ML19305E079

From kanterella
Jump to navigation Jump to search
Ecological Monitoring Rept 1979.
ML19305E079
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 04/17/1980
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML19305E078 List:
References
NUDOCS 8004220304
Download: ML19305E079 (203)


Text

..

E I

ECO:iOG CA;. S J::ES OF KE I

g CONN:EC";C_ R V:ER ~

g VERNON/VEAMON

I I

I REPORT IX JANUARY 1979 - DECEMBER 1979 I

I .

I I

PREPARED FOR

! VERMONT YANKEE NUCLEAR POWER CORPORATION BY ll AQUATEC, INC. -

l SOUTH BURLINGTON, VERMONT

[

1980 I c[h g

I ECOLOGICAL STUDIES OF THE CONNECTICUT RIVER REPORT IX VERMONT YANKEE NUCLEAR POWER CORPORATION TABLE OF CONTENTS

1. INTRODUCTION AND

SUMMARY

l

2. CONNECTICUT RIVER DISCHARGE 9
3. RIVER TEMPERATURE 13
4. WATER QUALITY STUDIES 59
5. PLANKTON STUDIES 129 5.1 Phytoplankton Studies 129 5.2 Zooplankton Studies 143 I 6. ENTRAINMENT STUDIES 155 6.1 Phytoplankton and Zooplankton Entrainment 155 6.2 Ichthyoplankton Entrainment 163
7. BENTHIC FAUNA STUDIES 167
8. FISH STUDIES 177 I 8.1 Fish Impingement Studies 177 8.2 Resident Finfish Studies 180 '

LITERATURE CITED 203 I

~

I I

m

LIST OF FIGURES I 1.1 Vermont Yankee Power Level Histogram, 1979 2 1.2 Vermont Yankee Sample Stations, Connecticut River 4 2.1 Connecticut River Discharge, Vernon, Vermont, 1979 10 I 3.1 3.2 Temperature, Station No. 3, 1979 Temperature, Station No. 7, 1979 14 15 4.1 Dissolved Oxygen, Station No. 3, 1979 64 4.2 Dissolved Oxygen, Station No. 7, 1979 65 4.3 Conductivity, Station No. 3, 1979 66 4.4 Conductivity, Station No. 7, 1979 67 I 4.5 4.6 4.7 Turbidity, Station No. 3, 1979 Turbidity, Station No. 7, 1979 pH, Station No. 3, 1979 68 69 70 I 4.8 4.9 pH, Station No. 7, 1979 Comparison of Observed Station 3 Sodium Ion Concentrations with Station 3 Concentrations 71 Predicted from Preoperational/ Closed Cycle Data, I Stations 7 and 3, 1969-1974 4.10 Comparison of Observed Station 3 Sulfate Ion 72 Concentrations with Station 3 Concentrations I Predicted from Preoperational/ Closed Cycle Data, Stations 7 and 3, 1969-1974 4.11 Comparison of Observed Station 3 Chloride Ion 73 Concentrations with Station 3 Concentrations I Predicted from Preoperational/ Closed Cycle Data, Stations 7 and 3, 1967-1974 74 4.12 Comparison of Observed Station 3 Alkalinity I Concentrations with Station 3 Concentrations Predicted from Preoperational/ Closed Cycle Data, Stations 7 and 3, 1967-1974 75 5.1 Plankton Sample Station Locations 130 5.2 Seasonal Phytoplankton Distribution, Station No. 7 - Fonitor 134 5.3 Seasonal Phytoplankton Distribution, Station No. 3 - Monitor 135 5.4 Comparison of Observed Monitor 3 Phytoplankton Count I 5.5 with Monitor 3 Count Predicted from Preoperational/

Cicsed Cycle Monitor Data of 1970-1974 Seasonal Zooplankton Distribution, Station 137 I 5.6 No. 7 - Monitor Seasonal Zooplankton Distribution, Station No. 3 - Monitor 146 147 5.7 Comparison of Observed Monitor 3 Zooplankton Count I with Monitor 3 Count Predicted from Preoperational/

Closed Cycle Monitor Data of 1970-1974 149 I V I

I LIST OF FIGURES (CONT'D) 7.1 Benthic Fauna Sample Station Locations 168 I

j 8.1 Fish Sample Stations, Connecticut River 181 8.2 Resident Fish Species. Composition by Weight, l 1979 Survey 191 8.3 Resident Fish Species. Composition by Number, 1979 Survey 191 8.4 Resident Fish Species. Percentage Composition by Weight 192 8.5 Resident Fish Species. Percentage Composition E-by Number 5 193 8.6 Age-Growth Graphs - White Perch 195 8.7 Age-Grouth Graphs - Yellow Perch g 197 8.8 Age-Growth Graphs - Walleye 199 E' 8.9 Age-Growth Graphs - Smallmouth Bass 201 I:

LIST OF TABLES .

3.1 Temperature Data, Station No. 3, 1979 20 g.

l 3.2 Temperature Data, Station No. 7, 1979 32 3.3 Differences in Hourly Mean Temperatures in 'F E at Monitor 3 44 Frequency Distribution of Rate of Change of 3.4 Temperature at Monitor 3 During Open Cycle E E.

Operation, 1979 17 3.5 Differences in Hourly Mean Temperatures in 'F g Between Monitor 3 and Monitor 7 51 3.6 Frequency Distribution of Differences in Hourly E 1

Mean Temperatures Between Monitor 3 and Monitor l 7 During Open Cycle Operation, 1979 19 4.1 Dissolved Oxygen and Conductivity Data, Station No. 3, 1979 76 4.2 Dissolved Oxygen and Conductivity Data, Station 3 No. 7, 1979 E 88 4.3 Turbidity and pH Data, Station No. 3, 1979 100 g 4.4 Turbidity and pH Data, Station No. 7, 1979 112 4.5 Results, Water Quality Analysis, 1979 124 3 4.6 Summary of Statistics from Linear Regression l Analysis of Preoperational and Closed Cycle Data l at Stations 7 and 3 for Four Parameters 61 5.1 Dominant Phytoplankton Species, 1979 132 5.2 Comparison of Observed Monitor 3 Phytoplankton E Count with Monitor 3 Count Predicted by Regression E Analysis of Low Range Preoperational/ Closed Cycle Monitor Data, 1970-1974 136 vi

u I

I LIST OF TABLES (CONT'D)

I 5.3 Checklist of the Phytoplankton of the Connecticut River near Vernon, Vermont, 1979 140 5.4 Mean Percentages and Percentage Ranges of Diatoms, Flagellates, Green and Blue-Green Algae, 1979 139 5.5 Dominant Zooplankton Species, 1979 144 I 5.6 Comparison of Observed Monitor 3 Zooplankton Count with Monitor 3 Count Predicted by Regression Analysis of Preoperational/ Closed Cycle Monitor Data, 1970-1974 148 I Checklist of the Zooplankton of the connecituct 5.7 River near Vernon, Vermont, 1979 152 5.8 Mean Percentages and Percentage Ranges of Protozoa, Copepoda, Cladocera, and Rotatoria, 1979 151 6.1 Summary of Results, Vermont Yankee Entrainment Studies, 1979 158 6.2 Percent Changes in Live Plankton Concentrations Between Entrainment Intake and Discharge Samples 160 6.3 Calculated Percent Changes in Live Plankton Concentrations cf River Effected by Entrainment 162 I 6.4 Vermont Yankee Ichthyoplankton Entrainment Studies, 1979 164 6.5 Vermont Yankee Ichthyoplankton Studies. Larval I Concentrations in Connecticut River Near Vermont Yankee Intake Structure 166 7.1 Checklist of the Benthic Fauna of the Connecticut River near Vernon, Vermont, 1979 172 7.2 Comparison of Number of Samples and Number of Genera of Benthos Collected by Ekman Dredge 169 7.3 Summary of Results of Analysis, Benthic Fauna Samples, 1979 170 8.1 Summary of Weight and Total Length Extremes of Fish I, Species Impinged During Open Cycle Operation, 1979 178

, 8.2 Summary by Month of Number and Weight of Fish Species

!E Impinged During Open Cycle Operation, 1979 179 g 8.3 Summary of Fishing Effort and Results, 1979 182 8.4 Fishes of the Connecticut River in the Vicinity of Vernon, Vermont, All Collections, 1979 185

, 8.5 Fishes of the Connecticut River in the Vicinity of l Vernon, Vermont, All Collections North of Vernon Dam, 1979 186 I 8.6 Fishes of the Connecticut River in the Vicinity of Vernon, Vermont, All Collections South of Vernon Dam, 1979 187 8.7 Frequency Distribution of Fish Species by Total I Length, 1979 8.8 Age-Growth Data - White Perch 188 194 8.9 Age-Growth Data - Yellow Perch 196 I 8.10 Age-Growth Data - Walleye 8.11 Age-Growth Data - Smallmouth Bass 198 200 vii

us . . _ _ - - - -,_ - ----..,.-.----._n_

l I

I

, I I '

l  !

1 I secTron i I

I '"'" " " ^" """"^"'

I I

I I

. I I

I I

I

~~

I .

I

1. INTRODUCTION AND

SUMMARY

I Vermont Yankee Nuclear Power Corporation's generating station I operated at an average capacity factor of 77.7% in 1979. Power production was interrupted for two weeks in turch to replace some faulty fuel rods and six weeks in late September to early November for annual refueling. Power was generated during 7195 hours0.0833 days <br />1.999 hours <br />0.0119 weeks <br />0.00274 months <br /> of the year ( 8 2.1%) on 307 days. The open cycle mode of condenser cooling was used during 177 days of operation; cooling towers were used in closed' cycle cooling on 130 days of operation. The average power level during these 307 days of operation was 94.6%.

Figure 1.1 is a graph of the plant's record of power production in 1979.

In 1978, Vermont Yankee's NPDES permit, issued by the Vermont State Agency of Environmental Conservation, the State of New Hampshire's discharge permit, and the Technical Specifications of Vermont Yankee's operating license were all amended to permit open cycle operation, with certain thermal limitations, in the period October 15 through May 15. Vermont Yankee operated in 1979 for the first full year under these amended conditions. This is the ninth report in a series (Webster-Martin 1971, Aquatec 1973, 1974, 1975, 1976, 1977a, 1978, 1979a) that have reported the environmental studies conducted under the conditions of Vermont I Yankee's discharge permits and the non-radiological Technical Specifications.

Eight sampling stations in the Connecticut River near Vernon, Vermont were used in earlier studies. The approximate locations of these stations are shown in Figure 1.2. Collections were made at only six of these stations in the 1979 studies. The locations of these six in river miles north and south of Vernon Dam are shown below. ,

VERMONT YANKEE POWER LEVEL HISTOGRAM 1979 c ,,

j 7- 'I o , - -

io / in i 12 MONTH FIGURE I.I

I I Station No. Location Relative to Vernon Dam 2 4.70 miles south 3 0.65 miles south 4 0.55 miles north 5 ,

1.25 miles north I 7 8

4.25 miles north 8.70 miles north

SUMMARY

OF RESULTS Water Quality Studies In 1971, the annual peak river flows of spring run-off oc-curred in March, earlier than is usually the case. Mean Connecticut I River discharge in March was more than double the March mean dis-charge observed in the years 1965-1978. River flow rates diminished rapidly after the March maximum. Mean flow rates for all subsequent months of the year were below monthly averages of the period October 1964 through 1978.

The relatively low river flows of the last eight months of the year resulted in some monthly temperature records that exceeded those observed in earlier years of temperature monitoring. The May mean temperature at the upstream monitoring site was greater than the previous maximum in 1975. Because of this unusually rapid warming of the river, Vermont Yankee reverted to closed cycle cooling at 0145 on 13 May, two days before the date required by discharge permits and the operating license.

Record maximum hourly temperatures occurred both upstream .nd downstream of Vermont Yankee in August, at the downstream monitor I location in January, and at Monitor 7, upstream, in December.

I Vermont Yankee's operation in 1979 in the open cycle mode of condenser cooling was within the three thermal criteria imposed upon such operation. These conditions require that Vermont Yankee's discharge not effect a temperature at Monitor 3 greater than 65*F; the maximum hourly mean temperature observed there during open cycle I

I I

i VERMONT YANKEE l

s /.

h y SAMPLE STATIONS conn. e,vEs I CHESTERFIELD i

n

= '

SCALE IN MILES i s-

~__ eu.

BRATTLEBORO

, l l ~~_ ,_

GUILFORD o

\  !

I i t g -

.,' oo " NEW H AMPSHIRE l. .

l t s ., 5 g-I ygnuon  %

%, HINSDALE i VERMONT YANKEE Q, g NUCLEAR PLANTg L

=- g  :

VERMONT 3 g 2 g

' '* 2"3 4 .. ,

i

.!I l in E

~ o '

Moss,CeUse"$

I FIGURE 1. 2

_4_

I  !

I operation was 63.0*F on May 12. The maximum allowable rate of temperature change between successive hourly average temperatures at Monitor 3 is 5'F per hour; the maximum observed was 2.7*F per hour in February and December. The maximum allowable increase in river temperature effected by Vermont Yankee's discharge is 13.4*F; the maximum' difference observed between downstream Monitor 1 temperature and upstream Monitor 7 temperature was 10.2 F on inuary 1.

Some new record monthly maximum, mean, or minimum values for dissolved oxygen, conductivity, turbidity, and pH were observed also in 1979, but all exceeded those previously observed by small absolute amounts.

Grab samples, collected once each quarter in 1979 at the two monitor stations and from Vermont Yankee's cooling water discharge, were analyzed for sixteen water quality parameters. The concentra-tions of all parameters were found to be within previously observed ranges except two. The chloride ion concentrations at Station 3 in February and at both river locations in August were higher than in prior years of study. The total phosphate ion concentration in I the May sample at Monitor 3, downstream of Vermont Yankee, was much higher than had been found in river samples since studies were begun in 1967. High solids concentrations and turbidity, relative to either the plant discharge or the Monitor 7 samples, were found also. The high concentrations of these parameters were undoubtedly caused by the work on construction of a fish ladder at Vernon Dam that was begun in early May.

Biological Studies Diatoms were again predominant, as in all prior years of study, in the phytoplankton samples of 1979. Also, as in former years, the more commonly observed species of diatoms were Asterionella formosa, Fragilaria spp., Melosira italica, and Tabellaria fenestrata; of flagellates were Dinobryon spp.; of green algae were Pediastrum spp.; and of blue greens were Oscillatoria spp. Small numbers of three species that had not been found in earlier Vermont Yankee I studies were observed in 1979.

I Concentrations of phytoplankters in the late summer and early I

fall samples at both the upstream and downstream monitor stations were low relative to mean counts observed in the years 1970-1974.

At the downstream station, Monitor 3, phytoplankton counts were above the 1970-1974 means of January through April, June, July and December. For all these months, though, the counts were within two standard deviations of those means. The July count at Monitor 3 was greater, however, than that predicted by application of a statistical analysis of 1970-1974 data to the July upstream count.

One downstream zooplankton concentration observed in 1979 was also greater than that predicted by a statistical analysis of 1970-1974 zooplankton monitor data. This was the Monitor 3 zoo-plankton count of the March sample, collected during Vermont ,

Yankee's shutdown for replacement of faulty fuel. IIigher counts than the means of 1970-1974 were also found in May at Monitor 7, in February at Monitor 3, and at both stations in March and October. Zooplankton concentrations in summer months were low relative to former years.

Rotifers constituted at least fifty percent cf the majority of the zooplankton samples collected in 1979. Those most commonly observed were Polyarthra sp., Synchaeta sp., Keratella cochlearis, and Philodina sp. Protozoa, particularly Vorticella sp., were present commonly in the samples of winter and fall months. Copepods were present in samples of all months of the year.

Seventy-one genera of macroinvertebrates were found in the thirty-eight benthic fauna samples collected in 1979, twenty-eight collected by Ekman dredge and ten by IIenson trap. The number of genera found in Ekman dredge collections at three of the four sample stations used was greater than in earlier years when a similar number of samples had been collected there. Caddis fly .

, and chironomid larvae were predominant in most of the spring and

( summer samples; planarians were the more commonly observed organisms in some fall samples. These three forms have been observed to con-1

! stitute the major portion of samples in past years.

I l -s-I

I All fish impinged during open cycle operation in 1979 on I Vermont Yankee's traveling screens at the intake structure were collected, identified, weighed, and measured. Over 50% of the fish impinged in 1979 were of three species - pumpkinseed, spottail shiner, and rock bass. No species were impinged that had not been observed in earlier Vermont Yankee studies. The daily mean numbers and weight of fish impinged in each month of open cycle operation in 1979 were all within two standard deviations of the daily means observed for those months in the five phases of special open cycle testing in 1974-1978.

In 1979, 2461 fish were taken in 66 collections made by trap -

net, gill net, and seine haul. Seventeen fish species were collected, of which sixteen were found in collections north of Vernon Dam and twelve were found in samples taken south of the dam. ,

The collection of over a thousand juvenile white suckers in seine hauls in 1979 increased the percentage by number of this species in the 1979 catch to a much larger percent than had been observed in surveys of prior years. A concomitant decrease in number percentages of other species resulted in record lows for smallmouth bass and rock bass. However, all species compositions by weight in the 1979 collections were within percentage ranges of earlier surveys.

The age-growth data of 1979 for yellow perch, white perch, and smallmouth bass show rates of growth for these species similar to those observed in 1969-1973, before Vermont Yankee began opera-tion. For walleye, however, the 1979 data indicate, as did the data of 1977 and 1978, an enhanced growth rate relative to the 1969-I 1973 data. But this indication is tenuouc, for the sample size in 1979 was small, as it also was in 1977 and 1978.

In conclusion, the 1979 studies have not developed any cvidence that Vermont Yankee's discharge of heated condenscr .ooling water into the Connecticut River has effected any adverse impacts on either the water quality or the aquatic biota of the river.

I l o

I  ;

i 9

SECTION 2 i

I l

I l CONNECTICUT RIVER DISCHARGE I l t

I '

I I ,

r i

I i

I i 1I I

,I I

'I

lI l

l t

2. CONNECTICUT RIVER DISCHARGE Connecticut River discharge in 1979 at Vernon, Vermont, computed from the records of the Vernon Hydroelectric Station at Vernon Dam, is summarized in Figure 2.1. The mean flow rate, the maximum daily average flow rate, and the minimum daily average flow rate are shown for each month.

Annual maximum discharge at Vernon usually occurs in April.

In 1979, however, maximum spring run-off flow rates occurred in March. Maan discharge in that month was 33,590 cfs, more than two times the March mean observed in the years 1965-1978. The maximum daily mean discharge in 1979 was 69,060 cfs on 26 March; the maximum hourly discharge of 70,840 cfs occurred on 25 and 26 March.

River flow rates decreased rapidly after the peak flows of March. Mean discharges for all months after March were smaller than the monthly means for the period October 1964 through 1978 -

the period for which river flow data have been given in previous reports of this series. In July and August, the mean flow rates of 1979 were 52% and 48% smaller than the means for those months in 1965-1978. The only month, other than March, in which the 1979 mean flow was greater than tne mean of 1965-1978 was January.

The extremes of monthly flow rates observed in 1979 were not I as great as have been observed in the years 1964-1978. The max mum daily average flow of each month of 1979 was smaller than a prm.*ic,usly observed maximum for that month, and the minimum daily avarage flow was larger than a minimum observed previously in 1964-1978.

T

l 1

  • ~

CONNECTICUT RIVER DISCHARGE VERNON, VERMONT l' !

1979 l 70 - ,

\ l' 60 - I l\

/ \ l\

60 - t

.\

l \

8 i s a e t

\ E; x 40 - i m j '

  • +-

o I  ;

I

. l I

30 - I I

\-

li  !

k 20 -

\ '

\ / N '

\! , -

\ / ll

,0

\'< ,/' ,\, \ .

/

1 i

/ ', / ~.

N -

.i

\

.,%./ /./

.., l

~~,,.

l O , , i i i i i i i 1 2 3 4 5 6 7 8 9 10 ll 12

',t0NTHS M O NTHLY MAXIMUM = = - - - = =

MON TH'LY AVER AG E 3 FIGURE 2.1 MON THLY MINIMUM ====--

I When river flow rates are less than 10,000 cfs the Vernon Hydroeletric Station is operated as a peak load facility. Often at such times, only one hydroeletric unit is utilized during off-peak hours. Operation of this one unit meets a condition of the operating licenses of the Vernon Station and of Vermont Yankee - that a sustained minimum discharge of at least 1200 cfs be provided.

Periods of minimum flow occurred in all months of 1979 except April and on all days of the months February, July, and August.

On 80 days of the first six months of the year, 85 periods of minimum flow occurred in a total of 788 hours0.00912 days <br />0.219 hours <br />0.0013 weeks <br />2.99834e-4 months <br />, 18.1% of the time.

The duration of the minimum flow periods in these months ranged between 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and 34 hours3.935185e-4 days <br />0.00944 hours <br />5.621693e-5 weeks <br />1.2937e-5 months <br />; the mean duration was 9.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />.

In the latter half of 1979, minimum flows were recorded during 2061 hours0.0239 days <br />0.573 hours <br />0.00341 weeks <br />7.842105e-4 months <br />, 46.7% of the time, of 155 days. Minimum flow periods occurred 167 times with durations ranging from 1 to 65 hours7.523148e-4 days <br />0.0181 hours <br />1.074735e-4 weeks <br />2.47325e-5 months <br /> about a mean of 12.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />.

I I

I I

i f

I i l  :

i i

t

{

I I

i e

SECTION 3 i I

RIVER TEMPERATURE I

I i

i I

6 r

t 1

I l

1 l

t . . _ - - . . - . - - - . . . . - . . . . . . . . - _ - - , . . . . - . - . - - , . - . - - . , , - - . - - . - . . - ,

I i

3. RIVER TEMPERATURE Temperatures of Connecticut River water are measured continu-ously by two automatic water quality monitoring systems, installed in buildings on the Vermont shore of the river at Sample Station 7, upstream of Vermont Yankee, and at Station 3, downstream of the plant. The temperature data of 1979, reduced to hourly,  ;

daily, and monthly means, are shown in Tables 3.1, for Station No.

3, and 3.2, for Station No. 7, at the end of this section of the report. These data are summarized graphically in Figures 3.1 and 3.2. The maxima and minima in those figures are hourly means.

Monthly mean temperatures observed in 1979 at the downstream location, Station 3, were all within the extremes that had been previously recorded since monitoring began there in 1968. At the upstream location, Station 7, the mean May temperature, 57.5'F, was higher than any mean observed in that month since temperature data collection began there in 1970. The previous high for May at Station 7 was 57.2'F in 1975.

Record maximum hourly temperatures were observed at both j sample stations. At Station 3, the Jannary maximum of 42.2'F was greater than the previous January maximum of 41.7'F observed in 1977 and the August maximum of 84.9*F exceeded the previous August high of 81.5'F in 1973. The August maxirum at Station 7, 81.7*F, was also higher than the previously observed August maximum there

--79.7'F in 1975. A new high, 41.7*F, occurred also in December at Station 7. The previous December Station 7 high was 41.0'F in 1975.

I TEMPERATURE STATION N O. 3 or oc 1979 90 -

- 30

/ \

80 -

f \

/ \

/jf

\

! / i\

70 - / P .. I

\

- 20 / / N \

! / / 's \

1

, / / 's \

g / / 's \

l 60 - / * 'g j\

/ / \  ! N

/ / 's \

/ / '\ i \

/ / - \

50 -- 10 7 ,/ \ g

/ e

! \.' \

/ l ,/ ~,~ \

/ \ j x 1

.% / N 40 -  %" " ""

t#

!e 'g s

'/

/,/

\

\

" ' ' ~ " ~ ' ~~~~~ #

32 --O 1 i I I I ii i i 1 2 3 4 5 6 7 8 9 10 Il 12 MONTH MONTHLY MAXIMUM ----- .

MONTHLY AVERAGE FIGURE 3.1 MONTH LY MINIMU M ~~-------

m m m m TEMPERATURE STATION N O. 7 ar oc l979 90 -

- 30 l

80 - j# g

/ \ '

/ \.

N

/

/  !\

7 - / \

_ zo

/

/! /,f - --_ s,\

\

l / '/ * 's  : \,

H / 's -l \

Y 60 - / / \\ \

i

/ # \

/ \ \

/

/ s'/ \

\-

\ !

\

so -- so / . /"/ \

\

/ / \. N j

/* N

/

/

'.N.

N \$

40 - f ,/ N,

/ /

l

\

/ / .

's

/ s/, ~

\'

32 -0 - /----*,"# i i ,

t  !

I I I I o I I i 11 1 i 2 3 4 5 6 7 8 9

  • 10 II 12 MONTH MONTHLY MAXIMUM -----

MONTHLY AVERAGE FIGURE 3.2 MONTH LY MINIMUM --~~-----

In 1979, Vermont Yankee operated in the open cycle mode of condenser cooling in the periods January 1 through May 13 and g November 2 through December 31. Such operation is permitted in E' the period October 15 through May 15 under thermal effluent limitations set forth in Vermont Yankee's amended NPDES permit and the amended Technic &l Specifications of its operating license.

These criteria, which define the maximum allowable thermal impact on the Connecticut River, are as follow:

A. The temperature at Monitor 3 during open cycle operation shall not exceed 65*F; B. The rate of change of temperature at Monitor 3 shall not exceed 5*F per hour; and C. The increase in temperature above ambient at Monitor 3 shall not exceed 13.4*F. s The temperature records at Stations 7 and 3 showed that l

these thermal limitations were not exceeded during open cycle operation in 1979. The maximum hourly average temperature observed at Monitor 3 was 63.0*F on May 12. The maximum rate -

of change of temperature at Monitor 3, the difference between successive hourly average temperatures there, was 2.7 F/ hour.

A -2.7*F/ hour was recorded in February; a +2.7*F/ hour in December. Tabulations of the hourly rates of change in Monitor 3 temperatures during the months of open cycle operation are given in Table 3.3. These data are summarized, for the dates of open cycle operation, as a frequency distribution in Table 3.4. The modal, median, and mean rate of temperature change during open cycle operation in 1979 was 0.0*F.

The hourly mean Monitor 3 temperatures (Table 3.1) minus the corresponding Monitor 7 temperatures (Table 3.2) are shown for the months of 1979 open cycle operation in Table 3.5. These data are reduced to a frequency distribution of the temperature differences, for the dates of open cycle operation, in Table 3.6.

The greatest difference observed during 1979 open cycle operation was +10.2*F on January 1 from 1700 through 2000. The modal and median range of differences during open cycle operation was +1.6 I

TABLE 3.4 FREQUENCY DISTRIBUTION OF RATE OF CHANGE OF TEMPERATURE AT MONITOR 3 DURING OPEN CYCLE OPERATION 1979 Rate of Temperature JAN l-17 3-30 1-13 2-30 Change FEB DEC TOTALS MAR APR MAY NOV

'F/hr

-2.7 1 1

-2.6 2 2

-2.5 1 3 1 5

-2.4

-2.3 3 3 I -2.2

-2.1

-2.0 2

2 4

2 1

1 7

5

-1.9 2 2 2 1 7

-1.8 1 3 2 6

-1.7 1 5 1 7

-1.6 4 1 5

-1.5 5 3 1 1 1 11

-1.4 2 3 1 1 7

-1,3 3 1 1 1 3 9

-1.2 3 8 2 1 2 16

-1.1 5 7 2 1 3 18 I -1.0

-0.9

-0.8 8

5 7

2 7

6 1

1 1 2

4 5

3 4

5 16 22 23

-0.7 7 8 1 10 6 32 I -0.6

-0.5

-0.4 5

7 12 13 9

15 1

1 6

1 1

1 2

3 7

17 7

7 30 30 32 83

. -0.3 18 21 5 7 1 16 35 103

-0.2 32 60 5 17 17 61 87 279

-0.1 101 104 87 97 63 153 150 755 0.0 275 105 199 210 95 155 182 1221

+0.1 87 41 55 134 69 80 83 549

+0.2 30 33 14 31 26 45 24 203

+0.3 22 24 3 11 14 25 22 121

+0.4 20 31 7 4 3 26 20 111

+0.5 16 48 2 1 2 17 10 96

+0.6 19 27 5 1 9 12 73

+0.7 9 12 1 8 9 39

+0.8 8 13 1 1 5 23

+0.9 5 13 2 6 .6

+1.0 7 2 2 .1

+1.1 3 1 2 7 L3

+1.2 4 2 1 1 8

+1.3 5 2 3 LO

+1.4 1 2 1 4

+1.5 2 2 3 2 9

+1.6 1 5 1 2 9

+1.7 3 1 1 5

+1.8 2 1 1 3 7

+1.9 1 1 2

+2.0 2 2

+2.1 1 3 1 5

+2.2 1 1

+2.3 1 1

+2.4 1 1

+2.5

+2.6

! +2.7 1 1,

- +2.0*F and the mean difference was in the +2.1 - +2.5'F range.  :

The mitigatory effect of high river flows on the impact of Vermont Yankee's discharge on Connecticut River temperature is evident in the statistics of both frequency distribution tables.

The ranges of rate of temperature change (Table 3.4) and of the AT effected in the river (Table 3.6) by Verraont Yankee's discharge i are much smaller during the months of spring run-off than in the months of lower river flows.

f I

I I

1 1

I TABLE 3.6 FREQUENCY DISTRIBUTION OF DIFFERENCES ,

IN HOURLY MEAN TEMPERATURES BETWEEN MONITOR 3 AND MONITOR 7 I DURING OPEN CYCLE OPERATION 1979 Hourly Mean 1-17 3-30 1-13 2-20 AT(*F) JAN FEB MAR APR MAY NOV DEC TOTALS

-0.5 - -0.1 7 7 0.0 2 2 ,

+0.1 - +0.5 156 10 13 18 1 198

+0.6 - +1.0 57 120 65 111 44 39 436

+1.1 - +1.5 124 29 4 141 110 73 87 568

+1. 6 - +2 . 0 229 177 58 219 50 156 108 997

+2.1 +2.5 126 140 24 71 11 107 129 608

+2.6 - +3.0 33 79 19 9 78 139 357

+3.1 - +3.5 36 62 8 56 75 237

+3.6 - +4.0 24 52 4 28 47 155

+4.1 - +4.5 23 35 5 23 32 118 ,

i

+4.6 - +5.0 19 30 3 17 19 88

+5.1 - +5.5 13 20 2 15 15 65

+5.6 - +6.0 11 20 4 12 11 58

+6.1 - +6.5 6 17 1 13 10 47

+6.6 - +7.0 8 6 6 13 33

+7.1 - +7.5 2 3 1 10 16

+7.6 - +8.0 2 4 3 9

+8.1 - +8.5 5 3 3 11

+8.6 - +9.0 5 3 8

+9.1 - +9.5 11 11

+9.6 - +10.0 7 7

+10.1 - +10.5 5 5 l

l ll

TABLE 3.1-1 AVERAGE HOURLY TEMPERATURE IN 'F VERMONT YANKEE SAMPLE STATION No. 3

, JANUARY 1979 DAILY DAY HOUlf AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

41.2 41.2 41.3 41.5 41.6 41.7 41.6 41.6 41.5 41.5 41.5 41.4 41.5 41.7 ' 41.9 42.1 42.2 42.2 42.2 42.2 41.9 41.5 41.2 40.8 41.6 2 40.7 40.7 4C.5 40.2 40.3 40.4 40.6 40.8 40.4 39.3 37.2 35.6 34.6 34.2 34.0 33.9 33.8 33.6 33.4 33.2 33.1 33.0 32.9 32.8 36.6 3 32.8 32.8 32.8 32.8 32.7 32.6 32.9 32.6 32.6 32.6 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.6 32.6 32.6 32.6 32.7 4 32.6 %.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.7 32.8 32.8 32.9 33.0 33.0 33.1 33.1 33.1 32.9 32.9 32.9 32.9 32.1 32.9 32.8 5 32.9 32.9 32.9 32.9 32.9 32.9 32.9 33.0 33.0 33.1 33.2 33.3 33.3 33.4 33.4 33.4 33.4 33.3 33.2 33.2 33.2 33.2 33.2 33.2 33.1 6 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.3 33.4 33.5 33.5 33.5 33.5 33.4 33.4 33.3 33.2 33.2 33.2 33.2 33.2 33.3 7 33.2 33.2 33.3 33.3 33.3 33.1 33.3 33.3 33.3 33.4 33.4 33.4 33.4 33.4 33.4 33.3 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.5 33.3 8 33.4 33.3 33.3 33.3 33.4 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.4 33.5 33.5 33.5 33.4 33.4 33.3 33.2 33.2 33.3 33.2 33.4 I 9 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.3 33.) 33.5 33.6 33.6 33.6 33.6 33.5 33.5 33.4 33.4 33.4 33.4 33.4 33.4 33.4

$I 10 33.4 33.3 33.3 33.3 33.4 33.4 33.4 %.3 34.5 33.8 33.7 33.7 33.8 33.8 33.8 33.8 33.7 33.7 33.7 33.6 33.7 33.6 33.7 33.7 33.7 11 33.8 34.4 34.3 34.2 % .2 34.0 34.1 35.6 36.9 35.2 34.4 34.1 33.9 33.9 33.9 33.9 33.8 33.8 33.8 33.7 34.0 33.7 33.6 33.7 34.2 12 34.0 33.7 33.6 33.5 33.6 33.9 34.7 36.8 36.5 35.1 %.3 34.0 %.0 34.0 %.0 34.0 34.0 33.9 33.8 33.8 33.8 33.8 33.8 33.8 34.2 13 33.8 33.8 33.7 M.2 34.8 35.4 36.0 36.5 36.9 37.3 38.5 37.5 35.4 34.4 34.0 33.8 33.7 33.6 33.6 33.6 33.6 33.6 33.7 33.7  %.8 14 33.6 33.5 33.4 33.7 34.3 35.0 35.7 36.3 36.9 37.4 37.7 38.2 39.0 38.9 37.6 36.9 36.3 35.6 36.5 35.4 34.6 34.4 34.1 34.0 35.8 15 34.1 34.1 34.3 %.8 35.3 35.7 36.2 36.8 37.7 38.9 36.7 35.1 34.5 34.2 34.1 33.9 33.9 33.8 33.8 33.7 33.7 33.7 33.7 33.6  %.8 16 33.7 33.8 34.1 %.5 35.1 35.8 36.4 36.8 37.5 38.8 37.6 36.0 35.1 34.6 34.4 34.4 %.334.234.0 33.9 33.9 33.9 33.9 33.9 35.0 17 33.9 34.0 33.7 33.7 33.7 34.0 35.8 37.0 36.3 35.3 %6 34.3 34.2 3'e.1 33.9 %.0 33.9 33.9 33.8 33.9 33.9 33.9 33.9 33.9  %.3 18 33.9 33.9 33.9 33.9 33.8 33.9 34.2 35.1 37.1 37.1 35.7 34.7 34.3 34.2 %.1 33.9 33.9 33.8 33.8 33.8 33.7 33.8 33.8 33.8 34.3 19 33.8 33.9 33.8 33.8 % .0 %.2 34.4 34.9 36.2 37.8 36.3 35.1 %.5 %.3 %.3 34.2 34.1 34.0 33.9 33.9 33.8 33.8 33.9 33.8 34.4 20 33.8 33.7 33.8 33.9 %.3 34.8 35.3 35.7 36.3 37.0 38.3 38.9 37.9 37.0 36.2 35.8 35.6 35.9 36.0 35.2 % .8 34.8 34.8 34.6 35.6 21 34.6 %.8 35.2 35.6 36.2 36.2 36.5 36.7 37.0 37.8 38.6 36.1 %.8 34.3 34.3 34.4 34.4 35.8 %.7 34.1 34.0 33.9 33.9 33.8 35.3 22 33.9 33.9 33.9 33.9 33.8 %.1 34.6 35.5 37.5 37.1 35.2 34.4 34.2 34.3 %.3 34.3 34.4 36.3 35.2 34.3 % .0 33.9 33.9 33.9  %.6

~ 23 33.7 33.9 34.7 35.5 35.8 36.0 36.3 36.4 36.9 35.3 34.4 34.2 34.2 34.1 %.4 34.5 34.5 34.3 34.0 33.8 33.8 33.8 33.7 33.8  %.7 24 33.9 34.2 34.3 34.4 34.4 34.9 35.3 35.5 35.5 35.6 M.6 %.1 34.1 34.1 34.0 34.4 35.1 35.5 35.6 %.5 %.0 33.8 33.8 33.8 34.6 25 33.8 33.9 33.8 33.9 33.8 33.8 33.7 33.8 33.7 33.8 33.8 33.8 33.8 33.8 % .3 33.8 33.8 33.8 33.8 33.7 33.7 33.8 33.9 33.8 33.8 26 33.9 %.! 34.7 35.3 35.9 36.5 37.1 37.4 37.8 38.2 38.5 38.9 37.0 35.5 % .7 34.3 34.1 33.9 33.9 33.9 33.8 33.8 33.8 33.8 35.4 27 33.8 33.8 33.7 33.8 33.8 33.8 33.8 33.8 33.8 33.8 33.8 33.9 34.0 34.1 34.1 M.5 35.1 35.3 35.4 M.4 34.1 %.1 34.1 34.0  %.1 28 34.1 34.2 %.5 %.9 35.4 35.8 36.2 36.6 36.9 37.6 38.9 39.1 36.9 35.4 34.7 % .3 34.1 34.0 33.9 33.9 33.9 33.9 M.1 %.3 35.3 29 34.3 % .4 34.3 34.5 34.5 4.7 35.5 37.9 36.4 34.9 M.4 %.1 34.1 34.1 34.1 34.1 %.1 34.1 34.2 34.0 34.1 34.3 34.3 34.3 34.6 30  %.4 34.3 34.2 34.4 %.4 A 6 35.1 36.3 38.1 37.2 35.4 34.7 34.4 34.4 34.3 34.5 34.7 34.5 34.1 33.9 33.9 33.9 33.8 33.8 34.7 31 33.9 34.0 34.3 35.0 35.8 37.3 38.0 36.7 35.5 35.0 % .4 34.2 34.1 %.1 34.0 34.0 %.034.033.933.833.833.933.9 33.9 34.6 MONTHLY AVERAGE 34.6

M M M M M M M M l

i l

1 TABLE 3.1-2 l

AVERAGE HOURLY TEMPERATURE IN 'F

VERMONT YANKEE SAMPLE STATION NO. I FEBRUARY 1979 DAILY DAY h0UR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

33.8 33.6 33.8 34.2 34.7 35.4 36.2 37.2 38.4 36.1 34.9 34.3 34.3 34.1 34.1 34.0 33.9 33.9 33.8 33.8 33.8 33.8 33.7 33.9 34.6 2 33.9 33.8 33.7 33.6 33.8 %.2 34.6 35.1 36.3 38.0 35.8 34.7 34.3 34.1 34.1 34.0 34.4 34.5 33.8 33.7 33.7 33.7 33.7 33.8  %.4 3 33.7 33.6 33.4 33.5 34.1 34.7 35.5 36.1 37.0 37.9 35.6 34.5 34.2 34.1 %.0 %.2 34.3 34.7 M .2 33.8 33.7 33.6 33.7 33.7 34.5 4 33.6 33.4 33.3 33.5 33.8 %.4 34.9 35.4 35.9 36.6 38.2 38.5 37.4 36.7 36.1 36.0 36.1 36.0 35.6 %.4 34.0 33.7 33.7 33.6 35.2 5 33.7 33.6 33.6 33.5 33.3 33.3 33.6 34.1 34.6 35.3 36.6 38.3 36.7 35.5 34.8 34.3 34.1 33.9 33.8 33.8 34.0 33.7 33.7 33.6 34.4 6 33.6 33.3 33.1 33.3 33.7 %.3 %.8 36.1 38.2 36.0 34.8 34.4 %.3 %.2 34.4 34.7 34.7 34.8 34.7 %.1 33.9 33.9 33.9 33.9 34.5 7 33.7 33.8 33.8 34.0 34.4 34.8 35.4 36.1 37.8 38.0 36.3 35.1 %.7 34.5 M .4 34.2 34.2 % .1 34.0 34.0 34.0 34.0 33.9 %.0  %.7 N 8 34.0 33.9 33.9 33.8 34.1 34.7 35.3 36.1 37.7 37.5 35.6 %.8 34.6 34.4 M .3 34.2 34.1 34.0 33.9 33.9 33.9 33.9 33.8 33.8 M.6 7 9 10 33.8 33.7 34.2 %.2 34.6 35.1 35.6 36.1 36.9 38.9 37.8 35.6 35.1 34.7 34.5 34.4 34.2 34.0 33.9 33.9 33.9 33.8 33.8 33.8 M.9 33.7 33.6 33.8 34.3 34.8 35.4 35.9 36.4 37.0 38.4 36.7 %.9 34.2 33.9 33.9 34.1 34.1 34.5 35.4 34.5 34.0 33.9 33.8 33.8 34.8 11 33.7 33.6 33.8 34.4 34.8 35.1 35.4 35.8 36.2 36.6 36.9 37.8 38.7 38.6 38.4 38.0 37.4 37.1 37.9 37.1 35.9 35.2 % .9 34.7 36.2 12 34.6 %.7 34.5 34.4 34.6 35.1 35.4 36.1 38.2 37.2 35.4 34.6 M.2 %.1 34.3 34.5 %.5 34.3 %.0 33.8 33.7 33.6 33.6 33.7  %.7 13 33.7 33.9 33.9 34.0 34.0 34.2 34.5 35.4 37.7 36.0 34.5 34.2 33.9 33.8 34.0 34.5 %.7 34.5 33.9 33.7 33.9 %.1 34.3 %.2 34.4 14 34.1 34.2 34.2 34.6 35.3 35.7 36.2 36.5 37.1 38.0 37.3 35.5 34.6 34.2 % .0 33.8 33.7 33.7 33.7 33.7 33.6 33.7 33.5 33.4 34.8 15 33.5 33.8 34.4 35.0 35.5 36.0 36.5 36.9 37.8 38.3 35.7 %.6 34.2 %.1 33.9 33.9 33.8 33.7 33.6 33.6 33.6 33.6 33.6 33.7  %.7 16 33.7 33.5 33.3 33.2 33.7 34.5 35.2 35.8 37.4 37.3 35.2 M.4 34.2 %.1 %.1 34.0 33.8 33.7 33.6 33.6 33.6 33.5 33.6 33.5 34.3 17 33.3 33.2 33.1 33.6 34.3 34.8 35.3 35.4 35.9 36.9 37.7 36.6 35.7 35.6 35.7 35.5 35.5 36.2 36.7 35.0 % .4 34.0 33.8 33.9 35.1 18 33.9 34.0 %.4 34.7 35.6 35.9 36.7 36.7 35.8 35.5 35.4 35.3 35.1 35.3 35.6 36.5 36.9 37.3 37.6 38.6 38.5 37.1 36.5 36.1 36.0 19 35.9 35.7 35.6 35.5 35.5 35.6 35.8 36.2 36.8 37.9 38.2 37.3 36.7 36.4 36.0 35.8 35.7 35.6 35.4 34.5 34.3 34.3 34.0 33.8 35.8 20 33.8 34.3 % .4 34.6 35.1 35.6 35.8 36.4 37.2 38.1 36.8 35.6 35.1 35.2 35.3 35.4 35.3 35.2 35.4 37.1 37.4 36.6 36.1 35.6 35.7 21 35.1 %.8 34.8 35.1 35.4 36.0 36.6 37.1 38.1 40.0 37.7 35.8 34.9 34.7 M.6 34.6 %.7 35.1 36.6 35.1 34.6 34.4 % .2 34.2 35.6 22  %.2 %.2 34.4 34.8 35.4 35.8 36.3 36.9 37.9 39.7 37.7 35.9 35.2 34.9 M.7 34.5 34.3 % .1 %.0 33.9 33.9 33.8 33.8 33.7 35.2 23 33.8 33.9 34.4 35.0 35.7 36.1 36.6 37.1 38.2 39.3 36.8 35.3 34.7 34.4 34.3 34.3 34.6 34.8 34.9 34.7 34.7 34.7 34.7 34.7 35.3 24  %.8 34.7 %.7 34.8 34.9 35.2 35.6 36.2 37.6 39.1 36.5 35.1 % .5 34.4 34.4 % .4 35.1 35.1 M.3 34.0 33.9 33.9 33.9 33.9 35.0 25 34.0 34.1 %.3 %.7 35.2 35.8 36.3 36.8 37.3 38.0 38.9 39.4 36.7 35.3 34.7 %.4 34.2 34.1 34.2 34.0 34.0 34.0 33.9 34.0 35.3 26 34.0 33.9 33.7 %.0 34.5 35.1 36.0 36.8 37.8 38.6 36.1 34.9 34.5 34.4 %.5 34.6 34.6 %.6 34.6 34.4 M.2 %.2 %.2 34.5  %.9 27 34.2 34.3 34.2 34.4 34.8 35.5 35.9 36.7 38.3 38.1 35.6 M.6 34.3 %.1 %.1 34.4 34.4 %6 34.6 % .5 % .5 % .5 34.4 34.4 35.0 28 34.4 % .7 %.7 35.1 35.6 36.1 36.6 37.4 38.4 36.2 35.1 34.5 % .4 34.6 34.6 35.1 35.7 35.5 34.9 34.2 33.9 33.9 33.8 33.8 35.1 MONTHLY AVERAGE 35.0

TABLE 3.1-3 AVERAGE HOURLY TEMPERATURE IN 'F VERMONT YANKEE SAMPLE STATION NO. 3 MARCH 1979 DAILY DAY HOUR AVELAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 19 20 21 22 23 24 1 33.7 33.8 33.9 %.1 %.6 35.2 35.8 37.4 37.8 36.3 35.1 %.7 M.6 %.5 %.6 34.6 %.6 %.5 %.2 33.9 33.8 33.8 33.8 33.8  %.7 2 33.9 34.0 %.I %.3 M.7 35.1 35.7 36.3 38.0 38.2 36.5 35.4 34.8 %.4 % .3 34.2 %.! M.0 %.0 33.9 %.0 %.0 33.9 33.9 34.8 3 33.9 33.9 %.1 %.5 %.8 %.8 %.8 %.9 %.9 %.8 M.1 33.9 33.8 33.9 %.0 %.1 %.1 % .5 36.6. 35.5 % .3 % .0 33.9 33.9  %.4 4 33.8 33.9 13.9 M.1 34.4 34.9 35.6 36.2 37.0 37.4 37.6 36.6 35.7 35.2 35.1 %.8 34.8 %.7 34.4 34.0 33.9 33.8 33.8 33.8 35.0 5 33.8 33.9 33.8 33.8 33.9 34.1 34.3 35.4 37.6 36.3 %.9 %.5 M.I M.0 34.0 %.1 %.0 33.9 33.8 33.8 33.7 33.7 33.7 33.6  %.3 6 33.7 33.9 %.0 33.9 %.0 33.9 33.7 33.6 33.6 33.5 33.3 33.1 33.0 32.9 32.8 32.8 32.7 32.6 32.7 32.6 32.5 32.5 32.5 32.5 33.2 7 32.5 32.4 32.4 32.5 32.5 32.4 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 8 32.3 32.3 32.2 32.2 32.5 32.3 32.3 32.3 32.3 32.4 32.5 32.5 32.6 32.5 32.5 32.5 32.6 32.5 32.5 32.5 32.4 32.4 32.4 32.4 32.4

, 9 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.5 32.5 32.5 32.6 32.6 32.6 32.6 32.5 32.5 32.5 32.4 32.5 32.5 32.4 32.3 32.5 to N

10 32.4 32.3 32.4 32.5 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.6 32.5 32.5 32.5 32.5 32.5 11 32.5 32.9 32.5 32.5 12.5 32.5 32.5 32.6 32.5 32.6 32.5 32.6 32.5 32.6 32.6 32.6 32.6 32.6 32.5 32.4 32.4 32.4 32.4 32.4 32.5 12 32.4 32.5 32.4 32.4 32.4 32.4 32.4 32.4 32.5 32.5 32.6 32.6 32.6 32.6 32.6 32.6 32.5 32.5 32.5 32.5 32.5 32.5 32.6 32.6 32.5 13 32.6 32.5 32.6 32.6 32.6 32.6 32.5 32.5 32.6 32.6 32.7 32.6 32.6 32.7 32.8 32.8 32.8 32.7 32.7 32.7 32.6 32.6 32.7 32.7 32.6 14 32.7 32.7 32.7 32.7 32.7 32.8 32.8 32.8 32.8 33.0 33.0 32.9 32.9 32.9 32.9 32.9 32.9 32.8 32.8 32.8 32.8 32.7 32.7 32.7 32.8 15 32.7 32.7 32.7 32.6 32.6 32.7 32.7 32.6 32.7 32.7 32.8 32.8 32.9 32.9 32.9 32.8 32.8 32.7 32.7 32.7 32.7 32.6 32.5 32.6 32.7 16 32.6 32.6 32.6 32.6 32.6 32.5 32.7 32.7 32.6 32.7 32.7 32.7 32.9 33.0 33.0 32.9 32.9 32.8 32.8 32.8 32.8 32.8 32.7 32.6 32.7 17 32.5 32.5 32.4 32.3 32.2 32.1 32.1 32.1 32.1 32.3 32.3 32.4 32.4 32.5 32.5 32.4 32.4 32.3 32.3 32.2 32.2 32.2 32.2 32.2 32.3 18 32.1 32.1 32.1 32.1 32.1 32.0 32.0- 32.0 32.1 32.1 32.2 32.3 32.4 32.4 32.4 32.4 32.3 32.3 32.2 32.2 32.2 32.2 32.1 32.1 32.2 19 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.2 32.3 32.4 32.5 32.5 32.5 32.4 32.4 32.4 32,3 32.2 32.2 32.2 32.2 32.2 32.1 32.2 20 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.3 32.3 32.3 32.4 32.5 32.5 32.5 32.5 32.4 32.3 32.3 32.3 32.2 32.2 32.2 32.2 21 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32.2 32.3 32.5 32.7 32.7 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 32.4 22 32.6 33.3 33.2 33.0 32.9 32.9 32.8 33.0 32.9 32.7 32.8 32.8 33.0 33.3 33.5 33.5 33.5 33.4 33.7 33.7 33.8 33.7 33.9 M.2 33.3 23 34.4 %.5 34.6 %.7 %.7 34.7 %.6 %.5 %.6 %.8 35.0 35.6 36.4 37.1 38.6 39.2 39.4 39.7 39.8 39.8 39.9 39.9 40.0 39.9 30.9 24 39.8 39.7 39.2 39.4 39.2 39.2 39.2 39.2 39.3 39.5 39.6 39.7 39.8 39.9 40.0 40.1 40.2 40.2 40.3 40.3 40.3 40.2 40.2 '40.1 39.8 25 40.2 40.2 40.3 40.3 40.4 40.3 40.3 40.0 39.7 39.8 39.8 39.9 40.0 39.9 39.7 39.8 39.6 39.5 39.4 39.5 39.5 39.7 39.9 40.2 39.9 26 40.5 40.6 40.5 40.5 40.3 40.1 40.0 39.9 40.0 39.6 39.8 40.0 40.1 40.2 40.2 40.2 40.3 40.2 40.1 40.0 40.0 39.8 39.6 39.5 40.1 27 39.4 39.3 39.1 39.0 38.8 38.6 38.5 38.4 38.2 38.2 38.3 38.3 38.4 38.5 38.5 38.6 38.5 38.6 38.3 38.2 38.2 38.1 38.0 37.9 38.5 28 37.9 37.8 37.8 37.7 37.5 37.5 37.4 37.2 37.3 31.2 37.3 37.4 37.7 37.9 38.1 38.1 38.0 38.1 38.0 38.0 38.0 37.9 37.8 37.7 37.7 29 37.7 37.7 37.7 37.5 37.5 37.6 37.5 37.5 37.5 37.6 37.6 37.6 37.7 37.7 37.7 37.7 37.7 37.7 37.6 37.7 37.7 37.6 37.7 37.7 37.6 30 37.7 37.7 37.6 37.6 37.6 37.5 37.6 37.6 37.7 37.8 37.8 37.8 37.9 37.9 38.0 38.1 38.1 38.0 38.0 38.0 38.1 38.0 38.0 38.0 37.8 31 38.1 38.0 38.1 38.1 38.1 38.1 38.0 38.1 38.1 38.2 38.2 38.3 38.5 38.5 38.6 38.7 38.8 38.8 38.9 38.9 39.0 39.0 39.0 39.1 38.5 MONTHLY AVERAGE 34.6

m m M TABLE 3.1-4 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 3 APRIL 1979, DAY DAILY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 39.1 39.1 39.1 39.2 39.2 39.1 39.0 39.2 39.2 39.3 39.4 39.3 39.5 39.7 39.8 39.9 39.9 39.9 39.9 40.0 40.0 40.1 40.0 40.0 39.5 3

40.0 40.0 40.0 40.0 40.0 39.9 39.9 39.9 39.7 39.0 39.0 39.1 39.2 39.2 39.3 39.4 39.4 38.9 38.9 38.8 38.8 38.8 38.8 38.7 39.4 4 38.7 38.7 38.8 39.0 39.3 39.1 39.1 39.1 39.2 39.3 39.4 39.4 39.4 39.4 39.5 39.6 39.7 39.5 39.4 39.4 39.4 39.4 39.2 39.3 39.3 5

39.3 39.2 39.1 39.2 39.2 39.2 39.1 39.1 39.1 39.1 38.2 38.1 38.1 38.2 38.3 38.4 38.4 38.4 38.4 38.4 38.4 38.3 38.3 38.3 38.7 6 38.3 38.3 38.4 38.5 38.5 38.5 38.6 38.6 38.7 38.7 38.3 38.3 38.4 38.4 38.5 38.6 38.6 38.6 38.7 38.6 38.6 38.5 38.5 38.5 38.5 7

38.4 38.4 38.2 38.3 38.3 38.4 38.4 38.4 38.4 38.4 38.3 38.4 38.5 38.6 38.8 39.0 38.9 39.0 39.0 39.0 39.0 39.0 38.9 38.8 38.6 8 38.7 38.7 38.7 38.6 38.6 38.4 38.5 38.4 38.4 38.3 38.3 38.4 38.1 38.3 38.3 38.5 38.6 38.6 38.6 38.5 38.5 38.5 38.5 38.5 38.5 M 9 38.6 38.6 38.6 38.7 38.7 38.6 38.6 38.5 38.6 38.6 38.8 38.9 39.1 39.2 39.3 39.0 39.5 39.5 39.6 39.7 39.8 39.9 39.9 40.0 39.1 y 10 40.0 40.1 40.1 40.1 40.2 40.2 40.3 40.4 40.3 40.4 40.3 40.0 39.7 39.6 39.5 39.4 39.2 39.1 39.0 38.8 38.7 38.6 38.5 38.4 39.6 11 38.3 38.2 38.2 38.1 33.1 38.2 37.9 38.3 38.4 38.5 38.6 38.7 38.9 39.0 39.1 39.3 39.3 39.5 39.3 39.4 39.3 39.2 39.1 39.1 38.8 12 39.0 38.9 38.7 38.7 38.6 38.6 38.5 38.6 38.6 38.8 39.0 39.3 39.5 39.6 39.7 39.9 39.9 40.0 40.0 40.1 40.1 40.2 40.2 40.1 39.4 13 40.1 40.1 40.0 40.0 40.1 40.1 40.1 40.1 40.1 40.2 40.3 40.5 40.8 41.0 41.2 41.5 41.8 42.0 42.0 42.1 42.0 42.1 42.1 42.4 40.9 42.6 42.3 42.3 42.3 42.2 42.1 42,0 42.0 42.0 42.3 42.6 42.9 43.2 43.6 43.8 43.6 43.5 43.3 43.0 42.9 42.9 42.9 42.9 42.9 42.8 14 15 42.9 42.8 42.8 42.8 42.8 42.7 42.7 42.8 42.8 42.8 42.9 42.9 42.8 42.8 42.8 42.7 42.7 42.6 42.5 42.3 42.2 42.1 41.9 41.8 42.6 16 41.8 41.6 41.5 41.4 41.4 41.5 41.6 41.6 41.7 41.8 41.8 41.8 42.0 42.1 42.1 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.1 42.1 41.9 17 42.1 42.1 42.0 41.9 41.9 41.8 41.9 41.9 42.0 42.1 42.2 42.3 42.4 42.4 42.5 42.6 42.6 42.6 42.5 42.6 42.5 42.5 42.5 42.5 42.3 18 42.5 42.5 42.4 42.4 42.4 42.3 42.4 42.5 42.6 42.6 42.9 43.3 43.1 43.2 43.2 43.2 43.2 44.2 43.1 43.1 43.0 42.9 42.8 42.7 42.8 19 42.7 42.7 42.7 42.6 43.0 42.5 42.5 42.5 42.5 42.7 42.9 43.0 43.2 43.3 43.4 43.5 43.6 43.6 43.7 43.7 43.6 43.6 43.6 43.6 43.1 2D 43.8 43.6 43.5 43.5 43.4 43.3 43.3 43.2 43.2 43.2 43.2 43.3 43.4 43.6 43.8 43.9 44.0 44.0 44.1 44.1 44.1 44.2 44.2 44.2 43.7 21 44.2 44.2 44.3 44.2 44.2 44.1 44.1 44.0 44.0 44.1 44.1 44.2 44.3 44.5 44.6 44.7 44.8 44.9 44.8 44.8 44.8 44.8 44.8 44.8 44.4 22 44.8 44.9 44.8 44.8 44.8 41.7 44.6 44.5 44.5 44.5 44.6 44.6 44.7 44.8 45.0 45.1 45.2 45.3 45.3 45.3 45.3 45.4 45.5 45.5 44.9 23 45.6 45.6 45.6 45.7 45.7 45.8 45.7 45.7 45.6 45.5 45.5 45.4 45.3 45.2 45.2 45.4 45.5 45.6 45.5 45.5 45.5 45.6 45.7 45.8 45.6 24 45.8 45.9 45.9 46.0 46.0 46.0 46.1 46.0 46.0 46.1 46.2 46.3 46.4 46.5 46.6 46.6 46.7 46.7 46.7 46.7 46.7 46.7 46.8 46.9 46.3 46.9 46.9 46.9 46.9 46.8 46.8 46.7 46.6 46.6 46.7 /46.7 SYSTEM INOPERATIVE 25 SYSTEM INOPERATIVE 26 SYSTEM INOPERATIVE 27 SYSTEM INOPERATIVE 28 SYSTEM INOPERATIVE 29 SYSTEM INOPERATIVE 30 SYSTEM INOPERATIVE MONTHLY AVERAGE 41.4

TABLE 3.1-5 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 3 MAY 1979 DAY DAILY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 SYSTEM INOPERATIVE 53.1 53.1 53.1 52.9 52.8 52.6 52.5 2

3 52.5 52.5 52.5 52.4 52.4 52.4 52.3 52.3 52.4 52.4 52.5 52 3 52.6 52.7 52.7 52.7 52.7 52.7 52.6 52.5 52.5 52.4 52.5 52.6 52.5 4

52.5 52.6 52.5 52.6 52.7 52.7 52.8 52.8 52.9 53.0 53.1 53.2 53.3 53.3 53.2 53.1 52.9 52.7 52.5 52.4 52.2 52.2 52.1 52.0 52.7 5

52.0 52.0 52.0 51.9 52.0 52.0 52.0 52.1 52.2 52.4 52.5 52.8 53.0 53.2 53.4 53.5 53.6 53.5 53.5 53.4 53.3 53.3 53.3 53.3 52.8 6

53.2 53.2 53.0 52.9 52.8 52.6 52.4 52.3 52.3 52.3 52.4 52.5 52.7 52.8 53.0 53.1 53.2 53.2 53.2 53.1 53.1 53.1 53.0 53.0 52.8 7

