ML19294A571
| ML19294A571 | |
| Person / Time | |
|---|---|
| Issue date: | 12/07/1978 |
| From: | Lanning W NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES) |
| To: | Evan Davidson, Tong L NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES) |
| References | |
| NUDOCS 7812210330 | |
| Download: ML19294A571 (47) | |
Text
i-y?
[.
DEC 7 1973 MEMORANDUM FOR:
L. S. Tong, Assistant Cirector for Water Reactor Safety Research Division of Reactor Safety Research THRU:
Edwin II. Davidson, Acting Chief onicTN AL SIGNI:D BY Systems Engineering Branch E. II. DAVIDSON Division of Reactor Safety Research FR0!h Wayae D. Lanning Systems Engineering Branch Division of Paactor Safety Research
SUBJECT:
SEMISCALE REVIEW GROUP MEETING
SUMMARY
A meeting of the Semiscale Review Group took place on November 9,1978, during the Sixth Water Reactor Safety Information Meeting at the National Bureau of Standards. The purpose of the meeting was to discuss the forthcoming small break test, the two pipe downconer characterization tests and the resalts of the analyses of the mass depletion phenomena observed in the Series 7 integral test.
A list of the attendees and a meeting summary with the slides useJ in the presentations are enclosed.
95kN$$ENSBY ET/DAVIDSD.N
'>r,m : D. Lanning 7 812 210 33c4 SY-s Engineering Br<
is
- en of Reactor Sa'
Enclosures:
As state !
Semiscale cc w/encls:
Review Group Me:"
Distribution
]
Subject LSTong
<! 2) ' _ _
Chron CEJohnson Cir WDLanning Branch R/F WDLanninc f
f i: n I qSR.W SE.-
9L g;bsd g.._
M/78
'78--
v om.
I g.
SEMISCALE REVIEW GROUP MEETING ATTENDEES NOVEMBER 9, 1978 A. Bates, NRC/ACRS M. I. Meerbaum, B&W J. A. Block, Creare, Inc.
D. J. Olson, EG&G G. F. Brockett, ITI K. I. Parczewski, NRC/NRR J. F. Campbell, NII/U.K.
W. Riebold, C.E.C./ Euratom /J.R.L. Ispra J. M. Cozzuol, EG&G P. Rothe, Creare, Inc.
P. J. Docherty, Westinghouse K. T. Routledge, NPC(W), England P. R. Griffith, MIT T. K. Samuels, EG&G J. Guttmann, NRC/ DSS L. O. Saukkariipi, EG&G (Finland)
D. J. Hanson, EG&G B. W. Sheron, NRC/ DSS S. E. Jacobs, Westinghouse W. D. Stacy, Creare, Inc.
W. J. Johnson, Westinghouse R. J. Skwarek, Westinghouse W. D. Lanning, NRC/RSR J. F. Kapinos, Combustion Engineering T. K. Larson, EG&G L Ybarronco, EG&G G. N. Lauben, NRC/ DSS W. W. Bixby, DOE Enclosure.
a g '.
SEMISCALE REVIEW GROUP MEETING
SUMMARY
A meeting of the Semiscale Review Group took place on November 9,1978, during the Sixth Water Reactor Safety Information Meeting at the flational Bureau of Standards.
The small break test, the two pipe characterization separate effects tests and the results of the Series 7 integral test were discussed. A summary of these discussions follows:
D. Hanson, EG&G, summarized the efforts which have been completed fur the forthcoming small break test.
RELAP-4, MOD-5 and MOD-6 were used to calculate the break size which would uncover the core to the midplane. The two versions of the same code computed dif,erent results.
Efforts are continuing to explain the differences.
The hardware configuration for the small break was discussed. The break flow measurements will be located downstream of the rupture discs. Although some concern had been previously expressed concerning the accuracy of this type of break flow measurement, the Review Group did not share this concern.
P. Griffith, MIT, suggested that the inventory in the system using differential pressure data could be used to obtain the treak flow and validate the break flow measurements.
J. Block, Creare, Inc., summarized a proposal to conduct the two pipe characterization tests in a transparent model of the Semiscale
4 g Semiscale Review Group Meeting Summary downcomer.
