concrete primary reactor containment structural integrity testo.
BASIS OF CALIBRATION.
Rebar Stress Data: The strair gage sensors applied to the rebars are certified by lot sampic testing to ASTM-E251-67 specifications by the ,
q manufacturer . The rebar stress printout instrumenation, BLH Series _
'd 6000; three-hundred-twenty-channel, computer-based, dab-acc ticition system, has built-in self-calibrating circuitry and is further calibrated by BEL using a 10 point milivolt per-volt calibration which is directly related to a strain (microinch per-inch) calibration. The direct rebar strain readout instrument, BLH Model 1200 strain indicator, is calculated by BEL using a 10 point millivolt per-volt calibration'shich is directly ___
related to strain (microinch per-inch) calibretion. Rebar stress is calculated based on measured strain values and material properties provided by Gilbert Associate's, Inc. ~-
Liner Stress Data: The strain gage sensors applied to the containment _ . _ _
liner are certified by lot sample testing according to ASTM-E251-67 specifications by the manufacturer. The DLH Series 6000 computer is programmed to calculate and print out the principal stresses, shear --
stress, and angle for the liner rosette gages.
Ov Signal attenuation due to long Icad wires is calculated to 25 feet for L
" Report 510 Appendix III BREWER ENGINEERING LABORATORIES./NCURPORATED.
v each strain gage and the proper correction factor is entered into the computer prior to the start of testing.
Each LVDT or DCDT transducer is calibrated on site prior to field installation. Each transducer is placed in a special holder, and the movable plunger is mechanically zerced at center position against a
_ previously calibrated micrometer barrel head. The previously calibrated readout instrument sensitivity b adjusted to read ,the transducer full-scale .._ _
_ output to three decimal places. The input voltage to each transducer is checked prior to and after each calibration. Each transducer is calibrated
- over a range of 500 mils in-increments of 100 mils. A BEL Certificate
, of Calibration is filled out for cach transducer and a calibration data .
sticker is affixed to each transducer indicating date of calibration, due f] _
date, serial number, and technician's initials. -
A mil per-milivolt constant for each LVDT or DCDT is entered into the computer so that printout is direct in mils.
The optical micrometers used on the jig transits and precision levels are calibrated on site prior to the start of testing. Two previously calibrated micrometer stands are located on a tangent line 10 feet and 30 feat from the optical micrometer being c_librated. A 0.010 c:oss-hair spacing target R
~
is attached to the barrel head of the micromete: at 10-foot spacing and I
a 0.030 cross-hair spacing target is attached to the barrel head of the micrometer at 30 foot spacing. The optical micrometer is set at zero aligned on the cross imira of the two targeta. "'he two targets are then diapinced i 100 mils in 25 -mit increments. At cach increment
(~] the cross hairs are realigned on each inrget m;ing the optical micrometer.
V I
-- Report 510 Appendix III n BREWER ENGINEERING LABORATORIES./NCORPORATED The optical micrometer setting for cach target at cach increment is recorded on the calibration sheet with the micrometer serial number, date, and initials of the person performing the calibration.
1 The procedure for actting " fore" and "back" targets for scale reading, using jig transits, is as follows:
- a. Level instrument (jig transit) and position jig base on a tangent line that will intersect scales at or near the mid point of all scales to be read.
- b. Plunge down and locate a target in front of the scales.
- c. Continue to plunge the scope all the way down and back up l
for a back site and set a second target behind the transit.
p d. Targets should have the appropriate spacing for the distance to the target 0.010 for 10 feet, 0.040 for 40 feet, etc.
The procedure for setting " side" targets for precision level readings is as follows-
- a. Level the instrument (precision level) and adjust the " lift" so
- as to intersect the scale to be read at its mid point.
- b. Swing left or right of scale and locate a target.
- c. Continue to swing 1cvel around and locate a second target L behind the instrument. At 1 cast one target should be
! approximately 30 feet from the precision level.
l
- d. Targets should have the appropriate spacing for the distance to the precision level 0.050 for 10 feet, 0.040 for 40 feet, etc.
/~'s G/
N E _ _ _ _