ML19276F894

From kanterella
Jump to navigation Jump to search
Verification of Shock 1 Program
ML19276F894
Person / Time
Site: Maine Yankee
Issue date: 04/19/1979
From:
Maine Yankee
To:
Shared Package
ML19276F893 List:
References
NUDOCS 7904240434
Download: ML19276F894 (52)


Text

VERIFICATION OF SHOCK I PROGRAM I

FOR MAINE YANKEE ATOMIC POWER STATION April 19, 1979 I

I

~

I Stone & Webster Engineering Corporation Boston, Massachusetts l

790424 0 43 h

I MAINE YANKEE ATOMIC POWER STATION I

VERIFICATION OF SHOCK 1 I

SUMMARY

I The SHOCK 1 computer program for seismic analysis of piping systems was developed in the period 1968-1970. Incorporated in this program are methods and assrmptions that could be more conservative, and others that could be less conservative, than methods used in the most recent programs.

Comparison of results computed by SHOCK 1 with results computed by a current program indicate that the SHOCK 1 results are generally conservative.

I In the verification program, stresses and support reactions originally computed by SHCCK1 were reco=puted using NUPIPE for three randomly selected Maine Yankee pipe stress problems. In addition, two of these problems were rerun using highly exaggerated amplified response spectra.

The comparisons indicate that,the stress patterns computed by both programs are similar. The locations of maximum pipe stress are the same for both programs. The critical pipe stresses computed by SHOCK 1 are moderately more conservative than those computed by NUpIPE. The resultant forces and moments at reactions are, in general, more conservative for SHOCK 1 than for NUPIPE. As the NUPIPE program has been benchmarked against the NRC program EPIPE, these results indicate that designs based on SHOCK 1 results should be adequately conservative.

A I

I MAINE YANKEE ATOMIC PC'JER STATION I

In conclusion, the verification program indicates that the safety margins of the piping systems would be maintained by acceptance of the SHOCK 1 designs.

I I

I I

I I

I I

I

.I 3

I

l MAINE YANKEE ATOMIC PO'JER STATION I

I VERITICATION OF SHOCK 1 PROGRAM I

1 PROGRAM DESCRIPTION I

The SHOCK 1 program is based on an elastic, finite element, lumped mass model of the physical piping system. The equation of motion of a lumped mass, multi-degree of freedom system subjected to a support motion is:

M E+C x + K x: -Mf (1)

I where:

M is the mass matrix I

C is the damping matrix I

K is the stiffness matrix I

x is the displacement vector for the mass points I

v 1s the prescr1e.e support ac=e1.=at1 _

e. tor S

I

iI MAINE YANKEE ATOMIC PC'JER STATICN I

dots over variables indicate time derivatives I

The symmetric, positive definite stiffness matrix K is assembled by the sti. tic analysis program FLEXGENR (a part of PSTRESS). Given this and the diagonal matrix M, SHCCK1 computes the natural frequency w, and the mode shaie &n mass for the nth mode from the expression:

I (K - e

) @n = 0 (2) n 2 and the eigenvector &n are determined for each mode by an The eigenvalue w I

n eigenvalue extraction subroutine.

I l

t The participation factors for the nth mode are then determined from:

i I

&" Md '

( '

Tn =

I

@n "$n T

I where:

Pn is the participation factor I

d is the earthquake direction vector composed of zeros I

.I I

iI MAINE YANKEE ATOMIC PCWER STATION I

and ones I

In the response spectrum method used by SHOCK 1, the spectral acceleratica for a value S ("n) is determined from the input amplified response spectrum, a

given level of damping, at the modal frequencyon, fr m v ch the response is:

I

&" Md E (max) fn S S

=

=

&n M$n (4)

I where:

I 5n (max) is the computed maximum acceleration vector for the nth mode.

From this result, the inertial forces or d'Alembert forces are computed as the I

product of mass times acceleration, or F = M x (max) )

(5) n n

I I

where:

I

.I I

'I MAINE YANKEE ATOMIC FOWER STATION I

F is the inertial force vector for the nth mode n

The modal inertial forces (intermodal combination) are combined by a modified square root of the sum of the squares, I

m I

+

j j nax jn -

j max (6) n=1 I

I in which F is the jth component of the combined inertial force vector I

F is the jth component of the nth mode inertial force vector jn I

F jmax I<n<mlF g

t jn m

is the number of modes I

The resulting inertial force vector F is then applied statically to the elastic piping model by the program PSTRESS to obtain the internal forces, moments, and stresses.

I I

.I I

'I MAINE YANKEE ATOMIC P0iJER STATION I

I In this procedure, several simplifying assumptions have been made.

In Equations 1 and 2, it is assumed that:

I The pipe material is linear and elastic.

I All deformations are small.

I Damping is viscous.

Damping coefficients are frequency-independent and uncoupled.

I The continuous system is appropriately modeled by lumped masses.

Regulatory inertia can be neglected.

I Shear deformations can be neglected.

I In Equations 3 and 4 it is assumed that, in analogy to static methods of analysis and in conformance with dynamic models of the containment structures, response qualities are uncoupled; i.e., that accelerations will be in the same direction as the earthquake excitation. Also, in Equations 3 and 4,

three directions of earthquake excitation are considered which is always I

conservative compared to the two directions stipulated in the FSAR.