These tests would be steady-state at ambient pressure and without wall heat transfer effects. The major advantages of the facility would be to visualize flooding behavior and to qualify the effects of instrumentation on counter-current flow phenomena.
The primary benefit of these tests would be to reduce the number of transient tests required in the Semiscale facility.
D. Hanson, EG&G, summarized an alternate program for conducting the two pipe characterization tests in the Semiscale facility.
The prefered plan would include only transient tests.
It was the EG&G's position that the need for steady-state counter-current flow data had not been established.
In addition, since transient tests would still be required in addition to steady-state testing, the task of characterizing two pipe counter-current behavior could be accomplished in the same test series.
P. Dockerty and W. Johnson, Westinghouse, indicated that steady-state characterization of the two-pipe downcomer was required in order to compare their flooding correlations to the one obtained in the characterization tests for the comparisons of the predictions to the data.
In addition, transient tests introduce several feedback uncertainties which cannot be separated from downcomer behavior. The steady-state tests also provide a repeatable data base for comparisons to annuli data.
a Semiscale Review Group Meeting Summary J. Cozzuol, EG&G, presented the status of the analyses of Series 7 Integral Test (S-A7-6, S-B7-6, S-07-6 and S-04-6) which lead to the conclusion that the metal heat transfer in the downcomer was the major contributor to the mass depletion phenomena in the downcomer.
The preliminary results of pust-test analyses were presented which indicated that the RELAP-4 code appeared to be capable of predicting mass depletion phenomena. The code had predicted only 140 seconds of the transient.
A copy of the slides used in the above presentations are attached.
']). IlANsod BREAK SIZIllG CALCULATIONS CONDUCTED 011 SEVERAL DIFFERENT CODES e
RELAP4 - Mon-5 e
RELAP4 - Moo-6 e
RELAP5 O
timccd
SUMMARY
OF UNIQUE FEATURES OF SMALL BREAK llARDilARE e
COMMUtlICATIVE 10% BREAK e
MEASUREMEllTS IllCLUDED DOWilSTREAM OF BREAK e
BROKEtl LOOP IflSTRUMENTATIOil UPGRADED
ffhNSod SMALL BREAK STATUS BREAK SIZE EVALUATION e
e llARDWARE CONFIGURATION e
SCHEDULE
//AA/ sow OBJECTIVES OF TWO PIPE DOWNCOMER CHARACTERIZATION TESTS g
DETERMIllE SEllSITIVITY OF SYSTEli RESP 0flSE TO ilARDWARE C0flFIGURATI0tl EVALUATE BASIC COUflTERCURREllT FLOW BEllAVIOR
Hsa ced SEVERAL llARDWARE CONFIGURATIONS NEED CilARACTERIZATION UPPER ANNULUS RESISTANCE ADJUSTER CROSS 0VER PIPES TWO PIPE AREA SPLIT INFLllENCE OF FLOW INSTRUMENTATION
NANSod O
POSSIBLE USES OF BASIC COUllTERCURRENT FLOW INFORfMTION FOR TWO PIPE SYSTEM g
INDICATION OF POIllTS OF INSTABILITY e
CODE ASSESSi4ENT FOR LATER TWO PIPE INTEGRAL TESTS e
INDICATI0tl 0F Sli41LARITY TO SIllGLE PIPE AND ANilulUS
/Mvsed APPROACllES TO PERFORMIllG TWO PIPE CilARACTERIZATION TESTING 9
INPLACE TESTING PROTOTYPIC HARDWARE SATISFY BOTH OBJECTIVES e
ALTERNATE SYSTEM IESTING llARDWARE INTEGRAL IESTS IN PLACE COUNTERCURRENT FLOW TESTS IN SIMPLIFIED GEOMETRY
f/ased INTEGRAL TESTS THAT WOULD CilARACTERIZE TWO PIPE D0llNCOMER HARDWARE UPPER ArittuLUS RESISTArlCE ADJUSTER 3 - 5 TESTS e
CROSSOVER PIPES 1 - 2 TESTS TWO PIPE AREA SPLIT 1 - 3 TESTS FLOW lilSTRUMEtiTATI0tt 1 TEST e
//Avsod ALTERNATE SYSTEM TESTING 0FFERS ADVANTAGES IN SCllEDULE AND COST e
SCHEDULE SAVIllGS OF 6 WEEKS e
COST SAVIllGS UP To $200 K
T Gi w ic DRAFT OBJECTIVES THE CHARACTERIZATION OF A FULL SIZE MODEL OF THE SEMISCALE MOD-3A TWO-PIPE DOWNCOMER TO:
PROVIDE A STEADY STATE DATA BASE TO:
REDUCE THE TECHNICAL RISK ASSOCIATED WITH THE TWO-PIPE DOWNCOMER, ASSIST IN THE DIAGNOSIS OF INTEGRAL SEMISCALE TESTS, AND ALLOW UHI BEHAVIOR TO BE UNDERSTOOD SEPARATELY FROM DOWNCOMER BEHAVIOR.
