ML19263B839
| ML19263B839 | |
| Person / Time | |
|---|---|
| Site: | 07109130 |
| Issue date: | 01/16/1979 |
| From: | Hansen L NUCLEAR PACKAGING, INC. |
| To: | Macdonald C NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS) |
| References | |
| NUDOCS 7901240333 | |
| Download: ML19263B839 (44) | |
Text
..
,1
-%l
)p I2-.
't NUCLEAR i
NuPac PACKAGING, INC.
THIS DOCUMENT' P00g 9UAUTY pp "IN
< M.
1 1 l,3 January 16, 1979
,s y
flV(g
,h 9
- s. l, 3 Mr. Charles E.
MacDonald, Chi < t
/g7g A ;2 Transportation Branch Division of Materials & Fuel C e
Y Facility Licensing
/
,,))'
United States Nuclear Regulatory 4 ~~ g -
j; Commission Mashington, DC 20555
SUBJECT:
Model No. NP-50-xxL Packaging Docket No. 71-9130 ar Mr. MacDonald:
In response to your letter of Novenber 17, 1978, please find enclosed eight (8) copies of the information requested.
Should you require additional information, please do not hesitate calling.
Thank you.
1 Sincerely yours, NUCLEAR, PACKAGING, INC.
3
-)i(
Larry J.
Ilansen
,i l'!
LJII/dmm j.
Enclosures 11761 7901240 334.3
s INSTRUCTIONS FOR If1CORPORATING REVISION I AMEf1Dfli:NTS TO MODEL NP-50xxL APP LICATION, DATED JANUARY 16, 1979 Insert new page ii Remove old page ii Insert new page 1-6 Remove old page 1-6 Add new page 1-6a Insert new page 1-8 Remove old page 1-8 Insert new page 1-9 Re;nove old page 1-9 Insert new page 1-11 Remove old page 1-11 Insert new page 1-12 Remove old page 1-12 Add new page 1-12a Add new page 1-12h Insert new page 1-13 Remove old page 1-13 Insert new page 1-18 Remove old page 1-19 Insert new page 1-20 Remove old page 1-20 Add new page 1-20a Add new page 1-20b Insert new page 1-21 Remove old page 1-21 Insert new page 1-22 Remove old page 1-22 Add new page 1-22a Add new page 1-22b Add new page 1-22c Add new page 1-22d Add new page 1-22e Add new page 1-22f Add new page 1-22g Add new page 1-22h Add new page 1-22i
Instructions - Continued Insert new page 1-23 Remove old page 1-23 Insert new page 1-24 Remove old page 1-24 Add new page 1-24a Add new page 1-24b Add new page 1-24c Insert new page 1-25 Remove old page 1-25 Insert new page 1-28 Remove old page 1-28 Add new page 1-28a Insert new page 1-29 Remove old page 1-29 Add new page 1-29a Add new page 1-29b Add new page 1-31 Add new page 1-32 Add new page 1-33 Insert new Dwg. X-20-200D, Rev. 1 Remove old Dwg. X-20-200D
Revision.
9 January 16, 19 ~/ 9 Page 1.2 Meights and Center of Gravity 1-2
- 1. 3 tiech a n i ca l Properties of Mater ials 1-2 1.4 General Standards for all Packages 1-3 1.4.1 Chemical and Galvanic Reactions 1-3 1.4.2 Positive Closure 1-4 1.4.3 Lifting Devices 1-4 1.4.3.1 Package Lifting Lugs 1-4 1.4.3.2 Lid Lifting Lugs 1-6a 1.4.3.3 Secondary Lid Lifting Lug 1-8 1.4.4 Tiedowns 1-9
- 1. 5 Standards for Type "B" and Large Quantity Packaging 1-14 1.6 Normal Conditions of Transport 1-14 1.6.1 Heat 1-15 1.6.2 Cold 1-15 1.6.3 Pressure 1-16 1.6.4 Vibration 1-18 1.6.5 Water Spray 1-18 1.6.6 Free Drop 1-18 1.6.6.1 Flat End Drop 1-19 1.6.6.2 Side Drop 1-20 1.6.6.3 Corner Drop 1-21 1.6.7 Corner Drop 1-29b
- 1. 6. 8 Penetration 1-30 1.7 Ilypothetical Accident Conditions 1-30 1.8 Special Forn 1-30 1.9 Fuel Rods 1-30 1.10 Appendix l-30
Revision.
January 16, 1979 Margin of Safety:
P
~
M.S.
=
yld L
79992/42750
=
+0.87
=
The capacity of the lug to shell weld may be estinated as:
P
=F A
Where:
F 35,000 psi
=
su su A
=L t
weld area w
w L
= 2 ( 8. 5+1) 19 in.
=
w (3/8) 2= 0.530 (v weld) t
=
y (35000)(19)(.53)
P 352670 lbs.
=
=
A The lug to shell weld margin of safety is:
352670/42750 -1 = +7.25 M.S.
=
The ultimate capacity of the outer shell may be estimated as:
P
=P A
P 35000 psi su su s;
=
su (3/8) (8. 5) (2) = 6.38 in A
=
s P
(35000)(6.38) 223125 lbs.
=
=
su The corresponding yield load capacity is estimated as:
P
.6P 133875 lbs.
=
=
sy su The outer shell margin of safety against yield is:
~
M.S.
133875/42750 -1 = +2.13
=
Therefore, it can be safely concluded that the lifting lugs will not yield under a load equal to three times the weight of the package.
Should the lugs experience a load in excess of 117160 lbs.,
they will shear out locally through the eye and will have no adverse effects upon the package's ability to meet other requirements.
1-6
Revision.
January 16, 1979
- 1. 4. 3. 2 Lid Lifting _ Luys (Pri:rary and Secondary)
The maximum 1id weight is 3775 lbs.
Using t hi ei' lugs the loar! per lug is:
P=
(3775 lbs) (1 q's)/3 lugs P=
3775 lbs/ lug 1-6a
Revision.
January 16, 1979 The lug to lid margin of safety is:
1237a4/1775 -1 = 4 Large M.S.
=
Therefore, it can be concluded that the primary lid liftina lugs are more than adequate to resist a load equal to three tines the weight of the lid.
As for the package lifting lugs, the lid lifting lugs fail by local shearout through the eye and therefore have no adverse effect upon the packages ability to meet other (C) (Af Since the lid lifting lugs are 10CFR71.31 requirements, not capable of reacting the fuel package load, they will be covered during transit.
- 1. 4. 3. 3 Secondary Lid Lifting Lug The single secondary lid lifting lug is identical to the primary lid lugs evaluated in Section 1.4.3.2.
The maximum weight of the secondary lid is 910 lbs.
Thus, the lug load is:
P=
(910) ( 3 )
2730 lbs.
=
Consequently the margin of safety of the secondary lid lug is:
29180/2730 -1 = + 9.69 M.S.
=
Therefore, the secondary lid lug is more than adequate to resist a load equal to three times the weight of the lid.
The secondary lid lugs will be covered during transit, like the primary lid lugs.
-9
Revision "
January 16, 1979 1.4.4 Tiedowns Four tiedown lugs are provided to resist transportation induced loads.
The applied load factors are:
A
= 10 (longitudinal) x g
5 (lateral)
A
=
A
=2 (vertical)
Each of the four tiedown lugs is located at 90 with respect to the package at an elevation above the package base which ranges from 46 5/8 inches to 50 3/8 inches, depending upon version.
The NuPac 50-4.0L version is the heaviest and has its c.g.
at maximum elevation above the base; consequently is
- most critical.
The tiedown scheme for the NuPac 50-xxL assumes a modified basket hitch arrangement involving crossed cables tangent to the package body with a 2:1 horizontal to vertical aspect ratio.
Tiedown cables are assumed to be tied to the transporter four feet each side of the transporter centerline.
The geometry of the tiedown scheme used for loads evaluation is illustrated in the following sketch.
The tiedown cable geometry may be summarized as:
Direction Length Direction Cosine Longitudinal 1
73.45 B
.652077
=
=
X x
.612206 Lateral 1
68.96 B
=
=
Y Y
.447214 Vertical 1
50.38 B
=
=
z z
1-9
Revision.