I

I I

I MAINE YANKEE ATCMIC POWER STATION I

I Equation 6, in which the modal responses are combined prior to application of the loads to the piping system, is quite conservative compared to a procedure in which stresses computed for each. mode are combined, but can be less conservative in some cases. Equation 6 is, however, conservative compared to the square root of the sum of the squares method.

In any specific system, these assumptions tend to offset one another. In its order to validate the use of the SHOCK 1 program for design purposes s results may be compared to those obtained by a more recent program which, while retaining the usual assumptions regarding linearity,

etc, differs in that the compited responses are coupled (a single cirection earthquake can produce accelerati,ns in all three directions) and modal responses are combined at the level of internai moments and stresses, using SRSS.

In such a comparison, two points must be emphasized: both programs are based on a number of simplifying assumptions; and the purpose of both programs is to estimate representative responses for the design of piping systems, not to determine the actual stresses in a given system subjected to a specified earthquake.

I 2 METHOD OF VERITICATION I

To verify the SHCCK1 program, three Maine Yankee pipe stress problems that had originally been run on SH3CK1 were selected.

Input decks for these problems I

I e

I

MAINE YANKEE ATOMIC POTR STATION I

I were reconstructed from project records. To verify that the proper data decks had been recovered, these decks were input to the existing SHOCK 1 load module and the Moment Combiner program. The resulting internal forces, moments, and stresses were then compared to the original SHOCKl output on microfilm.

This comparison showed that the. output corresponded to the original SHOCK 1 runs.

To prepare the input for the NUPIPE comparison runs, the SHOCK 1 input data were processed through a conversion program that produced NUPIPE input formats.

The NUPIPE inputs were checked manually to ensure that the automatically produced data corresponded to the original problem.

The data were then input to the NUPIPE program which is currently being bench-marked against the NRC-Brookhaven program EPIPE. The natural frequencies cemputed by NUPIPE were compared to the natural frequencies computed for the same problem by the SHOCK 1 load module.

This comparison snowed that the natural frequencies computed by the two programs were essentially the same, as shown in Table 1, and hence that the lumped mass models used in the two programs were in agreement. The pipe stresses computed by NUPIPE were then compared at I

corresponding cross-sections with the stresses originally computed using SHOCKl.

In addition, forces and moments at anchors and hangers computed by NUPIPE vere compared with corresponding reactions computed from the original SHOCK 1 output.

I I

I I

tI MAINE YANKEE ATCMIC PO'JER STATION I

I To ensure that the comparisons were not influenced by the amplified response spectra used, two of the problems were rerun using an artificial spectrum consisting of 3g accelerations for all natural periods from 0 to 1 second.

As with the original spectra, the same accelerations were used for two horizontal directions and 2/3 of these accelerations in the vertical direction. These spectra were input to NUPIPE and to the SHOCK 1 load module and Moment Combiner, and the stresses and reactions computed by the two programs were compared. As these spectra are artificial and unrealistically high, the computed stresses and reactions are not representative of the actual conditions in the piping system, but are used only for ccmparison of the two programs for the case in which all modes are excited.

I 3 RESULTS I

3.1 PROBLEM NUMBER 63 (APPENDIX A)

Pipe stresses computed by SHOCK 1 and by NUPIPE are tabulated in Appendix A for the DBE spectra. Also shown for reference are the total ecmbined stresses originally computed by SHOCKl; the NUPIPE stresses are for the seismic loads only. It is readily seen that the pattern of seismic stress is very similar for the SHOCK 1 and NUPIPE computations, indicating that both programs are producing the same general behavior for the piping system under the seismic load. See Figure A-2.

In addition, the SHOCKl stresses are almost everywhere I

I I

'I MAINE YANKEE ATOMIC POL'ER STATION I

I more conservative than the NUPIPE stresses. Also tabulated on Table A-2 are the forces and moments acting on the supports. These reactions are of the same magnitude, and the resultant forces and moments computed from SHOCK 1 are I

more conservative than the NUPIPE results.

I The pipe stresses and reactions tabulated on Tables A-3 and A-4 for the CBE condition show essentially the same patterns.

I Table A-5 shows a comparison of the SHOCK 1 and NUPIPE results for the 3g flat spectrum. This spectrum excites virtually all the modes of the piping system and the computed seismic stresses are artificial and very large. The pattern of stresses is very similar for both SHOCKl and NUPIPE (see Figure A-4).

At the points of maximum stress the SHOCK 1 and NUPIPE stresses are nearly identical. At most other points the SHOCK 1 stresses are more conservative than the NUPIPE results. At some locations the NUPIPE results are slightly I

I higher than the SHOCK 1 results, but these are not the high stress points of l

the system, and these differences are not considered significant. The I

I reactions computed by SHOCK 1 and NUPIPE are of the same magnitude and the l

resultant forces and moments from SHOCK 1 are higher.

I I

e I

I I

iI MAINE YANKEE ATOMIC PC'JER STATION I

3.2 PROBLEM NUMBER 62 (APPENDIX 3)

I The tabulated results for the D3E show a similar pattern of stresses for SHOCK 1 and NUPIPE (see Figure B-2).

