ML19224A233
| ML19224A233 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 10/31/1978 |
| From: | Herbein J Metropolitan Edison Co |
| To: | Varga S Office of Nuclear Reactor Regulation |
| References | |
| GQL-1781, NUDOCS 7811090114 | |
| Download: ML19224A233 (600) | |
Text
e 9.
e-e
.... /
?. av :
... -m m-,...
.om ='1
/
v r
,..u *
%. a : M.aemo
),~,.i e n < =oru v
b j.xd th M * ~
.,U x,.
b, *Q. ". 3 q,.. - c ' + :, o
' 1
,p vs
- ejpfe i J.
- P, j. >
i m 9 u b' : n" _W.h pi r; p' t } J q I,l
( S ts @S.';w L.
- fl N5 -,a ' r, y. 1 1.m..
.i 6,
r DIS.C n.,
, m sl.'..,,Y t c vr%
b u
g t
u m
w d eq n
qpg)y p i g., q q, maJm o
- a. v., e....-e
- e. C a.T,..,.. C o C
- 4..:..
n:_ A.. l w..., _. :. a_,..,,A.. l a....,
., r %.
- J..
w r.o
.W
..a.
.c.:
ec 2
0 m"e P..,.' C~i v m
.w pa.
3
- a. 2 i
O. p -.
- a.+. 4,.
] 4 w a. r.. -- ".%.--a-.
O. o _3
- 3
..y.
t.r
,,,9.,
- % J..f*
- 6
....nw.m... (.
s.
5 -
.m y
".a..-
- a. a n. m,.. 2 e
m%
.( C. L
- J
_ e....%. **...
.w.
3
.s..~
~. - 5. _ J
."1
. w:-...a.3._.
.*5..,....
w 32
.s Y
..g
- o 3.% J.e.e.,
r.
- K q
.s.
w
-,s<,
.* J.v.
T.' a. o w
.a c
(".*.*r*",.*.,.'.
f *e. 2. 9
- "". e s 5'.*
- .* eJ w'.a.
C.*.. 4 m...,
- ,m
,w 2
v.
w w
\\,
t.
v.w._
- =a..
- -
- 4 s.a q p **
N..". _** _3
- y. =a c. _.a.s
... C e 3
.'*.a.
I 9 j ^ <v*,
- r.3..
se
.,,m
~..
w
- 7.. J
- e. n_ e... _,, w7._
's'..._. *,.1* J,, u &. 4 %.e
- _J =..s 2.,._.
se-2 s--
us-a Y
Q a.
M.
g
%.q..
6
@g 9
-_w%.a
_d. -)*d-YO.
MN..
- O g.. % M. a O
8'.
W W
W s38..g sw Y.J'
'.J. g,.. 2.. * * ** k,
.m.a.=='.='s* -.ao
- #.a. a. *.w.4.3-*
~ 'w** 4 m.i= a..e.=.== o. !1 s.l1 #N p '
- 4' 4 m 1 w. C e..
Q.'
C*
6 4-J
.g op
,.g a.l s %. w J.a. 3-
.w c s. _...a.
.. y
.&.1_.a
- s. e..=.1 a..:. o. A,
w I. o. e_ _; a.
.#J = _J
..=. e.,.4 a. 3
.m #.
6.*.o. a E..."
O.
- " C * *4
- p q
%*h..# * *n.
..3 _43 w* =j g 3 iu y c y.g a.a.
%.. a..,.3 *, g..n.
9
,4..S ew e'.i.
2.
- 3
...._.e._..s o*
....* J #_4 3
J.,,,.
- '*%.. a 2
_..=_'S
- Q
?
w g
.a.
g
..s,
,,. a. q.g.
3
.O
,,7C.,. 9h. 7 7 Q'*]
.. _q _ e J_*
- 3.J.
J_.
3.**
... %. 3 J
?_ _.._J..._ -
..2..
.a te+
. --._. s.
.J.
.,.._..2
-~O..
.3
.., ;....J_-
J_.-
y..J...
ne
"_....J J-..._
..n.
%......a s.*._**..*.4
.a.*=
- a. w . # * ;.
s
' k. a
~'.*.*d**J*****-s.*.*w*.1 s
a
- 2' a._,,,.._J%.e.-
a,,.= % e. a.
h..
- g
-,e-
..S.-..*..._.'.
- g._
- 4.....
... %. 4
..%.3 S
- 3. J.
.m w
.g..
J._..~._...3...._J......... g % *. a.
n.,. o.
.w M.
.J.m
.. = _...
e
,.n3
- .3.
e._.
Tg.,...
g O
J.
_..,__J___J._._..
.. _- 3 -;-.. --, - -. _.,a
.a
,,..yu.,,,,
.y..
,.,.4..
.%.3..
4W3,.:..,* _
?.
_.?..3
..*. g
.L.,,,.g
.y....
J
. t;
..a.,..
- .j..
4 g...
- e., A..J J_
,.a..,.. J..,
a_
.. g a., --~ g.J * *. - -
y 4q.o
%..a_
2 J
.'..=._.J_e_.__..
, =.
J
.e
.*..,..Js."..=......