January 16, 1979 2
2 H
4 I
" Dip 1- -
^xy
/
/-- T-I STEEL
/
t-c,,,
t
- 4 4
4
_ _. 4 i
i i
~
I' xI 24
+
Y
.i n.J g }"
FULL h pg.
,r " ---9
[g-
____..rs Tie-down Lug 9
l-11
Revision.
January 16, 1979 A vertical load produces a cable force of:
P,7 WA /4B, ; (4 cables actin.})
=
A longitudinal load factor produces a cable force of:
P,px = WA /2B (c)/(hf
- (2 cables acting) x Similarly a lateral load factor produces a cable force of
Ty " Hu /2B c)/ (h
- (2 cables acting)
P y
For conservatism, these three loads may be assumed to coincide for the most severely loaded cable:
A A
A P
=w I55+5) +i T
h L
x y
z, I
28500 32 10 5
2 l
=
),
-(2 ) (50. 38 )
.6521,.6122 (4) (. 4472)..
= 24a614 lbs.
Using a 40 shearout the "T-1" lug capacity is:
P
= 2F t(e cos 40 )
sy d
385828 lbs.
(2) (6 5,000) (2) (2. 25 - cos 40 )
=
=
The margin of safety for lug yield is:
385828/244614 -1 = +0.58 M.S.
= The cable load consists of both horizontal and vertical components.
The horizontal load component is transferred to the outer shell through the horizontal luq plates, whereas the vertical load component
- 9
Revision.
January 16, 1979 is transferred to the outer shell through the vertical lifting lug plate.
The horizontal component of the tie down load is:
~
2+
2i k'
P B
B P
=
g T
(.652077)2 + (.612206)
(244614)
=
218789 lbs.
=
The vertical component of the tiedown load is:
P
=B P
T
(.447214)(244614) 109395 lbs.
=
=
The horizontal component of the tiedown load is reacted by a lug-to-cask weld whose capacity is estimated as: = 2 (12+2 ) (1/2 ) (d) 2 9.9 in P
=F A I A
=
-7 su w w
i 346482 lbs.
(35000)(9.9)
=
=
4 The associated lug-to-cask horizontal weld margin of safety is:
346482/218789 -1 = +0.58 M.S.
=
The ultimate horizontal capacity of the outer shell is estimated as:
l P
=P A
35000 psi
=
suh su sh su
( 3/8 ) (12+ 2 ) (2 )
10.50 A
=
=
s 367500 lbs.
(35000)(10.50)
P
=
=
suh 1-12a
Revision.
January 16, 1979 The corresponding yield horizontal capacity of the outer shell is estima ted as :
.6P 220500 lbs.
"syh suh
=
=
The outer shell margin of safety against yield for horizontal con-ponents of the tiedown load is:
i 220500/218789 -1 = +0.01 M.S.
=
l The vertical component of the tiedown load is reacted by the same load paths analyzed for lifting lugs, see Section 1.4.3.1.
The lug-to-cask weld margin of safety is:
352670/109395 -1 = + 2.22 M.S.
= The yield margin of safety for the outer shell for vertical loads is:
133875/109395 -1 = + 0.22 M.S.
=
The ultimate capacity of the lug is estimated as:
(ff 0) 385828 P
403365 lbs.
=
=
su The ultimate capacity of the lug-to-cask weld is:
3464822 + 352670
= 494394 lbs.
P
=
The ultimate capacity of the outer shell is:
367500' + 223125" y = 429931 lbs.
P
=
c 1-12b
Revision
- January 16, 1979 i
Thus, it can be concluded that the shear-cut failure of the lug will f
occur prior to failure of other elements within the load path.
This
-1 lug shear-out failure will have no adverse impact upon package ability to meet other requirements.
10CFR71. (d) ( 3) i l
The NuPac 50-2.5L (and 50-1. 5L) packages are significantly lighter than the NuPac 50-4.0L package, used above for tiedown lug evaluation.
Consequently, the NuPac 50-2.5L (and 50-1. 5L) lugs need not be as robust as indicated.
The following analysis demonstrates that the tiedown lugs for the NuPac 50-2.5L (and 50.1. 5L) may be fabricated of mild steel, rather than "T-1" steel.
The maximum cable load for the NuPac 50-2.5L package is:
A A
A PT"N 5 I
+
) +
x y
z (19200)
(30)
[' 10 5
2
=
_2(48.38) i.6406,.6242)#
4(.4472),.
s 162090 lbs.
=
Using a 40 shear-out the mild steel lug for the NuPac 50-2.5L (and 50-1. 5L) package is:
s su d -
cos 40 )
2F t (e P
=
(2) (35000) (2) (2. 25 - cos 40 ) = 207754 lbs.
=
Revision '
January 16, 1979 Margin of Safety:
36,000/1899 -1 = +Large M.S.
=
It can therefore be concluded that the packaging can safety react an atmospheric pressure of.5 times standard atmospheric pressure.
1.6.4 Vibration Shock and vibration normally incident to transport are considered to have negligible effects on the NuPac 50-xxL packaging.
1.6.5 Wate: Spra,y Since the package exterior is constructed of steel, this test is not required.
1.6.6 Free Drop The free drop heights for the package prescribed by Appendix A.6 of 10 CFR 71 vary as a function of package version weight as follows:
Version Gross Weight (lbs)
Drop Height (in)
NuPac 50-1.5 13100 36 NuPac 50-2.5 19200 36
_1_
NuPac 50-3.0 22000 24 NuPac 50-4.0 28500 24 1-18
Revision -
January 16, 1979
.or *Se four package versions, variables and settlenent results are tabulated in the following table:
Drop IIeight I.ead Weight Guter Radius Lead Settlement Version H (in)
W (lbs)
R (in)
AII (in) 50-1.5 36 4500 25.88 0.145 fl-50-2.5 36 8500 26.88 0.150 50-3.0 24 10500 27.38 0.100 50-4.0 24 15500 28.38 0.106 For all versions:
r
= 24.63"
.375" t
=
s gs
= 45000 psi a pb 5000 psi
=
These modest settlement " voids" in the lead shield cannot transmit radiation because of the stepped design of the package ends.
The innermost solid steel and plates completely back (shield) lead settlement regions at both ends of the package.
Thus, lead settle-ment due to flat end drop does not compromise, nor alter, the integrity of radiation shielding in any fashion.
1.6.6.2 Side Drop
' Side drop is evaluated using the methods outlined in Section 2.7.2 of Shappert's Cask Designer's Guide, ORN L-NS I C-6 8.
The governinq
Revision
- January 16, 1979 equation (2.13) is:
1 B
T R
pb (R/1,) ( b'/
t g;;,
= F) (0) g
(
/g ) + 2
)
+F2(0) s s
s s
s where:
U=
cask weight (1bs)
II = drop height Fy(0) 0-1/2 sin 20
=
i l
2(0) sin O(2-cos 0) - 0 F
=
I 45000 psi o
=
g 5000 psi
=
pb The flattening of the cask is equal to:
d = R(1-cos 0)
Results are shown in Table 1.6.6.2-1. Shielding is reduced by side impact as indicated below:
Version Reduction of Shield ( }
(%)
50-1.5L 0.69%
50-2.5L 0.46 l
50-3.0L 0.28 I
50-4.0L 0.22 (1) Note:
% =d 20 100 T
360) s I
N min 1 Shield Thickness where T
=
s 1-20a
Table 1.6.6.2-1 Side Impact Deformation Predictions Drop Shell End Height Weight Radius Length Thickness Thickness 6
Deformation Version H (in)
W (lbs)
R (in)
L (in) t (in) t (in) a fs (0)
J (in) g e
-2 50-1.5L 36 13100 26.25 61.13
.375 1.00 1.742x10 10.07 7.76 0.240 50-2.5L 36 19200 27.25 65.38
.375 2.00 2.299x10_
12.52 7.94 0.261 50-3.0L 24 22000 27.75 66.88
.375 2.00 1.686x10_
12.65 7.13 0.215 h
50-a.OL 24 28500 28.75 70.38
.375 3.00 2.003x10 15.05 i7.14
-2
_I.
