ML19224D767
| ML19224D767 | |
| Person / Time | |
|---|---|
| Site: | La Crosse File:Dairyland Power Cooperative icon.png |
| Issue date: | 07/11/1979 |
| From: | Linder F DAIRYLAND POWER COOPERATIVE |
| To: | Ziemann D Office of Nuclear Reactor Regulation |
| References | |
| LAC-6404, NUDOCS 7907170018 | |
| Download: ML19224D767 (39) | |
Text
-
e, Ib.SIIt YL.tNI) I'0 n'Eli CODI*EELt TIYE Ba Crone, 01hconsin 54601 July 11, 1979 In reply, please refer to LA- t> 4 0 4 DOCKET NO. 50-409 Director of Nuclear Reactor Regulation ATTN:
Mr. Dennis L.
Ziemann, Chief Operating Reactors Branch 4 2 Division of Operating Reactors U.
S.
Nuclear Regulatory Commission Washington, D.
C.
20555
SUBJECT:
DAIRYLIsND POWER COOPEFATIVE LA CROSSE BOILING WATER REACTOR (LACBWR)
PROVISIONAL OPERATING LICENSE NO. DPR-45 APPLICATION FOR AMENDMENT TO LICENSE
REFERENCE:
(1)
DPC Letter, LAC-6356, Linder to Ziemann, Dated June 26, 1979
Dear Mr. Ziemann:
7-s otated in Reference (1), enclosed is the complete set of detailed calculations, including summary of resulte, of a re-analysis of a spent fuel shipping ask drop accident with the pool water at the 680-foot elevat.
If there are any questions concerning this submittal, please contact us.
Very truly yours, DAIRYLAND POWER COOPERATIVE
}l
()a~' -L 1-A -
Frank Linder, General Manager FL: HAT: abs Enclosures 1-356 223 23 om oolgi
s Mr. Dennis L.
Ziemann, Chief LAC-6404 Operating Reactors Branch #2 July 11, 1979 STATE OF WISCONSIN )
)
COUNTY OF LA CROSSE)
Personally came before me this
/$ [/b day of July, 1979, the above named Frank Linder, t.o me known to be the person who executed the foregoing instrument and acknowledged the same.
l
}LsI A
1~
Notary Public, LaLCrosse County Wisconsin My Commission Expires March 2, 1980.
Lt 2-
e o
Mr. Dennis L.
Ziemann, Cnief LAC-6404 Operating Reactors Branch #2 July ll, 1979 CC:
J.
G.
Keppler, Regional Director U.
S.
Nuclear Regulatory Commission Directorate of Regulatory Operations Region III 799 Roosevelt Road Glen Ellyn, IL 60137 Charles Bechhoefer, Esq., Chairman Atomic Safety and Licensing Board Panel U.
S.
Nuclear Regulatory Commission Washington, D.
C.
20555 Mr. Ralph S.
Decker Route 4 Box 190D Cambridge, MD 21613 Dr. George C.
Anderson Department of Oceanography University of Washington Seattle, Washington 98195 O.
S.
Hiestand, Jr.
Attorney at Law Morgan, Lewis & Bockius 1800 M Street, N.
W.
Washington, D.
C.
20036 Kevin P.
Gallen Attorney at Law Morgan, Lewis & Bockius 1800 M Street, N.
W.
Washington, D.
C.
20036 Coulee Region Energy Coalition P.
O.
Box 1583 La Crosse, WI 54601 3-
}E qq
~}~J[J LL.
P) NUCLEAR ENERGY SERVICES, INC.
REL1 JUL - 21979 u
g! NES DIVISION
',' SHELTER ROCK ROAD e
-.I- (DANBURY. CONN. 06810 203) 748-3581 Mr. Hugh A. Towsley June 27, 1979 Lacrosse Doiling Water Reactor P-Tject/ Task No. : 5101 Dairyland Power Cooperative Reference No.. 5101-516 P.O.
Box 135 Genoa, Wi.
54632
Subject:
LACBWR Spen t I le.t.
'J Ca:A Drcp Analysis for Spent Fuel P act.v ate). Iwel at Elevation 680 Feet.
Re fere nce : NE3 Memo 51cl-5.
run J.
Risley To R. Milos, Same Subject, DTte 1 6/25 /79.
Dear Mr. Towsley:
The attached memo provides a summary and the detailed calculations of the spent fuel chipping cask drop analysis for the LACBWR fuel pool, with the pool water at the 680 foot elevation. The original analysis, presented in NES.81A0550, was based on the pool water being at the 701 foot, 9 inch elevation.
In accordance with L.
Papworth's instructions, report 81A0550 will te revised to incorporate the new calculations at the lower elevation.
If we can be of further assistance, please call.
Very truly yours, NUCLEAR ENERGY SERVICES, INC.
NES Division
/
'!n/
FN1:ma Richard A. Milos Enc.
Project Manager cc:
R. E. Shimshak L.
G. Papworth W. J. Manion A.
H. Ycli h
77 04 An Automat.cn mdustnes lm Ccmcany
e NUCLEAR ENERGY SERVICES, INC.
SHELTEA ACCK ACAD D ANBUAY. CONNECTICUT 06810 (2C31 748-3581 Inter-Office Correspondence Ref. No.
5101-517 Date:
June 26, 1979 Tc:
R. Milos ff 0m.
J.
Risley Subie:t. LACBWR Spent Fuel Shipping Cask Drop Analysis for Spent Fuel Pool Water Level at Elevation 680 Feet.
Re ference :
NES 81A0050, Rev. 2 " Spent Fuel Shipping Cask Drop Analysis For the Lacrosse Boiling Water Reactor."
The referenced document contains detailed calculations evaluating a postulated shipping cask drop analysis into the LACBWR spent fuel pool with the pool water elevation at 701'-9". The analysis evaluated the effects of the cask impacting both the cask area crash pad (Case
- 1) and the spent fuel storage racks (Case 2).
A supplemental shipping cask drop analysis has been performel for these two analysis cases with the fuel pool water at 680'-0", which is equivalent to the bottom of the fuel transfurs canal.
The shipping cask drop at this lower water elevation will develop smaller resisting drag forces and trerefere generate slightiy greater impact velocities and kinetic energi.es at impact than those presented in the referenced report.
For the cask drop onto the crash pad (Case
- 1), the impact velocity and kinetic energy at impact increased ap-proximately 3.9% and 7.8% respectively, from 46.49 fps to 48.28 fps and 40279 in.-k to 43427 in.-k.
For the cask drop on top of the fuel storage racks (Case 2), the impact velocity and kinetic energy at impact increased approximately 7.6% and 15.7% respectively, from 37.93 fps to 40.8 fps and 26803 in.-k to 31018.1 in.-k.
These small increases in the velocity and kinetic energy of impact result in slightly greater damage to the crash pad and fuel storage racks.
However, the overall conclusions and recommendations presented in the referenced report are applicable for the cask drop analysis at both fuel pool water elevations. A summary of results of the cask drop analysis for fuel pool water at elevation 680'-0" is pre-sented in Attadament A.
The detail calculations for the cask drop analysis are given in Attachment B.
7C/
90Q JJU LLw
y.
4 4
BY N
DATE M 13 h1 PRoj, 901 TASK 9" CHKD.BY I'H D/. s E ^ ~ ~'
'PAGE A"#
OF L ACMC RESULTS OF CASK DROP Ori CRASH PAD Load Case 1 Center Drop (22 Modules Effective)
Calculated Value Allowable Value tiaximum Cask Velocity at Instant of impact 43.2 %
N/A (ft/sec)
Maximum Kinetic Energy at Instant of impact 4342 Lo il/A (in/k)
Maximum Strain in Intermediate Cylinder (in/in)
- c. ? 1 0.485 Percent of Ultinate Strain in Intermediate G61 100 Cylinder (8)
Total Deformation of the Crash Pad (in) 5.03 10.0 Maximum Reaction load in Each Module (kips)
S z 't. '
361.2 o
Maximum Compressive Stress in inner Cylinder M 2fo 101.6 (ksi)
Maximum Strain in inner Cylinder (in/in) o.olo4 0.243
'ercent of Ultimate Strain in Inner Cylinder 2./C 50.0
',8 )
Maximum Compressive Stress in Outer Cylinder E S.%
101.6 (ksi)
Maximum Strain in Outer Cylinder (in/in)
- 0. 00M 0.243 Percent of Ultimate Strain in Outer Cylinder (%)
1.11 50.0 Maximum Punching Shear Stress in impact Plate
!6 M 26.5 (ksi)
Maximum Punching Shear Stress in Base Plate t a.9 6 26.5
('R DCG SDhns, FC tG CWQDN 1
PROJ. 5 ' u I TASK--
BY 3
DAiE I
i<W 4'7 '79 PAGE OF DATE cuvn av LAuss C-
_oad Case 1 Center Drop (22 Modules Effective) (continued)
Calculated Value Allowable Value Maximum Average Bearing Stress en the Reinforced 1.53 2.1 Concrete Floor (ksi) l ' 3S 5097.8 Maximum Reaction Load on the Reinforced Concrete o
Slab ABCD (kips)
Average Shear Stress in Reinforced Concrete Slab o.(Ca 0.201 ABCD (ksi)
Maximum Reaction Load on the 29" Thich Reinforced 5 G 03.0 ft/A Concrete Wali Under Floor (kips)
Maximum Compressive Stress in the 29" Thick l.OS 2.08 Reinforced Concrete Wall Under Floor (ksi)
Load Case 2 Quadrant impact (17 Modules Effective)
Maximum Cask Velocity at Instant of impact 48.27G N/A (ft/sec)
. Maximum Kinetic Energy at instant of impact 4 W7. 0 N/A (in-k)
Maximum Strain in Interrrediate Cylinder (in/in) 0 347 0.485 Percent of Ultimate Strain in intermediate 7 /.G 100.0 Cylinder (%)
Total Deformation of the Crash Pad (in) 3.G76 10.0 Maximum Reacticn Load in Each Module (kips) y34. t o 361.2 Maximum Compressive Stress in inner Cylinder
'c l.o S 101.6 (ksi)
Maximum Strain in inner Cylinder (in/in) 0.0113 0.243 Percent of Ultimate Strain in inner Cylinder (%)
2.34 50.0 UM 101.6 Maximum Compressive Stress in Guter Cylindce (ksi)
Maximum Strain in Outar cylinder (in/in) 0.cc6 0.243
.~
8-4
Oo u.ar m e o m u nt u rc PE3 DM2N BY DATE
" PROJ. 5'*I TASK 0 "
A-3 OF I' N DATE "M PAGE CHKD.BY L AU2 )r?