HELP DETERMINE THE OPTIMUM SETTING OF UPPER ANNULUS BAFFLES AND HENCE MINIMIZE THE NUMBER OF SEMISCALE INTEGRAL TESTS REQUIRED.
IDENTIFY UNDESIRABLE BEHAVIOR, IF ANY, AND INCREASE CONFIDENCE IN THE INTEGRAL TEST PROGRAM.
GUIDE SEMISCALE TEST CONDITION SELECTION, PARTICULARLY WITH RESPECT TO ECC PARAMETERS.
DETERMINE THE SENSITIVITY OF PENETRATION AND FLOODING TO DESIGN-SPECIFIC GEOMETRY, SUCH AS:
INSTRUMENTATION BLOCKAGES, TRANSITION REGIONS, UPPER ANNULUS AND LOWER PLENUM DOWNCOMER N0ZZLES, CROSSOVER PIPES, BAFFLES, AND SLANTED SECTIONS.
PR0v!DE DATA WHICH WILL ASSIST IN RELAP MODELING OF MOD-3A DOWNCOMER BEHAVIOR.
DRAFT APPROACH AND FEATURES IRANSPARENT, FULL-SIZE MODEL OF SEMISCALE fl0D-3A TWO-PIPE DOWNCOMER, UPPER ANNULUS, AND LOWER PLENUM.
STEADY, CONTROLLED BOUNDARY CONDITIONS.
NEGLIGIBLE WALL HEAT TRANSFER.
USE EXISTING STEAN, WATER, MECHANICAL, INSTRUMENTATION, AND DATA ACQUISITION SYSTEMS AT CREARE TO THE MAXIMUM EXTENT POSSIBLE.
RAPID MAPPING OF CHANNELLING CHARACTERISTICS OF TWO-PIPE DOWNCOMER AS FUNCTION OF BAFFLE SETTING, STEAM FLUX, WATER TEMPERATURE, AND WATER FLOW RATE.
DETAILED CHARACTERIZATION OF FLOODING BEHAVIOR IN CRITICAL REGIONS.
e 1M DRAFT TRANSPARENT VS STEEL VISUALIZATION -- CRITICAL FOR OBTAINING:
EXTREMELY RAPID MAPPING OF OPERATIONAL CHARACTr,ISTICS c
WITH RESPECT TO CHANNELLING, FLOW REGIMES, FLOODI NG REGI ONS -- I. E., WHERE IS CCF LIMITED?,
UNSTEADY BEHAVIOR, AND BASES FOR UNDERSTANDING OR DIAGNOSING UNUSUAL BEHAVIOR.
PRESSURE -- CREARE ECC BYPASS PROGRAM HAS CLEARLY ESTABLISHED PRESSURE SCALING LAWS.
ELIMINATION OF WALL HEAT TRANSFER:
IMPORTANT TO FIRST CHARACTERIZE FLOODING, KNOWING FLOODING, CAN CALCULATE HOT WALL EFFECTS, CAN ALWAYS DO HOT WALL LATER, IF REQUIRED, TWO-PIPE DOWNCOMER IN SEMISCALE IS TO BE INSULATED.
ll p r
\\!(
llh (k,0 l:?t'. <. I G :'l'i:G*. ( a T?<: u y
DRAFT J.T5 LOCK MEAS U REf1EilTS/ lilS T RUMEf1 TAT I ON STEAM FLOW RATE WITH ASME FLAT PLATE ORIFICE AND AP TRANSDUCER.