0.221
}
I tE E1 am Oa I
7
Revision.
January 16, 1979 This insignificant reduction of shielding denonstrates that side impact does not compromise the integrity of the package's shielding any measurable fashion.
- 1. 6. 6. 3 Corner Drop The impact energy associated with a corner drop will be absorbed by inelastic deformation of the corner.
Using the " dynamic flow pressure" concept, total deformation of the corner is estimated and used to compute package deceleration.
This deceleration is then used to check the integrity of the lid closure.
Both steel and lead components of the cask are distorted upon corner impacts.
The assessment of deformation and resultant decelerations is based upon a careful consideration of detail corner geometry for a range of assumed deformations.
It is assumed that the steel end plates of the cask undergo plastic flexural deformation and do not i
crush.
This flexural deformation of the ends enforces a crushing of the contiguous lead side walls and the thin cylindrical external j
steel shell.
The predictions of peak impact decelerations are based i
upon the crush geometry of the lead side walls and the associated l
external steel shell.
Resultant deformation prediction estinates are based upon two energy balance techniques -
The plastic flow pressure concept An integration of force - deflection relations based upon crush stress approaches.
l-21
Revision.
January 16, 1979 Analytics used for these estimates are outlined in Appendix 1.10.2.
Prediction results are sumnarized in Table 1.6.6.3-1; detail computer analysis results for all four configurations follow the table.
1-22
Table 1.6.6.3-1 Corner Impact Deformation & Deceleration Estimates Drop Crush Zone Geometry Load Height Weight Radius Volume Area Depth Factor 3
2 Version (in)
(lbs)
(in)
(in )
(in )
(in)
(g's)
__=
50-1.5L 36 13100 26.25 11.9-23.8 27.1-40.8 1.10-1.45 39.0-48.5 50-2.5L 36 19200 27.25 16.7-38.7 33.4-55.1 1.25-1.75 29.9-39.5 50-3.0L 24 22000 27.75 12.3-26.6 27.8-44.2 1.10-1.50 23.9-30.5 50-4.0L 24 28500 28.75 17.2-39.8 34.3-56.6 1.25-1.75 20.7-27.3 m
Q E1
~w u
$1 7
Gu D
1
9 CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
78/12/29.
PAGE 1
NUPAC 50-1.5L CASK PACKAGE WEIGHT
= 13100.00 (LBS)
DROP HEIGHT 36.000 (IN)
=
PACKAGE RADIUS 26.250 (IN)
=
STEEL DYNAMIC FLOW STRESS = 45000.00 (PSI)
STEEL CRUSH STRESS
= 45000.00 (PSI)
LEAD DYNAMIC FLOW STRESS 5000.00 (PSI)
=
LEAD CRUSH STRESS 5000.00 (PSI)
=
STEEL SHELL THICKNESS
.375 (IN)
=
STEEL BOTTOM THICKNESS 2.250 (IN)
=
ORIENTATION ANGLE 42.20 (DEG)
=
Y
~
LT EE nE
<g 7
G s
CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
78/12/29.
PAGE 2'
HUPAC 50-1.5L CASK
++ CRUSH VOLUME ++
+FLOU STRESS BASIS +
+++ CRUSH AREA +++
++ IMPACT ++ ++ CRUSH STRESS BASIS ++
CRUSH KINETIC STRAIN ENERGY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.
ENERGY RATIO (IN)
(IN-Lii (IN3)
(IN3)
(IN3)
(IN-LB) (SE/KE)
(IN2)
(IN2)
(IN2)
(LBS)
(G)
(IN-LB) (SE/KE)
.05 472255.
.0
.0 0.0 238.
.00
.3
.3 0.0 11913.
.9 298.
.00
.10 472910.
.0
.0 0.0 1348.
.00
.7
.7 0.0 33680.
2.6 1438.
.00
.15 471565.
.1
.1 0.0 3712.
.01 1.4 1.4 0.0 61848.
4.7 3826.
.01
.20 474220.
.2
.2 0.0 7618.
.02 2.1 2.1 0.0 95181.
7.3 7752.
.02
.25 474075.
.3
.3 0.0 13304.
.03 3.0 3.0 0.0 132962.
10.1 13455.
.03
.30 475530.
.5
.5 0.0 20980.
.04 3.9 3.9 0.0 174709.
13.3 21147.
.04
.35 476185.
.7
.7 0.0 30835.
.06 4.9 4.9 0.0 220064.
'6.8 31016.
.07
.40 476840.
1.0 1.0 0.0 43042.
.09 6.0 5.7
.3 256276.
19.6 42925.
.09 45 477495.
1.3 1.3 0.0 57762.
.12 7.1 6.0 1.1 275763.
21.1 56226.
.12
.50 478150.
1.7 1.7 0.0 75146.
.16 8.3 6.3 2.0 294832.
22.5 70491.
.15
.55 478805.
2.1 2.1 0.0 95335.
.20 9.6 6.6 3.0 313572.
23.9 85701.
.18 7
.60 479460.
2.6 2.6 0.0 118456.
.25 11.0 6.9 4.0 332056.
25.3 101841.
.21 N
.65 480115.
3.2 3.2 0.0 144665.
.30 12.3 7.2 5.1 350336.
26.7 118901.
.25 S'
.70 480770.
3.9 3.9 0.0 174058.
.36 13.8 7.5 6.3 368454.
28.1 136871.
.28
.75 481425.
4.6 4.6 0.0 206761.
.43 15.3 7.8 7.5 386451.
29.5 155744.
.32
.80 482080.
S.4 5.4 0.0 242888.
.50 16.8 8.0 8.8 404349.
30.9 175514.
.36
.85 482735.
6.3 6.3 0.0 282550.
.59 18.4 8.3 10.2 422174.
32.2 196177.
.41
.90 483390.
7.2 7.2 0.0 325852.
.67 20.1 8.5 11.6 439945.
33.6 217730.
.45
.95 484045.
8.3 8.3 0.0 372898.
.77 21.8 8.7 13.0 457679.
34.9 240170.
.50 1.00 484700.
9.4 9.4 0.0 423786.
.87 23.5 8.9 14.5 475389.
36.3 263497.
.54 1.05 485355.
10.6 10.6 0.0 478615.
.99 25.3 9.2 16.1 493088.
37.6 287709.
.59 E$
1.10 486010.
11.9 11.9 0.0 537478.
1.11 27.1 9.4 17.7 510786.
39.0 312806.
.64 @ $.
1.15 486665.
13.3 13.3 0.0 600467.
1.23 28.9 9.6 19.3 528491.
40.3 338788.
.70 mm 1.20 487320.
14.8 14.0 0.0 667673.
1.37 30.8 9.8 21.0 546212.
41.7 365655.
.75 M o' 1.25 487975.
16.4 16.4 0.0 739182.
1.51 32.8 10.0 22.7 563954.
43.0 393409.
.81
- r. D 1.30 488630.
18.1 18.1 0.0 815080.
1.67 34.7 10.2 24.5
- 581724, 44.4 422051.
.86 m8 1.35 489285.
19.9 19.9 0.0 895451.
1.83 36.7 10.4 26.3 599527.
45.8 451583.
.92 'Y 1.40 489940.
21.8 21.8 0.0 980377.
2.00 38.8 10.6 28.2 617368.
47.1 482005.
.98 [;
1.45 490595.
23.8 23.8 0.0
- 1069938, 2.18 40.8 10.8 30.1 635249.
48.5 513321.
1.05 w*
1.50 491250.
25.9 25.9 0.0 1164212.
2.37 43.0 11.0 32.0 653175.
49.9 545531.
1.11 1.55 491905.
28.1 28.1 0.0 1263276.
2.57 45.1 11.1 34.0 671149.
51.2 578639.
1.18 1.60 492560.
30.4 30.4 0.0 1367206.
2.78 47.3 11.3 36.0 689173.
52.6 612647.