- p. 3 s.
a
~
O _
wa..,e a '. e,
w w4 q')
O
.=*
,m n,.
e.** * * *
, -t R,ned J. G. W....n Ja
[ g.,
e
-.~
.u n, u p..
o.
I.,.g
.N.$. f)D. e 4..P.b.
\\. i..hA..b.J'*w.#.r"
{$ %
8 g
=e..
y v-..
T.2~.,...o.
- 3 "l
C
- 7*w
..3.3 J,;- - -. -
.67.
.)
... J
.J.** I
- o * " =.".'s.c..*
7 3 e
- y.* 7
,,...J_s.
a.
. ".,. -.. J w. - a. ;g *..... 2,*c1
-J
- w
.,=
= ;.
.,i..,=w
..'s....._o..'.
s.
. e.3..;
O..O
.,,.; $, -. e...-i s ~*.
- '. ']
- i.
3.
j
~
~
.a
-= s
...~.u.__,._
. =.
-q'h 0 &'l O
r o
_2.,._-... s. -..u.,
u 78110 OH 4 b
/
e
- . + -
Supplement 3 1.
The following information regarding the qualificatica of equip:ert identified in Sectica S3-42 is required.
c.
Provide the specific test report (s) which docu=entt the qualifica:ior test data, testing nethods and procedures, and results for each component listed as required for a steam line break inside containment.
b.
Describe the cable connection at the cc=ponent for all components needed during a MSL3.
Describe how these connections have been qualified for the MSL3 environment and identify the applicable test reports.
c.
Fan cocier ::::: and containment purge valve and actuator qualifica:1:n da:a is required if these cs=ponents are required to operare during a MSL3 accident.
Provide a table or graph of the actual :es: data which includes temperature, pressure, toisture cc ent, and chemical spray and show the duration for which the tes: para:eters were held starting f c: initial a=bient condi:icts.
'~here available, provide ccc ;nen: the rmoccuple readings ta.<en during the qualifica:1on testing. Provide the test report as requested in "a" above.
d.
For ::: ors en:1: sed in NEMA IV boxes, identify the design speci-fi:2:10:3 and clarify whether rotors were tested with or without the encl:eures. Provide the test report as requested in "a" above.
Idantify the pressure and humidi:y conditions of the test performed e.
for the sele::ed electric pcuer, control and instrucentation cable 2nd t=- '-=' ----sc:icas needed during a SGL3 accident. Note that Se::ic:
.11.2.1 snows substantially lower environmental qualifi-cati: :es: ::ndi;isns than provided in S3-G2..l.
Provide the
- es: re;:::s f:r these cc:p:nen:s as requested in "a" above.
f.
- dentify :he spi:ific transri::ars listed as ite=s f(i) thru f(v).
?ravida the :es: reports as requested in ite: "a" above.
Clarify
.a: there are no enternal pressuri er safety relief volve zetua:i:2 : a:ures required during a MSL3 uhich may be subj ect to the c--
' - =- = viron=ent.
wa. pv(p/L S3-42-23
Supplement 3 3.3 par: of the coa:ainrent response analysis for a MSL3 inside cantainment, provide the following infor ation.
a.
Provide the results of the single active f ailure evaluation which specifically identifies those contain=en: safety syste=s and co ponents relied upon to limit the containment te=perature/
pressure response to a GL3 accident.
This evaluation should include, but not necessarily be limited to, the loss or avail-ability of of f site power (whichever is worse), diesel generator failure when loss of offsite power is evaluated, and loss of containment heat removal systars (either par:ial or total.
/
b.
Justify the assumptions made regarding the time at which active contain=en: heat removal systems become ef fective.
Include consideration of actuacion sensors and setpoints, activation delay time, ani =ysten delay time (i.e., ti=c required to co e into opera:i:2). This informatica should be provided in con-junction :: i:e "a" above.
c.
Justify the selection of the worst case for environmental q" ' ' 4 # 4 - ' ' -- -- sidering ti=e duration at elevated tempera-
- ures as well 23 the aximu= temperature.
In particular, pro-vide the resui s for the spectru: of break sizes analyzed and referred :: in Section 153.1.
Provide the pressure, te=perature, satura:icn tarperature, and steam generator blowdown data as a functi:n of zina for the worst case analysis for environ = ental qualifica:i::.
3.
The f:Liovin; ind:: 2:ica is required describing the component ther a1 (nalyses perf:rra: as part of the environmental qualification. Each
- p :ent need*: cirit; a MSL3 should be addressed explicitly.
Provide er:ernal and sectional dia;rans of each component analy:ed sh:cing principle dirensi:ns, caterials of constructian, and :::ss se::i::s ::daled for analysis.
Or: vide 1 :1::111: descripti:n of each ther:al codel indicating
- asic assa:p:i::s 2nd showing the medal =cck up with principle dimensic:s, ta:arials, and caterial thermal properties.
Justify :he ese of an external convective flow velocity of 2.
20 f /sec. A1:ernatively, use the correlation provided in the C33 in:ari: Evaluation Model.
2.085 S3-42-23a
l Supplenen 3 d.
Provide a plot of surface ta:pera:are, heat flux, and heat transfer coefficient for each cc ponen: ther:al analysis for as cany poin:s ca the conponent as necessary to justif y cualification.
