ML19256E319

From kanterella
Jump to navigation Jump to search
Supplemental Response to IE Bulletin 79-07.Forwards Program Description & Verification Procedures for Analyses of GE-supplied Recirculation Sys Piping,Main Steam Piping & Feedwater Sys Piping
ML19256E319
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 10/19/1979
From: Mills L
TENNESSEE VALLEY AUTHORITY
To: James O'Reilly
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
References
NUDOCS 7911020089
Download: ML19256E319 (50)


Text

a TEN'JESSEE VALLEY AUTHORITY

[b g

CH ATTAN'. P 34. TE N' ?%SEE 374o1 400 Chestnut Street Tower II T

-a 77 9

October 19, 1979

~-

Mr. James P. O'Reilly, Director Office of Inspection and Enforceme U.S. Nuclear Regulatory Commission Region II - Suite 3100 101 Marietta Street Atlanta, Georgia 30303

Dear Mr. O'Reilly:

OFFICE OF INSPECTION AND ENFORCEMENT BULLETIN 79 RII:JP0 50-259, -260, -296

'10WNS FERRY NUCLEAR PLANT UNITS 1, 2, AND 3 In the TVA response to the subject bulletin dated April 24, 1979, for Browns Ferry, we committed to supply additional information concerning item 3 for the NSSS systems provided by General Electric (GE). This information involves the recirculation system, main steam, and feedwater system piping analyses for Browns Ferry Nuclear Plant.

The seismic analysis of the GE-supplied recirculation system piping (nonsafety systems) was partially performed by EDS Nuclear, Inc.

The PISOL and/or SUPER?IPE computer programs were used in the EDS seismic piping analysis. A description of these programs and the verification procedure used by EDS N2 clear is presented in Enclosure 1.

Teledyne Engineering Services (IES) performed the seismic analysis of that portion of the main steam piping provided by GE.

The TMRSAP computer program was used for the analysis. The TES program description and verification procedures are provided in Enclosure 2.

The seismic analysis for the GE-supplied feedwater and the remaining recirculation systems piping (nonsafety systems) was performed by URS/ John A. Blume and Associates, Engineers. The 3DFRM and SMIS computer programs were used by URS/Blume for the seismic piping analysis. A description of these programs and the verification procedures is presented in.

The enclosed information completes the Browns Ferry response for OIE Bulletin 79-07.

If you have any questions, please call Tish Jenkins at FTS 854-2014.

Very truly yours, TENNESSEE VALLEY AUTHORITY

. M.

1s, ager Nuclear Regulation and Safety Enclosures cc: Office of Inspection and Enforcement (Enclosures)

Division of Reactor Operations laspection 32513 209 U.S. Nuclear Regulatory Commission Washington, DC 20555 7 9110 2 0 (C) r.y _....:1 =

u An Equal Opportunity Employer

e

.~.

,a

+

ENCLOSURE 1 Description of the Verification Procedure Used by EDS Nuclear, Inc.,

I for the Computer Programs Used for the Seismic Analysis of General Electric Company Supplied Piping s

a 1258 210

s ef 4

SUMMARY

OF PIPING BENCHMARK PROBLEMS EDR EDS SEISMIC HPING PROGRAMS e

e 1253 2\\\\

INTRODUCTION EDS has utilized the EDS proprietary programs PISOL and SUPERPIPE for the seismic analysis of safety related piping systems. The PISOL and SUPERPIPE programs analyze arbitrary, three-dimensional piping systems for seismic ex-citation using the dynamic analysis technique known as the response spectmm mode superposition method. In this technique, the 2-D or 3-D earthquake exci-tation is characterized by acceleration response spectra, and the total response of the system is evaluated as a square root sum of the squares and/or absolute summation combination of the response of the significant natural modes of vibra-These procedures and therefore the seismic analyses per-tion of the system.

formed by EDS are in compliance with NRC requirements for these analyses.

In addition, SUPERPIPE has time history analysis capability. To date. this option has not been used for the seismic piping analysis of any safety related piping systems on operating plants or plants under constmetion.

PROGRAM VERIFICATION METHODS EDS has performed extensive program verification for both piping programs.

This verification is a combination of any or all of the following methods:

1.

Comparison to ASME Benchmark Problems Benchmark Problems Utilizing EDS Programs and 2.

Other Industry Programs 3,

Comparison to Hand Calculations 4.

Comparison Between EDS Programs and Versions A partial summary of work performed in each of these four methods is provided below:

1.

Comparison to ASME Benchmark Problems EDS has benchmarked both PISOL and SUPERPIPE against the ASME Benchmark Problem 1. Tnis problem is described in the ASME public-ation, " Pressure Vessel and Piping 1372. Computer Programs Verifica-tion." This publication utilized the ANSYS and WESTDYN programs. The PISOL comparison as submitted for the ASME Committee on Computer Technology is enclosed in the attachment titled, "ASME BENCHMARK PROBLEM NO.1 - PISOL VERIFICATION."

e 1258 212

Benchmark Problems Utilizing EDS Programs and 2.

Other Industry Programs EDS has benchmarked both PISOL and SUPERPIPE against other programs In available to the industry. Several such studies have been performed.

our most recent effort, a series of benchmark tests were conducted to com-

PISOL, pare SUPERPIPE against the following piping analysis programs: Prior to NUPIPE, PIPESD, and ADLPIPE.

marks against John Blume's PIPESD and the Bechtel Power C'moration's ME-101 program. In addition PISOL has been verified by independent analysis by the Bechtel Power Corporation of San Francisco utilizing meir proprietary program.

Examples of such benchmarks are show in the attachments, "PISOL/PIP COMPARISON," "PISOL/ME-101 COMPARISON," and "SUPERPIPE/ME-COMPARISON."

3.

Comparison to Hand Calculations For certain seismic options, hand calculations have been performed and compared to computer results. In the seismic area, the simpliDed models are typically cantilever and single span configurations.

Comparison Between EDS Programs and Versions 4.

The most common benchmark method utilized by EDS is to compare results from one version to another. Such comparisons are used to show program modifications are properly performing while not impacting other options within the program. These comparisons are described and maintained with-in the quality assurance files of the program.

Benchmarks are also made between the PISOL and STJPERPIPE programs.

An example of this is shown in the attachment, "SUPERPIPE VERIFICATI AND COMPARISON

SUMMARY

G 9

=

' 7 *-

4 e

8 PISOL/PIPESD COMPARISON e

S e

1258 214

o,-

,4 Kh h I

l i

2=

i 23(-

y

.i a

H!

i@f(

lh

>l 10' i

I

!.,1 l

\\.

i i~.,. N a r...

s

,m w O :.

s 7 j

)l fj N

4

.i M I I l Law e.

.,. s.,,.

. ~ '.

r.. v i.? 4 ;..', y L:

3 I i

=e j j I !

m6 g.e

. rE dM r

4

,dj 3~

v'O 3

i. k;,

e

,e

~

3 9 5 11

~

~

i

.. =

g' a li s

,2 l.1 e<

l y

er I:

8:

.eA,,e.

  • @E 3 & s.

e, I

3. a a a t e.*

11

=

g e e.,.

z p

e s

a a5 5, $ a e n s =

e e-e52w.*

s s

1

,4-

, g g.

12 58 21. 5,,:.!.,i !'

.,..e.

4...

.s

..* g...

,I t.

a

....,g I

..lt, d if :

a a*

.A

... s.I

~.

,I p

., :=Mt $$

5 l '4

  • 3 e'@ e w W@

@kg i, ;

f g G0 W l

=

N O

E

.e

  • s i'

PISOL/ PIPE SD COMPARISON MODEL 1 Number of Degrees of Freedom = 167 FREQUENCIFS Mode PISOL PIPE SD (1/SC)

(1/SC) 1.

4.806 4.807 2.

9.415 9.416 3.

10.033 10.083 4.

11.361 11.361 5.

12.950 12.950 6.

14.356 14.356 7.

15.397 15.39S 8.

