ML19242C977

From kanterella
Jump to navigation Jump to search
Responds to NRC Re Certificate of Compliance 9023,Revision 0.Forwards Revised Pages & Drawings
ML19242C977
Person / Time
Site: 07109023
Issue date: 07/06/1979
From: Williams C
NL CHEMICALS (USA), INC.
To: Macdonald C
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
References
NUDOCS 7908140297
Download: ML19242C977 (67)


Text

g 4-90 7/- 9D23 yi Ub b Nuclear yR\\\\\\9 s

July 6, 1979

.q.v k(,,.,Cl l.

E 2-I JUL17'979 ". 9 2

~

'ae m

o. s.

Y

'6'N 1

T

!!r. Charles E. MacDonald, Chief a-iransportation oranch

?

N U.S. Nuclear Regul atory Cocr.ission f,C ', ' p \\

Washington, D.C.

20555

Subject:

NLI 10/24 Rail Cask Certificate of Compliance No. 9023, Rev. O

Reference:

NRC Letter of March 1,1979 Gentlecen:

In response to the reference letter, hL has revised certain pages and drawings in addition to the information contained in AttachT.ent No. 2.

Enclosed herewith please find eight (8) copies of the revised pages and drawings.

Revised pages are those listed on Attachment I to this letter NL is not requesting any proorietary data withholding regarding the attached data and drawings; therefore, you are hereby authorized to release all of the enclosed data and drawings as deemed necessary by your staff-Si r. erelj,

G,((d &

3 C. E. Willi ams

/ljh 790814 om Enclosure

,/

k Nuclear Division /NL !rc;str es 'nc.

Fact c' '//ec S'ree W :.mo;*:c Ce;.19501 Te!. (2C2fap-66;, U I 13505 n,

' J c

vav; we <

P.O. Box 2Cet. V.,:mir.gton, Del.19E99 i

July 6, 1979 4

Attachment No.1 Revision List - NLI 10/24 Rail Cask Safety Analysis Report Section Rev. No.

Revised P3ces VIII 2

- 3, -4 XI, Part 2 3

2-22h, 4

2-5, 2-17, 2-22e, 2-22j,

2-22k, 2-22m, 2-220 5

2-10, 2-12, 2-lSa, 2-21, 2-22 Part 4 4

4-68, 4-71, 4-70 5

4-73, 4-74 XV 4

-2 6

-l XVIII 8

-2 9

-l b h ','

qn-c u2

Page 1 of 7 Attachn.ent No. 2, to NL Letter of July 6,1979 Response to NRC Letter of March 1,1979 Structural Inner Closure Lif ting Lugs -

Page XI-2-5 has been revised to incorporate a statement specifying the method of lif ting that will resul t in a direct vertical lif t on each eye bol t.

Cask Tie-Down System Section 2.2 Tie-Dcwns, was revised to reflect information given by the final detail drawings used to construct the casks.

The various parts of this section were restructured as explained below to improve the presentation.

2.2 - This part presents the same information; introduction and analysis of applied loads; as the previous edition.

2.2.1 - This part analyses the tie-down at the closure head end of the cask.

The difference in presentation here is that the previous edition analyzed both the lugs welded to the car frame and the lug welded to the cask.

Since the criteria is dif ferent for the two sets of lugs it seemed logical to separate the two conditions.

Therefore this ravised section deals only with the lug welded to the cask and the tie-dcwn pin.

2.2.2 - This par t analyzes the tie-dcwn at the bottcm end of the cask. As in Part 2.2.1 the di'ference in presentation is that tne previcus edition analjzed ::tn the lugs welced to the car frame and the lugs welded to the cask as weli as the s;;;crt sacdles.

This re/ised secticn deals only wita the lugs welced to the cask and the tie-dcwn pin.

2.2.3 - This part analyzes the tie-dcun lugs and saddles which are welded to One car frame. Also included in this part is the sumrary of tie-d:wn stresses.

The previous edition dealt only with the summary of stresses.

The revised editi:n is subdi"ided as fcilcws.

2.2. 3.1 - Front tie-down, Impact at "E" End.

2. 2. 3. 2 Fron t ti e-down - Wel ds.

2.2. 3. 3 - Pear tie-doun - !maact at "A" End and "S' Erd.

2.2.3.4 - Rear tie-dcwn - Welds Impact a t "A" and "S" Ends.

on9 6rrJJ LCL

Page 2 of 7 2.2.3.5 - Saddle bearing stresses.

2.2.3.6 - Summary of tie-down stresses.

The following discussicn addresses the changes m.ade and their effect.

Dimensional changes to the figure shcwn on page 2-8 reflect the final detail drawing dimensions used to construct the casks.

The specific dimensional changes are as follows:

a) Distance between support points was 2051/2 inches, now 2031/2 inches.

b) Distance frcm front or top end of casks tie-down lug to the center of the rear or bottom end of cask support point was 175. 75, now 1771/4 inches.

c) Distance from rear or bottom end of cask tie-down lug to the center of the top or front end of cask support point was 197.75 inches, now 193 1/4 inches.

d) Distance frcm the front or top end of cask tie-down lug to the center of the frcnt or top end of the cask support point was 30 3/4 inches, now 31 1/4 inches.

e) Distance from the rear or bottom end of cask tie-down lug to the center of the rear or bottom end of cask support point was 8 3/4 inches, new 10 1/4 inches.

f) Tie-down pin diameter was reduced from 5.5 inches to 5 7/16 inches.

This change was necessary to facilitate handling operations.

Dimensional changes (a) thru(e) resulted in a red ntion of about 1,000 lbs. in the reacticn loads at the support and tie-down points.

Tie-Down Pins:

The reductico in tie-dcwn pin dia eter esul ted in a decrease in the margin of safety.

Hcoe.er, the stresses are still within the decign criteria of 0.3 times yield strength Comparison of targins of Safety Criginal Cesign Final Cesign 5.5 Dia.

5 7/16 Dia.

Front Pin: M.S.

.C49

.016 Rear Pin:

M.S. Co.mb. 5

.54

.394 M.S. Searing

.49

.329 1

ww sAv

Page 3 of 7 Front Cask Lug (Closure Head End):

There is a slight change in the lug configuration.

The change did not effect the hole size nor the amount of naterial around the hole.

The change provided more material where the lug joins the cask which in turn resulted in additional length of welding.

The stress analysis of the lug is the same as the previous edition except the loading is aLout 2l00 lbs. less due to dirensional changes sited in (a) thru (e) abcVe and in the calculation of tension stress the area has been corrected.

The results of these changes has been to increase the margins of safety.

Two changes were n.ade in the lug to cask weld analysis.

The length of weld "A" increased from 2" to 41/2 inches and the assumption that the weld metal in the throat of the neld has a strength at least 90%

of that of the base metal (17 - 4 pH) has been deleted in f avor of a more conservative approach.

It is now assumed that the weld retal is no stronger than the weaker of the two base materials, i.e., 304 stainless steel.

The analysis is the same as presented in the previ-ous edition except the margins of safety are less than previously reported due to the change in assumptions which reduced the weld strength values.

Rear Cask Lug (Bottom end):

Only.inor corrections were made to the sketch of the lug shown in the 5 R.

The 7 inch R. is 71/3 inches ar.d the 3.5 inch dimension is 3 5/2 inches.

The thickness and all other dimensions of the lug remai. ad the same as originally shown.

These changes had little effect on t.'

lug analysis.

Margins of safety remained essentially the same as or ginally reported due primarily to the correction of area calcu-lations.

The lug to cask weld analysis is essentiall/ the sare as previously presentad.

As in the case of the front cask lug the assumption on weld Te:21 strength nas been revised which has resulted in a reduction in the margins of safety.

There is no chan;e in tr.e ler;th cf welds or the neld pattaen.

The follu.,ing chan;e; sere cade in celd sice:

_'s.c l ;i Size "a"

was 1" fillet, new 1 1/2" fillet "b"."c' "d" was i 3/4" fille *

+ 1/2" penetration nos 1 1/2" fille;s + 1/2" penet ation "e"

was l' "J" weld now 1 1/2" fillet The abc /e rgsul tec 'n e slight reduction in total welc area (aas 175. 992 in.', ccw 166. :: in.2).

The reduc tion in ueld ar:-a ccmbined with *he reducticn in allcw'ble weid strength has resulted in a general redu:tice in the argi.o cf sa fety.

The design, hcwever, still falls with.o the allouable stres; criteria (.9 times yield).

,c.

Oni bid L O 't

Page 4 of 7 Front Tie-Down Lug (Rail Car):

The lug analysis presented in this revision has corrected some dimensional errors which existed in the previous edition.

Speci fically the 1.3 dimen-sion was 2 inches and the 2 3/4" dimension was 3 inches.

Another difference in this analysis is that the allowable design strengths are taken as 1CO of tne ultimate tensile stress, since the prime concern is the behavior of the rail car lugs during an accident condition.

The only other change in the front tie-down lug design is a reduction in the size of '..' eld 2 from 3/4 inch fillet to 9/16 inch fillet.

The original calculation used the ultimate tensile strength of the lug material (115,000 psi) which resulted in a break away force of 3.25 g's.

The revised calcu-lation uses the ultimate tensile strength of the weld metal (95,000 psi) which results in a break away force of 3.55 g's.

Rear Tie-Cown Lug (Rail Car):

The following dimensional charges were made to the lug configuration to provide adequate clearance between the tie-down lugs and the cask body and cask tie-down lugs.

Clearances are necessary to effect proper rota-tion of the cask frcm horizontal to vertical.

Center lug:

6 1/4 inch radius was 6 5/3 inches.

2 1/2 inch dimension was 2 3/4 inches.

3/4 inch X 300 chamfer was 1 inch X 450 -

No change in the thickness of the lug.

Side plates:

Sketch in original calculation was not totally correct.

6 1/4 inch radius now shown was 6 1/4 inch diTension on original sketch.

3 inch dimension was 3 1/4 inches.

3/4 inch X 100 cnarfer aas 1" X 250 These diTensi'nal changes resulted in a slight reduction in cross sectional areas.

There is also a slignt re:ucticn in icads due to the dimensional changes (a) th u (e) listed previously.

The lugs were analyzed in the same manor as the original analysis wi th adequate margins of safety.

The foilcwing changes were made in the attachment welds identified as welds 1, 2 and 3.

'..'el di n g :

The previous calculations assumed that the strength of the weld joint vias equal to that of the base etal,100,C00 psi fcr T-1 material.

The revi;ed calculatians used the weld strength of the filler metais as listed on page XI-2-22g.

This resulted in a reduction in allcwaile stress.

held 41:

The previ;us weld size was 1 1/2 inch "J" groove with a 1 inch fillet.

The revised weld size is 1 1/3 inch "J" geco'.e with a 1 inch fillet.

The length of the weld has been reduced frcm 44 inches to 421/2 inches These dimensional changes still provide a weld which is stronger than sacrifical weld no. 2.

,pr mar Dj]

OJ m

Page 5 of 7 Weld 42: Bottom plate of weldment was 1 1/2 inches thick, coa 1 3/4 inches thick.

Fillet weld size has been increased from 1 inch te. 3/3 inches.

Length of the weld has been reduced from 95 inches to 9 inches.

The net ef fect however was an increase in square inches of weld fecm 67.165 to 85.55.

These changes did not effect the function of tha weld as far as being the plane of separation in a severe a:cident.

Weld #3: There is a slight reduction in the number of ;ineal inches of weld but an increased in weld size.

The weld was a 1 i: h fillet The weld joint now is a 3/4 inch J groove plus a 1 inch fill -t The.evised weld joint gecretry prcduces a weld which is stronger than Neld 42 which is the desired condi tion.

Saddle Supports:

Previous calculations were hased on saddle loads resulting from 5 g lateral fo rce. As stated on page X!-2-19 the saddles are designed for 2g lateral which results in a reduction in the saddle load.

The crly change in the revised calculation is this reduction in saddle load wh'ch results in a higher margin of safety.

In reviewing this section scme typographical errors were four. as well as some dimensional errors on sketches.

The effected cages have been :orrected and given the next revision level.

Each page of the entire section has.7en marked in the right hand margin indicating the areas of change.

With the exce,.* ion of the above mentioned pages the balance of the section remains at the same re. ision level as the October 10, 1978 subnission.

The drawing package was revised to eliminate duplication of infor. rat.on which reduces the number of drawings in the package.

The drawing packa ;e was restruc-tured so that all Impact Structure Details are shown on the seri o of drawings numbered 70666F and all Support Structure and Tie-Ccwn Details er shown on the series of drawings numbered 70657F.

On the folicaing page is a flew chart type presentation which explains the new drawing package vs. the old drawing package.

Two drawings shc.9ing Front & Rear Tie-Ccwn Catails required a correction to tne Tie-Ccwn Pin diameter.

The draaings have been corrected and given tre next revi-sicn level, Trecal S tresses

1) The cask end tempera: ares repoc'ad en pa;e XI-2-3A and C-a-3A were taken from Secticn 'HII, Therma Anal si s, Ap;enci x "D" cac:es C5,

/

[6, 07 and C3.

The data presented in A:;endi.< J and Ap;er5ix E was generated specifically for use in the ther al stress analvsis calcu-lations.

Tem eratures reported in A pendix : were used s'ince they presented a more se,ere condition at the ends of the c m

!a all cases the te7eratures reported on p2ges XI-3-3A and (:-2-3A have been rounded off to higher values.

2) The graph cn pace XI-3-29 is based on a radical cold ca: of.105 mils between the alu-inum basket and the inner shell.