Additional infor:ation is required to justify the natural e.
convection heat transfer assu=ption for penetration con-nent: r s.
1.
Provide an appropriate set of containment layout views which indicates the location of postulated stea: line treaks relative to those connectors for which the natural convection assu=ption has ~oeen used.
2.
Identify those obstructions which will obviate the direct flow of s:aan to the co=ponent.
3.
Provide :he design specifications (pressure, temperature, external fi:w, and any others of relative impertance) of tha penetration terzinal connector boxes.
4.
Provide an appropriate set of views of the boxes to show the lo a: ion, orientation, and principle di=ensions of these boxes and :ha size and location of the stex: ingress points relative :o the connectors located within.
3.
Provide a core detailed discussion of the technical basis for the assumption of natural convection heat transfer c17 wi:nin :he boxes.
~"=-
'"7 :he specific point on the cc=ponent which was anal: :ed and justifr tha: :his location is the = cst critical or c:nserv :ive with re;2rd :o ?o:ential co=ponent failure.
?r:vice ini:rra:i:n suf ficient to sh:w that the co=ponen:
envir:: en:21 qualifica:ic: tes resulted in a ther:al
- ansien: equal to or acra severe than tha: calculated f:: :he ther al analysis a: the specific point analy:ed.
~his shc_ii include a descrip: ion of the test configuration, tas- "'--
2-4 ther:occuple locations, and basis for assessing c o=p cn en: surface te=perature during the test a: the point of analysis.
O,.P99
^
A t>
Ss_'*__77%
7 sw
i Supplete.t 3 Pr: 1:e the pressure and temperature qualification profiles >hich s c.;w :he conpenent peak calculated surface temperature (s) and the quclificatica tes temperature.
If the ec=penent peak test te:pera-ture.
If the co:panent peak test temperature was hald for a short dura:ica (e.g., less than approxi=ately 10 =inutes) or if test con-ditions uere not at the stea: saturation te:perature, provide justi-fication tha: the qualification te=perature has been properly derived (i.e. that the test cha:bar tcaperature is the component qualification te=perature). The profiles should be provided for each component needed during a MIL 3.
Use this infor=ation to justify component quali-fication to the pos:ulated MSL3 accident environ =ent.
=ccac :.
s-a s
-..u-ic Qualification :as: reports for those cceponents inside contain=ent rcquired for a staan line break as identified in response to Question
,2.22 are as f=11:ws:
I C: stain = ant ele::rical penetrations A.
Tes: Raport, Proposition No. EPA?TQS " Electrical Penetration Aasa:blies - Prototype Testing Qualification Report", Ceneral Elec:ric C::pany, San Jose, California Cen:a'- en: fan coolers A.
Rep::: No. E-421, " Report on Modified Environmental Test and Law Speec Hea: Test on Joy Manufacturing Co:pany Fan Model
'3-;se-117:/370 R?M Par: No. 3C0722-66", Joy Manufacturing C :;1:y,.;eu Philadelphia, Chio, for Jercey Central Pcwer and 11;h: C::panv,Three Mila Island Nuclear Station Uni:
No. 2, Cus:: er: A:eri:an Air Filter Cc pany, Louisville, i.an:::1.
- ::n:st-a_: 15:11:10 valves, plus the decay heat renoval valves
?hilzdalphia Gear Corpora:icn - Li:itorque Valve Control
.s.
En;ine er' n S Crder No. 600195, Test Report - January 2, 1959, "Zes: "' -'-a que Valve Ac:uator in Nuclear Reactor Con-t,'
=n: En."-'--= "", including i.ddendu= 1, April 29, 1969 and Repor: 50. F-C2232-01, "Tes: of a Li=1 torque Valve Oper-a:Or Under a Sinulated Reactor Contain=ent Post-Accident S:22: and Chemical Environnant", the Franklin Institute Kasearch L2beratories, Philadelphia, Pennsylvania.
S ' _ ',, _ ~, ~1
Supple en: 3 3.
Project
.c.
6D36, "::uclear ?cwer Sta:ica Qualification Type Test Raport - Limitorque Valve Actuators for ?'.il Service",
Limitorcue Corpora:ica Test Laboratory.
C.
Report ::o. QR326CC-315, " Qualification Test Report for IEEE Class IE Solenoid Valve F/E V52600-515, Valve Type I", Valcor Engineerin; Co:pany, Kenilworth, ;ew Jersey.
D.
Letters, Frank Pancica, The Henry Prat Ccapany, 90C Depot Avenue, Dim a, Illinois, 61021, to Jersey Central Power and Light Cc=pany, Three }ille Island, Unit 2:c. 2, " Burns and Roe Spec. 2555-1C0, Airpurge Valves", datcd 1/9/73 (7 letters).
IV Selected elec:-ic power and instrumentation cabling and terminal con-necticas.
A.
Repor: ';o. F-C2737, " Qualification Tests of Electrical Cables Under Sir:11:ed ?ost-Accident Reactor Con:2incant Service Condi_irns", the Franklin Institute Research Laboratories,
Philadelp~is, Pennsylvania, prepared for the Kerite Cc=pany, Sey cur, Oc :ar:1:ut (proprietary) 3.