WATER FLOW RATE WITH ROTAMETER.
WATER INLET TEMPERATURE WITH ICS.
PLENUM FILLING RATE WITH COUPLED CONDUCTIVITY PROBE AND/0R AP CELLS AND VISUALLY.
DOWNCOMER PRESSURE DROPS WITH 6P TRANSDUCERS.
FLUID TEMPERATURES AT KEY LOCATIONS WITH ICS.
SYSTEM PRESSURE / BREAK PRESSURE DROP WITH P AND/OR AP TRANSDUCERS.
CHANNELLING, CROSSFLOW, FLOW REGIMES, ETC. VISUALLY AND POSSIBLY WITH CONDUCTIVITY PROBES.
- 3. CO2EvoL TEST S-A7-6 CONDITIONS PRESSURE 15.5 MPA CORE POWER 2 ff,!
CORE PEAK POWER DE!lSITY 39.7 xW/n CORE It!LET FLUID TEMPEPATURE 557 X CORE FL!!ID Tff1PEPATURE RISE 37 K CORE FLO'.1 RATE 9.8 xo/s BREAK LOCATIO!!
Coto LEG 3REAK SIZE 200%
DOWf!C0fiER I.k!SULATOR GRAFOIL
J ct 4
O AXIAL TEMPERATURE DISTRIBUTION IN CORE FOR TEST S-A7-6 g
1200
,,,,y,,,,g,,,,y,,,,,,,,,g,,, g,,,
g,,,,g,,,,,,,,,,,,,,
0
- 1. Tli-C3-230
- 3. Til-C3-115 2
Til-C 3-184
- 4. TH-C3-49
~
~
y u
a f
1000 3;
~
}
.E I-800 l
N 600 u
0 0
'I b '
2'I'I b7 AM '
400
-50 0
50 100 150 200 250 300 350 400 450 500 Tem. A f t e r-Ruptur e Ceoo)
J O
O ttru O
V CORE AND DOWilCOMER COLLAPSED LIQUID LEVEL COMPARED TO CORE ilEATER ROD TEl1PERATURE FOR TEST S-A7-62' 1200 ingiiiiiii,jii,igirigisiiginingisiigniingiingiiiigiiiiiiiiijiiiiiiiigj s
!l00 5-Til-C2-lao n
s y
5 b
.t,
[
o 2
i 800 j-k o
700
}-
[
e f
Ej l-600 Downcomer Level c
d E
l-L
.lt 500
}
li.
'e t
a 8
I 4 0 L'
~J l
s 3
l 1
1
{
300 Core E
O 5
y ggg Level p.
i.
S 100 r
-j loiltu210 i unlunion i tulu uliniliin o nlinilinl o
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 Time Af 6er Rupture Ce3 em t
J "u'
e ECC BYPASS DURING DOWNCOMER HASS DEPLETION 800 9
,,,,,,,,,g,,
,,y,
,,g,,,,
1 BROKEN LOOP COLD LEG 8
FLUID DENSITY 600 Lhf0"Ny 2
^'
6
)=
5 5g 400 n
IT 5
~
i 4
0 ll 200 3
sii@
il l h_
_i l...,'
is iiin g
0 50 100 150 200 250 300 350 400 450 500 Tim e Af ter Rupture Ce3 wmw= m=memn- - ~
m
J b
i C
EQSSJBLE CAUSES FOR DOWilCOMER MASS DEPLETION e
DOWfiCOMER lETAL TO FLUID llEAT TRANSFER e
REVERSE FLOW FROM CORE e
ONE DIMENSIONALITY OF DOWNCOMER E
1 b
cu ebo O
TEMPERATURE GRADIENT ACROSS DOWilC0!!ER PIPE DURING TEST S-A7-6 5 8 '~'
TTT I :isijstt lsiisl:s sjusisl: sig isign i:lssaslTTTT
%0
- )=g,
540 n
~ -
Pipe Hall Y
-!20 t
u (TMD-364) e.
