ML19289G295
| ML19289G295 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 07/02/1979 |
| From: | PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE |
| To: | |
| References | |
| TASK-TF, TASK-TMR NUDOCS 7908160555 | |
| Download: ML19289G295 (76) | |
Text
- s PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND p______________X'_^_^
^
- _-~
k DEPOSITION EXHIBITS N
X k
BERT MERRITT DUNN EXHIBITS 38 50 7/2/79 x
XX GEORGE KINKAID b'ANDLING 51-52 7/2/79 NX X
-_________________n 1894 150' 790816006 m-
nuctu R E cutATCR. ' 'A".*..*!sstO J
?
7
, <y asmucien. o. - tsss
- g.,.y T.a.e.ic m.te i
,,,4t: '1 c La j
(,4.oIETO: R53 Members
.. ~
w ww ? 9 -,
- T.;:1:
T. ii. !!ovak -~'- -~
~~
-~
ggyC/.Tr a-E.
W fGJECT: LCOP SIAL 5 Ill PRE 55URIIER SURGE LINE l
u-t.ecp seals in the pressurizer surge line are used in some plant designs, (noted in B W). Under ordinary circumstances, these configuratiens are incensequential because the saturation' temperature in the pressurized
'-6500F) is the highest temperature in the primary system. However.
i under uoset conditions (such as prolonged relief valve opening) and accidents where significant voids are for.=ed in the primary system, it
~
l eay be possible to end up with a two-phase mixture in the pressurizer I
that is not at the~ highest temoerature in the primary system. Under thesta circumstances, additional loss of primary system inventory or
-thrinhage in the primary system may not 1e' indicated by pressurizer 4 vel. This situation has already occurred at Davis Besse I when a welief valv6 stuck open.
'he Icop sea results in a canc=eter effect as shewn in Fig.1. If there is sat: cated tteam at 1200 psi in the hot ' leg pipe and the level in the
't I
<:essurizer is 60 feet, the pressurizer pressure, Pz, would only have to he about 11h' psi, which corresponds to saturation temperature about SoF l eler that in the het leg. Thus, the pressurizer. temperature does not i: ave to be sigolficantly lower than the ter:perature in the primary
<ystes.
Although the safety anakyses do not tequire ter::ination of the =akeup tystcm, cperators would control makeup flow based on the pressurizer
.r
. level as par t f their normal p-ocedures. As.A-resul.t..under.ce rnin
-/
-ea44tions Were the ca a izer could behave 45.2 cancmeter, the op'eratcr
- . ci. oneously' shut ~6f71::tkeep-ficw when significant-wobe e.e-mselse.
^ m--in the system or loss of invent:ry-is continuing.
' - --eeAed that the-bases for the-' design requirement be-studied M ity-f:1-all tP reefewivittf the objer of determining if the loop C..,-be elimirnrttd. Fer-L. u.es,-procedures should-be reviewed 4,g;niure.adequatt,,,mfc=:iation befere-tne-operator terminates-rakeup-('rew.
E w!
i- s Themas M. 11ovak, Chief Reactor Sys; ems Branch j Ecciosure: [ s cc: D. Ross IJgure 1 - htact: Sandy' Israel, i:RR 7 90511 oc(,,o 49 27591 odem-6 e es.w. t- $$ b n% \\S\\
J' ~ -l ..:. c.:.. .,.. p. =c Egu r.- c 4 m-.- z 's- - z -c _w. w._ =-- m ~;,, 6 5 ..r s . =_ u.. _ =. P i 1. ~ s i. g toof SE4L - 3 _ - p- -- ? - hot YG !.[ l. 1 ~ l_ ___,.e,. -o Fr3 1.._..SctlE44r/c of N,Es50 Retr k,. _- w 1 \\ 189'4 152-
t 2101-1.1 Revision 0 SAS*c r-& w tF. o 2 03/04/ o w:;;;tA: - Po wlt c!M!t A? low Ofw Stem NU = Lit 67-1002171-C0 3,.6.f lC,, L 2 0 C U s..,h-c .c. 1.2 PPI55URI IR (EAECOC)" MO t'IL 0X1 Des:rn Conditions 2500 PSIG A. Pressure B. Temperature 670 F C. Volume of tank 1502 CU-FT 11,230 GALS D. Volume per inch tank height 24.0 GAL /IN 3.21 CU-FT/IN Nor=al Onerating Conditions A. Pressure 2155 PSIG B. Te perature 647 F ~ C. Spray. flow (when actuated) 190 GPM D. Bypass spray flow (actual value deter =ined by ' heat balance) 0.75 to 3.0 GPM E. Volume (liquid) 5984 GALS 800 CU-FT F. Volu== (steam) 700 CU-FT G. Level (as indicated on level indication) 220 IN H. Upper end of heater bundles (as indicated on level indicaricr.) 64 IN Limits and Precautions 1.2-01 Absolute maxinus pressuri:er level at any time the reactor is critical is inches. 385 Inches NOTE: 'Ihis water level is the maximum RCS inventory used in the safety )dO analysis for Reactor building over-pressure following a LOCA. It is .U # N j 'also the n:xi=== level at which the system can acco =odate a turbine FOR IDENTIRCA110N 7;p yt.hou: causing the cressuri.er safe:y va1ves :o open. 1894 153 ~ .,.x 1 17 0
2101-1.1 Revisien 0 sasco:: s wncox 03/01/77 ~ ';ttAt Powlt G t Pe t t A tt oa. OfvtStoN NUht! A , CHNICAl DOCUNDT 67-Iconn-Oc 02 Nor=al mini =um water level (indicated) while the Reactor is opera-ing at power is in. 200 Inch NOTE: This water level is the nini=um pressurizer water level at which the system can acco:::odate a Reactor trip without causing the Pressurizer heaters to be de-energized by the Pressuri:er Lo-Lo level interloch. 03 Absolute =inimum Pressu-i:er water level at any ti=e the Rese:cr is critieni is See Figure in. 1.2-03 NOTE: This water level is the mini =um Pressurizer water level at which the system can acco::codate a Reactor trip and raintain approxis =ately inches level indicatien. 5 Inches 04 The Pressurizer =ust not be filled with water to indicated solid water conditions ( in.) at any time, except as required for system hydrostatic tests. 400 Inch 05 Pressuri:er m W ' allowable heatup and cooldown is F/Hr. 100 F/HR. 06 lim-" operating te=perature is F. 670 F 07 traen the Reactor Coolant tenperature is greater than F, a nini=u= bypass 200 F spray flow of G7M =ust be =aintained. 0.75 GPM to 3 GPM NOTE: During special testing it is necessary to secure spray flow to set the spray valve position. 1894 154~ OS When Reactor Coolen: System pressure is greater than PSIG, the Pressurizer vent to the RC drain tank gas space should not be used. 45 PSIG 09 The maximum allowable byaass spray flow is GPM. 3 GPM 10 Nitrogen injected in the Pressurizer cust no: decrease the injection no::le ten-perature m e than F. 100 F 18.0
. j 1.. 2, p wo, yn.r noan:.nou :. c ss m mewsmcoxccv~ . _.. _ j = n. np.. .d /, :,.,bt. J.. p.~, n h f t,( I3 % hY2g:1575.. 'END a , j/.,,,. i u. -I' * ' '. ' Y' ^' H
- l>' 4u-s*r,..
g, --~_ un* a n. s.> f lLL feC. Ce A(F g g 7 (/',4 f
- "C"""
l . ',. /. f- ! /- =- om g.,...y'.f ,,,,,.,{,A >osL JL-1*t-d I 5 AS 'I E v s ,. /, 'f * * / //u. F-' - dc4 T t/ A A. & e' L-0.4. e - a I-vs % A. t AG. GA x-A we...v-2 7^, -W,, a~.:n~ J. -L e L/. .c:u,,./ Ab AC.RS ,-w L a ~~i']M -Y" V f n -. M ~ L w a f. e. _..,_. __ r./ -f.l>
- r. e.-.,,1~
x s.~, m V V V m:h._d :.- w A ! ym.l-?.k~6fs K - -.c g.*.- 4_.E.E ~ p,c..g..r~(' /~ 20 ((C S , -,3! /%-52.--=w.- ~*~ v v n:..n.-:...x:.,.$,.,, d & /./ z V. 1 %,,' & !! v u u A *. _z,_. s e rs -- p _/_,....- w.x,
- g. _... ss u
L,', We L.*,s , W..,.O...~' /[ ),,. c.. A.c-J' ,,, ' Y:/ n.'.) l'iro r-- ,w Ch.A. tr N.Il (,zq'.,.,~ vv D sf ?-r.!-' U ' V v ( e.*.e E'?q._A&h, e,.)' './W <n&E.'-) b.n-G' V V .M. -, > sy -.. ,g c.<. -.. N. rA . A (', N..] > wh r y 6- ~~ WY- ~)/j
- 4 1..i.--,4.. :.. - - ' e c a uan-E c:.. h c.:~7-~, A.--.1 re f /
~~'~ \\ / \\ da /a.tJ
I '/ o W **.Q, n.. V 8' ' "1 Un LVc lu. CT(? 4%./ 8Y[ r 't ..(. g e (4.,t a gm N / .'N W* 0 M (/ D
- b l
i I % Q10 9 y V t Q f i. j c.f.' M s
- (
i,o cc. d . c=- O h. w Ie4 9 a.ri h M' - ) tJ m .s e V O d .. ~...... _... ~.. _ _. i I: .. ~..... 3
s T m.at4csscc. VALLEY AUTHORITY '[ xNcx6Ltc. T: NNessCC 379er. / W100126, 400 Commerce Avenue .ll. p /, & ~ r RECEp/ED ,,.,v ' 7 ,b '/,<j ( > a'. j Ap w 273'I9C y,p' 3 bid [# q j.' ' t ; PJ.- l
- k/+
Bat. ock and Wilcox s.'d/ i Post Office Box 1260 g[ ' , Hl*l H. A. Bailey l r Lynchburg, Virginia 24505 Attention: Mr. James McFarland , i. ), ~- i Gentlemen: LICENSING BELLEFONTE NUCLEAR PIJ.NT UNITS 1 AND 2 NUCLEAR STEA'1 SUPPLY SYSTIMS ~ CohI~RACT 71C62-54114-2 IETTER No. K-5020 EMERGENCY CORE COOLING SYSTEM - SMALL BPIAk" LOCA ANALYSIS N4M-2-14(AR) An increase of intersst and questioning by ACRS in the area of very small bresh LOCA's has prompted TVA to take a closc: look at this problem. The attached preliminary draft study reflects some of our initial thoughts and Please review this work and give us your views. We believe concerns. a small break LOCA question similar to that asked by ACRS for Pebble th-* ags (Question 6) might be asked in greater depth by NRC for Bellefonte. 5We must be assured that E&W is preparing for a timely reply. Perhaps the attached draft will help. After you have reviewed this study, we would like to discuss it with you by telephone. However, we also propose that a meeting be held in Knoxville in the near future to e>: amine the entire question of very small break LOCA's in sufficient depth to develop an adequate mutual understanding and assure TVA that E&U is working toward a timely resolstion of all We believe that the following outline of observations and concerns. condition:, should be used as a preliminary basis for the proposed meeting. 2 The class of very srall break LOCA's of interest probably range up to,0.05 ft (equivalent to the sint,le ended circumferential break. of a 3-to 4-inch pipe). For breaks in this range, the steam generators must remove a sificant portion of the decay heat during the initial phase of blowdown; s ~ otaarvisc, reactor coolant system repressuri:stien occurs since the break is too small to remove all of the decay heat. Repressuri::ation or even prolonged high pressure operation could seriously limit high pressure injection reakeup during blowdown and thereby adversely influence the peak clad temperature fo: those cases whereit, the core uncovers during the blowdown. } v.),) ouestr Q% *b l,1 v w n - 1894 157
i pl /ceckandWilcox q 27, 1978 An order to take credit for decay heat removal through the steam generators ar hereby deter prolonged pressurization or repressurization, it is necessary to assure either (a) continuation of natural circulation through the reactor core and steam generators or (b) establishment of pool boiling in the reactor core region and a steam flow path to the condensing (cooled) portion of the steam generator tubing. There appears'to be a number of possible situations that might impede decay heat removal through the steam generators during the natural circulation phase or during the transition from natural circulation to pool boiling / condensing or back again. For example: 1. Since there is no significant temperature loss between the reactor core exit and the steam generators, a steam bubble is likely to form in the high point (U-bend) at the tcp of each steam generator after syster overpressure is lost. This would interrupt natural circulation and decay heat removal. At best, an intermittent natural circulation might be re-established for decay heat removal. 2. The transition from natural circulation to pool boiling / condensing could be troublesome because of the time delay while waiting for the steam generator tubes to drain down to the secondary side water level and hereby establish a condensing surface. Unless the break can already remove all decay heat, system repressurization will occur while the condensing surface is being established for decay heat removal. 3. Reactor vessel level turnaround will occur when the makeup rate exceeds the fluid leaving the break. Decay heat removal by condensation will-cease when the water level inside the steam generator tubes exceeds the secondary side water level. Repressurization will occur unless the break can remove all decay heat. Natural circulation cannot be re-established until the tubes have been filled and the steam bubble at the high point (U-bend) has collapsed.. If sufficient concendensable gases are present, natural circulation may not be achieved. Associated with operation in'each of these conditions is a concern that the operator might be able to identify and isolate the break and thereby interrupt the blowdown and decay heat removal processes. If natural circulation has b e. lost and the pool boiling / condensing node has not been established, this interruption could cause full repressuricatior,and a substantial passage of liquid and/or two phase fluid through the pressurizer safety valves. The valves have not been qualified for this severe service. Also associated with operation in each of the above conditions is a concern that the pressurizcr level is not a corrcet indicator of water level over the reactor core. Because of the loop seal on the pressurizer, it may be possible w have a full pressuriecr while the core is partially uncovered. This c d lead to incorrect eperator actions. 1894 158 ~ pg 31SL
t k tad Wilcox il 27,1978 ,We assume that the situations and concerns which have been identified above and in the attached draf t study have been considered in your own in-house Your more detailed transient calculations based on LOCA analysis work. realistic system and core thermal-hydraulic models would be an. appropriate verification that no serious problem exists. Please let us know. Very truly yours, TENhT.SSEE VALLEY AUTF.ORITY An "%, / /) YIGO.iw D. P atterson, Chief He nical Engineering Branch Enclosures In triplicate Mr. J. L. Atchison e e m e ee eof g g. e e m o e i gH 159 ,g e e
I /r -/ o / BabcockONilcox Power Genersten Grous P.O. Sea 1260, Lynencurg, va. 41 5 Telephone:(834)334 St11 January 23, 1979 Letter No. D-3132 Pile Ref KLX-2/1231L Ref Ltr: K-5C20/L-27-78 Tennessee Valley Authority 400 Cc=:erce Avenue Enoxville, 1"l 37902 Attention: Mr. O. R. Pattersen Chief Mechanical Engineer bec: . fif *' 2 C cnes 3ellefeste Nuclear Plant U:its 1 f. 2 ...I U II". Contract No. 71062-5a' 11k-2 EfN Refere=ce: 353-15 f. -16
Subject:
S=all 3:eak LO".A A:alysis Gastiene=: The attached repcrt is ir. response to your reference letter. us how if further discussica is required. Please let Very truly yours, James McFarland 4 Senior Project Manexer I J 2, 0.,P, oc s.tre sr - 7 Robert I. !.ightle FIL:dc Associate Project lianager j Attach = ant t cc: k*. 2 rest *.*ade J. L. Atchison E. L. Legan e parl _ DotSit FORlOENTIFICA O \\ ^ !v h ( __ n SENJAMIN ~ 1894 160 ~ me m. m.,..c ~,,,,me. nee, m }QQhh