Report :;c. ?-C2770, " Qualification Tests of Electrical Cables Cada 5 " 'a:ed ? cst-Accident Reactor Contain=ent Service Cc:di_i::s", the Franklin Institute Rasearch Laboratories, Philadelphia, ?ennsylvania, prepared for the Kerite Co:pany, Sey :
, Oc = ec:icut.
C.
Re:cn :::. ?-C-330-2, " Test of Elec:rical Cables Subj ect to Tse.1_ Agin;, Garra Radiation, and a Loss-of-Coolant Acciden:
Si='.atir ~, tha Fr2nklin Ins:itute Research Laboratories, Philadel;hia, Pennsylvania, for the Anaconda Cc pany, >!arion,
,_u__-_.
Re;;r:.::. 7-22i53, ';ualificaci: Tes:s :f Electric Cables
! dar Lndi :.::s 3inulatin; Jc 'i
>ac:;r Ccatainment Sertice 1:11 icss-:f-Cc:lct: Acciden:", the Franklin Institute Research Li::::::.-ias, ?hiladelphia, Pennsylvania, prepared for Samuel
}i:o a and "c-pany, Oekorc: Division, Aurora, Ohio.
I.
Repe n :c. F-C2033-3, " Tests of Rayche Ther:ofit Insulation Sys:ans !::er Simultaneous Exposure to Heat, Ga a Radiation, Steam and Che:ical Spray While Electrically Energized", the Fra-i'4-Institu:e Research Laboratories, Philadelphia, Pennsylvania, preparai for Rayche Corporation, >!enlo Park, California.
-, c9 ama n%m
~
- 6. O q
/.
Supplement 3 Iressurizer safety valves As indicated in the response to Question 42.22, the perfor ance of the pressuricer safet;. valves has not been analyzed for this event, since n=ither containmen temperature nor pressure represents a = ore severe c:ndi:ica than cpera: ion of the valve for its design operatica condition, t.e.
stea: relief of the RCS.
The pressurizer safaty relief valves are connected to individual nozzles on the pressuri:er. A closed bonnet houses all components, all of which are subject to s:ean relief of the RCS as the design condition.
VI Trans:itters for the following instrumentation:
RCS wide range pressure Stea= genera::: pressure Pressu 3 'avel RCS ho: le; and cold leg temperature Steam generatar level A.
Topical Rap :: 3X4-10003, " Qualification Tes:ing of Protection Systa: :ns:runentation", the Sabcock and Wilcon Company, Lynchburg, Virg' d'.
lb I
Contain:en: elac:rical penetrations - Cables inside contain:ent are connected :: the electrical penetrations by butt splices covered with haa shrink tubing.
The Frankli: :ns:1:ute Research Laboratories has conducted a prog r: subfa::in; Ther:cfit in-con: sin =ent transition field splices and in _ine field splices to environ: ental tests based
- r :he g. '" > ' e s of IIII 323-1974 and 3S3-1974, as outlined
-.2=.-..,...s.__._._...
- 21:122: fa :::lers - C2bl=
=--3 na at penetrations and 2: f an :::_ar :::::s ara covered wi:h heat shrink tubing. See
._._.., s :4----__..__-_
- -.....a_.__.-,.
a _s =. _.,
. =pi.ces (Sec.:.. n n 3.1.,..,.,. 4 ).
- C:n:212:ar: is:la:ica valves, plus the decay heat re= oval valves.
In Cc---'--=-- Isolatica Valves and Valves DH-V1, 171 and
?..
RC-71, 3, 143 - Power cable connections are covered with heat shrink tubing (see qualification for transition field splices, Sectica 3.11.2.1.4).
Control circuit connections are 22de -irectly to the valve limit switch ter inals.
Tes: procedures for the valves are described in Section J.._.
b S3-42-23e
Supplemen* 3 3.
Purge Val 7es - At the penetraticas and also at intermediate connec: ion locations, cables are spliced and covered with heat shrink tubing (see qualifica:ica for transition field splices, See: ion 3.11.2.1.4).
A: the valve itself, power cabling is ccanected directly to the pilot solenoid.
C.
Nuclear Solenoid Valves - At the penetrations and also at inter:ediate locations, cables are spliced and covered with heat shrink tubing (see qualification for transition field splices, Section 3.11. 2.1.4).
Connections for the solenoids and lini: svi:ches are described in Section 3.11.2.1 5.
Qualift:2: ion test data have been provided in Section 3.11.2.1.5.
I *.
Transni::ers i : RCS wide range pressure, stea: genera or pressure, pressuri:er level, RCS hat leg and cold leg tenperature, and stea:
generator level - Cable is connected to the electrical penetrations by butt 711:es with haat shrink tubing (see qualification for transi-tion fie.s spli:es, Section 3.11.2.1.A).
Splices covered with hea:
ahrink tubing are also used at any intermediate connection points such as instrunan; ra:k :erninai boxes. Cables connected to tne instrutents are sealed using C nax power lead pressure seals at the conduit entrance t o t he in s --- >- s.
Testing inf:rna:ica is included in 3Ah'-lCCO3.
Ic
. des:ription :f the :est progra: for fan ecolar notors has been included in Ie::10: 3.11. 2.1.:.