Cra.9hg 7:651F, Sheet 2, shcws the inside diameter of the cask to be 45 inches.

Subtracting the basket dimension of 2.79 f rom the 45 inct cavity dimensien resul ts in a ncmiral.105 mil radial gap.

~n, O ",1 yQ

Page 6 of 7 Int ! 10 '2 4 U ;, ( tia l'eAC T 5'Mf;af # ' O T:i l G1 0 2 -. NA Cal;:3AL !$$;i.

\\"

(CEST PD i T1

' e

.r e s s ** ' 4*-' i t a l.

Stace f ront & Seer

-; e: ',4,..'.4,,,

teere is ao reet t2

  • a,, :

.:, f 3,,,r, Pietare s%c leg details of le;4 : t a tr.c t.re. Fra*

  • kosct s trwcVe. ' e ere. ng swe..n1 t*e rear Pictwee smen.f a1 de t a ils o' l pic t Struc t.re w testra.

a

%4;t stra..re : :ts'F,

4, g o,,5 a ba' er

  • I28 3

se t of de t ail s twan ;. _,r e p y,,,n

s,,,, g :" P 6F, tion as to Frent er Pear.

iSt. I 6f 4, Fe v. 4 f re e yr, J.,. i,* 1s :a ' e ted sas ne. irs *4, 4 7:66'F.

?!E6ef. Sit. I o f 4, tee. 4 5% 1 o f 4 i s e,4 '

'cre t ' t' e b 'x t and 3,a.'"9 ao. t*c '*es 7 a M F,

7C6%3, 5%t.1 of 3, 94,. $

Sh t. IGP 3.

74

.*e s hlag IPSat l*34C t 4J che9<:e li Be sic D C tare i

S t ri.< !..r e A * *g C* t a l l s s Wn. $;eci fic c%4as)*s ere as Ilsted 11 ree l s k9 1*%66F, $nt. 2 of 4, few. 3 7C6ceF, int. ? o' 3. Reg. 4 Pic %re sac.$ ag detJ115 S f Drs.ing pe(kage ha s bem restrac tared f.a 194 t 4Il Pic t fe she.I ng 9 par pgg t Front 5,,; aort 5 t-oc t re

!*cac t S mac Sre Oe's'i s are swn := ?ra*'a9 S tr c hre 8 *9 "4 ta lis.

(5 addle) Frsat & Side V'ews are s.wa om eri=1 1 ' % 2F

e'e 'J'e le t t ' I s 7 963 s4 all 4;,xr' ' : c ".,r f 5 I'e-CC-4 * ta 3 I s 5%* ce emis Sr..irq (; a%8, ;nt. 3) ec= ip *er 706o67, Set. 3 of 3. Rev. 3 736668. Pt. 3 of 4. Pev. 2 7 t c t.are s iew ' ag ce r a ' : s c '

As a res ul t of re strac t.e tal t'e drew'a1 ;a".sa ;e Fron t T ie r.o s L ags t 7 t e tre inSr:Pe t i ca s*%a cm tiis e s.'m1 ( 7:tMF,

sn t. 4 ) u.

ay.rs c a er s.,-i r'6:F set. z.

ctLEti3 97. 4 Ove to t*e el wies t" ce o f f sca te det a il s. the Sur ts sseet o f tm t s :lra.i +} (77.64;} e4s teem I:6%F. Sht. 4 Of 4. Prv. I

~

~

Pic tare swN feta tis of 51M.e FrSet i se er 5,worg s tenc e,res are 19ati-p4c.ture ggg ag yr; $ te,c y, e

e.r i,xt stex ure c. i.

t, -e u -, - !,..e s

2..., m.,

,.n,.,,,,...e,..

f;c etcm.

'lr ia e, s.<. g 8 -s c.m e it-,c-y ),g 3, g,,c,

'ure ( PMS,

3of4; 34 g *jpg reig ts a pg t**e ' w;'X P ' a Ter

  • ve M.t a1
  • a.cr i *F 9 a ' *
  • '4 N, Sh t. I of 4, z. 4 e

was t e. e '. r.1 <;, t 'e t * 3 ' ce t ecd 2*t '41 7CM 'F, Sat. I 3' 3, n,. $

e e

'o.

Sec wes

18 59 t I sf 3.

l e'c L** s.wws A

  • a t : ws, pori; 1':. l re sw aa bie l ar e.- t at ac t.re 4: 1 reta t :s

& i te-twm ;ets: t s.

7 46N, St. 2 of 4 Re v., 3 7Cc5 75, Set. 2 af 3, tee. 4 f G %re s:ws 1*ee koor?

P' c t art tN..g Pe e r '.;oort s tex ure :,!.:15 g,, %. p, :,.

  • H *F.

Sg t. ) o f 4. Rev, 3 as e '*sette res t

  • r i + 1 t'* d e s. +)

d fic tsee sws see, $.,o.c e g S tr c tare & fie.'c a ag g3 t } g Ot :h ke* !?* i a Se*'a t - 1 g,c.m 2a t% ' s s

P 5T ' O 5%***

'3**'l 4 :

l

  • e. ' a.].'

8

' f ) 9C e a :0* es w

DO b ee$ ) sd*e NPIW ' r'Q rs

)*fe ! $ ' *e e e89.

ti ' s' f e,wi a'}" ' ' I',M i, e # % gs'

'=e* fe l e *.pd. 'I I'

' " 'h'D 'N e TF,14t. 4 of 4, Dev. )

Si (1

Page 7 of 7 P'JR Spacer Plug

1) Sketch on page XI-4-73 has been revised to correctly show the 281/4 inch dimension.
2) The procedure that will be used to assure that the PWR sapece length will result in the desired gap is as follows.

Depending on whether the particular fuel assembly length is longer or shorter than the reference fuel length (159.8) add or subtract the difference to both the 13.99 and 2.13 dimensions shown on Drawing 70655F to obtain the adjusted fuel spacer heights.

Drawing 70655F has been revised to explain the procedure for obtaining adjusted spacer plug dimensions.

The spacer plug design is such that visual determination of the fuel basket as well as spacer plug orientation can be made as the scacer plug is being lcwered into position.

3) The dimension is locating the top edge of the absorber naterial rela-tive to the fuel support plate in the basket.

The absorber material is 151 inches long and is located 3 inches above the support plate as shown on drawing 7C652F.

The combination of the two dimensions locates the top edge of the absorber material 154 inches from the support plate in the basket.

The words "TO TCP OF" have been added to clari fy the dimension.

4) The referenced figure on page XI-4-68 should be 3.6.1.2.l(c).

The percent of ultimate stress at temperature should be 72T;.

The exposure time used to obtain 727, at 3900F is 1C00 hours.

The 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> is more than adequate to cover elapsed transport time.

The loading being ana-lyzed is not a constant load but a momentary load resulting from the hycothetical drop accident criteria.

Miscellanecus There were some typographical ereces and caissions in Attachment 1 to cur Cctober 6, 1973 letter-se have ;orrected tne listing and ressbnit as Revised Attachment No.1 to Oct;be-6,1971 lettor.

Enclosed is a ccmplete page taculati:n of Section XI, giving each page numcer and associate page revision number, as requested.

an e U,., 1. -J uUU e

Page 1 of 5 NLI 10/2a RAIL CASK SAFETY ANALYSIS REPORT SECTION XI RE'!!SION STATUS AS OF 6/29/79 HCTION XI REV.

REY.

REV.

i 3-6/75 29 l-5/ 1/74 22b 2-9/78 il 3-6/75 30 1-5/ 1/74 22c 2-9/78 iii 3-6/75 31 1-5/ 1/74 22d 3-9/78 iv 2-1/ 31 / 75 32 1-5/ 1/74 22e 4-6/79 v

5-5/ 75 33 2-1/31/75 22f 3-9/78 1 1-5/ 1/72 34 1-5/ 1/74 22g 3-9/73 2 1-5/ 1/74 35 1-5/ 1/74 22h 3-6/79 3 2-1 / 31 / 75 36 1-5/ 1/74 22i 3-9/78 4 2-1 /31/ 75 37 3-9/78 22j 4-6/79 5 3-9/75 38 1-5/ 1/74 22k 4-6/79 6 2-1/ 31 / 75 39 l-5/ 1/74 221 3-9/78 7 3-9/75 40 1-5/ 1/74 22m 4-6/79 1-7a 4-9/75 41 2-1 / 31 / 75 22n 3-9/78

-l 7b 4-9/75 42 1-5/ 1/ 74 220 4-6/79 7c 4-9/75 43 1-5/ 1/74 22p 3-9/78 7d 4-9/75

-l-44 1-5/ I/74 22q

-9/78 7e 1-9/75 45 1-5/ 1/74 22r

--9/78 7f 4-9/75

-l-46 1-5/ 1/74 22s

--9/78 79 4-9/75 47

--l / 31 / 75 23 4-9/75 7h 4-9/75 43 1-9/78 24 3-9/75 7i 4-9/75

-l-49 3-9/78 25 3-9/75 7j

--9/75 1 4-9/75 26 3-9/75 8 1-5/ 1/72 la 4-9/75 27 3-9/75 9 l-5/ 1/74 lb 5-9/72 28 3-9/75 10 1-5/ 1/74 Ic 3-6/75 29 3-9/75 10a 1-2/76 2 1-5/ 1/73 29a

--9/75 10b

--2/76 3 1-5/ 1/74 30 5-9/73 il 1-5/ 1/74 4 i-5/ 1/74 31 5-9/73 12 1-5/ 1/74 5 4-6/79 32 5-9/73 13 1-5/ 1/74 5 3-9/73 33 5-9/72

' -12 1-5/ 1/74 7 4-9/78 34 2-9/75 15 1-5/ 1/74 3 4-9/75 34a

--6/75

-l~)6 1-5/ 1/74 9 4-9/73 34b

--6/75 17 1-5/ 1/74 10 5-6/79 35 1-5/ 1/74 13 1-5/ 1/74 11 4-9/73 36 1-5/ 1/74 19 3-2/76 12 5-6/79 37 1-5/ 1/71 20 2-2/76 13 5-9/73 38 2-1/31/75 20a

--2/76 14 2-9/73 323

--l/ 31/ 75 20b

--2/76 15 3-9/73 320

--6/75 20c

--2/76 16 3-9/73 33c

--l / 31 / 75 21 2-2/76 17 4-6/79 33d

--l / 31/ 75 22 1-5/ 1/74 12 4-9/72 32e

--l/31/75 23 1-5/ 1/74 123 5-6/79 3r#

--6/75 24 1-5/ 1/74 19 5-9/78 389

--6/75

-i-25 1-5/ 1/74 20 5-9/73 38h


---- 26 1-5/ 1/74 21 5-6/79 33i

-6/75 27 1-5/ 1/74 22 5-6/79 38j e f: E-6/757 n r 2B l-5/ 1/74 22a 2-9/75 33R 0 J J-6/7% J /

Page 2 of 5 REV.

REV.

REV. 38L

--6/75 7 2 -1/ 31/7 5 50 5-2/76 33m

--6/75 8 3-6/75 59 5-2/76 9 5-9/73 59a 3-2/76 3Sn


380

--6/75 10 1-5/ 1/ 74 59b 3-2/76 3ap

--6/75 11 1-5/ 1/74 59c 2-2/76 38q

-6/7; 12 1-5/ 1/74 59d 2-2/76 33r

--6/75 13 2-1 / 31 / 75 59e 2-2/76 39 3-6/75 l a 1-5/ 1/74 59f 2-2/76 40 5-2/76 15 3-6/75 5 9 g 2-2/76 41 5-2/76 16 1-5/ 1/74 59h 2-2/76 42 4-9/75 17 1-5/ 1/74 59i 2-2/76 42a 1-2/76 13 1-5/ 1/74 59j 2-2/76 42b l-2/76 19 l-5/ 1/74 59k 2-2/76 42c 1-2/76 20 1-5/ 1/74 59L 2-2/76 42d 1-2/76 21 1-5/ 1/74 59m 2-2/76 42e 1-2/76 22 1-5/ 1/74 59n 2-2/76 42f 2-2/76 23 1-5/ 1/74 590 2-2/76 42g 1-2/76 2a 1-5/ 1/74 59p 2-2/76 42n 1-2/76 25 1-5/ 1/74 59q 2-2/76 42i 1-2/76 26 1-5/ 1/74

-?-59r 2-2/76 42j 1-2/67 27 1-5/ 1/74 59s 2-2/76 42k 1-2/76 23 1-5/ 1/74 59t 2-2/76 42L l-2/76 29 l-5/ 1/74 59u 2-2/76 43m 1-2/76 30 1-5/ 1/74 59v 2-2/76 42n 1-2/76 31 1-5/ 1/74 59w 2-2/76 420 1-2/76 32 1-5/ i/74 59x 2-2/76 420-1 1-2/76 33 1-5/ 1/74 59y 2-2/76

' 42p

--9/75 3a 1-5/ 1/74 59 z 2-2/76 42q 1-9/78 35 1-5/ 1/74 59 a a 2-2/76 42r 1-9/78 36 2-1 / 31/ 75 59bb 2-2/76 24s 1-9/73 37 3-9/73 59cc 2-2/76 43 3-6/75 36 3-9/73 59dd 2-2/76 44 1-5/ 1/72 39 2-1 / 31/ 75 59ee 2-2/76 45 2-1 / 31 / 75 393 1-5/ 75 59ff 2-2/76 26 2-1/ 31 /75 390 1-6/75 59;g 2-2/76 47 2-1/31/75

-3 20 2-9/75 59hn 2-2//6 43 2-1/31/75 41 3-5/75 59ii 2-2/76 49 2-1 / 31 '75

-3 22 3-6/75 59jj 2-2/76 493 2-1/31/ 75

-3 23 3-6,'75 59kk 2-2/76 49b

- -l / 31 / 75

-3 22 3-6/75 59LL 2-2/76 29c

-l / 31 / 75

-3 a5 3-6/75 59Tm 2-2/75 49d

--l/31/75

-3 26 3-6/75 59nn 2-2/76 49e

-1 / 31 / 75 47 3-6/75 59c0 2-2/76 49f

--l/ 31 / 75 23 3-6/75 59Cp 2-2/76 50

'-5/ 1/7a 49 l-6/75 59qq 2-2/76 51 1-5/ 1/74 50 5-2/76 53rr 1-2/76 1 5-2/76 51 5-2/76 59ss 1-2/76 2 5-2/76 52 5-2/76 59tt 1-2/76 3 5-9/78 53 5-7/76 59uu l-2/76 3a 1-9/78 5?