v
_oad Case 2 Quadrant Imoact (17 Modules Ef fective) (continued)
Calculated Value Allowable Value Percent of Ultimate Strain in Outer Cylinder (%)
1.20 50.0 rEz9 26.5 Maximum Punching Shear Stress in impact Plate (ksi)
Zo.tG 26.5 Maximum Punching Shear Stress in Base Plate (ksi)
'2.69 4.17 Maximum Local Bearing Stress on Concrete Floor (under each module) (ksi)
Maximum Punching Shear Stress in Concrete Floor c.02 7 0.201 (under each module) (ksi)
Maximum Reaction i.oad for the 17 Modules (kips)
% 79.7 N/A Maximum Average Bearing Stress on the Reinforced I.959 2.1 Concrete Floor (ksi)
Maximum Reaction Load on the Reinforced Concrete 2 v7 2. S 5097.8 Slab ABCD (kips) werage Shear Stress in Reinforced Concrete Slab 0 176 0.201 ABCD (kips)
Maximum Reaction Load on the 29" Thick Reinforced 4343.3 N/A Concrete Vall Under Floor (kips)
Maximum Compressive Stress in the 29" Thick 0 04l 2.08 Reinforced Concrete Wall Under Floor (ksi) 8-5
- 4.3 o,.m
!!Y DATE Id 79 FROJ. SId TAE_U" f
A-CF RESULTS OF QASh PROP DN STORAGE R/f4fE PAGE LAcrs a em Calculated Allowable Straight Drop on Top of Storage Cell Value Value Weight of Shipping Cask (kip) t oo.co N/A Maximum Drop Height (Ft) 2 G.z ?-
N/A Maximum Cask Velocity at Instant of 40.90 N/A Impact (Ft/sec) tiaximum Kinetic Energy of Drop at Instant 31010.l4 N/A of impact (in.k.)
Number of Storage Cells impacted 52.
N/A Maximum Strain in Each Storage Cell (in/in) c.c23 0.485 Per Cent of Ultimate Strain in Each Storage 4.'74 100.0 Cell (in/in) tiaximum Cell Deformation (in) 4.BL 2
tiaximum Stress in Cell (ksi) 63.70 41.4 Maximum Transmitted Reaction Load S3.62.
N/A Per Storage Cell (kips) tiaximum Transmitted Reaction Load for 52 4343.Z N/A Cells (kips) 3 Maximurn St ress in the Weld Between the 19.71 28.0 Cell Wall and the Base Plate (ksi)
Maximum Stress in Rack Base Structure
- 62. 5 L 41.4 (ksi)
Maximum Stress in Jackscrew (ksi) 9 'L 106.3 Maximum Local Bearing Stress on 2.0b g'2, Concrete Floor (ksi) tiaximum Bending Stress in the Bearing 12.4 9 41.4 Plate (ksi) tiaximum Punching Shear Stress in the 41.4 Liner Plc+c (ksi)
Maximum Local Bearing Stress on Concrete Floor (ksi)
I,72-2.08 liaximum Punching Shear Stress on Concrete Floor (ksi) 0.0 l 0.201
< s
- 7) 'j- []
- c. _ a 8-6
gg ttscrxxr4 BY DATE 13 PROJ. 9 \\
TASK O
'Y b'
PAGE OF 0: 0. tY DATE LwL Calculated Allowable Straight Drop on Top of Storage Cell Value Value Maximum Compressive Stress in the 42" Thick Reinforced Concrete Wall Under Floor (ksi) 0%
2.08 Maximum Reaction Load On Concrete 5/all (kips)
Coll o 13104.0 Maximum Unsupported Plate Thickness That May be Perforated by Missie Free Fall Velocity,(in)
BRL Formula CSol o.(,6 Stanford Research Institute Formula 0.3 o 3 04Lf 1.
Ultimate strain for stainless steel.
2.
The allowable stress '.alue represents dynamic yi 1d stress for stainless steel.
3 A l i cr.va b l e s t re s s i n t h e we l d - 1. 6 x 21 x 30. 0 = 28.0 ks i.
T6 6 4.
Buckling Stress for 17-4PH stainless steel at design temperature.
.~
G JJU L -'
8-7
fr 6 ff M A'
b DATe '/' #'7eno>. 5' '
OY7
'O av TASK f"' NUCLEAR ENERGY SERVICES INC.
/*//
DATE '/'j.y' y/PAGE 8-/
CHKO.
OF
,f., NES DIVISION
/
U lA7M u&
- 6;zuc rtx.'.c:
&fscr:
or Lotve:
M aiEx.
le.sel -
REF.
l Low 67:
&~/Jr f"U E' E'D 2 !
&/A /67d ELc:1/N 7/C s)
(' f 90 c.)
4 S.
70/ - f
/5
^
/
CO'J.Gi J6X t-7i NJ 77/ 5 N/J& c-y:/ :
of 77/5
$fE'CiC72//ib.*.*.
J/ /~G A'7&Zi 4)/O.* />*)
/Yfb' 29/7 fc J67-0)&p lw D
b.lik f W b'
l
/
s.,,
iiNz~ JM h;a /6 y
/.???
f: ~'T s't.?:.):/e 7%5
7y?4' 'G
/,CCt:.
TobuS Cug < <.i &-
s; S:'? ?'rsi ;
E/ e/JI~,
G
& x 7 e >.< :.
,c:: e m ri w s s
iw ros c w s,e:
'J'il b.5.) J t s.'A l6 f JNicK SL O 5n d1G-
&~/dCT NF L.o.cn.o&-
&.u o,26,e co/a c.
uncovert
- q
/ 'iers.u)
C~
u! /- =X 7,5~?Z Z/M'idr6
& ^C/C
,5., 7
/s.) < Q
^^
/N& ace p
,+ c=i'.A Wt/= L y Srn,ccc A'irrax i o,.:-
u,~.
- /:
,n=-e c,
n w :.
m&
--! 'NL
C 0
/ lIY
&34 K y sci &n c & /ss,~r
>l a
e U
8 w
WW si au
,exces.
- M Dwns 7s E Fcasruc.x rez c's
- x Exce e<eiar' W5 l
772 Lower:
tsxia,
z'es wc.c.
79)c Wai O
/s)Cr!1x :5
'iE&
(s; (
,"i;/+. c.7 N ?_a:,
y>
&> r;-
rni c/ca:
cn m
x nz.
w "=
gf s
e W/$C([.
/f/
DYS$C/ $
&[
75-5 N
OCSSS i
/
/
/-'='
sur& >> --
/-
C/ C/:
1ac.a?
! n., =7
- ,, s /E7.
y
, _ <_ y s, -
m ca -e n,
,; e
- n c,.
/ ALs w:5 S)/
5/"S }#
CA).,'. C J udi~iA f d
//.* /#AC? Wl0Cr?
l a<@
?7 ':i' cfd /M,es; 7EL, sl</r: D C dr 70 t>y i2
,c/v : = 3 7he Si;a,cm,x x,,x. c,.:,.
0b YE A. As $l;'
b_3 DATE
' PAGE OF L
NES DIVISION lac r$wc_
l REF.
Cask Impact Velocity (Cont'd.)
Since L/d = M = 3,the drag Coeff. is, according to Table 15-1 of Ref lo for 3
the case of circular cylinder with axis parallel to flow and with R p10 0.86
~
CD
=
The horizontal cross-sectional area is kd2 x (4)2,12.566 ft.2 A
.=
o Equation (5-5) of Ref./O gives A
62.4 x 0.86 x 12 5666
-3 yCD o 0 00337 ft.
a
=
=
=
2w 2x105 Equation (5-6) gives Yg 62.4 x 32.17 0.02007 ft.2
-2 b
=
=
=
sec.
y 5
'The weight densi ty of cask is V
105 663.165 lbs./ft.3
.'Ym
=
=
=
Al 12.566 x 12.0 o
According to equation (5-8) of Ref./6 the terminal velou?ty is 2
9 I~
V
-i 62.4 1
32.17 (1-92 99 ft./sec.
=
=
663.165 0.00337.