Response to TVA Letter K-5020, Lncrzency Core Cooling System - ses11 treek 100A Ansivs ts ::4N-2-1MAM Mril 27. 1873 Via TVA Le:ter K-5020. TVA transmit:ed to Biv a repor: entitled, " Decay Hest Removal Durin 4 Very 5:211 LOCA for a Daw' 105-Tuel-Asse=bly P'.7.." by C. litchelson, c.itad January,1973. This report presents a st=plified. hand calculation review of the sna11 break transien: and potential consequences for very small breaks ne: explici:1y exs=ined within the s=all break topic:1 for the 205 TA plant, Ta.-1007tA. ?.ev. 1. Within this paper, the following concerns were expressed for :ae very s=all breaks: 1. Eov is decay heat re=oved? WilItys:emrepressurizationoccur? 2. If so, could a s= aller ~ case he a worst break? 3. If the operator isolates the break, vill syste= repressuriza: ion occur? If so, vill the pressure relief valves be subjected to slug er :vo-phase flow? Easponses to these concerns are developed in the subsequent paragraphs. Before disc:ssing these concerns, a general overview of the s=all break tran-sient in a BW 203 plan: needs to be briefly discussed. 5=all 1.00As ca= be viewed as a slov transien: during which :he KC5 can be described as a sealed Eecause cf the inter =als vent valves, no extensive stea= bubble cane =eter. vill for= vithin the reac:or vessel while any significant liquid inven:orv re=ains in the loop. Many experi=ents have been ru: which show that so long as a fluid, with quali:1es less than 70: or so, covers the core, no adverse core te=perature excursion vill occur a: decay hea: power levels. Thus, any proble=s with x= 11 breaks vill only occur af:er the RCS loops have depleted their inventory. Decay heat re= oval frem the core region is no proble= as s:ated above. Eow-ever, decsy heat re= oval from the syste= as a whole needs to be exa=ined further. There are two vays ' re=oviog decay hea: frc= the syste=: via the break and/or ria the stea= genera:or. Both of these ite=s are discussed in detail in the !?A letter. 7:r :he very s=s111.00As of interest in this dis-cussion, 1: vas shown that the break alone is no: capable of re=oving all the decay heat and heat re= oval via the stea= generator is necessary. traile the TVA-predicted break size that :his occurs a: vas not checked qusatativaly, the actual break size that it occurs at is inconsequential. Such a break size does esist where :ha stea= generators are necessary. The role of the steam generator as a heat re=ovs1 source is bisically as described in the letter. Initiallyg natural circuIation vill be =sintained in the system and the necessary hast removal is easily seco plished. Once a stes= bubble of suf ficient si:e necessary :o fill the U-bend at the tcp of the ho: legs is for=ed, natural circulation will c sse. The inter =1::snt natursl circulation discussed in the letter vill nc
- ccur due to the sicv nature of the s=s11 bresk trsnstent. Once natural c.rculatien cesses, the syste= vill repressurl:e se=evns: until the 50 primary side liquid 1cvel drops s
1894 161 100RORBIR
, below the 50 secondary side levci and condensstion hest transfer is established. During this period betucen the naturs1 circulation and condensation hest re-royal modes, the letter uptcsses concerns thst the liquid.in toncory within the system vill be depleted at a rate in excess of the rates for the breaks analyzed by L'u oecause of the ;srtial repressurization of the systes. is concerned that this ultiestely vill result in = ore core uncovery than enat TVA shevs in the small break topical report 3AW-100MA. This is not the case. During the natural circulation phase, it is obvious that .the slower the loss of system inventory and the lenger the pericd of naturalthe s=siler the brea circulation. trolled by a " volume balance."Af ter natural circulation ceases, system pressure vill be con-a point where the volume of fluid discharged through the break equals theThat is, volu=a qf steam being created in the core. re=ains unchaeged during a scall break transient,Since the cold leg fluid enthalpy the volu=e relief out the break increases vith increasing system pressure and break size. i sene of steam being generated in the core decreases with increasing pressure. The vol-1 As the break decreases in size, the RC syste= will repressuri:e to a higher value; thus the volu=e relief out the break necessary to =4tch the volume of steas being created decreases. lost at a slower rate as break size decreases.Therefore, the system inventory vill be for conde=sation heat re cval, the pri=ary system pressure vill depressurizeOnce the 50 be to approximately the 50 secondary side pressure. of the 50 vill respond in a si:ilar manner to that of the 0.05 f tSince the sec ndary side 2 break analyzed in the topical, the pri:Ary side pressure response, islioving the advent of ccadensation heat re= oval, vill be similar to that of the 0.05 f t* break. Thus, for the s: aller breaks, the systes inventory vill always be greater than that fer the 0.05 ft2 l covered and vill not undergo a te=perature excursion. break and the cere vill always re:ais In the paper concerns are raised relative to isolation of the break af ter natural circulation is lost. The scenario presented in the letter is reason-able. the pressuri:cr safety valve setpoint is probable.Should the break be isolated .through the safety valves will also probably occur. Two-phase or liquid flow the systes vill depressurise sod no further loss of inventory vill oc i core vill re=ain cevered for this secenario and no te:perature excursion The occurs. two-phase flow outShould the pressuri:er safety valves beco=e ds= aged because of the similar to that presented in the FSAR forthe valves, the response of the system would then be open accident and no core uscovery occurs.the pressurizer safety valve stuck As far as the appropriateness of the operator using pressurizer level indica-tion to trip the EP! punps, S&W agrees that the level indication is not a reliable indicatica of the state of the RCS. level indication, along with system te=perature and pressure ~ceasurements to -However ensure that vide sufficient guidance for operator action.the systen is still in a subsrantially subcoo In su=esry, while the TVA pseer raises valid cencerns 'and gives a detailed examin.ition of the sns11 becsk transient, the s sil brcsk tcpical report provides sufficient analyses to ensure the ability of the BiV 205 plant EC:'S syste: to control s:sil becsk in the RCS. l 300R ORIGIML
~
- %,,q!
g' *.j ' [ TE..AEssEE VALLEY AUTHonn. knen,vst.t.r.Trtmr.ssr.c 7:o: j W100125,;'to Ccmerce Avenue p j i February 8,1979 i kb u?n1H.e i dabcock end Wilcox 0 I ((/)lh O/ld i l Post Office Eox 1250 Lynchburg, Virginia 24505 li Attention: Mr. James licFarland !i [DNd Exsie:T A i Gentlemen: 1 EELLEFOITE lH! CLEAR PLAIT U:!ITS 1 A'iD 2 FoR IDENTIFICAT1oM liUCLE.'?. STER: SUPPLY SYSTE!!S 4i. .RH. BENJAM C0!iTPACT 71C52-54110-2 i i i LETTER NO. K-5478 i SPAtt EP.EAK LCCA DA1.YSIS - !!4M-2-le(AR) Ue acknowledge receipt of your letter I;o. D-3132 (MES 7S0125 555) and i i have the folicaing c:=c.ents. i TVA bill require the following clarification and additienal explanation 'o complete its review of the sub.jact analysis and reference lecter. The { ltachment to the reference lettsr centains the follcuing statecants: j 1. "After natural circulatien. cesses, the system pressure will be con-trolled by a 'volema balance.' That is, the system pres'sI5e will balance at a point where the volume of fluid discharged thrcugh the break equals the volume of sican being created in the core." 2. "... the volume relief out the break increases with increasing syste= pressure....." 3. "The volume of steam baing generated in the core decreases with increasing pressure." Statements 2 and 3 apptar to be inconsistent with the recuirement given in statement 1. Your technical b2 sis for accept:sility of tne 3M small bre:% LOCA analysis as a conservative prediction of minim's.n core coverage for . breaks smaller than 0.05 ft' ap;: cars to require that statacent three ce ( correct as written. We assume that statc=ent 2 is incorrect. Please ~ clarify. q g jg3 Uc were also tendering if ycu considered the syste'. to te in "thernal balance" as ucil as " volume balance." That is, the systen pressure will balance at a point where tha volu e of fluid discharged threugh the break equals the volume of ste:m being createo in tne core and the heat centent of fluid discharged tnreugh the break equb.is the decay neat being created in the core. The system equaticn based on a " thermal balance" shcus the volu etric ste:= flow ratio (fin:1 value/fnitial value) to be directly MIB1E1MI m
2 Babcock and Wilcox 'cbruary 8, 1979 proporticnal to the enth:1py and density ratics-finitial value/ final v:!ue). Synce stema density incre:ses ruch faster than the enthaloy decreases ever tne range of interest, the net effect is a decrease in voit=etric ficw with incre: sing systt : cressura. This is in agree ent with state.ent 3.. !!: wever, the :. ass (volu e X density) of fluid converted to s: cam is proportional to the enthalpy ratio only, unich is increasing with increasing pressure. Tnerefore, the net effect of in:reasing systcc pressure is to increase the rate or loss of sys:cn inventcry (tsss). It is this increasinc inventory depletion ecuple.d with a decre: sing takeu; rate frcm the liPI purp at eleva:cd pressure that fem.s the basis for T'!A's concern. One 11:y for BC to alleviate this cencern is to'shcw that a " thermal balance" dces not have to :ertain; otherwise, it wculd appear that the EU 5:211 break LOCA analysis may not be an acceptacle.,tounding predictor of minir:Ja core level for breats staiice than 0.05 ft". Please reconfira your positien as stated in the reference letter and provice TVA trith an appropriate explanation for r.oc re iuirino a "therr.al balance." Such a reolv shculd resolve rest of cor reainino cuestions concernine ve;;g small break LOCA behavior. Of course, concepts such as " volume belance" and " thermal balance" should be recognized as eversimplific:ticns which cay apply caly to a few special c:ns. The riscrous solutica cust be based on cass and energy conservation principles applied to the entire system including ali inputs, outputs, and phase changes within the systec. Please give us your written respense by March 15, 1979. Very truly yours. TEmlESSEE 'lALLEY AUT!!CRITY ~ D. R. Patterson, Chief Mechanical Engineering Branch b In triplicate cc: ltr. J. L. Atchison i N4jQ
06'-< # W [lffl7f W,
- Bab:ock r.Wilcox
[<,pg gp/, a id A,~ r~~ cc.,.-1.s / c. ma e in ~ s rw /,. n D / sw -2e n A- -a p x, .z-?,4 p A o a a e r. b _f&ds-y.4AL y g ir77 n. gm csg p mv. .-/n /k ~x,am an. e&- &n d /fme Q , r & A _- / cx w.r +- 1 ~ r fd sN - ~Ya AsmsK er1 AEY _ d
- u8 sh
,M /&4. &r er$W6 -&h -n a ~; / / g5e a:e -m m m
- (
wu ~ wg%f . _ m A p
- 5 4-A
-A e -;9 ~ ss-E C3 a s m_y z A-2 e_ p a-s, -n p xa rA si. _ w/d An <w se M s e a:2- -s m- =_ny
- x A
-zs y_ / r snt %w.k_Js;;. .._ne~ct o= a.-a 4 -:M,.d- -c *-,.. p n' -<G- .:G ~r-
- c.-<; T.>~ _. m /
.2/" m-4:w/ eds./ L 1894 165 pQQ[ h bb L
- Babcock &Wilcox
_..71r n <W men W- _sy &nyn _y#x+ y,- At nf.dsed-s 6-p~$ KA -/Ky
- A-6.
22 72 f AJ A A&u. r t sd A-Ox &4b/m md sm m_w / op .J-~ r-S? A m =. y.6 w d n me Q,.e/ ~A .d xe wg-w SA $2mW fa< e. __.MA ssco,,v k r / l n 2 n =< ng J g ,,- W ,m y ~ -p-a a mA-2 cm A & -p. / + 2g,& , -A Wy e w Q%E ~w. s syW &- a w s xs np mM M
- A. edh
. - - - _;. h C A&, L Wh. $Y &&~ gn 1894 166 D}Q[@$!Nk
Babcock & Wilcox / / s, A p ws i N-W l L g. 'ypn /> x uz n1 / w-s s-x 1 wi x ~~p as i 74 aa x? y AL A4f am.. ,1
- w 4.c gy k..
&M yJ .Md wr a n2 -w em -p i s A AJ- ~dJ A ,--=s- / l Am > M xx an -p/ 4 R Y 21%d sfA. z. m A- ~& *. M e/e->-m 3 / 7s =g sJ -a x )- x, - -,~ 1 h
- 2
./x ff_A a::::- e-+ s< ~ a p-s a s ~ a.- A ss' 4, a A4 t + i: 0 1894 167 3 ?Q M uk c
- [, Babcock &Wilcox 1) G-4-ZL ded2A / ^, ;;', A1 J WW 99n - Q@!d -y &K / & ey s -4,e c2 /u m-- AZ sJd A4 =
- k'A '
&r Sb &YA W /& n f J / Y r- / ?) Y A i1r~<< n Awf A'&u / rd E 3, Ys / / r s A sa Af ALK - / 36 snM &A /A Jnxe r u //m Jrad -+- - s k - a, / km6 A.C - kW
- Y 4"5"'
diza! 4 ~ er f.nf ou 9 9o ?-wyv4/ #PI m gwp a 4 nw w- -~wns
f. 5 's Sab:cek r. '.'liscox r c&h U J / re MM s2d A es -ym ~ ~ A'- -L wyg. A w 2 fe d~ -aat se m u. W c/M mA+ s,- A_ 4 / f -mm ,f m* Jm WA M / l^ "lus )pjs Pm, s$ sb2/m&- l ddsd Ww sdd smn "44 fe md -A oh. SM s._. ~e-
- s'*m aY
/E sh w ~+ r> ans n~m ax h
- 2. 22~ -,- A Ls 22{ /A l
- r. z~ ~A, . >, m-p ~ F "k ^ n',2 As a +_n 4 M M ^* ( .a s.,,,.'/ CM o#' $.=<. ! ' s e sa h ' 8'"4 69 ~ P00R BRfAE
- Babcock t.Wilcox
/. <W) WW /A&E J ? m _. 4 "sx2 h ed do-* - <x% . san 69 M JA L. f / A r t Am b-n,d Wd "S/ oh,m nd/ A< A- -A m sMu/ - &n / er p 2 m x x, n /- WA bu YA $l ,#4 Y - )&s &~L - A M rn .2$~a / f A.. yg,- n w4sE c' Jnud ^ ~ r. W M-l f A FA cp7 A Q bd A A -/ u= c er-d M+ -- ry w,:-. a w.= J w.= . -fg-ac x fu.n f 7 i i 4 h + "z, n.' ) - 4 &- ~ 5) &&S< tad &aL -e::._.c + ~.--. 8.- d' 'W <r4:~r-C k y m '.! ) .6=~J;y._ s md _M. 2 1
Inbe.or.k r. Wil:ox fd AW EA dy -s r a 1 p A Jf43_ -mn - s) Smen L M mL ' dw_d / j Ms /d s -A %. mA ' o-b At /
- L*
Y W sY m / ) Y 3- / >> f s r.L E i ~~ +d _ w&w K) ssm A 2.- /cS ,-m-m/& 4 -m M k A x -m A / ~ o o <s. dmA ?) FA n fNZ j xf __, y A ) w la. M 2rm ufn n! ~ l l1 o o p rie. wd ~J f 4;.6..... Am 12 4_.45- _ Qg fd; / wM 4 d WJ
- AW Tw
/ P A.: p. o._& -s -we l N) 4t- -dd /f / p-/.; w.... t 189( ?7f 3061813lNd
s. Bab:ock t.V!il:ox / add A A z~w"~ / /- - ng/ -n, 4-2 /p -ym2 =a /4 1 wp A p - rs sj_ r-4M ed A4 - s,g ~ m:.s x. - xs / w a -sa ug FA a$d, s ~~- ~ 42 ,2 Auur A, /) >% w s'.. sX - opp 8 / f . 6A J d s,,-s m M y ~ s n_ x _ / -Lgq m _ / M,y 1-1) a c. g-a pp 8 2 f
- n na,,.