Joy Manufa:turing Co:pany Test Repor: X-421 (pages 1 a-d 12) _is:s the totar RID =easurecents taken during the test.
C:n:2innen: pur;e.2ites are pneu=stically Operated. Design specifications
_ e a -. c. _...._ =. _.. : = _ _, _ n a. _...... :.
~,,,,-
_a::ers ver4:.
r
_ y.ng confor ance of
=.
_2
- .e 11cces :: :he casi;n specifica:icas have been provided in response to
- _=s: :n -2.;;,_.a
!as rep:::s are no: available.
.::::s encl;se; ir.:r._s D. bcnes were tested with the enclosures. The
- ar:a:::ure :::nsian: anperienced during an accident is a surface phe-n::an:n on the b:n, and no :nat actunily experienced by the notor.
Cu:s_de and inside surf ace terparatures of the box during a =ain stea:
lina break ('.15_2) 22:ifen: are shown in Figure 153-10, sheet 7C.
Tes: :: di:icns f:: talve opera: ors were as described in Section 3.11.2.1.5.
->m
_o_a.$
Supple:en 3
'e
.2ble 3.11-2 identi ie.( the pressure and humidity condi-1:ns for the
- cs:s perforced for the selected electric pc.;er, control and instru-can:ation :able and terminal connections needad during an "SL3 acci-
-c Section 3.11.2.1 and :be response to Question 42.22 have been updated to agree with environ: ental qualification tes reports.
Tes reports for these cables have been provided, as requested in response to,,la. above.
If The requasted infor:ation has been provided in the response to Question The applicable :es: report, 3AW-lC003, has been sub=itted generically b'
Sabcock & Wil::n, and has been included on the docket.
1; The reques:cd infor:a: ion has been provided in Section 3.11.2.1.7.
2a Equip =ent ava"
y has been defined (in part) by the NRC staff in Supple ent 1 of :he DiI-2 Safe:v. Evaluation Report as follows :
"For a spon:enecus break anywhere in a rain steam or =ain feedwa:ar (se::ndary system) line, accident consequences cust be citigated only by saf ety grade equipment, However, for the ass =:ed single failure in safety grade equiptent, credit may be tak2n dor non-safecy grade equiptent as a backup.
For : hose porti:as of the secondary syste: where a break =ight be caused by a seisni; event, accident consequences must be citi;;;ei :ni, :. seisci: Ca:e c r.v I cc:conents, in accordance s
wi:h Ga- = = ' '=si;n Cri:arica 2, after assu=ing a single failure in an.v s=':-'- ': =corv i cc ponent.
....3.
._c
.s..e w.,-
4.
s,.
. s..e a., 5 4,.
--*-c...
ry.
w-.**
e 3,,
. o a n, e w
7..
.-,-._-_-.4.:4..,. a.,
2-
.a,_... v,u.
p o s.a. t,.. v a 3,,,. c 4 n n
_.,-..--.e.-._-
u 3 2_-r,.- _.-..-4
_.,. _.3...o
>o,o
. s o.# po s tu '.t ed.
w a
s e C '.".d a.""
=;s.=-
.< = -- -
.<a
--_m.
..e.._.-
z 4.ep able.
.-we.:u..u.e, concluoe a
- hat sho -:er: :peration of the plant with the presently in-s:alled eq;i; en: r2 presents no undue risk to the health and safe:y of :le publi:, and therefore that operation of the t'a-aili:7 need n:: be delayed pending imple entation of the systa=
=cdifica:i:23, and that interi: operation of the plant prior to that i=planen:a:icn is acceptable."
Iq.i; en: 2 vail 2 bili:; has to be enasidered for two different periods:
firs, the card:d bef:re the first refueling cutage, and second, the n::_:ied sys:ar. The sys:ers required to ci:igate the contain ent affe::s of a '<
3:ea line break accident are: the turbine stop 2_cas, feedwa:er cen r:1 valves, feedwa:er block valves and building 5::_f syscar. As discussed in Questice L2.23 (25), the fan coolers 53-e-233 2.090
Supple:en: 3 t
2: :: affec: tha tecperature profile while the containment buis tempera-
- ure is above sa:uration conditiens.
Table 42.23-1 addresses the single failure of citi;ating equipment and, in conjunction vi:h Figures 1.~3-6'.f.
. and 0, deconstrates that the control valve failure results in the most severe staa line break temperature profile. This f ailure allows blow-down of only one stea: generator.
Although the turbine s:cp valve failure resul:s in a higher bulk containment vapor temperature, the control valve failure case ini:iates building spray at a later time (see Figures 42.23-LA, 3).
Equip:en: ther al response is = ore severe for the latter case, and therefore has been presented as the most severe line break for equip-cent qualifica:1:n.
Section 153.2.4 of the FSAR addresses the availability of of f site power and its effe:: c: :he accident consequences. As discussed, the avail-ability of cffsi:e rower maxi =1:es the blowdown for a stea: line breah accident. Navtr:halass, the building spray syste: has been codeled assu=ing the less cf offsite power at the tiac of the break, since loss of offsita pcwar delays building spray initiation (refer to Question
,.b.
Tha affect of :he inplanenta:icn of the systen odifications will be raad: essed prier :: the first plant refueling cutage.