15.478 15.480 9.

16.488 16.488 10.

16.871 16.872 11.

17.497 17.505 12.

18.593 18.594 13.

19.058 19.OSS 14.

19.971 19.971 15.

23.859 23.878 16.

28.802 28.803 17.

31.280 31.280 1258 216

4 DISPLACEMENTS (x + y Eq. )

PIPESD (in)

PISOL (in)

(PISOL/PIPESD)

X Y

Z X

Y Z

Joint 1B/3 0007

.0169

.0014

.0007

.0169

.0014 7B/10

.0257

.0230

.0003

.0257

.0030

.0003 11/14

.0095

.0081

.0013

.0095

.0081

.0013 20B/49

.1016

.0225

.0767

.1016

.0225

.0767 38B/61

.3063

. 00N

.1730

.3062

. 00N

.1729

R4/37

.I896

.0173

.2112

.3894

.0173

.2111 MOMEhTS (x + y Eq. )

PIPESD (ft-lb)

PISOL (ft-lb)

(PISOL/PIPESD)

X Y

Z X

Y Z

Member IB/25 98.8 26.7 84.8 98.8 26.7

84. 8 3C/7S 82.3 472.1 3 60. 2 82.3 472.1 360.2 CO3/3C 229.7 156.8 412.9 229.6 156.8 412.7 9B/295 13.5 94.4 142.0 13.5 94.4 141.9 19B/495 32.9 87.7 124.4 32.9 87.7 124.4

/

1258 217 o

STRESSEL (X+Y Eq)

Member PISOL PIPE SD (PISOL/PIPESD)

(psi)

(psi)

IB/2S 187.7 187.7 3C/7S 846.8 846.8 C03/3C 1450,7 1449.7 9B/29S 1190.7 1190.1 19B/495 1756.5 1756.1 REACBONS (X+Y Eq)

Joint PISOL (lb)

PIPE SD (1b)

(PISOL/PIPESD) X Y

Z X

Y Z

1/1 71.9 85.9 43.9 72.

86.

44.

7/8 182.4 97.7 471.0 182.

98.

471.

12/18

0. 0 1403.2
0. 0 0.

1403.

o.

33/68 96.6 599.8 62.4 97.

600.

62.

41/70 59.6 14.9 39.2 60.

15.

39.

)}$0

\\-

4

, s DISPLACEMENTS PIPESD_ (in)

PISOL (in)

(PISOL/PIPESD)

X

...Y

..-... Z

--. X _

Y Z

Joint IB/3

.0017

.0310

.0033

.0016

.0298

.0031 7B/10

.0023

.0155

.0000

.0022

.0173

.0000 11/14

.0006

.0007 0001

.0006

.0012

.0001 20B/49

.0018

.0054

.0006

.0014

.0052

.0011 38B/61

.0201

.0006

.0107

.0203

.0006

.0103 R4/37

.0184

.0048

.0099

.0186

. ON 6

.0096 MOMENTS PIPESD (ft-lb)

PISOL (ft-lb)

(PISOL/PIPESD)

X Y

Z X

~

Y Z

Member

-208.6

-55.0

-28.4 199.5 53.2 19.9

- 1.1

-29.3 447.5 10.3

-27.9' 417.8 IB/2S

-68.1

4. 0
8. 3

-76.4 28.2

6. 9.

3C/7S 0.3

-6.1 17.0

0. 6

-5. 0 15.8 CO,3/3C

2. 0 3.4

- 7. 3 2.1

2. 8

-7.6 9B/29S 19B/495 1258 219~

.a svarSsss FIFE sD FISOL _

_(psi)

Member 1951)

(PISOL/PIPESD) 293.0 307.3 591.7 1B/25 633.4

'3C/7S 142.4 100.5 115.5 C03/'3C 125.7 94.5 9B/295 93.8 19B/495 REACTIONS FIFE SD _ (1b)

FISOL (Ib)

Joint _

T(PISOL/PIPESD) y y

g y

y z

1/1

-10.9 307.8

-2.9

-10.5 305.3

-2.6 7/8 13.8 663.3

-6.8 13.2 666.6

-6.3 12/18

0. 0 1007.5
0. 0
0. 0

'1010.0

0. 0 33/6S

-6.3 94.0

2. 7

-6.1 92.5 2.7 41/70

-2.8 22.8

1. 5

-2.7 26.7

1. 8 1258 220

K [5g" pl7 Io b

LEGEMD 15js o 4 1 - NODE NALiE

@ = MEL1BER NA STRA!GHT EYgg FIGURE 1 PICTORIAL REPRESENTATION OF MATHEMATICAL MODEL Seiwbon No.

Page.

  • 4 fh M.:

pnggggu go, A,

3 C

D E

F G

H I

J K

L M

N

[

1258 221

ASME PRESSUV VESSEL AND PlPING DIVISION O COM"ITTEE ON PROGRAM VERIFICATION AND OUALIFICAs~lON PROBLEM L 4

R ESULTS_

The Jesults of the frequency analysis using PISOLIA tre excerpted from the outpu: and are tabulated in TABLE 1.

TABLE 1 CALCULATED AND MEASURED FREQUENCIES AND DIRECTIONS OF PRINCIPLE EXCITATION MEASURED (I)

ANSYS RESULTS PISOLI A RESULTS Resonant Excitation Resonant Excitation Resonant Excitation (2)

Frequency D!rection Frequency Direction Frequency Direction eps eps cps 110 X

112 X

111 X

117 2

116 2

116 2

-f g

134 X,Z 138 X,Z 137 None l

214 Y,Z 218 Y, Z 216 None f "1 l

359 X

382 Y

404 Y

405 Y

416 Y

423 Y

422 Y

452 Z

453 2

553 2

554 Z

550 2

697 Y

736 Y

735 Y

navision No.

821 X,Y 762 X

758 X

853 Y

853 X

  • 855 X

894 X,Y 893 Y

893 X

865 X

898 X,Y 910 X,Y 909 None Crede C. E., " Shock and Vibration Concepts in Engineering (1)

Design," Prentice listi, Inc., Englewood Cliffs, N.J.

No significant participation factor means the maximum directional (2) participstion factor for a given frequency is less than 0.0255E of the maximum directional participation factor for any frequency.

Solutoa h.' F898-p PMoSLEM NO.

sr4 Fsas net,:

a a

l C l D E

F G

H 8

J K

M N

i 1258 222

E YERITICATION AND COMPARISON suggggy 22b 1258

SUPERPIPE VERIFICATION AND COMPARISON

SUMMARY

SUPERPIPE contains capabilities that many other piping programs do not have.

Therefore, the comparison of SUPERPIPE with other piping programs is limited to an evaluation of forces, moments and displacements. Two piping problems were selected for a comparison between SUPERPIPE PISOL and PIPESD. The first problem used for comparison is the ASME Benchmark Problem No. 6.

This piping model is used for an evaluation of static analyses results only. A relative comparison of the significant portions of the results is contained intables 1 and 2.

Figure 1 is a pictorial rgresentation of the mathematical model usedin making the analyses.

The second piping problem selected for comparison is the same problem that appears in the SUPERPIPE mini-manual. This piping system is used because it is realistic and will exercise most of the standard features in any piping pro-The relative comparison of results from the SUPERPIPE mini-manual gram.

problem includes both static and dynamic (response spectrum) analyses results.

The relative comparisons of the SUPERPIPE mini-manual results are contained in tables 3 through 9.

Figure 2 contains a pictorial representation of the mathe-inatical model for problem number 2.

The piping problems used in evaluating SUPERPIPE were selected on the basis of credibility within the piping industry and overall capability. The slight vari-ance of values contained in the summaries is attributable to the different method of solution that each program uses and does not represent errors in analyses.

e 1258 224

  • t.