x a, M / ^1mcc/ 4 -1'MS-y 1894 172 300R OR'GliUL
. f.. e.sco x & wiicox ) h. za1 'wm /, e / /A P Jen d/ A tes 7'~ a J i &4Ll'b & - = - - - /Am A s. p -26f m.s.- w n-. 2-e.cf-pg A rs auk was e n h-i ./s 9 .r-d") ,.x - *-ed /&?n:= t. jMs-4e W 4__<: '- / W od A /s2 4Q 'A $ yL a a o my g 4 _r f4 Ab A.< m Ja /m Jp sd K
- w h
'nfs _ ja,n.-. 7 -f .AqW lAWl HJ // n
- c-y& J a AQ4 A~
~ w-M / W '&W,2 A wwaf om&^ Am 9 say w: A de 4 POR ONIR
4 w.m u S Fcat h 'x:.n ic.:,r.: : e Babcock &Wilcox a.:-, %,cee-x,oacroo. P.o. Box 1260. Lyncnturg. Va. 24505 Telephone: (8o4) 364-5111 April 14, 1978 Dr. Ernst V'olgenau Director, Offace of Inspection and Enforcement U.S. Nuclear Regulatory Commission. Washington, D.C. 20555
Dear Dr. Volgenau:
On April 12, 1978, I reported to Mr. K. V. Seyfrit of your' staff an item which B6W believes is reportable under 10 CFR Part 21. This letter completes B6W's 72 porting obligatiens under 10 CFR Part 21 for the small break (LOCA) the reactor coolant pump discharge. The attached concern at is BGW's evaluation report of this potential safety report concern. If you have any questions on this subject, please contact Mr. H. A. Bailey of my staff (Ext. 2678). V,- truly yours, 4 g// ' -(7 - f James H. Taylor j Manager, Licensing l' j JHT:dsf Attachment cc: R. B. Borsum (36W) K. V. Seyfrit (NRC) ,1 t t e i g ) i 4 u t e I894 .74 1
EVALUATION OF 177FA LOWERED LOOP ECCS CONCERN This report documents the evaluation of a concern wherein it was postulated that for B5W 17"FA lowered loop plants, the analysis pres'ented in BAW-10103A, "ECCS Analysis of B5W's 177FA Lowered-Loop NSS," may be noncenservative for a small break in the reactor coolant pump discharge. The purpose cf this report is to docu=ent the backgroun. and reasoning that led to the conclusion that,this matter is reportable under 10 CFR 21. ,J 4 1 t w. t i ~ ~.. } I s t 1 4 l 1894 !75
IDENTIFICATION The preliminary safety concern proposed that a small break on the discharge side of the reactor coolant pump may produce unacceptable results based upon assu=p+. ions,, used in the analyses. The affected plants include: Oconee 1, 2 and 3 Three Mile Island 1, 2 Arkansas Nuclear One - 1 Crystal River 3 Midland 1, 2 Rancho Seco .c 5 4 (s ~. - 1894 176-
\\ ANALYSIS OF OCCURRE: ICE s Recent analyses of small breaks with cross sectional areas 2 of approximately 0.04 ft have indicated a, change in calculated results, compared to those previously reported in BAW-10052 and BAW-10103A, Rev. 3, for the B6W 177FA lowered loop plants. These recently calculated results indicate violation of the ECCS acceptance criteria of 10 CFR 50.46 under certain unique condi-tions. These conditions, or analysis assu=ptions, are: 2 1. Break si:e: The break size must be on the order of 80.04 ft so that system depressuri:ation,(no operator action) to pressures at whic,h the LPI system becomes operative,is very slow. / 2. Break location: The break must occur in the cold leg piping between the high pressure injection no::le and the reactor vessel inlet no::le and must be oriented at the bottom of the cold leg piping. (This break location minimi:es the effectiveness of the HPI flow in that a portion of the total HPI flow can be lost directly out the break.) 3. A Loss of Offsite Power: With this assu=ptien, operation of the HPI system is dependent on emergency power supplies. Only 2 of the 3 available MU/HPI pumps are, in general, supplied with emergency power, and therefore only 2 pumps ~ can be assumed available following ESFAS actuation. With offsite power, the additional flow from the spare HPI pump would be available to the operator for accident mitigation. 4. A single active failure: A single failure,which cust be either the diesel or a ce=ponent (pump, valve, e t c. ) o f the HpI system. occurs, so that the HPI train sunplying water to the intact RC loop is lost. 5. No operator action. i894 i77
. d) NALYSIS OF CCCURRE'!CE (Ct \\, ' The combination of these conditions; small LOCA, specific location and orientation, no offsite power, single failure, and
- Addi, no corrective operator action is extremely unlikely.
tionally, identified conservatisms within the LOCA evaluation criteria create the unfavorable result. That is to say, if these factors were evaluated realistically, no adverse conse-quences would result. Therefore, although we believe this analysis is reportable ; under 10 CFR Part 21,no l compromise of public safety has been shown. 1 I Of the five conditions presented above, only the break i l location has been changed in,this recent analysis. Previously, } the small break spectrum ana' lyses were performed for postulated breaks in the cold leg pipes between the SG and the RC pu=ps. The break location in the previous analysis was based on 4 2 the results of a sensitivity study for a 0.1 ft break which 8 indicated more severe consequences for breaks at the pump suction as co= pared to the pu=p discharge. For break sizes l 3,0.1 ft, the RCS will depressuri:e due to large leakage rates 2 f to a value where the CFT and LPI systems become functional. 2 It is evident now that the-0.1 ft break location study is not valid for smaller break sizes where the CFT and LPI syste= do not beco=e operative for long periods of time. An examination of Figure I shows why the pu_p discharge break is a worse case for breaks where the HPI is the predominant I protective system. Consider a break at the pu=p suction. Two HPIs would normally be actuated, but in the evaluation, only one is allowed because of single failure. Still, because of the pu=p geometry and HPI no::le location, more HPI water will flow to the reactor vessel. Thus, 1001 of the actuated HPI can be used for core cooling when the mixture level gets below the RCP casing. This flow is sufficient to provide continuous core cooling. Now consider a break at the pump discharge. Any.HPI water injected into the broken cold leg will pass by the rupture ( prior to vessel penetration. This flow will be directly swept out the break and thus not be utilized for core cooling. Because i894 178
I A..aLYSIS OF OCC'JRRENCE (Con. JL of the single failure, the HPI in the unbroken loop will not be The HPI attached to the broken loop will inject functioning. 50% into the intact leg and 50% into the bro' ken leg. Thus,'only 50% of one iiPI is available for core cooling. break at this very unique location appears to be 2 The.04 ft very near the largest si:e break in which only the HPI system would be utilized, and thus the most limiting small break of this The loss of 50% of the available HPI flow due to the category. combination of conservative analysis assumptions for this break results in core mixture levels at the top of core at approxi=ately 1700 seconds following the postulated event. At this time into the transient, the reactor coolant system behavior is analogous to a boiling pot. In this mode, accident mitigation requires injecticn of water at a rate equal to or greater than boil off. With no operator actions and the present analysis assumptions, the required match between injection rates and core boil off rates will not occur until approximately 8100 seconds. Insufficient core cooling is thus currently predicted for a sufficient period to lead to a violation of the criteria of 10 CFR 50.46. The length of a postulated transient o'f this nature and the abundance of accident indicators (low RC pressure, low pressuri:er level, high RB temperature and pressure, high P3 radiation level, etc.) and equipment status (ESFAS actuation, HPI flow indication, etc.), however, provide ample time for operator-initiated corrective actions. ,t 1 1 1894 179
CORRECTIVE ACTION B6W has identified and is actively evaluating potential solutions to this small break LOCA problem with our customers. To date, these solutions primarily deal with potential ways to increase effective HpI flow (flow to the RC cold legs not containing the break) or to depressuri:e the RC system to 2 obtain LpI flow. All solutions assume a 04 ft break at the pump discharge, a loss of offsite power and a single active failure which re'sults in the loss of one HpI train. Four potential solutions are being examined: 1. Opening the HpI discharge cross-connects and injection valves to permit more 'of the flow from the operating pump to enter the reactor coolant system in the unbrcken cold legs. 2. Actuating a standby HPI pump by connecting it to the operating f auxiliary power source. 3. Opening the atmospheric dump valves to more rapidly depressuri:e the pris -v system, thereby resulting in additica-injection from the core flooding and low pressure inj ection al systems 4. Opening the pressuri:er relief valve to depresuri e the l primary system in order to activate the LpI system. The results of the evaluation to date have shown that actions 263,if initiated by 20 minutes, provide continuous core coverage and result in no cladding temperature excursion. Action 1 will provide continuous core coverage for power levels up to 2568 MWt. l For higher power levels, temperature excursions may occur.
- Once, specific plant conditions are accounted for these temperatures i
are likely to be below 2200F. Action number 4 will most likely provide acceptable mitigation but has not yet been soeci.fically analy:ed. i I i 180
BGW believes there is an extremely low probability that a break of this specific size will occur at the bottom portion of the pump discharge piping at the same time one' HPI string is assumed not to function because of single failure assumptions. Therefore we believe that normal plant operations should continue while the investigations continue. We further believe that operating procedure changes can readily be implemented that will provide adequate protection to the ' core in the unlikely event of small break LOCA described herein. E s.* REPORTABILITY This concern is reportable under Federal Regulation 16 CFR Part 21 for BEN 177 FA lowered loop plants. It does not affect 145 FA plants, 205 FA plants or Davis Besse 1, 2 or 3 since small break analyses at the pump discharge have been completed and are acceptable. These acceptable analyses are reported in: BAW-10074A Rev.1, "Multinode Analysis of Small Breaks For B6W's 205-Fuel Assembly Nuclear Plants With Internal Vent Valves" BAW-10075A Rev. 1, "Multinode Analysis of Small Breaks For B4W's 177-Fuel Assembly Nuclear Plants With Raised Loop Arrangement and Internals Vent Valves" BAW-10062A Rev.1, 'Shltinode Analysis of San 11 Breaks For B4W's 145-Fuel Assembly Nuclear Plants With Internal Vent Valves" 1894 181
. ~ ~, A. C. k 0 a 1 er k a a e n r ) t o B Mo y i m At t l r A c l t r y y u a 5 r n o m ( u a f s g t a 3 S ll G i r r t o T c i ]/ V, tam ) e R h E ) c T S IR W U S v C 1 P R 1 C / R tf I ( I E m P E v [ I I R r U i C r N o I j (v F B ~~ ~~ )S n I u )o L u u r e e r v Ar h o t C. o wn a . c 0 . e c t \\ ( t )w. u b -( e F _) n o / w, a t hk t ca E n s e '0 r P l ir P, DB 8 7g u I A l 1 ( P ( 0 l e, = ~ P C ~ R V. = ) f
- W R
y t A o s f f ro ~ c ( N O' I WA U~
p. 7.:pp. i. % tr.- - w Mi;Dml;v'en IE Sulle:1n No. 79-05 1 ~ ut EUwum Date: April 1,1979 N, Attachment Page 2 of 3 Z =27 72:::1 MD!CRACUM D....D "00 WET 33 YEJ 37C72!AECU 70 L1233!:0 ECAROS. - DA715-3211I ITN!!3 2 & 3 AND M.*.,1A.T UNUS L & 1", 3A ID JA5'JAIT 8, 19 79, 71:21 J.S. C225;.7.. 23 J.7. S--'- .a.. 3. hspec.ic a=d I=f c ce==== 14;c:: 30-346/78-06 de c.:=e= tad tha:
- easurt
- 1svel had gene effstale fe app: xf=ataly fiver
- =1==
- es du=1=r the Nove=har 19, 1977 less ed offs" a ;cvar eve::.
hara are s==e i=dicaric=s ths: c ha 34 pla=:s =ay have ;;sh-
- le==
i
- -d g ;;sssuri.=s: level i=dicati =s duri=g ::x=sia=:3.
!= addi:1. u=dar cartah c=_ii.12=s scca as less cf f anduatar a: ICC: ;cvar vi d de raze::= ::ala=: ;c=ps ' t da ;rta-' i s=1: : a7 v=id c =;1ca17 A specizi a=alysis has ham: ;c-fe:=ad c=== :=1:2 :ht.s av a=. Bis a a12's is at: ached as 7 1 I=cle. sura 1.' 3ecausa af ;; esser'::: irvel =ai=:a===ca ;;ch-j le=s the s'-"- =f da ;;assuricar =a7 ret. ira furtha ravisv. 1 . Also =oted du:1:3.he ev e= = vas.h e f a =: da 7 :1d ve== cff-seals (lass da: 510c7). S additie=, 1: s.s==:aci. hat de. 2.aker; fic:.r =-1:: i=g is li=1ted :: less - *- 16C g;= a:d tha: =akeu; fi:v =ay be subs a=:12117 grease: tha= this alue. -=1s i=f :==:1 = sh=uld be a=a=.1=ed f.= 113h: ci the require-a=:s f C;; 13. i i O!!C 53 ON A';U ITAL-* t-t na etw== a: Savis 3 esse whi t itsel:ed i= icss cf pressuriza: level i i= dica:ics has bet: reviaved by h7.2 a=d the ::=clusi:= vas :taded tha: :s =:rviavad safs:7 ques 1 :. a=israd. t i S e ;;;ss=:1:ar, ::st:her vith hs sa::== cscla=: =km ; sys:e=, is i das's=ed :: =a '- - d a ~;r":.a re sys:c= ;;tssura a d va:a level wi-- l their c; ara."::a1 l'-' s c=17 curi=g====2.1 eparati=g ::=ditie=s. { 0:cid:
- a=sia=es, such as less of effst:e ; cue; a=d 1:ss =f feed-are bey = d sta ah 7 cf this s-rsta= :: ::::::1. S e a=alyse.s cf
.ra:::, sc=sti=ss insul: 1: ;;"
- --r pressure a=d veh=a cha=gss da:
j a=d ermerie:ca vi:5 sud ::a=sie=:s shev, 5:ve-sts, tha: che7 cz: he sustaizad vidsu: c c.:='s1=g da salary ed ths ; sac:=T. na 7:1= ipal j c::ce:= ca= sed by such :::=si.a=:s is'. hat day ight causa v.adi=; 5 de ;;1=ary coola= systa= :.ht: ver.1d lead. loss of sh111:7 to ada-qua:aly c=ol tha rasc:c; core. ne saf ety evaluatics of de Icas of of fsi:a ;cve= ::a:sie== s:cvs that, though level i=dicatie: is Icst, se=a vata Ma i= de ;tessuri=ar a=d the ? aasura does=== decrease balov aben: 1600 ;11. h ::d.4 f:,,!Jius Lu us uu, the ;;assurt =st decrease telev the saturatio: ;;essura c= respe di=; := the systa= te=peratura. 16CC psi is :ht sa:vra:1o= ;;assura c= respendi=g :c 6C3 7. v'..ich is also the =a:i=== allevable c::: cc:la: ta=pera:::a. l Teidi:3 1: the ;;i=ary sys:e= (ex =;-1=g tha ;;essuri.:er) is ; echf ai 1: th's casa, si=ca ;;essura d:es =c: dec tase := sa:::a:1c=. l t T l 300R DI N b l 1894 183 1
IE Bulletin No. 79 05 Date: April 1, 1979 Attac.*nen* Page 3 of 3 i l 7ha safety a=alysis f er c;= severs c eldev: ::t=s' ests, such as ths icss of fesiva:e: eve :, 1: dica:es ca: c e va::: velu=a c=cid dacrease
- c less tha he s/s== vcluse a=clusiva of tha prsssuri:ar. Duri s such as event, the c=;:71=g cf the ;;essurizar vould be fc11 cued by a ;;essurs red c.:i= bel =v the aa:ursti== pci=: a=d da fc=a:1= cf
- all veids h:= ugh =ut =uch of de ;;!.=a:7 syste=.
his veuli =:
- ssah 1= the icss of c :s c=cli g incause ce ve'ds veuld be dispersed a-large veluse a=d f = read fiev veuld ;; eve== tha: f := c:aleset s evs s=ffician:17== ;;rsc=: c::a c. 11:3 he high ;:sssure c==2:==
i= e -'-. pu=;s ars s r:ed au:==a:'-a ' y whe:.he ;;d
- m 7:sssues da : eases telev 1500 pst. Saref=:t, any ;;sssure sdu::1 = e' ' is suf d -: := aller veid1=g v11*. als: ss '
'- vanz: i='esti==. s id v'_11 rz; idly ras : e ths ;;i=ary va:a := c= =.z1 *avsis.