5-2/75 59v /

l-2/76 a 2-9/75 55 5-2/76 59ea 1-2/76 5 1-5/ l/74 56 5-2/76 5 9::x l-2/76 6 2-1/31/ 75 57 5-2/75 59yy 1-2/76 d( i: C onn JJ

_ 'V

  1. '? c : '. C t-, v b u

deSa E 015 83A' 8 3,/ -

83,/ '

- E-9 6 Z Z

!-2/49

- E-98 7-6/25

-r-t9

--9/LS

-E-56 PEE l-2/ 29

- E-96 r-6/!8

-t-ll L-6/ZS

- E-S6q q q l-2/29

-E-LO S-6/28

-t-iB l-6/IS

-E-56333 L-2/29

-E-LL t-6/LS

-t-t6

--9/19

-E-S6PPP l-2/29

-E-22 t-6/LE

-t-20

--9/4$

-E-56eeB l-2/29

- E-l2 E r-6/lS 2L

--9/!S

-E-56JJJ L-2/29

-E-224 t-6/LE

-t-ZZ

--9/lS

- E-56S Eb l-2/29

-E-220 t-6/lB

-r-2E

--9/LS

- E-56 u ug l-2/29

-E-22P S-6/lB

-t-2r

--9/LS

-E-96!!!

l-2/19

-E-lE 2-9/25

-t-29

--9/29

-E-96fif L-2/29

- E-lt 2-9/LS

-t-29

- E-S 6 M'M l-2/29

-E-LS 2-9/2$

-t-ZZ

-E-SE E l-2/L9

-E-49 2-9/25

-t-2E

- E-C 6C l-2/29

-E-LL 2-9/LS

-r-26

--9/lc

- E-S S u uu t-2/lg

-E-LS 2-9/lE

-t-ED

--9/lc

- E-5600 C l-2/49

-E-46 2-9/LC

-t-EL

--9/ZS

- E-56 d d a l-2/29

-E-80 2-9/LS

-r - C2

--9/2$

- E-96 bb t L-2/29

- E-8 L 2-9/2S

-t-EE

--9/25

- E-56 JJJ l-2/29

- E-8 2 2-9/4S

-t-Et

--9/2S

- E-56 s s s l-2/29

- E-8 E 2-9/25

-t-ES

--9/25

-E-56422 l-2/Z9

- E-9#

7-6/28

-t-E9 E-6/lB

-E-S6nnn l-2/19

-E-85 t-6/LS

-t-El L-S/ l/tt

-E-96^^^

l-2/L9

- E-8 9 t-6/28

-t-EB E-6/LS

- E-S6N l-2/29

- E-SL r-6/IS

-t-E6 E-6/L8

- E-9 6N-l

--2/29

-E-88 L-S/ l/lt

-t-tO 7-6/L8

- E-5 63 F -2/f9

-E-86 2-6/19

-t-tI t-6/ LS

-E-56 *"-E

--2/29

-E-60 2-6/4S

-t-vZ 0-6/28

-E-96 mF-t

--2/L9

-E-6[

L-S/ l/lt

-t-VE E-6/LS

-E-56 MF-S

--2/29

- E-6 2 2-6/2$

-t-tEP E-6/LS

- E-5 6 m"- 9 --2/29

- E-6.!

2-6/lc

-t-tE4 E-6/LE

-E-56 MF-Z

--2/29

-E-67 2-E/LS

-t-tED 2-6/28

-E-SSk'v-8

~-2/29

- C-6 5

--9/!S

-t-tt 7-6/2S

- E-C Ew-6 --2/29

-E-69

--9/29 r-tS S-6/48 c

- { - C f..p/t - [ Q - - - - - - - - -

.C

- - C ')../c

-e wo

- ; i _f c

--/"

/

- E-S E x

--6/25

- E-EE

--9/25

-r-tI r-6/t8

-E-SE W

--6/IS

-t-i 9-2/19

-t-rE t-E/IS

- E-5 6 22

--6/!S

-t-2 5-2/29

-r rEE

-E/lE

-E-SEEEEE

--6/25

-t-E

~-6/!?

-t-ria r-E~/IS

-E-SE2:qq

--6/LS

-r-CP l-E/LS

-t RED

-E/lE

- E-96:3:3

--6/25

- -t e-c/ r e

-,+ m

,s _ ;n m

~

,w r

.w

-E-c'?ehe

--6/25

-r-S 5-6/LE

- -rie 9-cilg

- E-90 2-1/ El /lr

- t - c-o - r / ~r e~

--.-,.ss.

7_c/.Cf-w s

p

-E-9!

2-l/El/lC

-t-9E 7-6/25

-t rES E-2/29

-E-92 2-l/ El / L S

-r-94

-6/48

-r rEu E-2/lg

-E-9E 2-llEl/lS

-t-l

--9/25

-t-r6 2-l / El / ZS

-E-?t 2-l/EL/LS

-t-8

--9/:9

-t-50 2-llCL;:c 7-i/ci'/,c-v 6

wt

.L

-E-9rE l-6/IS r-6 O/tc "r - c '

^

- -52 2-l / El /lc

- E-9 0 4 l-6/ZS

-t-iD

--9/ 5

- E-9 5 E-6/IE

-r-ll

--9/1$

-t-SE 2-l/EL/lE

-E-99 2-l/EL/LS r-lZ 2-9/lc

-t-S; E-6/ lc

-E-91 2-l/El/!S

-t-lE 2-9/l$

-r-SS E-6/IS

- E-9 lE L-6/ZS

-t-tp

--9/LS r-SSE 2-6/25

-E-9lC l-6/IS

-t-LS

~-9/IC

-t-SSq

--l / El / !S y

O 'b r::

    • 'I

Page 4 of 5 REV.

REV.

REV. 56 5-2/76 90e 4-9/75 ll2h 2-9/75 56a 4-9/75 90f 4-9/75 ll2i 2-9/75 56b 4-9/75 90g 3-7/75 ll2j 1-9/75 56c 5-2/76 90h 4-9/75 112k 1-9/75 56d 5-2/76 90i 4-9/75 112L

--l / 31 / 75 55e 5-2/76 90j 4-9/75 112m 1-9/75 56e-1

--2/76 90k 3-7/75 ll2n 1-9/75 56e-2

--2/76 90L 3-7/75 1120

--l/31/75 56f

--9/75 90m 4-9/75 ll2p

--l / 31 / 75 569

--9/75 90n 4-9/75 113 3-9/75 56h

--9/75 91 2-9/78 114 5-9/78 56i

--9/75 92 2-9/78 115 5-9/73 57 3-6/75 93 2-1/31/75 116 4-9/78 53 2-1 / 31 / 75 94 2-1 / 31 / 75 116a 5-9/73 59 2 -1 / 31 / 75 95 1-5/ 1/74 117 4-2/76 60 2-1 / 31 / 75 96 1-9/75 118 5-2/76 61 2 -1 / 31 / 75 97 1-9/75 119 5-2/76 62 2-1 / 31/ 75 97a 3-9/75 120 5-2/76 63 2-1 / 31 / 75 97b 3-9/75 121 2-2/76 64 2-1 / 31 / 7 5 98 3-6/75 121 a 2-2/76 65 1-5/ 1/74 99 3-6/75 121b 2-2/76 66 3-9/ 75 100 3-6/75 121c 2-2/76 67 4-9/78 100a 2-9/75 121 d 2-2/76 6S 4-6/79 100b 2-9/75 121 e 2-2/76 69 3-9/78 10nr 2-9/75 121 f 1-2/76 70 4-6/79 10i 5-2/76 121 g 1-2/76 71 4-6/'9 102 4-9/75 121 h I-2/76 72 3-9/78 103 4-9/75 121i 1-2/76 73 5-6/79 103a 1-2/76 121, 2-5/76 74 5-6/79 103b l-2/76 121k 1-2/76 75 4-9/78 103c l-2/76 121 L l-2/76 75 4-9/73 103c-1

--2/ 76 121 m 1-2/76 77 3-9/73 lC3c-2 --2/76 4-12i n 1-2//0 75 4-9/73 103d

--9/75 121o 1-2/76 79 4-9/73 103e

- C/75 12ip l-2/76 J-20 4-9/76 10 3 f

--9/75 121; l-2/76 a-31 3-9/73 103g

--9/75

- -12i r 1-2/76 313 1-9/73

-:-102 2-i/31/75 1213

--2/76 31b l-9/78 105 2-i/31/75 2-121

--2/76

-a-32 4-9/75 106 2-1/31/75 12i u

--2/76 33 1-9/75 107 z-1/ 3i / 75 121v

--2/76 22

--6/75 103 5-9/73

-121 w

--2/76 85 3-6/75 109 4-9/73

-121x

--2/76 26 4-9/75 110 4-9/73 121 1

--2/76 37 4-9/75 111 2-9/73

-4 ' 21 2

--2/76 33

--6/75 112 1-9/73 tilaa

--2/76 39 4-9/75 1123 5-9/73

-121 b b

--2/ 76 593 1-9/75 112b 5-9/73 121 c c

--2/76 90 3-7/75 ll2c 3-6/75 12idd

--2/76 903 3-7/ ) 5 112d 3-6/75 121 e e

--2/76 9Cb 4-9/75 il2e 3-6/75 121ff

--2/76 9Cc 4-9/75 ll2f 1-6/75 121 g g

--2/76 90d 3-7/75 112g

--l/ 31 / 75 121hh

--2/76 r,

^'?

k L

Page 5 of 5 REV.

REY.

REY. 121ii

--2/76 141 4-9/75 17 7c l-2/76 121jj

--2/76 142 4-9/75 177d 1-2/76 121kk

--2/76 1423 2-9/75 177e 1-2/76 121LL

--2/76 142c 2-9/75 17 7 f 1-2/76 121 mm

--2/76 142c

--9/75 177g 1-2/76 121nn

- -2/ 76 143 4-9/75 177h 1-2/76 121oc l-5/76 144 4-9/75 177i 1-2/76 121pp

--?/76 145 4-9/75 177j 1-2/76 121qq

--2/76 146 4-9/75 17 7k l-2/76 122 4-9/75 147 3-6/75 177L l-2/76 123 2-9/78 1473 2-9/75 177m 1-2/ 76 123a 4-5/76 147b 2-9/75 177n 1-2/76 123b 4-5/76 147c 2-9/75 1770 1-2/76 123b-1

--5/76 143 2-1 / 31 / 75 177p 1-2/76 123b-2

--5/76 1 9 2-1/31/75 177q 1-2/76 123c 4-5/76 150 3-9/75 177r 1-2/76 123d 4-5/76 151 3-9/75 177s 1-2/76 123e 3-2/76 152 3-9/75 177t 1-2/76 123f 4-5/76 152a 2-1/ 31/75 177u l-2/76 123g 4-5/76 152b 2-1/31/75 177v l-2/76 123h 4-5/76 152c 2-1 / 31 / 75 17 7w 1-2/76 123i 4-5/76 152d

--1 / 31/75 177x l-2/76 123j 4-5/76 152e


177y 1-2/76 123k 4-5/76 152f 2-1/31/75 177z l-2/76 123L 5-9/78 152g 2-1/31/75 177aa 1-2/76 123m 4-9/78 153 2-1/ 31 / 75 177bb 1-2/76 123n 4-5/76 154 2-1/ 31/75 177cc l-2/76 123o 5-9/78 155 2-1 / 31 / 75 177dd 1-2/76 122p 6-5/76 156 2-1/31/75 177ee 1-2/76 123q 4-9/78 157 3-6/75 17 7 f f 1-2/76 123r 2-9/73 153 3-6/75 177 g 1-2/76 9 123s

--2/76 159 3-6/75 177hh 1-2/76 123t

--2/76 160 3-6/75 17 7 i i 1-2/76 124 3-9/73 161 3-6/75 1 73 2-1/31/75 125 4-9/73 162 3-6/75 173 2-1/31 / 75 a-126 a-9/73 163 3-6/75 133 2 -1/ 31 / 75 127 E-9/73 154 3-6/75 15:

2-1/ 31 / 75 125 a-9/75 155 3-6/75

-l T 2 2-9/75 129 4-9/75 166 3-6/75

- - 131 b 2-9/75 130 4-9/75 167 3-5/75

-132 2-1/31/ 75 1 31 4-9/75 153 3-6/75 133 2-1/ 31/ 75 1313

--9/75 169 2-6/75

-12 2-1/31/ 75 1 32 4-9/75 170 3-9/75 135 3-9/75 133 4-9/75 171 5-2/76 a -135 3 3-9/75

-134 4-9/75 172 5-2/76 ica a-9/73 135 4-9/75 1 723 1-2/76 1 1-5/ 1/7 135a 2-9/75 173 6-5/76 2 2-9/73 136 a-9/75 174 5-2/76 3 2-9/73 137 4-9/75 175 5-2/76 4 2-9/75 a-13 7a 5-9/73 176 5-2/76 5 1-9/75 133 3-9/75 177 5-2/76 6 1-9/73 139 2-1 / 31 / 75 1773 2-2/76 7

--9/73 140 1-5/ 1/74 177b 2-2/76

-D ',. *m RR~

Page 1 of 2 Revised Att3chment No. I to CctcL&r 6,1978 Letter Revision List - NLI 10/24 Rail Cask Safety Analysis Report Section Rev. No.