Since H > L, and according to equation (5-2)-
L (1-2al) -1
^
2 (L) = V
+*
2 2
2 2+h.(e 1 -1)k
+V 2al o
'Ym (92 99)2 + c-2 x 0.00337 x 12[0.02007 x 12.566
~
2 x 0.00337 xt2.
=
{2(0.00337)2 3237
,2 x 0._00337 x 12 62.4
_{
(1-2 x 0.00337 x 12)-1 + 0.00337 663.165 x
+( H.5V d
NES 105 (2/74) qb 7
b ?J L.
2 blI ~IT PROJ. OOI
'O av DATE TASK 09T
NUCLEAR ENERGY SERVICES INC.
' ti ca 7 7 g-4
) :
CHKD.
DATE PAGE OF NES DIVISION LACC0JE REF.
Cask Impact Velocity (Cont'd) or-2 (L) 8647.1 +
-38.307 + /5M 8572.1 x 0.922
=
2 zi46.86 > 0
=
The cask will not ficat but will strike the floor.
Value of Z 2 (H) should be calculated
-2aH b^
(1-2al) -l
'+ V,2 Z 2(H) " V2 +e e
pa
+S
-1
\\e Ym a
- x 0.00337 x d. W Z 2(H) = (92 99)
+e
(-38.307 + /2 Of - 8572.1)
8647.1 - 6 3/6.5M
n o. : s:. > 0
~
The striking velocity of the cask on top of the crash pad is, according to equation (5-4), Ref.to.
- 2 (H) -
(' 33 69t)$
2 V
i
=
=
45.r.n ft./sec.'
Maximum kinetic energy of the cask at the instant of impact 2
1/2 Hy
=
= 1/2 x 103 (4f '%)
32.2 36/6 42 f t. k.
=
= AS Azn.o in. k.*
NES 105 (2/7. ;
}
'O 2
l9h3 PROJ. bOI OD BY DATE TASK r" NUCLEAR e IERGY SERVICES INC.
)*y DATE g-~sq'g PAG E g - c-OF CHKD.
-f NES DIVib!0N d
LE%t REF.
LOAD CASE 1 - CEllTER DROP Assume 22 Modules Effective - All except 3 McJules at each corner of Crash Pad.
Assume !!o Bending of impact Plate.
A)
Design for maximum reaction load on reinforced concrete floor
'43427.0 in. kips External V,inetic encrgy of the Cask
=
Internal Strain Energy of the tensile modules 128.5 1.166 g
ALil E8
=
1.166 x
il = !! umber of modules effective in absorbing the energy = 2.2.
2 A = Cross sectional area of intermediate cylinder = 3.17 in L = Length of intermediate cylinder 25 in.
=
Equating External and Internal Energy
- Assume all kinetic energy is absorbed by internediate (tensile) cylinders.
128.5 g 1.166 454E7.O ALil
=
1.165 x
Strain in Intermediate Cylinder
-1.166 E1 1/l.166
[1.166 (334:zo) 1/1.166 C*
_128.5 All!_
,128.5 (3.17)(25)(22)
E O 2793 in./in.'
=
x Per Cent of Ultimate Strain E
0.c7e
- __3, x
jgg,
,,7 7, c,,7,
%C
=
u Eu 0.605 i
NES 105 (2/74)
'O I l9l7 l PROJ5l01 TASK BY DATE O
7~' NUCLEAR ENERGY SERVICES
'.NC.
b NES DIVISION CHKD.
IH DATE l-M'3PAGE
~!2 OF L
L4cr5 w R_
Elongation of Intermediate Cylinder I
6 Cx C=o,27 X 25.0
/e 9 5
^'
=
=
x Haxi.num Stress-Intermediate Cylinder 128.5 E 0.166
= 128.5 ( o.2 71 )o.166 = ros.9e st 0'x
=
e x
Maximum Transmitted Reaction Load Per Module '
3.17 x /o3 98 = 3 24 /e ' kips Rx = A 0'x
=
Maximum Stress - Inner Cylinde.-
(,c.2fygi X' 6
=
=
Ai 5.47
/
M 4 55%
ic.zs t r. c, _
- o. o /o4 Wl pyd y gd e
tu s~
w Maximum Stress - Outer Cylinder N 0 2
= h = 314.l.
53.94 'ksi c
Vuur.Sh:uw =
_k tC.6 = o. 0 o5'3 N/m. Puol d d Sbw = ' N" Maximum Punching Shear Stress - Impact Plata
~ I' ' ' $
Er 329.6
, g g, g q '.#ksi
=
9 Do :ip 1T (5.563) (1.25)
Maximum Punching Shear Stress - Base Plate Rv W@
t g e\\, g ksi
=
=
R D; tbg 17 (3.50) (1.5)
!!aximum Local Bearing Stress on Concrete Floor (under each modu e)
E" D 'b 2_,G,4' ksi
=
=
-=
Effcctive Area 9.25 x 13 5 Maximum Punching Shear Stress on Cen rete Floor (under each module)
N 3
= c.hM ksi X
=
=
Effective Area 4(54,0 + 3,5) (54,o),
Maximum Pseaction Load on Concrete Floor -7.?_ Modules MP,x = 21 x W J = 73 f, g p g p3 R
=
NES 105 (2/74)
) f.)
L. s
bh8 M PROJ. 901 TASK OD O
BY C. T E 1 NU LEAR ENER Y SERVICES INC.
I' bb b'7 I_NES DIVISION CHKD.
DATE AGE OF L AC BOR Maximum Average Bearing Stress on Concrete Floor of Pool
,gg,
.R 9 M. 2 53 /
k.s-
=
=
=
Effective Area 70.cx G75 Maximum Total Reaction Load on Concrete Floor Slab ABCD (W b. A-// N
( '5 Modules Acting) 3E "5 x 3 2.4.6 = \\64 6 kip's
~
Rslab x
Maximum Average Shear Stress Around Slab Periphery P.a,%
bd
_ _ = 0108 ksi'
=
Peripheral Area 2(51.5 + 90) 54.0 Maximum Reaction Load on 29" Thick Reinforced Concrete Wall Under Floor (Assume 12+y Modules Transmi t Load)
\\ 7R
= 17 x32A.O
= g60E; /
Rwall =
x kips Maximum Compressive Stress in Reinforced Concrete Vall Under Floor P all S S M. 2 pg, s
=
Vall Area 29 0 X ( zom gj i
Design Check for Maximum Intermediate cylinder Strain (Asruming a Minimum Stress increase Due to Impact of 20%)
Strain Energy Capacity of Intermediate Cylinders E; =.
116.9 g 1.20 ALM 1.2 x
Iquating :.<ternal and Internal Energy and Rearranging -
Maximum Strain in Intermediate Cylinder g
! 1.2 E 1/1.20_.fl.2 J 2 ' T.C
~.
/
i/1.20.,3clt'/in.
x l l6. 9 (3.17 ) (25)(n)
X T16.9 Altt -
~-
Per Cent of Ultimate Strain Ex o.3st
/
X 100 = $6-2 %
X 100 = 0.485
=
gu Maximum Intermediate Cylinder Elongation NES 1 b
= C L = o 32) X 25.0 = 3.o# in.
'O 1
M PROJ. 9 I sy DATE TASK W
[I NUCLEAR ENERGY SERVICES INC.
CHKD.
1N b~
~b DATE AGE OF L NES DIVISION L
L AGu;E REF.
LOAD CASE 2 - 0.UADRAtlT IMPACT Assume 17 Modules.Ef fective - Column Lines A-G and 3-6 Assume Bending of impact. Plate and Adjacent Modules.
A)
Design for maximum reaction load on reinforced concrete floor External Kinetic energy of the Cask 4M:" 7.0 in-kips
=
~
Internal Strain Energy of the tensile modules 128.5 1.166 g
ALN E-
=
,8 1.166 x
11 = Number of r.:odules effec tive in absorbing the energy 2
A = Cross sectional area of intermediate cylinder = 3.17 in L = Length of intermediate cylinder 25 in.
=
Equating External and Internal Energy-Assume 15t af kinetic encrgy used up in bending of impact plete and adjacent modules.
128.5 g 1.166 4N:7.0 x 0.85 Atti
=
1.166 x
Strain in Intern ediate Cylinder
-1.166 Ei 1/l.166 1.166 (4:l:74'C. 8 5) ~
1/l.166
~
C*
=
_128.5 Alti_
,126.5 (3.17)(25l (17) 6 0.303 in./in.
=
x Per Cent of Ultimate Strain b
2.
X 100 =
= 42. 5 C
%C
=
u Eu 0.485 NES 105 (2/74)
'} [
.) J N i- '
T)
M I 73 I
gy DATE PROJ.
TASR NUCLEAR ENERGY SERVICES INC.
CHKD.
- 1. H DATEb~b~HPAGE b-9 OF
.r NES DIVISION Ld L AC Bu)fL Elongation of Intermediate Cylinder
~
E E
l = 0,3c3 X 25.0 = 7. nc in.