- e-hase zar
- s, we believs tha: de i abi.11:7 ef :he ;;asse:1 er a=d ::=al ::eian: =ueu; svsta= := ces:::1 s==a ::a.sies:s ices :::
- vide a basis f== requirt=;
- : capaci:f 1= th es e s s t a=s.
04=t:11 3 esig: Critart:: 13 ef 1;;end1= A = 17 C7;. !C :tq=1:ss i=st:.=estati= ::===':: variablas ever. heir a.ici;a e6 rz ges f= "a::icipa:ed ;erati::a1 ce=::a :=s". Such===r: : ts are speci.fhs117 de'isad := inciude i=ss =f all effsi:e ;ccer. he fact f..z: 7 ::1d sees off scale at $20~7 is sc: c=sidered := he a dev_a.1= f = this requir - be:suse -lis 6 dica:: 's backed up by vida rzuge re=;e=:ur e *- :201:: :ha; e;- -ds := a Icv 11=1; cf 50*7. .Nel:ter d= va ::=sida; the :aksu= fiev===i:::i:3 := davia:2 si :t da a. : ef akeu; flew 6 e=:ssa ef 150 g;= d:es = appear := be a s'- i as: fae::: 1:.ta c==:s a ef thesa ====c=:ss. "'s 1:ss of ;;tssurizar va.z: level i= dica d-- -- se : sida d :=
- dav'a:s f:= 0:0 12, because his ie rsi indi:.a:10: ;;:vidas :ta 7:i=:ips" ser:s =f da:::- '
d ;.hz ; 1=2: f c :1s== i= +e::: /. E vever. ;;;visi= cf a level indir.z:in :ha: veuld c=ver all anti:i;ated sc:u=e :es _17
- ie 7 setics1. As discusssi deve,..he 1:ss cf feedvast; evs:: ca:
laad := a _:=e:.z
- c: di:1. v=ezza: : =ca.is;ful level <='s 3,
'nacaure :ha es: ire ;;i=2:7 systa= cc::ai=s a.s ts= v.-::: -12:: 2.
- she.:1d be== tad :ha: da 6:::d.u::1:= := A;;e= dix A (las: parag;2;h)
- ces=imes tha: fulf e : of se=e of de cit:eria =a7 ::: aiva7s 'ce a;;;;;-ia:a. h is in: mdue: h also s.a:es tha: decartures f::: de-Cri:eria =us: ha idestified and jus.ified.
'he discussi== cf 000 13 1: the Orvis 3=sse 75A?. lis:s the vatar leve.1 1 s.._..e..:stics, tu: does ::: =e::1e: the possi'cility of 1:ss of va:e level isdica:1: dur_:s : assie.:s. B is a;;aras: c=1ssi== in the saf t:7 ana*.7 sis s-ill be subj ected := furthe: r evic r*. 1894 184 s h
1 BABC0CK & WILCOX COMPANY R GENERATION GROUP l Swanson, Integration I N.H. Shah, ECCS Analysis (2136) Y 8D5 663-5 File No. TECO.-1 NSS-14/T3.4 Date Auxiliary Feedwater Level Control November 13, 1978 i,,........................................ j A question is asked whether a low SG level set point for the TECO-1 plant would be adequa te. The ICCS Unit has reviewed the inpact of low level on LOCA analysis. The auxiliary feedwater level control is significant for small breaks only. The analysis for the presently approved small break topical report BAU-10075A, Rev. 1, was based on a 32 ft AIV level. Subsequent scoping studies donc, but not reported to NRC, have shown that a IC-f t AFU level control is adequate to assure core safety for a small leak transient. However, a level set less than 10-ft would require additional co=puter analyses and possible model and/or hardware changes needing NRC approval. h le cc: B.M. Dunn R.C. Jones G.E. Anderson B.A. Karrasch R.C. Luken U.H. Spangler E.A. Womack 189( 18$ t f vitW 1)6/ amar Z.',C FOR EDENnncAssoy I.H. BENJAMIN efrL
BABCOCK & WILCOX CO ANY R GENERATION GROUP I i W. Spangler, Nuclear Service sos 66s.3 E. W. Swanson, Plan: Integration File No. ( I Toled o-NSS-14 Date Auxiliary Feedwater Se points Nove=ber 15, 1978 [n..i....,,.....,.......................m. i. Our recent discussions with Toledo personnel regarding their need to reduce the steam generator level se: point for natural circula: ion, and S&W's need to =aintain a high level because of ECCS small break have led to an i=nasse. Both B&W and Toledo are in a " risk" position because the Toledo small break topical was based on a 32' level position; a=y change to that position =ay require re-analysis and re-licensing. Nevertheless, a stea= generator level value has not been reported to NRC, and the ECCS Uni believes that a 10' level setpoint will be adequate. Toledo's needs to lower the se: point are genuine and I offer the following s'
- stion which you should pursue with Toledo:
1. Alter the con:rol logic of the STRCS so that it will provide two se: points. Since a control function cannot be readily placed in an ESTAS syste=, the STROS =ust be modified. In the presence of an ISTAS signal, the ESTAS sets a priority for operation over any SFRCS signal and directs the STECS to provide a high setpoin level control. In the absence of an ESTAS signal, but with an SFRCS generated signal, the STROS control se: point is directed to a low level. A general sche =a:ic is at: ached; other =ethods of i=ple=enting are possible, but this purveys the concept. 2. ESFAS could also initiate auxiliary feedwater and isolate =ain f eedwater. Further investiga: ion needs to be =ade as :o :he actual sequence of events. I believe it is new possible for two conditions to exis: because the TECo syste=s do no: initiate AIW by ESTAS. These are: Current Desien Site Condition Sys: ems Secuence Control Se noin: 1. Off site Power Available ESTAS .* ICS 2' (Main Feeduster) 2. Offsite Power Unavailable ESTAS cm STRCS 10' (Aux. Feedwater) If my reasoning is correct, the first conditien will only provide a 2' ten:rol (of =ain feedwater); no SFRCS signal will occur and the ICS will control. The other condition will cause :he STROS :o respond to a loss of level (nos: likely) or to a loss of punp power.' At any rate, SFRCS will ini:iate AFW and control to the high se point.
Swanson to Spangler Auxiliary Feedwa:er Se: points Page Two Nove=ber 15, 1978 The first condition =ay. or =ay not be accep able to ECCS Analysis; they have not investigated s=all breaks vi:h RC pu=ps running. If such an analysis were to be =ade, the results would probably be unfavorable. I sugges that TECo confir= :ha: the above sequences are correct before a decision is made to initiate AW with ESFAS. I believe that further analy:ical effor: vill probably be needed by ECOS a. to co"'d-- -a the 10' se: point is accep:able even though their judge =ent says it is. I think that so=e docu=entation on file vill be required to substantiate their clai=, but I do not reco==end analyses at this ti=e. 4. An additional though: =igh: be considered for li=1 ing the pressuriser draining. Recent investiga: ions for the 205 plants have shown us that the rate of addition of feedvater has a substan:ial effect on RC te=perature drop. The Toledo plant power level only requires about 500 sp: (at about 30-40 seconds after trip) to re=ove decay heat. Yet the pu=ps are capable (at design) of abou 800 gp= each; vich reduced stea= generator pressure the addition rate increases by about 25: :o 30%. The to:al flow rate possible tends :o introduce subcooled water into the generator, fill to level (possibly as a subcooled inven:ory--I don't knov the effect a prese: of heat pickup as the water falls through the tube nest), and then hea: to boiling. A = ore preferable mode would be to introduce flow at a rate up = ore equal to the decay beat load. An investiga: ion into ra:e Id-d:ing (valve opening restrictions, cavi:ating venturis) =ay'be worthwhile. Rate li=1:ing =ay be a full or par:ial :radeof f for. level li=iting. 5. Further discussions with TECo abou: these suggest: ons are desirable; we vill supper: effor:s in this area. / / .i EWS:dh Attach cc: H. A. Bailey L. R. Cartin B. M. Dunn B. A. Karrasch i D. E. Leinhar: R. C. Luken F. R. Tais: N. H. Shah C. u. T 11y 1894 i87 R. O. Vosburgh R. V. Winks !. A. Wonack
THE BAS 000K & WILCOX 004?ANY \\ P0k m itlEF.AT10fi GROU8 To i R.B. Davis, Mana;er, Cent-1 Analysis ecs C.W. Tally, Control Analysis CJM ..m. Cust. File ho. TEto or Ref 72 !gfNSS,). ~ Subj. Date Pressuri:er Level Dr:blems Fellowing Reactor Trip December 22, 1978 g,w,................... On De eccer 20, 1975, a brief stu:y was cer'ormed on the Old Fores: Read Simulator to catermine the sensitivity of the rea::or trip transient :: :ne auxiliary feedatter f1:wrate. The "esults a-e :asi: ally cualitative because the cateut availa:1e f r re::rtin; is in units used in the ::. pu:er pr:7-an i and has not been user criented. Fcr examsle, 0-essuri:er mass is availa:le. but no level. Parame:er s:aling als: =ar.es aanti ative results did'ic M :: obtain. Ecwever, it was clear from the runs we ra:e :nst :ne transien: :-essuri:er invent:ry is stren;1y ce:ep: ant on :ne AF'.! fae:ra a. Alth:u;h we ::ald 50: a: Sieve the AFW feeerate cf 1200 5:m per lec: wni:n 3.* su:::sedly nas, we :ic rea:n abcut 1103 9 :. Ra s ma:e witn tnis f wrats wa-e :: :t-ed wi:n nars wi n half this rate. The effe:: was 53rked: 0.;5 cressure an: gene ra::e :-:::e : reet slowly a.d tne +i=u : level re:: red was ni;ner. Tne euns als: sn:ra: :ne: :e pressu- :s-is n:: very fa-fr r e::ty af ter a n: ai rea:::r tri: '-: 1:~, i FP, rea:.ing levels in e nei;$ :rne:: c'.05 :: 5, incres. These eas'.hs,
- lt'. g;" :11;. '.. :~...i.ue, :ssi:aily :<.y..
,... R.....:i ni.s ' pre c i... s.. ...r. 8 fr.aintainin; s:ce inver.::ry in :ne cressuri:er :y :e marginal. for si.a:1:.s ir t which ATW is permit ec to rapidly raise CT5G 1evel :: 123 in:nes. i { I do not effer these results as evidence to stand alene. For one thing, the simulat:r is a trainin; :::1 and nc-inten:ec for analyti:31 Our: ses. '0.ever, ,I it can be cuite instru::ise in si:;ations lika this ae: ; believe ::d s :.'. the feasibility :# usin; ;T-l'! (*.77 FA vers 1:n) :: de an AE; si: int analy: s :: su: port a design enan;e to the DE-! syste:. It a:: ears that tnis may be tr.e j salient c:in: in the plant's capability t maintain an a::eptacle pressuri:er level and as such, should be addressed in any discussions for a permanent fix if plans for a dual level setpoint fix fall throu;h. C',,T/1 p i i cc: Em.whiae O w.v.. y p smarr-
- 7 FoR IDDmnCAttoN N
tM ' : ss e p Y& 1 _.._...._..__......._.s. 4 l 1894 188
t M r C!iTIrrCR5 TOR CAM 5-iE!5! POWIE S!A I WII I f been modified to include a dual The " auto-essen:ial," $3 level control hasFollowing aut feedvater by the Stea:: setpaint. (lov RCS and Teedwater Rupture Control Systenindicators if no ESTAS actuation to 35 inches on. the startup range High Pressure Injec: ion (EPI) Syste= f eedvater and ID'I are pressure or high 7.S pressure) of theTor a:cident conditions occurs. 1C's to auto =atically actuated (indicative ofl vill regulate water addi: ion to the the auto-essen:ial level contro 6" indicated) on the startup range in-SG 1evel controls achieve and caintain a 120" level (9The use of a dual set s:rumentation. as described in the Davis-3 esse. Unit The information pro-J f this change. 1.2 in vided belev is the 10 CTR 30.59 review o tation supplied by letters vided, herein, is an extension of documenThese previous submittals we f interin maa. e December cf 1976. trol 50 levels. i sures, utili:ing opera:cr action, to con l control on the SG's automate t dual se: points into the auto-essential" leve,been used in the interin perding t t the ope:ator ac: ions which have design changes. of per=anen: cf a single int control, in lieu Design changes to provide :he dual level setpoired, have been made to naintain ade-during anticipated setpo:e.t vben auaillary f eedvater is requd pressurizer leve1 3 quate decay heat renoval and indicate h the small break 1.00A analysis (BAW-events and to naintain consistency wit lov as 120 inches. 10075A), which is applicable fer SG 1evels as d the design basis for the 35 and supplemental SW analysis provided for all anticipa:ed events re-Test data i inch (indicated) level which vill be u:il zethe I3 Towe The natura' cir-quirimg auxiliary f eedva:cr at(TP $00.04) de=enstrated that the 35 inch re= oval (see Note 1 culation tes: 1en for decay hea: level l vill provide adequate loop circu a:BW analyses further show that pressurizer for additional infer =stion). due to or followed by a loss of cain i I is maintained en scale for reactor tr ps s of effsi:e power. feedvater or a loss PM c l894 l89 ~ '~
s0CK & WILOOX CD'.to Atty .iEilEF ATICri GP.0UP r R. C. Luker.. Nuclear Sen-iee p A4 L. R. Cartir. Plant Steeration (2E35) File No. l Cust. or Ref. l BA-?c'?.nn tevi, serse 1 Date j -S u bj. Fe h a" 15 1870 Pesaense te !O te ter 3*.:-505 l.......... C. D. D= neck to A. E. Luzar, 73-1 Dual Level Se:pcings on Stes= Genera-Re: tc s for Auxiliary Ieedvate:," T3'.'-505, dated January 2,1979. Please find a 10 CTR 50.59 evaluatics of the dual level sa: point, design change as reques:ed in Ques:1on 5 cf the above Reference. Q.A. The infer =atier. presented is consistent with past BW analyses and the conclusions dden are applic-able t D3-1. $ date l?)90 ~ hb x. 2bsl?? date o
- .Re::v l
1894 190 l'l 3
The 4th, S: level se: point (96 in:hes indicated) a::icipa:ed usage is during design basis events cely where both auxiliary f eedvater and EPI are required. ( The accides: asalysis presented is be 23-1 TSAR for these events (1.0CA's, S:.3, etc.) re=ain valid vi:h no decrease 1: cargis rela:1ve to established acceptance criteria. In sary, the incorperation of be dual level setpoin: control for the s:aam generators is a desirable desigs change which vill lead to i_ proved plant perfomance. This desigs change does no: involve an unreviewed safety questian because: 1. The probability of occurance or the consequesce of an accide : or mal-fune:1on of equipme:t i=pertat: to saft:y previously evaluated i: the ySAR has no: been increased. i 1. The possibility of an accide=t or =alfun::1on of a dif f ere=: type tha: is not bounded by a previous analysis in the TSAR has not been created. 3. The cargi: of safety as defined in the basis for any Technical Specifi-cation has not bee: decreased. c Notes: 1. TIOo le::er to R. W. Reid, Chief Operating, Reactor Eranch No. 4, Division of Operati:3 Rea : ors, Serial No. 471, dated December 11, 1978. 2. TIco letter to R. W. R=id, Chief Operating taactor Branch No. 4, Divisien of Operating Reactors, Serial No. 475, dated December 22, 1978. 3. SG 1 eval is but one f actor tha: ::::ributes to maintaining pres-surizer level on scale during anticipated events. Auxiliary feedvater addi:1cn ra:es and se:ondary strea: pressure :entrol are also i=pertan:. The dual level se: point control provides au integrated sys:es to coordina:e stea= generator level and aux-111ary feedva:er addition rates. Y.easure to provide proper equip-ment opera:1on which effe:: secondary pressure have bee: taken. Bovever, eeni;:en: =alfune:10:s cannot be prevented vi:b absolute certain:y. If pressure level indi:ation is los: (for any reason) during at:1:1pa:ed even:s, :his occuras:4 is censidered an opera-tional ince:vesience and not a saf ety proble=. "he operator ca rely on PC sys:e= pressure :o assure that a level of va:er in the pressuriser is =ain:ained. 1894 191 t pe.c
BWNP-20032A-4 (10-78) rnA:T/STA:,sAR: Nc. g g gigg MSJ- / 4 NOTICE (DRN) .usm mt ,= lZlIll79 PART-t%RK/ TASK-B&W DCOUMENT NO. DOCUMENT TITLE
- L 80.