Revised Pages II 2

-5, -3 3

-6, -18 4

-7 6

-9 IV 2

-3 3

-4 VI 1

-22, -23, -24, -25 3

-1 VII 3

-4,

- 7, - 8, -12 4

-1,

-2,

- 3,

-9, 11 3

IX 1

-1 thru and including

-23 Celeted

-29 thru and including

-33 (section condensed, oages not required)

XI, Part I l

1-48 3

1-37, 1-49 Part 2 1

2-42q, 2-42r, 2-42s 2

2-22a, 2-22b, 2-22c, 2-22h 3

2-5, 2-6, 2-15, 2-16, 2 17, 2-22d, 2-22e, 2-22f, 2-22, 2-22i, 3

2-22j, 1-22k, 2-22L, 2-2^m, 2-22n, 2-220, 2-22p 4

2-7, 2-2, 2-3.

?-10, 2-11, 2-12, 2-14, 2-18, 2-133 c-2,i,

_c 5

2-l b, 2-13, 2-19, 2-23, 2-20, 2-31, 2-32, 2-33 New Pages 2-22q, 2-22r, 2-22s Part 3 1

3-3a 2

3-40 2

7_ s 7,,

,_2

, _ g :s a

3-62, 3-69. 3-71, 2 7. _7, 0 77_2,, _ 7,: s,

3-72c, 3-3'r, 3-23, 3-26 5

3

^a,

^

's, s-tu,

s ' u'

^ '^

~'

Page 2 of 2 Revised Attachment No.1 to October 6,1978 Letter (continued)

Section Rev. No.

Revised Pages XI, Part 4 1

4-33, 4-31a, 4-31b, 4-112 2

4-4 3c, 4-43 f, 4-91, 4-92, 4-123, 4-122r 3

4-35, 4-33, 4-39, 4-43 4-4 3a, 4-43b, 4-63, 4-69, 4-70, 4-71, 4-72 4-77, 4-31, 4-124, 4-186 4

4-Sb, 4-40, 4-41, 4-42 4-44, 4-46, 4-47, 4-48, 4-433, 4-485, 4-48c, 4-4Sd, 4-67, 4-73, 4-74 4-75, 4-76, 4-73, 4-79, 4-80, 4-109, 4-110, 4-111 4-116, 4-123m, 4-123q,

4-125, 4-126 5

4-4, 4-5, 4-45, 4-48e, 4-103, 4-1123, 4-ll2b, 4-114, 4-115, 4-116a,

4-123L, 4-12 30, 4-12 7, 4-137a 6

4-6 Part 5 1

5-6 2

5-2, 5-3, 5-4 New Page 5-7 XII New Page i

XIV 3

-4,

-5, -7 5

-6 XV 3

-2 5

-l XV!

2

-2,

- 3,

-7,

-11, -12, -13

-14, -15, -16 3

-4,

-6,

-8,

-9,

-10, -17 4

-5 Ceieted

-13, -19, -20 (section ccn-densed pages r.ot required)

XVII 4

-2 XVIII 7

-2 3

-l icC 1QC DJJ C/J

ww -- en--

-. r-w

,w

-w,--s.e-ce m w-

,. m - n - m.. r y,,

m n.,

y,7 *- -.

gs w. w -...,.

m a

i w

-o

.s-

~.

i

.g.

t v

r 4

I e

a e

s

{

r '- -*

s n

<.,',.. t.

s

, - Y. P w

g

= %%

.r

o.

.+p.

.r

, ' n -

g.

Ya p

W k

e

+

4 e *-

a.

Y 4

)

+

en 5

~

o W

.-q 4

, u y*

r s

+

3 8

w i *

,mi N

- (*f.,.

e-g

-f c L

\\

4

(

4 pt $*

  • A
  • 'w 3 wk.'

4 p%4 "e.

%F

'\\

Jef6)

.; y-L'z?

{*1 t

1

, y t

g P

s, % /

g eA, w

e e

4 ee

.5 g

^

l -

s

--A M

w y

s e

i.

j r

9 aft.

  • J*

hgg, '

~

p g

9

' ee e,

=

fs

  1. g

' 'b

,4 W

4 at

)O f

' N.

4 Q

y;7y f'

a p

h E,

  • b 1

i f

.ps -

, '/

m w

4 I

g i

9 I

.h '

'r a

k a

b s'P V. \\

as.

r

[

e.

h5 *.

g -

w, s

s i

^

4 f

t 3

1

  • w%

w wen --

4.4.-%m.*,

+

4. / s. %

4-

.4.s e. wa A,.sM...

_A.

,a..

,y.,

,_ y_.

,,,, g

Rev. 2 - 6/79 Decay heat is removed from the fuel to an aluminum basket by thermal radiation and conduction through helium and by conductica through the neutron absorber liners. After conduction to the periphery of the basket, the decay heat is then transferred to the cask through a helium gap by conduction and thermal rad-lation and by conduction and convection thrcugh the cask bcdy to the atmo-sphere. The cooling channels are dry.

This mcde of heat dissipation is considered as the rormal mode of operation for the purposes of determining metal temperatures and pressures for the stmetural evaluation of the cask.

Forced circulation la the auxiliary cooling system is the actual normal mode of operation even though the normal condition of transpon analysis considers the cooling system not to be operating. The cask temperatures will be icwer when the ccoling syste- !s cperating. This vill increase the safety of the package abcve what is requirec fcr.crmal conditicn3 of transecr.

The 2"xiliary cocling system is p.ovided to circulate ccolart through ccoling chc:. tels that are located in the cask at the outer surface of the irner shell.

n n

n.,

w Ca VIII-3

Rev. 2 - 6/79 The auxiliary coolir.g system has the capacity to dissipate rore than 100% of the decay heat. In operation, not all of the heat is removed by the cooling system. A portion of the decay heat load is removed by a combination of conduction, convection and radiation to the atmosphere.

During cold operatice the ambient temperature is -400F in still air without any solar heat load ( the cask is in the shade). Detailed analyses of the cask have not been performed under these conditions since a uniform cask 0

temperature of -40 F may be conservatively assumed. The neutron shield will be protected from freezing to -400F by using an antifreeze solution.

1.2 Cff Nor.al Cond!tions The following off normal conditions have been evaluated:

a). A hypothetical fire accident with conditions applied sequentially as specified in Appendix B of 10 CFR 7..

In some areas add-itional conser/ative assu.ptions,;ere involved.

b).

. crced cor /ectior and Icss of forced convecticr are evaluated qualitat! zely.

1.2.1 Hycathetical Accident Conditions Bepinring with an assumed ambient temperature of 100 F, the cask e::;eriences a 30 foot drop onto a flat surface fclicwed b'f a puncture.

, f.

a.

' n, c

e

'/

g0.s J U

u n; re

__ u 5;u' VIII-4

moyv.e

--e-em y - y =w e r-. e m. es. ww,me,re,w,.e eem,- -

sy y,,, n e w a,a w,<a,

,,,,me,.....,,,,,,,,,..,.

s s

~

s*'

s b

b g

ee' l s

J y

  • W' 'pe L s

e O' m'

\\

sa g

4 "so4 q

, 5' 4(e4

>~)*T3'-

)%'

1 i,,

jpa

. L' e

y-e y

_s-s C

.Y

%93 =*15, Ma 4,

.g'fil, '

4 g-9

  • s i

A

['

.) Ctf.

i 1

4 6

$sO

-s%'g g

-k' s

(d 4

' D

.g s

O e.

4 t,.,,*,

3w'e

~ '.*-

'-i.*

-.e..,-

d w

a 5.A e

  • P s

w h

y I

S.A't a

s a.

.y 1

g

'S

'f k $[

)#{

Y

' P,1

,6

.,,., =. =

(

p A

,%'~

s.g n. v f ':

A q,,

1 4

, En

' "g s

p8. 4

>g

_f e.

g

'. f4

'*sO y ' % b 9

c',' t' A,s.

e.

  • -gG

'h.A t

e

^. x*] 4 9' ;;

y*

s se s'

< - 45 '

s 1

~

~

's,. ~a-J g

k te,

- g

. -s y

8%

~

4

- r

.'L. % '*

r s

v

- A.

  • [

-c D

4 g~

d'g pg

.gs -

' h F

.. 'y-E g ' p" l 6

1 S'

g 9

",4a g

)

g

, 1.,',

L

+.

.g

,*. g 3

[s '.

r--'4.*C" s

,7 w

(v V=.

8 r

s

.a

(,.'s.-

. ey,

. ~s s

s s.

g-2

,m a

  1. -s

+

v,t ws:

s s

e

~d

/

4-4

f '%.

n ws

,s-

".3-S e'

s r

4 9

e#

g e

r a

s S

g P

' 4

_-s 4

1

  • w 1

%y wA P

Y s I

+

f<

  1. 9 e'..W$

4 9

%s$*

M.* A+l..su 1 a..

t 'm s.>,

or

-.. a ', $.

.~.ner-

- e s-u. -- -

.*r

,s.w n.,...-..

.P_a1 1 a 2.,,,

.+

Rev. 4, 6/79 2.1.3 Inner Closure Lifting Lugs Inner closure design weight is 7400 lb., (sect. VII).

Design Ic 3g, P = 3(7400) = 22200 lb.

The inner closure is provided with three threaded eye bolts, which are inserted into tapped holes in the closure for handling. Cl os u re head wil' be handled by a lif t rig having lif t points located at the same dimensions from its center of lif t as the closure head eye bolts are located from the center of the head.

I Lifting force model.

\\,[ [ % N i

< -- 19. 5 - -- - - 2 6. 3 7 5 --1 I

/g^

A t

/

m

/

/

l Y

P R2 R1

,/

x 26.375 - >. \\

\\

\\

__.._.m

__m C

i t

v.

Sum forces:

45 -,.

R] +R2 = P = 22200 o

._ l a..; i _ ~ '

Mcments abcut R1:

19.5 P = 45.375 R2 Solving for eje bc!t forces:

R2 = 22200 (19.5/J5.375) = 9437 lb.

R] = 22200 - 9437 = 12763 lb.

eye bolts A and 3. FA=F3 = 12753/2 = 6332 lb.

Eye bolt C, FC = 9437 lb The minimum rated tensile strength of the 1 inch diameter eye bolts is 46350 lb., which is nearly 5 times the design load of 9437 lb. on the most heavily loaded eye bolt.

XI-2-5 655

00

.-m.-,-s-e=w=*s-v,e

.q-n,

,w.

o e e v.,

+ e e--w_a 1 ye yew ~ ~ <-~> < :n p -w g.e.

s~y -.

  • w,,., m u - m..,

r y,_ w y - m-

~- - m w,-

+ -. n w~ -

e g

S g

g

.*-N*

i

?

O t

?

A

'.)

e

(

~

y

,y.

a g -

k 4

t O

  • 3,.

^' <

Y w

9 w

b s

k.

N e

/g a

.y, y

A

)

', g '

e t p

' e "m a

4 7

En w

S s

4-s 6

.~

/

'M' t

?

q/

O

.g-

.'s

  • A i

9 p

v 4

an-.

4 ob 4

<z -

q i-

.r 4

s f

~

F s

s 2

t =

1 s

s s

e

" (

~

~

t t.

yrs..

s-

't.

Lf

& S t

s

'e'".

+

fF g

j

[ 'k,

g

,1g.

s G. ' _

g

.Y*,

8 g

s.f#

h g=

4&

?

.---4,

' F i f

p m',

'40# ' 'f '.

4 si

-4, b

9

('

4 g

E

+2,,

=

(

=

4

-4 Y *

+G.

s 3

t W

e.

4 a

h

,O 8

h t

,4 w

'W, L

/*?

  • r -

A e

L' :

I v v v

~

(

4 i I '

e.%"

O q,

e 4 db A.

b 4

sp

%2, me a+

-.ma s eu'.

,.=J.

4..

W hh.-

As

..w

Rev.4 9/78 2.2 Tie-Downs The tie-dcwn system consists of (1) cask lugs with tra ting plate anchorages welded to the railcar center sill to take vertical upward and longitudinal loads, and (2) V saddles to take vertical downward and lateral loads.

The rear cask lugs take the entire ICg longitudinal loads in both directions, thus allowing the front cask lug to be free from longitudinal loads so that clearances can be provided icngitudir 'lly for cask /railcar relative expansions.

The lugs and pins of the cask at both ends are designed for combined l

loads of log longitudinally, 59 transversely, and 29 vertically, in both directicns, without exceeding 90% of the yield point stress.

The cask lugs are 17-4 ph material and the plates of the anchorage are T-1 steel, both at a ncminal 100,000 psi Y.P.

Welds between the bottcm o1 the plate weldment and the mounting blocks on the center sill itself are calibrated to break at a load less than the actual strength of the tie-down unit of lugs and plates, but greater than tne minimum specified design loads.

0 flat saddle bearing l

The cask weight rests en and between the :5 0 J suppcrt).