53.0 53.0 52.9 52.8 52.8 52.8 52.7 52.6 52.6 52.6 52.8 53.0 53.2 53.3 53.3 53.3 53.1 53.0 52.9 52.8 52.8 52.7 52.8 52.8 52.9 8

52.7 52.7 52.6 52.6 52.6 52.6 52.6 52.7 52.8 52.9 53.2 53.4 53.6 53.8 54.0 %.1 %.2 54.3 %.4 %.4 54.4 %.3 %.4 %.5 53.5 9

54.5 54.6 %.6 %.5 %.5 54.4 %.3 %.2 %.1 %.2 %.3 %.5 %.8 55.1 55.4 55.6 55.8 56.1 56.0 %.1 %.0 56.0 55.9 56.0 55.1

[ 56.1 56.2 56.3 %.4 %.5 % .5 56.5 56.5 56.6 56.5 %.6 56.9 57.1 57.4 57.6 57.8 58.0 58.1 58.2 58.1 57.9 57.9 57.9 57.9 57.1 a 10 I 11 57.9 58.0 58.1 58.2 58.2 58.1 58.5 58.6 58.6 58.8 59.1 59.4 59.8 60.2 60.7 60.9 61.1 61.1 61.0 60.9 60.8 60.8 60.7 60.6 59.6 12 60.4 60.4 60.4 60.5 60.6 60.7 60.9 61.5 62.0 62.1 61.5 61.5 61.7 62.0 62.3 62.6 62.8 62.8 62.9 62.8 62.9 62.6 62.6 62.5 61.8 13 62.5 62.5 62.4 62.3 62.3 62.3 62.2 62.2 62.2 62.3 62.4 62.4 62.6 62.7 62.8 62.9 63.0 63.0 62.8 62.7 62.7 62.6 62.6 62.4 62.5 62.3 62.2 62.2 62.2 61.8 61.4 61.2 61.2 61.1 61.1 61.1 61.2 61.2 61.3 61.3 61.3 61.3 61.2 61.1 .61 1 60.9 61.0 60.9 60.8 61.4 14 60.9 60.9 60.9 60.9 60.8 60.8 60.8 60.7 60.R 60.9 60.9 60.8 60.7 60.5 60.5 60.5 60.4 60.4 60.4 60.4 60.3 60.2 60.2 60.2 60.6 15 60.2 60.2 60.2 60.2 60.3 60.2 60.2 60.2 60.3 60.3 60.3 60.4 60.4 60.5 60.7 60.7 60.9 60.9 60.9 60.9 60.8 60.8 60.8 60.8 60.5 16 60.8 60.8 60.8 60.8 60.9 60.8 60.8 60,9 60.9 61.0 61.1 61.3 61.5 61.8 62.0 62.2 62.3 62.4 62.4 62.5 62.1 62.0 61.9 61.8 61.5 17 61.6 61.6 61.6 61.5 61.5 61.4 61.4 61.3 61.3 61.4 61.6 61.8 62.0 62.3 62.4 62.8 62.6 62.6 62.6 62.6 62.5 62.3 62.2 62.1 62.0 18 62.0 61.9 61.8 61.8 61.7 61.7 61.6 61.6 61.6 61.5. 61.4 61.4 61.5 61.6 61.8 62.0 62.2 62.3 62.4 62.5 62.4 62.4 62.4 62.4 61.9 19 62.4 62.3 62.3 62.2 62.2 62.2 62.2 62.1 62.1 61.9 61.7 61.7 61.7 61.8 62.0 62.5 62.4 62.8 62.2 62.1 62.0 61.9 61.9 61.9 62.1 20 62.0 61.9 61.9 61.9 61.9 61.8 61.8 61.9 61.9 62.0 61.9 61.9 62.0 62.2 62.4 62.5 62.5 62.5 62.3 62.3 62.3 62.3 62.3 62.3 62.1 21 62.4 62.4 62.3 62.3 62.3 62.2 62.2 62.2 62.1 62.3 62.1 62.0 62.1 62.2 62.4 62.5 62.7 62.9 62.9 63.0 t:3.0 63.0 63.0 63.0 62.5 22 63.1 63.1 63.0 63.0 63.0 63.0 62.9 63.0 63.0 63.0 63.1 63.3 63.9 63.8 M.1 M.4 M.6 M.7 M.7 64.6 64.4 64.1 M.0 63.8 63.6 23 63.6 63.6 63.6 63.5 63.4 63.4 63.3 63.2 63.2 63.3 63.4 63.4 63.5 63.6 63.8 M.0 M.0 64.1 M .2 64.1 M.1 63.9 63.7 63.6 63.6 24 63.5 63.5 63.4 63.3 63.2 63.0 62.9 62.8 63.1 62.9 63.0 63.1 63.2 63.3 63.3 63.3 63.3 63.1 63.0 62.7 62.4 62.1 61.9 61.7 63.0 25 61.1 60.3 59.7 59.3 59.2 59.1 59.0 58.8 58.6 58.5 58.4 58.2 58.1 57.8 57.4 57.2 57.0 56.7 56.4 56.2 %.0 56.0 55.9 55.8 57.9 26 55.7 55.7 55.8 55.7 55.7 55.7 55.7 55.8 55.9 55.8 55.7 55.6 55.5 55.5 55.5 55.6 55.8 55.9 %.1 56.2 56.2 56.1 56.0 55.8 55.8 27 55.6 55.5 55.3 55.2 $5.0 54.9 %.8 %.9 M.6 %.7 54.7 54.8 %.9 %.9 54.9 54.9 55.1 55.1 55.0 55.0 55.0 55.0 %.9 %.9 55.0 28 55.0 55.0 %.9 %.9 54.8 %.8 %.7 54.7 54.8 %.7 %.7 %.7 54.8 %.9 55.0 55.1 55.3 55.4 55.6 55.6 55.7 55.8 55.9 56.0 55.1 29

%.2 % .2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.3 56.3 56.4 56.4 56.6 56.7 56.8 56.9 %.8 56.7 56.7 56.7 %.8 56.7  %.4 30  %.6 56.6 56.5 56.6 56.6 56.7 56.8 56.8 56.9 56.9 56.9 57.0 57.1 57.2 57.2 57.3 57.5 57.6 57.7 57.8 57.8 57.7 57.7 57.7 57.1 31 57.7 57.8 57.8 57.8 57.8 57.8 57.8 57.7 57.7 57.7 57.8 57.9 58.0 58.1 58.2 58.3 58.5 58.5 58.4 58.5 58.5 58.6 58.7 58.7 58.1 MONTHLY AVERAGE 58.4 m M M

m M M M -

M M M TABLE 3.1-6 AVERAGE HOURLY TEMPERATURE IN *F

  • VERMONT YANKEE SAMPLE STATION NO. 3 JUNE 1979 DAY DAILY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 58.7 58.8 58.8 58.9 58.9 58.9 58.9 58.9 58.8 58.9 59.0 59.2 59.3 59.5 59.6 59.7 59.8 60.1 60.1 60.3 60.3 60.4 60.4 60.4 59.4 3 60.4 60.4 60.5 60.5 60.6 60.6 60.6 60.6 60.7 60.7 60.8 60.9 61.0 61.0 61.1 61.2 61.2 61.2 61.2 61.2 61.2 61.2 61.3 61.2 60.9 4 61.3 61.4 61.3 61.4 61.5 61.5 61.6 61.7 61.8 61.9 62.0 62.0 62.1 62.1 62.1 62.1 62.1 61.9 61.9 61.8 61.7 61.7 61.7 61.7 61.8 5 61.6 61.7 61.7 61.7 61.8 61.8 61.9 61.9 62.0 62.0 62.2 62.4 62.6 62.8 63.0 63.2 63.2 63.2 63.1 63.0 63.0 62.9 62.6 62.8 62.4 6 62.7 62.7 62.7 62.7 62.6 62.6 62.5 62.4 62.4 62.5 62.6 62.9 63.1 63.4 63.7 M.0 64.1 64.1 64.1 M.0 63.9 63.9 63.8 63.9 63.2 7 63.9 63.8 63.9 63.9 63.9 63.9 63.9 63.9 64.0 64.2 M.5 M.9 65.5 65.6 66.1 66.4 o'.7 66.9 67.1 66.9 % .7 66.4 66.1 65.9 65.2 8 65.7 65.6 65.5 65.5 65.5 65.4 65.4 65.4 65.4 65.5 65.6 65.8 66.1 66.3 66.6 66.8 66.9 67.0 67.0 66.9 66.8 66.7 M .6 66.5 66.1 1

9 6b.4 66.8 66.8 66.3 66.8 66.2%66.1

.7 66.0 66.0 65.9 65.8 65.9 65.9 66.0 66.0 66.1 66.1 66.3 66.5 66.5 66.7 66.7 66.8 66.8 66.8 66.9 66.9 66.3

$ 10 66.6 66.5 66.4 66.3 66.2 66.2 66.2 66.3 66.4 66.5 66.6 M .7 66.8 66.9 M .9 67.0 67.0 67.0 67.1 67.1 66.7 8 11 67.1 67.1 67.1 67.1 67.2 67.2 67.2 67.2 67.2 67.3 67.4 67.4 67.5 67.6 67.8 68.1 68.5 68.9 68.9 68.6 68.4 68.5 68.5 68.4 67.8 12 68.3 68.5 68.5 68.3 68.3 68.2 68.1 67.9 67.8 66.0 68.2 68.2 68.3 68.4 68.6 68.8 68.9 68.9 68.8 68.8 68.7 68.6 68.4 68.3 68.4 13 68.2 67.9 67.7 67.) 67.3 67.1 67.0 66.9 66.9 67.0 67.0 67.1 67.3 67.4 67.6 67.5 67.4 67.4 67.2 67.0 66.8 66.5 66.4 66.3 67.2 14

%.2 66.2 66.1 66.1 66.1 %.0 65.9 65.8 65.9 66.0 66.1 66.2 66.3 66.2 66.2 % .1 66.1 66.1 66.1 M.0 66.0 66.0 66.0 66.0  %.1 15 66.0 66.0 66.0 65.9 65.9 65.7 65.6 65.4 65.3 65.3 65.3 65.4 65.5 65.7 65.8 66.0 65.9 66.0 65.9 65.9 66.0 65.9 65.9 65.9 65.8 16 65.8 65.8 65.8 65.6 65.6 65.4 65.3 65.3 ,65.2 65.2 65.3 65.4 65.6 65.8 65.9 66.1 66.3 66.5 66.6 66.7 66.8 66.8 66.8 66.8 65.9 17 66.8 66.9 66.9 66.9 66.9 66.9 66.9 66.9 67.0 67.1 67.3 67.4 67.6 67.7 67.9 68.1 68.2 68.3 68.3 68.4 68.3 68.3 68.4 68.4 67.6 18 68.4 68.4 68.3 68.3 68.3 68.3 68.3 68.4 68.6 69.0 68.9 68.7 68.7 69.1 69.5 69.7 69.8 69.5 69.5 69.8 69.7 69.9 70.2 70.3 69.1 19 70.4 70.4 70.5 70.7 70.6 70.6 70.5 70.6 70.0 70.0 70.2 70.5 70.6 70.8 70.9 70.7 70.6 70.5 70.4 70.3 70.3 70.3 70.4 70.4 70.5

-20 70.5 70.6 70.6 70.7 70.8 70.6 70.4* 70.2 70.0 70.0 70.0 70.1 70.3 70.4 70.6 70.9 71.1 71.4 71.5 71.6 71.6 71.5 71.4 71.2 70.8 21 71.3 71.6 71.6 71.5 71.4 71.3 71.1 71.2 71.3 71.7 71.1 70.8 71.1 71.2 71.4 71.7 71.8 72.0 72.1 72.1 72.0 71.8 71.9 72.1 71.5 22 71.9 71.7 71.6 71.4 71.3. 71.1 71.0 70.9 71.0 70.9 70.9 70.9 71.1 71.3 71.5 71.5 71.5 71.2 71.2 71.5 72.0 72.2 72.3 72.2 71.4 23 72.0 71.9 71.9 71.7 71.6 71.6 71.5 71.5 72.4 71.6 71.7 71.9 72.0 72.0 72.0 72.0 72.0 72.3 72.5 72.6 72.5 72.3 72.3 72.1 72.0

% 72.! 72.0 72.0 71.9 71.9 71.9 71.9 71.8 71.7 71.7 71.6 71.7 71.8 72.1 72.4 72.7 72.7 72.6 72.5 72.3 72.1 72.1 72.0 71.8 72.1 25 71.7 71.5 71.3 71.1 71.0 70.7 70.6 70.6 70.6 70.7 70.9 71.0 71.0 71.0 71.0 71.1 71.0 71.0 70.9 70.8 70.6 70.5 70.4 70.2 70.9 26 70.1 70.0 69.8 69.6 69.5 69.4 69.4 69.3 69.5 69.6 69.4 69.6 69.7 69.7 69.7 69.7 69.7 69.7 69.6 69.9 71.7 70.8 70.1 69.8 69.8 27 69.4 69.2 69.0 68.7 68.5 68.5 68.2 68.2 68.2 68.5 68.5 68.6 68.8 68.9 69.2 69.3 69.5 69.7 69.7 69.6 69.4 69.1 68.9 68.6 68.9 28 68.4 68.4 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.7 68.7 68.8 69.1 69.2 69.3 69.4 69.3 69.3 69.3 69.4 69.3 69.4 69.4 69.4 68.9 29 69.6 69.6 69.6 69.6 69.6 69.6 69.5 69.5 69.4 69.4 69.5 69.6 69.9 70.1 70.1 70.2 70.3 70.2 70.2 69.9 69.7 69.6 69.6 69.7 69.8 30 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.9 70.0 70.0 70.1 70.4 70.5 70.8 71.7 71.5 71.3 71.2 71.1 71.1 70.6 70.6 70.4 70.5 70.6 70.5 70.5 70.5 70.4 70.3 70.6 70.6 70.7 70.6 70.7 70.7 71.1 71.7 73.4 74.5 73.8 74.0 73.6 73.6 71.5 71.5 71.1 71 .5 MONTHLY AVERAGE 67.6

TABLE 3o1-7 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 3 JULY 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 71.0 71.0 70.9 70.7 70.6 70.6 70.4 70.5 70.5 70.8 70.7 70.9 71.1 71.9 71.9 71.7 71.6 71.5 71.2 71.3 71.2 71.0 71.1 71.1 71.0 2 71.0 71.1 71.1 71.0 71.1 71.1 71.2 71.3 71.3 71.5 71.8 71.4 71.7 72.4 72.1 72.5 72.7 72.9 72.4 72.8 72.8 72.4 72.4 72.2 71.8 3 71.8 72.3 71.7 71.7 71.9 71.6 71.9 71.7 72.1 71.8 71.8 72.2 72.4 72.4 72.7 72.8 72.7 72.9 72.9 72.9 72.5 72.9 72.6 72.4 72.3 4 72.3 72.2 72.1 72.1 72.0 71.9 71.8 71.9 71.7 71.6 71.7 71.5 71.5 71.7 72.1 72.8 74.5 15.0 75.3 75.1 74.7 74.3 74.5 74.5 72.9 5 74.2 74.1 74.0 73.8 73.6 73.5 73.1 72.8 72.5 72.3 72.0 71.9 71.9 72.0 72.0 72.1 72.1 72.6 72.4 72.4 72.3 72.3 72.3 72.2 72.7 6 72.2 72.2 72.2 72.4 71.9 71.9 71.7 71.8 71.7 71.7 71.9 72.0 72.1 72.2 72.3 72.7 72.7 72.8 72.8 72.7 72.6 72.5 72.5 72.4 72.2 7 72.3 72.2 72.1 72.0 71.9 71.8 71.8 71.7 71.8 72.0 72.3 72.6 72.9 73.4 73.6 73.8 74.1 74.3 74.4 74.4 74.2 74.3 74.3 74.2 73.0 8 74.1 74.0 73.8 73.8 73.6 73.5 73.4 73.3 73.3 73.4 73.7 74.0 74.0 74.1 74.4 74.6 74.6 74.3 74.1 73.5 73.5 73.1 73.2 73.2 73.8

, 9 73.2 73.0 72.8 72.6 72.5 72.4 72.3 72.4 72.4 72.6 73.1 73.7 73.9 73.7 73.5 73.3 72.9 72.8 72.6 72.5 72.4 72.2 72.1 72.3 72.8 w 10 72.3 72.3 72.2 72.1 72.1 72.0 72.0 71.9 71.6 71.4 71.6 71.8 72.0 72.0 72.3 72.3 72.4 72.6 72.8 73.1 73.1 73.0 72.9 72.8 72.3 m 11 72.8 72.8 72.6 72.3 72.3 72.3 72.3 72.5 72.3 72.3 72.4 72.7 72.9 73.1 73.2 73.2 73.4 73.5 73.4 73.2 73.2 73.0 72.9 72.9 72.8

' 12 72.9 72.9 72.9 72.9 72.9 73.0 73.1 73.2 73.3 73.2 73.2 73.3 73.5 73.7 74.0 74.5 75.0 75.5 75.7 75.8 75.8 75.7 75.9 75.9 74.1 13 75.9 75.9 75.7 75.6 75.5 75.5 75.3 75.3 73.1 75.0 75.2 75.1 75.1 75.2 75.2 75.4 75.5 75.6 75.8 75.8 75.7 75.6 75.8 75.9 75.5 14 75.8 75.8 75.8 75.7 75.6 75.6 75.7 75.7 75.7 76.0 76.4 76.8 77.2 77.7 77.6 77.6 77.4 77.1 76.9 76.8 76.5 76.2 76.2 76.1 76.4 15 76.0 76.0 75.9 75.9 75.9 75.9 75.9 76.1 76.3 76.5 76.6 76.8 77.0 77.2 77.2 Tl.1 77.1 77.1 77.1 77.0 76.8 76.6 76.4 76.4 76.5 16 76.3 76.1 76.2 76.1 76.2 76.2 76.3 76.4 76.2 76.1 76.0 76.0 76.4 76.7 76.7 76.9 77.1 77.5 77.6 78.0 78.1 78.0 78.0 78.0 76.8 17 77.9 77.9 77.9 77.8 77.9 77.9 77.8 77.9 77.9 78.1 78.1 78.4 78.6 78.6 78.1 78.1 78.2 78.2 78.4 78.4 78.4 78.2 78.3 78.4 78.1 18 78.4 78.2 78.1 78.0 78.0 78.0 78.0 78.1 78.1 77.6 77.3 77.2 77.2 77.1 77.1 77.1 77.0 76.9 76.8 77.0 77.3 77.3 77.1 77.0 77.5 19 77.0 77.0 76.9 76.8 76.8 76.7 76.6 76.6 76.6 76.6 76.9 76.9 76.8 77.0 77.4 77.8 77.9 77.9 77.7 77.5 77.2 77.1 76.9 76.7 77.1 2D 76.6 76.5 76.5 76.4 76.5 76.4 76.4 76.5 76.5 76.8 77.1 77.2 77.3 77.3 77.6 77.7 77.7 77.6 77.3 77.2 77.0 77.1 77.4 77.5 77.0 21 77.6 77.6 77.6 77.5 77.5 77.4 77.4 77.3 77.4 77.5 77.7 77.9 78.2 78.6 78.9 78.8 78.3 78.1 78.1 78.0 77.8 77.6 77.6 77.6 77.8 22 77.6 77.6 77.5 77.5 77.5 77.5 77.5 77.6 77.6 77.5 77.8 78.2 78.4 76.7 79.0 79.1 79.2 79.0 78.8 78.6 78.5 78.2 78.1 78.0 78.1 23 78.0 78.1 78.0 78.0 77.5 77.4 77.9 78.2 78.4 78.4 78.4 78.3 77.9 78.2 78.5 78.8 78.9 79.0 79.0 79.2 79.2 79.3 79.6 79.9 78.5 24 79.8 79.8 79.6 79.4 79.3 79.2 79.2 79.3 79.5 79.5 79.6 79.8 79.7 79.7 79.6 79.6 79.6 79.6 79.5 79.3 79.2 78.9 78.9 79.2 79.4 25 79.3 79.3 79.2 79.0 79.0 79.0 79.0 79.0 78.9 78.9 78.9 79.1 79.2 78.9 79.1 79.5 79.6 79.5 79.5 79.9 79.8 79.7 79.5 79.4 79.3 26 79.2 79.1 19.1 79.1 79.1 79.1 79.2 79.2 79.3 79.4 79.5 79.4 79.3 79.4 79.7 80.0 80.0 80.2 80.1 80.0 79.9 79.9 80.1 80.2 79.6 27 80.3 80.4 80.3 80.3 80.4 80.4 80.4 80.5 80.5 80.5 80.6 80.6 80.8 80.9 81.0 81.0 81.2 81.0 81.1 81.5 81.7 81.9 81.9 82.1 80.9 28 82.1 82.2 82.2 82.1 82.1 82.1 82.1 82.1 82.1 82.0 81.9 82.0 82.3 82.4 82.2 82.1 82.0 82.0 82.0 81.7 81.5 81.4 81.4 81.3 82.0 29 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.1 81.3 81.5 81.7 81.8 81.8 81.7 81.5 81.5 81.6 81.5 81.4 81.3 81.1 81.1 81.0 81.3 30 81.0 81.0 80.9 80.9 81.1 81.0 81.0 81.0 81.0 81.1 81.4 81.9 82.3 82.6 82.7 83.0 82.9 82.7 82.6 82.4 82.1 82.0 81.8 81.6 81.8 31 81.5 81.4 81.3 81.2 81.1 81.1 81.1 81.0 81.0 81.1 81.5 81.6 81.6 81.8 82.0 82.1 82.1 81.9 81.7 81.4 81.1 80.9 80.8 80.6 81.4 MONTHLY AVERAGE 76.3

M M M M M M TABLE 3.1-8 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATICH NO. 3 AUGUST 1979 DAY DAILY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 80.6 80.7 80.7 80.7 80.8 80.9 80.9 80.8 80.9 81.0 81.0 81.2 81.3 81.4 81.5 81.5 81.6 81.6 81.5 81.3 81.2 81.1 81.0 80.9 81.1 3 81.0 81.0 81.0 81.0 81.1 81.2 81.2 81.4 81.3 81.3 81.2 81.2 81.3 81.5 81.8 82.1 82.3 82.2 81.9 81.6 81.2 81.0 81.0 81.0 81.4 4 81.0 81.2 81.2 .81.2 81.2 81.2 81.2 81.3 81.4 81.4 81.7 81.8 81.9 82.0 82.2 82.2 82.4 82.7 82.8 82.8 82.5 82.3 82.1 81.9 81.8 5

81.8 81.8 81.7 81.6 81.6 81.5 81.5 81.5 81.6 81.7 82.0 82.1 82.4 82.8 83.3 83.6 83.9 84.0 84.0 84.0 84.0 83.8 83.7 83.6 82.6 s

83.4 83.4 83.4 83.4 83.4 83.4 83.3 83.4 83.4 -83.6 84.0 84.2 84.5 84.7 84.9 84.9 84.7 M.4 84.1 83.6 83.1 83.2 83.4 83.7 83.8 7

83.7 83.6 83.5 83.4 83.4 83.4 83.4 83.4 83.4 83.6 83.4 83.4 83.4 83.5 83.4 83.5 83.5 83.4 83.3 83.3 83.3 83.2 83.1 82.9 83.4 8 82.8 82.7 82.6 82.4 82.3 82.1 82.0 81.9 81.8 82.0 82.3 82.6 82.8 82.7 82.1 81.8 81.6 81.5 81.6 81.6 81.4 81.3 81.2 81.1 82.0 9 81.1 81.0 80.9 80.9 80.9 80.8 80.7 80.7 80.6 80.5 80.7 80.6 80.5 80.5 80.4 80.4 80.5 80.5 80.5 80.5 80.4 80.2 80.2 80.1 80.6 i

N 10

"" t 80.0 80.0 80.0 79.9 79.9 79.8 79.8 79.8 79.9 80.0 80.1 80.2 80.2 80.1 81.2 80.4 80.5 80.7 80.5 80.4 80.2 80.1 80.0 80.1 y 11 80.0 rs.1 79.8 79.8 79.7 79.6 79.3 79.4 79.1 79.2 79.1 79.1 78.9 79.0 78.9 78.7 73.7 78.6 78.5 78.4 78.2 78.2 78.1 78.1 79.0 12 78.1 78.0 77.9 77.9 77.8 77.8 77.8 77.7 77.7 77.7 77.6 77.5 77.4 77.5 77.7 77.9 77.9 77.8 77.7 77.6 77.6 77.5 77.4 77.4 77.7 13 77.3 77.1 77.1 77.0 77.0 77.0 76.9 76.9 76.9 76.8 76.8 76.7 76.3 76.2 76.5 76.3 76.0 76.2 76.1 75.9 75.5 75.3 75.2 75.5 76.4 14 75.5 75.4 75.3 74.7 74.4 74.1 74.0 73.6 73.5 73.5 73.5 73.7 74.0 74.3 74.5 74.5 74.7 74.8 75.5 75.5 75.4 75.3 75.3 75.3 74.6 15 75.2 75.1 75.1 75.0 74.9 74.8 74.8 74.8 74.7 74.6 74.2 73 5 73.7 73.7 73.7 73.8 74.3 74.8 74.1 73.4 73.2 73.3 73.3 73.2 74.2 16 73.4 73.8 73.7 73.5 73.4 73.4 73.2 73.2 73.0 72.8 72.6 71.5 72.5 72.4 72.4 72.4 72.4 72.4 72.6 73.1 73.1 73.0 73.0 73.0 73.0 17 72.8 72.8 72.9 72.5. 72.4 72.4 72.3 72.3 72.1 71.6 71.5 71.5 71.6 71.9 72.0 72.1 72.1 72.0 72.1 72.6 72.1 71.9 72.3 72.4 72.2 18 72.3 72.2 72.1 72.0 71.9 71.8 71.7 71.7 71.7 71.2 71.3 71.3 71.5 71.7 71.8 72.0 72.1 72.1 72.1 72.3 72.4 72.4 72.5 72.5 71.9 19 72.3 72.2 72.0 72.0 72.0 72.1 72.1 72.1 72.0 72.0 72.1 71.5 71.3 71.7 71.8 71.8 71.8 71.7 71.4 71.3 71.2 71.1 71.1 71.1 71.7 20 70.9 70.9 70.8 70.8 70.8 70.8 70.8 70.7 70.6 70.6 70.6 70.7 70.9 71.0 71.1 71.0 71.1 71.1 70.9 70.8 70.1 69.9 70.4 70.5 70.7 21 70.4 70.3 70.3 70.3 70.4 70.5 70.5 70.4 69.4 69.2 69.5 69.5 69.9 70.1 70.3 70.6 70.9 71.0 71.1 71.4 71.3 71.3 71.5 71.5 70.5 22 71.4-71.3 71.4 71.4 71.4 71.4 71.4 71.5 71.4 70.9 70.5 70.4 70.5 70.7 70.9 71.1 71.3 71.3 72.0 71.8 71.5 71.3 71.3 71.3 71.2 23 71.2 71.1 71.1 71.0 70.9 70.7 70.7 70.7 70.7 70.9 70.8 71.0 71.0 71.2 71.5 71.6 71.9 72.2 72.4 72.4 72.2 72.1 72.1 72.0 71.4 24 71.8 71.7 71.6 71.5 71.5 71.5 71.6 71.6 71.6 71.6 71.3 71.2 71.2 71.3 71.4 71.4 71.2 71.1 71.3 71.5 71.3 71.2 71.2 71.1 71.4 25 71.0 71.0 71.0 70.9 71.0 71.0 70.9 70.9 70.8 70.7 70.5 70.4 70.2 70.1 70.1 70.1 70.0 70.0 70.0 70.0 70.1 70.1 70.1 70.0 70.5 26 70.1 70.0 70.0 70.1 70.1 70.0 70.1 70.1 70.1 70.2 70.2 70.4 71.0 71.3 71.3 71.3 71.3 71.2 71.1 71.0 70.9 70.8 70.8 70.7 70.6 27 70.7 70.6 70.6 70.6 70.6 70.6 70.7 70.7 70.7 70.9 71.6 71.7 71.9 72.1 72.3 72.3 72.2 72.2 71.9 71.6 71.3 71.0 71.0 71.4 71.3 28 71.1 71.1 71.0 71.0 71.0 71.0 71.0 71.1 71.1 71.2 71.0 71.0 71.2 71.4 71.5 71.7 71.9 72.0 72.1 72.4 72.6 72.8 72.8 72.8 71.6 29 72.6 72.6 72.5 72.6 72.5 72.5 72.6 72.7 72.8 73.0 72.9 73.0 73.1 73.1. 73.2 73.3 73.5 73.6 73.5 73.4 73.6 73.6 73.5 73.3 73.0 30 73.2 73.0 73.0 73.0 73.0 73.0 72.9 73.0 72.9 72.5 72.4 72.6 72.9 73.0 73.0 73.0 73.1 73.2 73.2 73.2 73.2 73.2 73.2 73.1 73.0 31 72.9 73.0 73.0 73.1 73.0 73.0 72.9 72.9 72.9 72.9 72.9 72.9 73.0 73.0 72.9 72.9 72.9 73.0 73.1 73.3 73.5 73.8 74.0 74.0 73.1 73.9 73.8 73.5 73.6 73.5 73.5 73.5 73.5 73.5 73.7 74.0 74.1 74.0 73.9 73.7 73.7 73.7 73.7 73.8 73.9 74.0 74.0 74.0 74.0 73.8 MONTHLY AVERAGE 75.5

TABLE 3.1-9 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE 3 AMPLE STATION NO. 3 SEPTEMBER 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 74.0 73.8 73.7 73.7 73.6 73.5 73.5 73.5 73.5 73.5 73.5 73.6 73.7 73.7 73.8 U.5 73.5 73.4 73.4 73.1 72.8 73.0 73.1 73.2 73.5 2 73.2 73.2 73.2 73.3 73.3 73.2 73.2 73.1 73.1 73.3 73.5 73.5 73.5 73.5 73.6 73.2 73.2 73.2 73.2 73.3 13.3 73.3 73.3 73.3 73.3 3 73.3 73.3 73.3 73.3 73.3 73.5 73.4 73.5 73.5 73.5 73.8 73.9 74.0 74.3 74.4 74.3 74.2 74.0 73.9 73.9 74.0 74.0 74.0 74.0 73.8 4 74.1 74.1 74.3 74.3 74.3 74.3 74.1 74.1 74.2 74.4 74.5 74.8 74.9 75.1 75.2 75.3 75.4 75.3 75.2 75.4 75.5 75.6 75.5 75.5 74.8 5 ?3 75.5 75.5 75.4 75.3 75.2 75.1 75.0 75.0 75.0 74.9 75.0 75.0 74.9 74.8 74.8 74.8 74.8 74.9 74.8 74.8 74.8 74.7 74.7 75.0 6 74.7 74.7 74.7 74.8 74.8 14.8 74.8 74.7 74.6 74.6 74.5 74.5 74.4 74.4 74.4 74.4 74.4 74.4 74.3 74.2 74.1 74.0 73.9 73.8 74.5 7 73.8 73.8 73.8 73.8 73.8 73.7 73.7 73.7 73.5 73.6 73.6 73.7 73.8 74.0 74.2 74.3 74.5 74.4 74.3 74.1 73.9 73.6 73.2 72.8 73.8 I 8 72.5 72.2 71.8 71.4 71.1 71.0 70.9 71.0 71.1 71.4 71.7 71.9 72.0 72.1 72.2 72.2 72.2 72.2 72.1 71.9 71.7 71.6 71.4 71.3 71.7

$ 9 71.1 71.0 70.9 70.7 70.6 70.4 70.3 70.1 70.0 70.1 70.2 70.3 70.5 71.0 71.4 71.6 71.8 71.7 71.3 71.4 71.4 71.6 71.4 71.2 70.9 10 71.2 71.1 71.1 71.1 71.1 70.9 70.9 71.1 70.5 70.4 70.4 70.5 70.7 70.9 71.0 71.0 71.0 71.0 71.0 70.9 70.9 70.8 70.7 70.8 70.9 11 70.7 70.7 70.6 70.4 70.7 70.2 70.1 70.0 69.9 69.9 70.1 69.9 69.6 69.6 69.7 69.7 70.0 70.0 70.0 69.9 69.9 69.8 69.8 69.5 70.0 12 69.6 69.4 69.3 69.2 69.1 69.1 68.9 68.9 68.8 68.8 69.0 69.1 69.1 69.3 69.4 69.7 69.9 70.0 70.0 69.9 69.8 69.8 69.6 69.6 69.4 13 69.5 69.4 69.4 69.4 69.3 69.2 69.2 69.2 69.1 69.1 69.2 69.2 69.0 69.2 69.0 69.2 69.2 69.2 69.2 69.2 69.2 69.1 69.1 69.0 69.2 14 69.0 68.9 68.9 68.8 68.7 68.7 68.6 68.6 68.7 68.7 68.9 69.0 69.1 69.2 69.1 69.3 69.2 69.3 69.2 69.2 69.1 69.1 69.1 69.0 69.0 15 68.9 68.9 69.0 69.0 68.9 68.8 68.7 68.5 68.6 68.5 68.4 68.5 68.4 68.5 68.7 68.9 69.1 69.0 68.8 68.9 69.0 69.0 68.9 68.9 68.8

. 16 68.7 68.6 68.5 68.3 68.3 68.2 68.2 67.6 68.2 68.3 68.7 69.2 69.3 69.4 69.5 69.5 69.7 69.4 68.9 68.4 68.3 68.3 68.3 68.3 68.7 17 68.3 68.2 68.2 68.0 68.0 67.8 67.8 67.7 67.7 67.7 67.8 68.2 67.8 67.5 67.6 67.6 67.7 67.9 67.9 67.8 67.7 67.5 67.3 67.2 67.8 18 67.1 67.2 67.2 67.1 67.0 66.9 66.9 67.0 67.1 67.1 67.3 67.6 67.4 67.2 67.3 67.4 67.4 67.5 67.6 67.7 67.7 67.7 67.6 67.6 67.3 19 67.7 67.7 67.6 67.5 67.5 67.4 67.4 67.4 67.3 67.3 67.2 67.2 67.1 67.1 67.1 67.1 67.1 67.0 66.9 66.8 66.6 66.5 66.5 66.3 67.1 20 66.2 66.0 c5.9 65.8 65.7 65.5 65.4 65.3 65.3 65.3 65.4 65.6 65.7 65.5 65.5 65.7 65.9 65.8 65.6 65.3 65.2 65.2 65.1 65.0 65.5 21 M.9 M.8 M.8 M.7 M.7 M.6 M.6 M.6 M.5 M.5 M.5 M.5 M.5 M.5 M.5 M.$ M.5 M.5 M.5 M.6 M.6 M.6 M.7 M.9 M.6 22 65.0 65.0 65.0 M.9 M.9 M.9 M.9 M.9 M.7 M.7 M.7 M.7 M.7 65.0 65.1 65.2 65.2 65.1 65.0 M.9 M.8 M.7 M.6 M.5 M.9

'23 M.5 M.4 M.3 M.2 M.1 63.9 63.7 63.5 63.4 63.5 63.7 M.0 M.1 M.2 M.3 M.3 M.2 M.2 M.1 M.0 63.9 63.7 63.5 63.5 M.0 24 63.4 63.3 63.4 63.4 63.3 63.3 63.2 63.2 63.2 63.1 63.1 63.2 63.2 43.2 63.4 63.6 63.8 63.9 63.7 63.4 63.1 63.0 62.9 62.8 63.3 25 62.7 62.6 62.6 62.5 62.5 62.4 62.4 62.4 62.4 62.4 62.5 62.7 62.9 63.0 62.7 62.7 62.7 62.7 62.7 62.6 62.6 62.4 62.4 62.2 62.6 26 62.1 62.0 62.0 62.0 61.9 61.9 61.9 61.9 62.0 62.0 62.0 62.0 62.1 62.1 62.2 62.4 62.6 62.8 62.5 62.4 62.4 62.5 62.5 62.5 62.2 27 62.4 62.4 62.3 62.3 62.2 62.2 62.1 62.1 62.1 62.1 62.1 62.1 62.2 62.4 62.5 62.7 62.9 63.0 62.8 62.6 62.4 62.2 62.0 62.0 62.3 28 61.8 61.8 61.8 61.7 61.7 61.7 61.7 61.7 61.8 61.8 62.0 62.1 62.0 62.0 62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.2 62.4 62.4 62.0 29 62.5 62.4 62.4 62.5^ 62.5 62.5 62.5 62.4 62.5 62.6 62.4 62.4 62.5 62.5 62.6 62.7 62.7 62.8 62.9 62.9 62.8 62.9 63.0 63.0 62.6 30 63.0 63.0 63.0 62.9 62.9 63.0 62.9 62.9 62.9 62.9 63.0 62.8 62.5 62.5 62.7 62.9 62.8 62.7 62.5 62.3 62.2 62.1 62.3 62.5 62.7 MONTHLY AVERAGE 68.2 I

m M M M M M M M M TABLE 3.1-10 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION No. 3 OCTOBER 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ~ 15 16 17 18 19 20 21 22 23 24 1

2 62.4 62.4 62.4 62.3 62.3 62.3 62.4 62.3 62.3 62.1 61.8 61.9 61.8 61.9 61.9 61.8 61.8 61.8 61.8 61.8 61.7 61.7 61.7 61.9 62.0 3 62.1 62.3 62.1 62.2 62.1 62.1 61.8 61.5 61.5 61.5 61.5 61.5 61.5 61.6 61.7 61.8 62.0 62.0 62.0 62.0 61.9 61.8 61.7 61.6 61.8 4

61.5 61.5 61.5 61.4 61.3 61.2 61.2 61.3 61.1 60.9 60.9 60.8 60.8 60.9 60.9 61.0 60.9 60.9 61.0 61.1 61.2 61.3 61.4 61.4 61.1 5

61.4 61.4 61.4 61.4 61.3 61.2 61.1 61.0 60.9 60.8 60.9 61.0 61.1 61.2 61.3 61.4 61.5 61.5 61.5 61.3 61.2 61.1 61.0 60.9 61.2 6

60.8 60.9 60.9 61.0 61.0 61.1 61.2 61.3 61.4 61.4 61.6 61.7 61.8 61.8 61.9 61.9 61.8 61.8 61.7 61.6 61.6 61.6 61.5 61.5 61.4 7

61.5 61.4 61.3 61.3 61.2 61.2 61.1 61.0 61.0 61.0 61.0 61.1 61.2 61.5 61.7 61.9 62.0 61.9 61.8 61.7 61.6 61.4 61.4 61.4 61.4 61.3 61.3 61.3 61.3 61.1 60.9 60.8 60.9 61.0 61.1 61.3 60.9 60.8 60.6 60.5 60.4 60.3 60.3 60.1 60.0 59.9 59.8 59.; 59.5 60.6 8

I 9 59.2 58.9 58.7 58.5 58.4 58.3 58.2 58.1 58.0 57.9 58.0 58.0 58.2 58.5 58.7 59.0 59.1 59.1 59.0 59.0 58.9 58.7 58.6 58.4 58.6 58.4 58.4 58.3 58.1 58.2 58.1 58.0 58.1 57.7 57.4 57.2 57.0 57.0 57.0 57.2 57.2 57.3 57.4 57.3 57.3 57.1 57.0 56.8 56.8 57.5

@ 10 56.7 56.7 56.6 56.6 %.6 %.5 56.5 56.6 56.0 55.7 55.5 55.2 55.0 54.9 %.8 54.9 55.1 55.0 55.0 55.0 55.0 55.1 55.1 55.0 55.6 e 11 12 54.8 54.8 %.8 54.9 54.8 54.7 54.6 %.5 54.2 %.0 53.8 53.7 53.7 53.6 53.6 53.6 53.5 33.2 52.8 52.6 52.5 52.6 52.7 52.7 53.8 13 52.7 52.7 52.7 52.7 52.7 52.5 52.6 52.5 52.5 52.5 52.3 52.1 51.9 51.7 51.5 51.4 51.3 51.3 51.5 51.7 51.8 51.8 51.8 51.7 52.1 51.7 51.7 51.8 51.9 52.0 51.9 51.9 51.9 52.0 52.1 52.5 52.7 52.7 52.7 52.7 52.5 52.2 51.8 51.6 51.4 51.5 51.5 51.4 51.4 52.0 14 51.3 51.3 51.2 51.2 51.0 50.6 50.0 49.8 49.7 49.7 50.0 50.3 50.6 50.8 50.8 51.0 51.1 50.9 50.5 50.5 50.5 50.5 50.5 50.3 50.6 15 16 50.3 50.3 50.3 50.3 50.1 50.0 50.0 49.9 49.7 49.7 49.6 49.5 49.5 49.6 49.7 50.0 50.0 50.0 49.9 49.7 49.7 49.7 49.7 49.5 49.9 49.3 49.1 49.0 49.1 49.1 49.0 49.0 49.0 49.2 49.3 49.8 49.9 50.0 49.9 49.7 49.6 49.5 49.4 49.4 49.3 49.2 49.1 49.0 48.8 49.3 17 48.5 48.6 48.6 49.2 49.1 49.1 48.2 48.2 48.1 48.1 48.9 48,1 48.1 48.3 48.4 48.5 48.6 48.6 48.5 48.7 48.5 48.8 48.8 48.9 48.6 18 49.4 49.9 50.0 50.0 50.1 50.0 49.9 49.1 48.9 48.9 49.0 49.0 49.1 49.0 49.3 49.2 49.5 49.5 49.6 49.6 49.6 49.5 49.6 49.6 49.5 19 49.9 50.3 50.4 50.4 50.3 49.9 49.9 49.5 49.4 49.5 49.5 49.5 49.5 49.7 49.8 49.9 50.0 50.0 49.9 49.8 49.7 49.6 49.6 50.0 49.8 20 21 49.6 50.0 50.5 50.5 50.6 .50.4 50.4 49.8 49.5 49.4 49.5 49.6 49.7 49.8 50.0 50.2 50.3 50.3 50.4 50.4 50.4 50.4 50.5 50.5 50.1 50.5 50.8 50.9 50.9 51.0 51.1 51.2 51.5 51.8 51.2 50.8 50.8 50.9 51.1 51.4 51.4 51.5 51.5 51.6 51.7 51.7 51.8 51.9 52.0 51.3 22 52.3 52.6 52.8 53.0 53.1 53.2 53.3 53.1 52.2 52.0 52.0 52.1 52.3 52.5 52.6 52.8 52.9 52.9 52.8 52.8 52.8 52.7 52.7 52.7 52.7 23 24 52.8 53.0 53.0 53.0 53.2 53.3 53.6 53.6 53.1 52.8 52.8 52.8 53.0 53.2 53.3 53.5 53.5 53.5 53.7 53.4 53.3 53.3 53.3 53.3 53.2 53.6 53.9 53.9 54.0 54.1 54.0 % .0 53.8 53.7 53.7 53.7 53.7 53.7 53.9 54.1 54.3 54.4 54.4 % .3 54.2 54.1 54.1 54.0 53.9 54.0 25 53.9 54.0 54.0 53.8 53.6 53.6 53.5 53.4 53.4 53.3 53.3 53.4 53.5 53.5 53.6 53.6 53.8 53.8 53.9 53.9 53.8 53.7 53.7 53.6 53.6 26 53.6 53.5 53.5 53.4 53.4 53.2 53.1 53.0 52.9 52.9 52.9 53.0 53.0 53.1 53.1 53.1 53.1 53.0 52.9 52.8 52.7 52.7 52.7 52.7 53.1 27 28 52.7 52.7 52.7 52.6 52.5 52.5 52.4 52.1 52.3 52.3 52.3 52.2 52.3 52.4 52.5 52.6 52.6 52.5 52.4 52.3 52.2 52.1 52.1 52.0 52.4 51.9 52.0 52.0 51.9 51.8 51.7 51.6 51.5 51.3 51.2 51.1 51.0 50.9 50.9 50.9 50.8 50.8 50.8 50.8 50.7 50.6 50.4 50.4 50.4 51.2 29 50.3 50.3 50.2 50.2 50.1 50.0 49.9 49.8 49.7 49.7 49.7 49.6 49.8 49.8 49.9 50.0 49.9 49.9 49.8 49.6 49.3 49.4 49.4 49.3 49.8 30 49.2 49.2 49.1 49.0 48.9 48.8 48.7 48.7 48.8 48.7 48.5 48.5 48.5 48.6 48.6 48.7 48.6 48.6 48.5 48.3 48.2 48.2 48.1 48.0 48.6 31 48.0 47.9 47.8 47.8 47.7 47.7 47.6 47.6 47.7 47.8 47.9 48.0 48.1 48.2 48.2 48.4 48.3 48.3 48.2 48.1 48.0 47.9 47.8 47.7 47.9 MONTHLY AVERAGE 54.0

, TABLE 3.1-11 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 3 NOVEMBER 1979 DAILY DAY ll0UR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

47.7 47.6 47.5 47.5 47.4 47.4 47.4 47.3 47.4 47.4 47.4 47.5 47.7 47.9 48.0 48.3 48.7 50.2 49.8 49.5 50.0 49.4 49.4 49.3 48.2 2 49.2 49.5 49.6 49.8 50.2 50.6 51.2 49.3 48.6 48.2 47.8 47.9 48.1 48.2 48.3 48.3 48.3 48.2 48.2 48.2 48.0 48.2 48.2 48.3 48.8 3 48.4 48.4 48.3 48.5 48.5 48.4 48.4 48.5 48.4 48.4 48.3 48.1 48.2 48.1 48.2 48.4 48.5 48.5 48.5 48.3 48.2 48.1 48.1 48.2 48.3 4 48.2 48.2 48.3 48.4 48.5 48.6 48.7 48.7 48.7 48.6 48.8 48.9 49.1 49.2 49.0 49.1 48.9 48.8 48.8 48.7 48.7 48.6 48.6 48.6 48.7 5 48.5 48.3 48.3 48.2 48.1 48.0 47.9 47.9 48.9 49.1 48.8 48.5 48.5 48.5 48.4 48.3 48.1 48.2 48.1 48.0 48.0 47.9 47.9 47.9 48.3 6 47.8 47.7 47.7 47.6 47.6 47.5 47.5 47.4 47.4 47.4 47.5 47.6 47.7 47.7 47.7 47.7 47.5 47.3 47.1 47.0 47.0 46.9 46.8 46.7 47.4 7 46.5 46.4 46.2 46.1 46.0 45.9 45.9 45.8 45.8 46.0 46.1 46.1 46.1 46.1 46.1 46.2 46.1 46.0 46.0 46.0 46.0 45.9 45.9 46.0 46.0 8 46.0 46.0 45.9 45.8 45.7 45.6 45.8 46.4 47.9 48.4 47.6 46.9 46.7 46.6 46.6 46.5 46.3 46.4 45.9 45.7 45.6 45.5 45.4 45.5 46.3 d

o 9 45.6 45.5 45.4 45.3 45.2 45.5 47.3 47.9 47.5 46.8 46.6 46.5 46.6 46.4 46.2 46.1 46.0 46.3 45,9 45.6 45.5 45.6 45.8 46.0 46.1 10 46.1 46.2 46.4 46.6 46.8 46.9 47.0 47.7 49.2 50.4 51.0 51.2 51.5 51.6 52.2 52.2 52.4 52.7 SL 1 53.1 53.4 53.6 53.9 53.9 50.4 I 11 51.8 51.8 50.9 49.8 48.8 48.4 48.0 47.9 47.6 SYSTEM INOPERATIVE 12 47.5 47.4 47.5 47.5 47.5 47.4 13 47.3 47.2 47.7 47.7 47.9 48.0 48.5 48.6 49.0 47.1 47.3 47.4 47.5 47.5 47.6 47.6 47.5 47.1 46.7 46.6 46.6 46.7 46.7 46.7 47.4 14 46.6 46.6 46.6 46.6 46.8 47.2 47.6 48.5 49.0 48.4 47.9 47.5 47.3 47.2 47.2 47.2 47.1 47.0 46.8 46.7 46.7 46.7 46.6 46.5 47.2 15 46.5 46.5 46.4 46.5 46.8 47.2 47.7 48.2 47.9 47.5 47.5 47.5 47.5 47.3 47.3 47.4 47.3 47.3 47.3 47.2 47.0 46.8 46.7 46.7 47.2 16 46.5 46.3 46.3 46.2 46.2 46.2 46.1 46.8 47.5 47.3 46.9 46.8 46.6 46.4 46.1 46.0 45.8 45.7 45.5 45.1 45.1 45.0 45.0 M.9 46.1 17 44.9 44.9 44.9 45.0 45.2 45.2 45.1 45.0 45.0 46.1 45.8 44.9 44.7 44.6 44.7 44.7 44.7 45.0 46.0 45.6 44.9 44.8 44.8 44.7 45.0 18 44.8 44.7 4'4.7 45.1 45.5 45.8 46.1 46.2 46.4 46.5 46.7 47.0 A7.3 47.8 48.1 48.5 48.6 48.8 50.3 49.5 47.3 46.4 46.2 46.1 46.8 19 46.1 46.1 46.3 46.7 47.0 47.1 47.2 47.2 48.0 48.0 47.3 46.* 45.8 45.5 45.4 45.4 45.2 45.1 44.6 44.3 44.2 44.2 44.2 44.2 45.9 20 44.2 44.2 44.1 43.9 43.8 43.6 43.4 43.2 42.9 42.9 42.9 '.2.842.742.843.043.243.444.044.744.544.344.34'.244.1 43.6 21 44.1 44.1 44.1 44.244.244.344.544.644.845.06.345.345.245.145.1 45.0 44.9 44.8 44.3 44.3 43.9 43.9 43.9 43.8 44.5 22 43.8 43.8 43.9 44.0 44.1 44.2 44.9 45.4 46.1 C.2 46.8 45.8 45.1 44.944.844.844.945.346.246.145.444.94.744.7 45.1 23 44.7 44.8 44.7 44.845.245.846.346.74i.1 47.6 48.3 48.0 47.1 46.4 45.8 45.5 45.3 45.1 44.7 44.3 44.2 44.2 44.3 44.5 45.6 24 44.6 44.9 45.4 46.1 46.6 47.0 47.4 47.9 48.3 48.9 49.3 48.5 47.3 46.5 46.2 46.2 46.6 46.8 46.4 46.2 46.0 45.9 45.8 45.8 46.7 25 45.9 46.0 46.2 46.5 47.1 47.3 47.7 48.2 48.6 48.9 49.2 49.4 49.7 50.1 50.4 50.6 50.8 50.9 49.6 48.1 47.4 47.3 47.2 47.5 48.4 26 47.7 48.0 48.3 48.7 49.1 49.3 49.8 50.0 50.5 50.5 50.0 49.5 48.9 48.6 48.6 48.5 48.6 48.8 48.7 48.5 48.4 48.2 48.0 48.1 48.9 27 48.1 48.2 48.2 48.3 48.2 48.4 48.4 48.4 48.5 48.8 49.2 49.6 49.7 49.6 49.6 49.3 49.1 48.9 48.8 48.7 48.6 48.6 48.5 48.3 48.8 28 48.2 48.0 47.9 47.9 47.9 47.9 47.9 47.8 47.8 47.7 47.6 47.6 47.6 47.7 47.6 47.5 47.4 47.3 47.1 47.0 46.8 46.6 46.5 46.3 47.5 l 29 46.1 46.0 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.8 45.8 45.8 45.7 45.6 45.6 45.5 45.3 45.2 45.1 45.1 45.0 45.0 44.9 44.9 45.6 30 44.8 44.7 44.6 44.5 44.5 44.3 44.3 44.3 44.3 44.4 44.5 44.6 44.7 44.7 44.8 44.8 44.7 44.5 44.3 44.2 44,0 43.9 43.9 43.8 44.4 l MONTHLY AVERAGE 46.9 l

l .

l l

M M M M M M M M TABLE 3.1-12 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 3 DECEMBER 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 43.8 43.7 43.6 43.5 43.5 43.4 43.3 43.3 43.3 43.5 43.7 43.7 43.8 43.8 43.7 43.6 43.5 43.3 43.2 43.1 43.0 42.6 43.0 42.9 43.4 3

42.9 42.3 42.6 42.7 42.8 42.9 43.0 43.3 43.8 43.9 43.5 43.4 43.2 42.8 42.6 42.5 42.5 42.3 42.2 42.2 42.0 41.9 41.7 41.5 42.7 4

41.4 41.3 41.1 40.9 40.8 40.7 41.0 42.5 42.7 43.0 42.6 42.2 42.0 42.1 42.0 41.9 41.8 41.8 41.6 41.3 40.9 40.7 40.5 40.3 41.5 5

40.0 39.7 39.7 39.9 40.0 40.2 39.9 39.8 39.7 39.9 40.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.0 39.8 39.4 39.1 38.9 38.8 39.8 6

38.8 38.7 38.7 38.7 39.0 39.1 39.2 39.1 39.1 38.9 38.9 39.1 39.2 39.2 39.1 39.2 39.3 39.3 39.2 39.3 39.0 39.0 39.0 39.0 39.0 7

38.9 38.9 38.8 38.7 38.8 38.7 38.7 38.5 39.4 39.9 40.1 39.9 39.6 39.5 39.5 30.5 39.2 39.3 39.2 39.1 38.9 38.5 38.3 38.2 39.1 8

38.1 38.0 37.8 37.8 37.7 37.7 37.8 37.8 37.9 38.4 38.8 38.9 39.1 39.2 39.4 39.6 39.5 39.8 39.6 39.4 39.3 39.7 39.1 39.1 38.7 9

38.9 39.0 39.3 39.2 41.0 39.1 38.7 38.6 38.5 38.4 38.2 39.0 40.6 40.9 40.6 40.3 39.7 39.5 39.2 38.8 38.4 38.3 38.1 37.8 39.2 w 10 37.6 37.5 37.4 37.3 37.1 36.9 36.9 37.2 37.9 38.7 39.3 40.2 41.0 41.7 41.9 42.0 41.6 42.3 41.9 40.1 39.0 38.6 38.2 37.9 39.2 37.9 37.8 37.7 37.5 37.3 37.4 37.7 38.6 39.9 41.2 40.6 39.3 39.1 38.7 38.5 38.1 37.9 37.7 37.4 37.2 37.0 36.9 37.0 37.0 38.1 7 11 12 37.0 36.9 36.9 36.9 36.9 36.7 36.6 36.5 38.2 39.3 39.4 39.0 38.7 38.5 38.4 38.3 38.2 38.2 38.2 38.0 38.0 38.0 37.9 37.9 37.9 13 37.8 37.6 37.5 37.7 38.3 38.9 39.3 39.9 41.0 41.6 40.7 40.1 39.4 39.0 38.9 38.7 38.6 38.4 38.3 38.3 38.1 37.9 37.R 37.8 38.8 14 37.8 37.8 37.8 37.8 37.8 37.7 37.8 39.3 40.4 40.2 39.4 39.0 38.8 38.7 38.5 38.4 38.3 38.1 38.0 37.9 37.7 37.3 37.2 37.1 38.3 15 37.0 37.0 36.9 36.8 36.8 36.9 36.9 36.9 36.8 36.7 36.9 37.0 37.0 37.1 37.0 37.1 37.2 37.2 37.4 37.2 36.9 36.6 36.4 36.2 36.9 16 36.1 36.0 35.9 35.7 35.5 35.4 35.2 35.2 35.9 36.9 37.2 37.3 37.0 36.8 36.6 36.4 36.4 36.5 36.5 36.2 36.0 35.8 35.8 35.8 36.2 17 35.7 35.5 35.4 35.3 35 4 35.6 36.3 37.2 38.0 38.6 39.3 40.4 41.0 41.4 41.8 42.0 42.1 42.5 41.8 39.3 38.3 37.5 36.9 36.9 38.5 18 37.0 36.9 36.7 36.6 36.5 36.6 37.0 37.9 39.0 40.6 40.6 39.1 37.9 37.4 36.9 36.5 36.3 35.9 36.0 35.8 35.2 %.9 34.8 %.8 37.0 19

%.8 M.7 34.6 %.5 %.3 %.1 34.1 34.8 37.5 38.2 37.5 36.8 36.3 36.1 35.9 35.8 35.7 35.6 35.5 35.5 35.2 % .9 %.7 %.5 35.5 34.4 %.6 35.0 35.4 35.9 36.3 36.6 36.4 35.7 35.1 %.9 %.7 %.7 % .7 34.7 35.0 35.4 35.5 35.3 % .9 34.5 % .4 34.3 M .2 35.1 20  %.1 34.1 %.0 M.1 34.0 34.0 % .0 34.0 34.0 % .0 33.9 %.0 34.2 %.2 34.2 % .3 34.3 % .2 34.1 34.1 %.0 %.0 33.9 33.8  %.1

'21 22 33.7 33.7 33.7 33.8 34.2 34.6 35.1 35.7 37.5 39.3 38.2 36.8 36.0 35.6 35.2 34.9 %.8 %.6 34.6 34.6 34.5 34.6 34.5 34.5 35.2 34.5 34.5 34.4 %.5 34.8 35.2 35.7 36.2 36.8 38.2 39.2 39.3 38.9 38.6 38.4 38.2 37.7 37.4 38.2 38.9 38.4 38.0 37.6 37.3 37.1 23 24 37.3 37.0 36.7 36.7 37.0 37.4 37.8 38.1 38.7 39.2 39.4 39.7 40.0 40.3 40.4 40.6 40.9 41.0 39.2 38.0 36.7 35.9 35.4 35.2 38.3 35.2 35.3 35.4 35.4 35.6 36.0 36.4 36.9 37.8 39.0 39.5 38.8 37.7 36.8 36.4 36.1 36.0 36.6 36.7 35.7 34.9 34.6 34.5 34.3 36.3 25 26

%.6 35.2 35.5 35.6 35.7 35.9 36.0 36.0 36.1 36.1 35.2 M.3 33.9 33.7 33.6 33.6 33.6 33.5 33.5 33.5 33.5 33.4 33.3 33.3 34.5 27 33.2 33.2 33.1 33.0 32.9 32.8 32.8 32.8 32.8 32.8 32.9 32.9 33.0 33.0 33.0 33.1 33.1 33.2 33.2 33.2 33.3 33.3 33.3 33.2 33.0 33.2 33.2 33.1 33.0 32.9 32.9 32.8 32.9 32.9 32.9 32.9 33.0 33.1 33.1 33.1 33.1 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.1 28 33.2 33.2 33.1 33.1 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.1 33.1 33.2 33.2 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.1 29

  • 30 33.3 33.3 33.1 33.2 33.2 33.1 33.0 33.0 33.1 33.1 33.2 33.3 33.4 33.4 33.6 33.7 33.7 33.7 33.7 33.7 33.8 33.8 33.8 33.8 33.4 33.8 33.8 33.7 33.6 33.7 33.9 35.0 36.3 37.4 37.2 36.3 35.0 %.5 34.3 34.2 34.3 34.2 34.1 %.! 34.0 34.0 34.0 % .0 34.0 34.6 31 34.0 34.0 %.0 34.0 33.9 34.3 34.4 34.4 34.5 34.6 34.6 34.7 34.7 34.8 34.9 34.9 34.8 34.8 34.5 34.2 34.0 33.9 33.8 33.7 34.4 MONTHLY AVERAGE 37.2

TABLE 3.2-1 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 JANUARY 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.2 32.1 32.1 32.1 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3 32.0 32.0 32.0 3;.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 4 32.0 32.0 32.0 32.0 J2.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 5 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 6 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31.0 32.0 32.0 32.0 32.0 32.0 7 32.0 32.0 32.0 32.0 32.0 32 0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 8 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 i 9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 W 10 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 " 32.0 32.0 32.0 32.0 y

11 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 13 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 14 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 15 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 16 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 17 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 18 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 19 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 20 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 21 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 22 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 23 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 24 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 25 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 26 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 27 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 28 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 29 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 MONTHLY AVERAGE 32.0 g g e m M M M M

M M M M M M M M M M TABLE 3.2-2 AV"ERAGE HOURLY TEMPERATURE IN *F.