GRQUP-SEC. no-w -oso k;& - 29 e-od 21. fa, fn J 77 > c t.n u l n IeI M ;4 An,c-5-4 1 l a + h, u;r Be~ e.! I I I I I I I i l l l l l l l l l l i i l I i l l l l l l j i l i l l l l l I l l l I l l 1 I I I i l I i l i l l I I I I I I I I I I I I I I I I I l l " 8" 8 " " ' "" RELEAst: sY DISTRIBUTION ons noc can noe I e ; j),,i,. iIiItu.- a i Ir AL Au,fy sin ha A ! ".' /,. *' pa c :!D, I i l i i %. p,4 I l 1 ~ - p go err s.
- ., ; ! ;Orina f 4 we i
i .ntyssato n, i ( a
- f. /'.
! u le 1I l1 I ?.6i Te //u l 1 ll l / #. & r6-I /I/ I / I I I i gg j E
- 4. b) m n-bl / I / l l
l w,x vag /44 G ~,, if L7 I I I I I 1894 192
SWP-20210-1 (1-78) CAI.C"!. AT:C' DATAf*?>5S C AI. SWII" f CALC. 32 ~ x n.u-re :r:a 29e _a_o_ TRANS. 86
- nrz, w"%n,..n:-n. 9::.: o=;& /~.- r<:n_ _..
_.,m o m, m m _ m. m,. m _ m o.m. Z '~" " ~ ' rw ~ a. PRZPARD BY 8a 4,. E /, /el 5 r Rn*II'."ED ZY IM ni:.1 A...,_ / %,. ~, oATt2 t: h e ---.s 8-Js. tA t -/n /n / PUR. POSE: To 6:nual.wfGekd dr6>4d ad~. L.; a L + Me tkP kds a 4 ha-t 6 H /. rer - Ji+m G m A,ryty 6, /dbr-f 8tu)-Ly clag Lf -Wse ae L l ~Lu,4. att n.;ff ud aff d se m Lee o f a (fe w f (c 9e.fer 5 /hii 7'ramrie,f af DD -t.
SUMMARY
OF RESULTS (INCLUDE D00. ID'S OF PREVIOUS T3.ANS)CI~ES & SOUROI CALCULATIONAL PACKAGES TOR THIS *RANSMIT""E) A o h' l o d ? l e : {r.<. A d A - l lw o' c / Sz-.l p rameren- .(' M c (a r i e l u ha,.a ~lAe u Y' & #ves RJed !w jf/ t w fr-de. fen,.ini3 Ne m See sf el(~ 4/e cycfe1 Q &,1, < (<.(e, fif-c h 32-10 443-00
- sn :st ::s t
,Se e DBU sinf. Page / of IC 1894 193
'ar. c AcC00r: 8 WILCOX COMPANY ~ i P0h'ERAINERATION GROUP To E. Swansen. ef ant intee ation f erom f Ml wy* r Be-t ". Dunn. venee.. r es n,1 n g, / 4 Cust. g ,,3,, ' File No. or Ref. Transmittal of Draft Reoort on Steam Generator Level Effects en pl g....... ant 0:eration 1Decembe-22. 1978 Attached please find the analysis recuested earlier this week has been vercal en tnis work. A O/A Such will be perforr.ed by mid-January,1979.No calculatien file has been assemoled. use as a scoping calculation bouncing the results of a less I understand the urgent feedwater incicent. issuance to the customer prior to the full dccumentationIn my opinien, it is BMD/1c 1 l h 1 I a ) fL4<.v' f {f. f i sxms.*
- "I
( \\ FOR loEW'# CATION 1 6 4 1 4 g i M g,, } 1894 194 i
DPAFT s s~ 1 STEAM GD;EFATOR LEVEL EFFECTS ON PLRIT OPEPATION PREPARED BY i E. SWMiSON, S.M. DUNN 5 l BAB:00K AND WILCOX i I FOR TOLEDO EDISON l I l 1 l 12/21/7B t I i DRAFT A 3 4 1 \\ I i I a f 1~894 195
TABLE OF C0::TE:.75 It:TR00'.'OT!O ; II. CCri:L"SIO:;5 III. DISC'5510!i A. Relationship with Events Presented in the SAR B. Loss of Feedwater anc Loss of Off-Site Power - Introduction a B.1 - Loss of Off-Site Power j l B.2 - Loss of Feed.ater 1 APPENDIX - Bounding Analysis of Less of Feedwater Event With Failure of Operator to Control Feedwater at 35" 1 TABLE 1 - Steam and Feedwater Line Rupture Control System (SFRCS) - Actuation Parameters t t 8 i i I I -( l 1894 196
l
- v. m :: =
6 ine Lavis-!ense Unit 1 Sicam ene Fee:m'.tr Line Rs: ure 0:nte:1 Sys;em (STRCS) cesign obje: ives are te prevent the release of Sign energy
- .
- ::ti::lly start aatliary lc:: : er (/.n.0, and to pr:vice steam, t:
adequate Ard, via essential s:ca: generet:r level control, to nmove decay heat during anti:ipated and cesign tesis events when AFJ is Table 1 c;rrelates the 1:atien variables and accicent cen-required. ditions fer which AFd actuation is required. For all 4:tuation signals, the SFRCS initiates and centrols AFd addition automatically te maintain a 120" level (95* indicated en the startup range instrumentatien) in tne steam generat:rs. I a The recent natural cir:ulation test at Davis-Sesse 1 (TFS00.04) demnstrated e that a 35-inch (indicated) stea= generat:r level cf AFW provides adequate natural circulation for decay heat removal. i The aute essential SG 1evel control set;oint of 120-inches (95-inch-indicated) is, thus in excess of einimum, SG 1evel requirements. 2 Operating exoerience, such as the November 11, 1977 incident, indicates that the addition of AFJ at a rate of 800 gom to each 53 to a:hieve 5 level prednes a pri.ary system ces1down for which indicated I a 120-in: l uncer certein conditions. presvirizer level may be Icst momentarily ] In respense to these facts, Operating instructions requiring manual 1 control of steam generator level at 25-in:nes on the startup range level indicaters fellowing n n-LOCA events where cevele:ed and used at 0-B Unit 1 genting installment of per.anent cesign changes ta the SF:05. Pargin in maintenan:e cf indicated pressurizer level and assurance of thru coera:or adequate natural cir:ulatten ca:stility will exts: 2 1894 197 f __~ A
.{ intervention caring :ensitions i:ncre ATW is required. Sutsetuent to the use of the interim site cperating procedures c: scribed a::ve, %?,C que:tions relative : the c:nsequencas of the cperator failing to centrol ATW to a 35-inch during anticipated events such as the less-f of-norral feedwater er 1:ss of off-site pcwer have arisen. The extent to which the prir.ary system is cooled resulting frcm feeding the 53 with cold ATW, the ic;a:t of ever: oling the F.CS on pressuri:er level, and the consequen:es en core cooling art specific items which have been f identified. B&W has reviewed the NRC concerns and has concluded that i I failure of the operater t: :: ply with the present operating instruction will p:ssibly result in a momentary less of pressurizer level and/or level indication under certain conditions but will nct produce f consequences which are non-reversible er detrimental to safe operat:cn of the plant. Provided below is furtner dis:ussion :: supp;rt this position. ll i I I 1 Jl 2 1894 198 4 1 1 I l
ST:A*, :D TEE;UAT~i'. L*::~ PUCTUP.I TAOLE 1: CD'ITROL SYSTEM (LFE 5) ACTUAT C PARA'ITIF.3 I Operaticatl " vents &>yien_ vers-=te* Seteeint Statien '!a-ieties < 591.6 psig,2 Steam Line Break 1 Feedwater Line areak 1. Low Steam Line Pressure I Loss of F/W 2. Low 53 Level $17 inches l FWLB, LOMF4 3. SG Pressure Minus >197.6 psi Main Fee:rtater Line Pressure i Loss of Off-site Power 3 4. Less of ALL R Pun:ps 1 i 1 i l I i NOTES: When actuated. SFRCS closes teth min steam isolation valves, closes both uin FW control and st:p valves, initiates AFW and :ntrols AFW to 1. eair.tain a 120-in:n level in tne SG's. Alignment of AFW to a pressuri:ed 53 is provided for stesc and feedwater 2. line breaks. AFV initiation but n t steam and feedwater line isolation occurs 3. L 189i !99
I'. 0 * * * '.'.'*, I ':3 ~:r STR:~ a:taatier. and fill cf tne stes: nenerat:r: to the auto-e:sential. i level conte:1 :: int :f 120" with:ut oper:::r a: tion
- t j
No Unreviewed Safety hestion exists I The 1 css of offsite power transient will not cause the cressuri:er j to drain although a loss of pressurfrer indicated level will c::ur. The Icss of feed ater transient may result in cressurize e:;tyins t however ac:eptan:e criteria fer 053 will be met. Steam bubbles whi:h I exist in the reactor coolant fcr a short time will be colla: sed by 1 t HPI inje:tien. Pressurizer refilling by HPI will c::ur. No return to cower will result in the long tem. III. DISCUS $1CN i The following se: tion is divided into three segments: Relationship with Events Presented in the DB-1 F5AR, Less of Offsite Power, and Less of Feedwater. A. Relationshie with events eresented in the saR Addition of auxiliary feedwater at rates considerably greater than the decay heat generation rate will result in overcooling of the reacter coolant, centraction and a reduction f pressuri:er level. This secuen:e l cf events is typical cf several transients cresented in the F5AR wni:h have been submitted to the NRC and 4:oreved as a cart of the Licensing Prc:ess. Over: cooling transients can te :aused by a variety cf circum-I stan:es, failures. : tinatices of c:erating e:'ui::ent, and im:reper l operator intera:tions. From a cractical viec: int ea:n single eis::vera:le pessible transient cannot de analy:ee and resented as a part of the F5AR analysis tut a toad variety cf transients have been sele:ted. This ( specif t: trJnsient fits within that trcad ca:e;e y; each of tne FSAR A transients has teen ce::nstrated te er:Ju:e at:e: table results. l .a-1 I i 1894 200
Over:ocling tran:ie*.ts re,ulting fr:- a variety of :auses are ::::rita.d in Se:tien 15.2.10 "Ii:e:sive Meat Pe :.21 cue to Feedwat:r :41fu.:ti:ns". This section descri:es a transient resulting from ex:essive main fehater addition which is similar to the specift: transient cf in:reased icvel Further informatien is presente: in additien by auxiliary fetcwater. response to question 15.2.15 Land 15.2.16. The steam line break (see se:tions 15.4.4,15.4.B.15.4.1) is the m:st severe ever:coling transient in that the reactor c: clan,t system is
- ore temperature over a 33 second time.
de:reased 50F in average This is compared with the cooldown in cuestien which takes a r.uch lenger During time to achieve a similar temperature dr:p and system c nditicas. the SLS, system pressures are redu:ed fem 2203 psia to about 900 csi as system terceratures are driven toward equilibrius with the unaffected (pressuri:ed) steam generator attaining saturation te:ncerature of ateut 53f F. The cressuri:er is near empty at about 23 seconds and thereafter loses its jnfluen:e en the system thus cemitting the u:per elevatiens of the coolant locp to ap;rca:n saturation as cocidown continues teward 530'F. HPI inje:tien pumns are a:tuated on low RC pressure such that eressuri:er As shown in Figure 15.4.4-1 and 15.4.a-2 cf the level will be restered. C3-1 FSAR, the racid cocidewn of RCS after reactor trip is limited by the pressure e.aintained in the Dressurized steam generator in me:h.the same As the fashion as anti:ietted for events su:M as the event of concern. fiinimum CNSR *1.3 RCS apor:a:nes saturation, core ecoling is not impeded. oc:urs just before reacter trip and subsetuently increases with substantial margin throucheut the remainder of the cooldown. The close relationsni; ef the ausiliary feenster level in:rease as 49 over:coling transient with nese similar ever:coling transients allcws us To shew to craw the cen:1usien :nat no t'Steviewe Safety Cuestien exists. .?- 1894 201
a CC"".arison to the detailed ar.slyses re crt:d in the FSAR, we nave :cr-f:rn.cd CGr.scrvative !,Cuncing analyses cf two re:resentative Casts. These ao:roximate analysts are cresented bel 0W. B. Less ef Feed. tete-ead less e' 0" site D~~ea intreductie9 We have briefly analy:ed two transients resulting free auxiliary feed-water addition and establisn=ent of level abeve the site emerating in-atru:tien 25* li=it. The two transients examined are a less cf offsite power (rea: tor ::clant cum:s st:p, makeu: st:ns, main feed. tater st *s) and a loss of feedwater (reacter ecelant pumps continue, makeus continues). Of these two transients the loss cf feedwater results in the greater volumetri: coolant contra:tien be:ause the forced ::olant ficw (R0 Pu=:s operating) causes a faster rate cf heat reje: tion to the steam generator. 1. Less ef of' site powe-Preliminary calculattens fer a reacter trio following a less cf off-site power show that the pressuri:er leses indication but d:es n t em:ty. The assumstiens used to derive this result included full runout auxiliary feedwater flow (a.2400 gpm) resulting in a fill time to 120* of about 4 minutes. No net mass change to the crimary ecolant (no makeup..no letdown) was censidered even though the makeu; ::ntreis would_ respond to decreasing pressuri:cr level with in:ressing tar net input to about 203 ;;. At the te-minatien of the transie*. t.e pressuri:er level is slign:ly atove tne cutlet int t.e su ge line. Rea:ter c clant pressure remains at:ve 1600 psi and hign ;ressure injection is net automati: ally initiated. (x' Althougn the net makeup was n:t ::nsidere!, it would in fa:t, cause the pressuri:er te refill t: the n =' 21 level. At the same time compression cf the s'e:S would :3use a pa-tial renressuri:stion cf _ 1894 202
s e the system ensuring that the c: lant remains subccoled. This trar.sient presents no safety cen: erns. 2. Less ef reedwate-This transient has a greater rea:ter ecolant ::ntraction than the less of offsite power case resulting in em: tying cf the pressuri:er.' Cen-sequently it will be described in greater detail. A brief sumary of the events is: Rea: tor trip; time = 0 { t Makeuo centrol valve opens wide admitting full makeup to reacter coolant system time =r0, AFW initiated time e 40 se: Pressuri:er e:: ties; RC system pressure slightly greater than 1800 psi time e 2 min HPI initiated by RSFAS; makeup isolated time c 2+ min ' Steam generator level = 10 ft; voids exist in rea:: r c:olant time =s.a min HPI inflow recla:es volur:e cc:u:1ed by voids; 9,, ~, 7,g gjn pressuri:er level begins to be restored The major concerns that evolve from this transient are -the disp:sition of the steam veids and the approach to DNS. Ecth of the con:er-s are arelicrated by tne reactor coolant puens. Steam voids will n:t colle:: in reactor ::clant piping and no ficw ble:ka:e will oc:ur because of discersal and mixing by the for:ed ficw. The DNS a::ectan:e criterien limit will be met be:ause the a:we'r output cf the c:re is at the de:ay heat level and all react:r :=:s are :Nra:in: maintainine core heat removal. We cen lude that ne safety pr:blem exists. ~ 18H 203
A detailed dis:ussien of this trarsient based on an approxi att bounding analysis is preser.ted in the a;tendix. l f 1 i .i 1 a .s. 1 J t 1894 204 i 9
APit::1X
- u- _ '-- 4.ti vti s ce tets e' re.....:,, t.fe.e "1.h re flure of 0-a*ne-te C:et-01 Feehttee level t*.