In general, the SHOCK 1 results are the more conservative, particularly at the points where the seismic stresses as well as the total stresses ara maximum. At some isolated poir.ts, the NUPIPE stresses are slightly higher than the SHOCK 1 results, proba~cly due to minor differences in the computation of stresses in tees, valves, anc elbows.

The SHOCKl reactions are substantially more conservative than the NUPIPE results.

I The comparison for the CBE condition is similar to that for DBE.

3.3 PROBLEM NUMBER 39 (APPENDIX C)

I The comparison for this problem shows substantially the same characteristics as the previous two problems (see Figure C-2).

The pipe stresses computed by NUPIPE show a similar pattern to those calculated using SHOCKl. At the maximum stress locations the SHOCKl results are more conservative.

At some locations the NUPIPE stresses are somewhat higher, but these are not critical locations.

I The OBE results are similar.

I

.I 1

I

MAINE YANKEE ATOMIC PC'a'ER STATION I

4 CONCLUSIONS I

The three test cases evaluated in detail lead to the following conclusions.

I 4.1 Stresses, co=puted by the SHOC '. program are similar to those computed by the bench-marked program NUPIPE. Stress patterns are generally the same, and the maximum stress locations are the same for both programs.

4.2 SHOCK 1 stresses are generally censervative with respect to NUPIPE, most especially at the highest stress locations.

At s on.e locations, NUPIPE stresses are slightly higher but the differences are generally well within the confidence limits for this method of analysis.

4.3 Support reactions, being vectors, are difficult to compare, but the SHOCK 1 results are similar to those of NUPIPE and generally conservative.

I 4.4 The use of three-dimensional earthquakes in the analysis of record is conservative with respect to t'he two-directional earthquake discussed in the FSAR.

I 4.5 There is no indication that reanalysis of the piping systems using the I

NUPIPE program would show that the existing computed safety margins are significantly less than those calculated using SHOCKl.

11 I

I

I MAINE YANKEE ATOMIC PO'JER STATION I

TABLE 1 NATURAL FREQUENCIES Problem 63 Problem 62 Problem 39 SHOCKl NUPIPE SHCCK1 NUPIPE SHOCKl NUPIPE 8.875 8.833 12.097 10.473 4.145 3.895 11.245 11.222 19.205 15.919 6.272 6.134 17.284 17.280 20.819 17.455 10.835 10.780 40.095 39.886 22.584 21.047 15.682 15.704 I

48.620 48.506 25.533 24.374 18.142 18.122 50.220 49.893 30.489 28.412 23.644 22.690 36.345 56.181 36.087 33.987 26.126 25.707 I

72.080 71.734 41.072 36.258 44.543 40.465 96.651 96.559 47.907 46.132 48.890 50.155 53.167 47.378 61.635 61.061 54.082 51.768 82.476 79.097 65.509 58.524 85.694 82.949 69.594 63.416 71.363 67.789 76.353 72.230 85.347 75.052 90.003 84.981 I

96.285 86.770 109.571 93.494 I

I I

I I

I 1 of 1 I

I MAINE YANKEE ATOMIC POL'ER STATION I

I APPENDIX A MAINE YANKEE FROBLEM No. 63 I

I I

I

I g

i I

i; d

x dj sm y q

I t s9 '.;

-4

,r. bq N

h s\\

r

. % Ng A

h y }v d

Ah S

s s

og g

< l, k 00 4

I k w%

%M DR I

=

I

=

e 1

I

=

I I

e N

N i

k

\\

N 4

S g

e I

4 7

i i

=

k o

w u

>Y b

u X

I

%I s

0 N

w

(

g 2

e k

I t

=N !,1; s

I l 'N e\\'s a

s 1

I 4

y. )

I JJ XIe _Ii, I

m

FIGURE A-2 MAINE YANKEE PROBLEM #63 I

Design Basis Earthquake SHOCK I/NUPIPE Cc:aparison Seis:nic Stress versus Node Point I

I JHocK I doo I

Aluptpc N

I foo -

s sA I

Wo-i I

k5 s,

\\p bio I

s s

\\

4

' -s I

M i

20o I

\\ I

^

pI

{

n

(#

g

/

I

~

g I

o t

i

\\l

\\

foo -

\\

\\

ar I

\\

i

,,/ s,

,' \\/

1

^

g

~'

'V gs '

\\'

I S

b fl gg g

y 7 ' JG ' if Z) Etf h0 {j $0D6 ?O / ^/ 7 I I

I TABLE A-1 S -LOC K I vs. MU Pi PE l Problem Mumber: M ain e Ya.nw e e # G 3 Das l SHCCK II MUPt PE Point e00 piea g Seiernt c, ps, Tabi, psi seismi c,pi 4 543 2399 321 I 2 504 48S4 292 l 3 469 4444 2GS g 4 44i i d o Co 251 5 22O 324 128 7 24s icoG i53 l 8 40 445 12 n 9 57 AST SS 40 38 495 3'~t ~ l ii 68 5V3 50 42 2.09 655 129 g 44 299 4409 16G I 45 454 62.5 M g io4 SG9 8l 14 442 692 Go I is 2.45 42 se 65 l 2o i54 4583 24 4bi 2y38 C.. IO 23 484 2(o58 41 l 24 97 2c8 4io I