_ COMPUTER RUNS D

SUPERPIPE MINI-MANUAL SAMPLE PROBLEM PISOL3A ASME BENCHMARK PROBLEM N0. 6 SUPERPIPE ASME BENCHMARK PROBLEM NO. 6

$UPERPIPE CLASS I SAMPLE PROBLEM (LOAD CAS SUPERPIPE CLASS 1 SAMPLE PROBLEM (STRESS FIPESD MINI-MANUAL SAMPLE PROBLEM (LOAD C

)

PISOL3A(STATIC)

THESE RUNS CONSTITUTE PISOLIA(DYITAMIC)

A COMETE CMSS NO ANALYSIS ON THE PISOL PISOL7B(STRESS)

SERIES OF PROGRAMS SUPSUM PLOT TINIT

)

PAX 2A F

1258 225

jY

  • 2 4

s %$

/\\

x Q3, qg z

C2l g

o u WrEUD c4 1 = NODE NAME b

6

@ = STRAIGHT MEMBER MAME fE5l-CURVED MEMBER MAME 22 0 IO C

8 25 FIGURE 1 PICTORIAL REPRESENTATION OT MATHEMATICAL MO TABLE 1 ANCHOR REACTIONS (ib., in. - Ib. )

Reaction Component F

F N Fz x

y z

Node Solution by x

y ANSYS

-49 3

144 10

-33

-20 WESTDYN

-49 4

144 10

-34

-20 PISOL3A

-49 3

144 10

-33

-20 SUPERPIPE

-49 4

148 12

-35

-19 ANSYS 286 713 1985 66572 1442

-16591 WESEYN 287 837 1981 66516 1407

-16599 PISOL3A 286 731 1983 66545 1439

-16591 20 SUPERPIPE 288 762 2044 67527 1432

-16693 ANSYS

-238

-513

-2129

-13678 11357

-221 ESEM

~238

-469

-2126

-13173 11382

-210 FISOL3A

-237

-496

-2127

-13729 11358

-221 23 SUPERPIPE

-240

-S28

-2192

-14339 11388

-199 Variation in F due to differences in weight distribution algorithm in (1) y ANSYS, WESTDYN, and FISOL3A.

1258 226

TABLE 2 NODE POINT DISPLACEMENTS (in.. rad. )

Displacement Component U

U U

O O

O Node Solution by x

y x

x y

z ANSYS

.049

.002

.144

.0010

.0033

.0020 WESTDYN

.050

.004

.145

.0010

.0034

.0020 PISOL3A

.049

.003

.144

.0010

.0033

.0020 4

SUPERPIPE

.049

.004

.148

.0012

.0035

.0019 ANSYS

.147

.063

.256

.0015

.0013

.0017 WESTDYN

.147

.063

.25S

.0016

.0013

.0017 PISOL3A 147

.063

.256

.0015

.0013

.0017 9

SUPERPIPE

.146

.060

.256

.0018

.0014

.0016 ANSYS

.201

.037

.231

.0019

.0007

.0017 WESTDYN

. 201

.037

.232

.0020

.0007

.0016 PISOL3A

.201

.027

.232

.0020

.0007

.0017 3 ^,

SUPERPIPE

.200

.034

.236 e.0022

.0007

.0016 ANSYS

.186

.011

.218

.0019

.0003

.0016 WESTDYN

.387

.011

.216

.0020

.0004

.0016 PISOL3A 187

.011

.218

.0019

.0003

.0016 16 SUPERPIPE

.185

.008

.221

.0022

.0004

.0016 ANSYS

.185

.028

.172

.0044

.0020

.0002 WESTDYN

.285

.028

.172

.0044

.0020

.0002 FISOL3A

.185

.028

.172

.0044

.0020

.0002 39 SUPERPIPE

.184

.028

.172

.0047

.0020

.0002 1258 227

\\&

f.a%" -

~ /",

e turi 2:0

.;'</

g

/

t g

.g 3,.y.,

g -, )g g

e rg~

'/

  • tr

@'7

-% s p. A* E +,,

/

4 e

  • g ww

'dE

@ 'Es A,$$C*.C' St{ A' 4 '

/

$ 5

.o.

_m

'~I

  • " $^ *6 m.,ct. w.

a.

m n e L.n.

g Wr. ora.

wu l@

6 9

W E"#

mf{, k M8%'t* Mr

+3 ANCHOR

/

l d

@ staaet wwer 4

(tPF)

@ Cutvto McWER f,JA SUPERPIPE MATH MJOEL

+

wuoe i

P00R ORBlNAL 1258 228

4 0

9 8m

-:.n, w.w.

a

=

, f.

er W..

=-

y

f.,y y-

. /.

f

.,\\

o,,,,-c: **

e s

Q 0 e

e A -;

p.,

t,o, g

/ r

{a=<

u g

_,,,/,v#,.,<n, j,,,, ', ge w,.

4 r

m.

a@

O,,

s:a,s hs ',,,,', I w.. I ~2 \\

1*

y

(

k.

~

, ;;- fseco* M' m o

-g-'"'&,,.,%...,,

h A'

.m..._

@ ', " ',,, 7 h-,g E

(

a, c,

1*

950 A

kh

'+.

g

\\

~

p W* gat 5

J5 s ?,'m

~

er w 1,g@

I aug C,,,,..

14 7'

k i

~NI e

ag -, - 1, mg. 2s pisc. n,,u ~=0it TEiE,l, j

=_

-==

0"

}

P00RORBlE

~

1258 229

ever s

@/s e

e

.,.

ecoe.e sav. cr.o 3

f W

ep*

o

~

l

@{

^ ~yy.ow **

l y

~[ :

w

~

s * " v g. /.,, g, e-m,4g y

e s

e.. / -

, p, n..,

s

.. r /

e%gr, e

e s..

,x 75 -

    • S A (pr)

DE" ALL 4' k!TT-wt@ tug gg D N ARC L.R.

g We==m.

R4,.

j oO t, es \\g

'c.

7 LEGEMD I9ok W

n

= = =,

+n k

j d

ANcen j

e N!x (tpe) xx CutWP poteca 69 tc

._ou PIMso nark Mooct I

P00R OR1R 1258 230

... - ~...... ~

s....

..u.

.A.,...

E E

E5 [d D

E E

rW r

j X

za

,, =

IhlE5 Z

i

  • 1 g

I a

'N

! w!!!!!, li

.i v) l N

c 2

V) i I

i z

I E

I f

ich e

i j

e E

i.!

e 1

I it l

g 8

1, g

I i

I i-e P00R ORIGINAL l

~

~

) !

J 1258 231

g a

-e

=

  • 4-i.I 5

l T

JI i

t((,{g[

I e....

v.

=

vi 5

$i er 1

1 g-t i

/

di t

i E:

E x

a, e.

a

I, I

i i

I I

l,'

1 I !!!

i-i' ii l

l I

,c e e r I t e

a 19 I"

v =

I j

o e a a

,i;

/

(\\

I

~

P00R BRE M A!li.

W e

I 1258 232

?.