If" Int-ed;etion: Tne folleviing beunding ar.a1.;'s conservatively predicts the events occurring within the prir.ary ren:: r c:clant syste: and reactor folloviin; a less cf rain feederater frem 100; power for the Tolede f'SS. Auxiliary feedwater c:ntrol has been assumed at lu feet within both stea: generators. Results: Eecause of the c:nservative, b:unding, nature of this calculatien, the overeccling cf the prir.ary system due to auxiliary feedwater injection causes a contraction of coolant volume sufficient to create stcan within the primary system. The steam is shown to be ur.ifor ly distributed within the ROS'and the void fraction is 4t. The reacter ecclant put;s maintain full capability. The 07:3 ratio is shown to exceed 2.0 and no return :: criticality pctential er.ists. Thus, during the ceurse of the incident, no c:re problems develop. Further, following the *ir.e of caxieu : centrac*ien. *he system recovers to fuli pre:sure, pressuri:er functi:n is regained and the reacter coolant returns to a subecoled water configura:icn witncut operater action, a 1..p n The following assu=ptions nave been cade to assure the bounding nature of the resul ts: ( 9 ~ ~ ~ ~ ~ ~ 1894 205
DR
- b hN THE BI;ECCCX & WILCOX C0fr NY
' POWER GENER1T10M GROUP
- j. h. r. e Ogb sn %
/ To I JAN 221979 1.t.tw t = c n c y> sac w From ..e.ym.tesmusumm 9e w ~~ Cast. / File No. or Ref. g,g =a Su ej. Date De*aease ta ""A te-t., F.$0 M h ugwy 10 1070 g v....... Attached is a response to ".'A letter K-5020 deali=g vich.szall break LOCA analyses ~ "his respense is based on a qualitative, not quantitative, re-view of the concepts presented in the paper, " Decay Heat Removal During A very Snal'1 Eceak f or a 3G 205-Tuel-Asse:r.bly Pk7.." by C. Michelson, January. s 2978, which was attached to the letter. I.f you have any questions, please i . contact ma on extension 2066. - ' ~Q/A: Reviewed and approved for con-O', # V-clusions drawn. %Doearr_' 70] /!8/W
- -$ign I w Date LH ben \\
. EJ/lc cc: 3.M. Dunn / .-j. . um-saus3 o g, c , w/ r.J. to-p 45 / h,,: *C"? a) h lefler J f! e > # " f' d 7 .)(w s a, s., s.o w / f , p v~ ~ ~ av-evfy<b"A A ~ WP an p' ja,, y sy" 1 t aa j a h m ~ P l y G A =' A jf 0 $/ 1894 206
/ \\ Rasponse to T7A Letter K-5000. Emergency Core fooling System - Smalt treak t.0 A Analvsis Nt.N-2-14(AR), Aoril 27, 1978 Tia T7A Letter K-5020, WA trans=itted to B&W a report entitle'd. " Decay Heat Removal During a Very S=an LOCA for a S W 205-Fuel-Assembly Pt.et." by C. Michelson, dated January, 1978. This report presents a s1=plified, hand ca.lculation review of the s=all break transient and potential consequences ..~
- -=1 for very s=an breaks not explicitly examined within the -*H fmor the 205 7A olant. 3At3-10074A Rev. 1.
Vithin this paper, the following concerns were expressed for tne very s=a n breaks: 1. Rev is decay heat removed? 2., WUItystemrepressuriaationoccur? If so, could a smiler case be a worst break? h I.f the operator isolates the break, will system repressurization occur? 3. i If so, will the pressure relief valves be subjected to slug or two-phase flow? 1asponses to these concerns are developed in the subsequent paragraphs. ~ Before discussing these concerns, a general overview of the s=an break tran-sient in a E&W 205 plant needs to be briefly discussed. S=all LOCAs can be yieved as a slov transient during which the RCS can be described as a sealed manometer. Because of the internals vent valves, no cztensive steam bubble N vul form within the reactor vessel while a=y significant liquid inventory _ re=ains is the loop. Many experi=ents have been run which show that so long as a fluid, with qualities less than 7C or so, covers the core, no adverse core te=perature excursion vill occur at dec"a7 heat power levels. Thus, any ~ proble=s with t=a n breaks vill only occur after the RCS loops have depleted their inventory. Decay heat removal from the core region is no problem as stated above. How-ever, decay heat re= oval frem the system as a whole needs.to be m ined further. There are two ways of removing decay heat from the systes; via the break and/or via the steam generator. Both of these items are discussed is feta 11 in the !?A letter. yor the very s=all LOCAs of isterest in this dis-cussion, it was shown that the break alone is not capable of remov43_.A,ll,jhe ys decay heat and heat removal via cne steam generator is necessary. While the n.',,TVA-predicted break size that this occurs at was not checked quantatively, tha actual break size that it occurs at is inconsequential. Such a break
- size does czist where the steam generators are necessary.
The role of the steam generator as a heat re= oval source is basicany as described in the letter. Initially, natural circulation vin be maintained in the systen and the necessary heat removal is easi.ly acco:plished. Once a steam bubble of sufficient size necessary to fill the U-bend at the top of the hot legs is formed, astural circulation vill cesse. The inter =ittsnt g natural circulstion discussed in the letter vill not occur due to the slow nature of the sesll bresk transient. Once natural circulstion ceases, the system vill repressuri:e somevnst until the SC pri=sry side liquid level drops 1894 207
s .a.. . -below the SO secondary side level and condensation he*nt transfer is -established. During this period between the natural circulation and condensation heat re-moval modes, the letter expresses concerns that the liquid inventory vichin -the systes will be depleted at a Tate in escass of the races for the breaks / TVA analyzed by E&W because of the p=-H =1 repressuritation of the system. is concerned that this ultimately will result in more core uncoverv than that shown in tse s=sil break topical repor. 3AW-10074A. This is not the case. -Daring the natural circulation phase, it isabvious that the s.auer the break, - the slower the loss of systen inventory-and the longer the period of natural circulatics. Af ter natural circulation ceases, system pressure vill be con- ~ trolled by a "volu== balance." That is, the system pressure vill balance at - a point where the volu=e of fluid. discharged through the break equals the volume 4f steam being created in the core. Since the cold leg fluid enthalpy remains unchanged during a small break transient, the volume relief out hfh d(W #~f crean sa:e. Ine vel-the break increases vdr* 19ereasine system pressure and k ti:le of staa being re9erated 1" -he core decreases with incrennar pressure. une creak decreases in si=e the RC syste= vill reeressuri:e to a higner ) ysvalue; tnus cne volume relief out tne break necessarv to eart9 the volu-e ci stea= eeing createc ce reases..Tnerezare, cae system inventory will be .~ lost at a slower rate as creak size decreases. Once the 50 beco.es available for condensation heat re= oval, the pri=n.y system pressure vill depressurize to approxi=ately the SO secondary side pressure. Since the secondary side ~cf the SG vin respond in a si=ilar manner to that of the 0.05 f t break tznaly:ef in the topical, the pri=ary side pressure response, fonoving the, advent of condencation heat renoval, vin be si=1lar to that of the 0.05 f t- . break. Thus, for the s=aner breaks the system inventory will always be 2 break and the core vill always re= sin -greater than that for the 0.05 ft
- 4. covered and vill not undergo a te=perature excursion.
l'ln the paper concerns are raised relative to isolation of the break after natural circulation is lost. The scenario presented in the letter is reason-able. Should the break be isolated at that time, system repressurization to -the pressurizar safety valve setpoint.is probable. Two-phase or liquid flov - through the saf ety valves vill also probably occur. Once the syste= depletes 2 sufficient inventory to establish condensa. ion heat transfer across the 50,The %e system viu depressurize and no fur.her loss of inventory vin ociur. core vin re-ah covered for this secenario and no te. parature excunion Should the pressurizer -safety valves beceme da= aged becauso of the w curs. -two-phase flow out the valves, the response of the system would then be similar to that presented in the TSAP. for the pressurizer safety valve stuck .open accident and no core uncovery occurs. 7 As far as the appropriateness of the-operator using pressurizer level indica-tion to trip the HPI pu=ps, B&W agrees that the level indication is not a (reliable indication of the state -of the 105. However, use of the pressurizar level indication, slong with system te=perature and pressure measurecents to -ensure that the systes is still in a suestantiany subcooled s ste, viu pro-4 vide sufficient guidance for operator action. ( In su=-a - while the WA paper raises valid concerns and gives a detailed -exa=.ination of the sus 11 brcsk transient, the small break topical report provides sufficient snslyscs to ensure the ability of the B&~.7 205 plant E005 system to control s=nu break in the 105. 189f 208 ~
1-Fi ^ t. t.,,,. ..,,.......... 2 l1 a.,,,,.. ..u .. e. .i. 1 Tith re ..:.ri to the vc / -M t:tG l.;"*.::'.y:1:, the cos:tr. o.f. ".*A as... .44.... e s...-4 ..t.......... s. e... e c,... :, -. c,.. t.. t...,.., e go c
- 5. m...., s...,.,.
%. 11.s
- u..... e :r.,,.....
a s ,a r. ...i.,.4. ..s,...s..,..,.. s,- ..r. .,....] s.. ..v..* ...,.":.t'.~*-.c'".'* .. ~. a prahlt.:: 1 It is met cist: thtt ?.C.100NA a:~ -ts for the 1:cil't/ of Tt,. .is s. ,%.C -..f ....s L..s t. .. i.s.s.i. e l, .. - 1 a,.,.....-.s. e,3 ..-...g.e <. 4.,e .a. e..,n s.o..s..a.s a 5 ~.... .a .a.. a $.g gg.,,, s r..:........ 3e. g-s..., e .- - - - -. ~.='s-- g. a- =
- a. g... g 4.s..s tg g
.,gg. ..s.e. %..s...e..... ....s s 9 .g a 4., t*e '.*s,',.s~.~. ~.= * '*...'... .**.t. ~~ ' s ".~.. *.1 =.* ',' *.. ' ss 3 y :.s c. y g........ ve:.,.>. s.a ri.,,. _......_... g m .s. u . y .,..,..s..
- n. e,. a.., e 1
.,.,...u..a.s as of c-**itr,i ;; S.L.t e :'.s:t v-d4 % t icser res ::: vessel I,, yg s ...g.... g... .,..<,.2.,.u._...._.-^a'+.,._S- < - ' ' tc: jerr.t c.re if the :::s v. '::rrez. s .W
- b-E!
11 *are:2 :'el dets :::=.1. Lee test t:2. :fer estih'11 tics r: : the e re o .t-ee:1-- - : m: ~.........n_.43e.,=...., .........,'_9 e tes: .:t e-str :: 1- - ......s.. g .m._ o..._ O. v~,,'.'".,'...'t'.*..*...*'.*.*...=....,,a*e'..d*.*_*e.-.a*.d*.*3 d e...,- S. e a'. 4. *. *..-.* *. '...-n = '. e...'..*._, '.'.+. '. =. #. 4 '. e t*. t._s .s aVs .e_-se.. ,.tr e., a s.s_. t.1. po,.a. g a.nr e d *' * * '.*. c.'.".. '...- 2'e.'.- ' ' e. '._'- + - t.... O. %a t,.2, a.*. v_e * ' 5 20'., CO~.. e.'d.."*,- "*.**2E"".**.'.#***'**"*.e'~#*'." "..S~.~.*.~*'.d*.*.**.*-*.*.*.*.*.*.".. it d:ss ::d s==.: fc: tia is:re:.e: i= res.:::.r eccit:t stes / pn. ene cue tc. th '"'-"'*y cf tt.a trec to re=ve t'14. :.y teas. A e~ +a -- ti e -- ' ' - -del'-- 1h1= ene veuld be to tce e,..,.u -i c,m,. e.,.,,3 64.. +, _........., e., s.a g .......,,..31..a.~.~....,,.. g:..... steer. genersters, tic ths ;: : ties ef wh-- - t'. ci :d.ti:= 1: i lost z 1 h:.' i.: - ta'::: the *tes: ge:er.tus a.re ave." r"e ac ce='-- t s : c.:'. le e: :ii::c* 1, I: ev. _ t., c .u.,..... s..,.e.. e.o.. _. _,... a. l p:nre: e".Ie::2 :"rr:4.: hett z: -f: r 1..he =t:.= g.er;..c 2 t,, s .,..2.,....,..,a....,,._..,.. ....,. 7 :-t..c r ...c-.s...... _s< .c..a m. g 1 .ep, a... 3..,
- g.,.,
.3 4 a e.... ~ 4.s.--.....,...c,..,,- } re-l*/ ter 52151 CL "- 9*2t: 1:11:iit!:~de T' Ir a lilabilit'/ to ~A *:1 t.ae. s w. f.# h,,g./ l ) 'y cl w a. -..e 1r J,... e -T; w,n. )- .,.,.q o.,w.:,:.,9 ( /.j. e e.a.... i
- 99q y99 pIh h l
I
RESUME OF GEORGE KIflKAID WAfiDLIfiG jkg%gg 8/ E -r / s /c=.n;;PC.;TICM pcs 70
- 3. ::--'"N ISEf1T ADDRESS:
518 Atlanta Avenue f i Lynchburg, VA 24502 IDUCATI0ft: 1978 A. S. - Business Administration Central Virginia Community College 1967 A. S. - Mechanical Engineering Technology West Virginia Institute of Technology 1964 High School Diploma Buffalo High School Buffalo, WV EMPLOYMEiiT HISTORY: 1978 - 1979 Babcock & Wilcox Company - fluclear Service Department B&W Plant Startup Services, Test Planning and Plant Startup Task Engineer Test Planning: Coordination and supervision of preparation of 205 FA plant Site Support Documents (total B&W scope) including development of test plans and schedules for startup activities, definition of test programs, and response to customer comments / questions. Preparation and review of PSAR and FSAR Chapter 14 f;RC Regulatory Guide review and comment. Plant Startup: Technical and adminis. ve support of B&W plants during startup testing. Liaison between B&W site office team and home office Engineering organizations. Coordinate and expedite resolution of critical path probiens. Manage expedited task programs effecting change to B&W equip-ment. Review of test data packages generated by the B&W site office team. 1977 BCW Plant Equipment Services. Test Planning Task Engineer. Coordination of preparation of 205 FA Plant Site Support Documents including development of plans and schedules fc-startup activities and definition of test programs. Prepara-tion and review of FSAR Chapter 14, Regulatory Guide review and comment. Specific contract site support document prepara-tion and revision. 1976 - 1977 B&W Plant Equipment Services. f'echanical Equipment & Fluid Systems Group Leader. Preparation, review, and revisien of site support documents for Mechanical Equipment & Fluid Systems. 1894 210
-2 EMPLOYMENT HISTORY: (Continued) 75 - 1976 B&W Plant Equipment Services. Technical Support Group Leader. Administrative resolution of site problem : eports and issue of site instructions (Technical Information). General tech-nical and administrative support of B&W plants in construction, startup, and operation. 1974 - 1975 Technical Support Group. Nuclear Service Support Engineer. Coordination of resolution of site problem reports via other B&W (NPGD) departments. General technical and administrative support of B&W plants from construction through operation. 1971 - 1974 U. S. Navy (Nuclear) USS Ulysses S. Grant SSBN 631 (B) (Nuclear Sub) Mechanical Operator and Engineering Laboratory Technician 1968 - 1971 Naval Nuclear Power Training Unit Schenectady, New York 1968 - 1969: Student 1969 - 1971: Instructor 1968 Naval Nuclear Power School Bainbridge, Maryland Student 1967 - 1968 USS John King DDG-3 (Guided Missile Destroyer) Norfolk, Virginia Mechanical Operator 1967 Machinest Mate "A" School Naval Training Center Great Lakes, Illinois Student 'l894 211
i I dK & WILCOX COMPA!!Y ~ 2.U p M ? clERATION GROUP 7N/7# T;: t.:. Distribution N ...e aos us.s G. K. Wandling, Plant Startup Services o ~ file No. test. or Ref. l JCP&L (TitI-2) iv ej. Date Information frem Transient of riarch 28, 1979 March 29. 1979 jn......................, j The following infomation is presented in it's as received fem concerning the l transient which o::urred at T!!I-2 on March 28,1979(0745+2000). This is presented for information only and should be used with the caution that some information was incorrect as reported, sometimes contradict 0ry with other reports, and possibly incorrect as recorded. M i=' GkV/f:h O j Attachment M -.n t m 1 e i 1 Jl 1 1 i 6 1894 212
V/ sCK & WILCOX "fI*/ e ris. i i o s, }. C. & e, r.u f oin 7tn7 7) p p). /t 5 n ea.,l.ps,N.as *., 74 1*rtce I_ 73tr..)(-<,.ni.!): Fres r e cpa. ., e
- n e i o 1.- /r 1
1 . e,,,,,, c ~' oua o - ci 2' '),, %., a,, C >*!! 2 < D )J r'pL/5H?/ ,f'lC s f,s of $ *m ? -: Of k'f f. b W f.71 f ve.1e i..,n. r :o >< n.,,1 Hi,, Pr rrw,e ! Ta n r>--
- ei w <>
'1"!) r o? o - f
- 1"i' ' t' l' & O fe s e,,<
w,,, e cr e s f,. w.c '.> r ::.,, i- ) I'Ns:ae -<e c > r o.r so u, s FC 5 v? < cru,e ( .o c,. - 7, A ob Oc er f l k *oe reu< zup see arec n c. > k [w ba c t n.v cs cut u :,os t.v,s t NOO h. s % r% f o s P fsen c Pet ru b r ~c L~*- t:C : e.w cts b oe. wra a re o reca 9 c ?': p.,,a. - ~, seu n,,._ i.e.p. - _T* b, e t-m s- ~ ~ Moo Ps:
- 0800 RC S :
S co - i" s- $rYf 7* !* 71b-3~t. m '- As C.>'.=.* /.c Y t'a Pt. r ;"!s >* r - O p.. G //)n z. c s- /$n.or c' o'tr.u re,n.a.... ) / /r Yoc rs - r Ie ri f*s'y v.s lh L G u.? A 0 tr ?*, 'T?' ?~"M r ss* r ? p..* c. _ Cis.t (* re - r /s - eonu o.: as, sic h uis.: < o ri, ~<.,,,.,,>ie,,e D.ll,(ou f py,,u h ,,,,,..pkt1. blO fk % tt I,0. 5. $r'tu, u.' tt y )ht:Fi j; 4 1 1 4 s. :,as i r f t 'r ,; ?.T es te A -t'sa f,p *:'- f c c. - ~f~ t~ $f.c > i:o a8 :, r (k. E!.'?di c?// b fa a 92 Q._ A,.,,,.,.... r.,, s,,,,:,.,,. m -rs r x ,m, e._ /17 f ** ?!rs 5' L'* tt/1 70 (2 e e e r J -! " 0 ? f)C) ~Zr.- i f% e s.* e - n 'B* ///r.e ri,. a - Ca i, c :. d 'CO M u-G ? e c. /riaco a...> n. 7.c o.3,;., r m rr / 01 soe s ef Q '1 '= $ VC" e We r." / C, s ,,).':-:> =.f o ou o 1 ens j ) R 1' {t ). !'. $f,; **M) J ? my) ]: ',.,,. f s p,* j) p e., e <= = o
- e,.g,.3,-
.,s.s
- r. : c _s s : s e,.I..