I SHOCK I TABLE A-1 (Cont) vs. N10 Pi PE g Problem klumber. M aine \\(anwee pro s pas-I- S H CC K.I Point Niupt PE I Seismic, es, Tew gs, se tsmi c,p cou y ted - '25 4G4 i049 (o2_ I 27 423 427 G6 l, 28 dos 388 53 29 345 374 16 7-3 30 319 1269 449 I I n I s I I I I I gn I I

sus mme rumse sus sums uma uma sus aus uma mas aus [Ms(ne. Jpse i sum.9o O sus i2-5W:e 6 ~ c ou,' "ff' Fx Fy-Fz F Mx My M M 2 N o PIPE 25 9-Z \\ 2_ 5\\ .58 "T 57 8(2 ,l sHeckr 41 4-s is G3 93 s3 ie l +6 NUPIPE 22 4-i-3 49 138 9i 'P: 16 5 27 succer -15'r <!-s 21 70 I?s 275 7 ?os HU PtPE D 45 l5 -47 O c'h O O I7 "h SHCCK I (3 77 13 78 O O O O tn NUPIPE Yw SHCCKI N UPt PE SHCCIG NUPt PE SHccKI v

I FIGURE A-3 MAINE YANKEE FROBLEM d63 Operational Basis Earthquake SHOCK I/UUFIPE Comparison Seismic Stress Versus Node Point E I / t doo - ~ I Cao - I s1 ~ /Vopsjog Ao E n E I s e... U s sh zoo-g g ,e /* o - \\ / \\ E \\ ^ ^ t \\ \\' \\ l' \\ p j\\ p ^ / / y- \\/ N/ N f \\ j l$ l 50 S$ y, $$ Sh S f, [ } } } ll gy I & a-, I

l raste x-3 SHOCK T e. NIU PiPC ,5 sproeiem stumeec: s a.1 n e % w.e e re3 oes r> I ~ SHCCK_E MOPt PE Point Cou p ted [ Seiernic., si Totea, psi seismi cp l 4 355 19 5 I 4?3 2 3% 3 'Soo 452 'l 4 279 't 58 5 i38 G8 g 7 \\37 89 I e 32 24 9 2? 25 .gm \\o 26 25 ti 45 3i l t1 433 ':S 14 494 93 i 15 403 41 l IG To 5e VT \\O5 4L I te

p i Tf5 Fx Fy Fz 'F Mx My M M 2 No Pipe 14 33 '7 37 +1 lG 30 SR sHeckI 25' 35 'l +4-65 el c> l N-NUPIPE ! C, 3 ?_ 38, l08 58 l27 27 sacct1 Sc 2A l7 52 lo2 200 7 22.9 NU PIPE O l2 27 0 0 0 O s '7 8 sHcck I + 5'l i2 60 O o O o N NUPIPE E SHCcK I NUPiPE SHCCtG NUPt PE SHCCKI l 4 i FIGURE A-4 MAINE YANKEE PROBLEM #63 3 G Earthquake SHOCKI/!NPIPECo=parison Seismic Stress versus Node Point E 2M-I s 8d88 [ I Z%- \\ \\ /VC/P/Pd ==-~~ za.aa. 1 1 zoom. g I n 4 I 3 _. 5 I N /Asoo - l 9,... p /oom - I I /' g l / I I' i ,.mo - t I \\ g ts y \\ l \\ / 's YM ~ l / \\ ^ \\ ' N,- 's # I g ~. v-I 2 y'7 1 11 'E 14 ' Sis 'I ll I* tt E3 g) Eb* El 27 3o gg YOD C SC/M7* I l rasts x-s SHOCK T e. NIU PiPC I Problem Mumber: Mcune Wnkee

  1. 03 SG EQ r

SH OCK _I N10Pt P E Point a g Seisent e, si Tebt, psi se tsmi c,pi i 26594 25979 g 7 2 D 3 2 ~r 2 C o 2-8 I 2 24638 24E52 l 4 15967 23 ?OS cm 12 443 45360 I '7

E292 1?534 l

5 2305 5183 9 iG35 2.lo28 o i -u 2sso -t i 3916 383i 12 12520 i i O y5 I u e sso ia4s4 l.C (o99G 03 y9 g 3990 4.0 I Ca \\C 4099 798? 1R 8 2d- ~386 l 2a 5 '}: ' ~ A?Sb ci .r - 3434 g i S..; 44.O3 l __.1 17 00 2199 I TABLE A-5 (Cont) S -LOC K 1 v:s. Niu P\\ PI-I Preelem Momber - Meone Ya.u:ee aGS 5 4 r=c_ r SHCCK It MUPt PE Point c o u.giect Seierntc, si Tow, psi seismi c,pi l 25 G2E7 53GG '2.~+ 3CG4 2 (c 5 7 28 Slb6 2391 I 29 \\ o SSI 8044 30 1001I 7Gy2 g I I^ I I I I I I n I I man uma sum uma sua sus uma uma uma sus uma mas mas uma amm [da m e d n\\ 'en %3 'Oh b j. "2' Fx Fy Fz T-l Mx My Mz 5 N U PIPE 2252 R75 1R$ 2695 388) 2548 512+ g)27 \\ SHCCKI 2466 {G l 13'l 2722 3Ol 8 3341 552\\ 7124-NUPIPE 8 15; G;E2 2C>+- lO77 2072 6260 598 c,(,21 saccrI l321 574-4-E(, lG2o 1 5 5 4-7//32, 325 ?.& 1 NU PIPE O 88'I 352 'IEG O O O O \\7 a sHcckI o 1472 10 0 14-7 5 o o o o a E NUPIPE y m k N UPIPE SHCCIG NUPL PE SHCckI MAINE YANKEE ATOMIC PC'JER STATION I I APPENDIX 3 MAINE YANKEE PROBLEM NO. 62 I I I I M M M M M M M M M M TERMINAL ANCNOAq Kg lo" cy-2 -gz.42 Y s. f /0 "-C H-G.- /C2 -A 2. f r. Os b/ON~G~M2-R2 >X, f 6 "-c H- + -/52 - R2 r..,.