1.24 1.65 493215.
32.8 32.8 0.0 1476076.
2.99 49.5 11.5 38.0 707250.
54.0 647558.
1.31 1.70 493870.
35.3 35.3 0.0 1589960.
3.22 51.7 11.7 40.1 725382.
55.4 683374.
1.30 1.75 494525.
38.0 38.0 0.0 1708928.
3.46 54.0 11.8 42.2 743571.
56.8 720097.
1.46 1.80 495180.
40.7 40.7 0.0 1833051.
3.70 56.3 12.0 44.3 761818.
58.2 757732.
1.53 1.85 495835.
43.6 43.6 0.0 1962399.
3.96 58.7 12.2
'46.5 780125.
59.6 796281.
1.61 1.90 496490.
4 94
CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
70/12/29.
PAGE 3
NUPAC 50-2.5L CASK PACKAGE WEIGHT
= 19200.00 (LBS)
DROP HEIGHT
=
36.000 (IN)
PACKAGE RADIUS 27.250 (IN)
=
STEEL DYNAMIC FLOW STRESS = 45000.00 (PSI)
STEEL CRUSH STRESS 45000.00 (PSI)
=
LEAD DYNAMIC FLOW STRESS 5000.00 (PSI)
=
LEAD CRUSH STRESS 5000.00 (PSI)
=
STEEL SHELL 1HICKNESS
.375 (IN)
=
STEEL BOTTOM THICKNESS 4.000 (IN)
=
ORIENTATION ANGLE 42.20 (DEG)
=
Y O
a.
D n 3.
d l~
, g.
G 3
CASKCRN(COMWCP)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
78/12/29.
PAGE 4-NUPAC 50-2.5L CASK
++ CRUSH VOLUME ++
+FLOU STRESS BASIS +
+++ CRUSH AREA +++
++ IMPACT ++ ++CPUSH STRESS BASIS ++
CRUSH KINETIC STRAIN ENERGY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.
ENERGY RATIO (IN)
(IN-LB)
(IN3)
(IN3)
(IN3)
(IN-LB) (SE/KE)
(IN2)
(IN2)
(IN2)
(LBS)
(G)
(IN-LB) (SE/ME)
.05 692160.
.0
.0 0.0 243.
.00
.3
.3 0.0 12138.
.6 303.
.00 10 6?3120.
.0
.0 0.0 1373.
.00
.8
.8 0.0 34317.
1.8 1465.
.00
.15 694080.
.1
.1 0.0 3782.
.01 1.4 1.4 0.0 63018.
3.3 3898.
.01
.20 695040.
.2
.2 0.0 7762.
.01 2.2 2.2 0.0 96983.
5.1 7898.
.01
.25 696000.
.3
.3 0.0 13556.
.02 3.0 3.0 0.0 135482.
7.1 13710.
.02
.30 696960.
.5
.5 0.0 21378.
.03 4.0 4.0 0.0 178022.
9.3 21547.
.03
.35 697920.
.7
.7 0.0 31420.
.05 5.0 5.0 0.0 224241.
11.7 31604.
.05
.40 698880.
1.0 1.0 0.0 43858.
.06 6.1 5.9
.3 261116.
13.6 43738.
.06
.45 699640.
1.3 1.3 0.0 58858.
.08 7.3 6.1 1.1 280973.
14.6 d7290.
.08
.50 700800.
1.7 1.7 0.0 76572.
.11 8.5 6.4 2.1 300402.
15.6 71825.
.10
.55 701760.
2.2 2.2 0.0 97146.
.14 9.8 6.8 3.0 319497.
16.6 87322.
.12
.60 702720.
2.7 2.7 0.0 120717.
.17 11.2 7.1 4.1 338333.
17.6 103768.
.15
.65 703600.
3.3 3.3 0.0 147417.
.21 12.6 7.4 5.2 356961.
18.6 121150.
.17
/
.70 704640.
3.9 3.9 0.0 177370.
.25 14.1 7.6 6.4 375425.
19.6 139460.
.20
.75 705600.
4.7 4.7 0.0 210698.
.30 15.6 7.9 7.7 393763.
20.5 158690.
.22
.80 706560.
5.5 5.5 0.0 247516.
.35 17.2 8.2 9.0 412002.
21.5 178834.
.25
.85 707520.
6.4 6.4 0.0 287937.
.41 18.8 8.4 10.4 430167.
22.4 199888.
.28
.90 708480.
7.4 7.4 0.0 332068.
.47 20.5 8.7 11.8 448277.
23.3 221849.
.31
.95 709440.
8.4 8.4 0.0 380015.
.54 22.2 8.9 13.3 466350.
24.3 244715.
.34 1.00 710400.
9.6 9.6 0.0 431880.
.61 23.9 9.1 14.8 484399.
25.2 268483.
.38 1.05 711360.
10.8 10.8 0.0 487762.
.69 25.7 9.3 16.4 502437.
26.2 293154.
.41 h$
1.10 712320.
12.2 12.2 0.0 547756.
.77 27.6 9.6 18.0 520475.
27.1 318727.
.45 y j.
1.15 713280.
13.6 13.6 0.0 611957.
.86 29.5 9.8 19.7 538520.
28.0 345202.
.48 om 1.20 714240.
15.1 15.1 0.0 680457.
.95 31.4 10.0 21.4 556581.
29.0 372580.
.52 M $'
1.25 715200.
16.7 16.7 0.0 753344.
1.05 33.4 10.2 23.2 574665.
29.9 400861.
. 5 6_
D y
1.30 716160.
18.5 18.5 0.0 830706.
1.16 35.4 10.4 25.0 592777.
30.9 430047.
.60 mi 1.35 717120.
20.3 20.3 0.0 912628.
1.27 37.4 10.6 26.8 610924.
31.8 460139.
.64 '7 1.40 710080.
22.2 22.2 0.0 999194.
1.39 39.5 10.6 28.7 629108.
32.8 491140.
.68 g
1.45
- 719040, 24.2 24.2 0.0 1090487.
1.52 41.6 11.0 30.7 647336.
33.7 523051.
.73 w*
1.50 720000.
26.4 26.4 0.0 1186585.
1.65 43.8 11.2 32.6 665609.
34.7 555875.
.77 1.55 720960.
28.6 28.6 0.0 1287568.
1.79 44.0 11.4 34.6 683931.
35.6 589613.
.82 1.60 721920.
31.0 31.0 0.0 1393513.
1.93 49.2 11.5 36.7 702305.
36.6 624269.
.86 1.65 722880.
33.4 33.4 0.0 1504496.
2.08 50.5 11.7 38.7 720733.
37.5 659845.
.91 1.70 723840.
36.0 36.0 0.0 1620591.
2.24 52.7 11.9 40.9 739217.
38.5 696344.
.96 1.75 724800.
38.7 38.7 0.0 1741871.
2.40 55.1 12.1 43.0 757760.
39.5 733768.
1.01 1.80 725760.
41.5 41.5 0.0 1868409.
2.57 ~
57.4 12.2 45.2 776363.
40.4 772121.
1.06 1.85 726720.
44.5 44.5 0.0 2000275.
2.75 59.8 12.4 47.4 795028.
41.4 811406.
1.12 9
3 r
CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
78/12/29.
PAGE 5
NUPAC 50-3.0L CASK PACKAGE WEIGHT 22000.00 (LBS)
=
DROP HEIGHT 24.000 (IN)
=
PACKAGE RADIUS 27.750 (IN)
=
STEEL DYNAMIC FLOW STRESS = 45000.00 (PSI)
S1 EEL CRUSH STRESS
= 45000.00 (PSI)
LEAD DYNAMIC FLOW STRESS 5000.00 (PSI)
=
LEAD CRUSH STRESS 5000.00 (PSI)
=
STEEL SHELL THICKNESS
.375 (IN)
=
STEEL BOTTOM THICKNESS 4.500 (IN)
=
ORIENTATION ANGLE 42.20 (DEG)
=
I t
CJ E s.
4 s.
<g
- i
,7 a
CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
78/12/29.