/).' > <.* a ,,,j.,--,.---- -~~~~C.,. 1894 213 P001 BUM
% s# I COCK t. WILCOX l j NkOtf 9.% h ""'J f* l, ')~p so o e /s *f
- y.n,* *V m ts *
?~3 air t -er f b~ o*r s ** e v ?r 's A t.b ?# C r o ss C C o OL b O / O $A t!!? Y Y. Y flrC$ r$
- lr) / *.* -/
- o* * *' f I,.
hf */Ckr*T.'O YO d'.' 7.% D, i ~7m 7 - 2 -e <> t. r c i,a * -,,. r3 s e,,* /.:,, '< e:s v.,> e p -
- h. LO, f)b r Mo* 1
?Los e ? _ D C # o,.*
- fs'e r. r e tp,I
,k *f.y ps = 1 A r'*f f ** 9 9 pf %nE. b b e# L* A. f. Tt, s oLLt9 - f
- tar'r $s*/. ** e f l ?' is #* ?* r ' r'
,' ** 4 ~ 3. hy se s ' .7*4 n.+
- r..s ~~rs r*
))$ / L ' O F/?n ts. T//] / ~ 'l -* * * * * ~ PsN r~Mf r* 2,* e. cito rn f r-tr is't!: r* ** C Nt r h PC 0 1730/, l h r* /1C M n o
- r* Y O J o MMe
'r'!-f
- s C
- n p =. ' * *.s/*
/> d
- Es '. Io v*, t i e ' ? r T*
- 3 :n * *
- 5**
v s ! <* P a r6 *.* 6 'l /
- 6se r-rr NT C/
~~A L/s*p<*v~'A ~ /*.. :s
- t 7'M. L. f e n p
- ant r* ~ u i b I
Y$m l/ f f fS hl$ f f /S 0**$ f} e f* 5 *. B. LJ l'-J f~ ? %'* t* ~~ b sf > p
- A ? ro es *
- !! r* r e r* f 7*h* P *'
<w 'tp/*
- ! C ** ** &
~17s <* b L' !O M J. k, H o w< v prpu o e e rn 7,, r, w, u e i,,e, p s.z --. >,v w,a. e.. 9f!!r u 7 e t 1: tL~ e is 7*r*z !.e_o ro e*: r or r e r*
- i" Go vs ((f')r ~ Eb
<2 e w,. e r 6,.> e v. v pr 0 FR n'L"u', -~. a D >n,,,. ) s,,.r.: ,a / A f&f _ s Tf <aari L r,L rsr e e, n <.s 1,, <,3
- e... n>
bsres 6 7<! S rru e,,,.
- 7. <
see.,en,,.- ~ ce/ r> rr.,o ,, a Of$ s f * ** Tr A o n. Pe' V n *;* *** n fr ij d ** * / f (bw n r. : ) r n o e.c ex r*ere t,o fus b e s &n COO ff />s
- WP'b ~ 00 *J
~ = i b _a e e p t.cr, x pur s,~-
I
. = =
_l OQP $
}/ 9 f*. M r'% l' E *$[P1$
S Q
?/.1 eo*
3 p.
//o;~*1 Fr" l s p* e tot r* Toy to
( e 2-?> 0 v,5 /*
'l s'a ' r & s...: - - e a,, sn )
n,,
re,,,, ->, nu
-r; D so e r er -
e~
su < s aiLquu,.e si ?.: n..,~. t h,
on
...u
.:. c: _ _
a.n._,
c.,
c
=
l 1
e P00R ORGINAL
,oOCK & WILCOK 5
11 f > f.';*' 5 901i s c. r r g,s ~...i v i~ v i s e>r.ssn
- w. vo rs 2 t _*17"
,kp
- A !, f f D i '3 T ?
t*$ 54'M st)/*W A h F5pA.,.3 / <. r,,.
- e. -
rs m usan fta,,.a l . ~. Riv %.as rr,ri en rs boa.,- ,_f c 3 c.e. .77 < reep ess, m on ') i ~ AL:- to o s i i r >-r. 1,* fh!i. - ~~ ruprn*< h,e< aetw n ri po et o w re (WSC, 'r .. Ik '.i~ to _rn, r., #: r,- i tin riu _ _~ n. n, n., s s.c rz,o rs ies n7S (; 78,18__ n r c., nev ff 3 Ar c_ w ! r,ee r>: -w s-s l'Q M P:3 - re es 2Ly Qrie. ~.,0 . __ sir _--o n w s s >< > -,
- e. 3 r
. /2C 3 Frew_ _.s ! e s e s e a s a v < //* 9 e P '. s u r 1s' art.r.s
- r. Ss 9*h. tc w -
E GS>.r ch&.. v.s ur e prin 'e-d rs a). l Spf,, ar., s & ? n n. a n a. = :, n ' r_i n.-. r n.- n,>. e n A e.1, e x n. , ~c. l ' $m t : Zx t s t u,u--3 r. r A pe :re-ru 7p.s ur r t' +, " na ti- - s., a -- 77.nx=.rs._ e - w. r, - - i,s,, +-r,
- c.,a s ren screu c
. -.. x,. --. Pt - < os f B n l~ w c: : pss m._-.irr vir nr. e e v ~~"u er,so,-ais . - the Ea._ m e-se _ _pe,w u n z, se < s. r> r r, ,,,a, a r. - u,,. r e'., s. s Ano e,a e ~ er i ess/m.v. nir.a.* r -.s ,.--e ^
- N9 c' --rsiu
.v - m_,~ r n - m,m-9.u. n.u...~s s,,.,,,< > a ei..- r,i 1 2 evr M,,,,s,,,. u - ~ t r? #j. A r* ** t. Y :
- T l
- A% h b U $_ d***ML/>86 Cnen :.1: L hr> >r ^ *: _) ** TSG ffcrbiac O.T_f 6 'r k tr: nr- .1m~,seu e. e e_ u i s s i. ') I NK is.nu _ _ r-L R t.d S I*' I 1 - -.. _ k4 (:5 'o.* r c o r l'< te ' 'rt S .?/Jor* Y[b s *f *" r . - - J/s, a :.y n.,ar.zs at - ca n -r_ r,a,,~ .rsev, e an,a s rs e e.one a e 7 ffR ( $
- ti t' e.
l J2C S - 7~. Boo *F Otoo f:1 e' c e s e c ,,.< r,.- ) fa.p-e n e n e..n.u, e 2 es: er. < p air,, _, ; r, g.pp,o ~,., p ? \\ . 37 <c.*., e - >t se c ar ec f ~- ny ft1 19 1,5 * ** f*
- - h) Ae *.
4 Yrs e s e.*
hso r s :., os* *
= er oer,'
Yopr.?
if**i f re e..p_ G J.v N :d r S.: e t 1~- = < r --. r.
m,.r ;rs 72 l'
l
!' e:.
,rn ; ; < ':,,.. __.L a.,( c._ _ 1, J-b
,e_.e'.o_og o o.e :
?0m BWll 18H 215'
s e e m.p ed A
%ff 0$ Of /"O O N 4
$0e's.? 5 7:s c A n. 2.
5_ t ande a ~r:
_3 " ~
/3 /.S*
AI f%
t
.p r > u r - rch
/? t., 0 *
.r pr a : ~t. "
f>*pfs
- i s - l r u s'aba n~ e
- f. h_ Yo c e.s ? a, - I*c
.5"rs a s s e. D Uist LN-be s o.e > ~< <, , e> e. r, e, M -r,,uggs eme t N.t o J ' t ~ f7*n e Eb sr hQ W9 - ' es n 2, / 'rt rio. o n s F4 / s r ,ve A c7>s ** /'a t CAh r e a r ru ;-~ b i s im.o r PC P s I W [ l'.e ww r n s m in,a r s' o.c e*r c% !> > r-: e o EC I' ro :-~ isr* I S $ $ Y * / f Y2 r* *
- l $ 0* $$ b go
_ r/ n! OY*f f Ofmo WA L (YA_* N) bCf O of t O h W[ l M h* g f C f C,$_ b O a O* Of f f fc5 u?S Pr? e CfT pu, 9 0 0 */ Di (D~ votrmorse /cpaset) -_ fp C :S c., i< o 1 x /* >= y u u i } [en 77'l t. ' #.* c 9* C2 sue f en. ' v & Ex z P *s:. n oe f e e.s t,/ Z $ o a r =~s e-m vr. e I UPT F"9. 6 8 b(O57-
- w o*.U e re s-ec n iv
~s. c n .dc si e m n>a.ep rswrs I D [ t o L ewW4 *' J ) bD 1 e nM O A b*** A U A $Y A /7), w i s,.u nt cesi Mus k fran Y" OT*%G A rm,,- r - U ac l oh u m i* Vist u r : c:tn as //t*w sikk $
- We*
A d $Y s' N Yd lb / k l D L A=6 P5 C" OlY ?S* lY( UU ## 8ko L ftv 1 Lo t p e a A " O W6 ney n thev rL~t a rs Trix* rrw 74'4 s, s-m er n>u.,o ~.:< ho z e..e s fYu f*fs A* *%_ip! .PA% f ss. r'anaM .)** .?rTh o? Ms i* 4,% d f a f ar s o s eseMeo! ?"Y f ' *** A M 4 ZoY 1*
- t' M.?.T f) e r e re * * ** '" L! ** ?'m YFv t".:o r < / In t* /.o
- o' " 3
- f.* to s.s y r
frT.rer f% w kTsriv m oo< x.u! r c/.it r ) / A, e o s r e > r ~o,r, vv -~? A v. r$r t> Y sv.9 r L f.75. u..~'be., i, iv r.,.. r n ris s <, >r. s <.> n 17, v ,?,.v. ni,,,> ,s, a Ot~ LU)* ** O / ** Q * *
- Y*
/' ** O ' 5 0 A *' O) s / /*
- r0
$ Fil
- tg pp,(
?ot..? #!?.** & ren 9A bV* 0 00.&..,, o,1,3 ~ jp p p ?o.'s.,n- ,l'il: s_.:L o a r s. <r.- r -) ;
1894 217 ,0CK t. WILCOX j 'l 4% f r e*J3 ** ~ j e ^ T Y'3 /* !fA ._$*.-l'1 (J kf c $'
- C r u/' a a v r3 ""
- u f. f s) /J er f
.. _. _$ sort f/> f c :. f f so 3 f r#c ',' "r:r h ~
- \\
~ o .- y - ft $ rp t s hr.s(T t 9" t* s
- / rJ r s. s bY! ? c y ".o n (O*Y i
= 3 o n_ At1L Ca .... _ = - -. W ~ %,i, e~ffo0 3 .-> e. mea % a,p o.c._._ _.. _ Tu. au., u e .p^ c u. etta eo e sti b ="ev $0 /* je. P
- no 0 ft 5*
A b L a M M ** L ~ T U/*O C 'll. u_. i. < r.ns- -. _.. w nr e -,,+ [* $, No FL!M~ ? - e'a t? ! o-*C !' N
- ' * "?
l e, '~1) r </, /~f... - - (c':... a n .m %._.M.w.." A m. n eo Pf r* m T..T
- P L. ?
O.MJJ* ~ ~ ~~ f/teei.,sseiht.et% " s kr..a.? n C.-.. ' 2 j. a l A, An nak r lie e e,. r.? e W.: r u s.r>Cres u ~.se t Pcco n c Wein _ g b 1,,.,> <~ H..re.r'~ w - 1s a rs 3. ?t3 H ** / rw f r2.t { OCe~1 (2* N*!**PCA MPY " b /> f er sim. : fi- -e,.p ri p.-.nr ! rine ( n.~. : : 1 o-0 t'A'~ r 0fA) 3'I" Yt L.M *Y~ +" u s er ** h ^' ? Y ' ~ fil& [o /G,PM { W,M%) ~ - ~ ! ) I.l' C 0 ^^ T. C, 1 ! tab r re:
- ex:t t'c re t, fd q
f f Q ~ ~~~ ~ ^ ~~~~~ (Sid2D _ Yin ~1D s > +:- t h a ,e $$ hhh $Y h m g /f1 $ />1!A $ / 'W" 1 (O P*T
- Ys*N 3 e9 e o PT? *$.
V/!F A k9% WL /1AJ P r b r 7"i11 1 2. ~~. ..o#~s n 7'M T - I. Ce ra -r u.. d,. a rn-3 n.> r~ rs f L L. U W - g g -- hb A w -r> < s'srr ~~ * ~ ~~ ~ ~ ~ ~ 5.2 e~.:.' r' ~fu, r>. n p.s ?lu si? Yp v r -?s e e e brow h < nia nP t.. - _* fr.s'e.~ys errevr. e
- 2. L e s.p / Asc. \\ ~~ '~~~ ~
^~ O r P r:s t: / />r3c th re ove u r is u o. t r b(<. H ?W how $ru f e! \\ b f twem"-t .ff c.p *t.S Y~ 5r.=. We s'r q l' no i,,, > .sim,,,a. n vrs - n i i x.s e,g.c e ( z <,,,, w >,,, 8tf tos e C n~*~) ~ C N c n, l' f f n l'
- r r to r - f e t-
~jr Ooe r " vis r#P' r se so o i?n s +* s nr. m 2.r,-i k,x..i,~, n.a, w rc s ec.w ) ~ (eg.*,, - o r >~ t'.