2b The builcing spr:y sy.=:e= is described in Section 6.2.2.2.1.1.
As discussed, the bu:1:ing spray pumps are initiated on a 30 psig buildia; si;nal, while :ha injection valves (3S-VIA/3) are initiated by a 4 psig crassure si;:al. Ti;ures 42.23-LA/3 depict the sequence of events leading
- o es:2blishnan: Of full flow fro: the building spray systa=.
Question 22.19 of Supplere:: 3 provides the acceptance criteria for R?S and ESFAS
- en's whi
- h have been used in Figures 42.23-1A/3.
Accident sequence tiras have bear :a.:a fr; Tables 133-4 and 153-9.
The 35 spray header fi._ zine as 2:alycai using :he c:nserva:ive assumption of 60 psig cw,,.gs-
,-- :,, e,,e.g
..e,,
.o.
_ age,,.3 a.,.
. u.e
._.y o.
w.
w.-
n w.
4
.3.2.._2.._._.__
_..;.2 _ s.
- r... 3
._._.4._........ _ a,.. C,. w,.1 e....,. 4 o,u 1., a-
.a se.:::s af:ar :c.a:: tra initia:ad.
This : ira is the ac. ep tance tt c for
- as: 2; cf :ha f:: :::'ars (see Tabl= ::.29-3).
Since the containten:
.1per ;a para:.ra :As already decreased below the LOCA design temperat.ure
-f 255'?, fc :::.ars would not play an active role in citigating the "2---'
-=sp: se af -: quip ent inside catainment during the superheated
..:a_s.-
2:
A3 iscussed in res;::se to Questicas 2b and 2c, the worst case single fa;1cres ara cha :urbine stop valve and control valve failures with off-si:a pcuer Available. Slowdown data for these cases are given in Tables
_:: ;; an, ;;.
2:2,:,cn,
. css or a:: site power was assumed at tue tire
- f -ha break :e:artining the buildin; spray response time.
7_;; ras 153 _:, shae: 6 orovide tha :e:pera:ure profiles for these two
.asas.
Ai:hcu;b :ha curbine s:c; valve failure c se results in a higher
- aa c er; art
- ure, :ha 20ntrol valve fa:1ure case results in a acre severe
% _ _.m...._.__._.__.>.
.e.
O
'O N
34
~~.w..
O
.QA As. i G
5
. p 2 -.. c.... 3 Containment pressure and saturation tengerature is plotted on Figures33-16A and B.
,r.
_.. c.e r eq ue s t eu; inf or at.on has been provide.a In r ig u r e s
.3.a.,
.7 4
t;roug.-g a
.33-1;D.
33 Rafer to FSA2 Section 15.3.3. 3. 2.d f or a descrip tica of the CC:: TEMPT
- deling of the equip:ent required to opera:e in a steam line break environment.
3c he peak te pera:ure profile analysis has been reanalyzed using the suggested for of the correlation in the CSS Interi Evaluation Model.
Refer to Section lf3.3.3.2.d.
3d Plots of bo:h inside and outside surface te=peratures are provided in Figure 133-10 ci :he -1I-2 FSAA, as are graphs of heat flux and heat
..,,s.;a, c u,_:_:<
2 32 (1) ':stural conve::ica was not assured insice the terminal boxes, as des'cribed in Se::ica 3.11.2.1.3.
,e
- .< _.rans
- 1:n : e_: sp.4ces are qua,1:.,e,. in an unprotecte,. environ:en:
- = - 4
.u.,.__;,- d o.,. t., o n
......l.4 3e (3) Requested design i.for ation has been provided in Sectica 3.11.2.1.3.
In all cases, :he equip:en: test time was long enough to assure that the :::p: nan: cualification temperature was the sa:e as the test chamber
- e:p era: re, -. e. the ec=penent reached thermal equilibriu: with its
- es: envir:n=en:.
Since aquip en: surfa:e te peratures are less than
. _, c._. _,
_4 2 4...-. _4...,. era-...e.
n2 (oea.r 4. r,.,,.23 i0),
.5,e w.
_,.._._ __.-.., _. c 2.
g,.
.v5 r..-..
_.___,._:._..-_;m_...<.,
2
... e
.a.
s ". ~-..-..'.
.7 4 ' ". e s
.1. 3 '...'1 m
2.
..a
<_,4_.
_e..-
.s
.. s..o., 4.,
3 3_1.A.
....,.,._.,,_..a_..a
.. _. 3
..o,..,
3
-a
.s
.22
..,., s,.J %
- m.' 4 -... ' -,
.=, a *.k.1.', g ho.Ies t,
=..' e '.,. o. c.- c t*
. _.. _ 3...
.a a
.o.
1..,,
ess c: 0.,.
.s. 3 : tin.
_ _ _ _. _ <. _,, e... -a s.4 e..,
,.,e.
4 s
/
g Refer :: 75.0. Je::ica 133.3.3.2d far a discussica of :he selection C.
o,.. s e _. a ~ _4./,.
__w w
-, 4., t o n
.u.e
- w.., p e n e.,.,w. so.
g...
c.
3.1..
4.a.
- s 2.092
^
'OO
., 3
Suaplement 3 a
_.: ;ure 123
.,v,,
sheats in t hro u g,n,..
sacw ecaponent peak ca, cur,atem surface ter, erstares and qualification test temperatures.