PAGE 6-NUPAC 50-3.0L CASK
++ CRUSH VOLUME ++
+ FLOW STRESS BASIS +
+++ CRUSH AREA +++
++ IMPACT ++ ++ CRUSH STRESS BASIS ++
CRUSH KINETIC STRAIN ENERGY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.
ENERGY RATIO (IN)
(IN-LB)
(IN3)
(IN3)
(IN3)
(IN-LB) (SE/KE)
(IN2)
(IN2)
(IN2)
(LBS)
(G)
(IN-LB) (SE/KE)
.05 529100.
.0
.0 0.0 245.
.00
.3
.3 0.0 12249.
.6 306.
.00
.10 530200.
.0
.0 0.0 1386.
.00
.8
.8 0.0 34631.
1.6 1478.
.00
.15 531300.
.1
.1 0.0 3817.
.01 1.4 1.4 0.0 63595.
2.9 3934.
.01
.20 532400.
.2
.2 0.0 7833.
.01 2.2 2.2 0.0 97871.
4.4 7971.
.01
.25 533500.
.3
.3 0.0 13680.
.03 3.0 3.0 0.0 136724.
6.2 13835.
.03
.30 534600.
.5
.5 0.0 21574.
.04 4.0 4.0 0.0 179656.
8.2 21745.
.04
.35 535700.
.7
.7 0.0 31708.
.06 5.0 5.0 0.0 226301.
10.3 31894.
.06
.40 536800.
1.0 1.0 0.0 44261.
.08 6.1 5.8
.3 263503.
12.0 44139.
.08
.45 537900.
1.3 1.3 0.0 59399.
.11 7.3 6.2 1.2 203541.
12.9 57815.
.11
.50 539000.
1.7 1.7 0.0 77276.
.14 8.6 6.5 2.1 302149.
14.8 72482.
.13
.55 540100.
2.2 2.2 0.0 98039.
.18 9.9 6.8 3.1 322421.
14.7 88122.
16 7
.60 541200.
2.7 2.7 0.0 121828.
.23 11.3 7.1 4.1 341428.
15.5 104718.
.19 (j
.65 542300.
3.3 3.3 0.0 148773.
.27 12.7 7.4 5.3 360227.
16.4 122259.
.23 a
.70 543400.
4.0 4.0 0.0 179003.
.33 14.2 7.7 6.5 378862.
17.2 140736.
.26
.75 544500.
4.7 4.7 0.0 212639.
.39 15.7 8.0 7.8 397369.
18.1 160142.
.29
.80 545600.
5.6 5.6 0.0 249798.
.46 17.3 8.2 9.1 415776.
18.9 180471.
.33
.85 546700.
6.5 6.5 0.0 290593.
.53 19.0 0.5 10.5 434108.
19.7 20171D.
.37
.90 547800.
7.4 7.4 0.0 335133.
.61 20.6 8.7 11.9 452386.
20.6 223880.
.41
.95 548900.
8.5 8.5 0.0 383525.
.70 22.4 9.0 13.4 470626.
21.4 246956.
.45 1.00 550000.
9.7 9.7 0.0 435871.
.79 24.2 9.2 15.0 488842.
22.2 270942.
.49 1.05 551100.
10.9 10.9 0.0 492272.
.89 26.0 9.4 16.6 507047.
23.0 295840.
.54 h$
1.10 552200.
12.3 12.3 0.0 552824.
1.00 27.8 9.7 18.2 525252.
23.9 321647.
.58 y$
1.15 553300.
13.7 13.7 0.0 617622.
1.12 29.8 9.9 19.9 543465.
24.7 348365.
.63 mm 1.20 554400.
15.3 15.3 0.0 686759.
1.24 31.7 10.1 21.6 561694.
25.5 375994.
.68 Q 8' 1.25 555500.
16.9 16.9 0.0 760326.
1.37 33.7 10.3 23.4 579946.
26.4 404535.
.73 3
1.30 556600.
18.6 18.6 0.0 838409.
1.51 35.7 10.5 25.2 590227.
27.2 433989.
.78 $i 1.35 557700.
20.5 20.5 0.0 921096.
1.65 37.0 10.7 27.1 616543.
28.0 464358.
.83 ' 7 1.40 558000.
22.4 22.4 0.0 1008471.
1.80 39.9 10.9 29.0 634897.
28.9 495644.
.89 [
1.45 559900.
24.5 24.5 0.0 1100617.
1.97 42.0 11.1 30.9 653295.
29.7 527849.
.94 a 1.50 561000.
26.6 26.6 0.0 1197615.
2.13 44.2 11.3 32.9 671739.
30.5 560975.
1.00 1.55 542100.
28.9 28.9 0.0 1299544.
2.31 46.4 11.5 35.0 690233.
31.4 595024.
1.06 1.60 563200.
31.3 31.3 0.0 1406402.
2.50 48.7 11.6 37.0 708779.
32.2 630000.
1.12 1.65 564300.
33.7 33.7 0.0 1518506.
2.69 50.9 11.8 39.1 727380.
33.1 665904.
1.18 1.70 565400.
36.3 36.3 0.0 1635691.
2.89 53.2 12.0 41.2 746039.
33.9 702739.
1.24 1.75 566500.
39.1 39.1 0.0 1758111.
3.10 55.6 12.2 43.4 764756.
34.8 740509.
1.31 1.80 567600.
41.9 41.9 0.0 1885839.
3.32 58.0 12.3 45.6 783535.
35.6 779216.
1.37 1.85 568700.
44.9 44.9 0.0 2018947.
3.55 60.4 12.5 47.9 802375.
36.5 818864.
1.44 1.90 569800.
47.9 47.9 0.0 2157504.
3.79 62.8 12.7 50.1 821280.
37.3 859455.
1.51
CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55.
78/12/29.
PAGE
?
HUPAC 50-4.0L CASK PACViiE WEIGHT
= 28500.00 (LBS)
DROP HEIGHT 24.000 (IN)
=
PACKAGE RADIUS 28.750 (IN)
=
STEEL DYNAMIC FLOW STRESS = 45000.00 (PSI)
STEEL CRUSH STRESS 45000.00 (PSI)
=
LEAD DYNAMIC FLOW STRESS 5000.00 (PSI)
=
LEAD CRUSH STRESS 5000.00 (PSI)
=
STEEL SHELL THICKNESS
.375 (IN)
=
STEEL BOTTOM THICKNESS 6.000 (IN)
=
ORIENTATION ANGLE 42.20 (DEG)
=
Y 0
- r O
E5 fi 5 xg
'7 3
CASKCRN(CORNER)
CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 10.16.55, 78/12/29.
PAGE 8-HUPAC 50-4.0L CASK
++ CRUSH VOLUME ++
+ FLOW STRESS BASIS +
+++ CRUSH AREA +++
++ IMPACT ++ ++ CRUSH STRESS BASIS ++
CRUSH KINETIC STRAIN ENERGY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.
ENERGY RATIO (IN)
(IN-LB)
(IN3)
(IN3)
(IN3)
(IN-LB) (SE/KE)
(IN2)
(IN2)
(IN2)
(LBS)
(G)~
(IN-LB) (SE/KE)
.05 685425.
.0
.0 0.0 249.
.00
.3
.3 0.0 12468.
.4 312.
.00
.10 686850.
.0
.0 0.0 1410.
.00
.8
.8 0.0 35250.
1.2 1505.
.00
.15 688275.
.1
.1 0.0 3885.
.01 1.4 1.4 0.0 64733.
2.3 4004.
.01
.20 689700.
.2
.2 0.0 7974.
.01 2.2 2.2 0.0 99625.
3.5 6113.
.01
.25 691125.
.3
.3 0.0 13925.
.02 3.1 3.1 0.0 139176.
4.9 14083.
.02
.30 692550.
.5
.5 0.0 21960.
.03 4.1 4.1 0.0 182880.
6.4 22135.
.03
.35 693975.
.7
.7 0.0 32276.
.05 5.1 5.1 0.0 230365.
8.1 32466.
.05
.40 695400.
1.0 1.0 0.0 45055.