VERMONT YANKEE SAMPLE STATION NO. 7 FEBRUARY 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 2

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 4

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 5

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 6 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 7

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 8

[ 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 w 9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 1 10 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 11 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.0 32.1 32.0 12 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.1 32.0 32.0 32.0 13 14 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.0 32.1 32.0 32.1 32.0 32.1 32.0 32.0 32.0 .32.0 32.0 32.0 32.0 32.3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.0 32.1 32.1 32.1 32.1 32.0 32.1 32.0 32.0 32.0 15 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.1 32.0 32.1 32.0 16 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.0 32.1 32.1 32.0 32.0 32.0 32.0 32.0 17 32.0 32.0 32.0 32.3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 18 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 19 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 20 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.0 21 32.0 32.0 32.0 32.0 32.0 32.0 32.2 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.0 32.0 32.0 32.1 22 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.0 32.0 32.0 32.0 32.0 23 32.0 32.0 32.2 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.) 32.1 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 24 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 25 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 26 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 27 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 28 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0

. MONTHLY AVERAGE 32.0 e

TABLE 3.2-3 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 MARCH 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

32.0 . 1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 2 32.0 3, 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3 32.0 32.. 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 4 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32 0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 5 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.1 32.3 32.1 32.0 32.0 32.0 32.0 6 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 7

32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 8 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 1 9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0

$ 10 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 t 11 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 12 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 13 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 14 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 15 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 16 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 17 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.1 32.2 32.2 32.2 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 18 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.3 32.1 32.2 32.2 32.3 32.2 32.2 32.1 32.1 32.0 32.0 32.0 32.0 32.1 19 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.2 32.3 32.4 32.4 32.7 32.4 32.3 32.3 32.2 32.2 32.1 32.1 32.1 32.2 20 32.1 32.1 32.1 32.1 32.1 32.0 32.0 32.0 32.0 32.0 32.1 32.2 32.3 32.4 32.5 32.4 32.4 32.3 32.3 32.3 32.3 32.3 32.2 32.2 32.2 21 32.2 32.2 32.2 32.2 32.3 32.2 32.2 32.2 32.2 32.3 32.4 32.6 32.7 32.9 32.9 33.0 33.0 32.9 32.9 32.9 32.8 32.8 32.7 32.6 32.6 22 32.7 32.7 32.6 32.7 32.6 32.6 32.6 32.5 32.6 32.7 32.9 33.0 33.1 33.2 33.7 33.9 33.9 %.0 %.3 %.5 34.6 %.7 %.8 34.8 33.4 23  %.8 %.6 %.5 %.4 %.2 %.1 34.3 34.5 %.9 35.4 35.9 36.3 36.7 37.2 37.6 38.0 38.3 38.5 38.6 38.6 38.6 38.4 38.2 37.9 36.4 24 37.7 37.6 37.4 37.4 37.5 37.6 37.6 37.6 37.8 38.0 38.0 38.0 38.2 38.4 38.5 38.6 38.7 38.7 38.7 38.7 38.6 38.7 38.7 38.7 38.1 25 38.8 38.9 38.9 38.7 38.5 38.0 37.7. 37.8 37.8 37.9 38.0 38.1 38.1 38.1 38.1 38.1 38.2 38.3 38.3 38.5 38.6 38.6 38.7 38.8 38.3 26 38.7 38.8 38.6 38.5 38.4 38.3 38.2 38.1 37.7 38.1 38.2 38.4 38.4 '38.5 38.7 38.6 38.6 38.6 38.6 38.5 38.4 38.2 38.1 37.9 38.4 27 38.0 37.6 37.5 38.1 37.0 36.9 36.8 36.7 36.7 36.7 36.7 36.7 36.8 36.9 36.9 37.0 37.0 37.0 37.0 36.9 36.8 36.7 36.5 36.3 37.0 28 36.2 36.2 36.0 35.9 35.8 35.6 35.4 35.4 35.4 35.6 35.7 36.0 36.2 36.4 36.7 36.9 36.9 36.9 36.9 36.8 36.6 36.4 36.3 36.0 36.2 29 36.1 35.9 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.8 35.8 35.9 35.9 36.0 36.1 36.2 36.3 36.4 36.3 36.3 36.3 36.2 36.3 36.0 30 36.1 36.1 36.1 36.0 36.1 36.1 36.1 36.2 36.2 36.2 36.3 36.3 36.4 36.4 36.5 36.5 36.5 36.6 36.5 36.5 36.5 36.6 36.6 36.6 36.3 31 36.6 36.6 36.6 36.7 36.7 36.7 36.7 36.8 36.8 36.9 36.9 37.1 37.2 37.3 37.4 37.4 31.5 37.5 37.5 37.6 37.6 37.7 37.7 37.7 37.1 MONTHLY AVERAGE 33.6 aus sum uns IEE m MIEE BEE WE EM 8E8

m M M M M M M M M M M M M TABLE 3.2-4 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 APRIL 1979 ,

DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

37.7 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.7 37.9 37.9 38.1 38.1 38.2 38.3 38.4 38.4 38.4 38.4 38.2' 38.4 38.4 38.4 38.4 38.0 2 38.3 38.3 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.1 38.0 38,0 37.9 37.8 37.8 37.8 37.7 37.7 37.6 37.5 38.0 3

37.5 37.5 37.5 37.5 37.5 37.5 37.4 37.4 37.4 37.2 37.4 37.4 37.5 37.5 37.5 37.6 37.6 37.7 37.6 37.5 37.5 37.5 37.4 37.3 37.5 4-37.3 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.7 36.7 36.8 36.9 37.2 37.3 37.3 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.2 5

6 37.5 37.4 37.4 37.3 37.2 37.2 37.1 37.1 37.0 37.0 37.0 37.0 37.1 37.1 37.2 37.2 37.4 37.4 37.3 37.3 37.2 37.2 37.1 37.1 37.2 7

37.1 37.0 36.9 36.9 36.8 36.7 36.6 36.7 36.6 36.6 36.7 36.9 37.1 37.3 37.6 37.8 37.9 37.8 37.8 37.7 37.6 37.5 37.4 37.3 37.2 37.2 37.2 37.1 36.9 36.8 36.7 36.6 36.4 36.4 36.4 36.6 36.9 37.1. 37.1 37.1 37.2 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.0 8

37.3 37.2 37.1 37.0 36.9 36.8 36.6 36.5 36.4 36.4 36.6 36.8 37.1 37.5 37.9 38.1 38.3 38.4 38.4 38.4 38.4 38.3 38.5 38.5 37.5 d

vi 10 9

38.5 38.6 38.6 38.5 38.4 38.2 38.2 38.0 37.8 37.7 37.6 37.5 37.4 37.0 36.5 37.0 36.9 36.7 36.6 36.4 36.3 36.2 36.2 36.1 37.4 3

36.2 36.2 36.2 36.3 36.3 36.4 36.5 36.5 36.6 36.7 36.8 36.9 37.0 37.1 37.2 37.3 37.4 37.4 37.4 37.3 37.2 37.2 37.1 37.0 36.8 11 37.0 37.0 36.9 36.8 36.7 36.6 36.6 36.6 36.6 36.7 36.9 37.2 37.5 37.9 38.2 38.5 38.8 38.9 39.0 38.9 38.9 38.9 38.8 38.8 37.7 12 38.8 38.8 38.7 38.6 38.4 38.1 37.8 37.7 37.7 37.9 38.2 38.4 38.9 39.3 39.7 39.9 40.2 40.3 40.4 40.6 40.7 40.8 41.2 40.7 39.2 13 40.6 40.5 40.4 40.4 40.4 40.3 40.2 40.2 40.4 40.2 40.3 40.4 40.7 40.8 41.0 41.1 41.2 41.3 41.3 41.2 41.2 41.2 41.2 41.2 40.7 14 41.1 41.2 41.7 41.2 41.2 41.1 41.1 41.1 40.9 40.9 40.8 40.7 40.6 40.5 40.4 40.2 40.1 40.0 39.8 39.8 39.8 39.7 39.7 39.7 40.6 15 39.7 39.5 39.5 39.8 39.8 39.8 39.8 39.6 39.8 39.9 39.9 39.8 39.9 40.0 40.1 40.1 40.1 40.2 40.2 40.3 40.3 40.3 40.3 40.2 40.0 16 40.2 40.2 40.2 40.2 40.2 40.2 40.1 40.1 40.1 40.1 40.1 40.2 40.3 40.4 40.5 40.7 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40.7 40.4 17 40.7 40.6 40.6 40.6 40.6 40.6 40.5 40.5 40.6 40.6 40.8 40.9 41.1 41.2 41.4 41.5 41.5 41.5 41.5 41.5 41.5 41.4 41.4 41.4 41.0 18 41.3 41.3 41.2 41.1 41.0 40.9 40.9 40.8 40.8 41.0 41.1 41.4 41.7 41.9 42.2 42.4 42.5 42.6 42.6 42.6 42.6 43.0 42.5 42.4 41.7 19 42.4 42.2 42.1 41.9 41.7 41.5 41.4 41.3 41.3 41.4 41.6 41.9 42.5 42.6 42.9 43.0 43.1 43.2 43.3 43.3 43.3 43.3 43.3 43.2 42.4 20 43.2 43.1 42.9. 42.7 42.5 42.4 42.2 42.1 42.1 42.2 42.3 42.6 42.8 43.1. 43.4 43.6 43.8 43.9 44.0 44.0 44.0 44.1 44.0 43.9 43.1 21 43.8 43.7 43.5 43.3 43.1 42.8 42.6 42.4 42.4 42.5 42.7 42.9 43.2 43.5 43.8 44.1 44.3 44.5 44.7 45.0 44.9 44.9 45.0 45.0 43.7 22 44.9 44.8 44.7 44.5 44.3 44.1 43.9 43.7 43.6 43.6 43.7 43.6 43.7 43.8 44.0 44.1 44.3 44.6 44.6 44.7 44.8 44.9 44.9 45.0 44.3 23 , 45.0 44.9 44.8 44.7 44.6 44.4 44.2 44.0 44.0 44.1 44.2 44.4 44.7 45.0 45.3 45.6 45.8 46.0 46.3 46.3 46.4 46.4 46.3 46.1 45.1 24 46.0 45.8 45.6 45.5 45.3 45.2 45.1 45.0 45.0 45.2 45.4 45.8 46.2 46.4 46.7 46.9 47.1 47.3 47.2 47.3 47.2 47.2 47.1 47.0 46.2 25 46.9 46.8 46.7 46.6 46.4 46.2 46.0 45.9 46.0 46.1 46.1 46.1 46.3 46.5 46.6 46.8 47.0 47.1 47.2 47.4 47.5 47.5 47.6 47.5 46.7 26 47.4 47.3 47.1 46.9 46.6 46.5 46.4 46.3 46.3 46.5 46.7 47.0 47.2 47.8 48.0 48.3 48.4 48.6 48.7 48.9 49.0 49.1 49.1 48.8 47.6 27 49.1 49.0 48.9 48.8 48.7 48.6 48.6 48.6 48.6 48.7 48.7 48.7 49.0 49.1 49.2 49.5 49.6 49.7 49.8 49.8 49.9 49.8 49.9 49.8 49.2 28 49.7 49.5 49.4 49.2 49.1 49.0 48.9 48.9 48.9 49.0 49.1 49.4 49.6 50.2 50.3 50.6 50.7 50.8 50.8 50.7 50.7 50.7 50.8 50.8 49.9 29 50.9 51.0 49.4 51.1 51.1 50.9 50.8 50.7 50.6 50.6 50.7 50.9 51.0 51.3 51.5 51.6 51.7 51.7 51.7 51.8 51.8 51.9 51.8 51.6 51.2 30 51.8 51.4 51.2 51.0 50.9 50.7 50.6 50.4 50.3 50.3 50.5 50.5 50.8 51.0 51.2 51.4 51.6 51.8 51.9 52.0 52.0 52.0 52.0 51.9 51.2 MONTHLY AVERAGE 41.8

TABLE 3.2-5 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 MAY 1979 DAY DAILY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 51.8 51.7 51.5 51.4 51.3 51.2 51.1 51.0 51.0 50.9 50.8 50.9 51.1 51.3 51.4 51.5 51.7 51.9 51.9 51.9 52.0 51.9 51.9 51.8 51.5 3

51.8 51.8 51.8 51.7 51.5 51.2 51.1 50.9 50.7 50.6 50.6 50.7 50.8 51.0 51.2 51.4 51.5 51.8 51.8 52.0 52.0 52.0 52.1 52.2 51.4 52.3 52.3 52.4 52.3 52.2 52.1 52.0 51.8 M .7 51.6 51.4 51.3 51.2 51.3 51.2 51.2 51.0 51.0 51.0 51.0 51.0 51.1 51.1 51.1 51.5 4

5 51.1 51.2 51.3 51.3 51.4 51.4 51.4 51.4 51.4 51.4 51.5 51.6 51.8 51.9 52.0 52.2 52.4 52.5 52.6 52.5 52.4 52.3 52.2 52.1 51.8 6

51.9 51.7 51.6 51.5 51.5 51.3 51.2 51.2 51.1 51.1 51.1 31.2 51.3 51.6 51.8 52.0 52.2 52.4 52.5 52.5 52.5 52.4 52.3 52.3 51.8 7

52.1 52.0 51.8 51.7 51.6 51.4 51.3 51.2 51.1 51.0 51.1 51.2 51.2 51.5 51.6 51.7 51.9 52.0 52.0 52.0 51.9 51.9 51.8 51.8 51.6 8 51.9 51.9 51.9 52.0 51.9 51.9 51.7 51.6 51.6 51.7 51.8 52.0 52.1 52.3 52.4 52.8 53.2 53.4 53.6 53.6 53.6 53.6 53.5 53.4 52.5 53.3 53.3 53.1 53.0 52.9 52.9 52.9, 52.9 53.0 53.1 53.4 53.3 53.3 53.7 53.8 % .2 54.4 %.6 %.8 %.9 55.1 55.2 55.2 55.3 53.8 9

55.3 55.4 55.4 55.4 55.4 55.3 55.3 55.4 55.4 55.4 55.4 55.5 55.5 55.7 55.8 %.056.3%.656.7%.957.1 57.2 57.3 57.4  %.0

[ 10 57.4 57.4 57.5 57.5 57.5 57.6 57.6 57.6 57.7 57.7 57.9 58.1 58.1 58.3 58.3 58.5 58.7 58.8 58.9 59.0 59.1 59.3 59.4 59.6 58.2 m 11 59.6 59.7 59.6 59.7 30.7 59.6 59.6 59.5 59.7 59.7 59.7 59.9 60.2 60.5 60.7 61.0 61.1 61.2 61.1 61.1 61.1 61.0 61.0 61.0 1

60.3 12 13 61.1 61.1 61.1 61.1 61.1 61.2 61.3 61.4 61.4 61.5 61.5 61.5 61.5 61.4 61.3 61.1 61.0 60.9 60.7 60.7 60.6 60.7 M.7 60.8 61.1 14 60.8 60.8 60.8 60.7 60.5 60.4 60.4 60.3 60.3 60.4 60.3 60.3 60.3 60.3 60.3 60.2 60.2 60.2 60.2 60.2 EO.1 60.0 60.0 59.9 60.3 15 59.8 59.7 59.8 59.8 59.8 59.6 59.6 59.7 59.7 59.7 59.7 59.7 59.8 59.8 59.9 60.0 60.1 60.2 60.2 60.2 60.2 60.2 60.1 60.1 59.9 60.0 60.0 59.9 59.7 59.7 59.6 59.5 59.5 59.4 59.4 59.5 59.7 59.8 60.0 60.3 60.5 60.7 60.8 60.9 60.9 60.9 60.8 60.8 60.8 60.1 16 17 60.7 60.7 60.7 60.7 60.6 60.6 60.6 60.6 60.5 60.5 60.4 60.4 60.9 61.2 61.3 61.5 61.7 61.8 61.8 61.9 62.0 62.0 61.9 61.8 61.1 61.6 61.5 61.3 61.2 61.1 61.0 60.9 60.8 60.8 60.7 60.6 60.7 61.0 61.2 61.5 61.8 62.1 62.3 62.5 62.5 62.5 62.6 62.5 62.5 61.6 18 62.4 62.3 62.3 62.2 62.2 62.1 62.1 62.1 62.1 61.9 61.8 61.5 61.4 61.3 61.5 61.5 61.3 61.2 61.1 61.0 60.9 60.9 60.9 60.9 61.6 19 20 60.8 60.9 60.9 60.9 60.9 60.9 60.9 60.9 61.0 61.1 61.3 61.4 61.5 61.6 61.6 61.6 61.5 61.7 61.8 61.9 62.2 61.8 61.7 61.5 61.3 61.4 61.4 61.3 61.3 61.2 61.2 61.2 61.2 61.2 61.2 61.2 61.2 61.3 61.4 61.4 61.4 61.5 61.8 61.6 61.6 61.8 61.9 61.9 61.8 61.4 21 61.9 61.8 61.8 61.8 62.0 61.8 61.8 61.9 61.9 62.0 62.2 62.3 62.6 62.7 62.8 62.7 62.9 63.0 63.1 63.1 63.0 63.0 63.0 62.9 62.4 22 62.9 62.9 62.8 62.8 62.7 62.6 62.6 62.6 62.5 62.3 62.3 62.6 62.9 62.9 63.0 63.3 63.5 63.7 63.8 63.8 63.8 63.8 63.9 63.9 63.1 23 63.9 63.9 63.9 63.8 63.7 63.7 63.7 63.7 63.7 63.7 63.5 63.3 63.2 63.4 63.4 63.1 62.9 62.9 62.8 62.8 62.9 63.1 63.2 63.3 63.4 24 63.4 63.4 63.5 63.4 63.4 63.4 63.3 63.2 63.1 63.0 62.8 62.6 62.5 62.4 62.2 62.1 62.1 62.1 62.0 61.8 61.2 60.3 59.3 59.1 62.3 25 58.9 58.7 58.6 58.4 58.1 58.0 57.8 57.6 57.5 57.3 56.9 56.6 56.2 56.1 %.0 55.8 55.6 55.6 55.6 55.5 55.2 55.2 55.1 55.3 56.7 26 55.1 55.2 55.2 55.2 55.3 55.3 55.2 55.1 55.0 54.9 % .9 %.9 55.0 55.2 55.4 55.6 55.9 56.0 55.8 55.7 55.5 55.3 55.2 55.0 55.3 27 54.9 54.7 54.7 54.5 %.4 54.3 % .2 %.2 54.2 %.2 54.2 %.454.554.854.954.9 55.0 55.0 % .9 %.9 54.8 % .7 %.7 %.7 54.6 28

%.7 54.6 54.5 54.4 54.3 54.3 54.2 %.2 54.2 54.4 54.4 54.5 54.7 54.8 54.9 55.3 55.6 55.8 %.0 56.1 56.3 56.3 % .4 56.4 55.1 29

% .3 56.2 56.2 56.1 55.9 55.7 55.5 55.4 55.4 55.5 55.6 55.9 56.1 56.1 56.2 56.4 56.5 56.7 56.7 56.7 56.5 56.4 56.4 56.4 56.1 30 56.5 56.5 56.6 56.7 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.9 57.0 57.1 57.1 57.3 57.5 57.5 57.5 57.6 57.7 57.7 57.7 57.8 57.1 31 57.7 57.7 57.6 57.5 57.3 57.2 57.1 57.0 56.9 57.0 57.1 57.3 57.5 57.6 57.8 58.1 58.2 58.3 58.7 58.8 58.8 58.9 58.9 59.0 57.8 MONTHLY AVERAGE 57.5 m m m m m M M M N M E E

m M M M M M M M M M M M M M M M M TABLE 3.2-6 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 JUNE 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 59.1 59.1 59.0 58.9 58.7 58.6 58.4 58.4 58.3 58.2 58.6 58.7 59.0 59.4 59.6 59.9 60.2 60.3 60.4 60.4 60.5 60.6 60.7 61.1 59.4 3

60.8 60.8 60.8 60.8 60.7 60.6 60.5 60.4 60.3 60.2 60.1 60.2 60.3 60.5 60.7 61.0 61.1 61.3 61.3 61.4 61.6 61.5 61.6 61.7 60.8 4

61.8 61.9 61.9 61.9 61.9 61.8 61.7 61.6 61.5 61.4 61.3 61.2 61.2 61.2 61.3 61.4 61.5 61.5 61.6 61.7 61.8 61.8 61.9 62.0 61.6 5

62.0 62.1 62.1 62.1 62.1 62.1 62.1 62.0 62.0 61.9 61.9 62.0 62.1 62.2 62.3 62.5 62.5 62.5 62.6 62.7 62.7 62.6 62.6 62.5 62.3 6

62.4 62.3 62.3 62.2 62.2 62.2 62.2 62.2 62.3 62.4 62.6 62.7 62.9 63.1 0 .3 63.5 63.7 63.8 63.8 63.9 63.9 63.9 M.0 M.0 63.0 7

64.0 M.0 64.1 M.2 M.3 64.4 M.5 64.7 M.8 M.8 M.9 M.8 M.8 64.9 65.0 65.2 65.4 65.6 65.7 65.8 65.8 65.8 65.8 65.7 65.0 8

65.7 65.7 65.6 65.5 65.4 65.2 65.1 65.1 65.1 65.2 65.4 65.5 65.5 65.6 65.7 65.7 65.8 65.8 65.8 65.8 65.7 65.7 65.7 65.7 65.5 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.8 66.0 66.1 66.2 66.3 M.4 66.5 66.3 66.3 66.3 66.3 66.1 66.0 65.9 65.9 66.0 h

4 9

65.8 65.8 65.8 65.8 65.9 65.9 66.0 66.1 66.1 66.2 66.3 66.4 66.5 66.6 66.7 66.8 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.4 10 8

66.8 66.8 66.8 66.7 66.7 66.7 66.8 66.8 66.9 66.9 67.0 67.0 67.1 67.3 67.4 67.7 67.8 67.9 68.1 68.1 68.3 68.4 68.4 68.6 67.4 11 12 68.5 68.5 68.4 68.3 68.2 68.2 68.2 68.1 68.2 68.3 68.3 68.2 68.1 68.1 68.1 68.0 67.9 67.7 67.5 67.3 67.2 67.1 67.2 67.3 68.0 67.4 67.5 67.4 67.3 67.2 67.0 66.7 66.5 66.2 66.1 66.1 66.1 66.1 66.3 66.4 66.5 66.5 66.5 66.5 66.4 66.3 66.2 66.1 66.1 66.6 13 14 65.9 65.8 65.6 65.4 65.2 65.0 M.8 M.7 64.7 M.9 65.1 65.2 65.4 65.6 65.8 65.9 66.0 66.1 66.1 66.0 65.8 65.6 65.3 65.0 65.5 M.8 M.6 M.4 64.2 M.0 63.8 63.8 63.7 63.8 63.9 64.1 M.3 M.4 M.7 M.9 65.1 65.2 65.3 65.4 65.3 65.1 65.0 64.9 M.7 M.6 15 M.6 M.5 64.3 M.2 M.2 M.2 M.2 M.2 64.2 64.3 M.5 M.7 M.9 65.2 65.5 65.9 66.1 66.3 66.4 66.5 66.4 66.4 66.2 66.1 65.2 16 65.9 65.8 65.8 65.7 65.6 65.5 65.5 65.4 65.4 65.3 65.4 65.6 65.9 66.3 67.0 67.4 67.9 68.2 68.4 68.4 68.5 68.5 68.4 68.4 66.7 17 68.3 68.3 68.3 68.3 68.3 68.3 68.2 68.2 68.2 68.2 68.2 68.1 68.0 67.8 67.8 67.9 67.9 67.9 67.9 68.0 68.3 68.6 68.9 69.0 68.2 18 69.0 69.0 68.9 68.8 68.7 68.7 68.7 68.7 68.7 68.9 69.0 69.1 69.2 69.7 70.4 70.3 70.2 70.1 70.0 69.9 69.8 69.7 69.6 69.5 69.4 19 69.4 69.2 69.1 69.2 69.3 69.4 69.5 69.6 69.8 69.8 69.8 69.6 69.6 69.7 69.8 69.9 70.0 70.2 70.2 70.2 70.1 70.0 69.8 69.7 69.7

'D 2

69.5 69.1 69.3 69.2 69.1 69.0 69.0 68.8 68.8 68.8 68.7 68.7 68.5 69.0 69.2 69.3 69.7 69.7 69.8 70.0 70.0 70.1 70.1 70.2 69.3 21 70.2 70.3 70.3 70.3 70.3 70.3 70.3 70.4 70.4 70.5 70.5 70.5 70.5 70.4 70.3 70.3 70.3 70.4 70.5 70.7 70.9 70.7 70.8 70.9 70.5 22 70.9 70.9 71.0 70.9 70.9 70.8 70.6 70.6 70.6 70.6 70.4 70.2 70.2 70.2 70.2 70.5 70.8 71.1 71.2 71.3 71.3 71.3 71.2 71.2 70.8 23 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.2 71.1 71.0 70.9 70.9 70.5 70.8 70.7 70.7 70.7 70.6 70.7 70.7 70.6 71.0 24 70.5 70.4 70.3 70.2 70.0 69.9 69.9 69.9 69.9 69.8 69.9 69.7 69.9 69.8 69.9 69.6 69.6 69.5 69.4 69.3 69.1 69.0 68.9 68.8 69.7 25 68.7 68.6 68.6 68.5 68.4 68.4 68.3 68.3 68.3 68.3 68.2 68.2 68.4 68.6 68.9 69.2 69.0 69.0 69.0 69.0 68.8 68.4 68.1 68.0 68.6 26 68.0 68.0 68.0 67.9 67.9 67.8 67.8 67.8 68.0 68.2 68.0 67.9 67.9 68.0 68.2 68.2 67.8 68.3 68.2 68.2 68.2 68.3 68.4 68.3 68.1 27 68.2 68.3 68.3 68.2 68.2 60.3 68.2 68.2 68.2 68.2 68.1 68.1 67.8 67.6 67.7 67.9 67.9 68.0 68.1 68.2 68.3 68.3 68.5 68.6 68.1 28 68.6 68.6 68.7 68.8 68.8 68.8 68.8 68.9 68.9 69.1 69.1 69.1 69.0 68.8 68.8 68.9 68.9 69.0 68.9 68.9 68.8 68.8 68.8 68.8 68.9 29 69.0 69.2 69.2 69.1 69.1 69.0 69.0 68.9 68.9 68.9 68.8 68.8 68.6 68.5 68.6 68.7 68.8 68.8 68.7 69.0 69.2 69.3 69.4 69.4 69.0 30 69.4 69.4 69.6 69.5 69.5 69.6 69.6 69.6 69.7 69.6 69.6 69.6 69.7 69.7 69.7 69.7 69.7 69.7 69.6 69.7 69.8 69.8 69.9 69.9 69.6 MONTHLY AVERAGE 66.8

. _ _ . _ _ _ - - _ _ _ _ _ _ _ _ _ . ~ - - -

TABLE 3.2-7 AVERAGE HOURLY TEMPERATURE IN 'F VERMONT YANKEE SAMPLE STATION NO. 7 JULY 1979 DAILY DAY HOUR AVERAGE I 2 3 4 5 6 7 8 9 10 11 12 13 14 '.5 16 17 18 19 20 21 22 23 24 1 69.9 69.9 69.9 69.9 69.9 70.0 70.0 70.0 69.9 70.0 70.0 69.9 70.0 70.0 70.0 69.9 69.7 69.8 69.8 69.8 69.7 69.8 70.0 69.9 69.9 2 69.7 69.7 69.9 69.9 69.9 70.0 70.0 70.1 70.2 70.3 70.1 70.1 70.1 70.1 70.3 70.4 70.4 71.1 70.6 70.6 70.7 70.7 70.7 70.6 70.3 3 70.5 70.4 70.2 70.0 69.8 69.7 69.7 69.7 69.7 69.7 69.7 70.1 70.1 70.7 70.5 70.6 71.2 70.9 71.0 71.3 71.4 71.3 71.2 71.1 70.4 4 70.9 1.8 70.7 70.6 70.6 70.5 70.5 70.5 70.5 70.6 70.6 70.7 70.8 70.9 70.9 70.9 70.9 70.7 70.7 70.7 70.7 70.9 71.5 71.4 70.8 5 71.2 71.0 70.9 70.9 70.9 70.8 70.7 70.6 70.5 70.6 70.5 70.2 70.0 70.0 70.3 70.4 70.6 70.6 70.8 70.8 70.7 70.7 70.6 70.5 70.6 6 70.5 70.5 70.4 70.4 70.3 70.3 70.3 70.7 70.4 70.4 70.5 70.8 71.1 70.7 70.7 70.7 70.9 iO.9 70.9 70.7 70.8 70.7 70.6 70.5 70.6 7 70.4 70.4 70.3 70.1 70.0 69.9 0.8 69.8 69.7 69.6 69.5 69.4 69.2 69.1 69.1 69.0 69.1 69.0 69.0 69.0 69.1 69.1 69.1 69.1 69.5 8 68.9 69.1 69.0 69.1 69.1 69.2 69.1 69.2 69.1 69.2 69.3 69.4 69.2 69.2 69.1 69.0 69.1 69.1 69.1 69.0 69.2 69.3 69.4 69.5 69.2 9 69.4 69.3 69.1 69.1 69.3 69.4 69.3 69.3 69.3 69.4 69.7 69.9 70.2 70.3 70.5 70.5 70.9 71.2 71.3 71.3 71.5 71.5 71.5 71.4 70.2

[ 10 71.6 71.1 71.1 71.0 71.0 70.9 70.9 70.9 70.9 71.0 71.0 71.0 71.1 71.3 71.3 71.5 71.8 72.0 72.2 72.1 72.2 72.2 72.3 72.2 71.4 co 11 72.2 72.1 72.1 72.1 72.1 72.4 72.1 72.2 72.3 72.3 72.3 72.2 72.2 72.1 72.1 72.1 72.3 72.3 72.5 72.5 72.6 72.6 72.9 72.9 72.3 1

12 72.8 72.9 73.0 73.0 73.0 73.0 73.0 72.9 72.9 72.9 72.9 73.0 73.2 73.1 73.2 73.3 73.6 73.7 73.9 74.0 73.9 73.9 74.0 73.9 73.3 13 73.9 73.9 73.9 73.8 73.8 73.7 73.7 73.7 73.7 73.7 73.5 73.4 73.3 73.5 73.7 73.8 74.4 74.3 74.3 74.5 74.7 74.7 74.6 74.5 74.0 14 74.6 74.7 74.7 74.7 74.6 74.6 74.5 74.5 74.5 74.5 74.5 74.4 74.4 74.3 74.2 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.1 74.4 15 74.1 74.2 74.4 74.3 74.3 74.5 74.5 74.6 74.6 74.6 74.5 74.5 74.5 74.4 74.4 74.5 74.5 74.4 74.5 74.5 74.5 74.5 74.9 74.5 74.5 16 74.6 74.6 74.7 74.6 74.6 74.6 74.7 74.8 74.9 75.0 75.0 75.4 75.1 75.4 75.6 75.7 75.9 76.2 76.4 76.3 76.5 76.4 76.3 76.5 75.4 17 76.3 76.5 76.4 76.2 76.3 76.3 76.2 76.2 76.3 76.3 76.3 76.1 75.7 75.4 76.0 76.2 76.5 76.7 77.0 76.9 77.0 76.9 76.8 76.8 76.4 18 76.7 76.7 76.7 76.6 76.7 76.7 76.6 76.7 76.6 76.7 76.7 76.8 76.9 77.0 77.0 77.0 77.1 77.0 77.0 77.0 77.0 76.9 76.9 76.8 76.8 19 76.8 76.6 76.6 76.5 76.4 76.4 76.3 76.3 76.3 76.2 76.2 76.2 76.1 76.0 76.0 75.8 75.8 75.8 75.9 76.0 75.9 75.9 75.9 75.9 76.2 20 75.9 75.9 76.0 76.0 76.0 75.9 '5.9 75.9 75.8 75.8 75.8 75.8 75.9 76.0 76.0 76.1 76.2 75.9 76.0 76.0 76.3 76.2 76.2 76.3 76.0 21 76.2 76.1 76.2 76.2 76.1 76.2 76.2 76.2 76.2 76.1 76.2 76.2 76.1 76.1 76.2 76.1 76.2 76.0 75.9 76.0 76.1 76.2 76.'2 76.1 76.1 22 76.2 76.3 76.3 76.1 76.0 76.0 76.1 76.1 76.1 76.1 76.2 76.3 76.4 76.5 76.5 76.3 76.4 76.3 76.3 76.4 76.4 76.4 76.4 76.4 76.3 23 76.3 76.3 76.4 76.3 76.3 76.6 76.4 76.2 76.1 76.1 76.2 76.0 76.2 76.4 76.5 76.8 76.9 76.9 77.i 77.0 77.3 77.9 77.1 77.1 76.6

~24 77.4 77.4 77.4 77.5 77.4 77.5 77.7 77.7 77.6 77.6 77.5 77.5 77.5 77.7 77.7 77.8 77.7 77.6 77.8 77.9 78.1 78.3 78.4 78.1 77.7 25 78.0 77.9 78.0 78.1 78.1 78.0 78.2 78.2 78.1 78.0 78.0 78.1 78.1 78.0 77.9 77.9 77.9 77.9 77.9 77.9 77.9 78.0 78.0 78.0 78.0 26 78.1 78.0 't8.1 78.3 78.3 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.1 78.4 78.4 78.3 78.3 78.4 78.4 78.4 78.6 78.7 78.6 78.5 78.4 27 78.5 78.6 78.7 78.7 78.7 78.8 78.7 78.7 78.7 78.6 78.6 78.6 78.6 78.5 78.6 78.5 78.6 78.5 78.5 78.4 78.4 78.5 78.4 78.3 78.6 l 28 78.2 78.3 78.0 78.2 78.3 78.5 78.6 78.7 78.7 78.8 78.8 78.5 78.4 78.5 78.5 78.5 78.5 78.5 78. 78.5 78.5 78.5 78.4 78.4 78.5 78.4 78.3 78.3 78.4 78.4 78.5 78.5 78.5 78.5 78.5 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.3 78.4 78.3 78.3 78.3 78.3 29 78.4 l 30 78.3 78.3 78.3 78.2 78.1 78.1 78.2 78.2 78.1 78.2 78.4 78.3 78.1 77.9 77.7 77.8 78.0 78.2 78.2 78.3 78.5 78.4 78.5 78.4 78.2 31 78.3 78.5 78.5 78.5 78.5 78.5 78.6 78.5 78.6 78.6 78.5 78.6 78.7 78.8 78.9 79.0 79.1 79.2 79.2 79.2 79.4 79.5 79.4 79.4 78.8 HONTHLY AVERACE 74.4 e

M M M M M M M M M M M M M M M M TABLE 3.2-8 AVERACE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 AUGUST 1979 DAY DAILY HOUR AVERACE 1 2 3 4 > 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 79.5 79.4 79.3 79.3 79.3 79.2 79.2 79.4 79.4 79.4 79.5 79.5 79.6 79.6 79.8 79.9 79.9 80.0 80.0 80.1 79.9 80.0 80.0 80.0 79.6 3 79.8 79.9 79.9 80.0 80.0 80.1 80.0 79.9 80.0 80.0 79.9 80.1 80.1 80.0 79.8 79.9 80.0 80.1 80.0 80.0 79.9 80.0 80.0 80.1 80.0 4 80.1 80.3 80.5 80.6 80.7 80.6 80.6 80.6 80.6 80.5 80.5 80.4 80.4 80.6 80.7 80.8 80.6 80.8 80.9 81.0 80.9 80.7 80.8 80.8 80.6 5 81.0 81.1 81.1 81.2 81.3 81.4 81.5 81.4 81.3 81.4 81.3 81.4 80.8 80.5 80.5 80.4 80.5 80.5 80.6 80.7 80.9 81.0 80.9 80.9 81.0 6 80.8 80.9 81.0 81.0 80.9 81.0 80.9 80.8 80.6 80.6 80.6 80.5 80.6 80.6 80.5 80.6 80.5 80.4 80.3 80.2 80.1 80.1 80.2 80.3 80.6 7 80.3 80.4 80.3 80.4 80.6 80.7 80.6 80.7 80.6 80.5 80.4 80.5 80.7 80.8 80.9 81.1 81.3 81.3 81.4 81.5 81.6 81.7 81.6 81.7 80.9 8 81.6 91.5 81.4 81.3 Bl.3 81.3 81.2 81.2 81.3 81.2 81.1 81.0 80.9 80.9 80.8 80.8 80.7 80.7 80.7 80.6 80.6 80.7 80.7 60.7 81.0 I 9 80.7 80.8 80.9 80.9 80.9 80.8 80.8 80.7 80.8 80.7 80.5 80.5 80.3 80.2 80.2 80.2 80.5 80.4 80.5 80.2 80.0 80.2 80.6 ED.6 80.5 80.6 80.6 80.5 80.5 80.4 80.4 80.3 80.2 80.2 80.2 80.2 80.3 80.4 80.2 80.4 80.4 80.6 80.2 80.1 80.2 80.3 80.5 80.4 80.3 80.4 s

10 11 80.2 80.0 80.0 79.9 79.8 79.8 79.6 79.6 79.5 79.4 79.4 79.3 79.1 79.3 79.3 79.2 79.0 79.1 79.1 78.9 78.8 78.8 78.7 78.6 79.4 12 78.4 78.3 78.2 78.2 78.2 78.1 78.0 78.0 78.0 78.0 78.0 78.0 78.1 78.0 77.5 77.7 77.5 77.5 77.5 77.4 77.3 77.3 77.2 77.2 77.8 13 77.1 77.0 76.9 76.8 76.5 76.7 76.6 76.5 76.1 76.4 76.3 76.2 76.1 76.1 76.1 76.0 75.8 75.8 75.6 75.5 75.4 75.2 74.6 74.8 76.1 14 74.6 74.5 74 .3 74.2 74.1 73.9 73.8 73.8 72.8 73.0 72.9 73.3 73.4 73.4 73.5 73.4 73.4 73.5 73.2 73.3 73.4 73.4 73.3 73.2 73.6 15 73.2 73.1 73.1 73.0 73.0 73.0 72.9 72.8 72.8 72.8 72.8 72.8 72.8 72.7 72.6 72.5 72.3 72.1 71.9 71.9 71.9 72.0 71.7 71.9 72.6 16 72.1 71.9 72.0 71.9 71.9 71.8 71.7 71.6 71.6 71.6 71.4 71.4 71.3 71.2 71.1 71.1 71.1 71.0 70.9 70.8 70.8 70.6 71.2 70.5 71.4 17 70.5 70.5 70.4 70.4 70.4 70.4 70.4 70.3 70.4 70.5 70.6 70.7 70.7 70.9 70.9 71.0 71.1 71.1 71.1 71.0 71.0 70.9 70.9 70.8 70.7 18 70.8 70.8 70.7 70.7 70.7 70.7 70.6 70.6 70.5 70.6 70.6 70.5 70.6 70.4 70.3 70.1 70.2 70.3 70.3 70.2 70.1 70.0 70.2 70.1 70.4 19 70.1 70.1 70.3 70.2 70.1 70.0 70.0 70.0 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.8 69.7 69.7 69.4 69.6 69.6 69.5 69.5 69.3 69.8 2D 69.3 69.2 69.2 69.0 69.1 69.0 69.0 69.0 69.0 69.0 69.0 69.1 69.1 69.1 69.0 68.9 69.0 68.9 68.9 68.9 68.8 68.8 68.8 68.7 69.0 21 68.8 68.8 68.9 68.9 68.9 68.9 68.9 68.8 68.9 68.8 68.8 68.8 68.8 68.7 68.5 68.5 68.5 68.7 68.8 68.7 68.5 68.5 68.4 68.4 68.7 22 68.5 68.5 68.5 68.6 68.6 68.6 68.6 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.7 68.7 69.1 69.1 69.0 68.6 68.6 68.7 68.8 68.8 68.6 23 68.8 68.8 68.9 69.1 .69.0 69.3 69.3 69.2 69.2 69.4 69.4 69.4 69.3 69.3 69.2 69.2 69.1 69.1 68.9 68.8 68.9 69.1 69.0 69.1 69.1 24 68.9 69.0 69.0 69.1 69.1 69.0 69.1 69.2 69.2 69.2 69.4 69.4 69.4 69.2 69.1 69.2 69.2 69.3 69.3 69.3 69.3 69.3 69.4 69.3 69.2 25 69.5 69.3 69.5 69.4 69.5 69.6 69.5 69.4 69.5 69.6 69.6 69.5 69.5 69.4 69.4 69.3 69.3 69.4 69.4 69.4 69.5 69.5 69.5 69.6 69.5 26 69.7 69.7 69.7 69.7 69.6 69.6 69.8 69.8 69.9 69.9 69.8 69.9 69.9 69.9 70.0 70.0 70.0 69.9 70.0 70.0 69.9 69.9 70.0 70.1 69.9 27 70.1 70.1 70.1 70.2 70.1 70.1 70.2 70.1 10.1 70.1 70.1 70.1 70.2 70.5 70.3 70.3 70.2 70.2 70.2 70.2 70.2 70.3 70.4 70.2 70.2 28 70.1 70.2 70.4 70.2 70.2 70.2 70.4 70.4 70.4 70.4 70.5 70.6 70.4 70.4 70.7 71.1 71.3 71.6 72.0 72.1 71.9 71.4 71.4 71.5 70.8 29 71.6 71.6 71.5 71.5 71.5 71.6 71.6 71.7 71.7 71.8 71.8 71.8 71.8 71.7 71.7 71.9 72.2 72.4 72.3 72.3 72.1 71.8 71.9 72.0 71.8 30 72.1 72.0 72.0 71.9 71.9 71.9 71.9 72.0 72.0 72.0 72.1 72.1 72.1 72.0 72.1 72.1 72.1 72.2 72.3 72.3 72.4 72.5 72.7 72.8 72.1 31 72.9 72.9 72.9 72.8 72.9 72.8 72.9 72.9 72.8 72.8 72.8 72.9 73.0 73.0 72.9 72.9 73.0 73.2 73.3 73.3 73.2 73.3 73.4 73.3 73.0 73.2 73.0 73.0 73.2 73.3 73.2 73.2 73.2 73.1 73.2 73.1 73.3 73.3 73.4 73.3 73.4 73.5 73.6 73.8 73.7 73.8 73.8 73.8 73.8 73.4 MONTHLY AVERAGE 74.2

TABLE 3.2-9 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 SEPTEMBER 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 27 23 24 1

73.7 73.7 73.7 73.6 73.6 73.5 73.6 73.5 73.5 73.5 73.5 73.4 73.3 73.3 73.2 73.1 73.0 73.0 73.1 73.0 73.1 73.0 73.0 73.0 73.3 2 73.0 73.0 73.1 73.1 73.1 73.Q 73.1 73.0 73.0 72.9 73.0 73.0 73.0 73.1 73.0 73.1 73.1 73.0 73.0 73.1 73.2 73.2 73.1 73.2 73.1 3 73.1 73.1 73.2 73.3 73.2 73.2 73.3 73.2 73.2 73.3 73.3 73.4 73.3 73.4 73.4 73.5 73.5 73.6 73.6 73.6 73.7 73.6 73.6 73.6 73.4 4 73.5 73.6 73.6 73.6 73.7 73.6 73.7 73.7 73.7 73.8 73.7 73.8 73.9 74.1 74.2 74.3 73.8 73.6 73.6 73.7 73.9 73.9 74.3 74.2 73.8 5 73.8 73.9 74.0 74.3 74.3 74.2 74.3 74.2 74.2 74.2 74.2 74.1 74.2 74.1 74.2 74.3 74.5 74.7 74.8 74.8 74.7 74.6 74.4 74.4 74.3 6 74.4 74.4 74.3 74.3 74.3 74.3 74.3 74.3 74.3 74.3 74.2 74.1 74.0 74.1 74.1 74.1 74.0 74.0 74.0 74.0 74.0 74.0 73.8 73.6 74.1 7

73.3 73.0 72.8 72.8 72.7 72.6 72.5 72.5 72.4 72.3 72.0 71.7 71.6 71.5 71.4 70.8 70.7 71.1 71.2 71.4 71.9 72.3 72.5 72.6 1

, 8 72.6 72.5 72.3 72.2 72.0 71.9 71.6 71.5 71.4 71.3 71.3 71.3 71.4 71.5 71.6 71.6 71.6 71.7 71.6 71.6 71.7 71.8 72.0 72.2 .8

.n. 9 72.1 72.1 72.1 72.0 71.9 71.9 71.7 71.6 71.5 71.5 71.6 71.6 71.4 71.3 71.2 71.1 71.0 70.9 70.8 70.9 71.2 71.0 70.9 70.8 71.4 O 10 70.7 70.5 70.4 70.3 70.1 70.0 70.0 69.9 69.7 69.4 69.1 68.9 68.7 69.0 69.2 69.8 70.3 70.4 70.4 70.3 70.2 70.0 69.9 69.9 69.9 11 69.8 69.8 69.7 69.6 69.5 69.4 69.4 69.3 69.3 69.4 69.5 69.4 69.6 69.7 69.7 69.5 69.7 69.9 69.9 69.8 69.8 69.7 69.6 69.4 69.6 12 69.3 69.2 69.1 69.1 68.9 68.9 68.7 68.8 68.7 68.7 68.8 68.8 68.6 68.2 68.2 68.5 68.9 69.1 69.2 69.4 69.4 69.1 69.2 69.2 68.9 13 69.1 69.0 69.0 69.0 68.9 68.9 68.8 68.8 68.7 68.8 68.8 68.7 68.4 68.3 68.5 68.6 69.0 69.3 69.5 69.3 69.3 69.1 69.0 68.8 68.9 14 68.4 68.3 68.2 68.1 68.2 68.3 68.4 68.4 68.4 68.4 68.3 68.1 67.9 67.8 67.8 67.9 68.0 68.2 68.4 68.6 68.7 68.6 68.5 68.3 68.3 15 68.1 68.0 67.9 67.8 67.7 67.6 67.6 67.5 67.6 67.6 67.8 68.0 67.9 67.9 67.9 67.9 68.0 68.0 68.0 67.9 67.8 67.8 67.8 67.7 t.7.8 16 67.6 67.5 67.5 67.4 67.3 67.2 67.2 67.1 67.1 67.0 67.0 67.0 66.9 66.8 66.7 66.6 66.5 66.5 66.4 66.5 66.6 67.0 67.3 67.0 67.0 17 66.8 66.6 66.5 66.8 66.7 66.7 66.6 66.6 66.5 66.5 66.5 66.5 66.5 66.2 66.2 66.3 66.7 67.1 67.4 67.4 67.4 67.2 67.2 67.2 66.t 18 67.0 67.0 66.9 66.8 66.8 66.7 66.7 66.6 66.6 66.7 66.7 66.8 66.7 66 6 66.7 66.9 67.0 67.2 67.4 67.6 67.4 67.3 67.3 67.1 66.9 19 67.0 66.9 66.9 66.9 66.7 66.7 66.6 66.6 66.5 66.5 66.6 66.6 66.7 66.9 66.9 66.9 67.0 67.0 66.9 66.8 66.7 66.7 66.6 66.5 M.8 20 66.5 % .4 66.3 66.2 66.2 66.1 66.1 66.0 66.0 66.0 66.0 66.0 65.9 65.9 6'

  • 65.7 65.8 65.8 65.8 65.8 65.7 65.7 65.8 65.7 66.9 21 65.7 65.7 65.7 65.6 65.6 65.5 65.5 65.5 65.4 65.3 65.2 %.9 M.7 %.5 / 4.3 M.1 63.9 63.7 63.7 63.7 63.8 63.8 63.8 63.8 M.7 22 63.8 63.8 63.8 63.8 63.8 63.8 63.9 63.9 % .0 % .0 % .0 % .1 %.0 M.0 4.0 S.1 %.1 M.1 %.0 %.G 63.9 63.8 63.7 63.5 63.9 23 63.4 63.4 63.3 63.2 63.1 63.0 62.8 62.7 62.8 62.9 62.8 62.8 62.8 62.7 62.8 62.8 62.7 62.7 62.7 62.7 62.6 62.6 62.7 62.6 62.9 24 62.6 62.6 62.6 62.5 62.5 62.4 62.4 62.3 62.3 62.2 62.1 62.0 61.9 61.7 61.3 61.1 61.0 60.9 60.9 61.0 61.0 61.0 61.1 61.1 61.8 25 61.0 60.9 60.9 61.0 61.0 61.1 61.1 61.1 61.0 61.0 61.0 61.0 60.9 61.0 61.0 60.8 61.0 61.0 61.0 61.0 61.1 61.1 61.1 61.2 61.0 26 61.2 61.2 61.2 61.2 61.3 61.3 61.3 61.2 61.2 61.3 61.3 61.3 61.3 61.2 61.3 61.4 61.3 61.3 61.2 61.4 61.3 61.2 61.6 61.5 61.3 27 61.5 61.5 61.9 61.7 61.6 61.6 61.6 61.6 61.6 61.6 61.7 61.8 61.7 61.6 61.6 61.7 61.7 61.7 61.7 61.8 61.9 61.9 62.0 62.0 61.7 28 62.0 62.0 62.0 6L O 62.0 62.0 62.0 62.0 62.1 62.1 62.1 62.1 62.1 62.1 62.0 61.9 61.9 61.8 61.8 61.8 61.7 61.7 61.7 61.8 61.9 29 61.8 61.7 61.7 61.) 61.7 61.7 61.6 61.6 61.6 61.7 61.7 61.7 61.7 61.8 61.9 61.9 62.0 62.1 62.1 62.0 62.1 62.1 62.1 62.0 61.8 30 62.0 62.0 62.0 62.0 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.8 61.8 61.8 61.7 61.7 61.6 61.6 61.6 61.6 61.6 61.6 61.5 61.5 61.8 MONTHLY AVERAGE 67.6 m m m m m m M M M h M M M M M M M

m M M M M M M M M M M M M M M M M M TABLE 3.2-10 AVERAGE HOURLY TEMPERATURE IN 'F VERMONT YANKEE SAMPLE STATION NO. 7 OCTOBER 1979 DAY DAILY HOUR .

AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

2 61.5 61.4 61.4 61.4 61.4 61.4 61.4 61.3 61.4 61.3 61.4 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.4 51.4 61.4 61.3 61.4 3

61.2 61.1 61.1 61.1 61.0 61.0 61.0 61.0 61.0 60.9 60.9 61.0 61.0 60.7 60.5 60.2 60.0 60.2 60.6 60.7 60.8 60.9 60.9 60.9 60.8 4

60.9 61.0 61.2 61.3 61.3 61.4 61.4 61.5 61.5 61.9 61.6 61.7 61.6 61.4 61.3 61.2 61.1 60.9 60.9 60.9 60 6 60.9 60.9 60.9 61.2 5

60.9 60.8 60.8 60.9 60.9 60.9 60.8 60.6 60.5 60.3 60.2 60.2 60.2 60.3 60.4 60.7 60.9 61.1 61.1 61.3 61.4 61.4 61.4 61.5 60.8 6

61.5 61.5 61.5 61.5 61.4 61.2 61.2 61.1 61.0 61.0 60.9 61.1 61.1 61.1 61.2 61.2 61.1 61.1 61.2 61.26'.361.461.4 61.4 61.2 61.3 61.2 61.0 60.9 60.9 60.7 60.6 60.4 60.3 60.3 60.2 60.1 59.9 59.6 59.7 59.7 59.8 59.6 59.8 59.8 ').7 59.7 59.8 59.7 00.2 7

8 59.6 59.6 59.8 59.8 59.7 59.8 59.7 59.5 59.4 59.5 59.5 59.3 59.0 58.8 58.5 58.5 58.6 58.7 58.6 59.1 19.7 60.1 60 1 50.2 59.4 60.0 59.9 59.7 59.6 59.5 59.5 59.4 59.3 59.2 59.1 58.9 58.8 58.7 58.3 53.5 58.2 58.0 58.0 58.1 58.3 58.2 58.1 58.1 58.1 58.8 1 9 58.0 58.0 57.9 57.9 57.9 57.8 57.8 57.8 57.6 57.4 57.2 57.0 56.8 56.7 56.7 55.8 55.3 55.7 56.1 56.2 56.1 55.9 55.7 55.5 56.9 s 10 55.4 55.3 55.2 55.2 55.1 55.1 55.0 55.0 54.9 54.9 54.7 54.7 54.6 % .7 54.3 53.9 53.4 53.1 52.6 52.6 52.7 52.8 52.9 53.0 54.2 I 11 53.1 53.2 53.1 53.2 53.3 53.3 53.1 53.2 53.2 53.1 53.2 52.5 52.4 52.3 52.0 51.8 51.3 50.8 50.8 51.2 51.7 52.1 52.3 52.4 52.4 12 52.4 52.4 52.4 52.4 52.4 52.3 52.3 52.2 52.1 52.0 52.0 51.9 51.6 51.5 51.3 51.1 50.6 50.1 50.4 50.6 50.6 50.7 50.6 50.6 51.5 13 50.6 50.6 50.6 50.6 50.5 50.5 50.5 50.6 50.5 50.5 50.4 50.3 50.3 50.2 50.0 49.1 48.8 48.2 48.8 49.4 49.6 49.9 49.9 49.9 50.0 14 50.0 50.1 50.0 50.0 50.0 50.1 50.0 50.0 49.9 49.9 49.8 49.7 49.7 49.5 49.6 49.5 49.3 49.3 49.2 49.1 49.0 49.0 48.9 49.0 49.6 15 49.2 49.3 49.3 49.2 49.1 49.1 49.1 49.0 48.9 49.0 49.0 49.0 48.8 48.7 48.9 49.0 49.0 49.0 48.9 48.7 48.7 48.7 48.6 48.6 49.0 16 48.6 48.6 48.5 43.5 48.5 48.4 48.3 48.5 48.5 48.5 48.6 48.5 48.5 48.4 48.5 48.5 48.5 48.5 48.5 48.4 48.3 48.2 48.0 47.9 48.4 17 47.9 47.9 47.9 48.0 48.1 48.2 48.2 48.2 48.2 48.1 48.3 48.3 48.3 48.4 48.5 48.6 48.6 48.7 48.9 49.0 49.0 49.0 49.0 49.1 48.4 18 49.1 49.0 49.1 49.1 49.1 49.2 49.1 49.2 49.2 49.3 49.4 49.4 49.6 49.6 49.6 49.4 49.5 49.6 49.5 49.7 49.6 49.5 49.0 49.3 49.3 19 49.1 49.1 49.0 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.7 48.7 48.7 48.6 48.7 48.8 49.0 49.0 49.1 49.2 49.3 49.2 49.3 49.4 48.9

'20 49.4 49.4 49.3 49.4 49.4 49.3 49.4 49.4 49.5 49.5 49.7 49.7 49.9 50.0 50.1 50.3 50.3 50.3 50.3 50.2 50.2 50.3 50.5 50.5 49.8 21 50.5 50.5 50.5 50.6 50.5 50.5 50.5 50.6 50.6 50.6 50.7 50.8 50.7 50.7 50.8 50.8 50.8 50.9 51.0 51.2 51.5 51.6 51.5 51.3 50.8 22 51.3 51.3 51.2 51.1 51.0 51.0 51.1 51.3 51.5 51.7 51.8 51.8 51.8 51.9 52.0 52.5 52.6 52.7 52.6 52.3 52.2 52.1 52.1 52.1 51.8 23 52.1 52.0 52.0 52.0 52.0 52.1 52.1 52.1 52.1 52.2 52.3 52.4 52.4 52.5 52.7 52.9 53.1 53.3 53.5 53.5 53.3 53.2 53.2 53.3 52.6 24 53.3 53.3 53.3 53.4 53.4 53.4 53.4 53.5 53.6 53.7 53.8 53.8 53.9 53.9 53.9 % .3 54.4 54.4 54.3 %.2 54.2 54.1 54.1 54.1 53.8 25 . 54.1 54.0 54.0 54.0 53.9 53.9 53.9 53.9 53.9 53.9 53.8 53.9 53.7 53.7 53.7 53.9 54.0 53.9 53.8 53.8 53.7 53.6 53.6 53.4 53.8 26 53.4 53.3 53.2 53.2 53.2 53.2 53.2 53.1 53.1 53.1 53.1 53.1 53.2 53.3 53.3 53.1 53.1 53.0 52.9 52.8 52.6 52.6 52.5 52.5 53.0 27 52.4 52.4 52.4 52.4 52.3 52.3 52.3 52.3 52.2 52.2 52.1 52.2 52.4 52.7 52.8 52.7 52.6 52.5 52.3 52.1 51.9 51.7 51.6 51.5 52.3 28 51.4 51.4 51.3 51.3 51.2 51.2 51.2 51.1 50.9 50.8 50.7 50.4 50.2 50.0 49.7 49.8 49.8 49.8 49.6 49.5 49.4 49.3 49.3 49.3 50.4 29 49.2 49.2 49.1 49.1 49.0 49.1 49.1 49.1 49.1 49.0 49.0 48.9 48.9 49.0 49.1 48.6 48.0 48.0 48.2 48.3 48.3 48.2 48.2 48.2 48.7 30 48.1 48.1 48.0 48.0 48.0 47.9 47.9 47.9 48.0 48.1 48.2 48.2 48.2 48.3 48.4 48.3 47.9 47.9 48.0 48.0 47.9 47.8 47.7 47.7 48.0 31 47.6 47.6 47.5 47.5 47.5 47.4 47.4 47.4 47.5 47.5 47.6 47.6 47.7 47.7 47.7 47.3 47.1 47.2 47.3 47.4 47.4 47.3 47.2 47.1 47.4 MONTHLY AVERAGE 53.4

TABLE 3.2-11 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 NOVEMBER 1979 DAILY DAY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

47.0 46.9 46.9 46.8 46.7 46.6 46.6 46.6 46.7 46.6 46.7 46.7 46.8 46.9 47.0 46.9 46.7 46.5 46.4 46.5 46.4 46.5 46.6 46.7 46.7 2

46.7 46.9 46.8 46.9 46.9 46.9 46.9 46.8 46.8 46.8 46.9 47.1 47.4 47.7 47.7 47.7 47.5 47.3 47.3 47.3 47.4 47.5 47.5 47.6 47.2 3

4 47.6 47.6 47.6 47.6 47.6 47.7 47.7 47.7 47.6 47.7 47.7 47.7 47.7 47.7 47.7 47.8 47.9 48.1 48.2 48.3 48.3 48.3 48.2 48.1 47.8 48.1 48,1 48.0 48.0 48.0 47.9 47.7 47.7 47.6 47.5 47.5 47.5 47.5 47.6 47.5 47.5 47.4 47.3 47.2 47.2 47.2 47.2 47.1 47.0 47.6 5

46.9 46.8 W.8 46.6 46.5 46.4 46.4 46.3 46.3 46.4 46.6 46.8 46.9 46.8 46.9 46.9 46.8 46.8 46.7 46.7 46.6 46.5 46.4 46.4 46.6 6

46.3 46 4 46.1 46.0 45.9 45.8 45.7 45.7 45.6 45.5 45.6 45.6 45.7 45.8 45.7 45.5 45.4 45.2 45.0 44.9 44.8 44.7 44.7 44.6 45.5 7