=
x x
Maximum Stress - Intermediate Cylinder O'
a 128.5 E 0.166
= 128.5 (0.3o3 )o.166 = 101 ^; ksi x
x Maximum Transmi tted Reaction Load Per Modu?e Rx = A 0'x 3.17 X I C'f d C : 3% IC kips
=
Maximum Stress - Inner Cylinder q=--l.+
=
61.cstsi g,
y_,,_ f f uW.5-[v&, = 'O WM.S%w^=
22l% ;; o, c\\ \\ 5 t$ tg
=
y Maximum Stress - Outer Cylinder R
x
g : ~# 'C
- 54. 68 ks i
=
A 6.11, p M d h.S e o.cos5-i o
-W
%.5% y wes }h a 3, sge.4 %
'M nts-
\\.'io f[0 Maximum Punching Shear Stress - Impact Plate Rv 334.10 15.Z9 ksi
=
=
=
77 Do tip Tr (5.563) (1.2.5)
Maximu., Punching Shear Stress - Base Plate I'"
MS - 'C
~
=
=
20.26.ksi
=
TI D; tbp W (3 50)(1.5)
Maximum Local Bearir.; Stress on Concrete Floor (under each module)
N' 2
=
= 2.68 ' ksi
=
Effective Area 9 25 x 13.5 Maximum Punching Shear Stress on Concrete Floor (under. each module)
Ex Wa c
=
0.02.7 ksi
=
Ef.fcctive Area
=
4(54.0 + 3.5)(34.of liaximum Reaction Load on Concrete Floor - 17 Modules JJb L'
l-7g j.
n R = 11Rx = 17 x 334.10 = 5 UA '7 '
kips NCE
'O 8
OM BY DATE PROJ.
TASK f
NUCLEAR ENERGY SERVICES INC.
l'H
/ ~ g ~ 70 g fo CHKD.
DATE
?"
NES DIVISION PAGE OF L AC boa Haximum Average Bearing Stress on Concrete Floor or roog EF.
.R NW 1.85G ks'i.
Effective Area 52.25 x 53.5 Maximum Total Reaction Load on Concrete Floor Slah ABCD (a
Hodules Acting)
,7 BE
= b M4. t o
" z u 2 4 tiips Rslab
=
x Maximum Average Shear Stress Around Slab Periphery
/
Ra.A 2 G72. 6
=
- o. G ksi
=
Peripheral Area 2(51.5 + 90T 54.0 Maximum Reaction Load oo 29" Thick Reinforced Concrete Vall Under Floor (Assume 6 a,LModules Transmit Load)
~
/
R.all =
13 R
= 13 x M4.lo 4523.3 k;ips w
x Maximum Compressiva Stress in Reinforced Con. rete Vall Under Floor P
sral l A 34 3.3
~
= C.GM ksi Vall Area
'.9. 0 X(,qo+2 eA) 3 Design Chech for Maximum Intermediate Cylinder Strain (Assuming a Minimu., Stress increase Due to impact of 20%)
Strain Energy Capacity of Intercediate Cylinders E; =
116.9 g 1.20 Alli 1.2 x
Equating External and Internal Energy and Rearranging -
Maximum Strain in Intermediate Cylir. der E
1.2 E 1/1.20
,_,1.2
- 414 P (0. 8 5) ~ 1/1.20
=
x
_116.9 AUI _
_116.9(3.17) (25)(17)
" O ' W N.,
x Per Cent of Ultimate Strain 6x-X 100 = i m A 100 = 7/. G 2
=
4 0.435 Haximum Intermediate Cylinder Elon ation
' } E. {
u J
NEs
(,
fg L ~= 0 34 7 y 2.$*O -' S.Tl $V e g
I9 b9 PROJ. 5' I
{")
BY DATE TASK W NUCLEAR ENERGY SERVICES INC.
CHKD.
l' N d' " OF DATE PAGE NES DIVISION U
Lam's e REF.
A i!!-LOAD CARRY!!!G CAPACITY OF REIfiFORCED C0:! CRETE FLOOR OF THE FUEL STORAGE WELL 1 o'd A.gy
- 6 e 12" c/c jje-0"
=
[
N) li.*
Nk y?
A t
f h
,g*'
87 A 12" c/c a
L p) g g
tra:'
'x7G") p (
,h Pad
+
t 2.
_y l(M4 4
g
- M r.
'I
~y A
...ss
.i 1
E{f r
r '
- g'l,p e
p k\\
_l r
. j i
4 g
-A.
a, ej
,g cc
,I_
.j,
CR7
~
D
!7 012"We *
/
3'-6"
^l,7'-6"
!7 e 12" c/c m
s j
(Reference
)
PLAf1 SECTlot! A-A Concrete strength f'c = 3500 psi Steel yicia stress fy = 40,000 psi As 0'6
- ~ 7 Compression steel.
P=
1 1
= 3,24 x 10
-=-
Al = 0.6 in.'
bd 12 x 54 arco 5
' g' E Pmax. = 0 75 ( @ ) 2 f*c (87.0)
'q'"
Steel area g
u f
Y (37 nur )
f f
I
- ., M 0.6 in.2 As=
= 0.75 (0.85)2 x 3,5 (g7,0) b=12"_l 40.0 (127.0) s q
= 0.032 NES 105 (2/74)
)bb L '
k I li PROJ. b OI TASK 033 O
BY DATE p NUCLEAR ENERGY SERWCES INC.
I' b
PAGE OF 2.
CHKD.
DATE s1. NES DIVISION L.1 L AC.Bwit REF.
The reinforced concrete ficor of the feel storage well is supported by con-tinuous walls around its perimeter and is also supported at its midspan by a 29 inch thick wall as shown en the previous page.
The reinforced concrete slab is 54 inches thick and its unsupported portions (A,B,C,D) are only 51.5" x 90".
During a cask drop event the slab A,B,C,D will be loaded at its corner on the area indicated by C,G,K,J.
Due to the short spans and depth of the slab, the boundary conditions at I the nature of the loaded area, failure of the slab A,B,C,D b,y bending or diagonal tension shear cracking is unlikely.
The load-carrying capacity (strength) of the slab will be governed by punching of the slab along the surface of a truncated pyramid around the load 3d area c, G, K, J.
Shear area of the truncated pyramid (KJ + d + J C + d ) x 2d
=
( c e+ 54 + 70 + 54) x 2 x 54 = 'Z-s4cin.2
=
4 d f,'. '
Allowable shear stress
=
4 d3500 236.64 ps.i.
=
=
Load carryin5 capacit'/ of the slab A,B,C,D
'2 tss 'ex.2366
=
Sol 7.g, K.
=
i:ES 105 (2/74) n, h, b lO
b
'O BY DATE D PROJ.9 0' TASK U" "q NUCLEAR ENERGY SERVICES INC.
- 1. -} )
I,. ) 4 m\\ PAGEf g z-CHKD.
DATE OF d^ G NES DIVISION LJ.C.Ss3 I?-
REF.
b ?6_LYCfj'_ _.pf bHO7'NJ 'r-A'GA'
/ 2 C <DF/) TsC l.
h2aP Otl
- $7D/*A52 i'iccs lA5cs/Sfor7A7bos)
OC
/C 6*/P./7 t~u G f,u/Uscis> 6-s ld$r. '
/s> 7D
,C/JD Ou7 Of NE fCc~?> 7 fp'GT-SiDrMSG l
POSD S/L }
os~
sc casr B&&
P.> >
7:ce wss ic n
A):t i; /> 7xC Ly DA'oiies b O//70 7175 f M 'T fuGL
[sTd.cs5 i kcx s fs,"us: 722)
/n 77bs 20:.>!.
sis ACC /D:~/J72 L ZiEop fs7us7rio/)
/5 A7/.iAf y z c=T) 70 2k *WA'"'d E s~ S
.5,c-/ scr O/J 713 5 3732 C SG
,CC KS A 7ss u
/'a:):
/ <s'6A?,
N6 DSK
/S p;cSunsth 70 t,cis?6p foo E
K/>b BE DAO/ ME7J
/~ scorn s4 HE/ 6-H7 3 sC6ctT M d#f 2
- 6 6 t' dis.~~
rus L O L.
LucB 5 L&s: 7*/3 ^/-
hs WWre
/S ASSv ens 73 70
/n?/'A'c 7*
,o r-Ms Ce>>M of A 0.> 9
.,S/ 'c=?> 7 fuGd S7D/2/7 GG
- Acr
- f. <3 #^>?PMd SGOJ4~
7Y26 sxN r.
suun?/39c' Of*
CdLC 3 A//3 E/2a.)buci^)&
7*Y? f c' as 'S c S 7~
A'sECdes)
[d <b5 70 Sc MacnSs77 s Y~D 70 7E?E R20 L FLck)R.
P&
$7xic rusc' :
.,CCCe^/' 2~, > :s C / n=-72/.y
/3
~7.?
Cusus 7 h x7-7776 Lecci: -
776,vrsusSS irest:?rf
- ac 7Y75
/'004 c*Lo-x
(.wf2 25
/?:7,cwM ^'S i
.v s >,s&
77</:
wenn ia' i
iI t'
NES 105 (2/74)
[
' {
O BY DATE SY7PROJ 6M / TASK "I. NUCLEAR ENERGY SERVICES INC.
g ' cl f n.-rf g.g CHKD.
DATE PAGE OF NES DIVISION 4.dC8w2 REF.
CASL ZMPAG Vftocirf b
o Ref./C " Design of Structures for Missile i mpa c t
u BC-Top-9A)Rev. 2, Bech tel Corp., 5dpC /f 7p D = 4'-0" - l+'
.8 EL+ '7o4'-3 "
V Diameter of the Cask, D = 4.0' Length of Cask, L = 12.0'
'[
Weight of Cask, W = 100,000.0 lbs.