.06 6.3 5.9
.3 268212.
9.4 44930.
.06
.45 696825.
1.3 1.3 0.0 60465.
.09 7.5 6.3 1.2 288610.
10.1 58851.
.08
.50 698250.
1.7 1.7 0.0 78664.
.11 8.7 6.6 2.1 308570.
10.8 73780.
.11
.55 699675.
2.2 2.2 0.0 99801.
.14 10.1 4.9 3.1 328188.
11.5 89699.
.13
.60 701100.
2.8 2.8 0.0 124018.
.18 11.5 7.3 4.2 347536.
12.2 106592.
.15
.65 702525.
3.4 3.4 0.0 151450.
.22 12.9 7.6 5.4 366673.
12.9 124448.
.18
.70 703950.
4.0 4.0 0.0 182226.
.26 14.4 7.8 6.6 385643.
13.5 143255.
.20
.75 705375.
4.8 4.8 0.0 216469.
.31 16.0 8.1 7.9 404483.
14.2 163009.
.23
.80 706800.
5.7 5.7 0.0 254300.
.36 17.6 8.4 9.3 423222.
14.8 183701.
.26
.85 708225.
6.6 6.6 0.0 295833.
.42 19.3 8.6 10.7 441886.
15.5 205329.
.29
.90 709650.
7.6 7.6 0.0 341180.
.48 21.0 8.9 12.1 460493.
16.2 227888.
.32
.95 711075.
8.7 8.7 0.0 390449.
.55 22.0 9.1 13.7 479063.
16.8 251377.
.35 1.00 712500.
9.9 9.9 0.0 443745.
.62 24.6 9.4 15.2 497609.
17.5 275794.
.39 1.05 713925.
11.1 11.1 0.0 501170.
.70 26.5 9.6 16.9 516144.
18.1 301138.
.42 $$
1.10 715350.
12.5 12.5 0.0 562822.
.79 28.4 9.8 18.5 534678.
18.8 327409.
.46 @ $.
1.15 716775.
14.0 14.0 0.0 628799.
.88 30.3 10.0 20.3 553222.
19.4 354606.
.49 mm 1.20 718200.
15.5 15.5 0.0 699194.
.97 32.3 10.3 22.0 571782.
20.1 382731.
.53 O $
1.25 719625.
17.2 17.2 0.0 774101.
1.08 34.3 10.5 23.8 _
_590367._
20.7_
411785.
57,, D 1.30 721050.
19.0 19.0 0.0 853608.
1.18 36.4 10.7 25.7 608981.
21.4 441769.
.61 os i 1.35 722475.
20.8 20.8 0.0 937803.
1.30 38.5 10.9 27.6 627630.
22.0 472684.
.65 ' 7 1.40 723900.
22.8 22.8 0.0 1026774.
1.42 40.6 11.1 29.5 646320.
22.7 504533.
.70 ["
1.45 725125.
24.9 24.9 0.0 1120604.
1.54 42.8 11.3 31.5 665054.
23.3 537317.
.74 w 1.50 726750.
27.1 27.1 0.0 1219375.
1.68 45.0 11.5 33.5 683835.
24.0 571039.
.79 1.55 728175.
29.4 29.4 0.0 1323170.
1.82 47.3 11.7 35.6 702668.
24.7 605702.
.83 1.60 729600.
31.8 31.8 0.0 1432067.
1.96 49.5 11.8 37.7 721554.
25.3 641307.
.88 1.65 731025.
34.4 34.4 0.0 1546145.
2.12 51.9 12.0 39.8 740497.
26.0 677858.
.93 1.70 732450.
37.0 37.0 0.0 1665481.
2.27 54.2 12.2 42.0 759498.
26.6 715358.
.98 1 7_5 733875.
39.8 39.8 0.0 1790149.
2.44 56.6 12.4 44 2 778560.
27.3 753810.
1.03 1
1.80 735300.
42.7 42.7 0.0 1920225.
2.61 59.0 12.6 46.a 797684.
28.0 793216.
1.08 1.85 736725.
45.7 45.7 0.0 2055781.
2.79 61.5 12.7 48.7 816872.
28.7 833580.
1.13 1,90-7] S152 _ _. 38 8_
38
Revision - -
January 16, 1979 These decelerations impose loads upon the lid closure binders as shown in the following freebody diagrams:
d00044 f
Fs t
x
?
F
= Deformation tc a.r
_I ivi//, // y u,,,
/\\
h F
/
ts Ftc External Equilibrium Forces - Corner Impact
) A I cc F
Cask Freebody A
ps Fps +F s e
I
/
I/
j lR j, F tc I
I I
I I
ig R f
F
+F ps es A-rF ipc
,Kg p' F c t
Lid Freebody pr 1 F
/ V'-
Ic f ts r
tC Internal Equilibrium Forces - Corner Impact 1-23
Revision -
January 16, 1979 W.a sin A Where:
F,
=
is 1 g F
=Wa cos M g
i=T, total package C,
cask side & bottom
=
=P, payload 1
lid
=
W
= W +W J'.?
t c
p' 1
R
= Lid / cask Binder Forces From either the cask freebody diagram or the lid freebody diagram, the total tid / cask binder force may be estimated as:
TC" cc ~
lc+ PC R=F cos c<
(W +W )
=
. a y
p Total Binder forces are thus estimated to be:
Load Factor Lid Weight Total Binder Version a
(G)
W1 (lb)
Force R (lbs) g 50-1.5 48.5 1280 196891 50-2.5 39.5 2400 193128
-l_
50-3.0
'~.3 2750 157032 50-4.0 27.3 3800 161792 42.2 Notes:
04
=
4200 lbs ' payload)
W
=
p i 1-24
Revision f.
January 16, 1979 The 50- 1. 51, ver is ion exh ibi ts the hiohest binder force.
Individual binder loads wi11 he evaluated for this cask version.
Two a1 ternate load path assumptions may be envisioned for the lid free body; both are illustrated below.
The path A assumption corresponds to the idealization shown in the forerjoing figure.
Load Path Assumption A:
385078 lbs N
/150902Lbs a
41700 lbs
/470G70Lbs 45989 Lbs
, 1-o ~"" N42G778 lbs
/470G70lbs Sunning forces at lid c.g.:
Normal:
lbs. (f' )
R=
150902 + 45989 = 196891 F
=
g Moment:
I M=0 Therefore, the binder load is uniform.
Since there are eight binders, the maximum binder force is 24611 lbs.
i If one assumes the corner impact deforms the corner where one ratchet 1-24a
Revision
- January 16, 1979 binder is located, the total binder force must be reacted by seven binders.
In this instance, the binder force becones 28127 lbs.
Load Path Assumption 3:
38507BLbs Ns,
/150902 Lbs l
41700 Lhs g
4 5989 Lbs /
/ 273779 ths
\\ 42'o778 Lbs
/70670Lhr l
Summing forces at lid c.g.
fl-Normal:
F
R
0 N
Moment:
M= 196891 (26.25) = 5,168,389 in-lb.
(#s) l The resultant force applied to the lid is a pure couple - tension loads ;
are reacted by the ratchet binders whereas the compression loads are reacted by direct compression of the lid on the cask body - as shown on the following page.
m
Revision *
- 19e, r_VI the January 16, 1979 i
I APPLIEE CAOF
=.
R 59
- lh <.
[. R E _ T L I E:, C ' ! / L K E S S ll ' '
BlflCER FORCES l
N'I RE AC TION LOADS Binder forces are calculated by referring to the following sketch:
FM
-0
-1 1-cos 0.
Fg=FM 2
4 2
~
g = f
-D O
5 /
l M
=FR G-cos 01) c i
g 6
6 7
y)2 M=FR (1-cos O F
(12) g
=
2 i=1 2
_1 = (19 6391) (R) = 32915 lbs.
y
=
M 6R 6R Thus, in this instance the maxinun binder forc'e is 32815 lbs.
Revision.
January 16, 1979 Thus, in this instance the maximun binder force is 32815 lbs.
The ultimate strength of the binder is rated at 45000 lbs.