a.....A

/ ,, a z fo "x G" st / REDUCER J sa (TT m / ti r g 40 NUdf)O faff G "x 9 "ATOUCER __ ' l f G"-cs-3-ga-pg t o", c" i M/DucEk 3,1Q, se s, as t, f d 48 y '" / xer. oswes. y mn-11650- EP-H J a ~ 1; ,,,,7 3 1155 0 -M S K - / 2a Bf ,,T ~ $ FVAff' P-/4 8 't D 's 0 <fi w u E R

g. to ce-t-ise-ea rena zx n.

FZ G. 8 - 1 f ANCHOR ss)(A ///? S'AFE77 INIfCT.:ON PROB. G2 ~ A1AINLi 1ALLI:h E FIGURE B 2 M M PROBLEM.y Q Design Basis Earthquake SHOCK I/NUPIP8 Comparison & lanic Stress versus Node Point I 'N E R ~ ,~~ 2 ? E %~. ~, Se t E o i 1 / -Q .g I -4 E e t t / .g g / t H y ~ E y ~y u ~ ~ ~, .g a .g rk9 -g E ' s, 2 -k 4 E -t .g 1 ': E -? S 4 E ~._ 4 9 0 -y N u. '.m g _ 's, .z -4 't E \\ t s s N, '{ ' %g e ' s .y E y ~. - y .= 1 E E ,o -n ,e ~% 3: I i f f e 4 4 b \\1 f n ^ ~ m - nyn3.,,,,,.,, E I 3 HOCK 1 as. MU P\\PC-T^sLE S-' g Problem Mum'cer. M a.in e. Yct.n k e e *G 2. D e e l SH CC K 2-MOPt PE 4 Point cx e d w Seisenic, es, T0+2t, p Seismi c,p I A 993 4 4 5 2. AO 2s I 2 965 3934 $G9 l 3 939 3555 342 4 91(o 3273 321 g 5 338 4 4 9 2. 2 52 I 7 439 2 3 2.to 164 g 8 6i 384j 73 7 valve n do 57 524!! W) I e 44 12 4, 687 I SG s l 42 221l 998!! 4 2 G! is 232 4287 202 I 45 29o 3137 l t03 I 2 roi 6 3 9 fl 144 4 (o 4 290 Goi; 2 Z 2. g 47 367i 2eqs 2 c-2 48 387

2345, 282l I

19 44(o 7 /co ETI 4as ]pein; g r.3 4 a i e 20 /3ffo 4 8 48 ll 32e tiwi wo s 24 G74 4059h 408! l 23 444! 3833h (ABl I I 3.OCK'I. MU P\\ PE ' (c nu g Pre'olem Mumber - Mo.tne h nwee sco 2 Des l 5~ f k~i RTJPi #E H Peint a gge Set =rntc.,es, Teca, psi s e ism; c.,p g 24 594 4524d 212 I 25 sit

4333, 3I4l l

27 700 4763 495 3i 265 422G I54 g 52 i82 769 98 I 33 432. 554! G6! l 34 257 444 11 4 6 36 234 42J e 20G elbow I 38 1 54 4 8 5_. 424 l 40 308I 24 58 C\\ 42 47o 48SG \\32 l c z. i r I z.s i 45 1255 .i? 7 2 : 2-99 o ai nIc Th t z. c 4 a i a l-I 4/o 442 3 's 3e !! Ib4 i g 48 4 So 3775h 7 2 /- 49 316 7Ci 94 I n Si 249 4 7 37il } o. ? l SS S34 2345!I 24 54 474 405 7I! I, e gkg

b c wanae SS 570 3ggi l

SG S27 4 5i7 N '2.3d I I S ,oc K :: M U P i P E "'" "~' ' e. l Problem Mumber - M ctM e Ya.n tc ee $62 bee l SWcfR i N!UPt P E g Setemtc, esi Tobt, ps seism; cpi 57 277 4o27 2.18 I 58 428 565 157 l 59 64i 3290 (So 64 645 So23 92 g 62 4G9 933 97 I 63 72 5 94 '2.1 64 42 So4 G,1 g n 66 42 5G4 59 69 497 2482 146 l 6 9e 527 47 c5 1% 7o 8 97 54o7 308 I vi 926 ss34 3 50 I v3 9Gs 6 4 cro 398 I I I In I I l rasts 8-2 I e + + N r IE b 9 o o t') [ C C 5 N E in ) I ,1 r; m n ci ~ d b t fI N S o c I N cl oa c to a o r g 7 I O! Y E ? O h 0 I x w e r m m s e N th O O r