' 8 S o -- -- wa te r
{
= 100 k 46 g__
g_
T-Top of the $mese cu%
L f-
-),_
Assumptions:
'8
\\\\\\ \\ \\ \\\\ \\ \\ \\
1.
Cask drops from 3 0 feet above the con s wa m s.
2.
Cask drops vertically (longitudinal axis perpendicular to the floor).
3 fleglec t loss of velocity during compression phase of liquid entry.
4.
fleglect skin f riction drag.
5 Assume constant drag coefficient.
All the above assumptions give conservative estimate of the striking velocity.
If the cask drops x;f fect to just hi t the water surface, the ini tial velocity is V = 3 gh
=3 2 x 32.17 x u.M 2
o M.5 ft/sec.
=
The Reynolds number is, according to equation (5-7) of Ref./6 Vo d H.F x 4.0
/. S17 x 107 R
=
=
=
v 0 93 x 10-5 Where v is the kinematic viscosity of water.
NES 105 (2/74) f
C)
BY DATE 0 h/ 77PROJ. b##
OW TASK
[
NUCLEAR ENERGY SERVICES INC.
I'< NES DIVISION CHKD.
IN 8
DATE PAGE OF LJ
/4'^8x2 REF.
I Cask Irnpact Velocity (Con t ' d. )
Since L/d = M= 3,the drag Coeff. is, according to Table 15-1 of Ref.lo for the case of circular cylinder with axis parallel to flow and with R >10 3 0.86 CD
=
The horizontal cross-sectional area is
- hd2, x (4)2 12.566 ft.2 A
.=
=
o Equation (5-5) of Ref./O gives
~'
A TCO o 62.4 x 0.86 x 12.5666
-1 a
=
=
0 00337 ft.
=
2W 2 x 105 Equation (5-6) gives
~
'y 9 62.4 x 32.17 0.02007 ft.2
-2 b
=
=
=
sec.
y 5
'The weight density of cask is V
105
'Y 663.165 lbs./ft.3
=
=
=
A Al 12 566 x 12.0 o
According to equation (5-8) of Ref./C, the terminal velocity is
,9 [g
'ym /)I A
v 1
=
2 9
62.4 1
32.17 1-
= 92.99 ft./sec.
=
663.165 0.00337.
I 7/;E~
- "A?d
/47 #A'd f Vs.06 try
/7 fiDr2Ade~: LA c S d!=~ /^'7,bs t g ccygy,g,3 79
, g yz y, 3,,
/g,, )
o,
,3,g,g,
Oc
( O nx G L)
Z (x) = g/a + bA
~ * *
- +*
-g a-bA /2a ),
(0$x5L) (5-1) 0 O
0 L' y, i~A:iDA:
in Ti d n;c.WE <<,s:7;c.x L far/aT133) or 7,'; e Dinycuir tw we E:
l4 rrac rui&
rn s NES 105 (2/ 74)
(
/ 7f aROJ. f/0/ TASK
'O sy O
DATE P
NUCLEAR ENERGY SERVICES INC.
), H 6 - /6
?
CHKD.
DATE PAGE OF 4
NES DIVISION 4w
- l. K Baja' REF.
- yecocity, Qan;
/m jo.-
CKSM imPx'ar 5.2.1 LIQUID DEPTH IS LESS THAN OR EQUAL TO MISSILE LENGTH (H < L) 5.2.1.1 If Z (x) ir Negative or Zero at' Depth x = H (Z (H) 1 0) y The ::tissile will not strike the target.
It will penetrate a depth H 1 H such that Z (H ) = 0, and then float to the liquid surface.
y 5.2.1.2 If Z (x) is Positive at Depth x = H (Z (H) > 0)
The striking velocity at depth H is 1/2 V=
Z (H)
(5-3) 2/x) =
32./ 7_
(o.azcay )(t],M) l-z (, co 3 3 7)(t.% f) / 2(. 00337)
/
o.co??7
- 2 f.oc s si)(/.9'9) (39.5) -
W
,,'7
- (o.cz007)/.5%)
aW\\
+
c t2
< -A r
Ao3?7 2 (.o0337)"
gg
- n
+
10956,.0/ - /8 8 3 7. M] -
y Z,(x ) =
l 95~45. 994 e
Z, fx =- [ I'66 4. 554
>6 lla cx x G)iu vor W
fr ox 7 8t//*
h/iL5
.577Ci K E 7~HE 370g44E /'s7C c,
/56
.5 7? M s W 6-y'& C OC iTy Of ThG cg:K o/J 7DP Os*
(
7'hT f.DMA %
AC'AC C.
/3 K CCQ,( D NJG-73 ED ux770/1 y
/=
Z' y) g,9 y
a
/9?tXU)Vn, k'yj=7,d 5//57 &-y y c 77/d (x x 3,e pj. y,r;p7-
\\
h f/1 V
. 3 af
/n/rA C/~~
- =
?
fM0
/ /2 f',
x 3/0/S./4 /N. L'.
/00
=
=
32.2
~7;g
- iiPNila-
&/:::x gai a impscr
,, s pp of y:.5 i
.:?KA HK M :
. Jiri/ x
/:>u, ma n,
. /du.!E Ti C s/JEL& y c,c-
?/0/9./4
/N, s'..
/ f)2 n>NA, f.E^K.: ; i cs) g'O A D iTK/JCm /WEZ) 7/;cousu 17/
Syoncr 5 gg a g 70 7p_=
pxz pcm-w it L
.L6 Cu! ?
/. j+i =7) 7M fai/vchs:r (M/:
NES 105 (2/7 )
j jh N
3 I'W 'i l PROJ. 6 '3 I TASK
' C.)
sy DATE NUCLEAR ENERGY SERVICES INC.
g* W b g.y g -/ 7 CHKD.
DATE PAG E OF d
NES DIVISION F C. M /L REF.
/mmerg 7/>&*
rr,n x.
Asu m ifs 72 or
$70#A6G Cc;4. 5 irrisii/m $in&
or sq S/ c w r fu6c
,excc
,l'6 3rc rs A &-
sa S70cn6d Ca? c--
B u c E Lisv 6-A7^s o Thstre=m,r a-
/ sin y,,,,, e,,, S 772 ^^'AJS m i W s 2) sex:r/0.1 Loxo 7b Po e, L f&oose.
7hd CASE ss Assume?2>
7D
/
oAc 7"
,44
$/O S;D r,c & a scnct
,cr 7 72 &
C9JrM
&au/ cs/
see-T u ciY so
~
nin a.
,ee-xc non t oncr Taxosmiira 70 7??+
casw2-Lt&
or 7n~' e snwnw
/2.o ce.
Sansr gi%
C/;$C fO DufW5
\\A
/
rAe
- 6. cut
,c a exrxansz.y xwo,cus f) v' W/sf/k rn e e m < e ri:e n miun or
-~cra g,, n
- 3 pp Y/ I hI $ i Yi C
CEA' N
,c cs v ar'E O 70
/,itccups x4&
pl I i !
N qq g.
- ya ;. m an iorsxse~
ar
< asz Gc::n Vir \\ \\ \\
\\
! ' HU4 p.,w ou n.,,.,E.
aw,sn n
c$
.i3I W~ 22
//o.
or z - ~cra ceu s
- aa Qy uni,aw
/h
(? z - 20) =
sz au.s y,, w ca.=
?:.01_
00,jic.w7/ VM y t.ia64 2 c r 77)s E?nP6f do3Sas Es5:/c r/Kr I
w i-co m 771e' l o c,c4 b6/~o<morio >. os-EE?io//4 of 77)s Q
$ dOl5 l'uHe CH s'x)' LL-JIE S:./L T *
//>
/??? 2 5 04//7]N6 4~
'I"O
- D' w
b lo /?$h fcl $,
oO $
c OOW
(/ Y./W$,
AA/b
,[S$s/l$YS*-
c oncx'e-76
/~LO:><
u"D64 7he sny.mc7tsb renx.c puc ruce.
[/)f2'&~Z~~0fG T}'s--
Erra='x's >xc.
Mi>>d 77c s 7: e.edry o,c-y 0l OIb,I s** E-i i
/$
,CSlun rsb 70
,S 6 Afff*w:dc2
~
Ano frA7/.)sm/ /i.t:L) 7772OL/C, t t 74~ E' 4
,,4,,,.iS c a :
oC 6 M/ /
O f"'
77)d b 2.
us>intrir; / z y coen c>xs Ic=7.>
[iaxi.'l-t?
s (ciL5
$/5
,! */E26 y' iS TIM'**JCrr', M-D dck /sJ
,T/;,c'ocs(,y
- h e 4/
e.
4
! [,,,
,.[
'b BY DATE PROJ. 5/#I TASK 9I NUCLEAR ENERGY SERVICES INC.
g,M DATE [ g.gc' 6 -/P D.
i PAG E OF il' NES DIVISION
/ AC8't.)L' REF.
.# /ll2 4'J '
/?& f /,
k/)
f/)t";)N/.4lb
$D$//) &JS/hl EOuc.%n to.n c zieve:oih;z)
,r,e u/s/rs/w,, cy con >nw. n.r o
f f4 / t).' N '>1
$/:- d!C.
(Cf c s/L'C/.'S o
/Y",?.S.'.///; SJ.{--
$A *, //
[]') '*/)l$
c l u.
- o Es
, ts.>,-rewrXy co s-op/>i::Eb 7/?E Z/> ^t 's '< i nd a uix: 9 is.