In all cases, the c:=penen: peak test temperatures were held for longer
.:an 10 cinutes abcVe the steam saturation temperature.
t e.
- .t 3
3 3,
M M
s O
l
=me
- . =
y e
I w
4 0
JI O
O c;
O X
y a
L8 C'
7 C
2 Cs
- a a
- J J
C.4 C
L**
31 d
C/:
".3 O'
L 6
C!
O O
U Qu u
w
=H L
2 3
~3 A
m Cg 3 3 3 3 i
l 4
"3 "U >
~3 >
m
'~ {
U U-t.s w
.J O
U U 2 3 -
0 0 O
4 L>
L>
0 C U
U e
D k C b L U C L O
- -4 3
3 ; 7 L
-: 3
-3 4 ' V LO 4 3
.O
- =4 0
4
>i u 3
.4 0
a
. ;a w"
L.L LU D
U U
U e -.=
3 c.4 3
M r.r3 M W
3 6
~
k.e U:
W U J3 L
L1
-3 O
3. ",
u
.J 3
3
- U Q
J
- ll "3
> L1 -
e
.4
.d A
O
.)
fn h
O U 1== *<
'J Mw
- J U
CU
'J M
00 L' k L1 -.
- 3 % c a-t/:
O 3
3
- l
> ; N 6 >
O w
Di >
'a 0 - t a
m O 3 01
- J M U O "J
C lO 7l 3l C'O!
U -. ",.*
Ow m U :
to M 4 C
T
- O T.
L1
< 1 5 E
O i
6 O "J;Li :j U
- - 4m
- O 6Cw C/3 N
b.4 v L I
u5 Ut g e
a w L I.a i 4
H' g
6
! '* {
- J d
'll d, ' W.
U 0.3 C
C Q
=-4 3
2.
U y
a
-3
-3 m
5 s
=;
=
.=
.= u a
=
- .- L.
I O
.a a e
,=-4 m U
=
=
- 0. u e
l 4
' 6, Oj. l D :
n 3
3 3~s C u
. 1 m -
M J
e-*
w 6
- O e4 0
I 3l
- n -*
3 U
.--s a.
w 3
L X
C =3
=
a
..a X
3 iO l 0l 5 -
M UL U
UcQc m
5 3M QM h M 3
m a
- u ;
I-
= 3
=
U M
I O
- ( ~ ;l U > U U.3 >
'J t*3 0 3.
"J 4
'm
~1 0
1-C L6 M T L1 4 O J V w
I>-
L: n3 3 n 3 U s3 o
m 2
?
a I
3<
<. > U
> U 40
- to v
- /3 Z
6 l l el r
L e
d l
J O
l u
.O 3
t u
1 n
y
)
,'s i
-*J m
es d
D w
a g
-o 4
g b
~
- 7 T
-d w
~
1
'w U
M U
.a h
M 6
W w
- 0 U
E O N
-4 i
7 0 2
a g
2 3-
- )
z
- c
=
4, C
C
=
- )
W
=-4 U u tf) u
= u!
=
=
=
=. n 3
- \\
U U
U au w
u
-2 L
L L
"J 3
o L
c.
o
- .1 o
4 L
L C
2 o
.a U
-3
.s
- 3 3
u'3 L
~
L
- O
- O O
O-
- J w
- J
=
- J a
LS 6 Z U
CZ
^
Uv Q
L
,v L
U
-)
g 10 0
7 3 e '
g 3 0
-)
7 > -
m
~.
U 3-S
~
L -
2 0.-.
o
., * ~
"J '
L >
^"; T 3
Z 2
34 2 094 T'
N M
4 4
6 }I
.I I
S3-42-23k
s r 1 G.. L, 4 _..,3
-. c t
t Building Spray Syste Response to a Staan Line 3reak ~;ith Iurbine Stop Valve Failure and Loss of Offsite Pcuar 50.7 3.5. Syste cchieves 1500 gp:/ train
- 51.3 Flav fren B.S. Nozzles begins i
i.~
N
- .S. Pu=p Full Speed / Flow a_.-
l l
25.4 2G Load Seq. Signal to 3.S. Pump (3.S. Pump Starts) 9?
/*
20 psig R3 Pressure 22 l
R3 5 pray ES Signal (3.S. Pu=p Start Signal)
- ^ psig R3 Pressure 1
I
.. _.- _,., c ~.,. a. e c =_ e : -
a.
aus (2.5. 'lalve Starts Opening) i I
I, i
i t.3 Isolatica and Cooling ES Signal (4 psig R3 Pressure)
(2.5. Valve Cpen Signal - DG Start Signal)
Staa Line 3:eak 4d, gyL r-
'Gs.3 seconds to re2 b 1500 dpa/ train if offsite power is available.
4 F I C'u'P..r.
. '.. '..H.
_' 'a' Building Spray Systen Respcase to a Stena Line 3:eak ilith F'.i Centrol Failure and Less of Of fsite P er 95.3 3.5. System achieves 1500 gpa/ train
- m n
65.9 Fl:2 frec 3.5. No::les begins
?0 IS.: =p Full Speed / Flow l
R3 5 pray ES Signal (3S Pump Start Signal) l 43 20 psig R3 Pressure 1
I i
l i
I.
i i
i
._._2_ r.___,
v,_ _2 _.