- t
>I r om a. s'a s s v 9.in o e s* * *t. s.** s **. e ,,--../ 7 WM
\\<h q 218 , JOCK & WILCOX ,N_,_[O f /** #3 *F"I 35 fa,O % D 9 be* S' C_D 2 o~ f _ f r O r ** ( I!/;-h 3 f*a to !!." )Y ' m., r.sA.i t' ! (!'f e c *p
- c. p )
,02 P sw a snv fon 9 -r: s: : Es-in, nix e n ~ 1 # ! &c. 9 /s=$d O //AtW /0C in A /n: A* V-f t p r,,* r,if y e.s Isou==~~, s' 4 0 N r"' T 7917'M L Fr!) f $$
- 3) *~ S* y t' (
r o, f ro -~ r% Al P51 Mnr & Pf. > / '7f R =~ ~ p9.7,__., r <:er 73 ~ Af 7.f /*3 / [M ? ./ d e "!bv / ' V m r c't 9 e ^> r. r*. --u e x.n s.o sa on C.* v e t. f, r.c a u.i o p.u u r n, e, n.<.n n e,m _.s s o.t z < ~ =- 3.sATout f ( $ 's finarsp.*\\ ~ cr.Yr ja."A'Nor 191 rQr' n CH1K nur uw fr# - =,v. r: e r i e pf e urcwea, tin e $ 5 M !? J. U k h #1*r? h /*LO / *r 7./ /*.$ 30 n' a u ! t! s e **r' mM Ynjvf3 rAk* 1. M L-o en ues 7> ~ y *s r% r* ** ~'>; h *: $3 f5Y (' f 3r3D," J I M <* / eor 3 t0(1) 5. 7# /*e
- r o a e ab Po s T, as.u1W 7"*
- ??s
.?. I~bsG r ::'s r i e. *? Ms ~~ s s s ~re er L 'r c c p ** **.7
- b l.14 ? *: c? o () 2 i e'l PrM) %*cAv t*
no n t-s w i= % < w ar.o 2r ~ foD s : n. u v or*-?os es , i. ,1s*r..i<e..' s n* ,9 b o e ame r $#ff e 13YT 7o !* # " 77M 7* D C O yy"Ln.r n Rc P $ TPf M *2-t, c.u P ^ l' M Y < *L> tt s. > r3 t' > /bo s2rs *** %O l~n
- LL err
- fS Tc tr n '*) c.t fr
,1 fs;b r-et h r. ?kr /Kset Y $c pas **., e t >> H -"so_<-~ sc. *) o s s-e n e p s'n e s o. n Lnctrr ar ne' **
- r e bi ere, c ~ ~ n r see1. - =.s ncr e c,,,,.. <,n,,
e s ~,, i et Ca t s. /* f's t r> D u>?r?a C J* "A " L e ? (~ o o ?> .7eb o tr= w., y f.! e A t 7~r+.- u.m. s r i <-:a Ls.i, e z <Wa .r. c r 4.,., r, / b O A A1r% L ? Yt> L.,el >J f? * $ t/ r* r r //* M*>99 -)f*
- f f f eff71,a L
, '** 3 O L / S bl b 70 f 0 $ A. nr**A_l1AA$b .d [ D b (* ??) 'C 53.s # i : ?** / Qc _ </M_ %0 PsJ 1 ,Pwi 1% ~- nn bprs i s ru e r,u.
- c. <,,.
siv:-7 c~xe r.t .'*3
- DJ :
(Nef, rM (~e g_; o b f at s. w r f_f,,bu f.. r?n E"< r D u y piro : ,4(' !' *s [ow a 0+s 7 co ? w,,, -.u r ; f i.co o f b !' s.u o c.< .s.- ) % t s. L s t. C t 're tt s n);_ CA N ~ YOb -, Sc o PS.~ 54'g
- F I
9 p _ (?,,f P s.): /* l '~ so r ge'.l.,_.d.it7 t't* f2t
- s c,v b r g: -.s?.
3 [.res h *. s r
- h r1 %
r\\. A * : r> s.'..( t"f * &.. /;* r it* Y.'s: ? ?' * !: f r i '.._ a r PDDR BRG L t 6
.CCOCK L WILCOX t 0 0 !*'.CD B Y ~ ,n- ?> % c paiwa u w.c _ ( 6) O TS,n " p '- 0TsC e % */- - > <.e. --r uds 9'00 -> f o o G Pn1 /JPZ puw 9 c e sau t.. rn ou n se i... a o a rs ens e v m' ns ,ai r 2 esr+ too E.; ? b ' 7 &s siner v.- o no:0e + ev c e m..u.r ~ fi/it.,,...,,.
- u. on.
r n :n nn (FCP wr - 3e
- e. t,
v,cys, ~. n. -- 0
- /
fW',rty
- T b f a to b s TI P T l's.!
/. 6 C 1 h? r-inIV a't s' ' h r h C Daa h ? re &) //< pa w t'P < s ens i 3, rr : ,<o e' .crp<r it, c, min
- 7.,, - x. ia ne rr..
.1
- f /)
vin - ? k.. rm7-2 u~ren uom to RC S enesa n. 5 S'o ' N </50 pr2 (su e e. - + n e s-o -.n d 'S 7h cesu. E 6 Sc am.c.., [e - ns 1. <.a a ) n & e M,< .c 1+..- .--;. eo,,, ,1 -- s e i,an , -r - Mnw.. vs - a u... ,. m.s /On G Pm M-p ? Pr5 S ? n -n 67o Psr cs a e e r -r xu,- ' c -: s*u ir.1 c & 20e?t.r. .o ! pop _5"rr s er: r* r, f u A i'L f r-h 7~ 520*+ r., 53 n,= t'a v - To o -> o c a s' r 'A " 07sc / Enos: 5 T o 9., e r>r,.- n e:r i ?e P P.r riee n S tu 57 .n Te,... o a, r p,- /N'Z s r.z.ni n.,,w .%, c, >..,, /,. > <> - we e e nas cre o < e n~,, n~n n.. rs so.; e.wn /' o A, 6 e **/ 9,) ( _f".e t .S
- a) nw gu.et h?S 10 ti h, (~> h P t l_e.~. n )
w,, ,. s. /.> 't o.m r, P'11 r.!!m-in r ~ ~ t W.s P PZ' o,, o ?tse ..-.....w-g,R OMENR
}hh ,CCCl; l. WILCoX ~ h_rp,~.,>-Yon a s 3 5-3000 % c o i.. l. C. fee a,ul+c 77nT .'L e e-re.n.< o o,.. ) vs &, G,, n t (c o n, v e, s/ fa ~/) " O '7 5 C o /e r. A ef e I Be,' pt v < h e "A " /. o o t' : I 7. 300*F __l 7~, 500 7e 550*F ( ? w W. 2 + 5O ) _l t O /M[. IO f., O l ~, s'c o * / Perssare.=ec t r u e.. s~ns i. e w l b r: so ;, e </, ma.r= f e a,m,reo p. ..? : r ,s.= - > r.- &,e w m e,,.,- e u m '2' 2 ow : l Te .O M
- P Th
'3 4 J-3 r. /M..l 14-,- p {> 6Cb) i N5 * * ': ;,/ *. l8OO P ', E f_r,, e e f p oron ) l //P ? <OD G Os'1 A " o T S n 9 60 p si f e e, c, e -1, - w,r ) ~ 5 YO:*=; ~7", A ' ' s,b e D r..: T s.. i &.: su nr.~ < z 7"~si % 0f Fe v 1, s n*,. ?/ rs so/. ? FA ?? ( :.'5.s f f ?" t.* S Y if tm, y t,
- 2@ 500*?
e 77, T.r, -,:
- l st r_ /w,p -
7 ^- ?
- 7 w
z..- n r., n,, c, s,,. c.- -r < wa A ro b 3oHc< P f,*,* E 7.t, os ?==, *' s 7 PCP> p-n ne o se-<?,se rore<a m,,,r e i:.., Ste t. o,s* e.. c u, s }le 1;eO, e 7.+. s e-r.2,,, f $"15W y : o v.rrs .-4,,e : e::s cue,- 70 (2C Pi /oa p4 u< Ai,. Su n e. (6'a Te,,,, o,.,ni:.....,u.,l o, i e <> n se, v..-?e n. L,,,e-m.,<o,. n r /no n A, x., 70 ni !/w ote r:i b,
- c. art
> 1 is. E A nu <---re , ou rr e pr,w i-r /7?e i<.t.,. c u, r> m
- .> 0,.
, - i re te,,,,,, : u s ri ? z " '^" " ' ' " 'e,.,.,,"- -,"s. e. n.,,,... \\' .7& u. e a, ,e -sv , r,,,. ... o r*T< f' av s ys o,,,t ( - va re au,, ,,,,,,,,,.,.,<,f ,ge_., " S D T ',' G
- ., e u. - e n
.r e c. p ? .w 0 7Do i ,?u f r. j,,,. ror niz .er,.,-.., e ,,, r e c., r:,, .s' t ', 'ly,,,,.3 19to n, _ 5_t, o f sc e,. P00R BRGEL
/ 1 8 9 4 2 2 1: 1 ,0CK t. WILCOX 1 4 Y 1 F#3 r? r** #2 *Qae e ~ f 2 A' ,.f r):1 ot! ( f CV*"< '} De A m.* $ s V J /_ O / o.*> t h w: f fo g L ew y pr & e 0( f
- f /? f* f/" h 9 7p%*
- l t/ (>
4 1 $r m & # C t r+ c n styr3rH v/ onfb t l l 5 t.on tYir%'r. .imo / 'l Cr*t:' 11s e v. l e < (d m's ' - [CCto) $.t r. ! e a: via e, ! /,9 l' Par >:av. h //p r_ t r r $f ** / o r (C C t<> L!*v t L iet* s b ' j'o f-L ewa. a ho r =. * :s p.* b f **
- C.n ti
- $OO Asse f :
r t 't*f M T i $7A f vs s/ <. Co ff' # > / 7b /* S *'t /1!' f , /
- s 7" 20 f
lltif e A->Or* 1 (1 4 :a /,1r $ b /7 r9'? / /// o 3
- r V s'
- 77 '~* *" 5 ~~?/ /
- C A' $
$ m' f a t $r =: strand 7"?n er
- f i' n i- ?*' l A $O Y
- < / ? S'
- F Rc.r sr r ri s t,, m r !
Sen i ?" l s 3 r/ f P'r t" P t ts ** fO [f Yt*
- l*:
{ &A V Qh W OA~ ~/* A rre-r.ra re b G* d -57P r* m s -e r n..m se.~ n __ A " OTS G S o P s 2' - 7 0*7., r c u r<. r i "R" OTSA -r es , c ra n e t0 Cf r* 3 TimT* ~7'-e /A RCP ff C etsi'/-**15.*A w t
- *b O ** h
? ~5"' ' & ll /% O " J /* f f,* r y (H /S < W'? !' '
- f k l S '
- r* t! t> ' ' ~ ! '
S Tb t' /* b u "1 " w'r ' 1930 Tw In GrP io u c iu k A lo sec-*** sm- /s,.p ta v ero nn w s r eer e d.v ' r-tht,r + 0 o n 'ps: n r s'r, ; w p t' wr** (, n rti..,,. :..c /> vf x e r > i~ r r> ~ Wf
- cr*3r3 % Y
's b * & /* O b ' M /' $ _ .Y*Orer h 7th ** ML / 520*f 7~e. 3 2') ' F 7~r " 4) L e m i. __ / 9 '/ o nnG 60 Ps: '33 5 ' f ' 'R * /coe 7",, M o*' 7e~.-.?. 2 S
- F 0 7t'G //, 0 l' S 'r 39 0 *F rs--/-Vs o <*ss)
Rc3 p !sc;,a; /x Sa p51 /~s, p r en .vn 4 r (%com:1 ( 6 an i. n..., :s c - /pno Ar er e a, e,i ri -
- n.,, -
9c? smn,., - ~ ' M 86 N ?00RBRBINL
1894 222 u 4DCOCK & WILCOX g f. f [p F* 2p r' t
- w i
[ II T)*fc /$ 4 e 1 @) s'=_ ss es * !.' h r e to O o ww>
- 3 *t 1) roCr -o.n
" ? tiit n ' ar W SCP m/t 4 et *
- M **
t>rn e e r* 79 use f.) 9sf WNru i. AC y y,f ,$C (* l ff L_ a trs n frp-tVar* C ! sf C H FD
- /*** * / trn
?t!?* V.* ** fA Ar10 !'s t. ! > f t!. M 5 )*7-M; te %o /3 d s' G7tNn/w? f?f b }3. 4 f / b v O, I.3 ' ** ' b 'Yl*fv ~~ 7'il s 3 2 er ben 19 Sa in VcP rn < er o nu, .' ~ as :n.v c. }O $$ t l'Lo
- h p-YF *
- ~
l} GC? O o ar r~s / 8' m a : As ya .! e. o a.1 tit <. S1O*? TL 34 o
- l' 1
nr S G *, /nh I'%~ ~ 3to
- f P1 -r cws t e.
PCS Pcessue c / Too r:7 PCP c u e cmu-
- 6. -To -> ob mstr
?(5
- = 2.o us 40 'I.
f4 r::nr : s.- r.ci.. rs r,-:,.. c % *F , ?or e A e t /C *s ~ $O6*N 6 I. ,fg s a a t. h riw en ts u 4 RCP .a+ n c o e.:. :,::,, n n C r >- rp r3 hPfS OF**s nn w to m o :s W.v t' *. s.W n M r p~ r. A Fw /4ur s foC V s $P/3~ ri. f of 0 9 Jts b/lS ' :~ r Jr* to tiv = u n P t',r'P" cH sore a ya y n.f,e ( ,1.,> c. ,n y me g f.* s e t e.ss s -r .1 ~ s i: *ia r. es jp /~p e b. eY Y !
- & ~P W *)
WO T* /
- TI*. $ _0*
_yR
- r t *h p* f e*
. '* *"s* Q.f >> f) y f t 'r,5 * *, vra s. 6 1 7p*.-: r , o e c. ,s r,y,p,.,. < n _ -~ --- - '/
1894 223 fWilCymt'pT* l March 28, 1979 At approximately 4:00 a.m. ::!:-2: e 1. less of feedwater while unit operating 98* 2. Turbine tripped - followed by reactor trip in EP 3. EP1 activated 4. System possibly went solid 3. Quench task rupture disk broke 6. 800 R/hr indicated in done during event 6. At 8:00 a.m.: a. Apparent FK:/SEC leak .b. 15007 300* Tuel Icak real possibility c. 1 .,,_.=. .e e
- P00R OR..GINAL a
ee e e es ei--- -ep = e me -m mm-w=
- =
w a i h a g t I l [77~#CP/M A Infor-ation 7: ceded 1 1. Pressurizer Level 1 2. Steam Generator Leve17 Controllable? 1894 224 1 2 3. Rea-tor Coolant Pu=p Conditions l f 1 4. Auxiliary Feedwater Actuatef t l 5. Secondary Side Te:perature/ Pressure i i i l I 6. RCS Temperature / Pressure 3 I 7. , Core f.T l f i 2 8. Sump Level (Reactor Building) j 6 9. Diesels Running i i i 10. BWST Level /Investory i f.
- 11. Primary / Secondary Radiochemistry b
- 12. Chronology Sequence of Events - Pump Trip When/Why
'6 'I 1
- 13. EPI Running - How many - Flovrate 3
14. Source / Path of Primary / Secondary Leak I I i l 1 ] I l, I I -- - ~ ~ ' \\ l .}}