- Thus, the margin of safety is:
M.S. = 45000/32815 -1 = +0.37 The capacities stated for the binders are established static allow-ables.
They are manufactured from standard carbon steels and fail in the same manner as a bolt.
Numerous studies have been conducted on the behavior of bolts under dynamic or impact loading.
ORNL-TM-1312i Volume 12 Structural Analysis of Shipping Casks states that carbon steel bolts " possess better physical properties under conditions of shock than indicated by static tests.
Increase in the value of stress by a factor of 1.3 and a greater amount of strain before 1-
~
necking occurs were reported".
This is substantiated by references 5,
8, 9,
10 and 11 of the same document.
Therefore, it can be concluded that the binders static allowable capabilities will not be lower under shock or dynamic loading.
9 There, it can be concluded that the binders will react the impact load and retain the lid.
1-25
Revision,.
January 16, 1979 4
Lug to lid attachment
/.O/A
/
... 3
/
y\\
iD
_!. [h kb /
/
i)
- - 3" ->
Weld Shearing:
P
= P A w*ld s
s Where:
F
= 35000 psi s
(2 ) (1) (1/2) (72) + (2) (3) (1/2) ( -72)
A=
2 2
= 4.95 in (35000 psi) (4. 95 in )
P
=
s P
= 173241 lbs/ lug s
The critical load path binder fitting exists at the cask body lug.
At this location,.the minimum margin of safety is:
M.S.
= 71114 1 = +1.17 32815 The ratchet binders load the lid ton nlata (Pl a ta F. ) with a 9eries
_1_
of edae moments.
The one inch olata of the nn-l.mL version will be evaluated for these loads.
Both local and gross effects on this lid top plate are evaluated.,
Revision -.
January 16, 1979 For a maximum ratchet binder load of 32815 lbs., the associated moment introduced in to the top plate of the lid is estimated as:
M=
(32815) (. 25 +.
- 1.375) = 61528 in-lb
^
The local moment capability of an octagonal lid cover is estimated as follows:
f 4
=
7 where:
0 = 36000 psi c = 0.5 inch 3
7 _ bh _ (10.392) (1)3 07 in.4 12 12 b=
(2) (3") tan 67.5 Local moment capability 1s:
i g
_ (36000) (1. 207)= 86912 in-lb 1
.5 7
1 Thus, local moment yield margin of safety of the lid is:
i i
M.S.
= 86912 - 1 = +0.41
! _1; 61528 Gross moment capability is assessed using both the exterior and interior lid plates.
For a uniform edge moment the expression relating stress to moment in a circular plate is given by Roark as:
l h;M=
f c=
For the 1" exterior plate:
36000 (1)
M
= 6000 in-lb/in 6
~~
Revision
- January 16, 1979 i
i For the 1.25" interior plate:
6000 I
)
M=
= 9375 in-lb/in 6
i The total edge moment capability is:
15375 in-lb/in For a circular lid of 52.5" diameter the corresponding concentrated moment acting on 1/8th of the edge is:
g
_ (15 37 5) (52. 5 ) (n ) = 316982 in-lb g
8 Thus, the gross moment yield margin of safety of the lid is:
9
=
- 1 = +4.15 M.S.
61528 It can be concluded that the binders and their fittings can safely react the maximum loads produced during impact. The secondary lid closure studs are examined in a comparable fashion.
For a very conservative evaluation, the total payload mass of 4200 lbs. can be assumed to be reacted by the secondary lid studs.
- Thus, the total secondary lid stud load is estimated as:
R=
(W W ) a cos =
y p g
(340 + 4200) (48. 5) cos 42.2
= 163118 lbs.
=
Since there are eight secondary lid studs 3/4-10 UNC, AISI 303/304, each stud load is 20390 lbs.
The tensile strength of the stud is:
P=FA=
(85000)(.309) = 26270 lbs.
Revision ' -
- January 16, 1979 Thus, the margin of safety of the secondary lid is:
26270/20390
. = +0.29 M.S.
=
t Note that if payload nass had been assumed reacted by the secondary lid on a proportional area basis, the resultant margin of safety would be +4.19.
When impacts occur on the lid end a normal compressive load of 470670 lbs. (version 50-1. 5L) is transferred from the lid to the lid closure ring.
This load is then transferred to the cask sidewalls via a pair of 3/8" bevel welds.
The loaded length of each weld is:
E= 2RO where:
R= 26.25 in.
-1 ((-)
0 = cos See Appendix r=R-6 1.10.2 sin = 6 = 1.45"
== 42.2 45 r = 26.25 -
= 24.09 inches si 4
4l
-1 0 = cos
(
)= 0.4084 rad.
6 1=
(2)(26.25)(.4084) = 21.44 inches p
The capability of these welds is:
(2)(35000)(21.44)(3/8) = 562696 lbs.
F
=
g
Revision '
- January 16, 1979 The associated margin of safety is:
=
- 1 = +0.20 M.S.
47 The lateral load transferred between the lid and the cask is estimated i
as 385078 lbs. (version 50-1.5L).
The load is initially transferred f
from he exterior lid plate to the interior lid plate via a 1/2" l
circumferential bevel weld.
The interior lid plate transfers this load to the cask body by direct compression.
This compressive load is transferred across a deeply stepped recess of the interior lid plate within the cask inner cavity.
The load capability of the circum-forential lid weld is:
F
=PA
=F t
WD ss s
(35000) (n) (4 8. 5) (1/2) = 2,666,427 lbs.
=
1 The associated margin of safety is:
'4
- 1 = +5.92 M.S.
=
850 8 Therefore, it can be safely concluded that the package can survive a normal corner drop.
1.6.7 Corner Drop This requirement is not applicable since the NuPac 50-xxL packaging is fabricated of steel.
1-29b
e v,
Revision January 16, 1979 Appendix 1.10,2 Volume and Area Estimates Corner Impact or a Cylinder 1.
Volume Estimates I
1.1 Total Volurae The geometry and nomenclature of this model is:
E u.
2 :(x-r ) tan =
9 8
r=R-y h & = CRUSH DEPTH
/}-
sin
- x / >\\
-1
( R*- x*)*
\\.J.
The volume of the shaded differential slice shown is:
dV = (R -x )
- (x-r) sina d The total volume is:
V 2 tana (R -x )
(x-r) d t
x Evaluation gives:
(R -r )b
~
~
(R -r
)
r rR 7r r
V
=2 tana {
3 2
2
_2 -sin- (77)
}
4 '
- Revision January 16, 1979 l
Or 2 tann {
+Eb-f-sin-(f) }
V
=
t (R -r )b; r = R -
where:
t
=
sine l
1 i
1.2 Component Volumes l
l The steel volume is composed of side and bottom portions:
l Y
- Yside + Ybot s
V
= R0 (R-r) t tana side s
2
~
- rR sine V
=t bot b
-1 (f) where:
0 = cos t
= external steel ~ side thickness (in) s tb = steel and thickness (in)
The lead area represents the residual V
=V
-V I IY -Y )> 0 g
t s
t s
0
- (V -Y )< 0
=
t s
i 2.
Area Estimates 2.1 Total Area The differential contact area is:
dA = (R -
)
dx The total area is:
l R
2 t
f (R -x )
dx A
=
Cos a r
Revision e e e January 16, 1979 2.2 Component Areas The steel area (of the side walls) is:
sine,
1 l
1 +
2t RO s
s e
(cosa _7)-
A
=
The lead area is the residual:
A
= A -A I^ -As)> 0 g
s t
0
- (A -As)< 0
=
t 3
Strain Energy Estimates 3.1 Flow Stress Approach S.E.
=V sp + Vg gg O
U s
where:
o
=
steel flow stress sp lead flow stress o
=
gg 3.2 Crush Stress Approach l
1 F
~
S.E.
=-E i(F. +F.1-1) ( 6. -
6.1-1-)
2. L i 1
1
- -l where
Fg=A
+A s.sc E.