TABLE 3 MINT-MANUAL SAMPLE PROBLEM _

MEMBER END FORCES AND MOMENTS THERMAL EXPANSION ANALYSIS _

(Ib., In - Ib)

F F

F M

M M

z _

g 3

2 Np Solution by g

g 2051 385 257

-232

-6527 12324 SUPERPIPE 258

-233

-6532 22356 2064 1

FISOL 259

-233

-6518 12388 2085

  • B6 388 PIPSD SUPERPIPE 402 257

-201 5041 1369 10947 403 258

-202 505S 1380 1096S CO2B PISOL 259

-202 5077 1405 11016 405 PIPESD 49 175 2923

-4669 1961 SUPERPIPE 49 172 2911

-4669 1965 201 6

PISOL 50 183 2994

-4619 1966 202 202 PIPESD 613

-133 17 1884 1919 4806 SUPERPIPE

-133 17 1891 1921 4801 C04A PISOL

.-141 1-1885 1921 4991 607 638 FIPESD 1147

-1490 45

-21

-16 263 SUPERPIPE

-20

-16 266 1136

-1476 9

RSOL

-23

-18 276 1272

-162S 46 46 FIPESD 32

-412 169 10749 887 SUPERPIPE 32

-405 161 10657 896

-42 12 PISOL 33

-436 159 11752 949

-40

-42 PIPESD

-4777

-310

-26 100 169 SUPERPIPE

-25 97 161

-4601

-293

-42

-40 95 169

-4701

-312 14 FISOL

-25

-42 PIPESD 42 2690

-2668

-325 SUPERPIPE 50 40 2593

-2566

-312 52 89 86 42 2661

-2656

-316 C06B PISOL 49 85 PIPESD 6

-10 106 434 1672 SUPERPIPE 5

-10 109 377 1609 95 90

-10 109 420 1599 CTC PISOL

-5 90 PIPESD 380

-2928 6

-8 313 SUPERPIPE b

-8

-295 325

-2736 95 C10B PISOL 5

-8

-301 3 67

-2745 90 90 FIPESD 1258 233

TABLE 4 MINI-MANUAL SAMPLE PROBLEM MEMBER END FORCES AND MOMENTS DEAD WEIGHT ANALYSIS (Ib., in - lb)

Nede Solution by x

y z

x y

z SUPERPIPE 23 181

-3

-87 196 4948 1

FISOL 29 192

-4

-145 138 6043 PIPESD 23 182

-5

-88 200 498S SUPERPIPE 23 43

-3 184

-24

-423 CO2B PISOL 29 16

-2 107

-58

-552 PIPESD 23 44

-3 186

-24

-428 SUPERPIPE 3

108 1

-1037 91 2295 6

PISOL 2

79 0

-1054 175 2306 FIPESD 3

114 1

1091 92 2414 SUPERPIPE 7

-1

-96

-672

-1132 56 C04A PISOL 6

0

-97

-610

-990 35 FIPESD 7

-1

-99

-688

-li 71 66 SUPERPIPE 117 18 9

34

-621 1321 9

PISOL 1 34 16 8

29

-570 1187 PIPESD 119 19 9

26

-628 1258 SUPERPIPE

-1

-7

-4

-52 110

-337 12 FISOL

-1

-17

-4

-44 103

-403 FIPESD 0

-8

-4

-51 122

-387 SUPERPIPE

-1 24 3

-52

-40 238

~

14 PISOL

-1 23 2

-44

-32 234 PIPESD 0

24 3

-51

-41 210 SUPERPIPE

-10 14 1

43 20 6

C06B PISOL

-10 13 1

38 17

-1 PIPESD

-10 14 0

24 4

4 SUPERPIPE 3

28

-1 30 6

174 C'IC PISOL 2

26

-1 25 4

146 FIPESD 3

27

-1 27 5

174 SUPERPIPE 3

2

-1 3

3

-37 C10B MSOL 2

-1

-1 4

1

-32 PIPESD 3

1 0

4 2

-53 1258 234

TABLE 5 MEMBER END FORCES AND MO NTS SEISMIC ANALYSIS (Ib., - in - Ib) h1 Af z

h1 v

F x

F 2

730 F

1 353 x

555 912 Solution bv 15 409 Node 22 726 7

19 SUPERPIPE 28 133 7

366 294 632 PISOL 9

246 5

45S 5

6 SUPERPIPE 17 410 453 16 200 4 61 CO2B PISOL 24 478 30 220 26 24 SUPERPIPE 32 366 29 231 149 391 6

MSOL 18 233 19 ISS 29 20 SUPERPIPE 21 357 28 264 d2 373 CNA PISOL 3

311 4

149 13 4

SUPERPIPE 5

165 10 13 30 191 9

PISOL 6

l'76 35 32 9

6 SUPERPIPE 38 1217 8

97 30 1325 12 FISOL 7

106 5

32 7

9 6

22 SUPERPIPE 7

7 64 9 14 20 14 FISOL 6

823 4

992 7

6 6

193 SUPERPIPE 10 56 1211 252 C06B PISOL 31 52 3

1219 6

24 SUPERPIPE 4

76 8

97 56 IOS CE PISOL 2

100 3

60 6

2 SUPERPIPE 4

7 g,,

MSOL 1258 235

a TABLE 6 MINI-MANUAL SAMPLE PROBLEM

_ NODE POINT DISPLACEMENTS THERMAL EXPANSION ANALYSIS (In., rad. )

Node Solution By x

y 2

x y

z SUPERPIPE

.169

.068

.074

.00224

.00302

.00252 CO2A PISOL

.1687

.0675

.0742

.002140

.003041

.002504 PIPESD

.169

. 068

.075

.00215

.00305

.00250 SUPERPIPE

.201

.077

.074

.00060

.00306

.00195

,7004

.0772

.0741

.000606.003072.001944 CO2B PISOL FIPESD

.30S

.030

.075

.00061

.00309

.00193 SUPERPIPE

.30S

.030

.031

.00174

.00266

. 00077 2

PISOL

.3051

.0294

.0307

.001744.00266S

.00762 PIPESD

.309

.030

.031

.00174

.00261

.00066 SUPERPIPE

.324

.019

.023

.00175

.00257

.00069 3

PISOL

.3239

.0188

.0235

.001755.002586.000679 PIPESD

.324

. 019

.024

.00178

.00261

.00066 SUPERPIPE

.339

.009

.016

.00174

.00248

.00060 C03A PISOL

.3391

.00S3

.0162

.001747

.0024S9.000596 PIPESD

.340

.00S

.017

.00175

.00251

.0005S SUPERPIPE

.342

.000

.002

.00166

.00045

.00007 C03B PISOL

.3423

.0001

.0020.001681

.000459

.000076 PIPESD

.343

.000

.002

.00168

.00049

.00006

~

SUPERPIPE

.282

.006

.001

.00072

.00009

.00020 7

PISOL

.2821

.0064

.0017

.000729

.000088

.000202 PIPESD

.282

.007

.004

.00071

.00018

.00021 SUPERPIPE

.279

.002

.005

.00059

.00165

.00017 12 PISOL

.2794

' 0031

.0015.000598

.001652

.000173 FIPESD

.280

.004

.000

.000M

.00094

.00020 SUPERPIPE

.137

.014

.027 00159

.00215

.00262 CTC PISOL

.1435

.0137

.0272

.001506 002024

.002515 PIPESD

.140

.014'

.028

.00129

.00218

.00252 SUPERPIPE 131

.025

.029

,00159

.00215

.00263 C09D PISOL 1374

.0244

.0288.003538

.001989.002682 PIPESD

.134

.025

.031

.00132

.00214

.00268 1258 236

TABLE 7 MINI-MANUAL SAMPLE PROBLEM NODE POINT DISPLACEMENTS DEAD WEIGHT ANALYSIS (in., rad. )

O x

y z

x y

z Node Solution by SUPERPIPE

.002

.012

.001

.00007

.00002

.00002' CO2A PISOL

.0032

.0148

.0014

.000084

.000002.000052 P!PESD

.002

.012

.001

.0009 00002

.00004 SUPERFIPE

.002

.011

.000

.00014

.00001

.00001 CO2B PISOL

.0034

.G139 0007

.000182

.000012.000033 FIPESD

.002

.011 000

.00013

.00001

.00001 SUPERMPE

.003

.002

.000

.00030

.00000

.00005 2

FISOL

.0027

.0050

.0007

.000334

.000030.000009 FIPESD

.003

.003

.000

..'0003

.00000

.00005 SUPERPIPE

.002

.002

.000

.00031

.00000

.00006 3

FISOL

.0025

.0030

.0007

.000347

.000031

.000007 PIPESD

.002

.002

.000

.00031

.00000

.00006 SUPERPIPE

.002

.000

.000

.00031

.00001 00006 C03A PISOL

.0023

.000s

.0007

.000353

.000033 000005 FIPESD

.002

.000

.000

.00331

.00001

.00005 SUPERPIPE

.002

.001

.000

. C0019

.00004

.00020 CO3B PISOL

.0021 0009

.0004

.000243

.000059.000134 PIPESD

.002

.001

.000

. 0002

.00004

.00021 SUPERPIPE

.002

.016

.001

.00014

.00001

.00033 7

FISOL

.0021

.0139

.0016

.000098

.000018

.000311 PIPESD 002

.027

.001 00015

,1)0001

.00035 SUPERPIPE

.002

.015

.001

.00019 00000

.00034 12 PISOL 0021

.0133

.0016

.000156

.000003

.000319 PIPl.'SD

.002

.015

.001

.00018

.00000

.00035 SUPERPIPE

.002

.001

.000

.00004

.00004 00008 CTC PISOL

.0020

.0005

.0004

.000005

.000036 000071 FIPESL

.002

. 001 000

.00004

.00004 00005 SUPERPIPE

.002 001 000

.00004

.00004

.00003 C09B PISOL

.0018

.0007 00M

.000002

.000036

.000061 FIPESD

.002

.000 06 *

.00023

.00004

.00004-

~

1258 237

A TABLE 8 MINI-MANUAL SAMPLE PROBLEM NODE POINT DISPLACEMENTS SEISMIC ANALYSIS (in., rad. )