  • O o c- +

l r r N e & u) tr> r) ,9 ~ I + A w o + m e i g 2 8 8 g o ; 8 g y 2 o n l + 00 o oc ri e s N d N N { t i N 11 ) e c 7 g r) m v. ,, j g i.c N g M + g d O 4 J [ Q N N O [ r r > g g c4 IOI

c. s

& r b N D c G @N g g O O n,W g

/

ux c-N 7 m I-g. q U) c0 c0 28 3 N + w w !'d tu li H H 5 H H t.i Q) uj y g $ s I $ $jN E5 I $ E o z = 2,z o z o = Z W 2 (/) Z : Tj) ZlW Z U) Z V) I FIGUF2 B-3 luINE YANKEE PP.03EU4 #62 rational ggg';,, O[dOCKI/!UP3p~wg"~urthquakg 9 2'iS03 a celsnic Stress yersus y; 00 Point I I % ~ ".hp .,t 'I E 's 's ' i ~ I s. / s E I ,4 .q L.,g E u 1 ~ 4 ~ ~.

f. g

~ ~ - g .g I t u I I -e -{ E s .t b v 8S ,[ ~ o k $ ( ~ I ~M f f3 >Q ~ ~ , ' ~ ~ ' '. Ls 40 W aq b at 4 0 /' / L.% .Iz L l n' 's L~ f ,~~.~s ,t e: ' s* ,k ft '-;\\ -7 E s .z h( ~ \\ '~ r, I \\

  • 4 mg s

E .g j t f O i o I 4 h n I k W ' M4f powppy E g TABLE B-3 SHOCK 1 n. MU P\\ PE l Problem Mumber - Mo.me bwee +02 OBE I SHCCK E MVPt PE Point Covpled g Seiernt c, s'i Tchat., psi 5eismi e,pi i '% 4 2.9G g 22 fo97 2.7o I 3 680 2M-9 I 4 600 233 3 247 l79 I 7 325 105 l E 45 59 7 va \\u e ) e ia 4 2. G2 I il 9l ?G I i 2. l05 98 \\b \\ ] 2- \\46 g 15 211 T4 I i /o I90 1I1 g l6l 2tI 189 n 273 202 l8 299 '2.l G g w as as 51st M. ? w,: 2a p m 21 52G 2A7 l 23 3+5 2.39 I TABLE B-3 (Cont) I SHOCK T n. NIU P \\ PT-l Problem Mumber Medve Ya* ee * (o 2 o e tE l SH CCK _E MOPt PE Point co up ted Seiernt c., pi Teht, psi se tsmi cp g 24 30s 474 I 25 412 159 I zy 612 408 Sl 2m 42 o g 3 '?- I4h '~44 I 33 log 49 l 34 205 85 3/o A38 2.o5 e lb um SO ll 7 90 l 40

o. An I}O 4 ^L

\\54 105 45 f O!, I!Y ! R"'( Tee l zt6 [bh I2b 48 3 4 2. Ho g 49 2AI ?5 I SI 191 Iso l 5S <-- 1 -3 '2.cn 64 \\B3 SS 55 43G 162 o Chanae l SG 4% 17 9 I TABLE B-3 (Cont) I SHOCK 1 e. NAU Pi PE-l Problem Mumben Mame Yconwee s 62 otaE I SHCCK_T. MOPt PE g y seie-c. e, wat, ps, seismi epi 57 2_\\ 4 17 4 I e6 93 123 I 59 469 7.d. 61 410 (3G g 129 y2 62 63 55 57 g 64 33 47 66 SG 45 69 3 79 95 l 690 240 IIB 70 679 108 E b 703 243 i I 'f3 h33 2AB I I I In I I TABLE B-4 I ce b e + g p c"- II E F 0 o g [) e o m 3 l G ~ I t g r2 + b) s ca e) r oa E lN N 00 N g g N $ O G I G @: 0 0 N I N Z O I o o E t b T N N U) I $ $ G 4 E i E Y o o c o I o o m M 9 Q 6 0 W b) "I x llL lf) 60 o N T G 9 F) b) IS I M .t iv f.) 6 N h c.) N Cd

d 12 N

cc G G r M 1 'E s, ' E pj I(q'] l]d p cg p) (4 F) LO Y N d @O Q LL [g y) N b P] 6 6 b) O N E4_ ih N f g-0 0 0 0 0 C Q N $, 3 lq) g 0 x N t p 2 d S lf) R CA ~ >e O N --i-LO N Id-H to H H H s 'l tu H H uj d y k to o a E t u y t t a M -40 C 8 E 8 E 8 E c 8 E 8 Icu o r a r a z o 0 z a z w: z w 2 0 z w 2 m z e I FIGURE B-4 IM IliE u f;y y pggg g Df 62 E 3 G Earthquak* SHOCK I/yypzp~v gOOParison Seicmic Strosa versos llode Point k k .g .g s '~ ~ _ ' - ~~ .2 ,,5 I- .,4 a, .f 3 A ~' -Q I ~ - __ p - e e -h I s N