8 44.5 4 5 44.5 44.5 44.5 6.4 44.4 44.4 44.4 44.4 44.4 44.5 44.5 44.5 44.5 44.5 44.5 44.4 44.3 44.2 44.2 44.1 44.1 44.0 44 /, 44.0 43.9 44.0 43.9 43.8 .'.3.9 44.4 43.8 43.9 44.0 44.0 44.0 44.1 43.9 43.8 44.0 44.1 44.2 44.3 44.3 44.3 44.4 44.4 44.4 44.1 1 9 F. 3 44.3 44.2 44.2 44.1 44.0 4 .0 44.0 44.0 44.0 44.0 44.1 44.1 43.9 44.0 44.2 44.4 44.4 44.5 44.5 44.6 44.6 44.6 44.6 44.2 s

10 11 44.5 44.5 44.T 44.6 44.6 44.7 44.7 44.9 44.9 45.0 45.1 45.3 45.4 45.4 45.5 45.4 45.4 45.4 45.4 45.4 45.5 45.5 45.6 45.6 45.1 45.6 45.6 45? 45.4 45.6 45.5 45.4 45.3 45.3 45.3 45.2 45.2 45.1 45.1 45.1 45.0 45.0 45.0 45.1 45.1 45.1 45.2 45.2 45.2 45.3 12 45.2 45.2 45J 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.2 45.1 45.0 44.9 44.8 44.8 44.9 44.9 44.9 44.9 44.8 44.8 44.8 45.1 13 44.8 44.7 44.7 44.7 44.7 44.7 44.9 44.7 44.7 44.8 44.8 44.8 44.9 44.8 44.6 44.4 44.4 44.6 44.7 44.8 44.8 44.8 44.8 44.8 44.7 14 44.8 44.9 44 A 44.8 44.8 44.8 45.0 44.9 44.9 45.0 45.0 45.0 45.1 45.0 44.9 45.0 45.1 45.1 45.1 45.1 45.0- 44.9 44.9 44.8 44.9 15 44.7 44.7 44.s 44.6 44.5 44.5 44.5 44.4 44.4 44.4 44.4 44.5 44.4 44.3 44.1 44.0 44.0 44.1 44.2 44.1 44.0 43.9 43.9 43.8 44.3 16 43.8 43.9 43.8 43.8 43.8 43.8 43.8 43.8 43.7 43.7 43.7 43.6 43.5 43.4 43.2 43.0 42.9 42.9 43.0 42.9 42.9 42.8 42.8 42.7 43.4 17 42.7 42.6 42.6 42.5 42.4 42.4 42.3 42.3 42.3 42.4 42.4 42.4 42.3 41.9 41.3 41.0 41.0 41.2 41.7 42.0 42.1 42.1 42.1 42.2 42.1 18 42.2 42.5 42.2 42.2 42.2 42.1 42.0 41.9 41.9 41.9 42.0 42.2 42.8 42.6 42.6 42.6 42.5 42.6 42.5 42.6 42.7 42.5 42.3 42.1 42.3 19 42.0 41.9 41.9 41.8 41.7 41.6 41.6 41.6 41.8 41.9 42.1 42.1 42.2 42.3 42.0 42.0 42.0 42.0 42.0 41.9 41.9 41.9 42.0 42.0 41.9 20 42.0 42.0 42.1 42.1 42.0 42.1 42.1 42.2 42.2 42.2 42.2 42.3 42.3 42.3 42.0 42.0 42.1 42.1 42.1 42.1 42.0 41.9 41.9 41.8 42.1 21 41.8 41.8 41.8 41.8 41.8 41.9 41.9 41.9 42.0 42.0 42.1 42.1 42.1 42.2 42.2 42.2 42.1 42.1 42.1 42.0 41.9 41.9 41.8 41.8 42.0 22 41.7 42.0 41.7 42.0 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.5 ** 5 41.5 41.5 41.5 41.6 41.6 41.6 23 41.5 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.7 41.7 41.9 42.1 42.2 42.4 42.4 42.4 42.5 42.5 42.4 42.4 42.3 42.3 42.3 42.0 24 42.2 42.3 42.3 42.3 42.3 42.4 42.4 42.5 42.5 42.6 42.7 42.8 42.9 43.0 43.1 43.4 43.6 43.8 43.8 43.8 43.8 43.8 43.9 44.0 43.0 25 44.0 44.1 44.1 44.2 44.1 44.2 44.2 44.2 44.1 44.1 44.1 44.1 44.1 44.2 44.3 44.4 44.6 44.9 45.0 45.1 45.2 45.4 45.5 45.5 44.5 26 45.5 45.4 45.3 45.3 45.2 45.2 45.2 45.1 45.1 45.1 45.0 45.0 45.1 45.5 45.9 46.2 46.4 46.5 46.5 46.7 46.8 46.9 47.0 47.1 45.8 27 47.3 47.6 48.1 48.4 48.6 48.7 48.7 48.4 48.3 48.1 48.0 47.9 47.9 47.9 47.9 47.9 48.0 47.9 47.8 47.6 47.4 47.2 47.1 47.0 47.9 28 46.9 46.9 46.8 46.7 46.6 46.3 46.1 46.0 45.9 45.8 45.8 45.8 45.9 45.8 45.7 45.6 45.5 45.4 45.4 45.2 45.0 44.9 44.8 44.8 45.8 29 44.8 44.8 44.8 44.7 44.6 44.4 44.2 44.0 43.9 43.8 43.8 43.7 43.7 43.7 43.6 43.6 43.6 43.5 43.5 43.4 43.2 43.1 42.9 42.8 43.8 30 42.8 42.8 42.8 42.8 42.9 42.8 42.7 42.7 42.6 42.5 42.4 42.4 42.5 42.4 42.4 42.4 42.3 42.3 42.3 42.2 42.0 42.0 41.8 41.7 42.4 MONTHLY AVERAGE 44.5 m m m M M M M M M M M M

M M M M M M M M M M M M M M M M l

l l

TABLE 3.2-12 AVERAGE HOURLY TEMPERATURE IN *F VERMONT YANKEE SAMPLE STATION NO. 7 DECEMBER 1979 l

l DAY DAILY HOUR AVERAGE 1 2 3 4 5 6 7 8 9 10  !! 12 13 14 15 16 17 18 19 m 21 22 23 24 1

2 41.7 41.6 41.4 41.4 41.3 41.3 41.2 41.1 41.0 41.1 41.1 41.1 41.2 41.3 41.3 41.3 41.1 41.0 40.9 40.9 40.9 40.9 40.8 40.6 41.1 3 40.6 40.5 40.4 40.4 40.4 40.4 40.3 40.3 40.2 40.2 40.3 40.1 40.0 39.8 39.7 39.5 39.3 39.1 39.1 39.1 39.1 39.1 38.9 38.8 39.8 4 38.8 38.8 38.8 38.9 38.9 38.9 38.8 38.6 38.5 38.5 38.4 38.5 38.5 38.0 37.5 37.6 37.8 38.0 38.1 38.2 38.0 37.9 37.7 37.7 38.3 5 37.7 37.7 37.6 37.5 37.4 37.3 37.2 37.2 37.2 37.1 36.9 36.7 36.6 36.6 36.7 36.7 36.8 36.8 36.9 36.7 36.8 36.7 36.6 36.5 37.0 6 36.5 36.4 36.4 36.4 36.4 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.3 36.3 36.2 36.1 36.3 7 36.0 35.9 35.7 35.6 35.5 35.5 35.5 35.4 35.4 35.4 35.5 35.5 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.7 35.8 35.9 35.9 35.6 8 36.1 36.2 %.2 36.3 36.3 36.3 36.4 36.3 36.4 36.4 36.5 36.6 36.6 36.7 36.8 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.8 36.9 36.6 9 36.9 36.8 36.7 36.6 36.5 36.5 36.4 36.4 36.4 36.4 36.4 36.4 36.5 36.7 36.5 36.5 36.5 36.5 36.4 36.2 36.2 36.1 36.1 36.1 36.4 A 10 36.1 36.1 36.1 36.1 36.1 36.1 36.1 35.9 35.8 35.9 35.8 35.8 35.8 35.9 35.9 308 35.7 35.4 35.3 35.2 35.0 34.6 34.4 34.3 35.6 y 11 34.2 34.2 %.2 %.3 34.4 34.4 34.4 34.4 34.5 %.6 %.9 35.0 35.0 35.1 35.0 34.8 34.9 35.1 35.2 35.2 35.1 35.1 35.1 35.0 35.0 %.9 %.9 %.9 34.9 34.8 34.9 34.9 M.8 %.8 34.9 34.9 34.9 34.9 35.0 35.1 35.1 35.1 35.2 35.2 35.2 35.3 35.3 35.3 34.8 35.0 12 13 35.3 35.3 35.3 35.3 35.3 35.4 35.4 35.4 35.5 35.5 35.5 35.7 35.9 36.0 36.1 36.1 36.1 36.0 35.9 35.9 35.9 35.9 35.9 35.9 35.7 14 35.9 35.9 35.9 35.9 35.8 35.8 35.8 35.7 35.6 35.6 35.6 35.6 35.6 35.7 35.6 35.5 35.4 35.2 35.1 % .9 % .9 %.9 35.0 % .9 35.5 15 34.9 %.8 34.7 %.7 34.6 34.5 34.4 34.3 %.2 34.2 34.2 34.2 34.2 34.3 %.3 34.3 34.2 34.2 %.3 34.3 % .3 34.4 34.5 34.5  %.4 16 34.6 34.6 %.6 34.7 34.7 34.6 34.7 34.6 %.6 %.5 34.4 34.4 34.5 34.4 34.4 %.3 34.2 M 2 %.4 34.4 34.3 34.3 34.3 34.2 34.5 17

%.2 %.1 34.1 %.1 M.2 34.1 34.2 34.2 34.2 34.2 % .2 % .2 .% .3 %.434.434.534.534.4 34.5 % .5 34.5 34.5 34.1 %.0 34.3 18 33.9 33.8 33.8 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 34.0 % .0 33.9 33.6 33.3 33.2 33.3 33.4 33.4 33.2 33.2 33.1 32.9 33.6 19 32.9 32.8 32.9 32.9 32.9 32.9 32.9 32.9 32.9 32.8 32.8 32.7 32.8 32.8 32.8 32.7 32.6 32.7 32.7 32.6 32.5 32.4 32.3 32.1 32.7 20 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 21 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 22 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 23 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0. 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 24 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 25 32.0 32.0 32.0 32.0 32.0 32.0 37.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 z

26 32.0 32.0 32.0 32.0 32.0 32.0 3'.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 27 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 28 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 29 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 31 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.1 32.2 32.2 32.3 32.2 32.2 32.2 32.2 32.2 32.2 32.1 32.0 32.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.G 32.0 32.0 32.0 32.0 32.0 32.0 32.9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 MONTHLY AVERAGE 34.3

<] 4. ==. 0 0 0 0. ==. ==. 0. O. =. 0. O. ==. . O. O. O. ==. N. =. O. .e O. =. O. a.s N. O. O. O.

N OOOOOOOOOOOOOQOOOOOOOOOOOOOOOOO 4 4 I i I 4 6 e 1 6 m M. ==. O. O. O. O. O. ==. O. ==. ==. O. . ** m. O. O. O. O. =. O. 0. O.. -e O. =*. O. O. N. O. ==. O.

N O6 4O O O O O O O O O O O O O'O O O O O O O O O O O O O O O O O 6 4 4 4 N 4. ==. O. O. O. O. O. O. O. ==. m. O. O. N. O. O. O. ==. O. O. ==. ==. 0. N. ==. 0. O. o. N. O. ==.

N OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 4 4 ee a 4 4 0

.a m. ==. s-e . O. O. O. O. == . O. =. m. O. O. so. O. O. O. =*e ==. 4. ==. M. O. en. O. =. Me O. =a.O. O.

N OOOOOOOoOOOOOOOOOOOOOOOOOOOOOOO e 6 a T e a i 6 6 e I I 6 O O. N. O. O. O ae. O. ==. O. ==. *. O. O. ==. ==. =.e

. == 0. C. c0. @. e. N. ==. ==. O. O. O. N. N. ==.

N O O O O O D O O O O O O O ** O OOOOOOO*OO=*OOSO t 4 4 6 6 t 4 9 e i 4 4 I I 6 T I e O. N. O. N. ==. O. O. O. O. O. O. =.= 0. e. O. N. O. O. ==. ==. ==. =.e m. ==. O. O. ==. ==. . 4. .

- OQOOOOOOOOOOOOOOOOOOa==OOOOOOOOO 4 e i 4 I i e e 4 e a 6 en O. N. O. O. ==. ==. O. ==. =.= O. O. =*. .== 5. = . e ==.. e ==. ==. m. o. e. N. 4. O. N. N. ==. 0. N. O.

== Q O O O O O O O O O O O O O O O O O O O =* == 0 o O O O o O O O 4 0 4 I 4 4 0 4 1 4 a 1 6 4 e T I N .e=e.O. O. O. -..==. 0. =e. . ==. O. - . @. O. . O. =e . N. O. ==. 0. N. O. N. @. N. O. N. O.

==

0OOOOOOOOoOOOOOOOOOQOOOOOOOOOOO s e T 6 ea e 6 e i a e

@ N. ==. O. =*. O. O. ==. O. O. O. O. O. N. N. N. O. ==. N. =. 4. ==. O. .e 4. en. 4 4 4. O. N. O.

== 000OOOOOOOOOOOOOOOO.OOOOOOOOOOOO I i 6 I 6 6 4 I 4 9 i e N. N. O. O. O. O. O. ==. 0. O. O. O, t. m. ==. N. N. . O. 80. C. O. Me*=. em. ao. O e N. O. ==e =*.

=* OOOOOOOOOOOOO=*OOOOOOOOOOOOOOOOO 4 4 5 6 6 6 6 6 6 I t t I lee e

E 4 N* 4. O. =** ==* O. O. ==* O. O. O. O. O. **. m. en. ==. ***

  • N e. en. ==. **. O O e. a
  • *
  • em
  • O O. O.

a m O O O O O O O O O O O O == 0 O O O O O O O O O O O a O

' =e O O O en 6

  • 4 I i 6 4 e i 6 4 I t W

ed O m ==. O. O. ==. ==.. =* O. O. .=== ==. N. O. ==. co. @.. em. e-o o. @. O. m. N. O. O. O. e. =*. N. O. M. =a.s H =*

g O == I 0 O O O O O O O O. O N. O O. O. O. O tOi i ****O.

I OOO-ONOO. i i- O.

W C.

H E W

N ==. @. O. O. O. == . O. O. O. O. m. m. O. en. @. @. m. o. N. @. en. c0. N. en. O. 4. =. N. m. N. N.

O H M e

== 0I *IO O O O O O O O O O == O = e == 0 =* == 0 N O O O O O O O O O O 4 4 I

^ e I e I e e i e i e 4 4 M z of e

< O =*

O. ==. = =*. == .e O. O. N. w. co. ao. N. m. N. N. N. 4. em. m. ao. cm. e. O. O. m. C. m. e. op.@

m W E

H

>* D u m . .

M ==

O Ne O O O O O O O O 1O4OI == 0 N == O == == a O == C == O O O =* O =* O m

E g

  • O 6 I 4 I I I t t t t 4 M n9 fut k< O .

O H O O. *. ==. O. -.e O. ==. N. N. 4 4. en. N. m. o. O. @. N. 00 4. @. ==. -.e 4. O. N. en. ch. en.

O Z

< *1 ==

O =* O O O O O O O OI w == 0 O w == =* O a o O O4 == 0 O O O O =* O O I B 6 9 e t i i b

Z.

cm =*. 4. O. O. O. O. O. O. O. N. m. m. 4. @. cn. ~. N. O. m. e. n. o. en. O. . 4. O. m. an. e. N.

En W O 4 I O O O O O O O O O =e OI O O O O O N =e O O N O O O O O O . e - e en U l 4 4 i E

W gr, e O. N. m. O. =. O. O. O. O. Ch. an. ==. eA. @. @. 4. N. CP. eA. 4. N. Ch. ==. N. *. M. O. 4 4. N. m.

W O O O4 O O O O O O O - N O ca O O e O O O O O O O O O O O N == =*

1 les.

8.

Q N as. N. m. O. O. O. N. O. O. O. ==. c0. @. N. en. @. 00. m. N. en. M. en. M. .4. s-e @. O. 4. e0. en. 5 O I O O C O O O O C O O O O O O O =e O O O C 0 0 0 0I 0 O O O D O

@ .-e . ==. ==. 0 0 0. N. . O. O. N. m. @. N. 4. N. m. N. en. C. m. N. en. O. @. O. 4. N. N. en.

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ==

4 6 4 en ==. ==..-e . O. O. O. O. . O. ==. O. ==. @. @. en. @. O. ==. N. 4. @. ==. m. O. .=. @. O. en. O. O. co.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO I i 1 4 4 N. me O. O. O. O. O. O. O. O. me. O. en. m. en. 4. O. O. O. m. 4. O. en. m. m. @. m. 4. N. N. N.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO t I m m

==. N. O. O. O. O. *. O. O. O. ==. ==. m. a. N. m. m. O. ==. m. 4. O. to. =a. a. @. w. m. a. ==e e OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO t I I I t I t i 4 I 6 N O. O. O. O. O. O. O. ==. O. ==. @. 4. O. ==. O. ==. . == O. ==. ==. N. O. N. m. =*. N. O. =*. ==. ==. =.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 4 I I e i 4

    • . **. O. O. O. O. O. ==. Q. O. ==. M. O. =. ==. =. 0. O. O. O. O. ==. N. =*. O. **. O. ==. O. -e. ==. .

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO I t 8 i D.

4 =* N M 4 em @ N CO CP-e O==e== N m 4 en @ N co ch O == N m 4 en @ > co e O ==

.=e == == == == m --e =e N N N N N N N N N N M m O

4 et. ==. =*. ==. =*. O. .e O. O. O. N. O. =*. =*. *. ==. **. C. ec. en. O. ==. 0. O. =. M. O. O.

8%

COOOOOOOOOOOOOOOOOOOOOOOOOOO I 6 4 4 4 4 e 1 6 6 6 I M N

N

    • e O. ==. O. O. O. ==. ==. O. m. M. O. N. N. O. ==eNe @.M. en. N. O. O. O. ==. O.

OOOOOOOOOOOOOOOOOOQOOOOOOOOO t t t t 4 6 8 4 s e i O. O. **. M. M. C. C. C. O. ==. P=. -e. N. ==. 0. .=. 4 4. O. c0. N. .e o. O. O. O. O. O.

8

.e ==.

4 I N OO OOOOOOOyyOOOOO=OOOyOOOOOO I ==

N C. O. =e. 4. N. N. O. O. ==. en. N.

COOO. i O O. OO0

.e N. =e. O. O. @. ==. N. 4. en. O. O. ae. O. N. O. M.

0 =.= 0 O O. O O O. O O. O O. OOCO?OO. i I "

m O

O

==e4. N. O. @. O. O. O. e. 00. N. N. O. O. O. N. O. m. @. en. ==. N. M. N. N. ==.

??T ? *  ???? 7~?~7???????

. *e. me. m. e. c0. M. @. O. =e. =e. en. M. N. N. en. =.e =e.CD. -e P=.

==. N. en. 4. ==. == . O. O. @.

I O4 O 4 O e O i Q a O 1 OI Oi Q 5 O O O6 O O Oi O O O O O =4 O O O O O O O I 6 1 4 4 i co O. a.s 4. ==. N. om. ==. am. N. 4. M. N. N. O. .=. me. P=. 4. .=.4 ==. 4. N. N. O.=e. O. N. N.

==

0OOOOOoOOOOOOOOOOOOOOOOOOOOO ea T 4 1 4 4 6 e t i 1 4 4 0 I P.

==

.*.4. == .==. N. O. O. ==. N. O. @. O. N. ==. . .= N. O. 4. .=. . .e ==. N. M.P=. N. O. O. @.

0OOOOOOOOOOOOOOOOOOOOOOOOOOO I i e i i 4 4 4 1 0 1 6

@ -e. ==. N. se. en. M. N. =. =e. N. 4. N. en. N. O. ==. N. m. N. -d. O. N. O. O. M. as.M. en.

I 0OOOOOOOOOOOOOOOOOOOOOOOOOOO

==

4 6 1 4 e s 4 8 4 I 8 4 i i en O. O. pe. @. P. . N. m.e we. N. O. N. N. N. N. N. O. **. M. 4. ==. ==. N. **. O. @. **. O. O.

==

OOOOoooooooOOOOOOOOOOOOOOOOO s e T TT e a ee e e 6 6 e ta.

I e

z 4 N. N. m. P=. N. ==. N. N. 4. M. -e.==. =.e 4. =e. m.e ==.eN. M. *e. N. M. M. .*. 4. m.e N. N.

    • ==

O 4O 6O 4O I ==t 40 6 Ci O eO 6O aO To O e O i O e Oi O i O Oe O O O O O == 0 C O tn a e 6 4 e a e fs3 E

p I

M O 4. m. =*. @. ==. 4. N. en. P=. m. 4. m. m. 4. N. m. N. @. en. @. e. P=.

@. P=. 4. m. .=.

M a g C O, O. =. =. O. y O. O. O IO O. O. O. O. O6O6O. O. O. O. O. O. O. N. O. O O.

W Ih.

N E N @. =* . .=* M. P=. 4. N. 40. N. c0. m. e0. M. 00. ==. c0. . ** **. m. N. m. P=. en. 4. en . N. O. @.

g e.2 -

>* M e O 6 ==I I-e O == iO 1** IO I N I-e O OI OI== I == e O i ae ie O6O1= 0 =* 8==I=*I=* O ==

  • O M

I P= I I e

, z sa: e O ==

M 6e DC == N. N. M. @. M. N. P=. e. =.eP=. M. c0. en. N. @. =* . co. ==. M. M. M. .e en. @. m. en. en. =e .

>* De D =e e 1 =e4 e=ee =e Oe==

2 ed O

=ie N N .w == =. .-e e e a -e O N N O O O I=aa N e I e e N N N O N N =*

g a a M, N O 4 3 e e e i H

e3 E D ed Ed M m*

I D 6e so O

  • P=. P=. P=.

O 4 W == N. N* N. =** 4 4 O.

  • P=.m. en. ==. O. M. ==* m m. 80. **. en. e=. 40. N. N.

Z b NI == O O O NI O Oe N =* O -ei== 8 0 O O == O as O .a == == =* O O O N 6 8 4 0 E

=<

to m N. N. m. en. en. . . P=. @. e=. @. 4. . M. e. e. e. en. e. @. aa. Q. O. =.e d. en. O. @. O.

W a =e O O O N -e =e O O O N N O O .-e O O O O == == == == O == == ==

I U 4 Z

W sg go W O. in. @. en. en. .M. P= a0. en. en. 4. N. m. M. 4. @. . .e O. 4. @. en. @. en. @. en. so. ao. 40 Lee == 0 O O O == 0 O O O O O O O O O O O O O O O O O O O O O Ia.

A I N 2 4. S.m. M. M.@. @. m.m. M. M.M. m. m. N. m. W.N. N. @. m. m. 4.m. m. m.e.

OOOOOOOOOOOOOOOOOOOOOOOOOOOO P=. 4. @. @. O. @. 4. @. en. @. M. en. N. 4. en. CD. en. M. m. en. @. 4 4. m. @. @. @. en.

OOOOOOOOOOOOOOOOOOOOOOOOOOOO I en en. N. @. 4. N. 4 4. M. 4. en. 4. N. O. c3. en. a. P=. m. o. en. M. @.

OOOOOOOOOOOOOOOOOOOOOOOOOOOO 1

P=. ==. en. en. 4. en.

I 4 M

4. - .e =e . .

=W ==. N..N. . e O. en. @. *.* ==. M. @. . .e en. M. ==. N. M. 4. @. ==. 4. m. N. 4 O O4 O O O O O O O t*

i 1

  • )COOCOOCOODOOCOOOO 4 1 i N. ==. N. == . 0 N. O. O. en. N. N. N. O. O. @. N. =e.4. - .e ==. 0. N. en. O. N. N. ==. 0 OOOOOOOOOOOOOOOOOOOOOOOOOOOO I N e 6 6 N =*. -e. N. ao. M. e. ==

4 OOOOOOOOOOOOOOOOOOOOOOOOOOOO 4 s I t e i

. -e. .=. =.e e a 6 i 4

. ==. N. == .

4 4

4. N. =4 =w e i e

e t 4 N. en. M. C. M. me. m. **. me. M.

3 e a I e =d.

e O. pe. O. ==. O. N. O. O. ==. ==. =e OOOOOOOOOOOOOOOOOOOOOOOOOOOO e I I e i

. ==. -. e O. O. N. O. N. O. en. O. =a.

6 6 g i

==. ==. 0. M. O.

e

>=

4 4 P= 40 O =4 N M 4 en @ P* CO @ == O -==e N me M. e == en @ N 00-e.mNO*

=e==.e== N =N eNNNMN4NenN @ N c O. O. O. a. ==. 0. O. O. =*. O. O. O. O. O. e . e ==. 0 0. ==. O. O. M. ==. ==. m. . ==. ==. =* O. O. **.

M N OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO I I e a i e 6 1 6 i m O. ==. ==. 0 0. O. O. O. . O. O. ==. ==. O. =*. ==. O. ae. O. O. O. N. ==. eO. N N. ==. 0. .=. 0. O.

N OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO t t 6 6 I e i e N O. O. m. ==. 0. O. O. O. O. C O. O. O. ==. O. O. O. O. ==. O. -e. O. ==. N. N. N. ==. ==. O.

N OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 4 a ee e 6 1 4 1 4 8 1

=e ==. ==. N. ==. ==. ==. O. ==. ==. . =* O. O.. ae O. O. O. O. O. O. O. O.. ** *. O. O. O. O. O. O. **. ==.

N OO=*OOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 0 6 6 4 6 i e O m* =* * *==* 4 O. ==. O. O* ==. ==* ** O. O * *O O. O. =** O. O. O. O * *O*O* O m. =<* -e *O * ==. O. O.

N O 6 O 6 i**IO O O e O O O O O O O O O O O O O O O O O O O O1 O 8 4 6 4 OOOO e m. O. ==. m. ==. =.eO. 4. O. O. .e O. O. O. O. O. O. =*. ==. ==. O. m. == . .== ==. =.e m.. =' .' O. =.e

== 0ONOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 6 6 6 4 6 8 1 4 1 4 4 as ==. ==. 4. . = . .e O. ==. O. O. O. O. a..=e. ==. ==. =.e O. ==. . *e *O a.s M. O. ==. ==. =. ==. 0. = O.

==

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO e 6 e e a 4 4 6 6 a l 1 4 6 4 6 e N O. *. O. O. ==. =. O. =*. ==. O. O. ==. 0. O. O. O. O. ==. 0. C. O. O. N. ==. N. ==. ==. =.eo. O. ==.

=*

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO e i 6 6 a 6 6 4 I

@ O. =*. =*. M. =* . O. O. O. O. O. O. O. O. O. ==. .=. ==. 0. O. O. O. O. @. ==. ==. O. =.e O. O. .=. ==.

==

OOOyC00OOOOOOOCO MOOOOOO0COOOOO f">

an ==. ==. =.= ==. 0. ==. O. O. O. O. O. O. ==. 0. O. O. O. O. . O. O. N. in. ==eN. O. . N. O. ==. ==.

=e s O O r3 O O O O O O O O O O O O O O O O O O == c O O O O O O O 4 '

4 4 6 an.

e z e ==. 4. .e in. ==. m. O. .=. O. O. ==. 0. =.eO. O. . .e m. O. O. ==. =.e m. N. ==. ==. ==. .=. N. ==. O. O.

=*

  • OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ee I e a e a 6 U.)

13 M

p m =a e @

. . ** Ch. 4. **. O. ae=* e =.* *ee O a Oe O. .=* eNe O. ==. 0. =. O. N. cD. ==. ==. **. ==. m. O. **. N.

Da ==

g O. O.i O 6 O O. O. OOOOOOOOOOOOOOOOOOOOOOOOO 6

E.3 4.

O r N 4. ==. N. O. 4. N. O. O. O. O. ==. O. =.= ==. 0. O. .e ==. *.* O. N. O. @. ==. =.= N. O. =* . O. O. .e l

%3 H m

=e Oe ==e iOI =* 6 O e O O O O O O O iOeO O O O O O O O O O O O O O O O O O M e M N

. O cm H =, g N. N. N. N. 4. N. O. ==. O. O. ==. **. =. O. ==. O. O. =.= ==. O. N. ==. N. . == O. N. **. ==. O. O. O.

M E == 3 **

6 =* 8 8O O =* I iO O O O O O OOOOOOOOOOOOOOOOOOOO

==

E 2 0 t H O O Z N 4 E M A a < .n. N. m. 4. m.

p y x o . O. =.. m. o. m. O. O. N. O. . N. O. . .. N. =.. N. N. N. . . 4. O. ==. = = ==.

O 4 a

== O O O 6m4 O D O O D O O O O O C O O O O OI 0 0 0 0 Ce O O O O O Z f 6 I

b E.*

e e 4. N. O. ep. N. O. O. O. O. O. ==. m. C. a. =* O. ==. ==. .e O. . ==. ==. m. **. N. ==. O. **. O.

en g O -= O O N O O O O C O. O O O O O.. OOOOOOOODOOOOOO i e i E.3 i

m ao @. .@. .=* @ ==. m. O. O. *O* O ==. O. O. O. ==. * *O O O. O. O. O. N. ==. 0. N. m. ==. N. O. O. =*.

taa 6 a O O O == 0i 0 C O O O O O O Oe O O O O O O O Oa O O O O O O O O la e 4 4 6 O @@

N . . O. N. N. N. *. O. O. O.O. O. m.O. O. N. C. O. O. O. O. m. m. O. m. m. m. m. m. m. m.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO e 4 4 6 4

1 0 4 8 6 1

@ @. 4. O. en. N. ==. =*. N. O. O. O. O. O. ==. =.* ==.. ==. =e O. O. O. O. O. O. ==. N. N. m. ==. *.* O.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

  • e I 1 8 4 6 4 4 4 6 in en. 4. m. m. =.= ==. 0. m. o. ==. 0 0 0. O. O. O. . *. O. O. O. O. .e O. N. ==. N. N. m. O. O. O.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 1 I a 6 e i 4 N. N. 4. N. O. ==. =.a O. O. =*. O. O. O. O. ==. 0. ==. O. O. O. O. N. .=. N. O. O. ==. N. O. O.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 3 i e 1 6 8 ^

m =*=N.O.==.==O.==.O.==e

. . 4. ==. ..O. O. O. **. O. Oe O. O. =*. in. * ==. N. O. O. .=. *.*

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 6 e 6 4 I e 6 6 6 6 N *=. N. O. .e == . N. =.* O. O. ==. 4. =e . ==. O. O. O. O. O. O. == . 0. N. m. O. ==. **. O. O. O. ==.

OOOOOOOOO OOOOOOOOOOOOOOOOOOOOO I I e e e I

. O. O. m. ==. =e.O. O. O. =. 0. C. O. O. O. O. ==. ==. 0. C. O. O. N. -e =* . .m. ==. ==. O. O. ==.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO e I b I a t 6

>= N c0 m O -.

< =. N m 4 en 4 N e0 m O -==- N= m= 4=en. * -c N.= - a0.m-O-we ==NNmN .hP N NenN @ N N N N N m m Q

t O. ==. -.= . 0. ==. ==* 0. ==.* . -. O. ==. m. O. a.e. o. O. ==.* O. O. O. O. =*. =a.

N OOOOOOOOOOOOOOOOOOOOOOO 4 4 4 4 4 6 4 m ==.* O. N. O. O. ==. O. 0. ==. ==. O. O. O. N. ==. O. **. O. O. O. ==. ==. ==.

N OOOOOOOOOoOOOOOOOOOOOOO 6 s e e T ae 6 N =e. O. O. ==. =4 O. O. ==. ==. ==. ==. =*. O. ==. O. O. ==. 0. m. O. m. m. O.

N C00000000 OOOOOOyOOOOOO I N O. O. O. O. O. O. O. =*. **. ==. O. ==. O. ==. O.

OOOOOOOOOOOOOOOOOOOOOOO 6 4 4 4

==. ==. 0. O. O. O. O.

4 4 4 I O N

== * .=. 0 = O * ==. O. ae OOOOOOOOOOOOOooOOOOOOOO e a e

  • .*** N 6
  • ==
  • * == == ==. N. O.

e T

  • =a O. O. m. o. m. O. O. m. m. N. C. O. m. m. O. m. m. m. m. m. O. m. O.
  • =o *O=O*O* O *OO

=* OOOOOOOOOOOOOOOOOOOOOOO I e m

4 4 e a e 4 4 O. m. N. O. O. ==. O. O. ==. N. ==. N. N. =.* O. O. O. O. O. =*. .=. **. O.

00000000 000 00000000O 4 6 I N m

e O. O. m. O. O. ==. ==.* m. N. O. O. M. ==. O. O. O. O. ==. =e.

OOOOOOOOOOOO}OOOOOOOOOO

==.=4.ea.=w.==.N.N.m.==.N.N.m.N..=.==.==.0.=*.=*.**..=.N.O.

. *e ==. ==. ==.

OOOOOOOyOOOOOyOOOOOOOOO I

~

m ==. .e ==. ==. == . N. O. =e. e. ==. =e. N. N. O. O. ==. 0. =*. N. **. N. O. =*.

== OOOOOOOOOOOOOOOOOOOOOOO 4 L

e z 4 N. O. O. .=. O. ==. N. N. em. .- ==. N. 4. O. me. O. ==. m. N. N. ==. ==. =e.

    • -e OOOOOOOOOOOOOOOOOOOOOOO 4 i M

M p m N.==.O.O.==.=e.M.=*.m.N.N.m.m.=*.N.=*.N.N.=*.==.==.==.==.

6= ==

g OOOOOOOOO. OOOOO. O O O. OOOOO. O 4

W Ce 9 N =e . ==. O. ==. O..- * ==. ==. m. =e. m. N. m. O. O. ae. 4. .==. . s-e =* .* O.

l H m

=*

OOOOOOOOOOOOOOOOOOOOOOO 6 4 4 4 M

I z a R

  • O e O to == M e **. O. -e. e. 4. ==. O. N. ==. =*. N. e. m. ~. O. -e. m. N. O. O. . O. ==. O.

2: == D ==

0OCOOCOOCOOOOOOOOOOOOOOO E 3 O 1 I # i N

a U. k $.

o

=.. N. = .

o be O C. O. O. = O. = N. =.m. O. =.. =. . O. N. O. =e . O. =. . a..

I aC . . .

O eC ==

OOCOOOOOCOOCOOOOOCOOOOOO E l e i b Z as e O. N. ==. O. ** . O. O. ==. ==. =*. O. O. O. O. **. ==. ==. O. O. O. . O. == 0. O.

to W OOOOOOOOOOOOOOOOOOOOO t t OO U

Z W

m co N. O. O. O. O. O. =.e. me.=e.4. ==. O. G. .e O. O. en. C. ==. e.e . ==.e O. ea.

e W

b OOOOOOOOOOOOOOOOOOOOOOOO a i e a e i e ra.

O I

N m. o. o. a. m. o. m. o. m. m. ~. O. m. o. m. m. m. o. O. O. m. m. m. a.

. OOOOOOOOOOOOOOOOOOOOOOOO 8 4 6 6 4 8 e I c ==. me. N. O. O. ==. N. ==. Q. ='s.O. O. ==. s-e . e.

. ==. ==. =.s =.e. e. =e. ==. O. O.

O4 4 4 OOOOOO 4 6 OOOOOO O O O O O O O O O C *C, I

4 1 4 e e e e i m O. O. m. O. O. O. O. O. *n. O. == . m. ee . O. O. O. O. 4. =*. O. O. O. O. =*.

OOOOOOOOOOOOOOOOOOOOOOOO i e e i

== -

4 . O. N. N. . m. ==. ==. O. -.e. O. O. O. O. . O. ==. O. . O. -.. . O.

OOOOOOOOOOOOOOOOOOOOOOOO i e 1 6 6 6 l

\

m O. O. m. N. ==. N. O. O. O. O. N. ==. O. O. =*. m. =*. C. == . ==. ==. O. O. O.

OOOOOOOOOOOOOOOOOOOOOOOO I

e 4 1 6 4 e i e t N O. O. O. =* . O. O. O. O. -e . . **. O. M. ==. N. O. O. O. N. O. ==. O. a .s O.

OOOOOOOOOOOOOOOOC5 I 6 I OOOOOOO i e 4 6 l e G. O. O. b. O. O. m. m. O. m. m. O. N. C. O. O. O. O. N. O. O. m. O. O.

OOOOOOOOOOOOOOOOOCOOOOOO e 4 4

m N m 4 m @ N W @ =O. m ..N m. om-=m e N.e .eNNNNNNNNNNm

. == momNmem@Nemo O

4 =*. ==. =. C. C. O. ==ea. C. =. ==. N. =. C. C. ==. =. 0. C. Ce C e N. ==. N. ==e N. O. ==. = C. C.

N OCOCCCCCCCCCCCCCCCCCCOCCCCCCCCC 6 6 I 6 e i 6 6 4 6 e i a i m N. ==. ==. C. .=. .=. ee. ==. C. ==. C. O. a. O. O. ==. ==. C. C. C. C. a. N. N. =*. a ==.==.==.C.==.

N OOOCCCCCCCCOOCCOCCCCCCCCCCCCCCC I e i 6 I e a e I 6 i e i 6 N ==. ==. C. C. C. .=. ==. C. O. O. m. =. ==. **. C. =. N. C. ==. 0. C. m. N. m. C. a O. **. C. =. a.s N OCCCCCCCCOCCCOCCCCCCCCCCCCCCCCO 6 i e e e i e e 1 6 i e e i i se N. O. N. ==. C. C. C. a.s N. **. .=. C. N. *. ==. 4. a.s ==. =. C. C. N. O. M. N. O. C. ==. C. C. C.

N OOOCCCCCCCCOCCCCCOCCCCCOCCCCCCC e e e e i e e s i e a a e i e i C C==.==.==.=*.**.C.=.=C.==.m.==.C.C.C.a.sC.===.C.==.-e==.m.N.==.O.0.=..a.**.

N OCCCCCCCCCCCCCCCCCCCOCCOOCCCCCC 6 6 4 6 6 6 6 6 e a 6 6 i e m C. =. N. O. C. ==. ea. ==. C. ==. =. N. == . C. C. C. C. =*. @. N. O. C. == .=*. m. N. ==. N. ==. ==. =*.

=* OOCCCCCCCOCCCCCCCCCCCCOCCCCCCOO 6 0 6 6 I 4 6 e i e 6 6 4 4 e O. N. *.* O. *.* =*. m. ==. C. C. C. **. O. O. ==. C. **. 4. C. N. ==. ==. N. M. ==. O. ==. =*. ==. c.

= CCCCCCCCOCCCCCOCCCCCCCOOCCOCCO I i 1 4 6 6 N C. N. ==. **. N. me. N. N. N. N. ==. C. =*. N.. =e N. N. =*. c. N. N. O. C. N. N. N. N. -e. N. N.

== CCCCOCCCCCCCCCCCCCCCCCOOOCCCCC t 6 e e i 6

@ O. ==. ==. a.s o. =* . N. N. N. m. ==. C. C. C. N. 4. N. en. ==. .e M. N. O. N. *. C. ==. ==. ==. =*.

== CCCCCCCCCCCCCCCCCCCCCOOCCCCCCC 6 i en C. ==. N. N. O. N. m. N. en. m. **. O. O. N. N. ==. N. N. N. N. m. N. C. 4. C. C. =*. N. C. ==.

  • COCCCCCCCOCCCCCCCCCCCCCCCCCCCC e 6 i

e z 4 ==. C. N. =.= =.= N. m. m. 4. m. =a . a. N. =. m. M. **. N. *. ==. =. ==. m. C. C. =e. C. **. **.

    • == CCOCCCCCCOOCCCCCCCCCCOCOCCCCCC e i a to C m C. M. N. N. N. N. M. N. 4. N. N.C. M. O. N. N. =.C. =. m. @. w. w. w. w. =. =. m. m. m.

6= = CCCCCCCCCCCCCCCCCCCCCOCCCCCCCC g 6 e i W

cm.

Z N ==. ==. M. a.s N. N. N. m. M. C. C. .=. ==. =. N. N. O. C. C. -g.N.O.==.N.*.==.C.C.==.**.

O W == 0CCCCCCCCCCCCCCCCCCCCCOCCCCCCC l Im M m i e ae M 2 as N

. O e ===*

O l= == ag == . .==.==.N.m.=*m.e..C.C.O.==.N.==.N..=.N.==..=.==a.==.0.C..=.0.==.

~*

z >

D O

~ OCCCCCCCCCCCCCCCCCCCCCCCCCOCCO 6 e i I 6 6 6

>e O .C Z N 3 Z 2:

Q D Gd 94 C C.="*am.C.O.==-.em.N.====*C==C.==.=*.*.=.===.N.C.=.N.==.=*.==.==.O.C.C g *C == CCCCCOOCCCCCCCOCCCCCCCCCCCCCCC=

I i 1 6 4 I I b Z

  • e e =*. *. C. C. C. ae .=,= * .O. en. C. a. =.e =* . C. C. C. ==. C. ==. C. C. M. N. ==. m. ==. C. ==. C.

tn W

OCCCCCCCCCCCCCOCCCCCCCCCCCCCCC t t 6 6 6 O

Z W

eg go C.==.==.e=e..id.

. ==. C. =e . .@ C. C. -e . C. ==. ==. C. **. **

. C. .=. m. m. N. a.s =e . C. O. O. O.

W i

CCCCCCCCCCCCCCCCCCCCCCCCCCCOCC I 6 4 s 1 6 6 a 6

.Es.

=

Q N =*. C. C. N. ==. C. a.s C. 4. N. ==. N. C. C. C. C. ==. C. O. O. .e s.e ==. ==. C. =.* *. O. =*. ==.

OCCCOCCCOOCCqCCCCCCCOOOCCCCCCC I e i e i i e i 6 e i e 6 6

@ O. O. O. N. O. C. ==. O. =*. =. 0 4. C. .s ==. **. C. C. **. ==. C. C. N. .e C. **e O. C. ==. O.

CCCCCOCCCCCCOCCCCCCCCCCCCQCCCC 4 i e 1 4 6 e i 6 e i s en C. ==. =. =. C. C. C. ==. C. ==. C. 4. ==. ==. =*. C. ==. C. C. C. C. == . ==. =. C. N. ==. C. C. C.

CCCCCCCCCCCCOCCCCCCCCCOCCCOCCC e i e 1 6 e i 6 6 4 =e . .== . == ==. ==. 0. .=. - . .e ** . a.s C. C. C. C. =. C. ==. 0. C. C. ==. .e 4. ==. ==. C. C. **. Oe CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC i 6 e a I 9 4 1 6 e I i e m C. =*. O. N. ==. -4 C. ==. ==. C. **. =. C. C. C. C. ==. C. O. **. ==eC.==.@.==.N.==.C.==.C.

CCCOCOCCCCCCCCCCCCCCCCCCCCCCCC 4 6 6 4 6 4 4 1 4 6 6 e e N o. =*. O. C. C. C. ==. ==. -e. C. C. N. C. C. f> .C. ==. =. ==. C. C. C. O. co. O. =.= C. C. C. ==.

OOOOCOCCCCCCCCCCCOCCCCCCCCCCCC i I 6 I i e

.= C. a. C. a. C. =. C. ==. C. N. O. **.. == 3. C. N. ==. O.' ==. =. ==. N. ==. @. **. N. **. N. .=. C.

OCCCCCCCCCCCCCCCCCCCOCCCCCCCCC e i e i e I I e 1 8 1 6 4

> wa N M 4 en @ N 00 m C == en @ N c0 CP C -e N M 4 en @ h 00mCM

.C . = = .N.= M = as4. . == ==. == == .== N N N N N N N N N N M M Q

4 == e ==. e . O. O. =*. *ee ==. N. O. .e O. =*. O. ==. ==. ==. O. ==. m.e O. ed e O. m. =e. N. e3 e O. **e e3 0000000000 0000000000000000000 4 4 e e i e 4 e i ee a I m N

N O. O. O. O. O. ==. 0. **. N. m.

OOOOOCOOOO 6

@N.==.**.==.O.==.==.e==.N.

e O. O. m. ==. O. O. N. O. **. O. N. ==. **. ==. N. **. .=. **. O.

000600 a TOOOOOOOQOOOOO e e a O. ='.sO. N. ==. =*. m. O. O. O. en. O. =.= .==

e e 6 e e a

. N. O. N. O. ==.*

N OOOOOOOOCO OOOOCOOCOOOCOOOCOOO I ==

N 6

00OOOOOOOO 4 4 4 6 4 en. N. ==. O. O.

i 4 1

.e O. ==. **. m.

ee 4 I I 6 OC000ONOOQOOOOOQODO 4 4 I 6 e e e 6 e 8 6 4 4 e i

==. 0. O. N. O. N. N. as. N. m. P=. ==. N. N. .m.e =e. N. *.e N.

e e i e e I O m. O. N. ==. ==. ==* 0. N. M * *C ==. .=** * ==. *4*4*to* m N. .=e * *** 4. N. en* N * ==. ==. O

  • as N

CO?CO?OCOO e e 4 e?e O. O. ? O. O O O. e eO. O OiO, e ? =.* O. O. O. 00 m 4. O. O. O. ==. N. O. en. 4 4 ==. 4. N. O. N. O. en. en. P=. en. m. 4 4. m. **. =.* N. ==. N.

I

~

?  ?? ??  ??? ?-~?  ? ??T?????

se en. ==. O. =e. =*. N. **. ==. m. M. 4. ==. O. .=. m. N. ==. @. =* . 4. N. N. .e N. N. ==. =.e N.

=* ~OOOOOOOOO C0000000000000000o e 1 6 e e 6 4 e 6 T T i TT N 4. O. ==. ==. N. N. ==. N. ==. N. =*. .=e

. .=* N. O. a's . N. N. =*. ==. N. 4. N. .e N. N. **.

    • OOOCOOOOOO OC000OCOCOOOOO00CQ i e TT e a e 6 e e e e e i e i e
    • . ** =* O

& m. Oe N. O. ==. O. ==.e . O. O. O. ==. =a . O. 4. O. N. .e O. Me O. N. ==. me =.s e e I =

en

==

OOOOyOOyOO

.e =e . me. N. am.e O. O. O. N. @.

OOOOOC0000 OOOOOOOOOOOOOyyyyC O. O. m.

000000000000000000 e-.

. m. ==. N. O. m. @. m. m. O. O. ==. O. ==.

4 4 e i i e 4 1 e in.

I e z

=e th 4

==

N.=*.==..=.0.C.O.*N..=.

OOOOOODOOO a

ea O. **. N. N. ==. en. m. ==. =*. N. P. CO. 4. m. =e. e-o OOCOSOOOCOC00090OO e e eT e e a e e

.. =e O.

a N

I

, N. N. m. H. O. m. O. N. m. m. M. N. O. N. N. M. N. m. m. N. m. N. m. @. m. O. m. m.

m.

F == OOODOOOOOO g a C 0 0 O0O4 O C O. C6Oe O. -*. O Oe O O O. O 1 0 un A.a g N m. =e.N. ==. m. ==. O. P=. *.* N. .==. 4 0. . .* m. m. to. ==. O. O. m. to. N. en. 4. O. O. .*

W se2 m

=* OOOOOOOOOO O O O c O O O O O == O O O O O O O O H m i a ee T e ae I e i I

I N e e ad cm M, O -e p og == O. 4. .=. N. m. a. ==. a0. N. @. N. en. O. 4. m. N. N. O. M. 4. P=. 4. m. en. 4. m. O. =*.

M ** aC D == CQOOOOOOOO DOCOOOCOOOOOOOCOOO E h3 O s t 6 6 6 6 4 8 1 4 1 6

>e O en E

[,Q 3 E E as ha M m p.= s O O. 4. O m. N. O. N. in. P=. N. m. e. 4. N. =*. m. O. O. N. =. en. e. n. o. m. m. =..a.e .

fn O eC O == 0 C* 3 O O O O O O == ** O O O .=* O O O O =e O O O O O O O O E E 4 e I 4 e e e i p Z

.=*

e .eP=. ==. O. O. O. O. en. 4. en. m. 4. en. m. P=. O. N. to. m. N. P=. 4. en. 4. en. == . O. O. O.

tn h3 O O O O == C O =n O =* O 1 0 4 e OOOOOOOOOOOCOOCOOO e i O

2 sea

==

  • m. ==* O* O. ==* =** @* @. P= * *e.
  • e* m en P=.

as CD * * ==* ==.*O* N * == en.* 4 4. en.*N* O .**** O O ha O =* O O O O O O O O O OOOOOOOOOOOOOOOOOO b a I i I 4 e i 4 8

.-s I

O P= O. @. O. ==. m.e O. O. N. to. ==. 4 en. 4. en. ==. . .e m. .=. N. N. P=. en. 4 4. en. O. O. O. O.

O O O O O O O O == O O OOOOOOOOOOOOOOOOOO I e a 1 e

  • g O. 4. ==. ==. ==. a'.s == . .=* m. - .e 4 ==. 4 4. O. O. M. ==. N. ==. ==. @. 4. N. N. N. O. O. N.

OOOOOOOOOOO OOOOOOOOOOOOOOOOOO 4 I I 4 4 4 4 e en ==. 4. O. . a. O. ==. .e m. N. O. N. N. M. O. N. 4. m. ==. O. ==. 4. en. @. 4. . .* O. O. O.

O O O O O O O O O O ==

I e 6 0 6 i OOOOOOOOOOOOOOOOOO e a 4 O.N.N.==.==.==e==.e==.-.eN...e Ce O. ==e**. ==. 4 4. N. **. ==. a'es P=. m. en. ==. O. Oe =* .

O O O O O O O O O O ==

4 I i e e e OOOOOOOOOOOOOOOOOO 4 a e m =.e e ==. -e. O. O. N. ==. - N. m. ene O. - .e o. OeO. N. ==.* O. .e me. en. N. eN O. *.* **. ==o OOOOOOOOOOO OOOOOOOOOOOOOOOOOO 6 I e e i e I s a 1 4 6 N =.* m. O. O. N. *.* ==. 0. ==. =* . O. =.eO. O. N. O. ==. O. O. O. O. ==. m. ==. m. ==. N. ==. a o.

5 OOOOOOOOOOO OOOOOOOOOOOOOOOOOO e e I e 4 4 4 6 I I e i

l

  • as.m.=*.O.==.==.N.O.=*.==.=.= ==. ==

. 0. N. O. ==. O. O. O. O. O. =*. ~. N. O. =*. N. ==.

l OOOOOOOOOON OODOOOOOOOOOOOOOOO I

e e I e i 6 e a I e 4

>* ** N M 4 en @ N c0 m O == ce m O =e N M 4 en W. ** to Cm O

.c =* ~ .N. =m= =4 en. = .@= P.= . . == = N N N N N N N N N N M Q

4 ==. N. n. =e. C. ==. C. m. m. o. O. C. =. N. C. O. C. te. n. an. C. m. N. N..O. =e c. o. C. O. .=.

N

? O. O. O. O C. O C. C. O C O C. O. O O O O. O. C. C C. C. Y* O C. OOCC?

m 4. N. N. N. O. N. @. ==e4e= e=.= ==. ==. N. O. @. a. N. ==. ==..== 4. en. ==. ==. O. C. C. C. O. =*.

??? ???? ???  ?????????  ?

n 4. ==. N. m. C. 4 4. N. 4. **. O. N. 4. m. N. e. m. m. e. O. *=. 4. eo. m. o. O. O. O. C. O. ==.

N OOCccoOCCOOOOOCCOCOCCCOCCOOOCCO e e e T i e 6 a e a a e a e e) eee 6 e =. N. 4 4. m. N. ==. 4. . N. O. N. N. m. N. O. e. m. 4. =. ~. m. m. e. ==. =. C. O. . C. N.

N O O O C C O O c ==O O O OOmCOCCOCaCCCCOOOO I e 6 a e a a T I e a 6 e 1 4 a e a e 6 0 4 4 4 O

N

== * *c*M N. == * ==.

  • N 4. * *so
  • N
  • N O ==. *
  • N* M
  • en
  • *N =O *4
  • O *O *N *NOOOOC* * * * ** C=em O CC i C a O C eO e Oe i =ee C4 O O 4C 4C4O4N4 O O IO C C O = e a=e O O C C C 6 C e

T4 e . =e. N. -e se. me N. m. 4. m. O. ==. - . N. O. N. ==. =*

. . . N. .e O. no. a0. ==. C. O. O. O. O. C. m.

==

0e C6 Ca Ce Oa Oe Ce O eO e O a O Oe C a C C OT O eTCe Ca O C ==e C C O O O O O C 4 N. N. O. O. O. . m. N. Ne N. O. N. N. O. ==. 4 4. ==. ==. ==. N. m e==. @. =.s ==. C. =. O. ==. O.

e.

OOOOOOOOOCOooOOOOOCCOCOOCCOOOCC e I a e TT ee e e a e e N

~ ==.O.='O.=*.m.==.@.4.N.==.==.==.**.O.==.N..'=.4.O.==.em.M.==.c.O.==.0.C.==.==.

? ?  ???????? **??  ?? ?  ??

e ==. ==. . O. =. O. m. n. .e 4.. ==. N. ==. ==. N. N. 4. ==. m. me. M. N. N. m. Q. ==. 0. pe. m. . .* O.

==

CCOOOOOOOOOOOCCCCCCOOOOcCCCCOOO t 6 e a e e e a e ee ae T m ==. N. ==. O. =. C. N. M. N. N. ==. ==. N. =. N. 4. an. N. O. O. 4. N. ==. 4. m. O. O. O. N. =.= *.

En.

=*

OOOOOOOOCeOOOOCOOOCCOOOOCOCCOCC e 4 a e a T a 6 s 6 e ee ae se a o

y O. 4. =.= O. =.eO. M. N. m. N. 4. a. == . N. 4. en. N. O. O. 4. m. m. e. N. O. C. =. 0. N. =4 2.e en

=.

OCCOOCCOOOOCCCOOOOOOCCCCCCCOCCO e e 6 4 4 6 4 e 6 6 I ae i I.3 M

p m -e. N. N. O. O. M. N. @. eO. M. M. N. N. O. m. @. N. en. O. N. e0 4. m.. ==. m. == ==. C ==. en. O.

H =

g C C C, OO 4 C=CCO. O. C. COOi *COC e e e C. C. = C. CCCCyc aa sh.

x N Q. we. 4. =. . N e N. -e. GO. m. M. e4 .@ 4. p.. me . ==

e en. N. N. ==. 4. =e. m. Ne Oe C. =a. O e =*.m. m.

b l.3 ==

1

>* m e C CI C i C C CI C C C ==IOe O tC 4 C O == == C C C ==

i e e I O C Ce == t C C C O =* O N I M E as e

, . O =

1.El J 0e 88 ==

M E ad DC D == N. 4 4. ==. 0. N. 4. N. @. @. ==* m. eO. N. M. N. O. N. N. ==. =*. O. N. en. m. s'a. C. O. *. e. C.

E Ia O OO I a C O O O C C C C C C4 Ce C C C C C eC 6O6==

1 8

== C C C C C C O O O

> 0 s0 lr.

1 6 4 N, =.3 E as E.3 n

p4 u 6e U c N =. m. N. N. m. e. . co. m. m. e. N. .. . C. e. e. N. e. c. e. 4. m. M. C. O. O. C. O. N.

rn O 4; lea - .

2 O O C O O OI O C oT O == =* C C a eC = O == C C a C ** == O ** O C O C O O e O

@ E me a-.

to m C. en. N. ==. C. e. =4 .

N. m. N. es. me . .=* N. 50. as. N. N. O. 00. @. @. m. =*.. O .O. O ew. =e ==

tea O C C Ca C O O Ce O == ** == ==I 0 C C .= N iC C = O C C O O C O O -e O U

R ha og ao a.2 C m. en. a. =. N. C

  • m *
m. ==. @. en. C. C. m. m. N. N. O.* @. en.. m en. o. C* ==. O. O. M. C.

se t

C C ** O I O 4 eC C C a OOC e C e C O C C C Ca C C C C C C O C C C == C Q

N m. m. m. m.e eO. ** 4. O. m. me 4. =.e O. N. N. 4. O. eme C e6. m. 4 4. == . .3. ==. C. ==. ** . ==.

OOOOOOCOCCOOCCO 4 4 1 6 e O O O C C C C C O C C C C C ** O 4 e

@ =.= .-= . ==. N. .=. ==. O. m. N. ==. N. @. -e.

    • . ==. N. as . N. 4. O. 4 4 4 4. N. ==. C. O. =. N. 4 OI C C I O O C i C =< 1 4C C eC C C I OO a C O eO C C C C C O C C O O, eC O C 4 m C. ==. =. =. m. ==. m. 80 N. N. C. @. O. O. N. ==. ==. N. em. =. 4. m. M. N. ==. =.= =.= ==. O. =*. ==.

CCC e C C O Oi == IOIC C C C C O C 6C6C C C C C C C C C CCCOo 6 6 I e e T 4 -e. =*.

N. N. O. as. C. =. ==. N. O. N. C. ao. N. =. ==. ==. 4. .=. =.. *e C. C.. ==. ==. C. -.. ==. 6 OCCCCCCCCCCOCCCCCCCCCCCCCCCCCCC 4 6 I 6 6 e e e a i 1 ee e m ==N.N.O.O.==.N.m.==.=.C.==.O.==.==.-.N.=*e e . 4.==.C.=.m.==.m.a.=*.*=.N.=*.O.

CCCCOOCCCCCCCCCCCCCOOCCCCCCCCCC I e e I e 4 4 0 4 e i 4 6 e e 4 4 0 t e 6 N ==. =. =*. m. . O. =. ae. ==. ==. ==. N. O. .O. as N.. =. == N. C. C. C. m. ==. @. C. C. O. O. O. O.

CCCCCCCOCOOCCCCCCCCCCCCCCCCCOOC e e e a e s 4 e i e e e i I I C. O. ==. N. O. ==. .

== N. N. C.. C. == C. . **. -e m. ==. C. =. =. =. 0. C. O. M. ==. C. C. C. C. C.