,2 4 ;. : t 2,
8 e
a p
..i I-Insulator Temperature
,, ~ ~
( T I f10- 3 64 )
__E
- 3. 0 L
~;
[
~
2 a
!!U
~
_ ( Temperature Fl u i d
~
l 2t 0 (TFD-364) 1.1LL1.1.1_LI.!_L1_f.11LLL1_l_1 I i i ! t_i_11 ! t 8 I i ! I I I I ! I I I I ! I I I I ! I I I t~
4:j
-52 0
50 100 150 200 250 300 350 400 450 500 Tim e A f t e r-Ru p t ur-e Como3 e9
Volunetri c Flow (1/s) 3, 5
$, o 5
3 5
8 3
o
^
v>
1 1
I i
l i
I e
(5) b o
a v
e w
=
m 3
n M
u n
a
=
3 m
V cs)
M l
3 2
e i
D D
e N
E w
C u
E EE m
a E
55 CD
-4.
g l
5 EE3 o
E f
Ed5 c>w g
g e
"w n
a h
e 3o n
v, z
CD w
cp o
r 94 O,
w m
m 3o w e
J >-
1 I
w '1 l
(D CD CD CD CD o
tD CD c
CD CD CD (D
(D CD CD Cr CD CD G
CO W
T N
N v
W CD 1
1 1
1 E
- / C 'MHause Cg 1004909
wo w
O 64Iig4456g4544g4I65g444i-i6g 44g644Ig8I44 C
w CO N
c, C
C oe
~
~
7 N
c.
=
6-G m
v D
N J
-J G
~ E N
n.
y m -
N
~
U a m w >-
o O
O
- - m g
v o
N w
g, a e
~
e J
=
g l 8
s G
r Co e, T C C c:-
T
- O 3 n D I a
m U
g b
h y
v-L O
- b W Z g
m -
e ce o
I g'
c.
y>
u
< Z W
om J O cJ
.J G
g p J -
g m
O H
\\
1:
u W
\\
M u
\\
o b
J d
W b c,
[
- E_
O
~
~
c, a m
'l
'X' Z <
r
< E r-o e e
'o w w r-bb
~
se
_. o EE a o ffil!fftI!!It1ltfItltffffff1tl tiff!Iii m fi O O C N
O O
O O
O O
O O
O O
07 o
u7 o
u>
c u.i o
in
-r v
to t;
r; w
C 8 3 umgwegg
-] o O E,f,O D
_1 to su O
t)
AXIAL TEMPERATURE DISTRIBUTION I fl Tile f10 D-1 SYSTEM I L L U ST R AT I flG EFFECT OF 00HriCOMER MASS DEPLETI0ll 95u y
1 TH-F4-14G ogg 2 TH-F4-28K ny 2
3 TH-F4-44P u
850 e
i 800 I
k 750 e,
700 F
650 600 I
-l 550 b
U 500 k
N 450 1
1 I
I I
I t;;d=1!Od7H Rtt 400
-20 20 60 100 140 100 220 260 300 0
40 80 120 160 200 240 280 Tm..
Af ter-Ruptur e Ce3 TEST S -E254 - 3 9
c.oasco L TEST S-B7-5 CONDITIONS PRESSURE 15,5 MPA CORE POWER 2 MW CORE PEAK POWEP. DE!!SITY 39,7 KW/n CORE INLET FLUID TEMPERATl!RE 557 K CORE FLUID TEMPERATl'RE RISE 37 K CORE FLOW RATE 0,8 Kc/s BREAK LOCATIGP.
Coto LEG BREAK SIZE 2007 DOWNCOMER It!SULATOR STEAM GAP
tv CORE AND DOWNCOMER COLL,'PSED LIQUID LEVELS FOR U
TEST S-B7-E ii l: Ii: l 1isjila li731[Iis lII i l 1 1 gT
- l: #: s-1E E
60
=
~
E lI E
5.5 E-
-5 l,
j 5.0 E-J
-E k
n 4.5 5-11 l'
1
-E E
- DOW NCOME P. L EV E L
_3 u
4,9 e
3.5 E-
)
s 3.0 5-5 f
f=
5 \\g A#pb h
2.5 a,, p i
2e r i
2s t
h
\\
1.0 E-pfl
-E 1
CORE LEVEL 0.5 E-2
=
sailisiilisiiliniiliiiiiiiiilisis
=u s i l i s s i l i n i a l 0.0 0
50 100 ISO 200 250 300 350 400 450 500 I
l Time Af ter-Ruptue o Ce3 e
J Qom eb O
e)
AXIAL TEMPERATURE IN CORE FOR TEST S-B7-6 1200 gi,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,g E
_E n
1100 E-f, w3
-E Y
=
a
=
u E
n E
=
g'
=
1000 E-
-E 3
5 5
E E
o 900 E-
-E a
E E
E E
I-800
_E t
E E
E
- 1. TH-C3-49 E
g 700
_E 5 T
- 2. TH-C3-ll5
~5 I
E 3.