U U

O O

Q Node Solution by U,

SUPERPIPE

. 011

.002

.002

.00005

.00012

.00025 PISOL

.0139

.0024

.0029

.000060

.000156.000318 CO2A SUPERPIPE

.011

.002

.003

.00005

.00018

.00023 PISOL

.0146

.0025

.0021

.000053

.000229

.000294 CO2B SUPERPIPE

.0004

.0003 0002 00006

.00022

.00026 PISOL

.0051

.003's 0032

.00006/,

.000267.000309 2

ERRE

.@3

.003

.002

. W,06

.00022

.00026 3

.0034.

.0032

.0032

.00'J067

.000289.000311 PISOL PISOL

.0017

.0034

.0032

.000068

.000289

.000309 C03A PISOL

.0005

.0018

.0016

.000075.000261

.000302 C03B SUPERPIPE

.001

.010

.003

.00012

.00012

.00015 7

.0005

.0112

.0091

.000128

.000126.000164 PISOL SUPERMPE

.001

.U10

.008

.00014

.00010

.00015 FISOL

.0006

.0115

.0091

.000153

.000102

.000162 12 SUPERMPE

.001 000 001

.00950

.00026

.00115 FISOL

.0015

.0004

.0015

.010426.000275

.001240 CTC PERME

.W

.001

.030

.00951

.00026

.00115 C09B

.0041

.0006

.0334

.010543

.000285

.001280 PISOL a

e 1258 238

E TABLE 9 MINI-MANUAL SAMPLE PROBLEM CALCULATED FREQUENCIES DYNAMIC ANALYSIS Frequency (CPS)

Mode SUPERPIPE PISOL PIPESD 1

5.950 5.939 5.48 2

12.897 13.466 13.65 3

15.360 15.351 15.0S 4

18.250 17.757 18.02 5

19.449 19.376 19.07 6

22.350 22.04S 19.47 7

22.638 22.56S 21.71 8

25.629 25.335 22.28 9

28.781 26.927 28.20 10 29.616

'A.174 29.38 11 30.561 30.015 30.09 1258 239

e=.....,,,.,

4" e

PISOL/ME-101 COMPARISON I

e G

1258 240~

C.

(.

Main Steam Inside Containmed T

a Y

s6 2

ISh N

~

}

j$ / f. '~' E A 3@@ 54 4 5b I sysAm @r@@@ 6 5 10 o s e"- ~ tm', y [ e ,e j.'. g \\ de e \\ 5 '.' g4 tB i S'-O" Ii i , o y-e 2 2.1 y.srof % (RICs/D) 15

  • h

'/ D 24 I9 s U i g #o * ',f cmT. pen. mcHoR y a ? . g$ I W e g_ g

d t PISOL/ME-101 COMPARISON MODEL: Main Steam Inside Containment Number of Degrees of Freedom = 65 (Excluding Restraints) FREQUENCIES _(Cycles /Sec) ME-101 MODE NO. PSOL 1.680 1.680 1 2 2.842 2.843 3.394 3.?95 3 9.588 9.586 4 10.895 10.898 5 19.382 19.377 6 / t i N*J.N 2 ' ~..., / j., h. N, 1258 242

X + Y EARTHQUAKE DISPLACEMENTS (INCHES) M E-101 PEOL P50L/ME-101 X Y Z X Y Z JOINT ID 5/5 0.459 0.328 0.105 0.447 0.324 0.103 10/10 0.972 0.359 0.292 0.941 0.353 0.294 20/20 0.242 0.000 0.191 0.235 0.000 0.191 22/23B 0.036 0.000 0.024 0.035 0.000 0.024 MOMENTS (IT.-LB.) ME-101 ~)EOL PEOL/h E-101 X Y Z X Y Z MEMBER ID C1/1 228750 48174 109948 223715 475S1 10S255 4/5 38137 86278 27884 38715 84712 27167 8/11 34448 5 94 " 20186 35225 57733 19725 19/24 152854 57642 136 31 147964 58749 137018 STRESSES _ (PSI) MEMBER ID M E-101 PISOL PISOL/ME-101 4693 4794 C1/1 982 996 4/5 713 725 8/11 212G 2155 19/24 REACTIONS (LBS) ME-101 PISOL PISOL/ME-101 X Y Z X Y Z JOINT ID 1/1 8245 4580 6250 SISS 4590 6527 22/23B 0 15364 0 0 25438 0 24/24 5377 25422 4401 5349 25521 4510 e e ' M t.a. te e.., ;,,,

.~. ,a Z + Y EARTHQUAKE DISPLACEMENTS (INCHES) ME-101 PEOL JOINT ID PEOL/ME-101 X Y Z X Y Z 5/5 0.302 0.209 0.081 0.310 0.207 0.053 10/10 0.448 0.219 0.402 0,450 0.216 0.420 20/20 0.118 0.000 0.242 0.119 0.000 0.253 22/23B 0.036 0.000 0.031 0.037 0.000 0.032 MOMENTS (PT.-LB. ) ME-101 PISOL MEMBER ID PISOL/ME-101 X Y Z X Y Z C1/1 179312 35538 70249 185383 35781 69614 4/5 42508 76055 16949 43422 78892 17252 8/11 45593 34744 6913 47085 35470 6747 19/24 57614 73852 178250 56066 77032 186197 STRESSES (PSI) MEMBER ID ME-101 PISOL PISOL/ME-101 3732 3634 C1/1 928 899 4/5 601 584 8/11 2117 203S 19/24 REACTIONS (LBS) M E-101 PISOL PISOL/ME-101 X Y Z X Y Z 1/1 8782 3959 11645 9147 3976 12197 22/23B 0 32317 0 0 33720 0 34/24 2819 33280 7107 2818 347G3 743G 1258 2AA Ji.w. -

ENCLOSURE 2 Description of Computer Program and the Verification Procedure Used by Teledyne Engineering Services for the Seismic Analysis of General Electric Company Supplied Main Steamline Piping for the Browns Ferry 1, 2 and 3 Nuclear Plants LMZ:at/104N c.u.. u r.a s 1258 245