CCCCOCCOCCCOOOOOOOCCCOOOCCCOCCC a 0 0 6 I e a 6 8 e e e 4 4

.C Q

as N M 4 en @ N 40 m O -e .==. ==N e==m ==4.=ee^.=e@==eNme c0 ==

m ON **N NN m N .5 N enN N@NNN90 Nm m O m -e m m M M M M -

m m TABLE 3.5-1 DIFFERENCES IN HOURLY MEAN TEMPERATURES IN *F BEWEEN MONITOR 3 AND MONITOR 7 JANUARY 1979 DAY HOUR I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 9.2 9.2 9.3 9.5 9.6 9.7 9.6 9.6 9.5 9.5 9.5 9.4 9.5 9.7 9.9 10.1 10.2 10.2 10.2 10.2 9.9 9.5 9.2 8.8 2 8.7 8.7 8.5 8.2 8.3 8.4 8.6 8.8 8.4 7.3 5.2 3.6 2.4 2.1 1.9 1.8 1.7 1.6 1.4 1.2 1.1 1.0 0.9 0.8 3 0.8 0.8 0.8 0.8 0.7 0.6 0.9 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.1 1.1 0.9 0.9 0.9 0.9 0.9 0.9 5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.1 1.2 1.3 1.3 1.4 1.4 1.4 1.4 1.3 1.2 1.2 1.2 1.2 1.2 1.2 6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.4 1.5 1.5 1.5 1.5 1.4 1.4 1.3 1.2 1.2 1.2 1.2 1.2 7 1.2 1.2 1.3 1.3 1.3 1.1 1.3 1.3 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 8 1.4 1.3 1.3 1.3 1.4 1.5 1.5 1.5 1.) 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.4 1.3 1.2 1.2 1.3 1.2 9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.5 1.5 L.6 1.6 1.6 1.6 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4 10 1.4 1.3 1.3 1.3 1.4 1.4 1.4 2.3 2.5 1.8 1.7 1.7 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.6 1.7 1.6 1.7 1.7

, 11 1.8 2.4 2.3 2.2 2.2 2.0 2.1 3.6 4.9 3.2 2.4 2.1 1.9 1.9 1.9 1.9 1.8 1.8 1.8 1.7 2.0 1.7 1.6 1.7 m 12 2.0 1.7 1.6 1.5 1.6 1.9 2.7 4.8 4.5 3.1 2.3 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.8 F" 13 1.8 1.8 1.7 2.2 2.8 3.4 4.0 4.5 4.9 5.3 6.5 5.5 3.4 2.4 2.0 1.8 1.7 1.6 1.6 1.6 1.6 1.6 1.7 1.7 I 1.6 1.5 1.4 14 1.7 2.3 3.0 3.7 4.3 4.9 5.4 5.7 6.2 7.0 6.9 5.6 4.9 4.3 3.6 4.5 3.4 2.6 2.4 2.1 2.0 15 2.1 2.1 2.3 2.8 3.3 3.7 4.2 4.8 5.7 6.9 4.7 3.1 2.5 2.2 2.1 1.9 1.9 1.8 1.8 1.7 1.7 1.7 1.7 1.6 16 1.7 1.8 2.1 2.5 3.1 3.8 4.4 4.8 5.5 6.8 5.6 4.0 3.1 2.6 2.4 2.4 2.3 2.2 2.0 1.9 1.9 1.9 1.9 1.9 17 1.9 2.0 1.7 1.7 1.7 2.0 3.8 5.0 4.3 3.3 2.6 2.3 2.2 2.1 1.9 2.0 1.9 1.9 1.8 1.9 1.9 1.9 1.9 1.9 18 1.9 1.9 1.9 1.9 1.8 1.9 2.2 3.1 5.1 5.1 3.7 2.7 2.3 2.2 2.1 1.9 1.9 1.8 1.8 1.8 1.7 1.8 1.8 1.8 19 1.8 1.9 1.8 1.8 2.0 2.2 2.4 2.9 4.2 5.8 4.2 3.1 2.5 2.3 2.3 2.2 2.1 2.0 1.9 1.9 1.8 1.8 1.9 1.8 20 1.8 1.7 1.8 1.9 2.3 2.8 3.3 3.7 4.3 5.0 6.3 6.9 5.9 5.0 4.2 3.8 3.6 3.9 4.0 3.2 2.8 2.8 2.8 2.6 21 2.6 2.8 3.2 3.6 4.2 4.2 4.5 4.7 5.0 5.8 6.6 4.1 2.8 2.3 2.3 2.4 2.4 3.8 2.7 2.1 2.0 1.9 1.9 1.8 22 1.9 1.9 1.9 1.9 1.8 2.1 2.6 3.5 5.5 5.1 3.2 2.4 2.2 2.3 2.3 2.3 2.4 4.3 3.2 2.3 2.0 1.9 1.9 1.9 23- 1.7 1.9 2.7 3.5 3.8 4.0 4.3 4.4 4.9 3.3 2.4 2.2 2.2 2.1 2.4 2.5 2.5 2.3 2.0 1.8 1.8 1.8 1.7 1.8 24 1.9 2.2 2.3 2.4 2.4 2.9 3.3 3.5 3.5 3.6 2.6 2.1 2.1 2.1 2.0 2.4 3.1 3.5 3.6 2.5 2.0 1.8 1.8 1.8 25 1.8 1.9 1.8 1.9 1.8 1.8 1.7 1.8 1.7 1.8 1.8 1.8 1.8 1.8 2.3 1.8 1.8 1.8 1.8 1.7 1.7 1.8 1.9 1.8 26 1.9 2.1 2.7 3.3 3.9 4.5 5.1 5.4 5.8 6.2 6.5 6.9 5.0 3.5 2.7 2.3 2.1 1.9 1.9 1.9 1.8 1.8 1.8 1.8 27 1.8 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 2.0 2.1 2.1 2.5 3.1 3.3 3.4 2.4 2.1 2.1 2.1 2.0 28 2.1 2.2 2.5 2.9 3.4 3.8 4.2 4.6 4.9 5.6 6.9 7.1 4.9 3.4 2.7 2.3 2.1 2.0 1.9 1.9 1.9 1.9 2.1 2.3 29 2.3 2.4 2.3 2.5 2.5 2.7 3.5 5.9 4.4 2.9 2.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.0 2.1 2.3 2.3 2.3 30 2.4 2.3 2.2 2.4 2.4 2.6 3.1 4.3 6.1 5.2 3.4 2.7 2.4 2.4 2.3 2.5 2.7 2.5 2.1 1.9 1.9 1.9 1.8 1.8 31 1.9 2.0 2.3 3.0 3.8 5.3 6.0 4.7 3.5 3.0 2.4 2.2 2.1 2.1 2.0 2.0 2.0 2.0 1.9 1.8 1.8 1.9 1.9 1.9

TABLE 3.5-2 DIFFERENCES IN HOURLY MEAN TEMPERATURES IN *F BETWEEN HONITOR 3 AND MONITOR 7 FEBRUARY 1979 DAY HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 1.8 1.6 1.8 2.2 2.7 3.4 4.2 5.2 6.4 4.1 2.9 2.3 2.3 2.1 2.1 2.0 1.9 1.9 1.8 1.8 1.8 1.8 1.7 1.9 2 1.9 1.8 1.7 1.6 1.8 2.2 2.6 3.1 4.3 6.0 3.8 2.7 2.3 2.1 2.1 2.0 2.4 2.5 1.8 1.7 1.7 1.7 1.7 1.8 3 1.7 1.6 1.4 1.5 2.1 2.7 3.5 4.1 5.0 5.9 3.6 2.5 2.2 2.1 2.0 2.2 2.3 2.7 2.2 1.8 1.7 1.6 1.7 1.7 4 1.6 1.4 1.3 1.5 1.8 2.4 2.9 3.4 3.9 6.2 6.5 5.4 4.7 4.1 4.6 4.0 4.1 4.0 3. 6' 2.4 2.0 1.7 1.7 1.6 5 1.7 1.6 1.6 1.5 1.3 1.3 1.6 2.1 2.6 3.3 4.6 6.3 4,6 3.4 2.8 2.3 2.1 1.8 1.8 1.8 2.0 1.7 1.7 1.6 6 1.6 1.3 1.1 1.3 1.7 2.3 2.8 4.1 6.2 4.0 2.8 2.4 2.) 2.2 2.4 2.7 2.7 2.8 2.7 2.1 1.9 1.9 1.9 1.9 7 1.7 1.8 1.8 2.0 2.4 2.8 3.4 4.1 5.8 6.0 4.3 3.1 2.7 2.5 2.4 2.2 2.2 2.1 2.0 2.0 2.0 2.0 1.9 2.0 8 2.0 1.9 1.9 1.8 2.1 2.7 3.3 4.1 5.7 5.5 3.6 2.8 2.6 2.4 2.3 2.2 2.1 2.0 1.9 1.9 1.9 1.9 1.8 1.8 9 1.8 1.7 2.2 2.2 2.6 3.1 3.6 4.1 4.9 6.9 5.8 3.6 3.1 2.7 2.5 2.4 2.2 2.0 1.9 1.9 1.9 1.8 1.8 1.8 10 1.7 1.6 1.8 2.3 2.8 3.4 3.9 4.4 5.0 6.4 4.7 2.9 2.2 1.9 1.9 2.1 2.1 2.5 3.4 2.5 2.0 1.9 1.8 1.8 g 11 1.7 1.6 1.8 2.4 2.8 3.1 3.4 3.8 4.2 4.6 4.9 5.8 6.7 6.6 6.4 6.0 5.4 5.1 5.8 5.0 3.8 3.1 2.9 2.6 vi 12 2.6 2.7 2.5 2.4 2.6 3.1 3.4 4.1 6.2 5.1 3.3 2.5 2.1 2.0 2.2 2.4 2.4 2.2 1.9 1.7 1.7 1.5 1.6 1.7 N 13 1.7 1.9 1.9 2.0 2.0 2.5 3.4 5.7 4.0 2.5 2.2

' 2.2 1.8 1.7 2.0 2.4 2.7 2.4 1.9 1.6 1.9 2.1 2.3 2.2 14 2.1 2.2 1.9 2.6 3.3 3.7 4.2 4.5 5.1 6.0 5.3 3.4 2.5 2.1 1.9 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.4 15 1.5 1.8 2.4 3.0 3.5 4.0 4.5 4.9 5.8 6.3 3.7 2.6 2.1 2.0 1.8 1.8 1.7 1.6 1.5 1.5 1.6 1.5 1.6 1.6 16 1.7 1.5 1.3 1.2 1.7 2.5 3.2 3.8 5.4 5.3 3.2 2.4 2.1 2.0 2.0 1.9 1.7 1.7 1.5 1.5 1.6 1.5 1.6 1.5 17 1.3 1.2 1.1 1.3 2.3 2.8 3.3 3.4 3.9 4.9 5.7 4.6 3.7 3.6 3.7 3.5 3.5 4.2 4.7 3.0 2.4 2.0 1.8 1.9 18 1.9 2.0 2.4 2.7 3.6 3.9 4.7 4.7 3.8 3.5 3.4 3.3 3.1 3.3 3.6 4.5 4.9 5.3 5.6 6.6 6.5 5.1 4.5 4.1 19 3.9 3.7 3.6 3.5 3.5 3.6 3.8 4.2 4.8 5.9 6.2 5.3 4.7 4.4 4.0 3.8 3.7 3.6 3.4 2.5 2.3 2.3 2.0 1.8 20 1.8 2.3 2.4 2.6 3.1 3.6 3.8 4.4 5.2 6.1 4.8 3.6 3.0 3.1 3.2 3.3 3.2 3.1 3.3 5.0 5.3 4.5 4.0 3.6 21 3.1 28 2.8 3.1 3.4 4.0 4.4 5.1 6.1 7.9 5.6 3.7 2.8 2.6 2.5 2.5 2.6 3.0 4.5 3.0 2.6 2.4 2.2 2.2 22 2.2 2.2 2.4 2.8 3.4 3.8 4.3 4.9 5.9 7.7 5.7 3.9 3.2 2.8 2.6 2.4 2.2 2.0 1.9 1.8 1.9 1.8 1.8 1.7 23 1.8 1.9 2.2 3.0 3.7 4.1 4.6 5.1 6.2 7.3 4.8 3.3 2.7 2.3 2.2 2.3 2.5 2.8 2.9 2.7 2.7 2.7 2.7 2.7 24 2.8 2.7 2.7 2.8 2.9 3.2 3.6 4.2 5.3 7.1 4.5 3.1 2.5 2.4 2.4 2.4 3.1 3.1 2.3 2.0 1.9 1.9 1.9 1.9

25. 2.0 2.1 2.3 2.7 3.2 3.8 4.3 4.8 5.3 6.0 6.9 7.4 4.7 3.3 2.7 2.4 2.2 2.1 2.2 2.0 2.0 2.0 1.9 2.0 26 2.0 1.9 1.7 2.0 2.5 3.1 4.0 4.8 5.F 6.6 4.1 2.9 2.5 2.4 2.5 2.6 2.6 2.6 2.6 2.4 2.2 2.2 2.2 2.5 27 2.2 2.3 2.2 2.4 2.8 3.5 3.9 4.7 6.3 6.1 3.6 2.6 2.3 2.1 2.1 2.4 2.4 2.6 2.6 2.5 2.5 2.5 2.4 2.4 28 2.4 2.7 2.7 3.1 3.6 4.1 4.6 5.4 6.4 4.2 3.1 2.5 2.4 2.6 2.6 3.1 3.7 3.5 2.9 2.2 1.9 1.9 1.8 1.8 E E E E E

m M M TABLE 3.5-3 DIFFERENCES IN HOURLY MEAN TEMPERATURES IN *F BETWEEN MONITOR 3 AND MONITOR 7 1 ARCH 1979 DAY HOUR

! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 O 21 22 23 24 1 1.7 1.8 1.9 2.1 2.6 3.2 3.8 5.4 5.8 4.3 3.1 2.7 2.6 2.5 2.6 2.6 2.6 2.5 2. 2'  !.9 1.8 1.8 1.8 1.8 2 1.9 2.0 2.1 2.3 2.7 3.1 3.7 4.3 6.0 6.2 4.5 3.4 2.8 2.4 2.3 2.2 2.1 2.0 1.9 2.0 1.9 2.0 2.0 1.9 1.9 3 1.9 2.1 2.5 2.8 2.8 ' 2.8 2.9 2.9 2.8 2.1 1.9 1.8 1.9 2.0 2.1 2.1 2.5 4.6 3.5 2.3 1.9 4 1.8 2.0 1.9 1.9 1.9 2.1 2.4 2.9 3.6 4.2 5.0 5.4 5.6 4.6 3.7 3.2 3.1 2.8 2.8 2.7 2.4 2.0 1.9 1.7 1.8 1.8 5 1.8 1.9 1.8 1.8 1.9 2.1 2.3 3.4 5.6 4.3 2.9 '2.5 2.0 2.0 2.0 2.1 1.9 1.7 1.5 1.6 1.7 2.0 1.7 1.6 6 1.7 1.9 2.0 1.9 2.0 1.9 1.7 1.6 1.6 1.5 1.3 1.1 1.0 0.9 0.8 0.7 0.7 0.6 0.8 0.6 0.5 0.5 0.5 0.5 7 0.5 0.4 0.4 0.5 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 8 0.3 0.3 0.2 0.2 ' O.5 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4 9 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.6 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.3 h 10 0.4 0.5 0.3 0.9 0.4 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 La 11 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.4 0.4 0.4 0.4 0.4 1 12 0.4 0.5 0.4 0.4 0.4 9.4 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 13 0.6 0.5 0.6 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.7 0.6 0.6 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.7 0.7 14 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.9 0.8 0.8 0.7 0.7 15 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.5 0.6 16 0.6 0.6 0.6 0.6 0.6 0.5 0.7 0.7 0.6 0.7 0.7 0.7 0.9 1.0 1.0 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.6 17 0.5 0.5 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.3 0.3 0.4 0.3 0.4 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 18 0.1 0.1 0.1 0.1 0.1 0.0 3.0 0.0 0.1 0.1 0.2 0.0 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 19 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.2 0.1 0.0 -0.3 0.0 0.0 -0.1 0.0 0.0 0.1 0.1 0.0 20 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.1 0.3 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 -0.1 0.0 0.0 21 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 -0.3 -0.3 -0.4 -0.4 -0.3 -0.3 -0.3 -0.2 -0.2 -0.1 0.0 22 -0.1 0.6 0.6 0.3 0.3 0.3 0.2 0.5 0.2 0.0 -0.1 -0.2 -0.1 0.1 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1.0 -0.9 -0.6 23 -0.4 -0.1 0.1 0.3 0.5 0.6 0.3 0.0 -0.3 -0.6 -0.9 -0.7 -0.3 -0.1 1.0 1.2 1.1 1.2 1.2 1.2 1.3 1.5 1.8 2.0 24 2.1 2.1 1.8 2.0 1.7 1.6 1.6 1.6 1.5 1.5 1.6 1.7 1.6 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.5 1.5 1.4 25 1.4 1.3 1.4 1.6 1.9 2.3 2.6 2.2 1.9 1.9 1.8 1.8 1.9 1.8 1.6 1.7 1.4 1.2 1.1 1.0 0.9 1.2 1.1 1.4 26 1.8 1.8 1.9 2.0 1.9 1.8 1.8 1.8 2.3 1.5 1.6 1.6 1.7 1.7 1.5 1.6 1.7 1.6 1.5 1.5 1.6 1.6 1.5 1.6 27 1.4 1.7 1.6 0.9 1.8 1.7 1.7 1.7 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.6 1.3 1.3 1.4 1.4 1.5 1.6 28 1.7 1.6 1.8 1.8 1.7 1.9 2.0 1.8 1.9 1.4 1.5 1.5 1.4 1.2 1.6 1.8 2.0 1.8 1.8 1.6 ~ 1.6 1.1 1.2 1.1 1.2 1.4 1.5 1.5 1.7 29 1.9 1.8 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.7 1.6 1.5 1.4 1.2 1.4 1.4 1.3 1.5 1.4 30 1.6 1.6 1.5 1.6 1.5 1.4 1.5 1.4 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.4 1.5 1.5 1.6 1.4 1.4 1.4 31 1.5 1.4 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.2 1.3 1.2 1.2 1.3 1.3 1.3 2.4 1.3 1.4 1.3 1.3 1.4

TABLE 3.5-4 BIFFERENCES IN HOCELY IEAN TEMPERATURES IN *F BETWEEN MONITOR 3 AND MONITOR 7 APRIL 1979 DAY HOUR I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 1.4 1.5 1.5 1.6 1.6 1.5 1.4 1.6 1.5 1.4 1.5 t.2 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.6 1.7 1.6 1.6 2 1.7 1.7 1.8 1.8 1.8 1.7 1.7 1.7 1.5 0.8 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.1 1.I' I.0 1.1 1.1 1.2 1.2 3 1.2 1.2 1.3 1.5 1._8 1.6 1.7 1.7 1.8 2.1 2.0 2.0 1.9 1.9 2.0 2.1 1.8 1.8 1.9 1.9 1.9 4

2.0 1.8 2.0 2.0 2.0 2.0 2.2 2.3 2.4 2.4 2.5 2.4 2.4 1.4 1.2 0.9 0.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 5 0.8 0.9 1.0 1.2 1.3 1.3 1.5 1.5 1.7 1.7 1.3 1.3 1.3 1.3 1.3 1.4 1.2 1.2 1.4 1.3 1.4 1.3 1.4 1.4 6 1.3 1.4 1.3 1.4 1.5 1.7 1.8 1.7 1.8 1.8 1.6 1.5 1.4 1.3 1.2 1.2 1.0 1.2 1.2 1.3 1.4 1.5 1.5 1.5 7 1.5 1.5 1.6 1.7 1.8 1.7 1.9 2.0 2.0 1.9 1.7 1.5 1.0 1.2 1.2 1.3 1. 2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 8 1.3 1.4 1.5 1.7 1.8 1.8 2.0 2.0 2.2 2.2 2.2 2.1 2.0 1.7 1.4 0.9 1.2 1.1 1.2 1.3 1.4 1.6 1.4 1.5 9 1.5 1.5 1.5 1.6 1.8 2.0 2.1 2.4 2.5 2.7 2.7 2.5 2.3 2.6 3.0 2.4 2.3 2.4 2.4 2.4 2.4 2.4 2.3 2.3 h

c.

10 11 2.1 2.0 1.9 2.0 1.8 1.8 1.9 1.8 1.9 1.8 1.4 1.9 1.8 2.0 1.8 2.0 1.8 2.1 1.8 1.8 1.9 1.9 1.9 2.0 1.9 2.1 1.9 2.1 2.1 2.0 2.0 2.1 2.0 2.0 2.1 2.1 2.0 1.7 1.5 1.4 1.1 1.1 1.0 1.2 1.2 1.3 1.4 1.3 1 12 1.3 1.3 1.3 1.4 1.7 2.0 2.3 2.4 2.4 2.3 2.1 2.1 1.9 1.7 1.5 1.6 1.6 1.7 1.6 1.5 1.3 1.3 0.9 1.7 13 2.0 1.8 1.9 1.9 1.8 1.8 1.8 1.8 1.6 2.1 2.3 2.5 2.5 2.8 2.8 2.5 2.3 2.0 1.7 1.7 1.7 1.7 1.7 1.7 14 1.8 1.6 1.1 1.6 1.6 1.6 1.6 1.7 1.9 1.9 2.1 2.2 2.2 2.3 2.4 2.5 2.6 2.6 2.7 2.5 2.4 2.4 2.2 2.1 15 2.1 2.1 2.0 1.6 1.6 1.7 1.8 2.0 1.9 1.9 1.9 2.0 2.1 2.1 2.0 2.1 2.1 2.0 2.0 1.9 1.9 1.9 1.8 1.9 16 1.9 1.9 1.8 1.7 1.7 1.6 1.8 1.8 1.9 2.0 2.1 2.1 2.1 2.0 2.0 1.9 1.8 1.8 1.7 1.8 1.7 1.7 1.7 1.8 17 1.8 1.9 1.8 1.8 1.8 1.7 1.9 2.0 2.0 2.0 2.1 2.4 2.0 2.0 1.8 1.7 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.3 18 1.4 1.4 1.5 1.5 2.0 1.6 ' ! .6 1.7 1.7 1.7 1.8 1.6 1.5 1.4 1.2 1.1 1.1 1.0 1.1 1.1 1.0 0.6 1.1 1.2 19 1.4 1.4 1.4 1.6 1.7 1.8 1.9  !.9 1.9 1.8 1.6 1.4 0.9 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.9 0.9 1.0 20 1.0 1.1 1.4 1.5 1.7 1.7 1.9 1.9 1.9 1.9 1.8 1.6 1.5 1.4 1.2 1.1 1.0 1.0 0.8 0.8 0.8 0.7 0.8 0.9 21 1.0 1.2 1.3 1.5 1.7 1.9 2.0 2.1 2.1 2.0 1.9 1.7 1.5 1.3 1.2 1.0 0.9 0.8 0.6 0.3 0.4 0.5 0.5 0.5 22 0.7 0.8 0.9 1.2 1.4 1.7 1.8 2.0 2.0 1.9 1.8 1.8 1.6 1.4 1.2 1.3 1.2 1.0 0.9 0.8 0.7 0.7 0.8 0.8 23 0.8 1.0 1.1 1.3 1.4 1.6 1.9 2.0 2.0 2.0 2.0 1.9 1.7 1.5 1.3 1.0 0.9 0.7 0.4 0.4 0.3 0.3 0.5 0.8 24' O.9 1.1 1.3 1.4 1.5 1.6 1.6 1.6 1.6 1.5 1.3 SYSTEM IMOFERATIVE 25

SYSTEM INOPERATIVE 26 SYSTEM IMOFERATIVE 27 STSTEM 130FERATIVE 28 SYSTEM IMOFERATIVE 29 SYSTEM INOFERATIVE 30 SYSTEM INDFERATIVE

.r] Pee C e e eN e P=e O e e == N een eOe em e e@ e eCPe =* oO eO 4 e em e eOe en o eme=e a m @ en.eso e Ne e 4 eme-e m N

COOmommOOm==OOOOOmOOOyONOOO COO m P=e 4e O == e e P= e0o m P= @ m o@ eme ee -e O e e Oe me W N 4 O esae en @ e so Ne een o4 O N e e e e e e e e e e e N

OOmmOmOOOmmmOOOOOmOOOOONCOO}OO}

N ee4 we e oOeP* e ce. P=. ep. Ne en e @e m. O. O e eOeO Me ene == e 4 O eme eD esooeD e eo e eme eno m Oe Me N

OOmmOOOOOmmmmOOOOmOOOOOmOOO}OO}

== e eene N. e. @e m eo. e. ao. P=. so. =a. 00. e*e == == eO m eNe en O. @e N. N. eo. P=. N. @. N.

em e e N O O == O O O O O O == == N O O Oe O O =e Oe O O O =e =e O O O O O O O t 4 I O N

Ne em. 4. @. @. eD. e00 eN Ne @ o e P==

0. cm N. O. @. ==eene N. N. **een

=* O ~ O O O O =*=eeoon N O O O O O *e O O O O m O O O O O O O O 6

e m. e. P=. en. ==. en. O 1

e N. m.

6 I @. N. O. @eee=e e Ne80. en. e P= em. 80. N. en. m.e 40. =.e a em 4e Ne N e e 4. O. en m e e== e4 e == N e m e

m mOmOOOOmmNmNCOOOOmOOOOmmOOO}OC N EP6 0 N O == N en e e P= e O. 80.e Oeeee en m e e@ e ==

e e 0e N e m @ M =m.ed. P=. ==e e e e e o e =e =* 4. N. =e= o m mOmmOmOmmNmNmOOOOmmO mmmm C COO P= Ne @ e o N O eN O e e4 eem. 4. W. O.==ee me Ne@ eema era e ee O eN. ==. ee N. 4. == .==em. m. C. m.

m mummmmmmNmNM OOOOOOmOmum*}OOOOO I @

m en me eeme ==

e O 4e N e

o @ m.

mmmmmmmmNmmmOOOmOOm em e eP=

e 4. eo. 4. @e coe =e

. .@ @ e00 e 4. @e e en e een NeP=

. eOe @

e Oeen e e4eP=

e m e=a N. ==. EP.5 N. 4. eO O e emo m 4 O 4 == 4 mOmmOOOOOO e me e4een Oe m e eNem O. N.

e 4. ==. 4

== == N == == == == =* e=e N -e == == O O O O O O == O == O -e == 0 0 O O O O 4

Ea.

e 3 4 P=e O o M eN e e0e oem 4e P=. m. en. M. O e eP= ene e @ . e m. eN eo o e en o e N e P=e m e e

== -e m -e en o e e e o e

    • =e =e N =m -e e o == =e me e.4 =e =d a=e O O O ew O O O C O O O == 0 C O O O O 4

E.n 13 DC P= m ==em p m 00 e e **eNe 4 O en e eem @. P= ene == e e cri ee @. D e Ce == eNe P=

e o eme eoeme P= m em. 4 ==e o e e Pe as =a =e N *e == N == =* == == == == O O O O == O O O O m O O == 0 O O O O O

% O 6 su be een **

b Z

@ x O N @e Ch. N. M. eO. 4. N. 4. m. @. CP.6 @. == . P=. m. **.==eMo P= e om e P= =* o en e o@ e P=

e 4 N. 4. **. @.

63 E ==

-e == == == == -e m == == == 0 0 = 0 0 == O O O O O O O == 0 C O O O O l N 4 4 O cn

@ Z P=

, oc Zc cm cm P= co N -e ac == e 0e m or= e 4. cr.i N. N. eo. cP e soe N e eoe P=

e O 4 4. P=. ==e .e N e ein so. ee m e P=. m P=.

M E m D me =

=e == == == =e O == me == O O . e O O === O 0 0 O O O O == O O O O O O De O 6 4 4 be es aC 2 Id, =J K H

as S D ** O eo e 4 O *N * *e N m *= *=.

  • 4
  • co
  • N. N e * *em. P=. 4 W* co* *m= P=
  • e 4e =e N e een e ne P=e . .e. P=

}

= mmmmmmmmmNCOmOOO COOOOOmOOOOOO v -

    • E te3 CP6 P= e *N eD e *N *en
  • N ** eN. Ch MeE0 e 00 e eew e e(>o4 eeme e ene* eP= N en en O. =*eme 4e @ e 00. ==. co e I

to 83 == == O =* == ** -e == C N O O == 0 C C O =e O O O O O == 0 O O O O O Le3 3 4 3 O De Z le3 sea sa e.g eO 4*O* P= * *== *

  • 4 =e m. a oe Oe Oee0= tb. O*P= * *m*en * *ene N
  • P=

e m 4 en e4e N P= e P=e *en * *e0 O eP=e 13 h m = O m == =e -e == == N O O == 0 O O O == O O O O O e O O O O O O b # e i Q

P= N. W. @. eN 4. m. 4e N e m. M. m.W. N. N. N. W. e. m. @. 4.e m 4 4. N e me .@ m. N. O.N.

=e O O ~ =eO =**e O ~ C C =* O O O O ~ O O O O O

  • O C O O O O e e i

@ N* @e @ . M. 4 P= een. N en e==. .e O. N. @ee Ne 4 o4 eM.@ 4 4 om. 4. =ee 4 @ e eeneen. =e.@e

=e O O *e m O ** ** O =e == m en C O OI O ** O O O 6O6O ** O O O O O O e

me en @ M N P= @ -e P= cm N m O @ M 4 en P* m m m N == 4 @ en M N er en e , e e e e e e e e e e e e o e e P=. e e e e e e e e o e i

l O O O - m o a == O O m =* m O O O O -e O O O O O == 0 O O O O O 4 i a 6 I

@ en P= en s=e me m 4 P=e em @e 4 e=e o@ en e O. N. 00. N en e o==e en =ee M.

e 4. m. @. en. N. m. a=e. . e e e e e e Q O O == = O ==

  • O O ~ == == O O OTe == 0 O O O ea OOOOOOOO e

Ps =d P= =e ese @ @ 4 O == N 4 e== e P=

e e en Ch. @. ee0eM o 4e a o am =ee o m en e e4o@ en e N o me I

m e e e o e . e e e e o O O O m =a O =* O O O == == == 0 C O O == O O O1O4 O == 0 0 O O O O 6 I N P=e m e eo o em e O e0e M. 00. @e e eP=e 4 4 N. eNe == o== e4 4e em e @ o N e mo =m e @ o eene og o 4 Oe -n o e

=e O O O =a =* O == 0 O O == == == 0 O O IO == 0 O O O O == O 0 C O O O i e

-e Pme N e CP e eM @ e 00 e N e 40 en. ee0 4. e ene ==oNe =e oO 4e @e @e em o eN m e =e

. eNe @ P=. m e =* eeO O O O ~ O O =a O O O = = == C O O Oe == O O O O O N O O O O O O* 6 I De 4 =e N m 4 en @ P= eD e C =* N m 4 em @ P= 00 ch C e N m at en @ em ao CP* O ==

== == em == == m e-o == *e == N N N N N N N N N N m m Q

I --

TABLE 3.5-6 DIFFERENCES IN HOURLY MEAN TEMPERATURES IN *F BETWEEN HONITOR 3 AND MONITOR 7 NOVEMBER 1979 DAY HOUR I 2 3 4 5 6 7 8 9 to 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 0.7 0.7 0.6 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.7 0.8 0.9 1.0 1.0 1.4 2.0 3.7 3.4 3.0 3.6 2.9 2.8 2.6 2 2.5 2.6 2.8 2.9 3.3 3.7 4.3 2.5 1.8 1.4 0.9 0.8 0.7 0.5 0.6 0.6 0.8 0.9 0.9 0.9 0.6 0.7 0.7 0.7 3 0.8 0.8 0.7 0.9 0.9 0.7 0.7 0.8 0.8 0.7 0.6 0.4 0.5 0.4 0.5 0.6 0.6 0.4 0.3 0.0 -0.1 -0.2 -0.1 0.1 4 0.1 0.1 0.3 0.4 0.5 0.7 1.0 1.0 1.1 1.1 1.3 1.4 1.6 1.6 1.5 1.6 1.5 1.5 1.6 1.5 1.5 1.4 1.5 .6 5 1.6 1.5 1.5 1.6 1.6 1.6 1.5 1.6 2.6 2.7 2.2 1.7 1.6 1.7 1.5 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.5 1.5 6 1.5 1.5 1.6 1.6 1.7 1.7 1.8 1.7 1.8 1.9 1.9 2.0 2.0 1.9 2.0 2.2 2.1 2.1 2.1 2.1 2.2 2.2 2.1 2.1 7 2.0 1.9 1.7 1.6 1.5 1.5 1.5 1.4 1.4 1.6 1.7 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.7 1.8 1.8 1.8 1.8 2.0 8 2.0 2.0 2.0 1.8 1.8 1.8 1.9 2.6 4.0 4.4 3.6 2.9 2.6 2.7 2.8 2.5 2.2 2.2 1.6 1.4 1.3 1.1 1.0 1.1 9 1.3 1.2 1.2 1.1 1.1 1.5 3.3 3.9 3.5 2.8 2.6 2.4 2.5 2.5 2.2 1.9 1.6 1.9 1.4 1.1 0.9 1.0 1.2 1.4 10 1.6 1.7 1.9 2.0 2.2 2.2 2.3 2.9 4.3 5.4 5.9 5.9 6.1 6.2 6.7 6.8 7.0 7.3 7.7 7.7 7.9 8.1 8.3 8.3

, 11 6.2 6.2 5.4 4.4 3.2 2.9 2.6 2.6 2.3 SYSTEM INOPERATIVE m 12 2.6 2.5 2.6 2.7 2.7 2.6 cn 13 2.5 2.5 3.0 3.0 3.2 3.3 3.6 3.9 4.3 2.3 2.5 2.6 2.6 2.7 3.0 3.2 3.1 2.5 2.0 1.8 1.8 1.9 1.9 1.9 1

14 1.8 1.7 1.8 1.8 2.0 2.4 2.6 3.6 4.1 3.4 2.9 2.5 2.2 2.2 2.3 2.2 2.0 1.9 1.7 1.6 1.7 1.8 1.7 1.7 15 1.8 1.8 1.8 1.9 2.3 2.7 3.2 3.8 3.5 3.1 3.1 3.0 3.1 3.0 3.2 3.4 3.3 3.2 3.1 3.1 3.0 2.9 2.8 2.9 16 2.7 2.4 2.5 2.4 2.4 2.4 2.3 3.0 3.8 3.6 3.2 3.2 3.1 3.0 2.9 3.0 2.9 2.8 2.5 2.2 2.2 2.2 2.2 2.2 17 2.2 2.3 2.3 2.5 2.8 2.8 2.8 2.7 2.7 3.7 3.4 2.5 2.4 2.7 3.4 3.7 3.7 3.8 4.3 3.6 2.8 2.7 2.7 2.5 18 2.6 2.2 2.5 2.9 3.3 3.7 4.1 4.3 4.5 4.6 4.7 4.8 4.5 5.2 5.5 5.9 6.1 6.2 7.8 6.9 4.6 3.9 3.9 4.0 19 4.1 4.2 4.4 4.9 5.3 5.5 5.6 5.6 6.2 6.1 5.2 4.4 3.6 3.2 3.4 3.4 3.2 3.1 2.6 2.4 2.3 2.3 2.2 2.2 20 2.2 2.2 2.0 1.8 1.8 1.5 1.3 1.0 0.7 0.7 0.7 0.5 0.4 0.5 1.0 1.2 1.3 1.9 2.6 2.4 2.3 2.4 2.3 2.3 21 2.3 2.3 2.3 2.4 2.4 2.4 2.6 2.7 2.8 3.0 3.2 3.2 3.1 2.9 2.* 2.8 2.8 2.7 2.2 2.3 2.0 2.0 2.1 2.0 22 2.1 1.8 2.2 2.0 2.5 2.6 3.3 3.8 4.5 5.6 5.2 4.2 3.5 3.3 3.2 3.2 3.3 3.7 4.7 4.6 3.9 3.4 3.1 3.1 23 3.2 3.2 3.1 3.2 3.6 4.2 4.7 5.1 5.5 5.9 6.6 6.1 5.0 4.2 3.4 3.1 2.9 2.6 2.2 1.9 1.8 1.9 2.0 2.2 24 2.4 2.6 3.1 3.8 4.3 4.6 5.0 5.4 5.8 6.3 6.6 5.7 4.4 3.5 3.1 2e 3.0 3.0 2.6 2.4 2.2 2.1 1.9 1.8 25 1.9 1.9 2.1 2.3 3.0 3.1 3.5 4.0 4.5 4.8 5.1 5.3 5.6 5.9 6.1 6 6.2 6.0 4.6 1.0 2.2 1.9 1.7 2.0 26 2.2 2.6 3.0 3.4 3.9 4.1 4.6 4.9 5.4 5.4 5.0 4.5 3.8 3.1 2.7 *

.7 2.2 2.3 2.2 1.8 1.6 1.3 1.0 1.0 27 0.8 0.6 0.1 -0.1 -0.4 -0.3 -0.3 0.0 0.2 0.7 1.2 1.7 1.8 1.7 1.7 k. 1.1 1.0 1.0 1.1 1.2 1.4 1.4 1.3 28 1.3 1.1 1.1 1.2 1. 3 - 1.6 1.8 1.8 1.9 1.9 1.8 1.8 1.7 1.9 1.9 1.9 1.9 1.9 1.7 1.8 1.8 1.7 1.7 1.5 29 1.3 1.2 1.1 1.2 1.3 1.5 1.7 1.9 2.0 2.0 2.0 2.1 2.0 1.9 2.0 1.9 1.7 1.7 1.6 1.7 1.8 1.9 2.0 2.1 30 2.0 1.9 1.8 1.7 1.6 1.5 1.6 1.6 1.7 1.9 2.1 2.2 2.2 2.3 2.4 2.4 2.4 2.2 2.0 2.0 2.0 1.9 2.1 2.1 M M

M M M M M M M TABLE 3.5-7 DIFFERENCES IN HOURLY K".AN TEMPERATURES IN *F BETWEEN MONITOR 3 AND MONITOR 7 DECEMBER 1979 DAY HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2.1 2.1 2.2 2.1 2.2 2.1 2.1 2.2 2.3 2.6 2.6 2.6 2.5 2.4 2.3 2.4 2.4 2.3 2.1 2.2 2.1 1.7 2.2 2.3 2 2.3 2.3 2.2 2.3 2.4 2.5 2.7 3.0 3.6 3.7 3.2 3.3 3.2 3.0 2.9 3.0 3.2 3.2 3.1 2.6 2.5 3.1 2.9 2.8 2.8 2.7 3 2.3 2.0 1.9 1.S 2.2 3.9 4.2 4.5 4.2 3.7 3.5 4.1 4.5 4.3 3.8 3.5 3.1 2.9 4 2.3 2.0 4.0 2.8 2.8 2.6 2.1 2.4 2.6 2.9 2.7 2.6 2.5 2.8 3.1 3.4 3.5 3.$ 3.4 3.4 3.3 3.3 3.1 3.1 2.6 2.4 5 2.3 2.3 2.3 2.3 2.3 2.3 2.6 2.8 2.9 2.8 2.8 2.6 2.6 2.8 2.9 2.8 2.7 2.8 2.9 2.9 2.8 2.9 2.7 2.7 2.8 2.9 6 2.9 3.0 3.1 3.1 3.3 3.2 3.2 3.1 4.0 4.5 4.6 4.4 3.9 3.9 3.9 3.6 3.7 3.6 4.0 3.5 3.2 2.7 2.4 2.3 7 2.0 1.8 1.6 1.5 1.4 1.4 1.4 1.5 1.5 2.0 2.3 2.3 2.5 2.5 2.6 2.7 2.6 2.9 2.7 2.5 2.4 2.0 2.8 2.3 2.2 8 2.2 2.6 2.6 4.5 2.6 2.3 2.2 2.1 2.0 1.8 2.6 4.1 4.2 4.1 3.8 3.2 3.0 2.8 2.6 2.2 2.2 2.0 9 1.5 1.4 1.3 1.7 1.2 1.0 0.8 0.8 1.3 2.1 2.8 3.5 4.4 5.2 5.8 6.0 6.2 5.9 6.9 6.6 4.9 4.0 4.0 10 3.7 3.6 3.5 3.2 3.8 3.6 2.9 3.0 3.3 4.2 5.4 6.6 5.7 4.3 4.1 3.6 3.5 3.3 3.0 2.6 2.2 2.0 1.9 1.8 1.9 2.0 g 11 2.0 2.0 2.0 2.0 2.0 1.9 1.7 1.6 3.4 4.5 4.5 4.1 3.6 3.4 3.2 3.1 3.1 3.0 2.8 2.5 2.3 3.8 2.8 27 2.6 2.6 Ln 12 2.2 2.4 3.0 3.5 3.9 4.5 5.5 6.1 5.2 4.4 3.5 3.0 2.8 2.6 2.5 2.4 2.4 2.4 2.2 2.0 1.9 4 13 1.9 1.9 1.9 1.9 1.9 2.0 1.9 2.0 3.6 4.8 4.6 3.8 3.4 3.2 3.0 2.9 2.9 2.9 2.9 2.9 3.0 2.8 2.4 2.2 8

2.1 2.2 2.2 14 2.2 31 2.2 2.4 2.5 2.6 2.6 2.5 2.7 2.8 2.8 2.8 2.7 2.8 3.0 3.0 3.1 2.9 2.6 2.2 1.9 1.5 1.4 1.3 1.7 15 1.0 0.8 0.8 0.5 0.6 1.3 2.4 2.8 2.9 2.5 2.4 2.2 2.1 2.2 2.3 2.1 1.8 1.7 1.5 1.5 1.6 16 1.5 1.4 1.3 1.2 1.2 1.5 2.1 3.0 3.8 4.4 5.1 6.2 6.7 7.0 7.4 7.5 7.6 8.1 7.3 4.8 3.8 3.0 2.8 2.9 17 3.1 3.1 2.9 2.7 2.6 2.7 3.1 4.0 5.1 6.7 6.7 5.1 3.9 L.5 3.3 3.2 3.1 2.6 2.6 2.4 1.9 1.9 2.0 1.7 1.7 1.9 18 1.7 1.6 1.4 1.2 1.2 1.9 4.6 5.4 4.7 4.1 3.5 3.3 3.1 3.1 3.1 2.9 2.8 2.9 2.7 2.4 2.6 2.5 2.4 2.4 19 3.0 3.4 3.9 4.3 4.6 4.4 3.7 3.1 2.9 2.7 2.7 2.7 2.7 3.0 3.4 3.5 3.3 2.9 2.5 2.4 20 2.1 2.1 2.3 2.2 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 1.9 2.0 2.2 2.2 2.2 2.3 2.3 2.2 2.1 2.1 2.0 2.0 1.9 1.8 21 1.7 1.7 1.7 1.8 2.2 2.6 3.1 3.,7 5.5 7.3 6.2 4.8 4.0 3.5 3.2 2.9 2.8 2.6 2.6 2.6 2.5 2.6 2.5 2.5 22 2.5 2.5 2.4 2.5 2.8 3.2 3.7 4.2 4.8 6.2 7.2 7.3 6.9 6.6 6.4 6.2 5.7 5.4 6.2 6.9 5.3 6.4 6.0 5.6 5.3 23 5.0 4.7 4.7 5.0 5.4 5.8 6.1 6.7 7.2 7.4 7.7 8.0 8.3 8.4 8.6 8.9 9.0 7.2 6.0 4.7 3.9 3.4 3.2 24 3.2 3.3 3.4 3.4 3.6 4.0 4.4 4.9 5.8 7.0 7.5 6.8 5.7 4.8 4.4 4.1 4.0 4.6 4.7 3.7 2.9 2.6 2.6 3.2 2.5 2.3 25 3.5 3.6 3.7 f.9 4.0 4.0 4.1 4.1 3.2 2.3 1.9 1.7 1.6 1.6 1.6 1.5 1.5 1.5 1.5 1.4 1.3 1.3 26 1.2 1.2 1.1 1.0 0.9 0.8 0.8 0.8 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.2 27 1.2 1.1 1.0 0.9 0.9 0.8 9.S _ 3.9 0.9 0.9 1.0 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 28 1.2 1.2 1.1 1.1 1.0 1.0 1.0 1.0 *0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 29 1.3 1.3 1.1 1.2 1.2 1.1 1.0 1.6 - 1.1 1.1 1.2 1.3 1.4 1.4 1.6 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 30 1.8 1.7 1.6 1.7 1.9 3.0 4.3 5.4 5.2 4.3 3.0 2.4- 2.1 2.0 2.0 2.0 1.9 1.9 1.8 1.8 1.8 2.0 1.9 31 2.0 2.0 2.0 2.0 1.9 2.3 2.4 2.4 2.5 2.6 2.6 2.7 2.7 2.8 2.9 2.9 2.8 2.8 2.5 2.2 2.0 1.9 1.8 1.7

a - _,, >m Ae... __. m,-d -A-m.a... a. - - - - --

l l

I  !

I I

I SEcTIou 4 I \

I WATER QUALITY STUDIES I

I I

l I

I I

I

, I I

I

I I

4. WATER QUALITY STUDIES I

Four water quality parameters, in addition to temperature, are monitored continuously by the Honeywell W-20 Water Quality Data Collection Systems located on the Vermont shore at Station 7, upstream of Vermont Yankee, and at Station 3, downstream of the plant. Summaries of the data collected in 1979 for the four parameters - dissolved oxygen, conductivity, turbidity, and pH -

are shown in Tables 4.1 through 4.4 at the end of this section of the report. The dissolved oxygen data, reduced to daily means and daily maxima and minima with times of occurrence, and the conductivity data, as daily means are presented in Table 4.1 for Monitor 3 and Table 4.2 for Monitor 7 Turbidity data, as daily means and pH data, as daily maxima, minima and range, are shown in Tables 4.3 and 4.4 for Monitors 3 and 7, respectively.

Those tabulated data are summarized in the graphs of Figures 4.1 through 4.8.

The monthly maximum dissolved oxygen concentrations observed in 1979 at Monitor 3 in March and at Monitor 7 in April were each 0.1 mg/l greater than maxima observed in those months in prior years. The monthly mean at Monitor 7 (13.9 mg/1) was 0.2 mg/l greater than the previous high observed in 1975. The only record monthly minimum D.O. observed was that of 11.1 mg/l at Station 3 in December, 0.1 mg/l less than the minimum of December 1971.

Low river flows in July and August resulted in slightly greater (%5 pmhos) mean conductivity records at both locations.

Maximum conductivity observed at Station 3 was also greater in those months than in prior years. The Station 3 maximum in May and the minimum in January were new records also.

All turbidity values - maxima, means, and minima - observed in 1979 were within one turbidity unit of those found in earlier years.

No record pli minima were established in 1979 but maxima greater by 0.1-0.2 pli units than found in earlier years were observed at Monitor 3 in February, March, April,and September and at Monitor 7 in February and August.

Grab samples for water quality analysis were collected once each quarter in 1979 at the two monitor stations and from Vermont Yankee's cooling water discharge to the river. These samples were analyzed for sixteen parameters by the procedures of Standard Methods for the Examination of Water and Wastewater, 14th edition (APIIA et al. 1976). The analytical results are shown in Table 4.5.

Co'struction of a fish ladder at Vernon Dam was begun in May 1979. The effects of this work on river water quality are evident in the data of the May sample at Monitor 3. The high solids concentrations and turbidity, relative to the upstream samples, were accompanied by the highest total phosphate concen-tration observed in the river since studies were begun in 1967.

The only parameter, other than phosphate, for which higher con-centrations were found in 1979 than had been observed in former years was chloride. The chloride ion concentrations at Station 3 in February and at both stations in August were higher in 1979 than in previous years of study.

On occasion Vermont Yankee adds the following chemicals to  :

its cooling water discharge to the Connecticut River: sodium  :

i sulfate, as domineralizer regenerant; sodium hypochlorite, to l control biological fouling of the condenser cooling system; and sulfuric acid, for pli control. The amounts of these chemicals discharged to the river are relatively small and not likely to significantly alter the river's water quality. Ilowever, to provide a quantitative basis for assessing the impact of Vermont Yankee's operation on Connecticut River water quality, data on I

the concentrations of sodium ion, chloride ion, sulfate ion, and alkalinity concentrations were subjected to statistical analysis.

The statistical methods used with these four parameters have been detailed in Reports IV and V of this series (Aquatec 1975, 1976). Data collected on these four parameters at Stations 3 and 7 before Vermont Yankee began operation and during the times of I closed cycle operation through 1974 were combined and subjected to linear regression analysis. These analyses, using Station 7 concentrations as the independent variable, resulted in the statistics summarized in Table 4.6.

I TABLE 4.6 I

SUMMARY

OF STATISTICS FROM LINEAR REGRESSION ANALYSIS OF PREOPERATIONAL AND CLOSED CYCLE DATA I AT STATIONS 7 AND 3 FOR FOUR PARAMETERS PARAMETER Sodium Sulfate Chloride Alkalinity Sample size 70 72 79 80 Intercept 0.23 0.96 1.1 4.9 Regression coefficient 0.925 0.927 0.795 0.844 Standard error of I regression coefficient Correlation coefficient 0.041 0.941 0.054 0.899 0.053 0.049 0.861 0.890 Standard error of estimate 0.348 0.987 0.841 2.95 The regression lines generated by these analyses are plotted as solid lines in Figure 4.9 for sodium ion, Figure 4.10 for sul-fate ion, Figure 4.11 for chloride ion, and Figure 4.12 for alka-linity. Each figure also show, as dashed lines, the 95% confidence limits for Station 3 concentrations predicted by the regression equation from new observations at Station 7. These confidence limits were drawn from limits calculated for the minimum, mean, and maximum Station 7 concentrations used for each parameter in the regression analyses. The applicable range of Station 7 I I

concentrations for each regression equation is indicated on the figure by the vertical dashed lines at the minimum and maximum value of Station 7 concentrations used to develop the equation.

On each of the figures, the data collected in May and August, when Vermont Yankee ,was operating in the closed cycle mode of con-I denser cooling, are plotted as filled circles. The data of Febru-ary and November were collected while Vermont Yankee was operating in the open cycle mode. Data of these dates are plotted in the figures as open circles.

The twelve plotted points on the sodium ion, sulfate ion, and I alkalinity figures are all within the range of Station 7 concentra-tions used to calculate the regression equations and within the 95%

confide _ ace limits associated with the regression lines. The Station 7 chloride ion concentration in August (10.8 mg/1) is greater than the maximum concentration (10.2 mg/1) used in the regression analy-sis, but the plotted print for the August data would fall within the 95% confidence limits of an extrapolated regression line.

However, the plotted point for the February chloride concentrations indicates that the observed Monitor 3 concentration is clearly greater than the 95% confidence limit for a Station 3 concentration predicted from that observed at Station 7.

I I

I I

i DISSOLVED OXYGEN STATION NO. 3

(

1979 l

15 ,

*"# l _ _ gl \ f l

s


xx

\

y / /l

'\ N g

/

'N N 10 - g% # e** p -

\ '%

.%.'-%L  %*~n# 1 I 5'p*/*/,7'#,p' \

a E

a l

T

',p',,

l

%.'"'-*m eem,l/,s'p*

I ch 5- r a  !

i I

i l

1 0 , i, ,i ,,

1 , , , ,

1 2 3 4 5 6 7 8 9 10 11 12 MONTH MONTHLY MAXIMUM -----

MONTHLY AVERAGE MONTHLY min! MUM - - - - - - - - - "

FIGURE 4.I i

n

uma sum seu e ums DISSOLVED OXYGEN STATION NO. 7 l 1979 IS N N /

s 7 ~ ~'7 % ss4/ \ #

\

'-~'- e,~~~.g's\ \

e'#

N/ \

,\

\ ~ \

' \\ \ ,N ="""""

_ _ __ e",,

\

\

\ /

6 *' s'N /  %'r~~~ p 4

4 s

\\ +~,,-%,,__,_,

/

'\ e',,

g

$' 9 O , , ,  ; ,; ., , ,

i 2 3 4 5 6 7 8 9 10 II 12

. MONTH MONTHLY MAXIMUM -----

MONTHLY AVERAGE MONTHLY MINIMUM - - - - - ~ ~ ~ - - -

FIGURE 4.2

g__

2 1

~ ~ .

p

~

- ~ .

~ _

  1. . lll!

l

- ~

l

~

% - ~

r -

~ - _

g

.f %I l n 0 1

M E M g._

U G N ,

M A U .

I R M

's N X E IN .

s 9 A V M A M I

Y Y Y

\'N L L L .

H H H .

. T T T N N N .

- \s O O O M MM .

I A 8

/

Y3 ~ /

/,

g_ .

T O - /, _

I = 7 VN 4 e H .

I T 9 / j T

_ C$7 / /,

N O

U O9 / /, M 3 .

DT I 1

/ ,'

,' i 6 4 -

NA

  1. E OT # /, R U

C S " /, G I

p / F _

- n 5 .

/ - .

y =

=

/ ~

p ~ i 4 .

s #

a, N .

\ , .

\ 3

\'

_ \

_ \ E.

\ _

,l i\ e j 2 _

j _

s /, -

  • /,

, l 0

0 5

7 0

5 5

2 1

0 0

1 5

7 o

S 5

2 E.

1 1 2

8x2 ob 2 .

E-8$8 _

i

l!ll l \ ll i ,!1 f

A1,!i 2

1 il s -

s' - -

s

% l,,

i l i 0 1

\ M U GE MU N s,s M A M I

X E R I N ' A V IN 9

M A M

- \ Y Y Y L L L H H H

- ss T T T _

. N N N

. O O O _

, e'-

$ 8 M MM .

% /, _

Y 7 , _

T O - _

IVN  %, -

f' i 7 I

T C N7 9 l

/

/

/ /

H T

N O

U O9 1

/

/ , M 4

DTI ,/ 6 4 _

d I

NA M O T p

/, E R

C S - U G

/o I _

, 5 F _

~

/ - _

/ -

y n

4 _

g s _

i 3

\

\ _

. x

%i

'A,\s\s\'i 2

/' -

% j

/#

/ i 5 0 5 0 5 0 5 0 2 2 0 7 0 7 5 1 51 1 1

2 m@s o6 2 5y

TURBIDITY STATION NO. 3 1979 10 0 80 -

m b

2 3 60 -

to J

I O m 2 03 4 1 o 2

o 40 -

u o I s' i\

4 1 \

> I

/ \

/ \

20 -5 /

\ \

/

\ /

\

\ f

\

\

x%/iN i s

\

i s

g_ _

i i s i

--s i

/[ i T

I 2 3 4 5 6 7 8 9 10 li 12 MONTH M ONTHLY MAXIMUM -----

M O NTHLY AVERAGE FIGURE 4.5 MONTHLY MINIMUM ---------

E E

,' l lll l i

?ki .

2 1

N

~

~ - -

~ l

,'  !: i l M '

~

/ " - '

f "" - "

,!/ j0

- 1 .

~- M U G E M .

~~

" MA I

RU M I

~

X A V E N -

M ~- M A MI 9

- "g

.ll Y Y Y

~- L L L

- - H H H T T T -

m - N N N O O O MMM

! i{'l

_g 8 -

7 Y .

T O -

j 7 .

I N _ H .

D 9 T

~

N I

N7 B O 9 O

~ 6 RI UT 1

l! l ' , ',6 M 4

T TA s E R

S ' U N G I

F s, j 5 .

' ~

~

' ~

/ ~ .

~

'!\ \ 4 -

I \ ~

\ \

\ ~

\ \

\ \ ~

\

in \ ~

\ \ \ ~

h li~ 3 _

I I I I ~ -

1 f " .

I I .

I I I I I I / I " _

/ =

'l* f2 .

N -

\ -

N -

\ i

- - - ~

0 0 o 0 0 .

0 1

8 s 4 .

C5 wJO5* zow6% _

l c; n

_ m

2 .

. 1

~

~

- -- ~ M .

_ -- i ll

-~ ~

_ , - ~-

j 0.

1 M M .

N U U .

s .

. MM I

X N I

s ~

. A MM I

9

^ ,

u Y Y

, L L

- , H H T

N O

T N

O

., ,l ".

1 8

MM s -

~

g '

3 .

N -

O  % -- i 7, N / H M. -

H 9 - T N

p N7 # '

O .

O9 p '

- M 7 .

I 1 4 _

T

/, - i 6 .

A . E T _

R -

S .

U G

I i 5 F .

_ ~

- M- .

- g 4 .

M.

j3

_ , g 2

_ a, l l

E 0 0 0 0 0 9 8 r. 6 5 mez, 3 CL m iyI m

l .! i  ;; l

i(lllIl s

e 2

1

~

- ~

~

" ~ -~ ~

~

- " i l

I

a.  ! 0 1

- M U M

% U

~ M I

M I

% ~ X N

~ A I N " u 9 MM

' ' t Y L L m .

's o,

H H T T N N O O i 8 MM

~ _

~ _

7 .

~ ~

O. ~ i7 N A- H H 9  % T N7 ~ N P * ~ O O9 m

I T

1

' ~

=

i 6 M 8 4

A /

  • E T -

/ R S U

/ ,

, G

/ ,

h 5 I

F i 4

- i l i

3

~

- ~

. ~

~

2 i.f~

~

H

- ~

- ~

i 0 0 0 0 0 9 8 7 6 5 mF3U Ca ~

_ aY-m it!llll

COMPARISON OF OBSERVED STATION 3 SODIUM ION CONCENTRATIONS WITH STATION 3 CONCENTRATIONS PREDICTED FROM l PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1969 - 74 ,

y 15 -

14 -

13 -

i 12 -

]

N l

$ II - E 5

z 10 -

9 y

9-f E

i

/1 E bN O to

~

/

/ l .

\

~

z / /

9 5- /

s' /

/

y / / l 4- ,s' /

0 3-( /

/

l l /

2- V

'~

j l

0 , , , , , , , , , , , , , , ,X l O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 STATION 7 SODIUM ION CONCENTRATION ( MG/L)

L j REGRESSION EQUATION ( y = .23 .+ .9 25x )

95 7o CONFIDENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - - -

VERMONT YANKEE OPEN CYCLE,1979 o VERMONT YANKE E CLOSED CYCLE,1979 e -

FIGURE 4.9 I COMPARISON OF OBSERVED STATION 3 SULFATE 10N CONCENTRATIONS '

WITH STATION 3 CONCENTRATIONS PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1969 - 74

/

/ l Y '

15 - / l 7

I 14 -

/

/

/ I I

l 13 - /

)

I --.

f O

12 =

/

/

/

/

l

/

2 / /

- Il - / /

h 10 - /

/

p

~

/ i

& to / e O ,/

> /

h2 O 9 8 - f /

I b

~

i

/

/

s- '

g I '~

l, l

l f/

/

/

W l k 4-w S.

2-1-

O , , , , , , , , , , , , , , ,X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 STATION 7 SULFATE lON CONCENTRATION ( MG/ L) l REGRESSION EQUATION ( y s .96 +.927x) 95 % CONFIDENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - - -

VERMONT YANKEE OPEN CYCLE,1979 o i VERMONT YANKE E CLOSED CYCLE,1979 e FIGURE 4.10 COMPARISON OF OBSERVED STATION 3 CHLORIDE 10N CONCENTRATIONS WITH STATION 3 CONCENTRATIONS PREDICTED FROM l PREOPERATIONAL / CLOSED CYCLE DATA, STATIONS 7 AND 3,1967 - 74 y

15 -  ;

13 -

O

] 12 - ,

o e s

II -

,A

/ l z 10 - / l 0 -

4 m 9* / l

/ I f 2 8- /

z l 7- ,/ /

O D / ,

2 6- ,' e /

9 - '

g 5- ,/ j 9 - e g 4- ( ,' r a l /

I 3- I /

g I

l 2- l ,/

I- p,/

l 8 3 I I I i i I i i i i i i X I

0 1 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 l

STATION 7 l

CHLORIDE lON CONCENTR ATION ( MG/ L )  ;

{

REGRESSION EQUATION ( y r 1.l + .795x) 95 % CONFIDENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - -

VERMONT YANKEE OPEN CYCLE,1979 o VERMONT YANKE E CLOSED CYCLE,1979 e FIGURE 4.11 I

I COMPARISON OF OBSERVED STATION 3 ALKALINITY CONCENTRATIONS l WITH STATION 3 CONCENTRATIONS PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE DATA , STATIONS 7 AND 3,1967 - 74 I 50 -

y /4 f i

/ I p

/

/ l I 40 - /

/ o l

/ /

/ /

n / /

a / /

l '

  • g

~, n. ,-

/

/ /

/ ,/

$ f /

4 M I

/

I <

20 - I

/

l /

I l /

V 10 -

I O , , , , ,X 0 10 20 30 40 50 STATION 7 ALK ALINITY (MG/L)

I RECRESSION EQUATION ( y : 4.9 + .844 x )

95 % CONFIDENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - - -

VERMONT YANKEE OPEN CYCLE,1979 o VERMONT YANKEE CLOSED CYCLE,1979 .

I FIGURE 4.12 i

TABLE 4.1-1 l VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY l AQUATEC, INC.