TH-C3-184 E
h_ i--g 600
- 4. TH-C3-230 g
U i
_?
500 E-
-E
=
=
=
=
I'I'
"bd
- N'E
- 100
-50 50 150 250 350 450 550 0
100 200 300 400 500 600 Tome Af 4ee Ruptuce Ce3
4oO$
0 C)
TEMPERATURE GRADIENT ACROSS DOWNCOMER PIPE DURING TEST S-B7-6 580
,,,,,,,,,,,,,,,,,g,,,,g,,,,,,,,,,,,,,g,,,,,,,,,
560 540 Q
--- P I P E W A L L (TMD-364) u 520 i
q e
h 500 Y
f 480 1
E 460 e
F-
~
/ (NSULATOR TEMPERATURE I
440 TIMD-364)
~
j 420 y
Q
,,,n j
Wi%wy, >,
f 400 380 l '
FLUID TEMPERATURE i
(TFD-364) 360 340
'I'I'I'I'I'I'I'I'I
I'
~
-50 0
50 100 150 200 250 300 350 400 450 500 Ttmo Af4ce Muptuce Co3
soo%o t)
DOWNC0fiER AND LOWER PLENUM FLUID TEMPERATURES FOR TEST S-B7-6 450
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,y,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,n,,
440 b i
A 430 5
i
-f n
Y 420 E
-S 5
[N _ _
E
{
410 5-
-i A/
+
?
400
=
y/'
4 e
e a
=
E
.E 390 5-t4 l-3 t
1 TFD-153 380 h
p 2
T5AT i
,f h
370 a
3 TFD-435 j
I 4
TFV-552A 360 i-
[
5 4
a 350 5-J a
4 l" " " I"' " " ' I' " " " " I'"f u
""" I' " " " ' I " " " " I* "" " I' " " " " I' "W I* '"N 340 40 50 60 70 00 90 100 110 120 130 140 Time Af ter Rup 6ure Co3
CC33UoL.
wyamagxwama. m.iuammanuunue -
w.aauamimum,.,uae e
e e
i I
8 4
4 7
m M
T 5
i 5
=
=
=~
l i
i 0
\\
3 1
3 W
E
=
=
3"
=
"O 5
E
\\
~
.s 2*
h
\\
f w
\\
U I
E a.a 4
C w
E m9tdifitftt't!!ttistI*f tsN!tttsfrimiert!stif1t'ftftttnis
!!f ?!?tMt!*FIMt1!t!*tPm!
tttt" w
whm aeeh-
.m.m
.M--=***+
h="*
- " * " ^ " " * '
- s O3 Ni e3 DOWNCOMER COLLAPSED LIQUID LEVEL AND LOWER PLENUM FLUID DENSITY FOR TEST S-B7-6 850 u,,,,,,, g i i,,,,,,, g,,,,,,,,, g.,,,,,,, g i,,,,,,,, g,,,,,,,,, g,i s i i.,, g.,,,,, i n g i,,,,,i i i j,,, i,, u -
y V
800 750 y
700
/
Lower Plenum n
650 Density
\\
600 L
(GV-523-588)
E u
ggg 9
m i
500 F
g O
450 F
400 9
l 350 0
300 250
' " " " I " ' " " " I" " " " ' I ' " " ' " I" ' " " " I' " ' "' " I' " '" " I ' " " ' " l" ' " " " I' " " " "
40 50 60 70 80 90 100 110 120 130 140 h
E ga2 yu 0 5 0 5 0 5 0 5 0 5 0 5 0 5 7 6 6 5 5 4 4 3 3 2 2 1
1 0
g E_
_=
- 5 n
5:E=E:j 5_5 u
n n
i n
i j
i u
n n
n i
in n
n i
l i
n i
n u
u m
s u
u j
l u
u u
n sn n
u n
i g
n n
d i
i n
n i
i u
n n
q u
i i
g 1
L l
n n
u r
i m
u e
s n
i o
n i
j c
l i
u n e n
u w v n
n bf o e n
D L i
n n
\\
i g
l i
n n
u u
n i
u n
j i
n n
u n
i n
i' n
u h '
i g
l n s
u u
n n
i i
u n.