  • ,s "N

v 's Y A u \\ l**~~ o .,I I s ~ 's

  • (

4 \\ k ' E )s g . g v 'N 4 .s / - n ~4 E \\ -t 's,' -;s s 7 -y .s 4 -,'s N -t ,a* b -g E 7 e "M t -g f I -s E i e. 4 .e h s E ~ W"4] 7/wyt; I g nau: 3-5 SHOCK T e. MUPiPE ln Problem Mumber - M c e a t. '/3 as e e.7 x, -._ y l SHCC K.I N10Pt P E Point

~o o p. e g

Setemic, si Tebt, psi se tsmi e,pi 4 I9998 Ii739 g 2 192500 l \\ 4 52-3 \\9038 \\l22.1 I '8m " *z 5 sesas wo, 2 9o42 5'? 3 I I 42?S im n (O i o G ro i122 I i 2:ae i, e2 l 11 4489 UrG lE io22G GA27 g c s% 301.0 l ((o 546/o % lo g I (of SG6 2 4 513 \\~~L 7/o O1 6709 l i;' 81 6: 72?C l 2A66 " 2t 2 e 9 8 =, .= :. 2 2.c ) 91/ G c ' G. g isaw eaoo : I TABLE B-5 (Cont) I SHOCK 1 n. NIU Pi PE-l Proble.m Momber - M o.in e. W ' cee M 2. 3 5 6:.Q l SH CCK.I NIUPt P E N nt &p;ee Seiernt c, pi TM, psi seismi c,pi g 24 e4399 6399 I 2.3 '726i 415 % dI 96 N321 I 24 i 2.5 7Al3 43B5 g i 2.y i o orod 6524 I 34 4asa 3?As g 32 32.to 3063 e 33 2 388 Z(od6 $4 4202. 3399 l 3G \\ LLo2 5\\o6 33 3032 2195 I ,d0 }880 62Ao l 42. 3567 31l 9 re3% nasa l y 45 k 6 804 Mn3 d I [ea00 Adla J Ab i l S 9.'5 903G g 49 IlI AG f%L5 49 97 zc 2745 l 54 GbBS 5335 I Table B-5 (Cont) SHOCK T e. MUPiPE lg Problem Momber - M aine Van '/ de FG Z 3 6 Ca I SHCCK_T MVPt PE Point e.ove(ea g Setemtc, si Tchca, psi 5eismi e,pi 63 l2953 92.79 g 54 N eto 239.1 I A~5 2.c% 4 49 ( 4L I 5(o 964"-- tao 2 6'y 5039 d.69b I 04 3563 1908 l 59 t 6 '7Wo I l 94 3 e 6' ' & 9 t 2. \\1236 l I 62 492? 4126 l 63 2472. 2493 bA \\hb( 200e g 66 2225 2277 l 69 IB\\5A 10069 I

  • ^

fo 2A094 \\ 8 6 ilo I HI 'l5C?/2 \\9L97 r i 'b 2b33h 209 b Ir I I me sus sai amm em aus em aus aus em seu mar as me uma me as se sus l b. e. W k c e- %b

  • GZ 3G Eq s

cooe64 Sc ' Fx Fy F F Mx My M Pi z 2 NO PtPE Z42 BIC 1428 lGGZ 3031 74 3 383 3 l 4 4-1 SHOCKI 413 455 2226 2308 52 l 4-120 l 254 d,70 l N U i'l P E O l545 Q l545 O O O O lo\\ sticCKI o l4G5 o 14-G G o o o o NU PIPE 3943 1930 3 413 556l 9539 627l 12133 16252 e 27 a SHcck I G340

281G, 3505 7772 6224-l3l6l 20414 2 5014-NUPIPE O

\\lQ7 273D 2877 O O O O 45 EHCCKI O 1227 GC$ l422 O O O O N UPt PE 44-lE-152+ 2922 5509 1o t ic l l l 7 4-I?s35 23l23 SHOCKI 6663 2G57 4376 8406 l3627 l56 4 4-2473G 12285 NuPipe ZIIo 1384-79 2 ZG4-6 2139 z +s) 44cl 5521 73 SHcck r 284-2. 10Z8 859 3l42. 257 L?59 s%G '7656 V I MAINE YANKEE ATOMIC PO'JER STATION I I i I I I ^ " ' " " " ' E MAINE YANKEE FR03LEM No. 39 I I I I I I I I I I I M W m m' W W W M M M M M M M M M M M M Y b { PRESSURZZEA > X-e ( E-2) ~ Z g1 l mm b o h6 x <a. o un ua , sr 00 4 s gy u [ to s g /2 *- A'C - 6 n ,,,a ) / /+ er o 2e 24 _ rs .CEF. DA'WG S. //550-FP-73A //Sco-MSK-/f 2 A 1 F I Cr. C - 1 ~ ccotf or s cop / rs ss wrir s: PA'OB. 3 3 MfDJG 76/MEC FIGURE C 2 RLINE YANKEE FROBLEM #39 Design Basis Earthquake SHOCK I/NUPIPE Comparisen Seismic Stress versus Node Point t .s - 1 WuP/PL yea a _ E I I y I E ~ l R I I / 4 i N I E k .00 - 2 l 4 r, U < t I I s \\ n n I s g 8 \\ l \\ l \\ I 8 s i' \\g nl h 's,,^, I i t, \\ l \\ \\ l i /000 - l \\ ,/ \\ j i I \\ / / \\ / \\ '! y L E J 6 ' sp 'E ss '! 2azz'S f *' n #* 22 0' q 7 /VCDC Pc/N7~ TABLE C-1 SHOCK 1 n. NIU P\\ PE l Problem Murnben Maine Va.nkee #3 9 DBE l SHCCK t MOPt PE Point cov 4 i g Seistnic., psi Tc+ca, psi seismi epi 4 2271 40 525 4 0 G5 g 2 2o78 9868 l484 I 3 f924 93 4-5 4383 g 4 1997 toA47 1438 G 4'754 95o7 4359 7 ii2o 5845 7 53 g 9 644 24o4 390 11 Go2 2455 642 !m 15 ? 24 Sio? 8 50 l 15 748 8 t o 2. 8 41 19 497 870o 4-01 g 20 392 GS45 432 2i 478 6279 7GS 22 1038 GoS7 48o2 g 24 io44 4 4'y4 ie92 5 26 853 2soi 1420 g 27 789 3783 1909 29 4424 5278 1853 3o 4BSc S393 132G l 32 3589 doo20 23 % I TABLE C-1 (Cont) S -LOC K T v,. NIU P \\ PE-l Proble.m Mumber M a.tn e Ya.n tc e e.