JANUARY 1979 l

l DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.1 1200 12.6 1830 12.8 129 2 14.0 2400 12.6 0700 13.5 134 3 14.2 2400 13.7 1330 13.9 103 4 14.4 1900 14.1 0200 14.3 90 5 14.4 1300 14.1 0930 14.3 80 6 14.3 0000 14.1 1800 14.2 91 7 14.5 1530 13.9 0400 14.3 94 8 14.5 0200 14.1 2400 14.3 92 9 14.1 0000 13.7 2400 13.8 90 4

m 10 13.7 0000 13.4 0730 13.6 85

' 11 13.8 0000 13.1 0830 13.6 84 12 13.8 0000 12.9 0730 13.5 85 13 13.6 1600 12.5 1100 13.4 88 14 13.6 2230 12.4 1230 13.1 91 15 13.4 0000 12.4 0930 13.2 94 16 13.3 2330 12.3 0930 13.0 95 17 13.3 1830 12.6 0730 13.2 95 18 13.3 0000 12.4 0830 13.0 95 19 13.0 1930 12.1 0930 12.8 97 20 13.0 0000 12.0 1100 12.6 104 21 12.9 1330 11.9 1030 12.6 100 22 13.0 2400 11.9 0830 12.5 98 23 13.0 0100 12.3 0830 12.8 101 24 12.9 2400 12.4 0730 12.7 103 25 13.0 0600 12.8 2400 12.9 105 26 13.0 2330 11.7 1130 12.5 108 27 13.3 0500 12.8 1800 13.1 106 28 13.3 1800 12.2 1100 13.0 106 29 13.2 0000 12.2 0730 13.0 100 0100 12.0 0800 12.5 10' 30 12.8 12.5 0000 11.6 0600 12.2 108 31

~

M M M M M M M M M M M

m M -

M M M M M M M M M TABLE 4.1-2 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 12.8 0000 11.8 0830 12.6 104 2 12.9 2400 12.2 0830 12.6 115 3 13.0 1230 11.9 0900 12.7 115 4 13.0 0100 11.9 1100 12.6 117 5 13.0 0430 12.0 1130 12.8 115 6 13.7 2400 12.1 0830 12.9 112 7 14.1 2000 12.9 0900 13.8 110 8 14.1 0100 13.1 0900 13.8 109 9 13.5 0000 12.0 0930 12.9 116

[j 10 13.1 0000 12.0 0930 12.7 121 8

11 13.3 0100 12.3 1230 12.8 114 12 13.5 2400 12.6 0830 13.3 111 13 13.3 0000 12.2 0830 13.1 108 14 13.4 1800 12.5 0930 13.2 108 15 13.5 1530 12.4 0900 13.3 110 16 13.4 1600 12.4 0900 13.2 114 17 13.3 0100 12.8 1030 13.1 108 18 13.3 1330 12.9 0630 13.1 106 19 13.2 2000 12.9 1030 13.1 105 20 13.4 1530 12.8 0930 13.1 103 21 13.2 2000 12.5 0930 13.0 105 22 13.1 1400 12.5 0930 12.9 106 23 13.0 1400 12.5 0930 12.8 109 24 12.8 0000 12.2 0930 12.6 114 25 12.7 1600 12.1 1030 12.4 120 26 12.6 0000 12.1 0930 12.4 110 27 12.7 1600 12.2 0900 12.5 110 28 12.9 1400 12.3 0800 12.7 111

TABLE 4.1-3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCH 1979

)

DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 12.8 1400 12.4 0800 12.7 110 2 12.8 1530 12.3 0900 12.6 120 3 12.8 1200 12.4 1830 12.7 122 4 12.7 1430 12.3 0830 12.5 121 5 13.0 2200 12.5 0830 12.8 119 6 13.8 1930 12.7 0330 13.3 110 7 No Valid Data 87 8 No Valid Data 73 I 9 No Valid Data 70

$ 10 No Valid Data 71 8

11 No Valid Data 71 12 No Valid Data 73 13 No Valid Data 73 14 No Valid Data 77 15 No Valid Data 80 16 No Valid Data 80 17 No Valid Data 79 18 No Valid Data 81 19 14.8 1400 14.6 2400 14.7 83 20 14.6 0000 14.2 1030 14.4 82 21 14.4 0930 14.2 0430 14.3 84 22 14.5 2330 14.0 2400 14.2 83 23 14.0 0000 13.0 2400 13.5 82

! 24 14.0 0000 13.4 2230 13.7 77 l 25 No Valid Data 66 26 No Valid Data 62 27 No Valid Data 60 l 28 13.6 0900 13.4 2400 13.5 61 29 13.5 0000 13.2 1600 13.3 64 30 13.8 0100 13.3 2330 13.6 68 31 13.8 0030 13.3 1600 13.5 72 l

sum num nas sum uma num amm use uma sum aus sus em num uma amm sums l

M M M M M M M M M M M M M M M -

TABLE 4.1-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.8 1430 13.4 0200 13.7 73 2 14.2 2300 13.6 1400 14.0 79 3 14.5 0030 13.6 1630 13.9 66 4 14.8 1300 14.5 0000 14.6 67 5 14.7 0000 14.4 2300 14.6 67 6 14.6 0000 14.4 2400 14.5 71 7 14.4 0000 14.3 2330 14.3 75 8 14.3 0000 13.7 2400 14.0 79 9 13.7 0000 13.4 1830 13.5 84 j 10 13.5 0400 13.2 2330 13.4 83 I 11 13.5 2400 13.1 0330 13.3 88 12 13.5 0000 12.9 2400 13.2 94 13 13.3 2400 12.6 1300 13.1 92 14 13.5 2400 13.2 1230 13.3 96 15 13.5 0000 13.1 2330 13.5 91 16 13.2 0530 12.7 1400 13.0 90 17 13.0 0030 12.7 1930 12.9 88 18 13.2 1000 13.0 2030 13.1 90 19 13.2 0930 13.0 2400 13.1 89 20 13.0 0000 12.8 1200 12.9 84 21 13.0 0630 12.8 1330 12.9 78 22 Pump Inoperative Pump Inoperative 23 Pump Inoperative Pump Inoperative 24 Pump Inoperative Pump Inoperative 25 Pump Inoperative Pump Inoperative 26 Pump Inoperative Pump Inoperative 27 Pump Inoperative Pump Inoperative 28 Pump Inoperative Pump Inoperative 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative

TABLE 4.1-5 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MAY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 Pump Inoperative Pump Inoperative 2 Sensor Inoperative 69 3 11.5 2400 11.1 0900 11.3 63 4 11.5 0000 11.2 1700 11.4 80 5 11.4 0900 11.2 2100 11.3 80 6 11.4 2000 11.2 1330 11.3 84 7 11.4 0300 11.0 2400 11.2 88 8 11.0 0000 10.6 2400 10.8 88

, 9 10.7 0100 10.2 1830 10.4 86 m 10 10.4 0000 9.8 1800 10.1 92

? 11 9.9 0100 9.5 0830 9.7 95 12 9.7 0830 9.5 1530 9.6 98 13 9.7 2400 9.5 0300 9.6 98 14 9.7 0000 9.5 2400 9.6 93 15 9.5 0000 9.3 2330 9.4 95 16 9.4 1000 9.2 2400 9.3 96 17 9.3 1400 9.1 0500 9.2 97 18 9.5 1700 9.3 2400 9.4 96 19 9.5 2000 9.2 0700 9.3 91 20 9.9 2100 9.4 0700 9.6 90 21 9.7 0000 9.6 2400 9.6 93 22 9.8 1730 9.5 0400 9.6 106 23 9.7 1400 9.3 2400 9.5 108 24 10.0 2330 9.2 0630 9.4 114 25 10.4 2030 9.7 0730 10.1 82 26 Sensor Inoperative 72 27 Sensor Inoperative 72 28 Sensor Inoperative 71 29 Sensor Inoperative 74 30 10.2 1100 10.0 1830 10.1 73 31 10.3 0730 10.0 2230 10.1 80 M M M M M M M M M M M M

m M M M M M M M M M M M M M TABLE 4.1-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR) l WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 10.2 0130 9.8 2400 10.0 80 2 9.8 0000 9.6 2400 9.7 83 3 9.6 0000 9.3 2400 9.4 80 4 9.3 0000 8.9 1630 9.1 80 5 9.0 0030 8.5 2100 8.8 81 6 8.7 0530 8.2 1130 8.4 87 7 8.4 1900 8.2 0700 8.3 89 8 8.5 2000 8.2 0700 8.4 88

, 9 8.4 0000 8.2 1000 8.3 91 m 10 8.3 0100 8.2 1530 8.3 92 Y 11 8.6 1800 8.3 0600 8.4 100 12 8.6 1600 8.2 0600 8.4 101 13 8.7 2000 8.3 0600 8.5 97 14 8.8 1930 8.4 0700 8.6 107 15 9.0 1800 8.7 0800 8.8 100 16 8.9 1800 8.6 0630 8.7 100 17 8.9 1500 8.5 0600 8.7 102 18 8.9 1330 8.6 0700 8.7 101 19 8.9 1830 8.3 0700 8.6 110 20 9.1 1630 8.4 0600 8.8 110 21 9.0 1830 8.5 0700 8.7 106 22 8.8 1200 8.3 2400 8.6 112 23 8.3 0000 8.1 1200 8.2 116 24 8.2 0000 7.9 0900 8.0 120 25 8.8 2100 7.9 0700 8.3 120 26 8.6 0000 8.4 2400 8.5 102 27 8.4 0000 8.2 2400 8.3 103 28 8.6 1730 7.9 0830 8.3 104 29 8.4 0000 8.2 2400 8.3 104 30 8.2 0000 7.8 2400 8.0 104

TABLE 4.1-7 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 7.9 1430 7.7 2400 7.8 105 2 8.2 1630 7.8 1700 8.0 110 3 8.3 1730 8.0 0700 8.2 125 4 8.4 1700 8.1 0600 8.2 128 5 8.4 0000 8.0 2400 8.2 118 6 8.4 1800 8.0 0700 8.2 117 7 8.4 1830 8.0 0700 8.2 13 9 8 8.5 1600 8.1 0730 8.3 121

, 9 8.6 2130 7.8 0900 8.2 124

[j 10 8.7 1930 8.3 0700 8.5 123

11 8.4 1100 8.0 2300 8.2 119 12 8.6 1700 7.9 0500 8.3 118 13 8.2 0000 7.6 2400 7.9 124 14 7.6 0000 7.3 2400 7.4 129 15 NO VALID DATA 132 16 8.2 1800 7.7 1100 8.0 131 17 8.1 1330 7.6 2400 7.9 130 18 7.6 0000 6.8 2400 7.1 133 19 7.3 1830 6.4 0700 6.9 130 20 7.6 1630 6.8 0630 7.3 132 21 7.9 1800 7.2 0730 7.6 132 22 7.7 1500 6.9 2300 7.4 131 23 7.8 1800 6.8 0400 7.3 130 24 7.2 1330 6.7 2400 6.9 131 25 7.4 1800 6.4 0730 6.9 135 26 6.7 0000 6.3 2100 6.5 137 27 7.2 1800 6.4 0100 6.8 141 28 7.4 1730 7.0 0700 7.2 143 29 7.3 1430 6.9 0800 7.1 146 30 7.8 1730 6.8 0600 7.4 145 31 7.4 0000 6.1 2400 6.9 146 M M M M M' M M M M M .M M M M

M M M M M

~

M M M M M M M M M TABLE 4.1-8 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 6.8 1930 5.0 0800 6.4 147 2 7.0 1630 6.3 2100 6.6 145 3 7.1 1800 6.2 0700 6.6 142 4 7.4 1830 6.1 0700 6.9 142 5 7.2 1500 6.9 0800 7.1 141 6 7.2 1800 6.6 0630 6.9 142 7 6.9 1330 6.2 2400 6.6 141 8 6.4 1100 6.0 2400 6.2 140

, 9 6.8 1830 6.0 0000 6.4 138 m 10 6.6 0000 6.3 2400 6.5 137 Y 11 6.3 0000 6.0 2400 6.2 135 12 6.4 1600 5.9 0600 6.2 134 13 6.7 1900 6.2 0000 6.4 137 14 7.0 1630 6.5 0700 6.8 140 15 7.3 1500 6.8 0400 7.0 139 16 7.8 1700 7.1 0600 7.5 137 17 8.0 1600 7.5 0800 7.7 134 18 7.9 0100 7.5 2400 7.7 135 19 7.7 1330 7.3 0800 7.4 135 20 7.7 1700 7.4 0930 7.5 137 21 8.0 1730 7.5 0700 7.7 138 22 8.4 1600 7.6 0730 8.0 138 23 8.3 1430 7.9 2400 8.1 137 24 8.3 1430 7.7 0900 8.0 136 25 8.3 1700 8.0 0200 8.1 134 26 8.5 1800 8.0 0500 8.2 135 27 8.4 0000 8.1 2400 8.3 138 28 8.3 1700 7.9 2400 8.1 140 29 7.9 0030 7.6 2400 7.8 140 30 8.0 2300 7.5 0930 7.7 141 31 8.2 1130 7.7 0600 8.0 140 e

TABLE 4.1-9 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.3 1630 7.8 0730 8.1 140 2 8.2 1500 7.8 0800 8.0 138 3 8.1 1400 7.6 0700 7.8 137 4 8.3 2000 7.7 0700 8.0 140 5 8.2 0000 7.5 2200 7.8 143 6 7.7 0500 7.4 2400 7.6 141 7 7.7 1830 7.2 0730 7.4 138 8 7.8 2130 7.4 0900 7.6 116 9 8.5 2000 7.6 0630 8.0 123 E 10 8.3 0000 7.7 2400 8.0 124 f 11 3.1 1530 7.6 0730 7.9 117 12 8.3 1800 7.8 0730 8.1 118 13 8.4 1700 7.9 0900 8.1 124 14 8.1 0000 7.8 2400 8.0 130 15 8.4 2100 7.8 0730 8.1 118 16 8.7 2130 8.2 0730 8.4 116 17 8.8 2100 8.3 0700 8.5 116 18 8.9 1900 8.4 0630 8.7 120 19 9.1 1730 8.5 0700 8.7 122 20 9.2 1630 8.7 0530 8.9 124 21 8.7 0230 8.3 2330 8.5 123 22 8.3 1630 7.9 2300 8.1 115 23 8.5 1800 7.9 0600 8.2 109 24 8.9 1730 8.4 0630 8.6 107 25 9.1 1730 8.5 0630 8.8 109 26 9.3 1730 8.8 0600 9.0 112 27 9.5 1700 9.1 0730 9.3 118 28 9.3 1630 3.9 0700 9.1 123 29 9.1 1600 8.8 0800 9.0 122 30 8.8 0000 8.5 2400 8.6 120 m M M M -

M M M M M M M M M M

M M M M M M M M M TABLE 4.1-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY 2UATEC, INC.

OCTOBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.6 1230 8.4 2400 8.5 118 2 0.7 1700 8.3 0600 S.5 114

~3 8.6 0000 8.4 0530 8.5 108 4 8.7 1400 8.4 2400 8.6 112 5 8.5 0000 8.1 2400 8.3 107 6 8.5 1630 8.1 0130 8.3 111 7 8.6 2400 8.3 0730 8.4 108 8 8.3 1030 8.6 2400 8.7 92 i 9 8.6 1000 8.4 1900 8.5 98 vi 10 8.8 1400 S.4 0300 8.6 102

' 11 9.0 1930 8.5 0600 8.7 103 12 9.2 1630 8.8 0400 9.0 100 13 9.3 1730 8.9 0500 9.1 108 14 9.5 0900 9.2 0100 9.3 110 15 9.5 1500 9.2 0430 9.4 108 16 9.8 2400 9.6 1200 9.7 106 17 10.1 1630 9.9 0600 10.0 112 18 10.2 0900 9.9 2400 10.1 114 19 10.2 1400 9.9 0630 10.1 115 20 10.3 1630 10.1 0530 10.2 115 21 10.4 1430 9.9 0800 10.2 106 22 10.1 0100 9.9 1000 10.0 100 23 10.0 1600 9.8 0800 9.9 102 24 10.0 1100 9.8 0500 9.9 109 25 10.0 1900 9.7 0600 9.9 110 26 9.9 0130 9.6 2330 9.8 106 27 9.8 1600 9.6 0600 9.7 109 28 9.7 0230 9.5 1300 9.6 107 29 9.8 2200 9.5 0530 9.7 111 30 10.1 2030 9.8 0430 9.9 114 31 10.1 2030 10.0 0400 10.0 108

l TABLE 4.1-11 1

VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Tir..e Minimum Time Average Observed Daily Average 1 PUMP INOPERATIVE PUMP INOPERATIVE 2 10.9 2230 10.3 1100 10.6 109 3 10.9 1400 10.6 0700 10.7 106 4 11.2 1030 10.5 0500 10.8 103 5 10.8 2400 10.6 0700 10.7 104 6 11.0 1900 10.6 0700 10.8 102 7 11.0 0700 10.8 0000 10.9 98 8 11.1 1500 10.8 0830 11.0 97 i 9 11.1 1300 10.7 0630 10.9 96

$ 10 PUMP INOPERATIVE PUMP INOPERATIVE I 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 13.1 1400 12.7 0800 13.0 88 15 13.1 2400 12.6 0730 12.9 88 16 13.5 1930 12.9 0730 13.2 92 17 13.4 0000 12.4 1830 12.9 92 18 12.7 0130 11.6 1830 12.2 92 19 12.6 2030 11.3 0830 12.2 94 20 12.6 0930 12.3 1800 12.4 97 21 12.7 2200 11.9 0730 12.3 96 22 12.6 0000 11.9 0930 12.3 98 23 12.4 2100 11.8 1030 12.2 102 24 12.2 1500 11.6 1000 12.0 105 25 11.9 0000 11.1 1700 11.5 108 26 11.4 0030 10.8 0830 11.1 102 27 11.4 2400 10.9 1100 11.1 90 28 11.4 2330 11.0 1230 11.2 98 29 11.4 0000 11.1 2400 11.2 103 30 11.3 2400 11.1 1000 11.2 99 m M M M M M M M M M

m M M M M M M M TABLE 4.1-12 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 11.5 1630 11.1 0900 11.3 95 2 11.7 2400 11.2 0900 11.4 90 3 11.8 2400 11.4 0800 11.6 81 4 12.1 2400 11.7 0530 11.9 87 5 12.2 0330 11.9 1830 12.1 92 6 12.3 2230 11.8 0900 12.0 90 7 12.4 0500 12.0 0430 12.2 91 8 PUMP INOPERATIVE PUMP INOPERATIVE

, 9 PUMP INOPERATIVE PUMP INOPERATIVE m 10 PUMP INOPERATIVE PUMP INOPERATIVE l' 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 PUMP INOPERATIVE PUMP INOPERATIVE 16 PUMP INOPERATIVE PUMP INOPERATIVE 17 PUMP INOPERATIVE PUMP INOPERATIVE 18 13.1 2400 12.8 1130 12.9 98 19 13.3 1100 12.8 0600 13.0 96 20 13.4 0900 13.1 1800 13.2 99 21 13.2 0030 12.2 0930 12.7 105 22 12.6 0000 12.1 1030 12.3 112 23 12.6 2130 12.0 1730 12.3 117 24 12.6 2300 12.1 1000 12.4 115 25 12.5 0000 12.2 0930 12.4 104 26 13.1 2400 12.7 1730 12.9 104 27 13.6 0930 13.1 0100 13.4 97 28 14.1 1230 13.4 0100 13.7 87 29 14.0 0700 13.6 2200 13.8 81 30 13.7 0300 13.0 0830 13.5 84 31 13.6 0200 13.0 1700 13.3 87

TABLE 4.2-1 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JANUARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.6 2000 13.4 0000 13.5 128 2 13.7 2130 13.1 1130 13.5 112 3 14.1 2230 13.4 0900 13.7 95 4 14.3 1530 13.9 0300 14.1 78 5 14.5 1530 14.3 0700 14.4 82 6 14~4

. 1500 14.2 2400 14.3 97 7 14.3 0500 14.0 2400 14.2 97 8 14.1 0800 14.0 0300 14.0 106

, 9 14.2 2400 13.9 0800 14.0 92 m 10 14.2 0800 14.0 2300 14.1 90 7 11 14.1 0130 13.8 2330 13.9 No Valid Data 12 13.9 2230 13.7 1400 13.8 91 13 13.9 2030 13.7 1300 13.8 93 14 13.8 0000 13.6 1530 13.7 97 15 13.8 0600 13.5 2000 13.6 98 16 13.8 1400 13.5 0500 13.7 97 17 13.8 0400 13.5 2130 13.7 97 18 13.5 0000 13.2 1300 13.4 97 19 13.4 0400 13.2 2200 13.3 106 20 13.4 0300 13.3 1830 13.4 98 21 13.4 1630 13.1 1130 13.3 .96 22 13.4 1400 13.1 0200 13.3 106 23 13.4 0330 13.0 1900 13.2 104 24 13.2 2200 13.1 0230 13.2 103 25 13.2 0030 13.0 1700 13.1 112 26 13.1 1630 13.0 0300 13.1 110 27 13.3 1630 13.1 0000 13.2 108 28 13.3 0730 13.1 0200 13.2 103 2' 13.2 0000 12.9 1830 13.0 103

. 13.2 1930 13.0 0900 13.1 107

3. 13.1 0000 12.9 2230 13.0 105

[

M M M M M M M

M M M M M M TABLE 4.2-2 VERMONT YANKEE NUCLEAR POWER CORPOR ATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Obscrved Daily Average 1 13.1 1000 12.9 0030 13.0 120 2 13.0 2400 12.9 1130 12.9 118 3 13.1 2400 13.0 0400 13.0 119 4 13.2 1630 13.0 2330 13.1 119 5 13.2 0900 13.0 2300 13.1 117 6 13.1 2400 12.9 1930 13.0 114 7 13.2 0600 12.9 1800 13.1 114 8 13.0 0130 12.9 1700 13.0 116 9 13.1 2400 13.0 1000 13.0 119

$3 10 13.2 2400 13.1 0000 13.1 115 j) 11 13.3 0200 13.2 1100 13.2 110 12 13.6 1400 13.1 0830 13.4 110 13 13.7 2030 13.4 0100 13.6 108 14 13.6 0000 13.4 1700 13.5 108 15 13.5 2400 13.4 1500 13.4 113 16 13.6 0530 13.0 2130 13.4 112 17 13.9 0330 13.5 1700 13.7 115 18 13.8 0000 13.0 2400 13.4 113 19 14.0 0000 13.3 2400 13.7 113 20 13.8 0000 13.5 1130 13.7 1.03 21 13.9 0130 13.6 2400 13.7 LOS 22 13.6 0000 13.3 2230 13.4 110 23 13.4 0200 12.9 1930 13.2 101 24 13.3 0130 13.0 1330 13.2 121 25 13.3 0000 13.0 2130 13.2 113 26 13.2 0000 13.0 2100 13.1 111 27 13.4 2000 13.1 0100 13.3 110 28 13.3 0000 13.1 1100 13.2 110 3

. W:idsdkijb:_:D- ~

~

n s:w Jf::ur F' ,

TABLE 4.2-3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCH 1979 DISSOLVLJ OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 13.2 0000 13.0 2000 13.1 117 2 13.3 0000 13.1 2000 13.2 122 3 13.5 0100 13.3 1330 13.4 119 4 13.6 0100 13.4 2400 13.5 120 5 13.6 0000 13.5 2400 13.6 118 6 13.7 2400 13.4 1630 13.5 100 7 13.8 0200 13.3 1430 13.6 80 8 14.0 0930 13.6 2400 13.8 72 9 14.2 2230 13.9 0400 14.0 69 E 10 14.5 0130 13.9 2030 14.1 70 11 14.3 0400 14.1 1630 14.2 68 12 14.5 0830 14.0 1800 14.3 69 13 14.5 0230 14.0 2400 14.3 68 14 Recorder Inoperative Recorder Inoperative 15 Recorder Inoperative Recorder Inoperative 16 Recorder Inoperative Recorder Inoperative 17 Recorder Inoperative Recorder Inoperative 18 14.7 0000 14.6 2100 14.7 79 19 14.7 0000 14.5 2400 14.6 81 20 14.5 1030 14.3 2400 14.4 80 21 14.3 0030 14.2 1900 14.2 83 22 14.4 1530 14.1 0130 14.2 81 23 14.3 0400 13.6 2130 13.9 78 24 No Valid Data 72 25 No Valid Data 58 26 No Valid Data 60 27 14.0 1100 13.8 2030 13.9 57 28 14.0 0830 13.8 2030 13.9 58 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative 31 Pump Inoperative Pump Inoperative M M M M M M

M M TABLE 4.2-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 Pump Inoperative Pump Inoperative 2 Pump Inoperative Pump Inoperative 3 Pump Inoperative Pump Inoperative 4 14.5 0830 13.7 2400 14.2 62 5 14.2 0100 14.1 2400 14.2 63 6 14.1 0000 13.5 2230 13.8 68 7 13.9 0800 13.5 2400 13.7 73 8 13.9 0900 13.6 2400 13.7 77 9 13.8 2400 13.7 0400 13.8 79 E 10 13.9 0030 13.6 1800 13.7 78 y 11 13.7 0330 13.4 2400 13.6 85 12 13.6 1000 12.9 2330 13.3 95 13 13.1 1930 12.9 0630 13.0 93 14 13.2 2000 12.9 0330 13.0 96 15 13.2 0000 12.9 2400 13.1 92 16 12.9 0000 12.7 2400 12.8 89 17 13.0 1930 12.7 0000 12.9 88 18 13.2 0830 12.8 2300 13.0 85 19 13.2 0800 12.8 2400 13.0 85 20 13.0 1200 12.7 2400 12.8 80 21 12.9 1000 12.4 2400 12.7 72 22 12.5 1000 12.2 2400 12.4 69 23 12.3 1000 11.8 2100 12.1 67 24 12.0 0800 11.4 2400 11.7 63 25 No Valid Data 60 26 No Valid Data No Valid Data 27 11.7 0930 11.5 2400 11.6 57 28 11.7 0900 11.4 2400 11.6 58 29 11.5 0900 11.3 2130 11.4 58 30 11.7 0900 11.3 2400 11.5 58 m

TAB LE 4 . 2 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MAY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 11.5 0030 11.2 2400 11.4 63 2 11.4 1030 11.1 2400 11.2 69 3 11.2 1200 11.0 0330 11.1 74 4 11.2 0030 10.8 1930 11.0 80 5 11.0 0900 10.7 2400 10.9 79 6 11.1 1000 10.8 0200 11.0 84 7 11.1 0930 10.9 2400 11.0 87 8 10.9 0600 10.6 2400 10.7 90 9 10.6 0000 10.0 2400 10.3 87 j3 10 10.0 0000 9.3 2400 9.6 93 w 11 9.3 0000 8.9 2400 9.1 95

' 2330 96 12 8.9 0000 8.7 8.8 13 9.5 1800 8.7 0000 9.2 95 14 9.6 2400 9.4 0730 9.5 90 15 9.6 0000 9.4 2400 9.5 94 16 9.3 2100 9.2 0930 9.3 94 17 9.2 0000 9.0 1400 9.1 98 18 9.1 0000 8.9 1530 9.0 92 19 9.4 1800 9.1 0100 9.2 90 20 9.7 2000 9.2 1200 9.4 91 21 9.6 1330 9.2 0700 9.3 102 22 9.6 1530 9.4 0930 9.5 93 23 9.5 0000 9.3 1430 9.4 107 24 9.4 0000 9.0 1200 9.2 114 25 10.3 2230 9.4 0000 9.8 70 26 10.6 2400 10.2 0000 10.4 65 27 10.8 0730 10.4 2400 10.6 61 28 10.4 0000 9.6 2230 10.0 64 29 9.8 1030 9.4 1830 9.6 62 30 9.8 1000 9.5 1830 9.7 70 31 10.0 1500 9.5 0130 9.8 75 m M W

m -

M M M TABLE 4.2-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 9.8 1130 9.5 2400 9.7 80 2 9.5 0000 9.4 2400 9.4 81 3 9.4 0000 9.2 2400 9.3 78 4 9.2 0000 8.7 2400 9.0 80 5 8.8 0800 8.4 2400 8.6 82 6 8.4 0000 8.2 2400 8.3 91 7 8.4 1130 8.1 0200 8.3 88 8 8.4 1030 8.2 2400 8.3 88 9 8.2 0000 8.0 0930 8.1 91 i 10 8.4 2100 8.0 1330 8.2 99 w 11 8.3 0930 8.1 2000 8.2 101 12 8.5 1900 8.2 0800 8.4 97 13 8.7 1930 8.4 0300 8.6 102 14 8.9 2000 8.6 0000 8.8 98 15 9.1 1900 8.9 0100 9.0 101 16 9.2 1500 8.8 0700 9.0 100 17 9.0 0000 8.6 1500 8.8 98 18 9.0 1430 8.7 0600 8.9 104 19 9.2 2100 8.6 0600 8.9 112 20 9.2 2230 8.6 1300 8.9 104 21 9.2 0000 8.7 1530 9.0 104 22 9.1 1930 8.6 1200 8.8 118 23 8.9 0000 8.4 1730 8.7 127 24 8.8 0030 8.3 1100 8.6 118 25 9.0 1300 8.4 0700 8.6 106 26 8.7 0000 8.3 2200 8.5 105 27 8.6 2300 8.1 1030 8.4 102 28 8.6 0000 8.0 2330 8.2 102 29 8.2 2300 7.7 1100 8.0 103 30 8.3 0830 8.0 1530 8.1 108

TABLE 4.2-7 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.3 2330 7.9 1200 8.1 122 2 8.5 1530 8.1 0830 R.3 124 3 8.6 1630 8.2 0130 8.4 125 4 8.3 1530 7.9 2100 8.2 115 5 8.4 1930 7.8 0830 8.1 117 6 8.5 1630 8.1 0630 8.3 119 7 PUMP IUOPERATIVE PUMP INOPERATIVE 8 PUMP INOPERATIVE PUMP INOPERATIVE 9 PUMP INOPERATIVE PUMP INOPERATIVE d) 10 PUMP INOPERATIVE PUMP INOPERATIVE i 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 8.5 1700 7.9 1130 8.2 130 14 8.4 0200 7.8 2100 8.0 129 15 8.4 0430 7.8 2400 8.1 131 16 7.7 1830 7.2 1030 7.4 133 17 7.4 0000 6.7 1430 7.1 134 18 7.2 0130 6.8 2400 7.0 130 19 6.9 0100 6.4 1730 6.7 131 20 7.1 2030 6.4 1130 6.8 131 21 7.1 0000 6.4 1900 6.6 131 22 6.8 0100 6.0 2330 6.4 131 23 7.0 2030 6.1 0230 6.6 133 24 6.6 2100 6.1 1600 6.3 138 25 6.5 1430 6.1 0000 6.3 142 26 6.6 0330 5.6 1900 6.1 150 27 6.3 0130 5.6 0900 6.0 148 28 6.4 1100 5.5 2300 6.0 142 29 5.8 0500 5.0 1730 5.4 140 30 5.5 1300 4.8 1730 5.1 142 31 5.4 0230 4.9 1130 5.2 140 m

M M

M TABLE 4.2-8 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 RECORDER INOPERATIVE RECORDER INOPERATIVE 2 NO VALID DATA 140 3 NO VALID DATA 141 4 NO VALID DATA 141 5 NO VALID DATA 143 6 NO VALID DATA 140 7 NO VALID DATA 134 8 NO VALID DATA 131 9 NO VALID DATA 131 e 10 NO VALID DATA 132 T 11 NO VALID DATA 137 12 NO VALID DATA 141 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 7.3 0030 6.9 1600 7.1 132 16 7.7 1630 7.0 0500 7.3 133 17 7.7 1830 7.2 0630 7.4 135 18 7.8 1600 7.2 0730 7.6 139 19 7.9 2030 7.6 0600 7.7 139 20 8.0 1830 7.6 1100 7.8 13E 21 8.1 1730 7.5 1030 7.8 13S 22 8.1 1600 7.5 1030 7.7 5.37 23 8.3 1930 7.3 0530 7.8 13.'

24 8.4 2100 8.0 0400 8.2 13 .-

25 8.5 1600 8.1 2400 8.3 1,]

26 8.3 0000 7.8 0800 8.0 1,1 27 8.2 1900 7.8 1330 8.0 1 J. .

28 8.3 1630 7.8 0800 8.0 140 29 8.2 0000 7.8 1100 8.0 140 30 8.5 1800 7.9 1000 8.2 142 31 8.0 0300 7.5 2400 7.8 135

TABLE 4.2-9 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 7.8 1800 7.3 0800 7.6 133 2 7.5 2130 7.2 0900 7.4 137 3 7.7 1630 7.3 0730 7.5 139 4 8.2 1530 7.0 0830 7.6 142 5 7.9 1900 7.3 0300 7.6 144 6 7.7 0000 7.3 1800 7.5 140 7 8.0 1900 7.2 1000 7.6 118 8 7.9 1900 i.5 0600 7.7 125 9 7.7 0000 7.1 1830 7.4 128 10 7.9 1630 7.3 0830 7.6 115

$ 11 8.0 1800 7.5 1200 7.8 125 1 12 7.9 1930 7.4 1130 7.7 130 13 7.8 1500 7.5 0600 7.7 135 14 7.9 2200 7.6 0100 7.7 122 15 8.1 1830 7.8 0700 7.9 119 16 8.1 2230 7.6 1200 7.8 122 17 8.0 1900 7.7 0230 7.9 124 18 8.2 1830 7.7 0700 8.0 126 19 8.2 1800 8.0 0900 8.1 127 20 8.4 1830 8.0 1300 8.2 122 21 8.5 2030 8.1 0630 8.3 110 22 8.6 1730 8.4 1000 8.5 108 23 8.6 1430 8.4 0500 8.5 110 24 9.0 1300 8.4 0730 8.7 114 25 9.1 1700 8.8 0630 8.9 118 26 9.2 1530 8.9 2400 9.1 127 27 9.0 0200 8.8 2400 8.9 125 28 NO VALID DATA 120 29 NO VALID DATA 118 30 9.2 0600 8.8 1830 9.0 117 3

M M M - M M M TABLE 4.2-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 8.8 0100 8.5 1300 8.7 115 2 9.3 1730 8.5 0630 8.9 110 3 9.2 0000 8.5 2130 8.8 114 4 8.6 1730 8.3 0330 8.5 104 5 8.3 0000 8.1 1430 8.2 108 6 8.5 2000 8.1 0630 8.3 106 7 8.7 1900 8.1 0600 8.4 92 8 8.5 1600 8.1 2400 8.3 97 9 8.8 1630 8.0 0130 8.4 100 1 10 9.1 1630 8.4 0730 8.7 99

-a 11 9.2 1730 8.4 0900 8.7 100

' 12 9.3 1730 8.6 0830 8.8 104 13 9.8 1800 8.9 0430 9.3 109 14 9.6 2100 8.1 0030 9.4 108 15 9.8 1500 9.4 0100 9.6 105 16 9.9 1130 9.5 0000 9.7 109 17 10.0 0600 9.5 2400 9.8 111 18 9.9 1700 9.7 0130 9.8 113 19 10.4 1330 10.1 0200 10.2 112 20 10.3 1330 10.0 2400 10.2 106 21 10.0 1930 9.8 1030 9.9 101 22 10.0 2400 9.9 1630 10.0 104 23 10.0 0000 9.7 1900 9.9 112 24 9.7 0900 9.4 2300 9.6 115 25 9.6 2300 9.3 1630 9.5 110 26 9.8 2000 9.6 1030 9.7 112 27 9.8 1500 9.6 2300 9.7 113 28 9.9 2400 9.6 0000 9.8 113 29 10.2 1700 9.9 0800 10.0 119 30 10.1 1800 9.9 0000 10.0 112 31 10.3 1700 10.1 0000 10.2 110

TABLE 4.2-11 VERMONT YANKEE NUCLEAR POWER CORPORATIOM SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 10.7 1900 10.1 0000 10.4 110 2 10.6 0000 10.2 1600 10.4 110 3 10.4 0100 10.2 2300 10.3 108 4 10.5 2400 10.2 0800 10.3 106 5 10.6 1530 10.4 0200 10.5 106 6 11.2 2400 10.5 0000 10.9 102 7 11.4 1030 11.2 1630 11.3 107 8 11.3 0000 10.9 2300 11.1 98 9 11.0 1700 10.8 2400 10.9 98 1 10 10.9 1100 10.7 2400 10.8 97 7 11 10.7 2400 10.5 0800 10.6 88 12 10.8 2400 10.6 1100 10.7 89 13 10.8 1530 10.5 2400 10.7 87 14 10.6 0000 10.4 0930 10.5 86 15 11.0 2400 10.6 1000 10.7 90 16 11.3 1500 11.0 1100 11.2 94 17 11.8 1600 11.3 0000 11.5 93 18 11.5 2400 11.2 1930 11.4 97 19 11.7 0630 11.4 2000 11.5 94 20 11.5 0000 11.2 1300 11.4 96 21 11.6 2330 11.4 2000 11.5 97 22 11.6 0000 11.5 1200 11.5 101 23 11.6 0800 11.4 1730 11.5 105 24 11.5 0000 11.1 2400 11.3 107 25 11.1 0000 10.7 2230 10.9 101 26 11.1 0830 10.6 2400 10.9 101 27 10.9 0000 10.4 0600 10.6 80 28 11.6 2330 10.6 0000 11.3 83 29 11.6 2400 11.4 0400 11.5 84 30 11.5 1000 11.4 1800 11.5 86 M M M M

M M M M M M M M M M TABLE 4. 2-12 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEMBER 1979 DISSOLVED OXYGEN CONDUCTIVITY Day Maximum Time Minimum Time Average Observed Daily Average 1 11.6 1830 11.4 0000 11.5 88 2 11.9 2330 11.5 0800 11.7 80 3 12.1 1530 11.7 0500 11.9 83 4 12.3 2230 12.0 0800 12.1 84 5 12.4 2400 12.2 1000 12.3 89 6 12.6 2030 12.4 0000 12.5 93 7 12.5 0000 12.1 1600 12.3 86 8 12.5 2400 12.2 0600 12.3 88

, 9 12.9 2400 12.5 0130 12.6 89 e

10 12.9 0100 12.6 1400 12.7 84 11 13.0 1700 12.8 1000 12.9 87 12 12.9 0000 12.6 2400 12.7 92 13 12.7 1300 12.5 0700 12.6 102 14 12.8 1430 12.7 0000 12.8 103 15 12.7 2400 12.5 1230 12.6 96 16 12.9 0500 12.7 2030 12.8 100 17 13.0 1730 12.8 1130 12.9 96 18 13.2 1830 13.0 0430 13.1 98 19 13.4 2400 13.2 0200 13.3 95 20 13.7 2200 13.4 0000 13.6 100 21 13.7 0000 13.6 1500 13.6 113 22 13.7 0030 13.6 2200 13.6 119 23 13.6 0000 13.4 2030 13.5 114 24 13.5 0000 13.4 1700 13.5 106 25 NO VALID DATA NO VALID DATA 26 13.7 1930 13.3 0200 13.5 86 27 13.8 0500 13.6 1130 13.7 89 28 14.0 2100 13.8 1200 13.9 81 29 13.9 0200 13.7 2400 13.8 81 30 13.7 0030 13.2 2400 13.4 85 31 13.3 0000 13.1 2400 13.2 86

TABLE 4.3-1 VERMONT YANKEE NUCLEAR POWER CORPORATIOM SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JANUARY 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 1 7.5 7.4 0.1 2 2 7.5 7.3 0.2 3 20 7.5 7.3 0.2 4 16 7.5 7.2 0.3 5 11 7.4 7.2 0.2 6 3 7.5 7.3 0.2 7 1 7.5 7.3 0.2 8 3 7.4 7.3 0.1 1 9 2 7.4 7.2 0.2 o 10 1 7.4 7.1 0.3 11 1 7.3 7.1 0.2

? 7.0 0.2 12 1 7.2 13 1 7.2 7.0 0.2 14 1 7.2 7.0 0.2 15 1 7.2 7.0 0.2 16 1 7.2 7.0 0.2 17 1 7.2 7.1 0.1 18 1 7.2 6.9 0.3 19 0 7.2 6.9 0.3 20 0 7.2 7.0 0.2 21 0 7.2 7.0 0.2 22 1 7.1 6.9 0.2 23 1 7.1 6.9 0.3 24 0 7.1 7.0 0.1 25 0 7.1 7.0 0.1 26 1 7.2 7.0 0.2 27 1 7.1 7.0 0.1 28 1 7.1 7.0 0.1 29 1 7.1 6.9 0.2 30 1 7.1 6.9 0.2 31 1 7.1 6.9 0.2 M M M M M M M M M M

M M M M M M TABLE 4.3-2 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 1 7.1 7.0 0.1 2 1 7.1 6.9 0.2 3 1 7.2 6.9 0.3 4 1 7.3 6.9 0.4 5 1 7.2 7.0 0.2 6 1 7.2 6.9 0.3 7 1 7.3 7.0 0.3 8 1 7.2 6.9 0.3 9 1 7.5 7.0 0.5

$l 10 1 7.5 7.2 0.3 y 11 1 7.5 7.1 C.4 12 1 7.5 7.1 0.4 13 1 7.4 7.2 0.2 14 1 7.5 7.1 0.4 15 1 7.5 7.2 0.3 16 1 7.3 7.2 0.1 17 1 7.3 7.1 0.2 18 1 7.3 7.0 0.3 19 1 7.3 7.1 0.2 20 1 7.3 7.0 0.3 21 1 7.2 7.0 0.2 22 1 7.2 7.0 0.2 23 1 7.2 7.1 0.1 24 1 7.3 7.1 0.2 25 1 7.2 7.1 0.1 26 1 7.2 7.1 0.1 27 1 7.3 7.1 0.2 28 1 7.3 7.0 0.3

TABLE 4.3-3 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCH 1979 TURBIDITY pH Day Observed Daily Average _

Maximum Minimum Range 1 1 7.2 7.0 0.2 2 1 7.3 7.1 0.2 3 1 7.3 7.2 0.1 4 1 7.3 7.2 0.1 5 1 7.3 7.2 ~

0.1 6 2 7.3 7.2 0.1 7 2 7.3 7.0 0.3 8 4 No Valid Data

, 9 40 No Valid Data H 10 20 No Valid Data O 11 8 No Valid Data

' 12 4 No Valid Data 13 4 7.3 7.0 0.3 14 30 7.3 7.1 0.2 15 22 7.4 7.2 0.2 16 6 7.4 7.2 0.2 17 4 7.4 7.1 0.3 18 2 7.5 7.2 0.3 19 1 7.4 7.1 0.3 20 Sensor Inoperative 7.5 7.2 0.3 21 8 7.5 7.3 0.2 22 9 7.5 7.2 0.3 23 6 7.5 7.3 0.2 24 4 7.5 7.1 0.4 25 4 7.4 7.0 0.4 26 5 7.4 7.0 0.4 27 3 7.5 7.3 0.2 28 3 7.6 7.4 0.2 29 8 7.6 7.5 0.1 30 6 7.6 7.5 0.1 31 4 7.6 7.5 0.1

M M M M M M M M M TABLE 4.3-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 3 7.7 7.5 0.2 2 3 7.7 7.4 ,

0.3 3 No Valid Data 7.5 7.4 0.1 4 2 7.5 7.1 0.4 5 4 7.3 7.1 0.2 6 4 7.3 7.0 0.3 7 2 7.3 7.1 0.2 8 3 7.3 7.1 0.2 9 2 7.3 7.2 0.1 ll w

10 2 7.3 7.1 0.2 11 1 7.4 7.1 0.3 12 2 7.4 7.1 0.3 13 2 7.3 7.1 0.2 14 3 7.4 7.2 0.2 15 3 7.4 7.3 0.1 16 3 7.4 7.2 0.2 17 4 7.4 7.2 0.2 18 3 7.4 7.3 0.1 19 2 7.6 7.4 0.2 20 1 7.7 7.4 0.3 21 1 7.7 7.4 0.3 22 Pump Inoperative Pump Inoperative 23 Pump Inoperative Pump Inoperative 24 Pump Inoperative Pump Inoperative 25 Pump Inoperative Pump Inoperative 26 Pump Inoperative Pump Inoperative 27 Pump Inoperative Pump Inoperative 28 Pump Inoperative Pump Inoperative 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative

TABLE 4.3-5 i

l VERMONT YANKEE NUCLEAR POWER CORPORATION l SAMPLE STATION NO. 3 (W-20 MONITOR) l WATER QUALITY DATA BY l AQUATEC, INC.

MAY 1979 l

TURBIDITY EH Day Observed Daily Average Maximum Minimum Range 1 Pump Inoperative Pump Inoperative 2 2 7.1 7.0 0.1 3 2 7.1 6.9 0.2 4 2 7.2 7.0 0.2 5 3 7.2 7.0 0.2 6 3 7.2 7.0 0.2 7 2 7.4 7.0 0.4 8 2 7.4 7.0 0.4 9 1 7.4 7.0 0.4 ll 10 2 7.3 7.0 0.3 a 11 1 7.4 7.0 0.4

' 12 1 7.2 7.0 0.2 13 1 7.3 7.0 0.3 14 2 7.3 7.1 0.2 15 2 7.4 7.1 0.3 16 1 7.7 7.4 0.3 17 2 7.7 7.3 0.4 18 3 7.6 7.4 0.2 19 2 7.6 7.3 0.3 20 3 7.5 7.3 0.2 21 3 7.5 7.3 0.2 22 3 7.5 7.0 0.5 23 5 7.5 7.3 0.2 24 6 7.5 7.3 0.2 25 7 7.5 7.2 0.3 26 9 7.2 7.0 0.2 27 8 7.3 7.0 0.3 28 6 7.4 7.3 0.1 29 5 7.5 7.3 0.2 30 5. 7.3 7.0 0.3 31 4 7.2 7.0 0.2 m '

M M - M M M W M M M

m M M M M TABLE 4.3-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 TURBIDITY EH Day. .

Observed Daily Average Maximum Minimum Range

,1 1- 2 7.3 6.9 0.4 2f 1 7.4 7.0 0.4 3i 1 7.3 7.0 0.3 l-4 1 7.2 7.0 0.2 5 1 7.2 6.9 0.3 6 1 7.2 6.9 0.3 7 1 7.3 6.9 0.4 8 1 7.4 7.1 0.3 4 9 1 7.4 7.1 0.3 o 10 1 7.4 7.1 0.3 T 11 1 7.5 7.2 0.3 12 1 7.3 7.1 0.2 13 1 7.4 7.0 0.4 14 1 7.5 7.2 0.3 15 1 7.7 7.1 0.6 16 1 7.7 7.2 0.5 17 1 7.7 7.3 0.4 18 1 7.6 7.2 0.4 19 1 7.7 7.2 0.5 20 1 7.9 7.2 0.7 21 1 7.8 7.2 0.6 22 1 7.7 7.3 0.4 23 1 7.6 7.3 0.3 24 1 7.6 7.3 0.3 25 1 7.7 7.3 0.4 26 1 7.< 7.3 0.3 27 1 7.7 7.3 0.4 28 1 7.6 7.4 0.2 29 2 7.6 7.3 0.3 30 2 7.4 7.2 0.2

TABLE 4.3-7 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 TURBIDITY gH, Day Observed Daily Average Maximum Minimum Range 1 1 7.5 7.3 0.2 2 2 7.4 7.1 0.3 3 1 7.5 7.2 0.3 4 1 7.5 7.2 0.3 5 1 7.5 7.2 0.3 6 1 7.6 7.2 0.4 7 0 7.7 7.3 0.4 8 0 7.8 7.4 0.4 9 1 7.6 7.3 0.3 g 10 2 SENSOR INOPERATIVE m 11 2 8.0 7.7 0.3

' 12 2 8.2 7.7 0.5 13 2 8.0 7.8 0.2 14 2 8.0 7.6 0.4 15 2 7.9 7.6 0.3 16 2 7.8 7.5 0.3 17 1 7.8 7.6 0.2 18 2 7.6 7.3 0.3 19 3 7.5 7.2 0.3 20 2 7.6 7.2 0.4 21 2 7.7 7.4 0.3 22 2 7.6 7.3 0.3 23 2 . 7.7 7.3 0.4 24 2 7.5 7.3 0.2 25 1 7.6 7.2 0.4 26 2 7.4 7.2 0.2 27 3 7.5 7.3 0.2 28 2 7.7 7.4 0.3 29 2 7.5 7.4 0.1 30 2 7.7 7.3 0.4 31 2 7.5 7.2 0.3

TAB LE 4 . 3-8 i

VERMONT YANKEE NUCLEAR POWER CORPORATION l SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 TURBIDITY PH Day Observed Daily Average Maximum Minimum Range 1 1 7.2 7.0 0.2 2 4 7.2 7.0 0.2 3 2 7.2 6.9 0.3 4 2 7.3 6.9 0.4 5 2 7.2 7.0 0.2 6 2 7.2 7.0 0.2 7 2 7.1 6.9 0.2 8 2 7.3 7.0 0.3 9 3 7.4 7.1 0.3

$l 10 3 7.3 7.1 0.2 4

' 11 3 7.2 7.0 0.2 12 3 7.1 7.0 0.1 13 2 7.4 7.1 0.3 14 4 7.3 7.1 0.2 15 3 7.3 7.2 0.1 16 4 7.5 7.2 0.3 17 4 7.6 7.2 0.4 18 5 7.4 7.3 0.1 19 4 7.4 7.2 0.2 20 2 7.5 7.3 0.2 21 1 7.6 7.4 0.2 22 1 7.6 7.3 0.3 23 2 7.6 7.3 0.3 24 2 7.5 7.3 0.2 25 3 7.6 7.4 0.2 26 3 7.7 7.3 0.4 27 3 7.7 7.4 0.3 28 6 7.8 7.5 0.3 29 2 7.6 7.5 0.1 30 2 7.5 7.3 0.2 31 3 7.5 7.3 0.2

TABLE 4,3-9 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 TURBIDITY EH Day Observed Daily Average Maximum Minimum Range 1 2 7.6 7.3 0.3 2 2 7.7 7.3 0.4 3 1 7.6 7.4 0.2 4 1 7.8 7.4 0.4 5 2 7.9 7.5 0.4 6 2 7.6 7.5 0.1 7 2 7.6 7.4 0.2 8 1 7.5 7.2 0.3 i 9 2 7.7 7.2 0.5 g 10 2 7.8 7.4 0.4 m 11 1 7.7 7.4 0.3

' 12 1 7.8 7.4 0.4 13 1 7.7 7.5 0.2 14 1 7.7 7.5 0.2 15 1 7.6 7.4 0.2 16 1 7.6 7.4 0.2 17 1 7.7 7.4 0.3 18 1 7.8 7.4 0.4 19 2 7.8 7.5 0.3 20 2 7.8 7.6 0.2 21 2 7.7 7.5 0.2 22 2 7.6 7.4 0.2 23 2 7.6 7.3 0.3 24 2 7.7 7.4 0.3 25 2 7.7 7.4 0.3 26 2 7.8 7.4 0.4 27 1 7.8 7.5 0.3 28 1 7.7 7.5 0.2 29 1 7.8 7.6 0.2 30 1 7.6 7.4 0.2 M __. ___

M _

M _ _ _ _ . _ ___ ._ _

W M M M M TABLE 4.3-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 2 7.5 7.4 0.1 2 2 7.5 7.3 - 0.2 3 1 7.4 7.3 0.1 4 2 7.5 7.2 0.3 5 2 7.4 7.2 0.2 6 2 7.3 7.1 0.2 7 2 7.3 7.0 0.3 8 1 7.3 7.0 0.3 4 9 1 7.2 7.1 0.1 o 10 1 7.2 7.1 0.1 7 11 1 7.4 7.1 0.3 12 1 7.4 7.2 0.2 13 1 7.4 7.2 0.2 14 2 7.5 7.2 0.3 15 1 7.5 7.3 0.2 16 1 7.5 7.2 0.3 17 1 7.5 7.3 0.2 18 1 7.5 7.3 0.2 19 1 7.5 7.3 0.2 20 2 7.4 7.2 0.2 l 21 2 7.4 7.2 0.2 l 22 2 7.3 7.0 0.3 l 23 1 7.3 7.0 0.3 l 24 2 7.3 7.1 0.2 j 25 1 7.4 7.1 0.3 l

26 1 7.3 7.2 0.1 l 27 1 7.3 7.2 0.1 28 1 7.4 7.2 0.2 l

l 29 1 7.3 7.2 0.1 30 1 7.4 7.2 0.2 31 1 7.4 7.2 0.2

TABLE 4.3-11 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 TURBIDITY EH Day Observed Daily Averace Maximum Minimum Range 1 PUMP INOPERATIVE PUMP INOPERATIVE 2 1 7.4 7.3 0.1 3 1 7.4 7.3 0.1 4 1 7.4 7.3 0.1 5 1 7.5 7.3 -

0.2 6 1 7.5 7.3 0.2 7 1 7.5 7.4 0.1 8 1 7.5 7.4 0.1 4 9 2 7.4 7.3 0.1 H 10 PUMP INOPERATIVE PUMP INOPERATIVE i 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 PUMP IMOPERATIVE PUMP INOPERATIVE 14 1 7.4 7.2 0.2 15 1 7.4 7.2 0.2 16 1 7.5 7.3 0.2 17 1 7.5 7.3 0.2 18 1 7.4 7.3 0.1 19 1 7.5 7.3 0.2 20 1 7.5 7.3 0.2 21 1 7.5 7.3 0.2 22 1 7.5 7.3 0.2 23 2 7.4 7.3 0.1 24 1 7.5 7.3 0.2 25 1 7.5 7.4 0.1 26 1 7.5 7 .~ 3 0.2 27 8 7.4 7.2 0.2 28 9 7.4 7.3 0.1 29 8 7.4 7.3 0.1 30 6 7.5 7.3 0.2 l

M M M M M

m M M M TABLE 4.3-12 i

VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 3 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

l DECEMBER 1979 l

TURBIDITY M Day Observed Daily Average Maximum , Minimum Range 1 3 7.5 7.3 0.2 2 3 7.5 7.3 0.2 3 3 7.4 7.1 0.3 4 2 7.4 7.3 0.1 5 2 7.5 7.4 0.1 6 2 7.5 7.3 0.2 7 2 7.5 7.3 0.2 8 PUMP INOPERATIVE PUMP INOPERATIVE O 9 PUMP INOPERATIVE PUl1P INOPERATIVE

[ 10 PUMP INOPERATIVE PUMP INOPERATIVE I 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 PUMP INOPERATIVE PUMP INOPERATIVE 16 PUMP INOPERATIVE PUMP INOPERATIVE 17 PUMP INOPERATIVE PUMP INOPERATIVE 18 1 7.5 7.4 0.1 19 1 7.5 7.4 0.1 20 2 7.6 7.3 0.3 21 1 7.6 7.4 0.2 22 1 7.6 7.5 0.1 23 1 7.6 7.5 0.1 24 1 7.6 7.5 0.1 25 2 7.5 7.4 0.1 26 6 7.5 7.3 0.2 27 5 7.6 7.4 0.2 28 6 7.6 7.5 0.1 29 7 7.5 7.2 0.3 30 5 7.6 7.3 0.3 31 3 7.6 7.2 0.4

TABLE 4.4-1 VERMONT YANKEE NUCLEAR POWER CORPORATION i SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY l AQUATEC, INC.

JANUARY 1979 TURBIDITY M Day Observed Daily Average Maximum Minimum Range l

1 1 7.2 7.0 0.2 2 7 7.2 6.9 0.3 3 20 7.1 6.9 0.2 4 20 7.2 7.0 0.2 5 8 7.2 7.0 0.2 6 3 7.2 7.1 0.1 7 2 7.2 7.1 0.1 8 3 7.1 7.0 0.1

, 9 2 7.1 6.9 0.2 F- 10 1 7.0 6.9 0.1 kl 11 No Valid Data 7.0 6.9 0.1 8

12 1 7.0 6.9 0.1 13 1 7.0 6.9 0.1 14 1 7.0 6.9 0.1 15 1 7.0 6.9 0.1 16 1 7.1 7.0 0.1 17 0 7.1 7.0 0.1 18 1 7.0 6.9 0.1 19 1 7.1 7.0 0.1 20 1 7.1 7.0 0.1 21 1 7.1 6.9 0.2 22 1 7.0 6.9 0.1 23 1 7.0 6.9 0.1 24 1 7.0 6.9 0.1 25 1 7.1 7.0 0.1 26 1 7.1 7.0 0.1 27 1 7.1 7.0 0.1 28 1 7.1 7.0 0.1 29 1 7.0 6.9 0.1 30 1 7.0 6.9 0.1 31 1 7.1 7.0 0.1

'l m M TABLE 4.4-2 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

FEBRUARY 1979 TURBIDITY g Day Observed Daily Average Maximum Minimum Range 1 1 7.1 7.0 0.1 2 1 7.1 7.0 0.1 3 1 7.1 7.0 -

0.1 4 1 7.1 7.0 0.1 5 1 7.1 7.0 0.1 6 1 7.1 7.0 0.1 7 1 7.1 7.0 0.1 8 1 7.0 6.9 0.1

, 9 1 7.1 7.0 0.1 H 10 1 7.2 7.0 0.2

[$ 11 1 7.1 7.0 0.1 8

12 2 7.1 7.0 0.1 13 2 7.0 7.0 0.0 14 2 7.1 7.0 0.1 15 2 7.1 7.0 0.1 16 1 7.1 6.9 0.2 17 1 7.1 7.0 0.1 18 0 7.0 7.0 0.0 19 1 7.0 6.9 0.1 20 1 7.0 6.9 0.1 21 1 7.0 6.9 0.1 22 1 7.0 6.9 0.1 23 2 7.0 6.9 0.1 l 24 2 7.0 6.9 0.1 l 25 3 7.0 6.9 0.1

! 26 2 7.0 6.9 0.1 27 2 7.0 6.9 0.1

[ 28 3 7.0 6.9 0.1

TAB 73 4c4-3 VERMONT YANKEE MUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MARCH 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 2 7.1 6.9 0.2 2 2 7.1 7.0 0.1 3 1 7.1 7.0 0.1 4 1 7.2 7.1 0.1 5 2 7.1 7.0 . 0.1 6 16 7.0 7.0 0.0 7 14 7.0 6.8 0.2 8 50 7.0 6.8 0.2 8 9 80 6.9 6.8 0.1 C 10 34 6.9 6.8 0.1 i 11 6 6.9 6.8 0.1 12 4 6.9 6.9 0.0 13 5 7.0 6.9 0.1 14 Recorder Inoperative Recorder Inoperative 15 Recorder Inoperative Recorder Inoperative 16 Recorder Inoperative Recorde.- Inoperative 17 Recorder Inoperative Recorder Inoperative 18 4 7.0 7.0 0.0 19 4 7.0 6.9 0.1 20 4 7.0 6.9 0.1 21 5 7.0 6.9 0.1 22 8 7.0 6.9 0.1 23 14 7.0 6.9 0.1 24 30 7.0 6.9 0.1 25 No Valid Data 7.0 6.8 0.2 26 No Valid Data No Valid Data 27 40 7.0 6.9 0.1 28 28 7.0 6.9 0.1 29 Pump Inoperative Pump Inoperative 30 Pump Inoperative Pump Inoperative 31 Pump Inoperative Pump Inoperative M M M M

M M TABLE 4.4-4 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

APRIL 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 Pump Inoperative Pump Inoperative 2 Pump Inoperative Pump Inoperative 3 Pump Inoperative Pump Inoperative 4 4 7.0 6.8 0.2 5 3 7.0 6.9 0.1 6 4 7.0 6.9 0.1 7 4 7.1 7.0 0.1 8 3 7.1 7.0 0.1 9 3 7.1 7.0 0.1 4 10 2 7.2 7.1 0.1 s

f 11 2 7.2 7.1 0.1 12 3 7.2 7.0 0.2 13 2 7.2 7.0 0.2 14 2 7.2 71 0.1 15 2 7.2 7.1 0.1 16 1 7.2 7.1 0.1 17 1 7.2 7.1 0.1 18 2 7.2 7.1 0.1 19 1 7.2 7.1 0.1 20 1 7.2 7.0 0.2 21 1 7.1 7.0 0.1 22 1 7.1 7.0 0.1 23 1 7.0 7.0 0.0 24 2 7.0 7.0 0.0 25 2 7.2 7.0 0.2 26 No Valid Data No Valid Data 27 5 7.0 6.9 0.1 28 6 7.0 6.9 0.1 29 3 7.0 6.8 0.2 30 4 7.0 6.8 0.2

TABLE 4.4-5 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

MAY 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 4 7.0 6.9 0.1 2 2 7.0 6.9 0.1 3 2 7.1 7.0 0.1 4 1 7.1 7.0 0.1 5 1 7.1 7.0 <

0.1 6 1 7.1 7.0 0.1 7 1 7.1 7.1 0.0 8 1 7.1 7.1 0.0 4 9 1 7.2 7.0 0.2 H 10 1 7.2 7.0 0.2 i 11 0 7.2 7.1 0.1 12 0 7.2 7.1 0.1 13 1 7.2 7.1 0.1 14 1 7.2 7.0 0.2 15 1 7.2 7.1 0.1 16 1 7.2 7.0 0.2 37 1 7.3 7.1 0.2 18 1 7.2 7.1 0.1 19 1 7.3 7.1 0.2 20 1 7.3 7.1 0 '. 2 21 1 7.4 7.2 0.2 22 1 7.4 7.2 0.2 23 1 7.4 7.3 0.1 24 2 7.4 71 0.3 25 15 7.1 6.9 0.2 26 13 7.0 6.8 0.2 l 27 8 7.0 6.9 0.1

! 28 4 7.1 7.0 0.1 29 8 7.1 6.9 0.2 30 5 7.1 6.9 0.2 j 31 2 7.1 7.0 0.1 I

l l

M M M M M M M

M M M M M M M M TABLE 4.4-6 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JUNE 1979 TURBIDITY @

Day Observed Daily Average Maximum Minimum Range 1 4 7.1 7.0 0.1 2 1 7.1 7.0 '

0.1 3 1 7.1 7.0 O.1 4 1 7.0 6.9 0.1 5 1 7.0 6.9 0.1 6 1 7.0 6.9 0.1 7 1 7.1 7.0 0.1 8 1 7.1 7.1 0.0 a 9 1 7.2 7.0 0.2

[ 10 1 7.3 7.1 0.2 y 11 1 7.3 7.1 0.2 0.3 12 1 7.3 7.0 13 0 7.4 7.2 0.2 14 1 7.3 7.2 0.1 15 1 7.4 7.2 0.2 16 0 Sensor Inoperative 17 0 Sensor Inoperative 18 1 7.5 7.4 0.1 19 1 7.6 7.4 0.2 20 1 7.6 7.3 0.3 21 1 7.7 7.5 0.2 22 1 7.8 7.5 0.3 23 1 1.7 7.5 0.2 24 1 7.7 7.5 0.2 25 Sensor Inoperative 7.5 7.3 0.2 26 Sensor Inoperative 7.3 7.2 0.1 27 Sensor Inoperative 7.4 7.2 0.2 28 1 7.4 7.2 0.2 29 1 7.3 7.1 0.2 30 1 7.3 7.1 0 . 2.