Lcw fricticn.'. ear bearing plates (wnich form a 90 linings are provi:ed as part of the saddle constructico, tnus allcwing axial cction between the saddle cover plate and the edga of the i pact structure which sup; orts the entire cask weight and vertical reactions.

6E5 302 XI-2-7

Rev.4 9/73 The front tie-dcwn has 1 cask lug and 2 side plates, while the rear tie down, designed for 109 longitudinal, has 2 cask 1 ags and 3 side plates spaced alternately.

Both have 5 7/16 in. dia. pins.

208'3 -

204

'd

-f cask r 3 r-1 i

e l

I r

I B End A End i

i I

I l

l k

I

! hq t

-15 l

I

  • s as 5 )'

l i

_ $y 4

~

'Sh* 5

- ci,,

I G_,

,10, -

==

,4 l

4

!98f q

t L

%L d

b XI -2 8

Rev.

4-9/78 Analysis of A,oolied Loads (Specified by 10 CFR - Part 71.31 (d))

10g Longitudinal = 10 x 220,000 = 2,200,000 lbs at rear tie down.

Sg Transverse = 5 x 220,000 = 550,000 lbs at front and rear saddles 2

2g Vertical = 2 x 220,000 = 220,0C0 lbs at front & rear tie-down or saddle.

2 Each of the above loads can be applied in either + or - directions.

The particular ccmbinations which produce the maximum loads on a certain structure are developed in the following cases.

(1)

A end Impact Car

- 10g foreward on cask l

E__ _ _

IO P E /C E:ID q

G 4

4/ 5 1

A\\

7 y ja{n

'Y 1a%

l?005 m

i T

1:

R

' itching courie at F and R iF = 2.200.000 x 21.5 = 450,520 los.

193.25 Vertica's for rear tie dcan ar. R Verticals for front stacort at F t 450,530 pitching 10g

+ 250,530 pitchirg 109 t 220,0C0 29 V 4 220,CCO 2; V 4 110,000 lg static wt.

& 110,000 1 3 static wt.

i 570,530 Net tensicn

& 730,530.iet Ccmpression h53 J

XI -2 9

"ev. 5 6/79 570,530 A

550,000 (59)

'N j/

~

~'

(777,325) (5g) saddle V

R = 1,120,530 Lug Rear Tie-down alane (R)

A End Impact Rear tie-down cask lug and pin, net loads 1,120,530 lbs. t vertical, tension 2,200,000 lbs. & toward A end.

2,468,924 lbs. % resultant Front tie-dc. n is not loaced with 10gl acting toward A end.

Front and Rear-saddles are designed for 2g transverse instead of 59, since the whole package of car and cask is unstable at abcut,5g, and 2g design leading provides adequate large margin cf safety.

570,530 L

f,

[

I 220,GCC t

/,

(2 )

9

,k N

j

\\311,124 I

Saddle 790,530 Lug 6 c. r) 30ra s

XI 10

Mev. 4 - 9/78 790,530 4 450,530 pitching 220,000 i 220,000 2g V (2 )

9 4 110,000 lg static ut.

([\\y 4 790,530 net compression 403,426 A'~>' 714,5 52 Saddle Saddle Front plane (F)

Saddle A End Ixcact (2) For 10g L acting toward B end of car and bottom of cask B end Impact A End

__ 109 _>

B End 4

Impact 41.5 10g

!,\\;,

~

s.

[

177.25 d

l i

F R

Pitching couple at F and R

~+F = 2,200,CCO x 41.5 = 515,E32 lbs.

65]

7]

177.25 XI 11

,ne r-

Rev. 5 6/79 For front tie-dcwn at F 4 515,092 pitching 9 220,000 2g V 4 110,020 19 Static 625,092 4 625,092 net tension 4

550,000 (59) s

' 's 1 (777,325) saddle (5g)

Y F = 1,175,092 Lug Front Tie doan Plane (F)

B End Imoact For Rear Saddle at R, wit'i 29 transverse

? 515,09;' pi.ching f 220,00's 2g V 4 l_10,00C _l c s ta ti c '..t.

F 845,092 net ecmpression ca; na.p s

.,v t

l

/-

m,

/

l

\\

/

N 220,0C^

f

$5 l

k,

/

\\

4,9,007 753,134 Saddle Saddle i

Rear Sadd'e 3ne :r)

B End Imcact

< I:.'

~n "d

O i.) /

x:

2_ 12

Rev.5 9/78 2_.2.1 Tie-Cown-C3sk Closure He 3d End

("A" End) t I

UN w

s Weld #1 l

l Weld #2

)

/

-.'Y L 1 &~

[2 l

t/ f,,-- Weld 4 3 p.---T~~~~~

w Q

I / / / / / / / / / fi / / / / / / / /,/,/ l s

i j

}

s 3, l(,--

-s xxxs s 31

[

/

k{

[(dj K

l f

td s

g t

k /

s s

s 5f C :~2bJ L,l I G A P,

/

I

.p -

'YJ

/,

)

s

/ /

,, / _/ /,

'- / -

I s

Front Tie Ecwn "A"

End Also Closure Head End of Cask g r; h;. I.,)

_. U U I-XI -2 13

Rev. 4 - 9/78 2.2.1.1 Front Tie-Down Analysis m

s Cask Lug a-y s -

n !;"r I

4-- 2 -<-

k-3'i ---- u 6-2

-r i

d Car Car Plate Plate 57/[6 l

I 4

i l

i I

i I

f i

--+ilt3 -<-+ l - 3 / 4 -s P/2

/.

P XI 14 655

.5 0 ;<

cm; e

_vunJ

Rev. 3 9/73 I

m N 2SidePlates-,\\

Bottom Plate-

\\

\\

[

~

Spacer Plate

\\ \\

[

I!

Center Sill - \\ 'N j-Weld fl

. ~, eld

=,2 s

4 N ' al '

t

/

xe, e n

/

\\

~

\\,da

/ l-1 Front Tie C:wn "A"

End

() 5 }

7

  • r,

-iU XI 15

Rev. 3 9/78 2.2.1.2 Front Pin analysis P = 1,175,092 lbs on lu3 (from B end impact - XI-2-li)

P/2 = 587,546 lbs on each plate Pin dia = 5-7/16 in.

Material 17-4 ph (100,000 psi Y.P.)

Z

.098 (5.4375)3 = 15.755 in3 A=T/4 (5.4375)2 = 23.22 in2 Pin stresses at section A M; = P/2 x 1.5 = S31,319 in lbs.

Sb = 831,319

= 55,939 psi 15.755 S = 587,546

= 25.303 psi 3

23.22 Y55,9392 + 3x25,3032 = 71063 psi Combined stresses =

M.S. =.9 x 1C0,000 - 1 =.266 71063 Pin stresses at center P MB = P/2 x 3h - P/2 x 7/8 = P/2 x 2.375 = 1,395,422 in lbs.

Sb=M = E3,570 PSI S

=0 s

Zo M.S. = 4 9 x 100. ] - 1 =.016 85,,

XI -2 15 g g

,c.

Us)

J ; ;i

Rev. 4 6/79 2.2.1.3 Front Cask tu] Analysis l

Section throuch C.L. of oin n

Area = 3-1/8 x 3-1/2

. 256 = 10.5045 in' 2

Tention Load - 1,175,092 lbs. (frce B end impact XI-2-12)

Hoco stress acrcs; area - tension 1275,092 55,933 csi S

=

t = 2x10.5045 M.S. = 9 x iC00,000 - 1 =.609 55,933 Shear tearout at 400 frcm C.L.

3'" - -

Area = 2 (3 5/8 x 3-1/2

.75) = 24.625 in2 I

2

,A/

47,719 psi S = 1.175,G92

=

s 24.625 Sb i

M. S. =. 6 x. 9 x 100,000 -1 =.131 47,719 3

Tension area thru diameter 2

Cask Lug Area = (13-5.5) 3.5 = 26.25 in 31/8 St = 1,175,092 = 44,755 psi 26.25 a

!1.5. =. 9 x 100.000 -1 = 1.01

- 29 q

- b X 30 44,765 fCr

? l (3 Ud w n XI-2-17 c q ' t:

A.c u;t u

Rev 4 9/78 2.2.1.4 Front cask lug - Weld strength 4hA SC

]

O 3

k_ c _A.::/ 4 g4 d alI i

,e Ac s.

w l

i O,

A r

G,Y AC thick l

I m'I n l

Front lug = 35.,"4 pn s.s 1

~

li-

, "rm fge

@q i

lm

/%06 -

Hl

~

l

_m_

Weld A = l-1/4" J + 1" fillet on 2 sides of 3S lug Weld B = l-fillet on 2 sides Weld C = 1" fillet across end of lug en cask Weld 0 = : x 3/4" fillets at end of lug, normal to cask Throat areas of welds A = 2 x 123" 3"

=

B = 2 x.707" = 1.414" C =.707" D = 2 x (3/4 x.707) = 1.C3" Weld material has substantiallj sare physical as 3Cl S.5 base material of cask, ce valaes Of latter are used.

(75CQ UTS anj 20,0u0 YP) 2 Therefore, threat area of weld is critical, rather t,an interface areas of contact wi*.h cask or lug.

Q' v r) c 4

/

atJ XI-2 lS

Pev. 5 6/ 79 C.C. of welds - to find X and Y Weld Area (A)

X AX Y

AY 2.47 0

0 5.5 13.585 3'C 3'3 x. 707

=

4hA 4h x 3

= 13.5 25 30.33 5.5 74.25 5.5A 5.5 x 3

= 16.5 49 74.25 2.7-45.375 9.0 6

54.0 0

0 3A 3x3

=

ISB 15 x 1.414 = 21.21 15 313.15 0

0 3.71 22b 33.47 0

0 3bD 3h x 1.05

=

66.39 x 8.44 =560.25 2.00 133.21

- 4.50 3.94 g = c 5 X(.707)3 + 2.47 (8.44)2 + 3 X (4.5)3 + 13.5 (6.19)2 I

12 12

+ 2 x 5.5(1h)3 + 15.5 (3.94)2 + 3 x 33 + 9,0 (2,44)2 12 12

+ 1.414 (15)3 + 21.21(6.56)2 + 7 x (.C3)3 + 3.71 (14.06)2 = 3081.8 in4 12 12 I

=.707(3.5)3 + 2.47(3.5)2 + 2 x 4.5 x (1.5)3 + 13.5 (3.5)2 xx 12 12

+3x (5.5 9 + 15.5 (.75}2 + 3 x 33 + 9.0 (2.0)2 12 12

+ 2 x 15 x (.707 0 r 0.1.21 (2.0)2.1.C6 (3.5) 3 - 3. 71 (2.C}2 = 393.7 i 1 12 12 3051.8 + 393. 7 = 3 30. 5 i n.4 I

=

p

[i..J

'T s

s.

XL lg3

Re v. 6 9/78 Eccentricity of vertical load = 1.94" P] = 1,175,092 lbs

( /,I 15 )

T = P) x ecc = 1,175,092 x 1.94 = 2,279,67S in. lbs.

T = 2.279,678 = 655.

IP 3430.5

= M = AP) f = 655 Pfor anj point S s 7

S_ tress at point (3) p=[;2+14.062

= 14.2 in.

S = 655 x 14.2 = 9301 psiIccr.pression s

57 = l.niform tension stress over all velds 1,175,092 = 17,700 psitensicnh

=

66.39 Net stress = 17,700 - 9201 = 8399 psi tension M.S =.9 x 30,000 -1 = 2.21 8399 Stress at point (2) f=3.94 I

Ss = 655 x 3.94 = 2531 psin 17,'00 ps; I S

Net stress = 17,700 psi + 2531 p;. = 20,291 psi 4 M.S =

_.9 x 30,CC0 -1 =.33

_ 20,281 Stress at coint (1)

(3 = f 8.;;2 + 3.52

= g,14" 655x9.14=5939 psi 4 S

=

3 17,700psij S

=

Net stress = 17,700 + 59E5 = 23,682 psi d

6j-}

}, j }

M.S. =.9 x 30,000

-1

=.14 23,635 XI-2-19

< o r:t 5

_vu

Rev.5 9/78 2.2.2 Tie down - bottem end of cask ("B" End) l T

CASA h/~~I '\\l

\\

\\

-N

/

~ ~ ~

i l

l l

Weld 41

-'~~

Weld #2 i

Ah b.

Wfat Wold #3

,l- - - -

/,,/

c I

(t,I\\\\\\

N N N N x NJ'N N 'N x s s s s x g

, // /-.

f 1

j N.

J Id l

f I.'J l

r i:b Y.<I (0

l i

/

pd f ra/L

't t _ '0' l l'IE k.'l m

/

y7

,a

"'yz A

(

s xss s s s

s s

)

Rear Tie Ccan "B"

End Botten of Cask

,,D D I: 3 XI 2 '1

f'ev. 5 6/ 79 A

I l

    • - 8 5

-j q

722 i

N,,-

1 l

N/

s J

\\

l i

v i /

5 '

/. \\.

"1 A

\\

\\

l l

'N I

1/8R 6-3/8

- N 3'

s.

t_

A Rear Cask Lug (B End)

For imoact at "B"

End i

F.

I 2,200,000 lbs I

I I

i For ircact at "A" End F

,Os 2 =~

/

i 2,200,CCC I

A w N.

\\

F3=

m,-e c.91-x i

N M

1,120,530 7'7

[] r: E

/. )

) i /

1 O C*/

r" XI-2 0]

_o v s t 4

Rev. 5 6/79 2.2.2.1 Rear Cask Luas - B - End Material 4-PH 100,000 psi y.p.