JO3~ %OO b
a t
CORE OUTLET VOLUMETRIC FLOW FOR TESTS S-A7-6 and S-87-6 70 y
v i s i g i i i n g i i i, j a i g i i i n g i s s i g i n i g i s i s.
i 65 1
~
TEST S-87-6 FV+1 9
60
\\
A j
n s'
55
- I !
l Z
$:plfjgj
[p j lj
((b 3' h 25 L -
TEST S-A7-6 I''I
'I'l'I'
I'I'I'I'E 20 50 100 150 200 250 300 350 400 450 500 Tome Af ter Rupture Ce3
0 0
g5
- - _: :i~
I-
- ~ :
4: 2 :E ='
5 i
s u
0 6
5 4
7 i
$p B
i S
0 g
0 I
J'7 d
i 4
n 6
i a
s 7
6 i
8 0
k 3
g 5
I 7,
S o
i 3
C t
9 T
5
- , q%
S e
S i
E e
0 S
.I T
-r g
0 u
T I
S 3
t E
p T
u 6
R R
0 O
g 7
5 F
A 2
r e
S S
L t
f E
i T
0 A
V g
S
\\
\\
E E
0 i
2 L
T i
e m
D I
s U
0 g
T 5
Q I
I 1
L D
i E
0 g
S I
0 P
1 A
1I i
L
,T j p
L f
O y {3 1@', # 7i.s.t 2
C g
L
'l 0
I I
5 E
,1 e R
O C
gb 5 : : E E :- :1: 5 [:5:5 0
0 5 0
5 0
5 0
5 0
5 0
5 0
0 7
5 2
0 7
5 2
0 7
5 2 0 3
2 2
2 2
1 1
1 1
0 0
0 0
'd c s 5 > ?.
03EOU 1
C00400 L-TEST S-D7-6 CONDITIONS PRESSl]RE 15.5 MPA CORE POWEP.
0.0 CORE INLET FLUID TEP.PERATllRE 557 K CORE FLUID TEMPERATURE RISE 0,0 CORE FLOW RATE 0,8 xo/s BREAK LOCATION COLD LEG IIREAK SIZE 200%
D0'iNCOMER INSULATOR STEAM GAP
eb fa G
O CORE AND DOWNCOMER COLLAPSED LIQUID LEVELS FOR TEST S-07-6 10 g,,,,,,,,,g,,,,y,,,,,,,,,g,,,
g,,,,y,,,,,,,,,,,,,g 4
Q 9
i-T h
8 a
7 3-4 i
E n
6 L
E Y
h-i u
y 5
DOWNC0ffER LEVEL E
2 4
1 4
-+
E 3
)
-5 2
3 1
f CORE LEVEL
~~
w s
0 6--
-1 3
'E eaetltieaIi1:
l:ae l
tat lt1 eI l
tt l
a t$
$11 a
_g 0
50 100 150 200 250 300 350 400 450 500 Tune A f t e r-Rupture Cs3
- 9
co lialltilijllllllillgilllllilllII4 La rQIgillillill[Illaisil'.altlillllIll 0
9 4.
-- Yr e
6 n
i v
+
'E N
- 21_ W e
o 2
2
-a 2
~
n u
m m
g a
E gy_itig i
e a
w& Ex 13
.&Y hp'% -._x
=
n 5
~
"- 7 t
\\M
~
d W
L
\\y T
4 ?55 x%
}
5 g
t-e E
p g
o n
~
r z*.*
~
~
cp m
o e
~
~
w r-#a Merrty p
_~
a:
T]TEThaysagc r> M '
8 8I If fitIf f111 )It i tU s,
Qg CD e
CD c) co c3 o
CD CD CD b.