Y M ATTACHMENT 1.0 TES SEISMIC ANALYSIS METHOD Piping systems were analyzed for each of three orthogonal component response spectra (two horizontal and one vertical) separately. The representative maximum value of the three moments M, M, and M x y z any point in the piping system subjected to each of the three independent spatial component response spectra was obtained by taking an SRSS summation of the modal responses for all significant modes of the systen. Mathematically, this is expres!ad as follows: 2 )1/2 N ()) M =[I M 3 k=1 jk where M) is the representative maximum value of moment, j is the moment component direction x, y, or z. M is the peak value of moment component d k th due to the k mode, and N is the number of significant modes. The combined effect of the three spatial compenents of earthquake was determined subsequently by tho following procedure. The representative maximum values of the codirectional moments (either M, M, and M,) from x the two horizontal components of earthquake were combined by the SRSS method and this SRSS value then added absolutely to the representative ma(! mum value of the codirection moment for the vertical component of eatthquake. Mathematically, this is expressed as R = [(M )y + (M )2]l/2 + (M )y 2 (2) j j j z, (H )X,Y,Z where R is the total seismic moment component R, R or R j x y 3 are the representative maximum values of codirectional moments (SRSS values) for each of the X, Y, Z earthquake directions, respectively. Since all terms are SRSS values, they all possess a positive sign. This is basically the equation given in the met.1ods repcrts (Refereqces 1 and 2) for the plants in question. The only alternative to any of the steps described above that TES used in the piping seismic evaluation in some of the plants was a slightly conservative but more expedient method to evaluate stress in Class 2 and 3 piping systtms. This alternative consisted of taking the and M moments representative maximum values (SRSS of modes) of the M, M x y y and combining them by the SRSS method to determin; the ASME Code resultant moment M for each spatial component of earthquake. The total resultant 8 moment R was then determined by combining the individual resultant moments 8 1258 246

WTELENNE O@aNEERING SERVCES TES Seismic Analysis Method Page 2 for each spatial component of earthquake in a similar manner as described above in Equation 2. N " E("8 + (M ) + (M )Y (3) B 8 B Again, all tems on the right side are SRSS values and hence are positive. One can see from the above procedures that there are no algebraic sunrnations involved which could lead to unconservative results. 125!3 247

WTELENNE ENGINEERING SERVCES ATTACHMENT 2.0 COMPARISON ANALYSIS Comparison of ADLPIPE and TMRSAP Seismic Stresses for PIPDYN Manual example problem that is also used in SAP IV Manual. X - Direction Seismic Spectral Loadino, B31.1 Stress Summary Intensification ADLPIPE TMRSA; ~ Mode Number Component Factor Stress, psi Stress. rsi 3 Run 1.00 411 409 3 Elbow 2.80 1122 1146 4 F.lbow 2.80 1105 110E 4 Run 1.00 397 395 8 Branch 1.00 896 E9 9 Run 1.00 537 537 9 Elbow 2.71 1448 1452 1258 248

TN ENGNEERNG SERVICES ATTACHMENT 3.0 THRSAP DYNAMIC ANALYSIS - RESPONSE SPECTRUM The following steps defined below, outline the method employed in the THRSAP (SAPIV) computer program for performing a response spectrum (seismic) analysis. Listings of the SAP IV FORTRAN code for the response spectrum solution are attached and are easily related to the method outlines below. 1. SUBROUTINE SPECTR: 1.1 Form Modal Participation Factors; ARRAY PX(1,IDRN) I = mode number IDRN = 1, 2, 3 for X, v, Z direction eartn-quake 1.2 Compute Modal Amplitudes froni 3pectrum and Participation Factors, PX, for Displacement or Acceleration Spectrum; 3 W =[I lPX l x DIRN ]$ DIRN = X, Y, Z earthquake 3 3 direction factors j=1 i = mode 1 to NF (no. of modes) x (spectra value for frequercy of mode i) Hg=W9 1.3 The Modal Displacements, D, and the R.M.S. is Calculated g and Written to a Mass Storage File, Tape 2. s xW D9=F9 j NF D)l/2 2 RMS = [ t i=1 WRITE (2) D, RMS j 1258 249

yi.n o r'UT I wi: SPtC TR-- (F,PI, XP; w,e a SS, N! C58, NF, NBl til M e 3 T - ~ " - - ' s e t C W * - * '- Y- - SP[rTS 3 cow =9W /E xTua/ PrinF x,NT8 DI"FNSIOw PX(wr,5),F (NF on, AF ),yp(NE01),w(wr),P ASS (NEQR) SPECTR O nywfwSTON C T P P. ( 3 ) - - - - serCTR ~--S------ r.r F C T R 6 5 C C CO**UTFS PODat Awp P.M.S. DISPL RESPONSt TD FARTHOUAME CuFCTR 7 r t C T R - - - P --- ~ = __ _ _. C o o sptCTp TF (POBEv ro.1) r,q to 770 srFCTc to TPf=6.7814655 ~~ ~- -- -- "-- - - S P E C T R 11' . g g.. . 00 10 0 Inl e t.F 3PECT* !? SO 100 Jat,3 ?c?CT 33 100 Pt(T Jiri. ,nrTc- -- t o --- -- _. g _ _. C FDpr "0 Pal #ARTICIPATION FACTnPS px(I, tron) Sp5CTR is IS C T DrNu l,7,3.... F OR x,Y,7, DIRN E a R T HottaK E SPLCTR th SPF CTR I7 g s:'F C T R te eEw!*O 9 SPECT*

9 prytNO 3

,JFCTR TS-- ro ?nc Nut,NHLOCM SPTCtp ?! 70 PAC 43*tCF 7 SDF C tp p2 cEAR (7) F SPFCTR ?} m ACM SP ACF -T SPFCTR 20 pFa0 (3) PASS SPECTR 75 RFaD (0) xP SkFCTR 76 $PECTF 77 60 250 !st,NEGB 7.P t C 'P PP J=#AS$(I) SPECTR 29 - IF -(J.LE. 0 3-CD-T O-25 G SPECTR 30 00 200 Lal,NF SPECTR 31 30 240 px(L,J):Pw(L,J)+F(1,LierM(fi SPECT7 32 P %0 erw f 1 RUF --- SPF C T: 33 P00 CONT!*tUE SPFCTp 3c C -SrECTR 35-PE a0 F RE20ENCIES-*-DFF-T APE-1 SPFCTR 36 w 35 C SPECTR 37 BACMSPACE 7 SPECTR 3e - --- p F a n - ( 71 - SPFCTR 30 oEwlkD 2 sPF C T2 00 wRTTF (?) w - 0 0 - -- - C C Cr*PUTE =00AL AMPLITUDFS (tw wi FPGM SPECTRUM AND PX SPECTD g2 sPF CTR 43 270-#Ea3 (s,10003-DIPrs!ND-S P E C T R - -- a c SPFCTR c5 wplTF (6,2000) DIFN P.PECTR nA as watTE (6,2010) ]NO -IF ( *0DE y.F Q.1 ) wit te30(t) - .pF C T R- -q T 3rtCTR og IF (vDDEX.FQ.1) RETUo4 SpECTR c9 PN) vp!TF (6,7070) - - SPt C T R-50 m DD 2 90 ! s t, NF,-- SPECTR 51 C%) 50 280 *#1TE (6,2000) I,(PY(I,J), Jet,Ti srtcTD c2 00 300 InletF - 3:.F C 7 3- -

  • 3 -

_ wy,Tpyf,gg3 SPECTR 50 woto. t"F ( 7 4 L% (y, B0 790 W21,3

  • > CTu -

sa c & n S ( P Y ( 1, w i i e 014 N ( M i- -- -- ) SS- --- - --- 2 9 0 uDeba + ety(fc (7 hD=moa$h(wk) Sa5 CTG Cf TF ('ND.FO.tI WRtwP/(w(1)+w(11)

3'P,4NlTINF SPFCTo 7t/7o t'PT=1 FTN 6.1+366 07/28/75 ft.ct 02 PAGE 2 [__. UtrTu - .$g .... 3pn.ggg g p F.a C T R A0 C 60 C vp1W >00AL t!SPt.5 F A*.D N.".S. ON YAPE 2 % F f r. T id A1 g. SPECTR 62 - - - ' - - ~ ~ - SPt C TR 63 RLeI*D 7 SPICTR 68 nFAO (7) . 5' E t Y a - 65 - - --- - - - nn 550

  • 21 e halDCW SPECTR 66 6b REAC (7) F SPff1R 67 no 310 JuleNF

_ __..SPFCTR 68 - - - --- .,ppspgj3 SPECTR 64 no 310 !=lekECB SPFCTR 70 310 F(I.J):F(1,J)* AMP ~ ~ - - yg ._. g SPtCTR-71 - - - ---- SPICTR 72 nO 420 ! s t,6'E CR SPFCTR 73 6w=0 SPECT1 7e en 310 Jule$F SPECTR 75 3 30 we r'a *