~~

i Min. area at vertical section =

_ _ __ 7 f//5G h 3-

-d (3 x 3-5/3)

' x.866 = 10.44 in.2 i

i

~y 6 53 3 Fe Max tension load = 2,468,924 lbs y

__Y---. h

/

Y on both lugs (!r. pact at "A" End)

RKr

\\ki< ~ 0, 2

Hoop stress thru section A =

2,468,924

59,852 asi (12.375-5.5)3x2 M.S. =.9 x 100,000 - 1

.50 59,852 Shear tear - out at 400 to 1 cad line Area = 2 (3 x 4.66) = 27.96"2 S

= 2,458,924 = 44,151 psi s

2 x 27.96 M.S. = 6 x.9 x 100,000 -1 =.223 44,151 Bearina stress at P Bearing arec 2 lugs = 2 x 5.5 x 3 = 33in2 S

= 2.468,924 = 74,516 psi 33

.9 x1.5< 100,C00 -1 =

.30 M.S.

=

74,dio

,*r t.

.s

--> h 1

b XI-2 22

P.ev.2 9/78 2.2.2.2 Cask pin - B End 7/16 dia.

Material 4 PH 100,000 psi Y.P.

Z =.098 (5.437513 = 15.755 in3 A =. /4 (5.4375)2 = 23.22in2 u

p P

i' Lead distribution 9

l 2

3 _ j-4 i

Fig. 1 I

I

.s

~f 4

jB C

I I

i<

L=14 y

i P

P Fig. 2 l

h f

[ Y1 h

p Fig. 3 3l 1 C 1

Y f7 3 1

'j B Fig. 2 Snows center deflectico 9,, caused by two loads (P) on siroly su; ported bear (suppor; 5 recovec)

Fig. 3 sbcws supcort force 3 required c return certer pei'.

to save le'sel as ends A and C.

Ot%

Max. lead = 2P = 2,463,922 from impact a'. A end.

P = 1,232,462 lbs.

r, b 'j D J

XI 22a

Rev. 2 -

9/78 From Fig. 2 y'. = P a. ( 3L2 - 4a2) l 24 $.I I

l a=3 L= 14 l

2 y., P x 3 (3 x 142-4x3)=cgp i ~ 24EI El Frca fig. 3 Y

=[8 = B t2 = B x 143 = 57.1666 B A

JaEI 48EI El Equating 69P = 57.1666 B B = 1,207 P A = C = 2 - 1. 207,

=.3965P 2

But max.

P = 1,234,462 lbs B = 1,489,000 lbs A = C = 439,464 lbs Mcment at P = 489,464 x 3 - 1,234,462 x.75

=1,005,469 in lbs 2

Moment at B = 489,464 x 7 - 1,234,462 x 4

+ 1,439,CC0 x 19767,100 in lbs 2

At P, Max So

= 1,005,269 = 63,819 psi at P c-1

,,/00 3

Shear at P = 439,263 - 1232264 = -127,763 lbs 2

i i

Ss "

127,M5

= -5502 psi l

43.'d f633192 + 3 (5502'2 = 64,527 psi Cerb. 5

=

7 M.5 =.9 x 100,000

-1 =.394 64,527 At B, Bearin; s., It = 1,439.000 = 67,6?2 psi c

., xo.b 4

M.S. =.9 x 100,CCO

-1 =.329 conservatise 67,622 7n

-c

() b D J t_ U x1-2 22b

Rev.2 9/78 2.2.2.3 Welds of lugs to cask The two lugs welded to cask are of 17 aph metal, while the i

cask itself is 304 S.S.

The weld metal is similiar to the base metal and is calculated at 30,000 psi Y. P.

The weld is critical thru its thrcat area.

There are two conditions of applied loads acting through the center of the pin.

When the force applied at the cask C.G. acts toward the B end of the railcar, the rear tie-dcan is loaded only by the 10g L force while the vertical forces are taken in ccn-pression on the rear saddle itself. When the force of 10g L is acting in the direction of the top (A) end, then the rear lug pin is loaded with both 10g L and the resultant tension of ap-plied vertical forces (of pitching, etc.)

For an imoact at (A) end, the total resultant load of 2,468,924 lbs.

acts almost through the c.g. of the welds, and so regligible torsional stresses are daveloped.

The main stress is the average uniformly distributed stress of-14,8C0 psi S = 2,463,92' lbs.

=

166.66 i

Due to the direction of the resulcant, this is lar;ely tension across areas 3, c a d e and 12 gely sheat acrcss areas b and d.

Even for a point which Tay be cor pletelj crieated to pure shear,

this stress is safely Icw

.6 x.90 x 30,000

-i

=.035 shear (4ctually conse.<.ive M.5.

=

14,000 on Y.P.)

bb3 7 9 '\\

,-r JL XI-2 92c

Rev.3 9/78 l

A 3 +

Cask

Bottc, a _i_

d=12 2

7 EAR TIE-C0Wil

- +- 1. 6 7 '+

le 5 Iq g N c.g. welds N

N 3.66 1

3. i6 j

3 d.

$=8 t

l Weld Pattern 2,200,000 2,200 000=Fo 1

c 1

3, for Rear Cask

=F1 A) F ont IRpact Rear (B)

F 3 Impact R=

1,120,530 2,468,924 e~n These lcads are for 2 lugs 3" thick 9

~ R ";

XI -2 22d

Rev 4 6/79 Throat widths - single lug. (w) a lh" fillet w= 1.5 x.707 = 1.06 in.

b, c, d each 2 (1 filiets + 1/2 penetration) w = 2 x 1.50 = 3.0 in.

e li fillet w = 1.25 i,

To determine C.G. welds xw=

A X

AX AS a

3 x 1.06 3.18 0

0 0

0 b

8 x 3.0 24.0 4

96 0

0 c

5.5 x 3.0 16.5 8

132 2.75 45.375 d

12 x 3.0 36.0 14 504 5.5 193.

e 3 x 1.75 3.75 20 75 5.5 20.625 83.43 (9767) 807 (3.16) 264 Polar mccent of inertia Ip for each lug

+ lw3

+ wly ),here wl = A 2

= jE (wl2 + wl x2 12_

12 x2 + y )

2

= j~ A (w2 +12 +

12 12 2 + 3.16 ) = 24 (32+32 + 5.67 2

12 T2 W

T2-2 + 3.16 )

2 A

2 Ip = 3.18 (1.06 + 3 + 9.67 2

2

+ 16.5 ( 32 + 5.52

  • 1.672 +.41 ) + 35 (32 + 122 + 4.332 + 2.34 )

12 12 12 12 2

  • 3.75 (1.25232 + 19,33 + 2.342) 12 TT

= 331.750 - 1157.223 + 102.76 + 1331. ^ 12 + 423.913 3346.553

=

For b0th lu32, 2I

= 6693.7 in.

?

2A = 166.86 i n.?

6 ~5 rd JLJ 7'T XI-2 22e nc A v w::r~

tD

Rev. 3 9/73 For an imo3ct at the rear (3) end, F1 = 2,200,000 lbs and the vertical loads are all taken by the impacter rather than by the lug.

Average stress S = 2,203,000

= 13,135 psi for all welds.

166.86 Torque due to eccentricity is T = 2,2CO,000 x 3.66 = 8,052,000 in lbs.

T/I

= S,052,000

= 1202.9 psi p

6693.7 Shear stress at any point of the welds to cask Ss = f (T/I ) = 120.219f p

For point (a)

(3 9.672 + 3.162 = 10.2 in.

S = 10.2 (1202.9) =,12,270 psi (co:rpression against jacket) c e S = 13,135 psi is here a shearing stress s

Sc =

12,2702 + 3 x 13,1852 = 25,925 psi M.S. =.9 x 30,000 -1 =.04 conservative because comoressive stress.

25925 For midpoint of (c) f= app. 1.67 iE = 1.67 x 1202.9 = 2.C09 psi (shear) 3 13,135 3 x 2009 = 13,636 psi (compression)

Sc

=

M.S. =

.9 x 30,000

-1 =.93 13.c:0 For coint (e) f =

10.332 + 2.342 = 10.59

.h S 7 10.59 x 1202.3 = 12,721 psi tensico

=

eS

= 13,135 psi shear St 12,7al 2 + 3 x 13,1352 = 26,151 psi

=

.9 x 30,000 -1 =.43 M.S.

=

26,151

',, 7 p,. -,

_3 XI-2 22f

Rev. 3-9/73 2.2.3 R> 'icar tie-dm.ns and saddles Accident analysis This analysis deals with those parts of the tie-dswn system which are attached to the railcar rather than the cask bcdj itself. The same applied loadings are used as in the pre /ious analyses of the cask members, namely 109 longitudinal, Sg lateral and 2g vertical, The difference in this analysis is that, since it is for an accident conditien, the allc.vable desian strengths are 100! 6f the ultimate tensila stress, contrasted with 90? of the Y r in the previcus cask member analyse To prove that in an accident, the failure wou:0 be thru the railcar attachme..t welds, a final sumrary of M.S. valves is made, comparing these railcar members with the cask ratings - for the accident condi-tion only.

Material properties

- U.T.S. values are taken as 75,000 psi

- 304 stainless steel (also 308 weld rod & wire) 115,000 psi 4PH Stainless steel 115,000 psi

- T-i steel 95,000 psi

- EC1B weld red 1 wire i

i 75,000 psi

- 7013 weld red & ai re f

Refer to secti:ns 2.2.1 and 2.2.2 for pertinent dra.4ings and part i

dir.ensions and weld designaticns.

-c

,n-DIj siO XI 229

Pev. 3 - 6/79 2.2.3.1 Front tie-down - Railcar plates - T-1 stcel - 2 plates Impact at B end l

[-

Section through C.L.

71 !

4 l

4' i

e-200 Area = (1.3 x 2.75) - (3/4 x05) - (1.732) = 4.047"2 h

2 5.25 1.8 Load per plate = 1,175,092 = 537,546 lbs.

2

. Hoop stress across section n

Y 4-,.6.9d St = 537,546 = 72,590 psi 7.0d 2

2 x 4.047 j

2-3/4 q

M.S. = 115,000 -1 =.584 72,590 3--

C.L -

Shear tearcut at 400 from C.L Area = 2 (2.6 x 2.75

.05 x.75 - 1.732) = 12.49in 2

587,546 = 47,041 psi S

=

s 12.49 M.S. =.6 x 115,000 -1 =.466 47,0al Tension on diameter Area = (11 - 6.9) 2.75 - 2 '.C5 x.75) = il.20in2 5 earing 5ga = 537.525 = d2,576 psi 527,545 = 52,453 psi 6.9 x 2 5.

=

11.237 M.S. = 115.r^3 -1 = 1.7 42,575 M.S. = 115.000 -1 = 1,';

52,459 bj5 326 XI -2

?2h 13505

Re v. 3-9/ 78 2.2.3.2 Front tie-dcwn - Railcar welds Welds 1 and 3 are superior in strength to that of weld 2 which is sacrificed in tension (the cnly load imposed under transit conditions or when impacted at B end in the accident condition)

'! hen impacted at the A end, weld 2 can easily be overturned and separated but only af ter the rear tie-down has initially released the cask as a free body.

Weld 1

- 2 side plates to bottom plate - (T-1 to T-1) (95,000 UTS welds) I l-1/8" J weld on outer side of each plate 1" fillet welds all around both plates =

2 x (11 x l'3 throat +.707 x 16'2) = 56.3in2 P = 1,175,092 lbs.onpinand2platesIimpactatBend St = 1,175,092 = 20,372 psi 56.3 M.S. = 95,000

-1

= 3.55 20,872 Weld 3 - spacer plate to center sill (T-1 to 64,000 psi UTS steel)

(75,000 UTS welds; 2 welds each 1" fillet x 20" len; Area = 2 x 1 x.707 x 20 = 23.28in2 - throat of weld S

  • I'I73'C32 * #I'552 P3i t

28.25 M.S. = 75.000 -1 =.80 al,552 i

Interface with center sill is alor.3 1" face of weld.

Area = 2 x 1 x 20 = 40in.o S

= 1,175.092 = 29,377 psi t

40 M.S. = 64.000 -1 = 1.1~73 29,377

[(' L :.

79/

-)

_t XI -2 22i

Rev. 4 6/79 Weld 2 (sacrificial) bottom plate to spacer plate (T1 - Tl) - Tension onlj 9/16 in. fillet welds along 13 in. sides cal / (95,000 UT5 weld)

Area = 2 x 13 x 9/15 x.707 = 14.317in2 S = 1,175,092 = 82,077 psi t

14.317 M.S. = 95,000 -1 =.157 tensionI 82,077 Therefore, in severe fore and af ter impact as specified (lCg) the welds will all have a generous M.S.

Front tie down weld #2 - accident condition - A end impact Weld 2 will be separated, not in tension, but by longitudinal bending after the rear tie down has separated.

Eending stre_ngth of weld #2 in break away af ter rear tie dcwn parts Z

= 2 (9/16 x.707) lg2

= 42.95 in3 xy

-0 Area = 2(9/16 x.707) 18 = 14.317 in.2 Mccent arm = 6-1/8 + lb = 7-5/8 in, height.

F = har. force required t; cause f ailure in bendir.] and shear.

M = 7.625F Se = 7.625 F =.1775F 42.35 Ss =

F 14.317

\\)' (.1775 F )2

+3(

F

)

Ccmb. stress =

,1216 F

=

( 14.317)

F max. = 95,000 = 731,250 lbs to break away thru 95,0:0 UTI welds

.liiu 3.55g

_701.251

=

220,000 Longit;dinal force to break away weld 42 41 f:

79n 0 ;J JL0 XI 22i

Rev. 4 6/79 2.2.3.3 Pear tie-down - Pailcar plates T-1 Steel -- 115,000 psi UTS - 3 plates Imoact at A end Load on central plate = 1,433,000 lbs.