  • 3 9 Des l

SH CCK _T MOPt PE Rnnt e m*

  • g Seismic., pi Tetca, psi Seismi c.,pi 40 4228 11954 3 017 g

5 i f I E I^ t 5 .g I I I i, I I I esete c-2 i e e e o r co O li. I I G 5 5 l N M q I 4 6 c Y g If.' q C' E (N) {} C' I I a, U) N 0~ b bN { f 5 YY F) N V y. \\ w el E L~ Q Q I u e 0 h o C~ x g r cc e e m ~ $ b I e o m o e> lb- ,O G-0 0-l Ln 6 y> i O 4 Y M 'I j w g 0-M N b_ 4 t W C i t 0 N Ie-h ri M c1 E N M O N i ul c-q l8 [j_x 'i G O A U,s N,N m 4 is H S E d i-I H w H fd H c m H H y - 1 c. u et y uj e a. u 2 e x

a. $e..

l J gJ c 8 c 8 c8 c z 8 a

rio, o

o r a 2 Z v) 2 U) Z i 55 2 i UQ_4 Z V) I I FIGURE C-3 MAI'IE YAIIKEE PRO 3LEM #39 Operational Basis Earthquake SHOCK I/ITUPIPE Comparison Scis=ic Stress versus liode Point I I .S8' 0 e i<.Z' I A& pip e I 3.- E N I 8 3 4 / U 2o.o - t I g A l l'. I \\ sI \\ \\ s l gl 'w'- \\/ ) I \\ /doo - g i l c ', l i b,' \\ \\ / \\ / s, Sl SY S OO h l b b Y lb l$ gg I' /Vood PosM7~ l I l rasts c-3 3 -\\O C K T M UP\\PE Compdsen I se.tsmte_. e+cesse s ont3 - oes g Problem Mu mbec Mcone hntcee # 39 Point SHoctc 2 05e\\smic M OPI P E coupled l Me m bec 3%ss, psi i 2343 (4 50 g 2-2\\ t 5 1299 3 l930 1 '2 o l 4 (983 (253 6 1721 ll8I I 7 108 4 I 6 90 l 9 Go2 Aia li GoA SG9 l3 753 I 7 13 I \\s 7se os 19 489 360 g 20 373 3Si 2.\\ La 5 l fo 3 5 s l 12 \\cOS I A G3 24 t i oG \\535 I 25 605 ( \\ 57 l 2.7 9 EL ' 1597 2.9 15 v-t IE98 io (9iS (20 9 l 72 350c ! 2o31 I TABLE C-3 (Cont) 3 -4 0 C K T v s. MUPl PE Comp:u-ison I Se.tsmic_ Sesses ont3 - ota s Problem Mu mbec Maine Yankee # 39 (con + 3 g Wnt '5Hoct4 2. Gelsmic. M UPt P E coupled g Mo rn bec Stess, ps's 4 4tss 2m i I I I I I^ I I I I I I ~ In I I m yEm ? = um 5 m 8 0 l u n 0 2 7 4 _M 8 2, 2 O 1 m 4 2 ( 2 2 2 4 u \\ s 27 2 s 3 m 2 + u z o i n o 0 2 M l G c 2 i 2 ( m ( um 3 7 0 \\ 4 2 3 7 m y m M S 6 9 2 7 3 o a \\ \\ l I s m 5 9 4 a \\ 0 x 6 3 7 M 4 2 G 5 a 9 m G 2 1 u 2 2 m 4 u o s ( n 8 l l a _F 5 o t l l 2 z 4 s san m 5 o O z t u z 9 o D 7 s h' n T'. F 9 t t' 2 E i I mmO a -4 9 4 0 a y 0 ? 0 ) m F (0 4 8 "6 uM ( a* n m O 3 C 5 f E 0 1 e x 2 5 2 4 ( ue F s a k 2 2 2 l n uT( 1 0 m n c y 4 c ' g, I I e r I. I m s u a o E E I E E K E i n 8o P k P K P k P P K u P t C c c P c e L I i s i 4 :_ P c P l c c c P C P C 1 U u U H U H ml U H U H O H u N S N S NS N s N S N S m na m .}}