/>
p-e
/. /s6
/
E=
'T G
icu) fa et i
/, l&> 6 O
i E,
=
_T,j/s r/wc
.S k b>
Gursy Q
=-
fw/ vs>
ia c toiro'.w, %,;/
c o/.-;,,~~ :s=a s:un
-ur
/)
cosaA"i :30.>
Sar,c '6 Gcs sasa e
l-
'TD.cM M cacc Lsi).:ris y
=
W
/)
/.!: wide:'
or 6 <,rdc?&~b
.,hs.x 5 :-
Lic -
1
- z. /03,,o
- l Q
/ x/i:.a n, ce x ) r '.xj e
=
i 3
,, s s
W3 2/2.0
/ no
,/=
52 c CPL S
{
w
/
m Es.rg2>.,i, z 2,%c.k [rix9 Q
c..
,.e
,,;6
.Z w i wc
$7,c,:i,3 f,.c,, s.,-
~
r./M 5
n
<., o.
f,'
d./o 9 c /;t.o}'<rg) -
3/0/c,./4 d-u
/./ 4,
/
J
$.vwh>
S'c> n::e Gus C,. =
h/M.D ^?/0/ 8. /b I'
a.
in h2S.'Q(2.seSJLi2. o) 52
" /}.'/?6 (m
l
/
/
CA i.=
- 6. 0 / 2. /
~
-l C. c 2 3 D s'/.,;,
Lf;m
==
/
,',, m : u :
or u<,;, n ie S,w:,
c.c n 7
,,,o 4.74,
c.48C
/
0 x.a+ rn U sun Sww,>
Q=
- o. des Dj;,
t f. K r irn u r r.
bEFTE cr,va O =~
&ar:1.sE Csu.5 -
./
Ag=
QL
=
c.";t 7.
z t 2. o /a -=-
c.=u J>s NES 105 (2/74) qE 7gJ JJ
/_ J
P ROJ. I'#!
M BY DATE TASK F. NUCLEAR ENERGY SERVICES INC.
CHKD. Og DATE ' pl qq PAGE g-/9 e
-) 2 OF -
NES DIVISION G
DK iSus/?
A V O' p
REF.
d'-
se_s
.w:
& rf a c a 6., 7e Ge-7;.JS'i2)
/126 g/scpe'A' f.~ ;
l'c.wd2' 7?d21.
/
Ay 7hc' ccars sce re7:1>= e x' ne w
o,c-773a w-ca,o v>
na w
or rise rx.=z ruec I
]l as ri;e umw 77cc is
,c, w s,,,,,. n ;.,
/. ;s,,, <.
O'%uMs /./S 7?i6 UWE.2 7"62*
$~fD4t V=
Cdi'.'.2 73
/
o.,,
+
'r
/,):,- u : -
Kg S;;y,ce-,
- ci
- c i/>
- ,? +
g/g g i
~-Co
??:
inxy
$7xa::.w
.:.s cu,5}xaa (sc. = /29.5 (,
5;r. is Q-
/28.6 [0,C23 )
$9. 7 u
=
Si D,wnic vs.
cr7ess:, con
.f w esters s' rec c y
c:iv6
/:
39 t
//>ctex:s ov&7::
,Srxri c yies,o
(',ee-r r) i 30 y / 39 4 /. 4 k%
1.S
==
st-rics
/:
dc':S 7/> N'1
.S; Dix 6 G L
'.C SME55
}uz>%.civn&-
or
'N?&
.TIDF/;dd CELL S.
kd Buctt,Nfr
['5LDit/S-cos.ine s:, ve sues:
is cwceucora
,es
.3 9. i 7 1.u, -
Pai8 71cm,- one 7?>6 CszS ca, cc l'*cil
,07 Tus Lo# Sucxc,b6-37.C~ C5.
// s
/?7s]X.
,[i Ns*W.0/)
!C.CD f Z' d~d '.L Sy = k Sl = f2/OS).bl = S N 2 l ne may. y ru.-m,H ed Reac han L a.J Q 51.r%< c. CNb
- ,/ =:., 6,, e T _.
4 r.4 f3, r # <'
- -, M _.
r
/\\ =
) -
~
,Ot<;MT!C b//6X'd,Y s08:4CS:"D ///
[sc c.
SC KU AI5".'
kSJcir7,aW6*
E4^H 46LL CO/?>t:WE CS& 5 By 4.28 s&5
^9)E M&y'
,GE:o2BdD
/?>
77.c=
,x.;ce ~/J uss.'ci%'
TI):~
lox'a - M7c6'77o10 du !ss.
$t f/AT67 d'!:)tSt.' =.' SS.C,2)'C. S7f)(52 ccJ.s) = LI2 02 &
~
(
,r ; j j/
wa y
,~w n:anev
[9r?AN/h).;,.
L. E. = 3 IC t L\\ L-C i:::
///// /
=
w s.i: e..,s
=
pe n.w.au NES 105 (2/74) 9
,1
.) i~> (.)
L. d -
()
8 5!/ 7fPROJ O ay DATE TASK NUCLEAR ENERGY SERVICES INC.
'U
,I DATE I#'7l
'd' NES DIVISION CHKD.
PAGE OF w
/R8u)2 REF.
?^^Ce bf0P HCL l a m sc2,=> =7'
&i t viss
$d OJE72Cd' As rhe c,esx imexcrs ne srcex&a icxce 71?&
i xt:cL lo.cDS GG>>d2 4 M D scL's C
~i'~ *JS'r M d
ho:.or) 7heou&H The
/n7pecM'D Sro ex&E CE;c S into 7766 L o ca c=n G rio.
/Msd
,<7x ac dowbs
-, -r Ndi 77).s>J 7r'%)Srn Or52, HMou& oy 71;f 62/D p> TO Th &-
/;//Als fu/2,o /se 7 de'~cr!..
/$M
( 'd?'JI2~E c
fJfs":)L ~~
d Ed-DB 7~?Q //>i/> 6-7 72 &
44266C7~
MP#W*' '
o n~
7?;d dOKD w //
/~4/l
/~/AS r 87 fMc)22,NG
- 13 5
/~7-4 p4
, race sceeu 77w au& w 7%s
- 77. 4 Bs4 s7xu.ica53 Sr cn
.fuks<r
& e5-8.csf Pc. eve (reE & B H; 0xxE ThE de2>r&R laz,-
y/r'b s, 772 A?x/ n L-LaxD i.5 E=~DNS 7)'L8vCd~D
//>ro Tn s
/ S */ % s2'U X.-
.Su/A e7 8S
.1.
Eh-S,
i nsixc Lo ~'D suc.caxses finaxgrE g
da u S nr xxo
,ct~wc=>J7' 70 7735 KxPrat:cc.SOpparr
,p wp
&bt LE5s tvil/
EE&>]
70 Euccis.
Bucrc.<>>&
cu,J/ cossrp.iuG c : -__.
,os3 SM=xo Tow,c eo.s 77)e cs23rEe 6/:
2e,excc w
ilC DX/MC L,o.c b
/sJ C d d X'S E C
)~CRCOJG
)~))c=
a/77M,Ni>J&
M,,
EC!
~$
4
,,y6 TD YS / (UA#5
/J*J fMN&&,
lb5
($
les s -
/ $Y o
Lmw4,'
71,e ruwac Le, sox se cno/>=
w,wcr,.a, is,ro
.l?
- 2. O
&c EE.csc ~/> Gr PA:.> C.
/))i Lowem
&,eio
/l f>O U)
C k 0.$ U/ o# 0s0 l h~b?
?l 7Y75
$U/000 I Y
Eu Sd L 7'ic/>S fup/Jerh=D 0/'.)
7)56 L O U &,e s i??
BENf.<> f.r
~w
~
RJL:..
/26
,cs;suc L ox.os
&uJ risius 70 i,sce:w:e
~~
yie to://s-77,e
/,n,os n.,
ua.o/a+
wm sie S ca s+'O'17~4 A'Nb yiscuiN6
/G E
.S'urr-M ~
L,.=Z-EoX SicU]S
&20 u 6-W L on),oscc= CSio *J
/=~N/d uci'
&f lOcv=W 6-rc >c tsi14
. /ar: L y
/~o~CLL jerspxM T~/a.dr-71sE
/Ec:
f".'.at)C like-R.
/x xszax Ec77oSt:AI
~h e-Suprec7" LEER Se~ Kaw&-
Pcus.
x N. S 105 (2/74) q7 y,o cn
2 DATE.d!/P/77 PROJ. 6/3#
TASK O
av OU
] NUCLEAR ENERGY SERVICES INC.
CHKD.
S*V
/' -
DATE
' PAG E OF
] NES DIVISION y
REF.
OEu UELD STEd55 Niancysi,
a 1 f 9 3. 6 2. "
M otr 54 v c 5 (w k
f' gy 4 c-c u @ w + L t 7" L u ot_ s J
/
es.ez
- 2. x44 x t x o 7 07 t l 6 75
/
e L'
,.ts
~l" L.oa G r.
l
- ll NSN '
w-s,. ;
c'
<\\Lt2A Y 5 :
-= 24 s o %.
-. N L awes
'L \\
- o %Si m M {+t h -3(, s k-ec$. (h ~ M 45' d ots N Sh<AS m MS c tok, 3 0 0 yx, cs g i U J s 4 w s-s A s M e r cb1 r
k@
Scb l' L U N %4( tv
- ua t, usoc sw mm D' ~ ~5 M b ~ ex % _ _.t. 6 2
.3 Q&9
" M A h^
M.