  • F ( T.Ji a
  • 7 SPFCTR 76 75 320 YM(11sSCRT(ha)

SPECTR-7 7 --- -- - - - ---- - -- 35 0 t R I T E ( 2 ) F XM-SPECTR 78 C SPECTR 79 RETURN SPt C TR 8 0 --- -- - - --1600 F00M AT (3F10.0,15) - SPFCTR at 80 2000 FORMAT (20H OIRECTtow FACineS / / Ft0,0,0X 3HZ = F10,4 //) SPECTR e2 i 10X,3HX = FtC,4,qX,.4HY z -- - - -- --2 010 P C 2

  • a f (5eH0fkO!CATOR FDP n t SPL A CF *f.hf OR - ACCF L f P A T10N--SPEC TRtle-=--SPE C TH P I - - -----

SPECTR P3 1 !% // SPtCTR 85 2 POW FG,0 DISPLACE"FNT / R5 3 - --- PLH F 0.1 A C C E L E R A T 1GN - -- // / )-- SPFCTR e6 2020 FDDMAT (2BH MCPAL PARTICIPsTION FACTORS. // 5H MODFe3Xe SPFCTR 81 1 11HY*DIREC TION,3X,l t hYe01 RECT TON,5X, t t HZ-DIRFCT10N, / IX) SPECTR 68 SPECTR -69 2040- F0W A T -( t H,14,3F id.c / t X ) SPtCTR 40 CAG -'-~ ~ ~' ~' ~ - " * " N g CO .. N...... 1 LD j,k

FTh G.14366 07/24/T5 11.a1.04 PAGE FL'NCTION $D T6/76 OPT =1 ---SD -- Fuer flok SO(TT) - - - - - ~ SD 1 SD 4 C / MM,L,K.NTAG,HDYN,T(90),5(90i.HED(12),1,W,SS,SI,TI CnwenN / JUNK


SD

--- C O* aCN /FMTRA/ PODtX,Nf6 SD 6 5 TF (NTAG.ED.11 GO TO 500 SD 7, g. _--. . -- __. g n .g-eTACst 50 9 (. A X DISPL AS FUNrfinN OF PERIOD) M C PFan SPECTRLIM SD to C-SD 11 - - ~ - - - - -- -10 - pFs0 (5et000) HE0 SD 12 WRITE (6.7000) HFD SD 11 DEAD (%e1610) WPTS,$FTR --tF fABM(SFTR).LT.t.F-121-SFTR:1.----- SD-14 - SD 15 vp!TE (6.2010) hpTS,SFTR SD th 15 oEAD (5 1070) (T(11.S(!),IsteNPTS) SD ti ---ww f f t ( 6,20 2 0) - (1. T (!), S C I).-Ic t.hP T S) 30 18 TF (MOOLN.ED.1) RETURh SD 19 500 CONTINt'E SD 20 SD ?! 20 wsn SD 72 CO 6C0 T21,NPTS SD P3 SD 24 __ _,, g, 3.. IF (TT.LT.T(ti) GO TO T00 SD 25 600 rONTtNUE SD ph --25 7 0 0 - T K s T (d) =T (K-11 SD 2T SKsS(K)e%(k-1) SD PB SSsS(K-1) + SK8(TT-T(Kal))/TK SD 79 SDzSF TR* SS - - SD 3D C SD 31 1010 FORu A T - (1%,F 10.0 3-- SC -12 30 1000 FORMAT (12A6) SD 33 1070 FORM AT (2F10.01 SO 34 C 3D- -5 2000 -F0p= A T -( //17H SPF C TR"*- T A6LF -f.12 A6,1M). r-1 x) SD 36 35 2010 F009&T (5NetRHNU>9tR OF PDINTS s, 14/ SD 3T 1 %Xel8HSCALE FACTOR = Ele,5 / tr i SD t o -- -- 2020--F00M A T - (6H--INPUT,2 3 W,8HSPEC T RUM,- /- 6H-POINT,6x g 6HPE RIOD,9X, SD 39 1 SHVALUE, / (16,2E14.4) ) SD

t. 0 40 R E T UR R--

-30 at C SD c2 END - eumww --_am.m.se ._ _4.;2_ CO h & eha aum._. i ~

~ ~ = ~ t?3a5o7690lp3 a5n7n 12 8 5>7 901 73a367P0 aoanecnea5ac*s5gss t 31 1 t1tg1t 22 72?7 233333333S3 _1 a % 6 T e o o 12 3 o 5 o 7 8 e RPNRPcn# AuouruR cak o o R E R o *> 4 4E' aA= wC* PR pR o RORR94"C Rup sSc ss 5 S S S S S s S S s s S *. s 5 s '. r s ' ?- SS sSSs SSSS353SS5s 6 FtEt5 tEEt tt Et iE, s D D rcc E5 tfS l PE8 FEE'tF 5 t eerFt wct >a: ecS c*F R 4 u'Oo REcv7E 'Rp oo pP Roc: 4D oaac'T t t-S S S '.. - T T Tf ii1 Tt t t i t Ty ii .ss iEFCt tttfrE.ttE s SSSSSs$SSssssSSgc T1 TT TTTT TTTi f TIT fTf T, T T eSSsS3 Ss S *. S S SSSsSSSS3SS .t f t T iTTit t7 .SssSsSS.ss5 a t w tn S ) N, D N, o N, t 3 e J, w ) P S N N, i t i W t 1 t ~ P n ~ I ~~'), a 1 Y 3T p J, 1L N / ( F. I )( J ? S S, H ( lI ) F 4 ( ,D T F P 3 M1 N / N, Y ( RBA J ( $, a, O H, T g P c S )s, / ? ) 5 FaP C M, f D H N, 5 rg N P E_._ j T ea' I S P S, U' f / R t 0 l O_ N, F z C e, S 3 p O I, S 3 H, C._ T v) S E S (e)T N / N T ) S O I a 4 N, s 1 1 I N N 1 S T s F, ( J, E ( 1 M( K H R S_ U M M + S E M R O pC ) L. a O t R N ) F / F T P E L 1 T G = K M, ( 2T+ T WSPC I P F S Y L T t E 1F - 7 C W A R k- ) , N, A Y N N OJ M S /S2 M 2 20 r D I L M W 2 I

  • f 0

ER H U N, i N,1 R 1D// S _ ) L( t, A 1 h t ,) k, 4 2 N, 0 b ,D 1 PhF 0 P (NRA E 4) C A D - t) - S ) g 1 F aR D W O 1 E, I 0 E t N S s 1 t N, Ms W O O 9 e( e D S/PT E 1(BB 2, N3 t 1)( M 0. *. P_ E. N3 CQ R a _) W MLE ( M1eT M / // E N23 - 1)EFE 61hiA P N

)

E 1S1 D" F EE A F i G, ( lP F p1 M 2 1 T 0(I

  • 000 L-F 2

1 2rWU 0 0 - 203 ) + U 0S L6 5 ( s0( 0,_ T SNNN D-0D( + 0( * =k 00( N D E I D T3*sW 1 LL p 3I 2 2=1 U NC0O 0F f0 SEI Fr0 t I t_ A F ( a ( ( 0 w ( P Ewp H A E Mi9yv10NNT Tf5DE S 4 RF0EU O 0pE Sot 2F O SS3 o n*1 nsn P= *

  • T S

(w4, - 8 ztN Iw Aw N Iop UP#W*C wD6nN C 0u# wnwwTLD Tf1 c e*1 ie*o FEE,SDFSFO w n ICON A S s C DCCC P A 2 = 3 00 1 01 CCC 11 CCC C CCC C CCg 5 0 5 0 5 2 7 3 - _ 3 4 e 9 5 0 5 0 0 6 jy)g 3 ) 4> 7 9 - 1 1 N ._ s j Il( p

SUBHouTIAE STRESp 70/76 OPT =1 FTN 4.t+366 07/24/75 ti.c1.05 PAGt 2 .yy,tpgyj ____ _ _.39,g3,. 3, 1 F ( J.'. l. t. 0 ) GO 10 150 $16 r. S R 60 60 SS e SS + S&(!!,Jie Ff(JJ,ki STpt SR 61 150 (n**T TNUE S T ut Sk - 62 200 SF(L,41 : SS STNESR 63 300 CONTINUE STRE 9R 64 .C STRFSR 6 *i - - 65 350 en 220 Ist,L STRESR 66 So"(I)0, STRES8 67 .0 220 Mst,kF - --" S T R E S R - 68' 220 SR"(!):3R M ( !)