W n
e M
N w
C#/13 ** *l.d
- 1d%8 W "t* A
~}OOMd 5
+
Y C
2 R
M
=
m O
e W
h
%e k
2 0
0 2
M 9
i
=t vb F
t,)D
+
t I. ~" v.
l w
l
,,' j T_
=
I s
C l. i i, - l l
I m
~
le-e i
r l
i o
C I
Y l
E U
c c;
i:
c
- 7 Ir. e xrce92 w /x j;
N/ r
=
~
. ti i
=
c M
I.,_ _r o
g.
x (--
- p. --
w.7m,ss,ad, vsp e~
m-p
.j d
r d
v
=?~
i O.
1 e
J l
v 'N/
///s N
m n
ji.
\\
.i!
ew
.=
w l-
. h
~=
mI i
~
e r
!.]
i i
m
Y f P
_t 8
9
.J O
h enc tJ COMPARISON OF R00 CLADDING TEMPERATURES AT CORE IIIGil POWER ZONE WITH RELAP4 FOR TEST S-A7-6 1200 y,,,,g,,
n Yu t
1000 1
l o
k
~
m a
Ee h
800 g
L 3
e g
y m.
l 1 Til-C3-184 600 l
2 TH-A5-184 o
t 3 RELAP4 (SRD7)
U l
.Iiiii i v3P U 1_i_i i i I i i iiiiii e i i
,;gg
-100 0
100 200 300 400 500 Tsme A f t e r-Ru p t ur e Ceoo) er
$ e
J S2 b
CALCULATED COLLAPSED DOWr! COMER LIQUID LEVEL FOR TEST S-A7-6 I,
,1 I
I I
I I
I I
I I
I I
'hI I
e 4
i
___m p.i I ~
l
}
RELAP4 j
CALCULATI0ft 5
I l
~
n H
E g
l u
4
(
DATA 5
3 CALCULATI0ft 2
I 1
I I
I I
I I
I I
l I
I I
I 0
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Tim.
A c t.r-Rup tur.
C.3 0 *
]
O3 tv mo t)
COMPARIS0N OF CORE COLLAPSED LIQUID LEVEL WITil RELAP4 FOR TEST S-A7-6 3.0 i
i_
g i
g
~
1 CORE COLLAPSED LIQUID LEVEL c.
_~
2 RELAP4 (COLD CHANNEL)
T 3 RELAP4 (HOT CHANNEL) 2.0 n
E 15 H,
C 2
?.
10 I
U f'
f-O.5 i
1 k) eo< f
-4.#+vg h
I I
I I
I I
I
-0 5 I
' ~
0 20 40 60 80 100 120 140 160 180 200 Tim e Atter Rup t ur e Cesa3 4
c.onuol DOWNCOMER NODALIZATION FOR RELAP4 POSTTEST CALCULATION
'/
26 7
/
8
,,,/
8
/
9 DOWNCOMER
/
28
/
33
,r
/
29 34
//
VOLUME g
Junction LOWER PLENUM
.J O
3$
COMPARISON OF R0D CLADDING TEMPERATURE AT HIGH POWER STEP h
WITH RELAP4 FOR TEST S-A7-6 I
I I
I I
I I
I I
I I
I I
I I
i,4 s. c.,
n Y
t pi.,0
~
f W
TH-A4-181 e
/
h 950
/
~
l
[
900 M
d I
~
,,, M.
2 F
co
.j 800 RELAP4 (SR-28) h 8
i 750 l
p
..t 700
(
r I
I I
I I
I I
I I
I I
I I
I I
f
650 60 70 80 90 100 110 120 130 140 3
1 65 75 85 95 105 115 125 135 Tome A ft ee-Rup 6 ure Ce3 e*
P
Y 2
COMPAP.ISON OF DOWNC0t1ER DENSITY WITH RELAP4 for D
TEST S-A7-6
- i-i g
l l
1 8
P.ELAP4 (AR-08) h
)
$ '0 E
L I
r,gg hl GD - 72 s
)
i i
y j
{
~
lh t
A lf.
lf D
~
k-g-
1 0
60 80 100 120 140 Time A f t.c-Ruptur. Ce3 5.