TABLE 4.4-7 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

JULY 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 1 7.3 7.2 0.1 2 1 7.4 7.2 0.2 3 1 7.5 7.3 0.2 4 1 7.5 7.3 0.2 5 1 7.5 7.3 0.2 6 1 7.5 7.3 .0.2 7 PUMP INOPERATIVE PUMP INOPERATIVE 8 PUMP INOPERATIVE PUMP INOPERATIVE 9 PUMP INOPERATIVE PUMP INOPERATIVE

[ 10 PUMP INOPERATIVE PUMP INOPERATIVE m 11 PUMP INOPERATIVE PUMP INOPERATIVE 12 PUMP INOPERATIVE PUMP INOPERATIVE 13 1 7.7 7.5 0.2 14 1 7.7 7.4 0.3 15 1 7.6 7.3 0.3 16 1 7.3 7.2 0.1 17 1 7.3 7.1 0.2 18 1 7.3 7.2 0.1 19 1 7.2 7.1 0.1 20 0 7.2 7.0 0.2 21 0 7.1 7.0 0.1 22 0 7.1 7.0 0.1 23 0 7.2 6.9 0.3 24 0 7.2 7.1 0.1 25 0 7.2 7.1 0.1 26 1 7.2 7.0 0.2 27 1 7.2 7.0 0.2 28 0 7.1 7.0 0.1 29 1 7.1 7.0 0.1 30 0 7.0 6.9 0.1 31 1 7.0 6.9 0.1

W W M M TABLE 4.4-8 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

AUGUST 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 RECORDER INOPERATIVE RECORDER INOPERATIVE 2 1 7.1 6.9 0.2 3 2 7.1 7.0 0.1 4 2 7.1 6.9 0.2 5 NO VALID DATA 7.0 6.9 0.1 6 NO VALID DATA 7.1 6.8 0.3 7 NO VALID DATA 7.1 7.0 0.1 8 NO VALID DATA 7.2 7.0 0.2

, 9 NO VALID DATA 7.2 7.0 0.2 H 10 NO VALID DATA 7.2 7.1 0.1 5 11 NO VALID DATA 7.2 7.1 0.1 8

12 NO VALID DATA 7.2 7.1 0.1 13 PUMP INOPERATIVE PUMP INOPERATIVE 14 PUMP INOPERATIVE PUMP INOPERATIVE 15 1 7.2 7.1 0.1 16 1 7.3 7.2 0.1 17 1 7.3 7.2 0.1 18 1 7.3 7.2 0.1

- 19 1 7.3 7.2 0.1 20 1 7.4 7.2 0.2 21 1 7.5 7.3 0.2 22 1 7.4 7.3 0.1 23 1 7.5 7.3 0.2 24 1 7.6 7.5 0.1 25 1 7.6 7.5 0.1 26 1 7.6 7.5 0.1 27 1 7.6 7.4 0.2 28 1 7.7 7.5 0.2 29 1 7.6 7.5 0.1 30 1 7.7 7.5 0.2 31 1 7.6 7.5 0.1

TABLE 4.4-9 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

SEPTEMBER 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 1 7.5 7.5 0.0 2 1 7.5 7.4 0.1 3 1 7.5 7.4 0.1 4 1 7.4 7.3 0.1 5 1 7.5 7.3 0.2 6 1 7.5 7.3 0.2 7 2 7.4 7.0 0.4 8 1 7.4 7.2 0.2 9 2 7.4 7.2 0.2 F' 10 2 7.3 7.1 0.2

$' 11 3 7.4 7.2 0.2 12 3 7.4 7.2 0.2 13 3 7.4 7.2 0.2 14 3 7.3 7.2 0.1 15 3 7.3 7.2 0.1 16 2 7.4 7.2 0.2 17 2 7.4 7.2 0.2 18 2 7.5 7.3 0.2 19 2 7.5 7.3 0.2 20 2 7.5 7.3 0.2 21 2 7.4 7.2 0.2 22 1 7.3 7.2 0.1 23 1 7.3 7.2 0.1 24 1 7.4 7.2 0.2 25 1 7.5 7.3 0.2 26 1 7.6 7.5 0.1 27 1 7.5 7.4 0.1 28 1 7.5 7.3 0.2 1 7.4 7.3 0.1 29 1 7.4 7.2 0.2 30 M M M M M

M TABLE 4.4-10 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

OCTOBER 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 2 7.3 7.2 0.1 2 2 7.3 7.1 0.2 3 1 7.3 7.2 0.1 4 2 7.2 7.0 0.2 5 2 7.1 7.0 0.1 6 1 7.1 7.0 0.1 7 1 7.1 6.9 0.2 8 1 7.1 7.0 0.1 4 9 1 7.1 6.9 0.2 w 10 0 7.1 7.0 0.1 7 11 0 7.2 7.1 0.1 12 1 7.2 7.1 0.1 13 1 7.2 7.1 0.1 14 1 7.2 7.2 0.0 15 1 7.2 7.2 0.0 16 1 7.3 7.2 0.1 17 1 7.3 7.2 0.1 18 1 7.4 7.2 0.2 19 1 7.4 7.3 0.1 20 2 7.3 7.2 0.1 21 2 7.2 7.1 0.1 22 1 7.2 7.1 0.1 23 2 7.3 7.2 0.1 24 2 7.3 7.2 0 .1.

25 2 7.2 7.2 0.0 26 1 7.2 7.1 0.1 27 1 7.3 7.2 0.1 28 1 7.3 7.1 0.2 29 1 7.3 7.2 0.1 30 1 7.2 7.1 0.1 31 2 7.2 7.2 0.0

TABLE 4.4-11 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

NOVEMBER 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range l' 2 7.2 7.1 0.1 2 1 7.2 7.1 0.1 3 2 7.2 7.1 0.1 4 1 7.2 7.1 0.1 5 1 7.2 7.1 0.1 6 1 7.2 7.1 0.1 7 2 7.2 7.2 0.0 8 2 7.2 7.1 0.1 s 9 1 7.2 7.1 0.1 10 1 7.2 7.1 0.1

% 7.2 7.0 0.2 I 11 1 12 1 7.2 7.1 0.1 13 1 7.2 7.1 0.1 14 1 7.2 7.1 0.1 15 1 , 7.2 7.1 0.1 16 1 7.3 7.2 0.1 17 1 7.3 7.2 0.1 18 1 7.3 7.2 0.1 19 2 7.3 7.2 0.1 20 3 7.3 7.2 0.1 21 4 7.3 7.2 0.1 22 3 7.3 7.2 0.1

[

23 3 7.3 7.2 0.1 24 1 7.3 7.2 0.1 25 1 7.2 7.1 0.1 26 2 7.3 7.1 0.2 11 7.2 7.0 0.2 27 7 7.2 7.1 0.1 28 5 7.2 7.1 0.1 29 4 7.2 7.2 0.0 30

/

M TABLE 4.4-12 VERMONT YANKEE NUCLEAR POWER CORPORATION SAMPLE STATION NO. 7 (W-20 MONITOR)

WATER QUALITY DATA BY AQUATEC, INC.

DECEMBER 1979 TURBIDITY pH Day Observed Daily Average Maximum Minimum Range 1 3 7.3 7.2 0.1 2 3 7.2 7.1 0.1 3 2 7.2 7.1 O.1 4 2 7.2 7.1 0.1 5 2 7.2 7.1 0.1 6 2 7.3 7.2 0.1 7 2 7 '. 2 7.1 0.1 8 2 7.3 7.2 0.1 i 9 1 7.3 7.2 0.1

[ 10 2 7.3 7.2 0.1 y 11 2 7.3 7.2 0.1 12 2 7.3 7.2 0.1 13 2 7.4 7.2 0.2 14 1 7.4 7.3 0.1 15 1 7.4 7.3 0.1 16 1 7.4 7.3 0.1 17 1 7.4 7.3 0.1 18 2 7.4 7.2 0.2 19 1 7.3 7.2 0.1 20 1 7.3 7.2 0.1 21 1 7.3 7.2 0.1 22 1 7.3 7.3 0.0

! 23 1 7.3 7.2 0.1 24 1 7.3 7.2 0.1 25 NO VALID DATA 7.2 7.1 0.1 26 5 7.2 7.1 0.1 '

27 4 7.3 7.2 0.1 28 6 7.2 7.0 0.2 29 4 7.2 7.1 0.1 30 4 7 .' 2 7.1 0.1 31 3 7.2 7.1 0.1

TABLE 4.5-1 VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT WATER QUALITY ANALYSIS Plant SAMPLE LOCATION Monitor 3 Monitor 7 Discharge Date 2/12/79 2/12/79 2/12/79 Dissolved Oxygen Turbidity (Formazin Units) 13.25

).9 13.35 1.0 11.90 1.0-l pH (pH Units) '7.17 7.23 7.03 Alkalinity (as Ca CO3 ) 30.7 32.3 29.9 1

Total Hardness (as Ca CO3 ) 38.7 38.0 39.7 '

Calcium Hardness (as Ca CO3 ) 32.0 31.2 32.9 Chloride 12.3 9.3 12.9 Sulfate 13.6 12.8 13.1

-Total Phosphate (as P) 0.030 0.025 0.025 Total Solids 90 83 81  ;

Suspended Solids 11 2 2 Chromium (Total) <0.002 <0.002 <0.002  :

Copper <0.02 <0.02 <0.02 l i

f ron (Total) 0.20 0.14 0.14  !

Sodium 5.6 5.9 5.8 '

Zinc <0.02 0.02 0.02 All Results in mg/l unless otherwise Noted i

l

~

-124-l

TABLE 4.5-2 VERMONT YANKEE ECOLOGICAL STUDIES I CONNECTICUT RIVER, VERNON, VERMONT [

WATER QUALITY ANALYSIS .

P' SAMPLE LOCATION Monitor 3 Monitor 7 cisc Or'ge Date 5/13/79 5/13/79 5/13/79 Dissolved Oxygen 9.20 9.35 9.70 Turbidity (Formazin Units) 8.2 1.6 1.1 l pH (pH Units) 7.20 7.40 7.60 !

Alkalinity (as Ca CO3 )

32.0 30.0 35.5 Total Hardness (as Ca CO3 ) 36.3 34.5 40.2 Calcium Hardness (as Ca CO3 ) 31.2 29.7 34.5 Chloride 6.1 5.6 7.7 l Sulfate 9.1 8.8 10.8

-Total Phosphate (as P) 0.175 0.060 0.035 Total Solids 368 72 87 Suspended Solids 156 14

'.f ,l Chromium (Total) 0.008 <0.002 <0.002 l Copper 0.06 <0.02 0.03 Iron (Total) 0.18 0.20 0.34 Sodium 4.0 3.8 4.8 Zinc 0.02 <0.02 <0.02 All Results in mg/l Unless otherwise Noted

-125-

TABLE 4.5-3 VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT l WATER QUALITY ANALYSIS P ' ~

SAMPLE LOCATION Monitor 3 Monitor 7 oischorge Date 8/24/79 8/24/79 8/24/79 Dissolved Oxygen Turbidity (Formazin Units) 7.70 0.63 8.10 0.65 7.60 1.4 l

pH (pH Units) 7.54 7.76 7.71

~

Alkalinity (as Ca CO3) 42.2 40.2 24.1 Total Hardness (as Ca CO3 ) 52.3 49.8 93.5 Calcium Hardness (as Ca CO3 ) 44.9 42.4 79.9 Chloride 11.2 10.8 19.4 Sulfate 8.7 8.6 59 Total Phosphate (as P) <0.005 <0.005 0.010 Total Solids 50 69 195 Suspended Solids 2 2 4 Chromium (Total) <0.002 <0.002 <0.002 Copper <0.02 <0.02 0.14 Iron (Total) 0.10 0.08 0.20 Sodium 6.4 6.4 11.6 '

Zinc <0.02 0.02 0.07 All Results in mg/l Unless otherwise Noted

-126-I

~

TABLE 4.5-4 VERMONT YANKEE ECOLOGICAL STUDIES CONNECTICUT RIVER, VERNON, VERMONT WATER QUALITY ANALYSIS SAMPLE LOCATION Monitor 3 Monitor 7 DisIEErge I Date 11/16/79 11/16/79 11/16/79 Dissolved Oxygen 10.95 11.10 10.55 Turbidity (Formazin Units) 0.68 1.1 2.0 pH (pH Units) 7.28 7.24 7.28 Alkalinity (as Ca CO3) 31.4 30.5 29.9 Total Hardness (as Ca CO3 ) 32.6 33.3 33.8 Calcium Hardness (as Ca CO3 ) 26.7 27.2 27.5 Chloride 6.0 6.0 6.2 l Sulfate Total Phosphate (as P) 8.8 9.2 9.2 0.010 0.010 0.030 Total Solids 63 60 80 Suspended Solids 3 4 20 Chromium (Total) <0.002 <0.002 <0.002 Copper <0.02 <0.02 <0.02 fron (Total) 0.23 0.22 0.53 Sodium 4.6 4.6 4.6 Zinc <0.02 <0.02 <0.02 All Results 'n mg/l Unless otherwise Noted I

I -

-127-

i i ,

(

l .

f I

l i SECTION 5  ;

1 PLANKTON STUDIES  !

r f

r 6

I l

l l

1 I i l

I )

5. PLANKTON STUDIES Plankton samples were collected by pump once each month in 1979 at the downstream and upstream water quality monitors, Stations 3 and 7 (Figure 5.1). In addition, samples of river plankton were collected on twenty dates in the 1979 entrainment ,

studies. These latter collections were made by bucket from the river at Vermont Yankee's condenser cooling water intake structure.

Samples were collected with a No. 20 mesh Wisconsin plankton net and preserved in 5% formalin. Subsequently an aliquot of the sample was examined in a Sedgewick-Rafter counting cell. Plankton were identified to the lowest feasible taxonomic level and were counted as their normally occurring unit, i.e., phytoplankters as cells, colonies, or filaments and zooplankters as individuals or colonies. The results of these analyses are presented below.

5.1 Phytoplankton Studies A summary of the counting results of the analysis of the 1979 phytoplankton samples is given in Table 5.1. This table shows for each sample the dominant species observed, when one taxon was found in greater numbers than any other one, the concentration in units per liter of that dominant organism, and the total count in units per liter of all algae in the sample.

The concentrations of phytoplankters found in the 1979 monitor samples are also shown graphically in Figures 5.2 and 5.3. To permit ready comparison of the 1979 monitor sample data with that of earlier years, Figures 5.2 and 5.3 also carry plots of the monthly mean phytoplankton counts observed in the years 1970-1974, excluding data collected in 1974 during Vermont Yankee's open cycle testing. Variability of algal concentrations about these means is indicated on the graphs by points which are two standard deviations greater than each monthly mean.

-129-

l 7 ,

l

' h PLANKTON '

i I SAMPLE STATION g*

LOCATIONS O l!

o 1/2 I l

SCALE IN MILES l

I! !

9 'I l NEW H AM PSHIRE  !

b g!

VERMONT k I s+ li g

l E,

I; .

3  !

ElGURE 5.1

-130-

Algal concentrations observed in the Monitor 7 samples of January, February, and May were greater than the 1970-1974 means; that of February was more than two standard deviations greater.

At Monitor 3, phytoplankton counts greater than the 1970-1974 means there were found in the samples of January through April, in June and July, and in December. All Monitor 3 counts, however, were within two standard deviations of the 1970-1974 means.

Concentrations of phytoplankters in the late summer and early fall samples at both monitor stations were low relative to the mean counts observed in 1970-1974.

An exceptionally high concentration of algal units was found in the entrainment intake sample of 12 July 1979. This sample had a total count of 94,492 units per liter. Eighty-five percent of the organisms present were two diatom species - Asterionella formosa and Tabellaria fenestrata.

In earlier reports of this series (Aquatec 1975, 1976), a statistical analysis of the phytoplankton data collected prior to Vermont Yankee's operation and during closed cycle operation at the two monitor stations was presented. This analysis developed linear regression equations which predicted Monitor 3 counts from three ranges of observed Monitor 7 counts. All Monitor 7 counts I observed in 1979, except the 1349 found in June, lie within the low range, 0-772 units per liter, for which the regression equation has an intercept of 29.3, a regression coefficient of 0.802, and a standard error of estimate of 193. A comparison of the phyto-plankton counts observed at Monitor 3 in 1979 with counts predicted by this regression equation from counts observed at Monitor 7 is shown in Table 5.2.

The data of Table 5.2, except that of the July sample, are shown graphically in Figure 5.4, in which the regression equation is plotted as a solid line and the 95% confidence limits for Monitor 3 counts predicted by this equation are shown as dashed lines. These confidence limits were calculated for minimum, mean, I and maximum Monitor 7 counts used in the regression analysis.

-131-l

TABLE 5.1-1 DOMINANT PHYTOPLANKTON SPECIES (Dominant Species Count / Total Count in Units Per Liter) 1979

, SAMPLE LOCATION River at Date Monitor 7 VY Intake Monitor 3 1/11 Asterionella formosa (20/112) 1/15 Asterionella Fragilaria formosa capucina (10/96) (14/92) 1/26 Fragilaria capucina (3/24) -

2/12 Fragilaria capucina (14/63) 2/21 Fragilaria Fragilaria capucina capucina (6/108) (12/120) 2/26 Oscillatoria sp. -

(17/540) 3/13 Melosira spp.

(4/238) 3/20 Melosira spp. Melosira spp.

(14/304) (55/600) 4/12 Asterionella i formosa .

! (9/105) l 4/20 Fragilaria Meridion i capucina circulare l (6/180) (12/374) l 4/25 Melosira italica (19/171) 5/11 Asterionella formosa l 5/16 Melosira Melosira .

italica italica (46/392) (52/220) 5/29 Melosira italica (18/157)

-132-

TABLE 5.1-2 SAMPLE LOCATION River at Date Monitor 7 VY Intake Monitor 3 6/14 Asterionella formosa 6/25 Tabellaria (41/563) Tabellaria fenestrata fenestrata 6/27 (376/1349) Tabe11 aria (297/818) fenestrata (312/1039) 7/12 Asterionella '

formosa 7/17 Tabellaria (50712/94492) Tabellaria fenestrata fenestrata 7/27 (180/446) Tabellaria (2142/4514) fenestrata (160/1051) 8/16 Melosira I 8/20 Pediastrum italica (91/386) Melosira simplex italica 8/30 (61/215) Asterionella (145/267) formosa (128/632) 9/13 Rhizosolenia eriensis 9/19 Pediastrum (248/1330) Asterionella simplex formosa (336/658) (145/1009) 10/26 Melosira Melosira italica italica

! (70/249) (67/244) 11/10 Melosira italica (76/250) 11/21 Melosira Asterionella Asterionella italica formosa formosa (102/232) (87/274) (36/142) 12/8 Asterionella formosa 12/19 Tabellaria (37/165) Melosira fenestrata italica 12/22 (12/66) None I14/94)

(-/139)

-133-

SEASONAL PHYTOPLANKTON DISTRIBUTION  :

50 STATION NO. 7 - MONITOR l i f

40 -

30 -

/*'N,

/ '*s

/ Ns (

I ,

20 - / \

/ 1 I . s ,

i l\ \

to -

l l0 o \

j \

l g

\

\

\

l E I

._____.f \ l

" g l \ g i I \. I x I I \ \ ,

I l '

-t I  ;

\

\

\

g

' i l

m 3

  • i - s y

I I

\\

\

\ i l n I \ l -

2 I I \ \

$ I i I \ g 2 6 - I \ l o I i \ g I

u_

g I \ l t o I \ \

5 - *

  • m I I \ 1 a I I \ \

z \ '

< ,s I '

m 4 t i g I g g 3 I o ' \ l r I

\ l n ~

i I

\\

l ['~~~] \ ',

I i Ig i / t 2 - t l \e ,

I i I

0O i

/g\ l i /\ \\

i

/ \, I l I\

g

\g i s i.1

/ * .

s,' li -

\g\  :

I ~ ,j l \\  !

O i

if=' >

0 l / i .

5 - I I 1 s m I i 1  ;

o I , I g , ,

$ f I \ \

m 4 - I \ \

a l I g g

o I g I l 1 3 ~

\

r .' \

\

I \

\

l l 4

/ /

g

\

2 - ,., ,i i g

i I\ \

o \ / \

  • \.

/ s / g ,

g

  1. \ / /

\ \

\

s '.

l ii.l

\

s

\

s g

l

\

',s' f

\ \

i

.s '. '

s.

\s \s t

,/

ss'N.h, .-

. \\ *s o

,, ; _/_ _ _ . ' ,N'93-2 3 4 5 6 l10 l 1 7 9 l8 l 13 l 12 MONTHS ,979 1970 - 74 MEAN ~~~~~~~

ME AN + 2 STD. DEV -------

FIGURE 5. 3

-135-

TABLE 5.2 COMPARISON OF OBSERVED MONITOR 3 PHYTOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED BY REGRESSION ANALYSIS l OF LOW RANGE PREOPERATIONAL/ CLOSED CYCLE MONITOR DATA, l 1970-1974 Monitor 7 Count ' Monitor 3 Count g Date Observed Observed-Predicted = Difference g 1/15/79 96 92 106 -14 l 2/21/79 108 120 116 +4 E 3/20/79 304 600 273 +327 3 4/20/79 180 374 174 +200 5/16/79 392 220 344 -124 7/17/79 446 4514 387 +4127 8/20/79 215 267 202 +65 9/19/79 658 1009 557 +452 l 10/26/79 249 244 229 +15 t

11/21/79 232 142 215 -73 l 12/19/79 66 94 82 +12 1

Vermont Yankee was utilizing closed cycle cooling at the time of collection of the May through September samples and was not -

operating when the March and October samples were collected. The data for these dates are plotted in Figure 5.4 as filled circles; that of the other dates, when Vermont Yankee was operating in the open cycle cooling mode, are plotted as open circles.

All points in Figure 5.4 fall within the 95% confidence limits.

l The point for the data of 17 July was not plotted because it is so far above the upper 95% confidence limit that it is off the scale used in the figure. This sample was collected just 5 days after the intake entrainment sample that showed the very high concentra-tions of Asterionella formosa and Tabelleria fenestrata. These same two diatoms constituted 76% of the Monitor 3 sample.

The phytoplankton concentration observed at Monitor 7 in June fell within the middle range of counts used in the statisti-cal analysis of preoperational and closed cycle data. The linear regression equation developed for this middle range, Monitor 7 counts of 772-7283, has an intercept of -483 and a regression

-136-

I COMPARISON OF OBSERVED MONITOR 3 PHYTOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE MONITOR DATA 0F 1970- 74 y

1200 -

5 s /

1100 - /

, . /

/

/

1000 - /*

/

/

900 - /

l /

/

800 - /

& /

f /

i 3 g 700 - /

E e /

U O /

600 - l e 2 0 m - /

/

50 0 - /

p o /

8 400 -

o 300 -

, 200 - PH YTO PL A N KTON RANGE AT MONITOR 7 j

o p

/ O-772 ORGANISMS / LITER 100 - , j, /

/

0 , , , , , , , , , , , ,X 0 10 0 200 300 400 500 600 700 800 900 1000 l100 1200 MONITOR 7 ORGANISMS PER LliER

'R EGR E S SION EOUATION ( y : 29.3 + .802 x )

95% CONFIDENCE LIMITS FOR PREDICTED y VALUE S ---------

I VERMONT YANKEE OPEN CYCLE.1979 VERMONT YANKEE CLOSED CYCLE OR NOT OPERATING,1979 o

FIGURE 5.4

-137-

coefficient of 0.912. For the Monitor 7 count of 1349 observed on June 25, the Monitor 3 concentration calculated from this j

equation is 747; the observed concentration was 818. The differ-ence between the predicted and observed concentrations is much less than the standard error of estimate (2443) for the regression equation.

Forty-six species of phytoplankton were identified in the samples collected in 1979 at the two monitor sampling stations.

Thirty-one additional taxa were observed in small numbers in the samples of river water collected at Vermont Yankee's intake structure during entrainment studies. A checklist of these seventy-seven phytoplankters is shown in Table 5.3 at the end of this section. Following the name of each taxon in the list .

are three numbers in parenthesis. The first is the number of Monitor 3 samples in which the alga was observed; the second is the number of Monitor 7 samples in which it was found; the third is the number of entrainment sample dates on which the taxon was found in a river intake sample.

Three species listed in Table 5.3 have not been observed in prior years of Vermont Yankee studies. Single units of Gymnodinium sp. and Arthrodesmus sp. were found in entrainment intake samples.

The green alga, Netrium digitug was found in the Monitor 7 sample of 19 September.

The average number of species found in the twelve upstream monitor samples was 10.5. The minimum number, 6, was observed in the December sample; a maximum of 14 was found in the March and bby samples. The minimum number observed in the Monitor 3 sample was also 6, in February and December; the maximum of 19 was found in the September sample. The mean number in the twelve samples at this downstream location was 11.1 species.

In all prior years of Vermont Yankee phytoplankton studies, diatoms have been found to be the predominant type of organisms.

This was the case in 1979 also. The most commonly observed species were Tabellaria fenestrata, Fragilaria capucina, Asterionella

-138-I 1

formosa, and Melosira italica. The latter two were present in all twenty entrainment intake samples. More than fifty percent of the 4 algal counts in all 20 entrainment intake samples and in 11 of each of the 12 monitor samples were diatoms.

The most commonly observed flagellates were again Dinobryon spp., the most frequently observed green algae were Pediastrum spp., particularly P. simplex, and the most common blue-greens were Oscillatoria spp.

A summary of the percentages of diatoms, flagellates, green and blue-green algae found in the 1979 phytoplankton samples is given in Table 5.4.

TABLE 5.4 MEAN PERCENTAGES AND PERCENTAGE RANGES DIATOMS, FLAGELLATES, GREEN AND BLUE-GREEN ALGAE 1979 Diatoms Flagellates Greens Blue-Greens Sample Percentage Percentage Percentage Percentage Location Range Mean Range Mean Range Mean Range Mean Monitor 7 41-100 83 0-5.2 0.7 0-52 13 0-3.3 0.9 VY Intake 54-97 86 0-18 2.9 0-15 3.9 0-15 2.2 Monitor 3 41-98 85 0-6.4 1.2 0-22 5.5 0-2.4 0.9 I

.I l

lI l -139-1

( -

TABLE 5.3-1 CHECKLIST OF THE PHYTOPLANKTON OF THE CONNECTICUT RIVER NEAR VERNON, VERMONT 1979 A listing by genus only that follows named species of the same genus represents species other than the pre-ceding ones. The numbers in parenthesis after each listed taxon are: (the number of Monitor 3 samples of 12 - the number of Monitor 7 samples of 12/the number of entrainment intake sample sets of 20 in which the taxon was observed).

BACILLARIOPHYCEAE Asterionella formosa (10-10/20)

  • Attheya zachariasi (1-0/3)

Cyclotella spp. (5-7/14) l Diatoma vulgare (3-2/2) g l Diatoma spp. (2-4/7)

Fragilaria capucina (10-10/18) g Fragilaria crotonensis (5-6/13)

Fragilaria spp. (1-1/3)

Melosira granulata (3-2/2) '

Melosira granulata var. angustissima (0-0/7)

Melosira italica (11-11/20) g Melosira varians (8-8/19) 3 Melosira sp. (0-0/1)

Meridion circulare (1-1/3)

Nitzschia sp. (0-0/1)

Rhizosolenia eriensis (2-1/7)

Rhizosolenia longiseta (0-0/3)

Surirella spp. (1-3/10)

Synedra acus (3-2/5)

Synedra spp. (7-5/18)

Tabellaria fenestrata (8-10/17)

Tabellaria flocculosa (1-0/2)

CHRYSOPHYCEAE Dinobryon bavaricum (0-0/1)

Dinobryon spp. (5-3/13)

Mallomonas sp. (0-0/5)

Synura sp. (1-0/4) l 1

-140-I

I TABLE 5.3-2 PYRRHOPHYCEAE I Ceratium hirundinella (3-2/5)

Gymnodinium sp. (0-0/1)

CRYPTOPHYCEAE Cryptomonas sp. (0-0/5)

CHLOROPHYCEAE Acanthosphaera sp. (0-0/3)

Ankistrodesmus sp. (2-1/8)

ArthrodesInus sp. (0-0/1)

Chlamydomonas sp. (0-0/1)

Closterium acerosum (0-0/1)

Closterium acutum (0-0/1)

Closterium gracile (1-0/0)

I Closterium spp. (2-1/1)

Crucigenia sp. (0-0/2)

Dictyosphaerium ehrenbergianum (1-0/2)

Elakatothrix sp. (0-0/1)

Eudorina sp. (0-0/1)

Gemellicystis sp. (0-0/1)

I Golenkinia sp. (1-0/1)

Gonium sp. (0-0/1)

Micractinium sp. (2-0/6)

Moageotia sp. (0-0/1)

Netrium digitus ( 0-1/0)

Oedogonium sp. (1-0/0)

Paulschulzia sp. (0-0/3)

Pediastrum boryanum (1-1/2)

Pediastrum duplex (3-2/6)

Pediastrum duplex var. gracilimum (0-0/1)

Pediastrum simplex (7-12/14)

Pediastrum tetras (0-0/2)

Quadrigula closteriodes (1-0/0)

Scenedesmus quadricauda (0-2/6)

I Scenedesmus spp. (2-1/7)

Schroederia sp. (1-2/1)

Selenastrum sp. (0-0/1)

Sphaerocystis sp. (0-0/1)

Spirogyra sp. (1-3/4)

Spondylosium sp. (0-0/1)

Staurastrum sp. (1-1/5)

Staurodesmus sp. (1-0/2)

Stigeoclonium sp. (0-0/1)

Treubaria sp. (0-0/1)

I Ulothrix zonata (1-2/5)

Ulothrix spp. (0-0/2)

-141- i i

i

i TABLE 5.3-3 R!lODOPilYCEAE Audouinella sp. (2-2/5) '

l CYANOPilYCEAE  !

Anabaena flos-aquae (0-0/2)

Anabaena solitaria (1-2/2)  !

Anauaena spp. (0-1/3) l Gomphosphaeria naegeliana (2-2/5) '

Lyngbya spp. (3-2/6)

Merismopedia sp. (1-0/2) i Microcystis wesenbergii (0-0/1)  ;

Oscillatoria spp. (3-1/16) i i

i I

(

l Il.

I I

i

-142-

5.2 Zooplankton Studies I The counting results of the analysis of zooplankton samples in 1979 are summarized in Table 5.5 and in Figures 5.5 and 5.6.

Table 5.5 shows the concentration, in units per liter, of zoo-plankters observed in each sample and the name and concentration of the predominant taxon in the sample, when one taxon was observed in greater concentration than any other. In the figures, total zooplankton counts observed in 1979 at the two monitor stations are plotted, along with monthly mean counts observed at these stations in the years 1970-1974, excluding times of open cycle testing. To show variability about the means, the figures also carry plots of the means plus two standard deviations.

Zooplankton concentrations observed in the summer samples of 1979 were generally low relative to counts in that season in earlier years. Zooplankton counts greater than the corresponding 1970-1974 monthly means were observed, however, in March, May, and October at Monitor 7 and in February, March,and October at Monitor 3. The October concentrations at both locations were within two standard deviations of the 1970-1974 means, but the other four counts were more than two staraard deslctions greater than the 1970-1974 means. Only the Marci Monitor 3 count was greatly in excess of the 1970-1974 mean. The count there in 1979 I was 283 organisms per lisar; the mean count observed in the years 1970-1974 was 6.6 with a standard deviat. ion of 1.7.

Statistical analysis of zooplanktcli data collected at the two monitor stations in the years 1970-:.974, prior to Vermont Yankee's operation and during closed cy:le operation, has provided a basis for comparison of zooplankton counts observed at Monitor 3, downstream of Vermont Yankee, with counts predicted from the zooplankton concentrations observed at Monitor 7 upstream. This analysis, analogous to that used for phytoplankton, resulted in a linear regression equation relating Mc titor 3 count, as dependent variable, to the observed Monitor 7 count. For Monitor 7 counts ranging from 0.5 to 418.5, the equation has a regression coeffi-cient of 0.918, an intercept of 15.7, and a standard error of

-143-

TABLE 5,5-1 DOMINANT ZOOPLANKTON SPECIES (Dominant Species Count / Total Count in Units Per Liter) 1979 SAMPLE LOCATION Date Monitor 7 Ri er at Monitor 3 yy e 1/11 Polyarthra sp.

(1.0/3.5) 1/15 Vorticella sp. Philodina sp.

( 7. 0/13. 5) (4.0/11.0) E 1/26 Kellicottia E bostoniensis (0.5/0.5) .

2/12 Vorticella sp.

(1. 2/2. 5) 2/21 Vorticella sp. Philodina sp.

(6.5/8.0) (15.5/27.5) 2/26 Copepoda Nauplii (0.5/1.8) 3/13 Nematoda (1.0/3.2) 3/20 Philodina sp. Philodina sp.

(14.5/20.0) (273.0/283.0) 4/12 None

(-/0.8) 4/20 None Philodina sp. 3

(-/1.0) (1.0/2.5) g 4/25 None

(-/1. 5) 5/11 Vortice11a sp.

(0.5/2.2) 5/16 Vorticella sp. None (3.0/12.5) (-/4.5) 5/29 Copepoda Nauplii (0.8/2.0)

N -144-ll

TABLE 5.5-2 SAMPLE LOCATION Date Monitor 7 Ri e a yy ,e Monitor 3 6/14 Philodina sp.

I 6/25 Philodina sp.

(4. 5/19. 0)

(0. 5/2. 2)

Philodina sp.

(26.0/72.0)

I 6/27 Synchaeta sp.

(12.2/23.8) 7/12 Polyarthra sp.

(164.4/363.0) 7/17 Keratella Keratella cochlearis cochlearis (8.0/28.5) (35.5/111.0) 7/27 Scapholeberis sp.

(9.2/37.0) 8/16 Bosmina coregoni (5.0/12.5)

I 8/20 Bosmina sp.

( 3. 5/9. 0)

Keratella cochlearis (2.0/8.5) 8/30 Synchaeta sp.

(3.2/15.8) 9/13 Polyarthra sp.

( 2. 8/11. 0) 9/19 Philodina sp. Philodina sp.

(3.5/13.0) (8. 5/23. 5) 10/26 Vorticella sp. Philodina sp.

(27.5/49.0) (9.0/19.0) 11/10 None

(-/0.8) 11/21 Vorticella sp. Vorticella sp. Polyarthra sp.

(4. 5/8. 5) (0.5/0.8) (1. 5/4. 5) 12/8 None

(-/1.8) 12/19 Zoothamnium sp. Copepoda (1.5/6.0) Nauplii (1.0/2.5)

I 12/22 Campanella sp.

(0.8/2.0) l

-145-l ll .

SEASONAL ZOOPL ANKTON DISTRIBUTION STATION NO. 7 - MONITOR g r-1

'i

,ili 6- ,I II

,f I, ,

e . i  :

w 8 I f e ,'

a I 5- 1 tr t W l

n. i l, I I m I g 2

, m ,i i z , i 4 - '

5 e ,

I  :

i C) , i

~ '

O l  :

g ,

m I \

O \

y 3- ,$  !

a I l a ,f i a , i I I g l '

, I

, i I

a 2 -

,It, e

l E

I t

.I \

,I s \,

i

\ ' .

\ I

. I

\ /\

/ y \ s r I

/ \ \ / \

s I

, i \

l -

/ / t g/ l  %

/ / \ 'g j i \

i, e ,

,. .' s- ,

~',

\ . ~.

w. s ', .N. -

~.......~. ,

s O

~mM:5s -

i 2 3 4 5 6 l

7 l0 l 9 l 10 l 11 l 12 l

l MONTHS ig79 l 1970 - 74 MEAN

! M E AN + 2 STO. DEV. l FIGURE 5. 5 i

-146- .

l l

l SEASONAL ZOOPL ANKTON DISTRIBUTION STAT 10N NO. 3 - MONITOR g

8 e i e I I & I I l 1 II U~  !

i 7 -

g l

, i I

,I l, .

s n I I ft I

6- I I l 'I i I '

g i

' i i l 3  : I g i i 1 I '

E I w 8

, ,I I b I i

/ i

_s I i i g

5- i i 8, t

I w a

a I

i 1

I II II i

l i

i i-s M i

.i .ti i  :

n z ' i i 4 ~ ' ' '

e l  !

e ,l i o e i ,

g i I L O ' '

l m ,s i o 8 I w 3_ 8 1 ,

C I l l

@

  • I i n i t r i

\

g i it g I i\ t I \

l s R 2 -

l i

l\ s ,/ \,

\

s y \ 1 s,

i i ,

l s i i

i ,

e i t / g i li 1 \.' \

\' ,

i  ;

. \ '

/

~

l l' es

  • y \, e

,% i s '

\

fl 4 N ,- j \ , ~.'f' .

~

~

'~ 2 S E===. . ., . ..$. ./ M'.' .

4 i 2 l

3 5 6 l

7 l 0 l 9 l 10 l le l 12 i MONTHS ,979 r

1970 - 74 MEAN l MEAN + 2 STD. DEV. - - - - - - - 6 l FIGURE 5.6 l

-147-

I estimate of 83.8. A comparison of the zooplankton concentrations observed in 1979 at Monitor 3 with those predicted by this equa-tion is given in Table 5.6.

TABLE 5.6 COMPARISON OF OBSERVED MONITOR 3 ZOOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED BY REGRESSION ANALYSIS OF PREOPERATIONAL/ CLOSED CYCLE MONITOR DATA, 1970-1974 Monitor 7 Count Monitor 3 Count Date Observed Observed-Predicted = Difference 1/15/79 13.5 11.0 28.1 -17.1 2/21/79 8.0 27.5 23.0 +4.5 3/20/79 20.0 283.0 34.1 +248.9 4/20/79 1.0 2.5 16.6 -14.1 5/16/79 12.5 4.5 27.2 -22.7 6/25/79 19.0 72.0 33.1 +38.9 7/17/79 28.5 111.0 41.9 +69.1 8/20/79 9.0 8.5 24.0 -15.5 9/19/79 13.0 23.5 27.6 -4.1 10/26/79 49.0 19.0 60.7 -41.7 11/21/79 8.5 4.5 23.5 -19.0 12/19/79 6.0 2.5 21.2 -18.7 This comparison is shown graphically in Figure 5.7, in which the regression equation is shown as a solid line and 95%

confidence limits are shown as dashed lines. Zooplankton monitor data collected during open cycle operation of Vermont Yankee, in January, February, April, November and December, are plotted as open circles; that collected in other months are shown as filled circles. All plotted points fall within the 95% confidence limits except that of the 20 March samples, collected during a period of shutdown at Vermont Yankee.

l A checklist of the zooplankton observed in 1979 is given in l Table 5.7 at the end of this section of the report. Organisms observed in entrainment samples collected from the river at l Vermont Yankee's intake structure are included in the list. The three numbers in parenthsis following the name of each taxon in

-148-

COMPARISON OF OBSERVED MONITOR 3 ZOOPLANKTON COUNT WITH MONITOR 3 COUNT PREDICTED FROM PREOPERATIONAL / CLOSED CYCLE MONITOR DATA 0F 1970- 74 y /

600 - ,'

/

/

_ /

I 500 - /

/

/

/ l

/

l ~

/

/

/

/

/

400 - ,'

N '

g /

3 -

/

T & /

N?- 300 - ,'

$ o *

/

/

$2 I E 3

g

/

/

r 200 - ,' ,

/

/

I

/ '

/

/

10 0 - / ZOOPLANKTON RANGE I -

/

f

/ AT MONITOR 7 O-418 ORGANISMS / LITER

/

/

e /

O- i i i i i i i i i i K

O 10 0 200 300 400 500 600 MONITOR 7 ORGANISMS PER LITEl REGRESSION EOUATION ( y : 15.7 + .9;8 x )

95% CONFIOENCE LIMITS FOR PREDICTED y VALUES - - - - - - - - - -

VERMONT YANKEE OPEN CYCLE,1979 o VERMONT YANKEE CLOSED CYCLE OR NOT OPERATING,1979 .

FIGURE 5.7

-149-

the list are: the number of Monitor 3 samples, of 12; the number of Monitor 7 samples, of 12; and the number of entrainment in-take samples, of 20, in which the taxon was observed.

All taxa listed in Table 5.7 have been observed in earlier years except the cladoceran, Moina sp. A single organism was found in an entrainment intake sample in July. Of the 52 taxa in the list, 13 were found only in entrainment intake samples.

The number of taxa observed in a sample averaged 7.8 in the Monitor 7 samples and 7.3 in the Monitor 3 samples. The minimum number of taxa observed in a Monitor 7 sample was 2 in April, the maximum number of 14 was found in May. A minimum of 4 taxa per sample was found in the April, May, and December samples at Monitor 3; the maximum of 13 was observed in June and July. ,

Rotifers constituted at least fifty percent of the zooplankters found in 9 of the 20 entrainment intake samples, in 5 of the 12 Monitor 7 samples, and in 9 of the 12 Monitor 3 samples. The most commonly observed rotifers were Polyarthra sp., Synchaeta sp.,

Koratella cochlearis, and Philodina sp. The latter two were found in at least half of the samples collected at each location.

Protozoa, particularly Vorticella sp., constituted relatively large percentages of the samples collected in winter and fa E

months, especially the samples at Monitor 7. Protozoans predominated B in the samples there in January and February and in October through December.

Copepod nauplii were present in 82% of the samples collected 1

in 1979. They were observed in some samples all twelve months of l the year. Adult copepods were found in all months except May and October.

A summary of the percentages of protozoa, copepoda, cladocera, and rotatoria observed in the 1979 zooplankton samples is given in Table 5.8.

-150-I

l I

TABLE 5.8 MEAN PERCENTAGES AND PERCENTAGE RANGES PROTOZOA, COPEPODA, CLADOCERA, AND ROTATORIA 1979 Protozoa Copepoda Cladocera Rotatoria I Sample Location Percentages Range Mean Percentages Range Mean Percentages Range Mean Percentages Range Mean Monitor 7 I VY Intake 0-81 0-67 31 13 0-50 0-67 15 23 0-39 0-70 8.2 10 6.2-80 0-100 44 45 Monitor 3 0-37 14 0-40 12 0-12 2.8 20-97 65 I

I I  :

I

-151-

I TABLE 5.7-1 I

CHECKLIST OF THE ZOOPLANKTON OF THE CONNECTICUT RIVER NEAR VERNON, VERMONT 1979 Zooplankters are listed in the lowest taxonomic level to which identification was made. A listing by genus only that follows named species of the same genus represents species other than those previously listed.

The numbers in parenthesis after each listed taxon are:

(the number of Monitor 3 samples of 12 - the number of Monitor 7 samples of 12/the number of entrainment intake sample sets of 20 in which the taxon was observed).

PROTOZOA Acineta sp. (1-0/0)

Campanella sp. (3-3/2)

Carchesium sp. (2-1/2)

Vorticella sp. (6-7/9)

Zoothamnium sp. (0-2/0)

PORIFERA Indet. (0-0/1)

GASTROTRICHA Indet. (1-0/0)

NEMATODA l

Indet. (3-3/9) E ROTATORIA 3

Asplanchna sp. (1-1/2) g Brachionus calyciflorus (0-1/0)

Brachionus quadridentata (1-0/1)

Brachionus sp. (1-3/2)

Cephalodella sp. (1-2/1)

Conochilus unicornis (2-2/4)

Filinia sp. (1-0/0)

Kellicottia bostoniensis (3-2/5)

Kellicottia longispina (2-4/4)

Keratella cochlearis (9-6/10) E Keratella quadrata (1-0/2) g Lecane sp. (0-1/0)

Lepadella sp. (0-0/1)

-152-

TABLE 5.7-2 ROTATORIA (cont'd)

Monostyla sp. (0-0/1)

Notholca striata (0-0/1)

Philodina sp. (9-10/11)

Ploesoma sp. (2-1/5)

I Polyarthra sp. (5-5/7)

Synchaeta sp. (4-6/9)

Tetramastix opoliensis (0-0/1)

Trichocerca sp. (0-0/3)

Trichotria sp. (2-2/0)

TARDIGRADA Indet. (2-0/4)

ANNELIDA Aeolosoma sp. (4-2/1)

ARTHROPODA Crustacea I Cladocera Alona sp. (1-0/1)

Alonella sp. (0-1/1)

Bosmina coregoni (2-2/4)

Bosmina longirostris (0-0/3)

Bosmina sp. (2-3/0)

Chydorus sphaericus (2-2/3)

I Chydorus sp. (1-2/0)

Daphnia sp. (0-0/2)

Leptodora kindti (0-1/2)

I Leptodora sp. (1-1/0)

Moina sp. (0-0/1)

Polyphemus pediculus (1-0/3)

Scapholeberis sp. (0-0/2)

Sida crystallina (0-0/2)

Ostracoda Indet. (1-1/3)

Copepoda Cyclops sp. (1-1/3)

Indet. Adults (3-6/11)

! g Indet. Nauplii (7-10/19) l g Arachnoidea Hydracarina Indet. (0-0/2)

Insecta Diptera Chironomidae 1

Indet. (0-0/2) l 1

-153-I .

i I

I I .

I sect 10s e g

I ENTRAINMENT STUDIES I

I I

I I

I I

I I

I I

I . _ _

L F

L L

F L .

E , 6. ENTRAINMENT STUDIES L

6.1 Phytoplankton and Zooplankton Entrainment 7

L on 20 dates in 1979, samples of Connecticut River water at Vermont Yankee's cooling water intake structure and of the plant's cooling water discharge to the river were taken to assess the impact on phytoplankton and zooplankton due to entrainment. Dupli-cate samples were collected at approximately two week intervals during times when Vermont Yankee was operating.

F L For each sample, 40 liters of water, collected by bucket, were poured through a No. 20 mesh plankton net. A portion of the fresh

( sample concentrate was examined within the hour to determine the identity and relative numbers of living and dead organisms. Zoo-plankters were tabulated as living if they were observed to move

[

or showed internal movement within one minute. Phytoplankters were listed as living if they had normal. pigmentation and no signs of plasmolysis. The remaining portion of each sample was preserved with formalin for subsequent identification and enumeration of the organisms present.

The taxa of phytoplankton and zooplankton found in the entrain-ment intake samples are indicated in the two checklists, Tables.5.3 and 5.7, of the previous section of this report.-- In those lists,

[ the third number in parenthesis after each taxon is the number of sample dates, of a total of 20, on which the taxon was observed in an intake sample. In general,'the same taxa were observed in dis-

{

charge samples as were found in river intake samples. However, five species of phytoplankton were found in 1979 discharge samples that were'not observed in plankton samples or entrainment samples collected from the river. Four of these were green algae -

Coelastrum mircroporum, Cosmarium sp., Crucigenia tetrapedia, and

- -155-1

I Tetraedron sp.- that were observed in small numbers on one. occasion each. The fifth, Calothrix sp. - a filamentous blue-green - was found 'in three samples of late summer. Lecane luna, a rotifer, was the only zooplankter found only in discharge samples in 1979.

A single organism was found in a sample of 13 September.

The counting results of the analysis of the fresh and the preserved entrainment samples are summarized in Table 6.1. The data of Table 6.1 have been used to calculate the percent changes in live plankton concentrations between intake and discharge samples shown in Table 6.2. Greater concentrations of live organ-isms in discharge samples than in intake samples were observed for phytoplankton on 10 of the 20 sample dates; for zooplankton on 3 dates.

Increases in living and in total plankton concentrations in discharge samples over those in river intake samples have been

! observed in all years of entrainment studies at Vermont Yankee.

They are greater, on a percentage basis, at times when the river temperature is low and ambient plankton concentrations are small.

During open cycle operation when river temperature is below 50*F, Vermont Yankee often recirculates a portion of its cooling water to optimite the efficiency of electrical generation. The warmer recirculated water promotes algal growth on the walls of the E E

cooling water system and this attached growth supports a community of microinvertebrates. This aufwuchs often sloughs off into the i circulating water system and becomes planktonic.

The impact of Vermont Yankee's entrainment of plankton on the river's concentration of live plankton is dependent upon the pro-portion of river flow, Or , which is utilized as condenser cooling water. Calculations of the percent changes in river plankton con-centrations due to entrainment on the 20 study dates of 1979 are shown in Table 6.3. These claculations assume uniform distribu-tion of river plankton at the intake structure and complete mixing of plant discharge into the river.

-156-I

[

{ During open cycle operation, plant discharge flow rate, Q '

D equals the rate of intake from the river, thus percent change of plankton concentration in the mixed river is the percent change through the plant, Table 6.2, multiplied by the ratio of O to D

Q.

R During closed cycle operation, some water withdrawn from the river is lost by evhporation in the cooling towers. The closed cycle calculations in Table 6.3 have assumed a concentration

[ factor of 2 due to evaporation, which would reduce river flow by an amount equal to plant blowdown discharge, estimated conserva-

{ tively at 15 cfs. Percent change in river plankton concentration is calculated, then, by multiplying percent change through plant by the ratio of 15 cfs to (O p-15 cfs).

The largest calculated decrease in live plankton concentra-tion in the river is -6.9% for phytoplankton and -8.9% for zoo-plankton, both based on the data of the 22 December samples. The river concentrations (the intake samples) on that date were low -

128 algal units per liter and 2.0 zooplankters per liter. The calculated percentage decreases would reduce river concentrations

( to 119 and 1.8 units per liter respectively. This is not a signi-ficant impact on river plankton concentrations.

b In general, river plankton concentrations are so small in the colder months of the year, when Vermont Yankee is operating in

{ open cycle, that the plant's impact on river biota is not signifi-cant, regardless of the effects of entrainment on viability of phytoplankton and zooplankton. In the warmer months, when plankton

{ populations are greater, the impact of Vermont Yankee's closed cycle operation is minimal because such a small portion of total river flow is used as condenser cooling water. l

[

[

[

E. -157-

TABLE 6.1-1

SUMMARY

OF RESULTS VERMONT YANKEE ENTRAINMENT STUDIES 1979 Power Percent Living Organisms Number Organisms / Liter Level Condenser Sample Sample (Fresh Sample) (Preserved Sample)

Date (%) AT ( F) location Temp.( F) Phytoplankton Zooplankton Phytoplankton Zooplankton 1/11 99.8 27.0 Intake 32.0 70 50 112 3.5 Discharge 71.6 62 67 138 2.5 1/26 99.8 26.8 Intake 32.0 50 62 24 0.5 Discharge 68.2 69 43 41 2.0 2/12 99.8 27.3 Intake 32.0 42 88 63 2.5 Discharge 68.9 83 50 1025 1.5 g 2/26 99.5 27.0 Intake 32.9 66 100 540 1.8 i Discharge 70.2 62 33 1699 2.2 3/13 89.3 24.0 Intake 32.2 33 100 238 3.2 Discharge 71.4 46 64 2758 1.2 4/12 99.7 27.1 Intake 41.9 63 67 105 0.8

. Discharge 73.4 54 0 228 1.2 4/25 99.7 27.3 Intake 46.8 75 100 171 1.5 Discharge 73.9 63 100 620 1.8

^

5/11 99.6 21.1 Intake 59.4 84 33 1302 2.2 Discharge 80.2 80 33 254 1.2 5/29 99.5 21.9 Intake 58.1 83 100 157 2.0 Discharge 72.5 20 50 345 4.0 97.7 21.7 Intake 67.3 97 42 563 2.2 6/14 2.2 Discharge 73.2 34 14 495 M M _

M M M M

7 m n n n n n n n n n n n n n n n n n F-TABLE 6.1-2

SUMMARY

OF RESULTS VERMONT YANKEE ENTRAINMENT STUDIES 1979 l

Power Percent Living Organisms Number Organisms / Liter Level Condenser Sample Sample (Fresh Sample) (Preserved Sample)

Date (%) AT ( F) Location Temp.('F) Phytoplankton Zooplankton Phytoplankton Zooplankton 6/27 97.2 21.8 Intake 71.1 93 92 1039 23.8 Discharge 72.7 31 44 1114 . 9.2 7/12 96.2 21.5 Intake 76.6 89 63 94492 363.0 Discharge 80.6 57 5 1715 74.5 7/27 97.0 21.7 Intake 81.3 86 76 1051 37.0 Discharge _ 85.5 38 7 3039 43.8

$' 8/16 78.3 16.9 Intake 71.2 98 100 386 12.5 Discharge 68.4 18 21 871 6.0 8/30 89.2 19.6 Intake 74.7 83 84 632 15.8

, Discharge 84.0 18 11 2336 10.5 9/13 86.4 19.0 Intake 70.9 85 72 1330 11.0 Discharge 72.7 31 20 1375 7.0 11/10 98.9 27.0 Intake 46.4 92 100 250 0.8 Discharge 75.9 78 50 407 1.5 11/21 90.8 24.6 Intake 47.3 93 100 274 0.8 Discharge 77.0 89 60 220 1.2 12/8 99.6 27.2 Intake 37.3 92 86 165 1.8 Discharge 74.3 95 100 398 2.0

~ ~ ' ~ ~~ ~~

12/22 99.6 27.3 Intake 32.7 92 100 l'39 2.0 Discharge 68.9 67 100 80 0.5

TABLE 6,2-1 PERCENT CHANGES IN LIVE PLANKTON CONCENTRATIONS BETWEEN ENTRAINMENT INTAKE AND DISCHARGE SAMPLES Living Organisms per Liter  % Change Date Pa ramete,r_ Discharge -

Intake = Difference thru Plant 1/11/79 Phytoplankton 86 78 +8 +10 Zooplankton 1.7 1.8 -0.1 -5.6 1/26/79 Phytoplankton 28 12 +16 +130 Zooplankton 0.9 0.3 +0.6 +200 2/12/79 Phytoplankton 851 26 +825 +3200 Zooplankton 0.8 2.2 -1.4 -64

, 2/26/79 Phytoplankton 1053 356 +697 +200 g Zooplankton 0.7 1.8 -1.1 -61 3/13/79 Phytoplankton 1269 79 +1190 +1500 Zooplankton 0.8 3.2 -2.4 -75 4/12/79 Phytoplankton 123 66 +57 +86 Zooplankton 0 0.5 -0.5 -100 Phytoplankton 4/25/79 391 128 +263 +200 Zooplankton 1.8 1.5 +0.3 +20 5/11/79 Phytoplankton 203 1094 -891 -81 Zooplankton 0.4 0.7 -0.3 -43 5/29/79 Phytoplankton 69 130 -61 -47 Zooplankton 2.0 2.0 0 0 6/14/79 Phytoplankton 168 546 -378 -69 Zooplankton 0.3 0.9 -0.6 -67 M M M M M M .

M M

m rm rm m rm rm m m . rm m m m m v m .m n. r-TABLE 6.2-2 PERCENT CHANGES IN LIVE PLANKTON CONCENTRATIONS BETWEEN ENTRAINMENT INTAKE AND DISCHARGE SAMPLES

Living Organisms per Liter  % Change Date Parameter Discharge -

Intake = Difference thru Plant 6/27/79 Phytoplankton 345 966 -621 -64 Zooplankton 4,0 21 ~,9 -17,9 -82

~

7/12/79 Phytoplankton 978 84098 -83120 -99 Zooplankton 3.7 228.7 -225,0 -98 7/27/79 Phytoplankton 1155 904 +251 +28 Zooplankton 3.1 28.1 -25,0 -89 8/16/79 Phytoplankton 157 378 -221 -58 4

m Zooplankton 1.3 12.5 -11.2 -90 Y 8/30/79 Phytoplankton 420 525 -105 -20 Zooplankton 1.2 13.3 -12.1 -91 9/13/79 Phytoplankton 426 1130 -704 -62 )

Zooplankton 1.4 7.9 -6.5 -82 j 11/10/79 Phytoplankton 317 230 +87 +38 Zooplankton 0.8 0.8 0 0 11/21/79 Phytoplankton 196 255 -59 -23 Iooplankton 0.7 0.8 -0.1 -12 12/8/79 Phytoplankton 378 152 +226 +150 l Zooplankton 2.0 1.5 +0.5 +33 12/22/79 Phytoplankton 54 128 -74 -58 Zooplankton 0.5 2.0 -1.5 -75

TABLE 6.3 CALCULATED PERCENT CHANGES IN LIVE PLANKTON CONCENTRATIONS OF RIVER EFFECTED BY ENTRAINMENT Plant River Percent Change in Live Plankton Coolin9 Percent Discharge Flow Concentration in Mixed River Date Cycle Recirculation QD (cfs) QR (cfs) Phytoplankton Zooplankton 1/11/79 Open 26 436 9550 +0.46 . -0.26 1/26/79 Open 20 481 9010 +6.9 +11 2/12/79 Open 19 476 10480 +140 -2.9 2/26/79 Open 31 408 9360 +8.7 -2.7 3/13/79 Open 34 391 35340 +17 -0.83 i 4/12/79 Open 24 445 17520 +2.2 -2.5 g 4/25/79 Open 0 590 25820 +4.6 +0.46 w

5/11/79 Open 0 758 11110 -5.5 -2.9 5/29/79 Closed 98* 15* 27320 -0.03 0 6/14/79 Closed 98* 15* 10220 -0.10 -0.10 6/27/79 Closed 98* 15* 6990 -0.14 -0.18 7/12/79 Closed 98* 15* 9150 -0.16 -0.16

, 7/27/79 Closed 98* 15* 1460 +0.29 -0.92 8/16/79 Closed 98* 15* 4870 -0.18 -0.28 8/30/79 Closed 98* 15* 5860 -0.05 -0.23 9/13/79 Closed 98* 15* 1720 -0.55 -0.72 11/10/79 Open 0 590 1300 +17 0 11/21/79 Open 32 400 7200 -1.3 -0.67 12/8/79 Open 16 492 7520 +9.8 +2.2 12/22/79 Open 20 468 3960 -6.9 -8.9

  • Estimated g m m m m M M M M M M M M M M

[

{ 6.2 Ichthyoplankton Entrainment Studies on the entrainment of larval fishes conducted in 1977

{ and 1978 have been reported earlier (Aquatec 1977b, 1979b). Such studies were conducted in 1979 also. Samples were collected daily behind the trash rac.ks in Vermont Yankee's intake bay from 3 April through the last date of open cycle operation, 12 May. Sampling was continued in the river near Vermont Yankee's intake structure through the end of June.