W 4
% s%m ~
si wJJ k W % u ytke a 1"ya
-%1 -_6
[M evJL,.- t-s wm i
8 3. 4 Z
(%-
%. 36 sss.
k, d'X G 6 % Qo"7 KO 5'l7f
- 14. % Ksc. /_'. 2 r o w $b
=
M'%k W h h e44e'$s, ax. w gs/p % +
k s " ca JU
.,4 m,
w 0
NES 105 (2/74)
)
{
?)
2
'8 PRO).[/OI TASK
' ()
BY DATE NUCLEAR ENERGY SERVICES INC.
3'N b#'N CHKD.
DATE PAGE OF
~i NES DIVISION L.J L/?Cfxd2 REF.
6 tA S c7 bhdC.
ionsx rue Sw,w+ rsaa eta CMt / TAW cc. tit.id Of~ TDs Sui"/JXT* W.5k56 V.
1.,,
.L L.-. f ;_ ~/ l
,fa 6xio exOp.s
- PLx17, t
,/
l s
D N
j.
_ _ _ _ _ \\L
???&
fuMDCl~ L Efr 80X
$&JNS A'_ _ ' _,
/[fh
&f,l
[lff gQ1k /
b*
Q&&j,
..g..
/ __
s'
[/$5
[SC Tiy) loc;>
w, /! Ed DifiZ'iggur
=2)
, p '--
//)
71/& L.Ou)672 6Rsa. 0s)SibE&rls-
- ~
h *> /dCK 6Qib ngs m &cX A7 &
7)/s
_i/'
'Y!8U i7X
^
f f=~c C77Os J ZonD c&
7 Ell'S S 'Nn1 w/// 2i /~/?]/n 3 Lc'M'.
h-rr>
& (.AJ =
3x 8 3. f. :
d 4
1 e
Y Lt3x7 = 2.v/
82:q ;p G
m t.g. Q W L w 93.cong) b]3 5
6 8
~
==-
(o66.5/
)L tmi pw3
.a3 I
b
[
y, q 4 A' qN 52c 6 w_J A s z7 -@
7,a<g 3.3 u
5C,
@wl Qg
$&ys -
N b'?l
-- ??.5? $$i.'
)* 9 O s we va A.m Au-A s+n)
% bh p A sb6 ull]
y, s,0 L
(.l N
W > t)- A.
b ) $ coa K AJ d g s_, g '
R NES 105 (2/74)
,-/
n -
)bb L_
m.
O b1 PROJ. 0 '
D BY DATE TASK F' NUCLEAR ENERGY SERVICES INC.
j, pl f i 9'7.yPAGE g.2 5 CHKD.
DATE OF a"; NES DIVISION LG C.E;2)2.
REF.
._ f A C!'= > : ' u..
/b.K:y!it fyj;it E 7x;
- ou cx
&c,j
,s a u m./>>
n?e 2%.,,st,,,.tr-.
penns >
.c c '
?
f os;O:
b) o'Lt.
BE f),R"L ' c~D TD
/hd
/'s s -
/ ~403:
7 b a c k cast 7);i
%pr>/: 7~
L ei&C,
ki S~.,frw i~
g )
.J'*
r, -).
'../
c ke m
l l.c% :
sc& c 4.;:-:
7.<>: i.,
70 fa~7xi n g
SuFen. T LE
,l s.n' 6
/~H N ,
k'K C 144/)
( o s-L.
/)/ rf m:
.% 7e C:::3 L o /:.'>
L ci-at 4/ / //
ne:*uc7~
/v
': O'L
)_
fu,r/>;>,e ?
L G.'-
p:iLcc=,
,T :.7 = ; v i g
L i < LL g
1
~.
+2
...s 4 e
/ 57:
- 27 AX -
Scd[ r~s
~
.)
l(),q Q s.) /
I e
9 7,5 < om f.o /
I i
7:
- D -W
.%,,se: c. -
c;3.-
n 2,
/
74,9-4 y-J. /.
- l ?,,.,,
cou xese--
asi//
ae i=uxni /7a
~
%m 70 7)>s
,Do3L fcoof.
Sw
$ es,s~wi-Lgy cu,//
,:,9/ L.
)
b
<. a.:. 'y by Sn:wei/)it i9;e
$sii~:psti L.cTr ex E,oc.c rf 2m gr 7&-aN5 = a Co.anEcr7DJ tairsi 1% =-
k xCCsCdW -
O dommc ::d/5 27ws,cb ic?ex = j. - 6~
7'. 7954) d f,757,V
=
n D=
/ 5 ( D/C. of" 7xcesc,esa) y
,p.
yo, s,c ymp3 fsc Far wut = 4.,
fdl.4 kss,]h.75 7
,Dxx
~72. 7 2 "
=
=
/5/x o,,,. - f,wa::
4 " Ex:E
'7-
,,s pc c75 --
yy,77_
$. '7ks:
=
-/
ii( 2+ /lS)s/ :S d 4/.4 AS L' c5 7.5 " E&ai'Jk /%:E' sr* &c=s-fxitute m< z.
/%wisv4-fv=::: os 72.~72
=
3.96ESl <;' 41. 4-J:Si O_c-
=-
,T(,4.0 t (2XI)) /.o
/,%n.
/?.sNwids-
$7=c r5 ih>c dina: (/3/g ' Flere:) :
i,a 72.72 7r(~i.5 + t'z)(. 375
) (. 375)
- 7. w.. a u.c' 4t.4 k::
~4
!??N.K.
Sci W rr'O'
. > 7 pit S O/)
(OrJLseETE tQoon Af /45-fx"" /4.ucG
{77 72}I4}
/,% g.' r ( 2.M /' h
[^5 /
=
., _~~
fr [1.C*r :(.ns )] 3 NES 105 (2/74)
?r q
JUO t_ N
2 D^te *" PROJ. 0/UI M
'O av TASK
{tl NES DIVISION NUCLEAR ENERGY SERVICES INC.
CHKD.
I' DATE '~ #
hAGE OF
- LJ
/E Swf.
REF.
1"//E max.
89)bWs-
.S/72ECS
/N 7;45
- 7. 5
Ziw1.
3exsiv5
?x7E
/6 ex L Lu4 NIEz; By ASSurns v6-is
/
fix/P D+'if o+Un o Ly L.oxcGD 27 c'ON&A'c76 86'%x?ush-
$77di35 l, S & k!
t3
<4A> 7thv62h2)
/~A' 0 77.
77)6
- s. v /~C2:.f*<Ec~
.ic~rA=?:))
4 0
n O L>
.5*
t)sh.
,P 4MS, J
~W I
Ec7.!:;6
/7; n..psr { / " g;;cij = /.36 x
- 1. 5'- 4 h3 J.3 %c. f
_=
7.5" o,e.
= :.;d 1.,o t
.i!// tit // / I' ggraa j;ico ua u, o,
i
,gg e,,o,,
=
g, (__9 _., gyg i-o> - /.
6 6
rr. u.
%>2. n s Cr. sss =
1C.
<' 41.4.uss n,.
=
. ta SaFFoc7 t.e4 co: c.ec F5es Tke 5% c escrE.J
's su eahTem To 7 z.7 z '
max.
pu esx criora LaAb
=-
Me Sina-%
72.22 '
SL7z d
Job.s rsa
,qe-7
=
I.406 w '
[f b
= I. 4 D.ow ng,-
in:
Su rfac T Lc~'r CCU.A PS c'?
pjD 77/s
- dos,
/~xCC.. /?!MnsA&
in.
rw ssmr Law sex
,0c ar cou.ci m a:
7w y
C aL
/mi,(Ic r$
mg
,,5 pih, Sc;c e/p k d,,76,
Ss c'a' ass - secriorJ o
[L N,,.r >< Kore L
=
- I
-V 3 D I
Lmer Lcb 4
,,,, y-n n
wm 6
pox caoss-Duca 1
~~- s ft
$ \\
!scrond (FWL
/.e \\s,,,i.
t e,, '
a i
\\by r
\\
I
.w--
o.,
,0,$y b l, l
- Y,'.
I, o e w.w,1 Q'I~~~5 ty4 v
i.
vidtee2
& s t,-
%'n ~ ' "'~- m 1.2 m p;x / k it V,6 L.h E n Le ~
ELit/,* rios)
C'j%
3,,, ;,
=
Gw-F..c n
/nE !:1.'X:ii iS
,CN Lo cai'?:
O o LL
[_;) U.A'M S'
/
%s d.
E A
K,ca uuz) 77h=
Sunser &&G.
M i n:ww.
L o,cc pri in 1
o
- +4 %And
~
,~J iba Swvo47 !s3 80r -Sa c w) iS Tk Bawusja-40 co o/'
6 f JL o.-
e-75 limi:x& i c:li x Gs.'s
,% 5
&E5-Au.:
f~u A= loa. sc 4
/.'& Jn can7 CEtcs.
P=
93.6 z t.. 4 ( %) s 3.r>2 = /67. 24 "
- I 4
r~
nim.
& J c/r w Eexci,>& fr7:ess =
I E>' 2'I "
ge y, H (3. lF[' 4) /7.6 + s.G
,e
( -i
/
7.. o S w,
sc-r cu,*
lit ZAoOf-
,,Ctr~'?
l'$
dJ AJ ScW/A oM Wt-y' 4' 5.* r 2) !ar CspSS = (g t 770g ort: y.
c NES 105 C/74) i 9,- ;.
y
..]