Ec 1
1 steel crush stress o
=
sC lead crush stress
=
Ec th 6
= assumed crush depth at the i step 1
1-33
8 I
7 l
6 l
5
}
r-. -. -
\\
I o
\\
l N
I O
O r
O V
g i n{.7 ~*iVP
@j T
J o.
i o
o o
o Vo C
BAT OR pin O Di A,
g,,,g, giot'j
\\
sTuo, Nut Ano wouwASMER
.{
34 -lo uNC S.A.L.C.RADL 5 RET A.NiNCn P sNS l
C{ Tall
'N h
e-
/9 d
sxs
.- n o
1
>3 t
y DETM r;r",r-i ' 4#
9 p'"
A 9
(w.w. PATTER %ok)
. )( 2 8 x
'\\
}
os A lo 5
i e
i -
T
'u,$ Y
- -< T T -
I
.- A B
ocTot. - F g
c j
a - o ' _. _.
BoL.T AND LOCK NUT D6A s
g io v=c s.A.g. smaot 5 TYP h { 6
]7 52,
,7 3
7 5.
WELDING sHAll BE 111 ACCORDANCE WlTH As4 CODE-sECfl0N IX.
l
/.T 9
4;> PAINT Att DTEkiOR suRFActs WITH ONE (1) COAT 4
g AND ONE (1) COAT _ _ __
COLOR
- - - ~ ~ ~ ~
a,i,
~j
\\
O 1)*
{ { 3 LEAD: PER FEDERAL SPECIFICATION Xct-171t.
'DE T Att r
GRAat 4 OR C CAsr DI44st04AL CAT A
_ F CA5X I B C
D E-
% DEL A
A l :2.53
[t> vitRiat u s. T-1 siitt u.is 67.65
- 1. x i. 2s 885 so.1 st 1.2s i,
l 2.0c I~
T> MTtalat: L:n CARaoM Hot RotLD 2.00 14 -
/
sittt. PtAit a swts Ca4re To W 2. st 2.25 54.5c 65.38 69 63
y AsT* A36 50 3 OL 2.7s
- S 66 86 70 63 l 2.30 2.50 176.
NOTES: UNLESS OTHERWISE SPECIFIED we. A
. 7s, T M l
'0. n 72 63 l 52 m
2e U
8 I
7
~
l 6
I 5
I 4
I 3
1 2
1 1
eevenous M LM
-, utal 7 ggyg [
-ws.
?
'L - *> -
.o lll,.
L...4-A.
a Ot
,'h p' n
~*
- 3 47
_. J E D. * *,'.* < ' 8.
- n' 3'
' /
k Tiest s k i (nest)
I*'.
e - A PvNvL Ma kiNu f
e. q '-
/,
'ALMFT I
E.
+.
\\
\\
-- y + -
s.,
- f. 6 LT -
\\
j7 hj.
\\
s
/
N$ -f - ~ - - ~ i
'l N
gs
[
/
/[
. V hE 9E C f St&6
[ //
\\
y^,'s = a,- \\j
{ --
is n r
o
- j 3
extco 13 Lie
,b
( ' g
- l * *'N )
/
,m I 7 s
u PLT ( f PLT. I.$ L ON(Y),
3 I
I pg
_f h
l H?M
- 3
-=ake-fGA6 g PLT I
8 option -l OPTION -2 etmt -A s &Lt: '/a
- 3. p __
) P wT -
8 3
A WR M
' i ~
$v %'
~V
~
5 s
N'. "e ]
E'
/
8 g
x
" i g x 10
~
[- --
E Pet s xy g x
De~
N J
vv Fptvs N
ip, j
l
~ q N
,e
'1 g
,/
M',I
', h l
h 3N i
d E~
l
/
[IDLAW3LE B
', [
4 PLC%.EQLAl'., P AC LD PLu(. w E ifw CouPLLTELY g
OPTION -l OPT @N 2 Q
Y ccmt B o
sc.Lo: va
. l
. i.,.
B a
e
.... --- us.
hyhi
&x NUCLEAR PACKA QlNO, INC.
...~>
- 9. _0$85.,ss a
* * * * = * =* raa
)gll!![r A
-- ~
r
-a..
i reamtm smtn ax.
um s
a..u....,
[r!3y IN 13
'l0DELS W1.5L. W2.5L, W3.0L, W4.0L
, i n,;
xi /
i
! ns*
i}y j iii1 Y
L
,24',nt.w r..,,."", ' f" - * L',".5-li. '.3
/'N
- m. %
~
~
an --
.l.Inl,ll,d' - '...- A -= C _ i,,,i -
o X-20-2OOD
,,,,s
~
l 4
1 3
1 2
1 1
t *, r E
}
(4
-tw
\\
E PLT f
DtA woLL o
/
p> rPo -
11 P
/
, 7; 2
- TYP Y
3
[
l I 1 -
_f f,
s g
f h,'
//
'g,
't _
I l
4
, j g
TYP/ ; g--
! "g -
l,
'I
~
l
-- - J ~
i-t w-w
... - i*l -
l p i PLT.
a 2
4 l
]
ak -}
w-
-3 m
m I
n-MF SECTION D-D
'2-~
C scate : v2
__ i j
/- $ " "
~*
a45* 'YP I) l PLT h t
/
/
__f h
n g
}
2 },
'g e
C 43'E 1 1
+
t TY P - **
8 i
9 D
l f
E;3 4
+-
G
_ i PLT %
/
l N
.2
._.4___.-
~
/--. _. U
'I I
vi ew G-G SCAmt; Ya 3._.
.__3 a
v_t E w H-H s a-t : 'it DET AIL - F A
scaut: Ya NOTE'E: UNLESS OTHERWISE SPECIFIED N
8 l
7 l
6 1
5 l
3 l.
2 l
1 NIEN 9(map. so.
aga,. la m
/
- 5 ( E
. 4 s[ *. P
/
..(
t a b. h t
/ e *. 6/ t f p t O.t a4E' c Aur on {.45*
D
/ E ' " ' ' ' " 5 ' C '
j 9
Tvp
\\
1" PL T
[
\\
i d
s m
y I,
i l
4-x I
C o. A u t t a 2 a 4 5' i
)
/~-
Typ 1
2, t
N 4
1 -.
A i
\\-2 Oth 640LL
/
x ruLL R ',j N
c.Hauf ts to(.ts y a 4 5*
\\
i -
g I_\\_
F UL L Ea
- -2
+
l
_q c
ceTot -E SO AL L : '/t ta f Di A 23 h Ci A
=
r STUD, nut 4 LocuwAS.LR 1,, T w K NEOPRLNE -
/
'f '4 -i o u t.C
- 5. A L. GR ADL 5 SEAL
/
INOT SHowu ikA TRUL PottTiond)
O PTIONAL STAtt4Lt33 STtfL Assi TYrt 303celO4 c6usos.4iees,o ASTM - 552 cia A-776 E eLT 4b p,a f 6AP WITH SE AL couS9fS54D
-e.
F ptT m 4'
E PLT e
213 x u'
- N3 3
% %o 3-a, s
'7 i ts w
1-2-
,-/
p 7,
7.,,.,
, cc,,,,,,g. sgy a srac y3,va.
B s
T,.
o t -.u,.
- j/
/ /:,;
.\\
e' F LT 7
8
..ut As u. p,..,. g u et j
. - s,.Au et g,,eu
' 4 2 i Lia ~
DE T AIL -C
' N SC ALL : 72
(;AswtT swo*~ oucoupRosste) c.dx i
i i,
l
- p
....o,......
! y lj' '=.se o, ewi erec.pist
&x a
NUCLEAR PACKAQiNG, INC.
s u,
3; FACON A, WASN##GTON rg A
t'. s !!-
5
' " * '.< c',7.'t.,
TitAitsP0eTAfl0N $HI[tD
.M e..
!{
m, a
a x
i y
.mts so-i.st. so-2.st so-s.ot. s> =2
. g. g},t y,-
Saia.C.d a w.
m........,. -,'1
,5
<um,-
e g[ 1
' gj / N
- D t-* L
..,... en
.., y
.w
-t g D
X-20-200D m.,,
~
3 1
2 l
1
- - _ _ _ _ _. _ _ _ _ _.......