  • SF (1, K )
  • SF ( I, K )

STAFSR 69 on 210 1stel STkt SR 70 70 210-- SRM ( !) e SOR T ( SRM ( t j )- ST4E5R 71- - - - - - - - - - - - - - - ~ - - C STuf SR TP CALL FLOUTR thElets.L P' PAR (11 ENS) ST2f SR 71 g STRESR 7e ketTE (6,2040)(SRM(!),1:1 L) ST9fSR 75 75 mRITF (6,2035) STRESu 76 C- -" - -~ --- - - - - -' - - - - - - ~ - - - - - - STRESR 77 C TF REctit STED, PU'CH PIPE ELFMEMT (NPAR(1).'ic.121 PEMPER END FORCES STPESR T6 C AND "0"ENTS AT P0lhTS (I,J) f00 A TANGFki AND (C,J) FOR A BEND STRESR 79 C & V ALUE OF-ONE -(t ) TUR NP t. 0 ( 14 ) ACTIV ATES THC -PUP:CH OP T!Ck- ---- STHF Sw ' -P n - - ~ ~ 80 C WPAR(14) IS A 5 DIGIT IDthTIFIER PUNCHED IN CC 76 80 0F ALL CARDS STEESR 83 STFE SR 52 C STt'CS2 e3 1F (NP Ae t t i t!.121-cn 10-333 - ? F ( A P A9 ( 10.'d,1 ) GD TO 333 STEESR Pu IF(NS.tc.16) Gn Tr, 328 STRESR E5 -- - 6 5 - wRfft (11,50001"M,-(SRM(t),1=t, 61 HI,NPAR(13){NPAR(14) STRESR F6 wo!TE (11,5000) H, ( SRM (!),I:7 e t 21,PJ, t'P A R (13),NP A R (14) STWESR P7 r.0 TO 333 STkf SR e6 3 p n.. g g ; g.,, y p, g g -. __- _ _ _ __. -- 37s739 - ,9

  • :,k ? T E (It,%G00) ",(SDH(!)efr7,12),HC,hPAR(13).APAR(14)

STC(;R QC 90 YF(43.Eu,21 STuESR 91 -* *RI T! - ( t t,5 0 0 01-p, ( SRM (I), f s t, - 6),HJ,NP A R (1314NPAR(141-S T k t S R------ 9 2 333 CONTINUE S twP SR 93 C STEESR 90 37:4 3g _ 3 4 g. g.g.g. y g g pe. 95 400 CD'TfNUE STE E SR gh C Stat SR 97 c3 3.. ggg g g ggg. -. _. - 3 9 9 g' 3g -- _ q 3 C STsEsR 90 2000 FORMAT (tH1 a7k4 FSP OA S E SPEC T R UM ST H E 3 S, STRESR 100 .g o p... ...g_. _._- 3y,ggyt g p PO% F N T S, // 2tw Square-ROOT-OF -THE-Stim, S T RF SR --- 103 -- 2 37H rr ?*L SCUAutS (1F Te t

  • 00
  • l.

STRESSES, / STWE Sw in? pgj 3 19H (FD" ALL Eli'1MTS), /// tw) ST4 SW In3 (), Ild

  • i.-.i (o

...=) - S T E L 9 R - -- 10 c -- -- - ~ - - - 103S Frud AT (tkD) STRLSR 165 \\ STEE SR Inh 10f - ---- S T u t S R ' ' - 167 50 00 F Co"4 f -( 3y e !!, t x, tE 10. 3, A l,12,2X,15 ) IN3 STut su tae l)7 DE?ORN STut SW tro STRt SR 110 - -'- -~ - -' - A-En D

ENCLOSURE 3 Description of Computer Programs and the Verification Procedure Used by URS/ John A. Blume & Associates, Engineers for the Seismic Analysis of General Electric Company Supplied Piping i258 255

a URS/Blume Response to NRC IE Bulletin No. 79-07 for Brown's Ferry Nuclear Power Station We have examined the seismic analyses of the Brown's Ferry Recirculation loop PLping analyzed by our firm for the Aeneral Electric Compa'ny. This analysis was examined for the first three questions raised on the subject bulletin. The three piping systems are: 1. Recirculation Loop Piping, PS-A (Ref. 1) Recirculation Loop Piping, Loop A (Ref. 1) 2. Recirculation Loop Piping, Loop B (Ref. 1) 3 4. Feedwater Piping, Line A (Ref. 2) 5 Feedwater Piping, Line B (Ref. 2) Based on a brief review, our findings are as follows: Question 1. The seismic analysis of the Recirculation Loop and Fec/ water Pipes described At this t ine, we above used the response spectrum modal analysis method. locate the computer output of the SMIS computer run which would give could not a positive indication of how the codir:ctional (horizontal & vertical) re-sporses were added in the analyses. Since the Brown's Ferry Recirculation Loop and Feedwater Piping were analyzed at the same time as the analyses of the Dresden Unit 2 & 3 Recirculation Loop Piping (July thru December 1968), it may be reasonably concluded that obser-These obser-vations made in part I (Ref. 4) on Dresden 2 & 3 are valid here. vations are as follows. The algebraic summation of codirectional spatial The modal components or codirectional intermodal components was not used. inertist forces were calculated using standard response spectrum analysis pro-cedures and canbined by the square-root-of-the-sum-of-the-squares (SRSS) method The codirectional inertial forces due to the horizontal for each component. These and vertical components were then combined on an absolute sum basis. inertial forces were then applied as static loads to obtain moments, forces, stresses, support reaction, etc. 125B 256

o Question 2. Two computer codes were used in our dynamic analyses of the Recirculstion Loops and Feedwater Lines: 3DFRM and SMIS (Ref. 3). SMIS was developed at the University of Ce*1fornia at Berkeley and was used for matrix manipulation, eJgenvalue solutions, and response spectrum dynamic analysis. iiie progra. 30FRM w:ss used to develop the flexibility matrix for the loops and stresses. SMIS is a public dom.in program and has been widely used. A description and listing may be found in Ref. 3 A listing of 30FRM is not readily available. Question 3 Verification for 3DFRM was performed at the time the program was written. This documentation is no longer available. As mentioned above, SMIS is a public domain program and has been widely used. Some aspects of the program are self verifying, such as the orthogonality checks. In addition, the pro-gram was tested and verified by URS/Blume engineers when it was first used In the 1960's. However, verification documentation is not presently avail-able.

References:

1. John A. Blume & Associates, Engineers, Brown's Ferry Nuclear Pcuer Station: Report on the Earthquake Analysis of the Recirculation Pipes, for General Electric Co., July 17, 1968. 2. John A. Slume & Associates, Engineers, Brcun's Ferry NucZecr Power Station: Earthquake Analysis of the Feeduater Pipings, prepared ior General Electric Co., November 8, 1968. 3 Wilson, E. L., SMIS Symbolic M2tri.x Interpretive System, Department of Civil Engineering, University of California, Berkeley. 4. B. Chakravartula's (URS/Blume) letter to E. O. Swain (General Electric Co.), dated 8/6/79; Response to NRC IE Bulletin W. 79-07 on Seismic Analysis of Piping. 2- )h}}