[
' O PROJ. #/## yA3g O'77 DAT E J
NUCLEAR ENERGY SERVICES INC*
CHKD. l kI DATE '
2- 7p'AG E b75
'b NES DIVISION OF LA:swc REF.
OMN
~'
CO Uw
$M Ik
$1$ k QG;,,
Q s
mhee~sggs{+L[ecoag,tyG"ad
% o. tuA shayc meAc shut 4va Wm~( eea.i m, 4 Tobd vm% +4 h Cup, pl cuulb p;wx sh-c62
- A each 1xl outnuf 4.s?,wg wdc (.w.,uct) too a.6 9 K.
=
+ u o.c.so
=
Sv\\
c (I
d e>i h.d u.
= ss, k h wt
?S/t,./z os d net. 4 Q h CASK l
I 6% >&
98 'z,, c o 3 t.sr2 on
=.
3/0/G. /+
3e w' wig a/.#[,c,} h \\QwliMy d 4'4 Ce'd ISt ed Q
\\xi wq.4 h Sx4sbg' met <
cen. x 7mmo'>
p*t:4
~s c
, D wsmisura
- n. m me suseon r m
.a -
98 '6'z
[
,,s,,,.
~ =:a
=
72 ES S
G3 n % ~ 2 t, a c. e % m y a w w u gg
.Alu -~1 uct 56ck-Au,J q2 }ue bD 4
~
Ly g
c z.m c = u. w w.1c
=
Wh
- TM %he % A v
~hi ej
% 24 cg3
% kw Vm W =
iss.z
+ \\t.m = is2 +s
$b g
m.ic.
seu ~ pct x4 w
, s y,m %
L
.L tA N/
=:
/52. ea 7_
5 NES 105 (2/74)
)Jb c.'
'C BY DATE I3 b l PROJ. N TASK #
NUCLEAR ENERGY SERVICES INC.
I* U C HKD. _
DATE lD'7hAGE 3-M OF NES DIVISION REF.
1 p
.:=
/52.46 1
386 4 209.3 i%lgcc.
g.9g
=
- n. u ' ht. ) gee,
=
G.h b\\A N "DQ 0 Sis b etJ % a~us&_bd3 = e4s velo df y a
- .M- \\k.h $cc 6mh sb3$. &
\\
.Qt 5 % c-
%.o.a gb 1by wq. s&tsh Rq<;try
,L tba M.y b P.>R L) g tu'h'M M bd sL44 Restw& Iwsi+hn. C SRI) bw.LA
'f' Nh. 6 A O ? E\\t.AC.
IO The BRL Formula is shown below, :nodified by setting a caterial constant K = 1 and solving directly for steel plate thickness, T, which will just be perforated by the missile,
? *i-5 2/3
[gy 2 pg je 1 - s h2D (2-7)
EC T"
where g D q
T = Steel plate thickness to just perforate (inches).
Q$
h> 3 //~2 '
h M = Mass of the Missile (1b sec /ft)
=
=
m.o W = Weight of the Missile (1b) =
'2. (A o, o.
k' v, = striking velocity of the Missile normal to Tarf;et surface (ft/sec)
-- / 7 Ah Yl1 D = Diameter of the Missile (in. ) --
=
== 2 69 io e s _ w - y w 1 _ gas m = m.m2 m.m 9
'w w.v&
s ral NES 105 (2/74)
.)
j []
7[
g gy
- D AT E PROJ. 9 / TASK O
'{p NUCLEAR ENERGY SERVICES INC.
I' h' AGE OF CHKD.
DATE NES DIVISION ggg REF.
,b 3 5 ez.s2 T-b
( / 7. W 3 c.50/
N./
(v 72 x 2..G9 5 RI Fcr. M ts sb& w bdo*
- g. c. _3 upc E
S 2 + 1,500-- T)
W 3 = 46,500 16,000 T g
s T
steel thickness to be just perforated (in.)
=
D = diaceter of the ninsile (in.)
__ g, e E
critical kinetic energy required for perforation (ft-lb), =
=
\\2-S ulticate tensile strength of the target minus the tensile stress
=
in the steel (psi)
=u40%.o W
length of a square side between rigid supports (in.), = liv
=
W length of a standard width (4 in.).
=
Cd Qig
/ 52 4BE __ ) W ooor o gc, coo 7z_ggoox\\x7}
[
\\ 2.K %'t
<+G, g oo
%g h
YL T
+ O. o%7 5 T - o. f c od
=o
. Q' o /
f
~+
- o o'\\ S7 5 (o.cB75[+ 4 x c.\\ 2cx 1
NM
[
=
c.5c5 W
The thickness, t of a steel barrier required to prevent perforation shouldr exceed the thickbe,ss for threshold of perforations.
It is recom. ended to C
incr2ase the thickness, T, by 25 percent to prevent perforation, 4{ h f
Cp t = 1.25T P
(2-8)
= b z 5 r, C. 5 03
-: C.379
"^CMO5 PavJt n" tL cK PLE u-A % sbv-g wX Sbc*'"r
NES 105 (2/74) 356 2sf
3 Llt F RO). bM
'G) sy DAT E TASK NUCLEAR ENERGY SERVICES INC.
I*
D A T E -
hAGr OF CHKD.
- ' NES DIVISION (EEaJE REF.
E' FFEcT s o t4 P o o L. F Loot &,
b 's e t'tMk 'D> AkersvMt k Wmxb.t% vc.cic:hth t
6d humht% h pool}tou by %_'racx wwch ku beee chimd bg % hehd wpttet o} +Lt case w 6a %-w, k Laoy.ta a h a u A p.A sh-p Ceb o>a.
A hi c;7 4tc.
muc EvJLdrul. SkW_ ceNs. C.ovsmvd vely wsshe Li h vexc6 LJ A wand 6.hSL,a.
co p i 4a h i le>r Lt,k J w %. %h bo..-2 L$
s4m d\\s 01. L. tel~t 4 Asci +o At&w c
wy. \\Mht Eq l ecg ci &tbbd of LNch i s 2.4 e t%. w.. '
_=
yl. e.,
i Gk~w '^ cv W e 51 LCdi c-Ey=p gu,xin -
. g y z y z.
c:te7
= o.oc,cg v.I,, -
c.u wy Mety. Shex Dardahel iwOc der.= pg.s-( o,00,0 s )
%7 2ss (39.b7t:r),
j
-- 56.45.' kss y C Oc cl us&-.17:
x* a.ws cca wice ra' sv S'ac'u*-
QJ
- %. h e w LJ h ue.yWa h Ru Paaf Floor cu::
2 N
em ss C
ceu =2..wamsw
= aua w.-
M ery. Reat-hh Aud h avi-fle:1bq 72. 5-4M;L Cdks
- = t72)(m.ci) =
(Jo z i,o
'K Mce. %ckv.t syn shess Cmk l$ %'K Sb'N "
'4 c u e w re em a n.,e w
==
+m yu c n s'
- c- (
') !. h NES 105 (2/74)
S i #'
N b
U PROL "D
BY DATE TASK O NUCLEAR ENERGY SERVICES INC.
t*y D AT E ['" " " DAG E W9 CHKD.
4 OF
_ j -! NES DIVISION U
L. A C E A 2.
REF.
M ag.l_o d S ec.nl w $ h tG5 h CNCYdb bow c
(I
-P'1
- c. c m" r
- 63. 6Z.
U Botects e VLit
,, e
,3 S; "
4Y 7 Xh0' Y 'S'/Sh to ms.}
++3 y,,
v.
_ pt,3g
/. 5 4 Y s i.r' L % Q I L..
=
May..Th tk%g S h o w.$ h es s s w C w c r A M o o Y
= o.0 0 8 KS C.-
00'b2 4( 5 % ~1 o} 52 -
4 May. Chyyc55tVE 6hr<_55 E^^ 'b ON *'
0 3. E' 2 I ] I" g9g
}>a h f\\o9-g, JA~2-G2A*2.7.3A)
W ' W - D 600wdSt. Aclu 3m.72.,,,) c,,a w j)
- z. c>3 A7 (.414 7 m) = \\ > 10 9 '-i (1 o bl C Lu 51 ON S O)
D Aop c-[ M CrAS K N b h h k Mur), 31c> opt ha c!'.
M u:03 t u e.2. h bi'%m>d. L e3 l%
6 P
o % aukc. c.kek.sh:,n:>ipu CdLs uAU daoj,. hv.No
'a 3-LQ*
r g
h,eJ uJ. a d Mh Q@
e =
E. k 54uoj.z ncK Sr&.$~ kNs C'zbl*.l'2-c, {W m C.. '%t S Wge. nAct' Lu.c 54rucE w u. J h d (h a
- w. skep ucx swc4w4 vi1L h cux ~ &
g a .bJJ { rec.b ow b) of 4L.e. U m p).,tt, udd 3
- c. n g/g" g,n u h 4 c) h W., y% a agobd ggg h bul>>Ja VSAIGW ed h k bl b "
bh v M A 4.t. Lt_, x 4 L i o & _ p..L7 q -R,t p.i 7 &% P Mu~a m ch cw L, 4, b u m .1 hc sW = Aw4,4.uk p% g.4.g tm NES 105 (2/74) .) s i 's. n --}}