The samples were collected with a 0.5 meter diameter plankton net with a T.S.K. flowmeter positioned in the net's mouth. The net was mounted in an aluminum frame and lowered by ropes to b collect intake bay samples; the net was towed by boat to collect the river samples.

b The results of the studies in the intake bay are summarized in Table 6.4; those of the tows in the river are shown in Table

[ 6.5. Intake bay data have been reduced to show the number of larvae entrained per hour and the intake flow expressed as a {

{ percentage of the river flow (measured as discharge at Vernon Dam).

Ichthyoplankter- were first observed in the sample of 5 May

{ and were found in ali %bsequent open cycle samples except that of 9 May. The first ichthyoplankter was observed on an earlier l date, 2 May, in 1977, but more organisms were collected before 15 May in the samples of 1979. This is probably attributable to the more rapid warming of the river in 1979 than in 1977. Mean

[ daily temperature observed at Monitor 7 on 15 May in 1977 was 54.8'F, in 1979 was 60.l'F. In the colder spring of 1978, the

[ average temperature at Monitor 7 on 15 May was 51.6'F. No ichthyoplankters were collected until that date in 1978.

[ .

[

-16 3 --

. _ _ _ _ _ - _ _ _ _ _ - _ _ . __ __ A

TABLE 6.4-1 VERMONT YANKEE ICHTHYOPLANKTON ENTRAINMENT STUDIES River Temperature Number Sample VY Intake Rate of River Intake Flow 1979 Station 7 of Larvae Volume Larvae Flow Rate Entrainment Flow Rate as % of Date Time ( F) Collected (m3) per m3 (cfs) Larvae / Hour (cfs) River Flow 4/3 1420 37.5 0 47.8 0 306 0 40,500 0.8

.4/4 1420 37.3 0 60.8 0 220 0 37,800 0.6 4/5 1405 37.1 0 61.2 0 260 0 34,300 0.8

'4/6 1307 37.1 0 48.6 0 329 0 29,400 1.1 4/7 0925 36.6 0 48.7 0 406 0 23,700 1.7 4 4/8 0755 36.5 0 61.9 0 284 0 19,900 1.4 y 4/9 1530 36.7 0 46.1 0 411 0 17,100 2.4 4/10 1725 38.8 0 44.9 0 452 0 18,900 2.4 4/11 1130 37.0 0 51.2 0 427 0 18,400 2.3 4/12 1220 38.6 0 49.0 0 441 0 17,000 2.6 4/13 1045 40.8 0 49.7 0 462 0 17,000 2.7 4/14 0920 40.9 0 53.7 0 487 0 18,100 2.7 4/15 1430 40.1 0 50.2 0 4 31 0 18,600 2.3 4/16 1545 40.7 0 51.2 0 476 0 17,000 2.8 4/17 1547 41.5 0 56.3 0 488 0 19,500 2.5 4/18 1300 41.7 0 52.4 0 480 0 22,000 2.2 4/19 1310 42.5 0 52.1 0 516 0 23,500 2.2 4/20 1320 42.8 0 51.5 0 511 0 22,000 2.3 4/21 1225 42.9 0 53.1 0 509 0 21,500 2.4 4/22 1425 43.8 0 51.0 0 512 0 22,000 2.3 M M M M M M M M h M M M M M M

m v r r r rm_._rm rm rm rm rm cm rm rm c-- a c-, cn s--, 1 TABLE 6.4-2

~

VERMONT YANKEE l ICHTHYOPLANKTON ENTRAINMENT STUDIES l

River Temperature Number Sample VY Intake Rate of River Intake Flow 1979 Station 7 of Larvae Volume Larvae Flow Rate Entrainment Flow Rate as % of Date Time (*F) Collected (m3) per m3 (cfs) Larvae / Hour (cfs) River Flow 4/23 1255 44.7 0 il .3 0 549 0 20,300 2.7 4/24 .455 46.7 0 55.3 0 559 0 26,900 2.1 4/25 1020 46.1 0 62.5 0 581 0 25,800 2.3 4/26 1410 47.8 0 61.5 0 565 0 23,500 2.4

~4/27 1355 49.1 0 53.6 0 587 0 27,500 2.1 4 4/28 1255 49.6 0 53.4 0 601 0 43,100 1.4

$ 4/29 1100 50.9 0 44.4 0 605 0 46,000 1.3 4/30 1255 50.8 0 31.2 0 605 0 40,000 1.5 5/1 1140 50.8 0 38.4 0 608 0 24,500 2.5 5/2 1300 50.8 0 47.9 0 592 0 20,400 2.9 5/3 1335 51.3 0 41.9 0 561 0 18,500 3.0 5/4 1330 51.9 'O 72.7 0 794 0 17,000 4.7 51.2 3 5/5 0750 5 86.9 0.058 788 4.6 x 10 17,300 4.6 51.2 3 5/6 0820 17 86.6 0.20 790 16 x 10 16,500 4.8 52.1 3 5/7 1315 3 85.1 0.035 768 2.8 x 10 15,900 . 4.8 5/8 0925 53.0 3 90.6 0.033 776 2.6 x 10 3 12,900 6.0 5/9 1000 55.4 0 108.6 0 779 0 14,800 5.3 3

.5/10 -1003 .57.7 13 70.0 0.19 729 14 x.10 10,900 6.7 3

5/11 0815 59.5 ~3 59.3 0.51 758 3.9 x 10 9,200 8.2 3

~5/T2 0945 61.5 18~ 86.8 0.21 765 16 ~x 10 - 9,300 8.2'

TABLE 6.5 VERMONT YANKEE ICHTHYOPLANKTON STUDIES Larval Concentrations in Connecticut River Near Vemont Yankee Intake Structure River Temperature Number Sample River 3 1979 Station 7 of Larvae Volyme Larvag Flow Rate E Date Time ( F) Collected (m3) per m (cfs) 5/13 1225 60.3 2 88.0 0.023 9,300 5/14 1145 59.7 7 67.0 0.10 9,200 5/15 1340 60.0 9 78.6 0.11 9,100 g

5/16 1300 60.9 61 87.6 0.70 8,800 m 5/17 1430 61.2 28 74.8 0.37 8,100 5/18 1300 61.4 9 68.8 0.13 8,100 5/19 1430 61.6 23 63.3 0.36 8,300 5/20 1400 61.4 74 86.4 0.86 1.300 5/22 1600 63.3 33 57.7 0.57 8,400 5/23 1300 63.2 61 61.0 1.00 8,100 5/24 1600 62.1 12 53.2 0.23 9,700 5/25 1300 56.2 6 92.2 0.065 28,800 g

5/26 1000 54.9 2 25.7 0.078 49,800 m 5/27 1105 54.2 7 81.6 0.086 40,500 5/29 1025 55.5 0 72.8 0 27,800 5/31 1007 57.0 2 92.6 0.022 23,600 6/1 1245 59.0 0 91.6 0 22,600 6/3 0930 61.5 24 86.1 0.28 19,000 6/5 1320 62.9 34 90.7 0.37 11,900 6/7 1030 65.2 22 71.0 0.31 9,400 6/9 0800 66.1 9 65.0 0.14 9,000 6/11 1207 68.2 94 71.3 1.32 7,400 6/13 1340 65.6 151 81.4 1.86 9,600 6/15 1035 64.4 42 78.6 0.53 8,900 6/17 0840 68.2 172 67.5 2.55 1,300 6/19 1340 69.7 145 92.8 1.56 9,300 6/21 0920 70.4 26 76.4 0.34 1,300 6/23 0940 71.2 25 62.6 0.40 1,300 6/25 1735 69.0 26 72.6 0.36 7,401 6/27 0955 68.2 27 61.8 0.44 1,300 6/29 1215 68.8 18 70.6 0.25 5,700

-166-

L_

E E

r-

[

r-SECTION 7 L

E BENTHIC FAUNA STUDIES E

l N

h m

m M

W N

m m

m M

W W

I /7. BENTHIC FAUNA STUDIES Thirty-eight samples of Connecticut River benthos were collected at the four Vermont Yankee sample station locations shown in Figure 7.1. Twenty-eight samples, in seven sample sets, were collected with a 9" Ekman dredge and ten were collected by use of Henson traps, wire cages filled with 2 to 3 inch diameter rocks that were left on the river bottom for 6 to 10 weeks before re-trieval. The Ekman dredge samples of the May set consisted of the organisms collected in 5 dredge hauls at each river quarter point.

The remainder of the collections were made by 10 dredge hauls at I each quarter point in the river. Henson traps set at Stations 2 and 5 in September were vandalized before the November retrieval date.

The material collected by either sample method was washed through a set of standard sieves and organisms retained by a No.

25 mesh sieve were preserved in 70% alcohol for subsequent analy-sis. Identification was made to the lowest practicable taxonomic level, usually to genus.

Seventy-eight taxa of bottom fauna were identified in the 1979 samples. A checklist of these macroinvertebrates, Table 7.1, appears at the end of this section of the report. The number of samples in which a listed taxon was found is shown in the table for each sampling technique at each sample station.

The number of genera observed in the 1979 samples was 71, of which 35 were found only in Ekman dredge samples, 11 were found only in Henson trap samples, and 25 were collected by both sanple methods. The number of samples collected by Ekman dredge in 1979 was comparable to the numbers collected at Stations 2 through 5 in the years 1969, 1977, and 1978. A comparison of the numbers of genera collected by Ekman dredge at these stations in these years with the results of the 1979 collections is shown in Table 7.2

-167-

BENTHIC FAUNA I

ll i , ,

SAMPLE STATION ,

LOCATIONS l ,

o I 5 I

SCALE IN MILES "4q '

gl 1! '

Vermont Yankee 8/

NEW HAMPSHIRE l  ;

L s

g l. '

VERMONT 3 i 2

i I!

l M A SS ACHUSETTS FIGURE 7,1

-168-I -

I TABLE 7.2 I COMPARISON OF NUMBER OF SAMPLES AND NUMBER OF GENERA OF BENTHOS COLLECTED BY EKMAN DREDGE I Station

  • Number of Samples / Number of Genera Number 1969 1977 I 2 6/33 8/20 1978 8/22 1979 7/27 I 3 4

6/24 7/16 8/25 8/19 8/13 8/17 7/26 7/26 5 8/18 8/20 6/14 7/28 More dredge hauls were used in the collection of most of the 1979 samples than were used in the previous years, but this increased sampling effort was not unproductive. More genera were found in 1979 at Stations 3, 4, and 5 than in earlier years, and the number observed at Station 3 was exceeded only by the number found in the 1969 collections.

I The results of the analysis of the 1979 benthic fauna samples g are summarized in Table 7.3. The summary shows for each sample the B number of organisms and taxa observed and lists the predominant type of benthos in the sample and the percentage of that form in the sample. A diversity index is also tabulated for each sample.

The index was calculated with the following equation:

d=h(N1og10 N- n g log 10 "i' where C is a constant which converts logarithms from base 10 to I base 2; N is the number of organisms: and n y is the number of organisms in the i b axon.

t Caddis fly and chironomid larvae were present in the largest numbers in most of the spring and summer samples; planarians were the dominant type of organisms in some fall samples. These three forms have been observed to constitute the major portion of samples in past years. Tubificids, which have been the predomi-nant organisms in some samples of earlier years, were not observed, however, to be the major constituent of any 1979 sample.

-169-I

TABLE 7.3-1

SUMMARY

OF RESULTS OF ANALYSIS BENTHIC FAUNA SAMPLES 1979 Sample Method Number of Number Diversity Predominant Form HT (* Days) Sample Benthic of Index  % of Date ED (# Hauls) Station Organisms Taxa d Name Total 5/10 ED (15 hauls) 2 8 5 2.0 Amnicolid snails 50 ED (15 hauls) 3 4 2 0.8 Caddis flies 100 5/11 ED (15 hauls) 4 6 5 2.6 Chironomids 50 ED (15 hauls) 5 53 16 2.8 Chironomids 85 6/22 ED (30 hauls) 2 40 14 2.9 Caddis flies 42 6/21 ED (30 hauls) 3 29 10 2.6 Caddis flies 52 ED (30 hauls) 4 35 11 2.8 Chironomids 49

[ ED (30 hauls) 5 18 9 2.9 Chironomids 39 7/11 ED (30 hauls) 2 50 15 2.5 Caddis flies 68 ED (30 hauls) 3 47 13 2.5 Caddis flies 62 7/13 ED (30 hauls) 4 33 14 3.2 Chironomids 36 ED (30 hauls) 5 45 c. 11 2.8 Chironomids 62 8/l HT (40 days) 2 221 11 2.1 Caddis flies 66 7/11 HT (53 days) 3 237 10 1.8 Caddis flies 69 7/13 HT (56 days) 4 85 8 1.1 Chironomids 89 7/13 HT (56 days) 5 51 17 3.1 Chironomids 59 8/15 ED (30 hauls) 2 45 15 3.4 Fingernail clams 27 ED (30 hauls) 3 129 12 2.7 Chironomids 40 8/17 ED (30 hauls) 4 47 12 3.1 Chironomids 32 8/15 ED (30 hauls) 5 81 17 3.1 Chironomids 65 l

1 M M M M M

m M M M M M M M M M M M M TABLE 7.3-2

SUMMARY

OF RESULTS OF ANALYSIS BENTHIC FAUNA SAMPLES 1979 Sample Method Number of Number Diversity Predominant Form HT (# Days) Sample Benthic of Index  % of Date ED Q# Hauls) Station Organisms Taxa d Name Total 9/19 ED (30 hauls) 2 119 10 2.4 Planarians 39 ED (30 hauls) 3 31 10 2.9 Planarians 32 9/18 ED (30 hauls) 4 33 12 2.6 Chironomids 33 ED (30 hauls) 5 - 40 9 3.0 Chironomids 42 9/19 HT (70 days) 2 674 10 0.7 Caddis flies 90 HT (70 days) 3 64 5 1.9 Caddis flies 50 e 9/18 HT (67 days) 4 61 8 2.1 Planarians 49

[ HT (67 days) 5 55 8 2.2 Chironomids 44 10/30 ED (30 hauls) 2 111 11 2.5 Caddis flies 39 ED (30 hauls) 3 100 9 2.1 Planarians 38 10/29 ED (30 hauls) 4 85 14 3.1 Chironomids 76 ED (30 hauls) 5 39 8 2.6 Chironomids 72 11/15 ED (30 hauls) 2 80 9 2.2 Planarians 42 ED (30 hauls) 3 20 3 1.3 Caddis flies 55 11/14 ED (30 hauls) 4 38 11 3.0 Chironomids 53 ED (30 hauls) 5 24 12 3.2 Chironomids 62 11/15 HT (57 days) 3 236 12 1.5 Amnicolid snails 66 11/14 HT (57 days) 4 57 4 1.4 Planarians 54

TABLE 7.1-1 CHECKLIST OF THE BENTHIC FAUNA 0F THE CONNECTICUT RIVER NEAR VERNON, VERMONT 1979 Number of samples in which a taxon was observed at each sample location in collections made by Henson trap and Ekman dredge Sample Station Number Collection Method (No. Samples Collected) 2 3 4 5 HT(2) ED(7) HT(3) ED(7) HT(3) ED(7) HT(2)~ED(7)

PLATYHELMINTHES Turbellaria (Flatworms)

Dugesia sp. 2 6 2 6 2 1 1 0 4

h$ BRYOZ0A (Moss Animalcules)

Paludicella articulata 0 0 0 2 0 0 0 0 Pectinatella magnifica 0 3 0 2 0 0 1 0 ANNELIDA 011gochaeta (Aquatic Earthworns)

Branchiura sowerbyi 0 0 0 0 0 3 0 3 Limnodrilus sp. 0 6 0 1 1 6 1 6 Mirudinea (Leeches)

Erpobdella punctata 0 0 0 0 0 0 1 0 Helobdella stagnalis 0 0 0 1 0 1 0 0 ARTHROPODA Crustacea Cladocera (Water Fleas)

Daphnia pulex 1 0 1 0 0 0 0 0 Daphnia sp. 0 0 0 1 0 0 0 0 M M M M M M M M M M M

M M M M M M M M M TABLE 7.1-2 Sample Station Number Collection Method (No. Samples Collected) 2 3 4 5 HT(2) ED(7) HT(3)~ED(7) HT(3) ED(7) HT(2)~ED(7)

ARTHROP0DA (cont'd)

Crustacea Isopoda (Aquatic Sow Bugs)

Asellus militaris 0 0 0 0 0 0 1 0 Asellus sp. 0 0 0 0 0 l' 0 0 Amphipoda (Scuds)

Gammarus sp. 0 0 0 1 0 0 0 0 Decopoda (Crayfishes)

Orconectes limosus 2 0 0 0 1 0 1 0 Orconectes sp. 0 0 0 0 2 0 1 0

, Insecta H Plecoptera (Stoneflies)

[$ Acroneuria sp. 0 0 2 0 0 0 0 0 8

Ephemeroptera (Mayflies)

Ameletus sp. 0 0 0 1 0 0 0 0 Caenis sp. 0 1 0 0 0 0 0 0 Ephemera guttulata 0 0 0 0 0 1 0 1 Ephemerella sp. 0 1 0 0 0 0 0 0 Ephoron leukon 0 0 0 0 0 0 0 1 Heptagenia spp. 0 2 0 1 0 0 0 0 Hexagenia limbata 0 0 0 0 1 3 1 4 Hexagenia recurvata 0 0 0 1 0 1 0 1 Hexagenia sp. 0 0 0 0 0 0 0 2 Neocloeon sp. 0 1 0 0 0 0 0 0 Potomanthus sp. 0 0 0 1 0 0 0 0 Stenonema tripunctatum 0 1 0 0 0 0 0 0 Stenonena sp. 0 2 1 2 0 1 1 0 Tricorythodes sp. 0 0 0 0 0 0 1 0

T9LE 7.1-3 Sample Station Number Collection Method (No. Samples Collected) 2 3 4 5 ARTHR 0"0DA (cont'd)

Insecta Odonata (Dragonflies, Damselflies) boyeria sp. 0 0 1 0 0 0 0 0 Dromogomphus sp. 0 0 0 0 0 0 0 1 Enallagma sp. 0 0 0 0 0 0 1 0 Gomphus sp. 0 0 0 0 1 2 1 1 Neocordulia sp. 1 0 0 0 0 0 0 0 Ophiogomphus sp. 0 0 0 0 0 0 0 1 Megaloptera (Alderflies, Dobsonflies, Fishflies)

, Sialis sp. 0 0 0 0 1 3 2 3 s Trichoptera (Caddis Flies) 2 Athripsodes sp. 0 3 1 3 1 0 0 0 i Cheumatopsyche sp. 2 6 3 7 1 0 0 1 Hydropsyche sp. 1 5 0 5 0 0 0 0 Macronemum sp. 2 2 0 0 0 0 0 0 Molanna sp. 0 0 0 0 0 0 0 2 Neureclipsis sp. 1 0 1 1 0 0 0 0 Decetis sp. 0 1 0 0 1 1 0 3 Phylocentropus sp. 0 0 0 0 0 0 1 0 Polycentro )us sp. 0 1 0 0 1 1 2 0 Coleoptera ( 3eetles)

Cylloepus sp. 0 0 0 1 0 0 0 0 Gyrinus sp. 0 0 0 0 0 0 1 0 Psephenus herricki 0 1 0 0 0 0 0 0 Diptera (Flies, Mosquitoes, Midges)

Brillia sp. 0 0 0 0 0 0 0 1 Calo)sectra sp. 0 1 1 0 0 0 1 0 Chao')orus sp. 0 0 0 0 0 1 0 1 Chironomus tentans 0 0 0 0 0 0 0 1 Chironomus sp. 0 0 0 0 0 5 0 5 M _

M _

M M _

M M M M M

M M M M M M M M M M M TABLE 7.1-4 Sample Station Number Collection Method (No. Samples Collected) 2 -

3 4 5 HT(2) ED(7) HT(3) ED(7) HT(3) ED(7) HT(2) lD(7)

ARTHROP0DA (cont'd)

Insecta Diptera (Flies, Mosquitoes, Midges)

Coelotanypus sp. 0 1 0 0 0 0 0 0 Cryptochironomus sp. 1 0 0 1 0 6 0 6 Diamesa sp. 0 0 0 0 0 0 0 1 Eukiefferiella sp. 0 0 0 0 0 4 0 2 Glyptotendipes sp. 2 0 2 3 3 4 2 1 Harnischia sp. 0 0 1 0 0 3 1 1 Metriocnemus sp. 0 0 0 0 0 1 0 3 Palpomyia sp. 0 0 0 0 0 0 0 4 h Parachi' onomus sp. 0 0 0 0 0 0 1 0 j Paralau1;;yorniella sp. 0 1 0 0 0 0 0 0 Pentane a sp. 1 3 2 1 0 3 1 0 i Phaenopst ra sp. 0 0 0 0 0 0 0 1 Poly)edilum'sp. 0 0 0 0 0 1 0 3 Pottiastia sp. 0 0 0 0 0 0 0 1 Procladius sp. 0 1 0 0 0 3 0 2 Simulium sp. 0 0 0 1 0 0 0 0 Tipula sp. 0 0 0 0 1 0 0 0 Tribelc sp. 0 0 0 0 0 1 0 0 M0LLUSCA Gastropoda (Snails, Limpets)

Amnicola sp. 2 7 3 3 0 1 0 0 Gyraulus sp. 1 3 1 1 0 0 0 0 Helisoma sp. 0 2 0 0 0 0 0 0 Physa sp. 0 1 2 1 0 0 0 0 Pelecypoda (Clams, Mussels)

Elliptio sp. 0 2 0 0 0 0 0 0 Margaritifera sp. 0 4 1 1 0 1 0 1 Sphaerium sp. 0 6 0 4 0 6 0 4

.ama, _a ,m, a s .,.A--maa s. a- _ _ _ -A _-,-.

l I l l

1 i l l

I i

I f

FISH STUDIES i

j 1 ,

I ,

I I  !

I i i

I I

i 8

1  !

I -

l I i

I I

I

8. FISH STUDIES I 8.1 Fish Impingement Studies During all five phases of the special open cycle testing conducted in the years 1974-1978, fish impinged on Vermont Yankee's traveling screens at the intake structure were collected each day I and identified, counted, weighed, and measured. The results of these studies, summarized in the Phase V report (Aquatec 1979b),

provided the basis for the schedule of impingement studies, set forth in Vermont Yankee's amended NPDES permit, to be conducted during open cycle operation. However, the Technical Specifications of the operating license, which require that all fish impinged be I collected, have not been amended. Therefore, all fish impinged during open cycle operation in 1979 were collected.

A summary of the weight extremes and the extremes in total length of the fish species impinged in 1979 is given in Table 8.1.

In Table 8.2, the numbers and total weight in grams of each I impinged species are shown for each month of open cycle operation.

The fish species are listed in order of the decrehsing number of the species collected throughout open cycle operation in 1979.

The table also shows, for each month and for the year, the mean number and mean weight of fish impinged per day of open cycle operation in 1979. At the bottom of the table are listed the daily means and standard deviations, for both number and weight of fish impinged, that were observed for those months in the five phase open cycle test program.

l All daily means, both number and weight, observed in each open l

cycle month of 1979 were within the two standard deviations of the Phases I-V daily means for the corresponding months. In fact, only the mean number of fish impinged in February, 3.1 per day, exceeded

! I

I TABLE 8.1

SUMMARY

OF WEIGHT AND TOTAL LENGTH EXTREMES OF FISH SPECIES IMPINGED DURING OPEN CYCLE OPERATION 1979 Extremes Total Species Weight (g) Length (mm)

Catostomus commersoni (Lac 6pede)

White Sucker 1.7-17 59-l'3 Catostomus catostomus (Forster) g Longnose Sucker 54 182 g Cyprinus carpio Linnaeus Carp 23-28 114-122 Semotilus corporalis (Mitchill)

Fall fish 51 173 Semotilus atromaculatus (Mitchill)

Creek Chub 1.4-3.7 56-72 g Notemigonus crysoleucas (Mitchill) E Golden Shiner 2.3-87 63-202 Notropis hudsonius (Clinton)

Spottail Shiner Hybognathus nuchalis Agassiz Silvery Minnow 1.0-14 2.2-15 51-115 61-114 l

Juvenile Cyprinidae 0.1-2.2 25-61 Ictalurus nebulosus (LeSueur)

Brown Bullhead 2.0-24 55-132 Ictalurus natalis (LeSueur) g Yellow Bullhead 4.2-23 70-130 Anguilla rostrata (LeSueur) E American Eel 478 670 Fundulus diaphanus (LeSueur)

Banded Killifish 0.8-9.0 49-97 Morone americana (Gmelin)

White Perch 2.5-45 60-155 g Perca flavescens (Mitchill) 3 Yellow Perch 2.2-158 60-253 Etheostoma olmstedi Storer Tessellated Darter 0.6-4.0 46-75 Micropterus dolomieui Lac 6pede Smallmouth Bass 2.0-357 53-300 Micropterus salmoides (Lac 6pede)

Largemouth Bass 3.8-308 67-279 Lepomis gibbosus (Linnaeus)

Pumpkinseed 1.7-67 51-145 E Lepomis macrochirus Rafinesque Bluegill 1.4-218 51-207 E

Juvenile Lepomis 0.1-8.4 25-75 Ambloplites rupestris (Rafinesque)

Rock Bass 0.5-134 32-192

-178-I I

s l

TABLE 8.2 SUP94ARY BY MONTH OF NUMBER AND WEIGHT OF

  • FISH SPECIES IMPINGED DURING OPEN CYCLE OPERATION 1979 JAN FEB MAR APR MAY NOV DEC TOTAL Species No.-Wgt.(g) No.-Wgt.(g) No.-Wgt.(g) No.-Wgt.(g) No.-Wgt.(g) No.-Wgt. (g[ No.-Wgt. (g) No.-Wgt.(g)

Pumpkinseed , 12-89.0 18-178.1 84-473.6 424-2147.8 17-70.8 68-739.4 22-105.2 645-3803.9 Spottail Shiner 1-2.2 2-6.5 22-81.8 551-2611.6 16-75.3 2-5.2 8-43.5 602-2826.1 Rock Bass 1-1.0 17-40.0 387-1334.2 114-299.7 10-92.3 Yellow Perch 6-49.4 535-1816.6 3-27.5 19-578.0 413-2961.6 6-197.1 2-14.3 2-18.0 445-3796.5 Juvenile Lepomis33-121.6 48-188.5 48-89.7 73-110.8 5-8.7 70-100.7 White Perch 16-23.2 293-643.2 16-100.4 9-63.0 25-187.0 83-623.8 17-109.4 7-45.5 1-7.4 158-1136.5 Golden Shiner 1-3.0 98-681.9 6-18.8 Silvery Minnow 105-703.7 100-711.6 3-19.1 103-730.7 Bluegill 2-14.7 15-60.0 29-465.2 4-12.4 36-354.6 6-15.0 92-921.9

Smallmouth Bass 1-28.0 4-238.0 20-497.5 9-47.4 23-721.4 3-109.3 Fd 60-1641.6 Tesse11ated Darter 3-5.3 2-2.8 16-37.7 10-19.9 31-65.7 j Largemouth Bass 1-15.0 4-87.6 3-587.0 17-775.3 2-47.0 27-1511.9 Brown Bullhead 1-6.0 12-140.3 12-113.5 Banded Killifish 25-259.8 21-92.0 2-6.4 23-98.4 White Sucker 17-134.3 1-17.0 Juvenile Cyprinidae 18-151.3 7-6.8 1-0.1 8-6.9 Creek Chub .

3-6.9 Carp 3-6.9 1-28.0 1-23.0 2-51.0 Yellow Bullhead 2-27.2 American Eel 2-27.2 1-478.0 1-478.0 Longnose Sucker 1-54.0 Fa11 fish 1-54.0 1-51.0 1-51.0 TOTALS63-341.2 88-502.6 242-1872.5 2262-13733.2 222-1060.2 237-2855.1 66-418.0 3180-20782.8 No. Days of Open Cycle Operation 31 28 17 28 13 29 Daily Means 31 177 2.0-11.0 3.1-18.0 14.2-110.1 80.8-490.5 17.1-81.6 8.2-98.4 2.1-13.5 18.0-117.4 Daily Means Phases I-V) 1.0-66.3 1.2-15.3 23.6-248.0 71.9-692.3 8.9-113.5 7.7-140.8 2.3-46.0 19.3-212.7 Stnd. Dev. Phases I-V) 1.6-432.9 1.8-42.0 112.4-710.1 102.8-959.0 10.1-215.7 15.7-542.5 5.7-109.6 68.9-605.6

I the corresponding Phases I-V mean plus one standard deviation, 3.0 per day. Both the daily mean number and weight of fish impinged during 177 days of open cycle operation in 1979 were below the Phases I-V daily means for corresponding months.

8.2 Resident Finfish Studies In 1979, 1232 fish were collected at Vermont Yankee Sample Sta-tions 2 and 3, downstream of Vernon Dam,and 1229 fish were collected at Stations 4, 5, and 8, upstream of the dam. The locations of the sample stations are shown in Figure 8.1. The fish were taken in 66 collections by three capture methods - trap net, gill net, and seine haul. A summary by sample station and capture method of the fishing effort made and the numbers and weight of fish collected is shown in Table 8.3.

All fish collected were identified and their weight and total length were measured and recorded. Of the seventeen species observed in 1979 collections, eleven were collected both upstream and down-stream of Vernon Dam. Five species - carp, spottail shiner, silvery minnow, American eel, and largemouth bass - were observed only in collections north of the dam; chain pickerel was found only in the collections downstream of Vernon Dam. No species were collected in 1979 that had not been captured in surveys of previous years.

The data of the 1979 fish collections are summarized by species in Tables 8.4, 8.5, and 8.6. Table 8.4 shows for all .

collections the number, the total weight, and the extremes in weight and total length observed for each species. Tables 8.5 and 8.6 summarize the number and total weights of the species captured north and south of Vernon Dam. In addition, frequency distribu-tions by total length are shown in Table 8.7 for nine of the species.

The species compositions, by weight and by number, of the 1979 collections are graphed in Figures 8.2 and 8.3. These compositions are reduced to a percentage basis and shown i.. Figures 8.4 and 8.5, along with percentage compositions of earlier surveys to permit comparison with previous studies.

-180-I

I l' I s y SAMPLE STATIONS FISH I *

%t I

j CONN RIVER CHESTERFIELD I ....... y .r o sia Mws l C1Tmw '_' ~ ammmumme i

- Ett. E r.v'.Es I ,%

atuam

'~~,'

f I

BRATTLEBORO I

~- , J,/.

GUILFORD *f o r

I

  • l I

I t

'1

,s*%o" e m.

NE# H AMPSHIRE 5' \

l ,

g .-

I4 4" , R s) FNSDALE '

i j

' VERMONT YANKEE .,-j;ggi4,.gg NUCLE AR PLANTg ,.

=- 4 l VERMONT I @- ),s  !

n LN i  :

I /'2) l N

\

'"* '"GN'f7Q,_'

.._ ,..,s ., l I '

  1. kMvy .:* , , COL,rj 7, CO2.fe h l

MASSACHUSETTS /

FIGURE 8.1 I -181-

TABLE 8.3

SUMMARY

OF FISHING EFFORT AND RESULTS 1979

~l CAPTURE METHOD TRAP NET GILL NET SEINE HAUL TOTALS No. No. No. No. No.

SAMPLE No. Weight Net Set No. Weight Net Set No. Weight Seine No. Weight LOCATIONS Fish (g) Sets Hours Fish (g) Sets yours Fish (g) Hauls Fish (g)

Station 2 24 11187 5 117 0 0 0 0 0 0 0 24 11187 Station 3 209 49270 17 388 23 11342 5 118 976 159 4 1208 60771 E South of

' Vernon Dam 233 ~!457 22 505 23 11342 5 118 976 159 4 1232 71958 Station 4 179 43392 7 1 71 100 36173 6 140 809 5639 5 1088 85204 Station 5 2 929 2 47 80 50591 8 191 0 0 0 82 51520 Station 8 59 14509 7 161 0 0 0 0 0 0 0 59 14509 North of Vernon Dam 240 58830 16 379 180 86764 14 331 809 5639 5 1229 151233 All 473 119287 38 884 203 98106 19 449 1785 5798 9 2461 223191 Locations l m W m m m m M M M M M m M M M M M

I The. percentages by weight in the 1979 study were all within the ranges that had been observed in earlier surveys, including the weight percentage of white sucker. But the number of white I sucker taken in the 1979 collections represented a much greater percentage of the year's catch than in prior studies. This is attributable to the capture in seine hauls on 22 June 1979 of 1030 juvenile white suckers; 969 near Stebbin Island, south of Vernon Dam, and 61 along the New Hampshire shore of the river at Station 4. This great increase in the relative numbers of white sucker captured resulted in a smaller percentage by number for smallmouth bass and rock bass than had been found in earlier sur-veys.

Scale samples for age determination were taken from all white perch, yellow perch, walleye, and smallmouth bass collected in I 1979 that had a total length more than 50 millimeters. The results of the reading of these scales, along with the age-growth data collected in years prior to Vermont Yankee's operation with open cycle cooling, are shown in Tables 8.8 through 8.11. The data on number of annuli and mean total length from these tables are

~

shown graphically in Figures 8.6 through 8.9.

The points of difference that are found between the 1979 and the 1969-1973 age-growth curves for white perch, yellow perch, and smallmodth bass occur when few specimens in an annulus class were captured. For walleye, however, the age-growth data of 1979 again indicate, as did the data of 1977 and 1978, an enhanced I growth rate compared to the statistics of the years 1969-1973.

The number of walleye, though, in the sample of each of the three years has been small - 28 in 1977, 39 in 1978, and 23 in this year.

I

!I I

-183-

.- s-p .- as -- u - + - - m.s- xm .. - - - a.---- - -,_ ,+-

I I

I I

I I

I I

I I

I l

I I

I I I

I I

I I i l

i 1

I TABLE 8.4 FISHES OF THE CONNECTICUT RIVER IN THE VICINITY OF VERNON, VERMONT ALL COLLECTIONS 1979 Total Total Weight length Number Weight Extremes Extremes In Species Captured In Grams In Grams Millimeters Catostomus commersoni (Lac 6pBde)

White Sucker 1112 57637 <0.1 -1308 12-499 Cyprinus carpio Linnaeus I Carp Notemigonus crysoleucas (Mitchill) 15 58622 2270-5560 535-685 Golden Shiner 299 3809 2.9-152 69-255 Notropis hudsonius (Clinton)

Spottail Shiner 46 309 3.1-15 67-120 Hybognathus nuchalis Agassiz I Silvery Minnow Juvenile Cyprinidae Ictalurus nebulosus (LeSueur) 30 125 212 74 3.8-14 0.1-0.7 71-115 28-47 Brown Bullhead l Esox niger LeSueur Chain Pickerel 8

2 1868 641 10-442 285-356 86-320 360-402 Anguilla rostrata (LeSueur)

I American Eel Fundulus diaphanus (LeSueur)

Banded Killifish 40 1 1362 124 1362 0.7-7.3 800 41-82 I Morone americana (Gmelin)

White Perch Perca flavescens (Mitchill) 196 42056 17-407 110-297 Yellow Perch 246 14714 5-252 91-275 I Stizostedion vitreum (Mitchill)

Walleye Micropterus dolomieui Lac 6pBde 23 12715 149-1560 272-550 I Smallmouth Bass Micropterus salmoides (Lac 6pede)

Largemouth Bass 36 1

8629 705 9-860 705 86-404 345 Lepomis gibbosus (Linnaeus)

Pumpkinseed 177 4057 3.5-195 58-207 Lepomis macrochirus Rafinesque Bluegill 34 6595 113-392 175-240 I Ambloplites rupestris (Rafinesque)

Rock Bass 70 8162 1.5-256 45-239 i TOTALS 2461 223191 I

-185-

I I-TABLE 8,5 FISHES OF THE CONNECTICUT RIVER IN THE VICINITY OF VERNON, VERMONT ALL COLLECLONS NORTH OF VERNON DAM 1979 Total Total Number Weight Species Captured In Grams Catostomus commersoni (Lac 6pede)

White Sucker 107 30970 Cyprinus carpio Linnaeus -

Carp 15 58622 Notemigonus crysoleucas (Mitchill)

Golden Shiner 295 3302 Notropis hudsonius (Clinton)

Spottail Shiner 46 309 Hybognathus nuchalis Agassiz Silvery Minnow 30 212 Juvenile Cyprinidae 125 74 Ictalurus nebulosus (LeSueur)

Brown Bullhead 3 35 Anguilla rostrata (LeSueur)

American Eel 1 1362 Fundulus diaphanus (LeSueur)

BanJed Killifish 33 114 Morone americana (Gmelin)

White Perch 127 23284 Perca flavescens (Mitchill)

Yellow Perch 235 14168 Stizostedion vitreum (Mitchill)

Walleye 13 8512 3 Micropterus dolomieui Lac 6pBde E.

Smallmouth Bass 16 3938 Micropterus salmoides (Lac 6p?de)

Largemouth Bass Lepomis gibbosus (Linnaeus)

Pumpkinseed 1

160 705 3488 l

Lepomis macrochirus Rafinesque Bluegill 2 307 Ambloplites rupestris (Rafinesque)

Rock Bass 20 1831 TOTALS 1229 151233

-186-I I

I I

TABLE 8,6 FISHES OF THE CONNECTICUT RIVER IN THE VICINITY OF VERNON, VERMONT I ALL COLLECTIONS SOUTH OF VERN0N DAM 1979 Total Total Number Weight .

Species Captured In Grams Catostomus commersoni (Lac 6pBde)

White Sucker 1005 26667 Notemigonus crysoleucas (Mitchill)

Golden Shiner 4 507 Ictalurus nebulosus (LeSueur)

I Brown Bullhead Esox niger LeSueur Chain Pickerel 5

2 1833 641 I Fundulus diaphanus (LeSueur)

Banded Killifish Morone americana (Gmelin) 7 10 White Perch I Perca flavescens (Mitchill)

Yellow Perch 69 11 18772 546 Stizostedian vitreum (Mitchill) 3 Walleye 10 4203 E Micropteris dolomieui Lac 6p3de Smallmu e O ss 20 4691  :

Lepomis gibbosus (Linnaeus)

Pumpkinseed 17 1469 Lepomis macrochirus Rafinesque t Bluegill 32 6288 I Ambloplites rupestris (Rafinesque)

Rock Bass 50 6331 TOTALS 1232 71958 I

I I

-187-I

TABLE 8.7-1 FREQUENCY DISTRIBUTION OF FISH SPECIES BY TOTAL LENGTH 1979 Total SMALLMOUTH Length WHITE PERCH YELLOW PERCH BASS PUMPKINSEED BLUEGILL ROCK BASS (mm) No. Wgt.(g) No. Wgt.(g) No. Wgt.(g) No. Wgt.(g) No. Wgt.(g) No. Wgt.(g) 0-20 21-40 41-60 1 4 3 8 61-80 133 1035 2 10 81-100 16 138 3 31 4 50 1 20

, 101-120 6 193 110 1434 4 67 2 55 5 143 H 121-140 3 80 1 14 10 51 5 3 127 E$ 141-160 1 68 20 834 5 207 9 696 5 367 8

161-180 13 1032 9 460 5 299 9 1105 3 357 18 1915 181-200 17 1902 21 2089 2 164 8 1302 14 2278 23 3444 201-220 26 4114 39 5096 1 195 13 2619 7 1383 221-240 49 9988 16 2495 1 168 4 1341 3 745 241-260 44 11203 11 1966 2 432 261-280 32 10504 1 122 281-300 8 3052 ' 1 31 7 301-320 3 1265 321-340 2 983 341-360 4 2384 361-380 2 1438 381-400 401-420 1 860 TOTALS 196 42056 246 14714 36 8629 177 4957 34 6595 70 8162 g g g g m m M M M M M M M M E E E E E

I I TABLE 8.7-2 FREQUENCY DISTRIBUTION OF FISH SPECIES BY TOTAL LENGTH 1979 tal gg WHITE SUCKER CARP WALLEYE (mm) No. Wgt.(g) No. Wgt.(g) No. Wgt.(g)

I 0-20 21-40 41-60 1027 3 <0.1 169 61-80 I 81-100 101-120 121-140 I 141-160 161-180 181-200 201-220 221-240 6 868 241-260 261-280 l 212 1 2 313 281-300 2 512 2 430 301-320 4 1435 1 258 321-340 6 2468

'l 341-360 4 1771 1 693 1 342 e 361-380 6 3504 5 2157 381-400 6 4011 4 1983 401-420 I 421-440 441-460 13 19 8

9856 16535 7977 2

2 1

1126 1315 754 461-480 5 5794 I 481-500 501-520 2 2525 1 972 521-540 1 2270 1 1505 I 541-560 561-580 581-600 1

1 2665 3460 1 1560 501-620 1 3064 621-640 1 4170 641-660 3 13040 661-680 5 23700 681-700 1 5560 TOTALS 1112 57637 15 58622 23 12715 I -

-189-I i

I GRAMS LBS. ( ;oog) 350 -, 160

,4 0 _ RESIDENT FISH SPECIES I

COMPOSITION BY WEIGHT

' 1979 SURVEY 250 -

g 100 -

o 200 -

5 I N 150 -

80 -

60 -

40 _

' ' ~

o.

o A A ?A m-an _ m l =>

g3

5

?o Es 33 10 5

$s ET e

Er d'

5 5*

a= &E on oc *: g8 8 5:

  • o ;;

l 5E E! fB  !! El FIGURE 8.2 ss e D 8 i

noo - RESIDENT FISH SPECIES I

1000 - COMPOSITION BY NUMBER

[ 1979 SUHVEY I 900 -

800 -

/

y I

m

$ 700 -

9 j '600 -'

I /

I /

n h/ .-

$ $_La f  :

J I $h tr uu a

s i;

t uu EE a

s..u i r, .

f.s 79 5

a :;

S a,

& h

$5 g ?,

td yu a

.a

~?

I :,

4&

5 .-

it I FIGURE 8.3

-191-

-26T-PEHCCf4T DY WEIGitT

., .- y .. -- o g , ,, , , .. ..' o u '

I I I i  ! l I I I AT: S T ~ ' .is ;1959

-- -29.Sett_ is,3 '974

  • w__ ists g ,,

C C '.".* E 4 5 0 ?. i . _ _ . ,,,,ivre l

C Y PD'fiU S C AR PIO I T m

thD'GE t 005 "U CYPRINICAE o

m Z

--4 m I MORONE a

(D I

m t.M E R I C A rJ A - - . O O

o y C *

7) T Sj m

O (n PERCA 7 {

FLAVESCEriS - ' -

g g 2 T

, I '

CD m

O MICRCPTERUS

  • R I

DOLOMIEUI 4 g a M a

~E g -4 0 4 LEPOMIS SPP.

I m

I A Mi>LOPLIT ES Q PUPESTRIS Q

I ALL GTHER SPECIES [.

-E6T-PERCENT BY NUMBER O O m

'O w

O a

C) ta O

O y '"

  1. 8' N' i i i i i i I L I

.-1969-70

,a 7 ; p ir;*f g g  % ' ~~ Surver ,99,1974

- g. 1975 1976 ,9,7 l t y.* *> i y i; O NI r-- - --

. _ ,,,, is7e

YPRINUS C t. R P;O 14 1

T D1 IND GE'.ces m O

C Y P: s t.! Ot. E __,

g Di y> Lo m

7 f.t 0 4 0.N E n t. v E n ' C /. N t. g .

6 o 7

-l C .

D m  % 71 O o, w C.D

~

a- E TO C A w" d

  1. t.i. i. ! c i N s ~~ -

O to E

Z T D1 CD O

.=s. -< --

t>:CDCPit 4US A Z U)

DOL OY.E W

' 9, l

% g CD m

L EPO'/ % S i P.

  • _- I t.v9;.08 LitCS ,

hsTE5DLS a

I 3

1Lt V*~4

'*"C:C '> .

I I

TABLE 8.8 AGE-GROWTH DATA - WHITE PERCH ALL COLLECTIONS Number 1969 - 1973 1979 of Number Total Length (rmn) Number Total Length (Imn)

Annuli Specimens Average Ext rem _e, ; Specimens Average Extremes 0 47 91 62-130 1 116 -

1 8 178 169-194 31 174 113-206 2 94 202 155-245 30 222 178-257 3 253 231 175-276 57 236 165-270 4 112 244 204-303 44 252 216-297 5 18 267 239-311 16 256 218-295 6 5 284 270-308 9 267 238-293 7 0 - -

3 264 251-287 COLLECTIONS NORTH OF VERNON DAM Number 1969 - 1973 1979 of Number Total Length (rmn) Number Total Length (Imn)

Annuli Specimens Average Extremes Specimens Average Extremes 0 43 90 62-130 1 116 -

1 7 176 169-180 29 173 113-206 2 64 198 155-235 19 216 178-234 3 118 224 175-276 30 230 165-262 4 48 239 204-285 25 244 221-297 5 12 269 247-311 9 248 218-270 6 4 278 270-296 6 259 238-283 7 0 - -

3 264 251-287 COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979 of Number Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 4 92 68-110 0 - -

1 1 194 -

.2 186 184-188 2 30 210 178-245 11 232 207-257 3 135 235 186-270 27 242 200-270 4 64 247 213-303 19 263 216-290 5 6 263 239-285 7 267 240-295 6 1 308 -

3 283 272-293 7 0 - -

0 - -

-194-

AGE-GROWTH GRAPHS -- WHITE PERCH I mm.

350 -

in.

- 13 300 - - 12 ,

I

- Il 6' .*. .. . .

P50 -- 10 #;-

I 200 --8 e .

/...-r z _7 ,

150 --6 ,

-5 ,'

10 0 --4 '

1969-1973

_3 1979 - ~ ~ - - - -

50 --2 i

-1 0 -- O I , , , , , , ,

O I 2 3 4 5 6 7 NUMBER OF ANNULI NORTH AND SOUTH OF VERNON DAM m m. in. m m. in.

350 - 350 -

- 13 - 13 300 - - 12 300 -

- 12

- Il j. - Il ,, *

'~~ , '*,

250 -- 10 ,

250 -- 10

-9 ,,, g' -9 *-

r 200 - -8 f 200 --8

~ ,7 g -7 -7

$ 150 --6 /

, 15 0 --6

-5 / -5 10 0 --4 10 0 --4 o

-3 -3 50 --2 50 --2

-1 -l 0 0 , , , , , , g 0--O , , , , , , ,

O I 2 3 4 5 6 7 0 1 2 3 4 5 6 7 r NUMBER OF ANNULI NUMBER OF ANNULI NORTH OF VERNON DAM SOUTH OF VERNON DAM FIGURE 8.6

-195-

TABLE 8.9 AGE-GROWTH DATA - YELLOW PERCH ALL COLLECTIONS Number 1969 - 1973 1979 of Number Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 45 81 45-118 9 99 91-113 1 44 122 67-183 30 135 93-175 2 80 192 156-235 35 196 160-220 3 71 216 158-249 23 219 192-252 4 74 234 208-266 19 233 205-255 5 50 251 217-280 5 235 219-256 6 23 270 225-295 0 - -

7 9 281 265-302 0 - -

8 2 285 -

0 - -

9 0 - -

0 - -

10 1 305 -

0 - -

COLLECTIONS NORTH OF VERNON DAM Nuraber 1969 - 1973 1979 g of Number Total Length (mm) Number Total Length (mm) g Annuli Specimens Average Extremes Specimens Average Extremes 0 22 83 45-118 6 96 91-105 1 30 126 67-183 27 135 93-175 2 73 190 156-235 32 196 160-220 3 49 218 170-249 23 219 192-252 4 37 232 208-266 18 233 205-255 5 22 251 217-271 5 235 219-256 6 4 271 261-282 0 - -

7 2 269 265-272 0 - -

g 8 2 285 -

0 - -

E 9 0 - -

0 - -

10 1 305 0 I

COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979 of Number Total Length (rmn) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes E

O 23 80 47-101 3 105 97-113 5 1 14 115 101-156 3 129 106-145 2 7 209 174-230 3 192 175-203 3 3 22 212 158-241 0 - -

g 4 37 237 211-262 1 247 -

5 28 250 230-280 0 - -

6 19 270 225-295 0 - -

7 7 285 267-302 0 - -

8 0 - -

0 - -

9 0 - -

0 - -

10 0 - -

0 - -

-196-

AGE-GROWTH GRAPHS - YELLOW PERCH I m m. in. i 350 -

- 13 300 -- 12

  • I -n , .--

250 - 10

/,/ - .

-9 jt --- --- *  ;

I 200 --8 ,J/ '

H- 4

@ -7 ,

/

w '

3 150 --6 / ,

N

-5 I 10 0 --4 <

o f

,r',

1969-1973

-3 50 --2 3979 ~ ~ ~ ~ ~ ~ - -

-l 0--0 y , , , , , , , , ,

O I 2 3 4 5 6 7 8 9 10 NUMBER OF ANNULI NORTH AND SOUTH OF VERNON DAM m m. in. mm. in.

I 350 -

- 13 350 -

- 13 l 30 0 -- 12 e 300 - - 12 I -u _,/' -n

/  !

250 -- 10 250 -- 10 ,

l

_g j d* --* _g I 200 --8 F

,/'<

200 --8

. *7 se Q -7 l ~7 C #

J 15 0 --6 / 150 --6

-5 ,I I -5

/.

,r*.

10 0 --4 i f' 100 --4

~3 -3 50 --2 50 --2

-1 -l 0--O , , , , , , , , , , 0--O ,

O I 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 I NUMBER OF ANNULl NORTH OF VERNON DAM FIGURE 8.7 NUMBER OF ANNUll SOUTH OF VERNON DAM

-197-l

t de ' 1 t 9$>9)&

//// he y/ y #%,y ,

TEST TARGET (MT '3)

I l.0 gmgu g a gn

,_ m =

l,l # lllb p

l.8 -

I.25 1.4 1.6

_=

=

1, 7

MICROCOPY RESOLUTION TEST CHART 4ll/%

/4

  • R>///?"

c, /

, 4+}e;& 4 -

, j ~] T .;;;[,y r

':: f%

i . ';G c -

8

TABLE 8.10 AGE-GROWTH DATA - WALLEYE ALL COLLECTIONS Number 1969 - 1973 1979 of Number Total Length Onm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 4 136 119-151 0 - -

1 6 188 163-211 4 281 272-295 2 13 286 242-337 2 360 355-365 3 18 337 275-380 7 369 306-390 4 22 344 291-381 6 420 380-485 5 32 375 303-407 1 427 -

6 8 396 321-435 1 437 -

7 6 473 425-527 2 544 538-550 COLLECTIONS NORTH OF VERNON DAM Number 1969 - 1973 1979 of Number Total Length Omm) Number Total Length Onm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 3 134 119-151 0 - -

1 5 190 163-211 2 288 282-295 2 6 274 246-320 0 - -

3 12 331 275-377 5 363 306-390 4 12 344 291-381 4 438 405-485 5 22 375 337-407 0 - -

6 8 396 321-435 0 - -

7 4 478 433-527 2 544 538-550 COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979  !

of Number Total Length (rmn) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 1 141 -

0 - -

1 1 180 -

2 274 272-276 2 7 296 242-337 2 360 355-365 3 6 350 318-380 2 384 380-387 4 10 345 313-360 2 384 380-387 5 10 373 303-402 1 427 -

6 0 - -

1 437 -

7 2 463 425-501 0 - -

-198-

AGE-GROWTH GRAPHS - WALLEYE I m m. in.

600 I

o ,

SUO - /

I -- 18 400 -- 16

/ .....

/. ,

I r H

$ 300

-- 14

~IL

.s

/

/ ~~. ./j, ././.

./

w - <

I -- 10 J ,

200 --8 ,

1 69-1973 150 -_- 6 .

10 0 --4 1979 ~~-~~--

t -

50 --2 $

I 0--O 0

4 1

g 2

g 3 ,4 g i 5 6 7

y 8

NUMBER OF AN NULI NORTH AND SOUTH OF VERNON DAM i

m m. in, mm. in. I S00 _ 600 _

- 22

_- 22 500 -- 20 500 - . .

-- 18 -- 18 400 -- 16

,r ' . 400 -- 16_

,,,/

I

- - 14

- ./

-- 14 300 -- 12

' .7.-

./

I l

O 300 -- 12 ,

.[ ,/

m - -

I -

- 10 -- 10 l 200 --8 200 --8 l

- :6 / - 26 /  !

I j

10 0 --4 loo --4 )

l

- :2

-2 2 l

--O , , , , , , , g 0--O g , , , , 3 i i O I 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 I NUMBER OF ANNULl NORTH OF VERNON DAM FIGURE 8.8 NUMBER OF ANNULI SOUTH OF VERNON DAM

-199-

I TABLE 8,11 AGE-GROWTH DATA - SMALLMOUTH BASS I ALL COLLECTIONS

-Number 1969 - 1973 1979 of NumEr Total Length (mm) Number Total Length (mm)

Annuli Specimens Average Extremes Specimens Average Extremes 0 16 68 45-102 8 118 86-153 1 25 164 108-213 8 160 102-184 2 31 206 161-255 2 180 172-188 3 59 239 197-293 3 254 225-294 4 50 275 220-315 4 306 246-337 5 36 305 262-350 4 342 310-360 E 6 16 346 305-376 3 366 356-378 3 7 4 370 343-406 1 404 -

8 1 357 -

0 - -

9 2 412 398-425 0 - -

10 0 - -

0 - -

11 1 411 -

0 - -

COLLECTIONS NORTH OF VERNON DAM Number 1969 - 1973 1979 3 of Number Total Length (mm) Number Total Length (Imn) E Annuli Specimens Average Extremes Specimens Average Extremes 0 5 50 45-57 3 128 86-153 1 21 161 108-213 4 152 102-184 2 29 205 161-255 1 188 -

3 44 235 197-293 1 244 -

4 23 272 220-315 0 - -

5 23 300 262-339 4 342 310-360 6 12 339 305-362 1 364 -

7 2 386 365-406 0 - -

8 0 - -

0 - -

9 1 398 -

0 - -

10 0 - -

0 - -

11 0 - -

0 - -

COLLECTIONS SOUTH OF VERNON DAM Number 1969 - 1973 1979 of Number Total Length (mm) Number Total Length (mm)

Annuli Specimen.- Average Extremes Specimens Average Extremes 0 11 76 51-102 5 111 96-133 1 4 173 150-207 4 166 154-171 2 2 225 211-238 1 172 -

3 15 252 232-274 2 260 225-294 l 4 27 279 245-305 4 306 246-337 5 13 312 290-350 0 - -

E l 6 4 346 352-376 2 367 356-378 g i 7 2 354 343-364 1 404 -

8 1 357 -

0 - -

9 1 425 -

0 - -

10 0 - -

0 - -

11 1 411 -

0 - -

-200-

E AGE-GROWTH GRAPHS - SM ALLMOUTH B ASS L.

m m m. in.

450 -

400 -- 16 #

,e 350 -- 14 e' '

- ,r 300 -- l2 p' e

,I .f f 250 -- 10 '[

g _

- j-3 200 --8 *s I

150 --6 ,'

n - s' 10 0 --4 1969-1973

~

o 1979 -------

50 --2 0--O , , , , , , , , , , ,

{ O I 2 3 4 5 6 7 8 9 10 ll NUMBER OF ANNULI NORTH AND SOUTH OF VERNON DAM m m. in. m m. in.

400 - 450 -

[ -

400 -- 16 , 4co _- 16

~

~. l 350 -- 14 e

j-330 - 14 ,/  ;

p 300 -- 12

- /,

300 -- 12

' l*

x .'/

t- 250 -- 10 250 -- 10

[$a 200 --8 -

  • / 200 --8

,1

/

/ -

{ 150 --6

,$' 15 0 --6 l

10 0 --4 10 0 --4' o

30 --2 o 50 --2 0 -- - O , , , , , , , , , , , 0 -- 0 , , , , , , , , , , ,

O I 2 3 4 5 6 7 8 9 10 ll 0 1 2 3 4 5 6 7 6 9 10 Il

{ NUMBER OF ANNULI NORTH OF VERNON DAM NUMBER OF ANNUL >

SOUTH OF VERNON DAM FIGURE 8.9

~ '

-201-r- g

I I LITERATURE CITED APHA et al. 1976. Standard methods for the examination of water and wastewater. 14th edition. Published jointly by American Public Health Association, American Water Works Association and Water Pollution Control Federation; Washington, D.C.

Aquatec, Incorporated. 1973. Ecological studies of the Connecticut River, Vernon, Vermont. Report II, June 1971-December 1972.

Report prepared for Vermont Yankee Nuclear Power Corporation.

1974. Ecological studies of the Connecticut River, Vernon, Vermont. Report III, January-December 1973. Report prepared for Vermont Yankee Nuclear Power Corporation.

1975. Ecological studies of the Connecticut River, Vernon, Vermont. Report IV, January-December 1974. Report prepared for Vermont Yankee Nuclear Power Corporation.

1976. Ecological studies of the Connecticut River, Vernon, Vermont. Report V, January-December 1975. Report prepared for Vermont Yankee Nuclear Power Corporation.

1977a. Ecological studies of the Connecticut River, Vernon, Vermont. Report VI, January-December 1976. Report prepared for Vermont Yankee Nuclear Power Corporation.

I 1977b. Hydrothermal and biological studies, Connecticut River, Vernon, Vermont. Phase IV September 1976-May 1977.

Report prepared for Vermont Yankee Nuclear Power Corporation.

1978. Ecological studies of the Connecticut River, Vernon, Vermont. Report VII, January-December 1977. Report prepared for Vermont Yankee Nuclear Power Corporation.

1979a. Ecological studies of the Connecticut Rive.r, Vernon,.

Vermont. Report VIII, January-December 1978. Report. prepared for Vermont Yankee Nuclear Power Corporation.

1979b. Hydrothermal and biological studies, Connecticut River, Vernon, Vermont. Phase V October 1977-May 1978. Report prepared for Vermont Yankee Nuclear Power Corporation.

Webster-Martin, Incorporated. 1971. Ecological studies of the I Connecticut River, Vernon, Vermont. Preoperational report.

Report prepared for Vermont Yankee Nuclear Power Corporation.

I

-203-I