__. __ _ _ _._. _ q Hoop stress - - at top - flatted l

9,

,2 i

-O

  • f I

C

's

=LA T c30 A) = (4 x 2b) - (.75 x 1.3) = 9.025in?

4 24 S. = 1,459,000 i6m_, p A,

2 x 9.025 = 82493 psi I

e'-

M.S.

= 115,000

-1

=.394 82923 l

38 Shear tear out at 400 to 45'3 load line.

I J #

7,_R c.[' -

Area = (4 x 3'3) -(3/4 x 1.3)

C:.N # ;

?, - -

= 13.025 in2 57,160 psi S

= 1,429,000

=

3 2 x 13.025 M.S. =.6 x 115,000

-1

=.207 57,160

&f Load on each side plate = 489,464 lbs.

\\; 30 4

4 l

Hooo stress at top - flatted g

2 A2 = (3 x 2) - (.75 x 1.3) = 5.5125 in

{

< = 239.252

= 44,395 psi g

l 2 x 5.5125 M.S. = 115,0:3

-1

= 1.59 4

,at:

g 3

Shear tear cut at 400 to 450 lcad lire l

__f_ __ f _

M Area = 2 x 3',

,75 x 1. 3 = 5. 51 i n2

=> c F S / 0.1 FL^7.= N 2

37,593 psi S = 489,454

=

s 2 x 6.51 f t.S. =

5 x 115,000

-1

.835

=

37,593 4

f. E 79 J c_ p/

U

'J XI 22k

Re v.3 -9/ 73 Incact at B end Stresses in all plates are reduced frcm those calculated above in the rates of 2,200,000, so they are not critically stressed in this con-l 2,463,924 l

l i

dition.

l 2.2.3.4 Rear tie-down - welds to railcar Weld 1 - 3 piates to bottom plate of weldment (T-1 to T-1) - weld 95,C00 psi UTS.

2 4 x 42(" of 1-1/8"J + 1" fillet = 170" x l'u" thrcat = 255in o

(2 x 42t3+ 16) of 1" fillet = 101 x.70 throat

= 71.0 i n" Total - weld 11

== 326.4 ind Weid 2,

- (Sacrificial) Bottom of aeldrent to center sill spacer plates (T-1 to T-1) - weld 75,000 psi UTS.

88" of 1-3/8" fillet - 88 x l-3/E x.707 = 25.55in?

Weld 3 Spacer plates to railcar center si (2)

(T-1 to railcar sill (A4 1 - 67,Ct) psi UTS)

Weld 75,000 psi UTS.

142" of 3/4" penetration + 1" fillet 1 2" x li' thrcat = 177.5in?

l l

Weld 1 and 3 are obvicasly n.ch stronger tnan neld 2.

Ed 2 is sacrificial and will te Nyre: in ce::il.

>SS a XI-2_22L

Rev. 4 6/73 I

i CASK I

I i

,~

4 2 ):

l

~

l t

17 }.

4 ) l_

4 2

61 R -

l l

i

- -~

~p l

y

's

/

i N

'N i-l 1

s s

6

/

i

\\

j

.L I

\\

- -WELD 1 l

\\

i

' ']

s j

ii I

\\

-- - - 4 7 ]

D

+

12 2

x 7L s

l I

'x j

./

rWELD 2

' -1

\\

-WELD 3 8

1--

N

}

[

I

\\

N I

_[_

l I

/

I j

i I

5 7 --- - ----

16 g __ l.- 4 --

l i

22


r i

a d

i I

i L_

V C'

7 I -- -

. -- 2 3

' - - - ~~

I V

P ! '.

3 = 22 C=1 l

I

- - - - - - 23.15

- --- 19. 35 -

i i

I

~

~

j n

n

7. 6 :--

l c

1 b = 22 C=4 1

Y WELD PATTER:i 0F FLA:lE -A-WELD 2 6 C C, 77

>aj s..

33595 X1-2-22m

Pev. 3-9/78 To find C.G. of welds

..' eld 2 0

a 13 x

0

=

2b 2x22 x 11 484.

=

364 2c 2x4 x 45.5

=

855 d 18 x 47.5

=

2 83 x (19.35) =

1703 in

+

9 x 22 x 3.352 + 2x23 + 2x4x26.152 + 18x23.152 Iyy = 18 x 19.352 + 2 x 223 12 12

= 31327.in3 for line welds h ld throat = l-3/3" x.707 =.972in 2 for line welds x.972" = 1032 in3 Zd = 31327 = 1112.86 in 28.15 Za = 3T317 = 1619 in for line welds x.972" = 1574 in3 2

19.35 Area =19.35 in' weld lengthi= 88", weld threat area = 85.54 in2 For irroact at rear (3) end - Loads on tie-down at rear - weld 2 F1 = 2,200,000 lbs.

F O

M = 2,200,C00 x 12 5/8 = 27,775,000 in lbs.

ct c.

This puts tension at 3. L ccrpression atl l

Trere is r.o vertical 1:ad in this case.

l Shear stress S = 2.2:0,Z = 25,719 psi i

s c5.54 I

at 1 cax tension S; = M

= 17606 psi j

10/4 i

Ccrb. stress 5=k175432 + 3 x 25.7192 47914 psi

=

M.S. = 75.0C0

-1

=.565 at a

~

47,914

'l

.' J :_

r.

J XI -2_22n

Rev. 4 6/79 For imoact at front end ( A) - Loads on tie-do.,n at rear.

..mi d 2 F) 2,200,000 lbs. e -

=

R = 2,4CS,924 VI = 1,120,530 lbs. i M = F1 x 12-5/8

  • VI x 7.65 = 35,072,055 in lbs.

This puts tension at D and comaression at ?

Stress at D

( Sa c.

'..'el d = 2 )

M

= 36,072.055 = 33,333 psi Z

1,0u d

. 'l )

= 1,120,530 = 13,099 psi 85.54 A

4 Total tension = 33,333 + 13,C99 = 45,437 psi Shear stress K = 25,719 psi Comb. stress S -

46,4372 + 3 x 25,7192 = 6,349 psi The trax stress at the plane A of the sacrificial weld is thus 64,349 psi The weld is bet'.seen T-1 plates.

Weld.'t.S.

= 750JO

-1 =.165 at d

~

64,349 This assures adequ1*e strength for ICgL + 53T + 2;7 cer.dition, jet allcws controlle:: bre ak-2.vaj encve tH 3.

XI -2 22<3 7, [i ]}

Rev. 3 - 9/73 2.2.a.5 Saddle bearing stresses - Impact limiters on support structure The ccmpression Icads 'sn a 450 saddle structure are maxi.um as fol l o.vi n g : 753,134 lbs. Pear saddle, impact at C end, 2g lateral "inimum bearing area of each flat on radial base plate of im03ct structure is 23 x 1.5 = 42 in2 S R = 753,134 = 17,932 psi B 42 The material is 6061 - T 6511 witn allowable compressive stress at y.p. = 36,000 psi M.S. = 36,0_0_0 - 1 = 1.00 17,932 This is for the net area of the edge of the end plate itsel r, and neglects the load distribution afforded by tne actual flange width itself, thus actually giving lower stresses. L 7,,

JJ4, s'.

XI-2 220

9/78 2.2.3.6 Sumen of Tie-Down Stresses The various parts which are positioned between the cask proper and the railcar proper, and which constitute the tie-down and support system, are subject to different 6_-ign requirenents. Summaries of stresses are therefore presented in twc groupings, each consistant within itself Condition _A has loadings of 10g L, Sg T, and 29 V and applies to integral cask tie down luge and associated pins, with stresses limited to.9 x y.p. Condition ' is the acciden' condition. The same loadings of 10gL, 5 gT, and 2 gV are applied 3 the railcer plate weldrents which mate with the above pins and are we ded to the railcar center sill. Stresses ^ are calculated on the U.T.S of case metal and of weld material for these parts. To make a consistent comparison of these railcar parts with the above cask related parts, it is necess ry to calculate a new set of M.S. values for the latter, based en U.T.S rather than.9 x y.p (as in condition A). This will permit determining hcw anc where scoaration would accur becoeen cask and railcar in the case of Taximum accident. D< s s j;3 GG 77-XI-2-22 q

9/78 Stress Sumary - Condition A - Transit .9 x y.p. Allowable Imcact at Memb _er Stress M.S. (.9 y.p.) B End Front Pin 88,570 psi beading .016 Front Lug 47,719 psi shear .131 F ro n t Lu g ',-lel d 23,635 psi tensicn .14 A End Rear Pin 64,527 psi ccmb. .394 Rear Lug 44.151 psi shear .223 Rear Lug weld 14,800 psi shear .095 + Bend 25,925 psi comp. .04 + Stress Sumr.ary - condition B - Accident - U.T.S allov!able (Note - above cask related members herewith re-evaluated at their U.T.ST Imcact at Member Strass M.S. (U.T.S) A End Rear Pin 64,527 psi ccmb. .782 Rear Lugs 44,151 tsi shear .563 Rear lug welds 14,S00 psi snear 2.04 eear center rail plate 57,150 psi snear .207 Rear side rail plate 37,593 psi shear .835 Rear Weld #2 64,229 psi cccb. .155

  • 5 End Front pin 88,570 psi bending

.298 Front Lug 47,719 psi shear .446 Front Lug Weld 23,685 psi Tension 2.166 Front rai.1 plates 47,041 psi Shear .466 Front Weld el 20,872 psi Tension 3.55 Front We'd #2 82,077 psi Tenzion .157

  • Frcnt s;el d d3 41,552 psi Tension

.80 Rear Lug Welm 25,925 psi Cc:.p. 1.892 Rear Weld =2 47,914 psi conb. bb ) ) b.565 13505 XI-2 22r

9/78 Conclusions - Tie-down Stress Analyses. Condition A - Transit The rear, or B end, tie-down takes the entire 10gl in both directions, plus the resultant vertical loads frcn all three (3) axes of component loadings. The stresses are greater when impact occurs at the front, or A end, putting the cask lug largely in direct tension. The front, or A end, tie-down takes only vertical leads in tension, which deve-lope only whr.n impact is at the 3 end. Satisfactory M.S. valves apply to all cask related members at a conservativo .9 x Y.P. stress for 10 gL, 5 gT, and 2g V for the transit condition. Condition B - Accident For A end impact all members have M.S. values greater than the.155 value for the sacrificial weld #2 of the rear (B end) tie-down weldment. This initi-ates the break-away procedure, follcwed by rip off of weld #2 of the front (A end) tie dcwn weldment. Break-away of the cask occurs there at a icngitudinal force of 11.65 gl. For B end impact also all members are sucerior in strength to the #2 welds. The sequence in the break-away, hcwever is reversed. First tne front weld 52 breaks in tensica as the front enc of the cask rises, follcwed by break-away of the rear weli #2. Saddle Weldments are integral wir.h :he railcar structure and carry cnly ccepres-sive loads. They are not part of the accident f ailure situaticn. In conclusion, the design satisfies the specificaticn re. event that the #2 Welds are sacrificial in the accident ccndition. (: C ?,- J JJ/ XI-2-22s

-,,.g..

  • ,g

-~-re, .m,,,r..r-,.~-,----,,- 7... , -, %f .y.., .,p. rg, f M f-h 's. .~,. .c. - _).- r A e I

  • g t,

+ r'- -Q', E f R' M t g [ 9 4, P I+

  • I 6

..,'r i - n. s, 4 I A I k - g a , k. 4.. s. 9 i ( -4 u 6 M .3-e . m. 4 t, 9 s ~ /- M t u c ,-as >~*

  • fs

.f." 5 e.,nnt 3 b / ' R + e a d 1 , a y k- ^'q-1 ?.' r --e. p f 4 s j g Ie.% A ,W,' e s 5 ^p, 9'-, - a 4 '* $ +$ %%Y Y w rb-y 5-E T

  • 9 @'"I M

I V g .,g'. 7 ,j . i. ( sa,' pg, A,.., 4 {, m o 6-6 6 s'

  • no

+ .4-e c + e m)* S 9 ,A f ,s. yn Q* k e 5 DM yy. w s .-w Y ar Y M n'@ s I kf4 ~ k .h i g , 4 h / G = 1 Q.} W d s e y. 1 T i 4 5 e e g !== .w 4 4 L b ~, r L~ . - f-g / r I . (I. _)' b M at O s' 9 i , e r' a w t / t h 44Wea'm.4E we s 2h%.d.m me.no A = P e e- -h.- 4' e 6*. A _ a.d e 4 # .A-.a4a'-.-h-a, + w, 2 .44. ai ..e m - e .o* 6 e-. m.==m 'e .m-em

Rev. 4 6/ 79 Allcwable Stresses for 6061-T6 Temperature of the Spacer is determined by an average of 'he Inner plate of inner closure and the t:p end of the basket. (Ref Sect. VIII - Appendix D) _ 355 + d25 = 39g og Frca Ref: 27, Figure 3.6.1.2.1 (c) Table 3.6.1.0 (f) Percent of Ult at temp. considered = 72; l FTU = 42,000 psi Allowable tensi__e stress (Saa = 0.95u ) for A1.6061 T6 at 390 0F from Sect.1.1 under cask ini.ernal structure and Sect. 1.2 equals.72 (42,000) (.9) = STA = 27,216 psi Allcwable Sheac stress (.6:

0.SaSu) for Al. 6061 T6 at 390 cF 33 frcm Sect. 1.1 under cask internal structure and Sect. 1.2 equals Ssa = 72 (.St ) (42,000)

16,330 psi Allcwable Bearl : Stress = Sbr = 72 (.99) (67,0CO) = 23,215 psi Allcwable '.-lei d Str es s In a weldir; operati:n, dealing with either a st ain hardened or heat temcered altnicum allof, it is impossible :c reduce T5 temcer to a value less tnan 0 condition temcer. Tnerefore, tne ccmputatien of weld allowables may use O condition st.ess allowables as a ccnservative minimca in the applicalbe ecuations. For the O Ccndition FTU = 18,000 psi (Ref. 14) Ali cwabl e Shea r in '.iel d = 90% (.72) (.6) (18,000) = 6,993 psi Allowable Tension in '.Jeld = 903 f.72) (18,CCO) = 11,66; nsi . ( W) a o 0 s XI-4-69

Rev. 4 6/79 . Adjacent hard points on the Fuel have two hcles in each bearing surface, one being.875 in diameter and the other having a diameter of.555. / .555 OM ' / '7 ct!SE3 N'LC-- Top '/lew of Fuel Pick-Up Point / y ~i, ^ ' N .k ~ " 4p Cc,ccJS ,./ /,is Full Scale f k SHADCD AR=/:. ItJD'CATE: EEEENG ( X\\ .32 AREA u,v DM cw&R Essiou Les s i 2 Area = (1.1)(1.17) IT (.555 ), (,33)2 /,/7 2 Area = 1.287 .242 .113 =.932 in /o.2 %.'/ Ekt of FUEL P/sc K u,D 51,000 Po/u r-Fvcc SC4tc 4 x.932 = 13,680 psi Sbr = - m-3 kg M.S 4 3.41 E - 1 = 2.17 = l 13,680 o 7.- n, a l .. o i v ui s i ; N \\ \\ S p' t ,s ? 875-Area = (1.0)2 _7p ( )_W (,3)2 k' N 2 sx 3 / b 2 Area = 1.0 .601 .0705 =.323 in +/, C -:' 1 _ 51, COO ,1 psi I a a,c, br 4 x.323 M.S. = 3,G _ ] .117 = a6371 /i:T: 7 ' t'. vJJ J 'i U XI-4-70

0 / / / / /- / nev. a-sm ) /// ////; / / \\ ! L.ew. L , w sm we ,eim, t /M7 6Y l 4 ,khj02[K _Q((y[ 2 L ruc,rs c,:<., v w ACCGid:.D ??E l 5 7 t I 1 4 i AE F U CL_ d'10\\/ ~i~i 7 2;,j 7 Ell/C // !.S /A // Y /-///~/ l rue emc.,e e, \\ ), .s vet o rsia;<xc YHAT ty/L c a-f sm enn 44 W O A s-3 ~ R p i pW 4' u-Ot RO 4:I 3, he I fi) Q M NIO 4( g R 0 4 S D s N I l txxxxxxy,t;xxx5 3 ) \\ UJJ J 4,i w XI-4-77

Rev. 5 - 6 / 7 9 3 ,I b 'N'i s' \\ 7 p Sog om. N b ID.02 s \\ \\ \\ f 'l g. 287 DIA. =

  • x w

\\ \\ \\ x 2 I x i /'t 1////h/ / // L l l,Q l u\\ xx s:x:x y N i s .i 4 o i 1 !--3 ( t i a

v. cr -.. Rim.

vs / '} XI-1-73

Rev. 5 6/79 Blocks as simole beams: F/2 = 1700 x 30 = 25,500 lbs 2 L cc. _,t_ ;:4 w M = 25,500 x 4-1/8 = 105,188 in lbs. 2 Z = B5 x 1.75 4.21 in3 = 6 l= a S= 05.183 = 24,9E0 psi ~ 4 b 4.21 ITV F Y r, t 27 916 yf

I57, M.S=24,bSO-I=.039 (Conservativej Plate and Ring in Compression 1

i //.9 a ee + 8 _v "*-- 3 / C49. 9-wr. Ec* Tera u Total lcad against cla;Jre head = 952,550 + 30 (200) = 953,650 lbs. area plate and rir.) = (3/d C 31' + (2/5 x 30.25) = 47.26 in2 9:? ^ = S'-"'r^' e' 4 S =

  • <.'c b-c 4*

I M.S.= 27,2!G _: .35s = 20,030 Stability of cylinder Roark - Table X'/I -Case M-erd nst constr air.ec (conservati,e) SI =. 3 E t/ c =.3(.9 x 10,103,C00).375 = 65,976 nsi 'c ri ti c al ) ,o.o-Actual Sc = 20,0?; psi OK All welds are in ccmp ess;cn, if ccre.id' rad laaded at all, since trc,ismissior}J Dof loads, _; stack-u a of rem)er; allc,,s direct ccr.ca.'- for b X, I - 4,,,, -; 4. -

yze-om n_ n -wyn ~7 mw =w e < v.n ~ m - s ev.w+.< mm =y = w ~* er a, r ae ~=r.=v s on w e ww w r, =~-= w-yme vs. w- < 'va-- ~- mg o j ,.e ~~

v. yyw- -, ~.w m.

e e as O ~ 9 w I 4 e# E 1 J A g m =.- A d y g g e d 0 S

  • ~

te..e,'.4 s - N y, e \\% t 2 ~* I A .0 m.~ b s.' r%' 'g .few ,p A e% .-m a q ~J O \\ g 4- .\\s* .a e 4 w p p i 4 v - g -r =. S m9 T [_'.=~ r ' - ' . e .s. 4. w t s p. s S 'w4 s O - _ ' '6 g '- V l e. F, ..-f f *\\ W t, Ee j gsW '.,e 1, I -- b 4Q' e, ~ f .v s (7 a g' '.- ~ '* [,, m s,..'- - t g ,.r. ~, tt -s.- ^ rs s .4 p t e-9 5 s

  • 6 1

.(.' g 4 d r ? A 4 5 J b Y g .[ab -f .r.- e 4 3 , g. .i D' /1 'g- . [e

  • k

/- s. t. q, ,T ~.:.a w g m -s-C "1(* g 5

  1. 9 (M

L = d =%eF Aem sts oww. +4m. ' --.*b,a

  • * *% an.'

-+.-s .bd I .), fe. 34.44 .a__.-- tmas L s d- '.-c.-

Rev. 6 - 6/79 SECTION XV THERMAL TEST PROCECURE Thermal tests will be performed in accordance with detailed ther al test procedure to verify the thermal perfornance of the shipping cask. The thermal tests will also be used to establish operational carameters relative to preparing a loaded cask for shipment and unloadine the cask at the repro-cessing plant. Both fuel basket types, i.e., PWR and S'4R, will be thermally tes ted. A cask w'll only be testei once with the basket type available at time o f tes t. This section describes the thermal test used to verify cask performance and the temperatui used in the thermal stress analysis. As established in Section VIII, " Thermal Analysis," the thermal response of the cask to PWR and SWR loadings are approximately equa! Therefore, the heat source for the thernal test shall be equivalent to the calculated decay heat source for the ten (10) PWR cask loading of 70kw. The heat source shall be provided by electrical heaters designed and located to simulate the active region of a fuel assembly. The heaters will be pcsitioned such that the laa inch active length falls within the lim.its o# the r.eutror shield water jacket. A mcckup of the cask :losure heads shall be ;rcvided which will ther-mally simulate the top end of the cask. There will be a"d'tional cenetrations in the closure head r.ockups to provide for heater leads and ther cccuole wire installatien. ,? XV-1 Ch-j43 3

Thermal Test Procedure Rev. 4 - 6/79 The thermal testi are to be performed within an area which will be pro-tected against draf ts and large terperature changes. The cask shall be ccm-pletely assembled on the rail car, i.e., the fuel basket, ei ther F'..R or BNR, installed in the cask cavity, closure head rockup with heater and ther~.occuple leads in place. The assembled cask will be positioned horizontally on the rail car to simulate the shipping attitude. The coolina system will be in-operative and drained for this test. The assembled shipping cask will be instrumented so that terceratures and pressures of the various elements of the system can be monitored and at established time intervals all data will be recorded. To obtain the necessary temperature data, thermocouoles will be installed inside the PWR fuel basket cavities, on the outer surface of the outer shell on the outside surface of the water jacket shell and on the ends of the cask. The tnermoccuple locations and heater locations in the basket are shcwn in Cigures 1 and 2. The followinq ther occuole '.!ill also be attached to the cask. (See Figure 3) 1. Sever, sets of three thernc::uples will be cunted circu fer-entially on tne cask surface 2nd on the outer surface of the cuter shell on 3 plane equidistant frc-the end3 c# the heater active a ne. As vie. sed #rc. the end o# the cask, one set,culd be 0 C mounted in the CO and then every 30 to the ISO positicn. 2. .A therro:Cuple at each end of the cask at the center of the tco and bott:m head. 655 316 X'!- 2

.,w p,--,- p,.,,... _.7,g n., ~ ;. w -e .-m..,.v,... v,..w. ..r, y .g.. , y fp,,g.,..,. a 4 e -f.. I e e t .,.:.P ~ s s a e b /* s

  1. 4 g

1 i w g k s A A e I a. e d I v 'e s .r 4 s A ~ .+s M't ..A...a l-6 a t m = T p,. g e J l>a es + he 4 .= 6 c-- e

f. "

g e M h. - f 4 5 3 ~ ^, ."g 1 T f -g y ,,7.- P i = G) r> w i y T m w g Y = r s u s = t g* t e %k A &^ b T r b i-e t 4 4 a.- m A W I 9 _ 3 - - a v -' b' Y t r< = y.! 4 s - )L' v. -us .,a-. s..s s e.,'. a .a.sm .s.,- . u .~~,a ...e. a as s s

Rev. 9 - 6/79 SECTION XVIII ENGINEERING DRAWINGS 7C650F Sheet 1 Rev. 4 General Arrangement 10/24 Rail Cask 70651F Sheet i Rr 4 10/24 Rail Cask Details Sheet 2 Rev. 5 10/24 Rail Cask Details Sheet 3 Rev. 5 10/24 Rail Cask Details Sheet a Rev. 5 10/24 Rail Cask Details Sheet 5 Rev. 3 10/24 Rail Cask Details Sheet 6 CELETED Shtet 7 Rev. 2 10/24 Rail Cask Details 70652F Sheet 1 Rev. 7 PWR Fuel Basket 10/24 Rail Cask Sh et 2 Rev. 5 PWR Fuel Basket 10/24 Rail Cask 70653F Sheet 1 Rev. 7 BWR Fuel Basket 10/24 Rail Cask Sheet 2 Rev. 5 B'/R Fuel Basket i /24 Rail Cask 70654F Sheet 1 Rev. 5 NLI 10/22 Cask & Rail Car General ArrangeTent Sheet 2 Fev. 2 Piping Plan; i Details Rail-road Cask-C:aling System a n 2_._,. n:_: :, u_ _2 m - 7C555? Sheet 1 Rev. 5 PWR Spacer ?iug l 10/24 Rail Cask 7C555F Sheet 1 Rev. 4 EWR Spacer Plug 10/24 Rail Cask X'! I I I -l /{_ f. ~,c'i "e

Rev. 8 - 6/79 Engineering Drawings 70640F Sheet 1 DELETED 70665F Sheet 1 Rev. 4 Neutron Shield Expansion Tanks 10/24 Rail Cask 70666F Sheet 1 Rev. 5 10/24 Rail Cask Impact Structure Assembly & Details Sheet 2 Rev. 4 10/24 Rail Cask Front Irpact Structure Ring Cetails Sheet 3 Rev. 3 10/24 Rail Cask Rear Impact Structure Ring Detail Sheet 4 DELETED 70667F Sheet 1 Rev. 5 10/24 Rail Cask Support Structure Details Sheet 2 Rev. 5 10/24 Rail Cask Front Support l and Tie Down Details Sheet 3 Rev. 5 10/24 Rail Cask Rear Support and Tie Down Details t4 DELETED 70702F Sheet 1 Rev. 2 10/24 Rail Cask Al ternate Construction 7C299F Sheet 1 Rev. I Cask, Car Tie-d:wn Arrangement 10/24 Rail Cask OC 259-l* Rev. E General Arrar;ecent - 150 T:n Cask Transfer Car -,')

  • 0rtner Freight Car Drr..ing

, g :. '3"4 OJJ y'! I I I -2

g }" '** 7* TN W", Fg' f#,K W T/*

  • g @W ' "*** 9N* " 9MM "'M$g yp "+'.' T h e"*
    • M W P, W 7'We' M y,* * * {

s M%,"'#- e6*g NFPMN*/MS WS ,'WG'N.N*W yp % W W'9 "M *T, Y " e Is ao < 9. e 1 [ O[ ^ 9 h 1 o7. W 4 k P 9 i \\

  • E.-

'f+j>%' .~e e A J ' 4 d ' '.i g, e"Y 4 .-(. M y 1 ( =6 = s a i 7 a o 1 % 9 t-m . _1 = / L , [ g = ek' 4 ,. * :. s - ~~w t .b< s 3 ~ n 4 ' 4 e 4 ( f n /. . 7 s..,; r .Ac ._I' s s r . / em I b m 4 5 s \\ s V 414 p' b, y h l 4 .k'hh \\, .c ,3, y .'1 * ) l ! ~*.j as

  • p*

- )., M. pI M rm 5r. r4g 4 ,a 4-#'#b&AJeen,e-W EO h"## 5}}