I i
e I
i 2.:
- ::nnected to ESF Sus l
(22
.2 ve Starts Opening) ri I.
I i
_.5 F2 :sclatic:. and C cling IS Signal (4 psig R3 Pressure) e 13 721;a Cpen Signal - 20 5:ar: S ig na _' )
5:es: line Break 2_096 29h.3 seconds to reach 15C0 gpn/ train if offsi:e power is available.
AFFECTED FSAR FAGES 2.047
Supplement 2 2'.2 ;. 1 (Continued)
- 11/2 A::uators 65? valve actuators are requirer. to operate for the length of time necessary for thase valves to go to their ESF position.
Eaviron= ental qualification for valve actuators inside containment is provided in Section 3.11 2.1 5 The extensive tests and analysis of these devices, as discussed in response to Question 11.15/5.2 of Supplement 2, de onstrates that they will function well beyond the time required.
RSS Instruments The langth of time R?S instruments are required to operate is dependent on the parameter which is reasured. For example, reactor coolant pressure, which is the primary trip parameter during a LOCA, will drop passed its trip setpoint (.~ 1900 psia) is a =a::er of 25C 21111 seconds. Once the drop in pressure has been recogni:ed, the pressure instrumentation has cc:pleted its job and is not required beyond that stage.
Res't-* coolant terperature which does not change as instantaneously as pressure,
-: quires a slightly longer -ize :o be reco;;ized. However, in all instances of stall to 1:rge braahs, regarilass of parameter, the safety functions of the RPS are re-quirai :o be perforced wi:hin the 250 =illisecond require ent.
It is clear fra :he :es: requirare::s cf a =inimum of S sinutes to a =axinus of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> for various components cf the R2S tha: these test durations exceed the safety function raquiramen:s by a wide cargin. See Tables 5-1, 5-2,.and 5-3 of
.t. - c. s.
,,ev.
3.
.s_so, not-n, e response to A,C questions c a Page A-9 or.
3X4-1C003, Rev. 3, with regard to the duration of operation f cr codules inside e_ a. s :. - _ _ ;..,, u__r,. :_1_.
=..>,2_z,.
c_ -. :. s v_ _a _ -
n__
n__
Thc ?.51
- 3uilding Air C;clinz Uni:s are required to operate to recove
.w, w,__._:___,._._.=22._.__
. _ _. _, - <. _..., _ ;... o.,., o w,., g a., C.
r Ao-w s..o.en s.
c: Fi;_ a
.2 ~ of :he 75A7.,. -he initial pressure transien: lasts about
_-.._:_-_____.__._._,.s.:_<2._<__.c-. _., a.- _c. ~ u,.<., n.,. 3 e..=
, >. cco.,.an,, n.uar,s n..
is pr;.__=: in Sec:i::
.l_.2.1.6.
A pro:otype of the Air Cooling Unit was
- es:ei f:: :wo hours a: 63 psig and 236F A discussion of this test and the resu_ 3 s ::::ained in d.2.2.3.2.2 of the FSA2.
?over Cables Zhe pcwer and cc :rol czbles, which are required for the operation of the valve ac:ua::rs and air cooling units, were tested according to the qualification tes:
i<_
p. -, 2 _ _. _ =_ :_ o-.A.~e4-4_-_.,._..<,, 3.33 3.1..,.
..w_
(S O
..FAa
)na.U w-
e-Supplement 3 D.
Diar 5 Fcr notors located outside the Reactor Building, there are no special environmental conditions specified in the equipment design specificatica squire:ents. 3pecification requirenents for Class 15 otors located outside the Reactor Suilding are as follows:
A=bient temperature for indoor areas is 40 C.
All cotors will be located indoors.
Motors shall have vindings with Class 3 insulation with a temperature rise of 60 C f or all types of :otor enclosures when delivering their rated horsepower in continuous operation.
Motor vinding insulation shall have special " Powerhouse" treatment for added protecti:n against oderate arounts of noisture, light acid conditions, c:ndue:ing dust, etc.
No environ catal qualifica: ion ;ost_ng has been performed on ro: ors located outside the reactor building. The environ = ental conditions of the areas where Class 15 =c: ors are located is discussed in 3.11.2.2, 3.11.2.3, 3.11.2., and 3.11.2.5 of the FSAR. The specification for motors requires co pliance vi:h all applicable A'!SE, !!EMA and IEEE standards. The te perature, pressure and hunidity conditions for these motors is well within
..e range of normal concercial motor operation for =otors built to chese standards.
The only Class 15 :o ors located inside the reactor building are the fan totars for t'a 's'- or Building A in cooling units. Thesa motors are subject to :he environnen:al :onditions of a LCCA. These =otors have been qualified for operation in a 12;A environment. This environmental qualification is discussed in 3.11.2.1.5 of the FSAR and the operational qualification is dis::ssed in 5.2.2.3.2 of the FSAR.
53-222-;Cbb l7
( C)
Supplement 3 S i:: sa:ples of three conductor #16 NJG - 7 stranded tinned copper,.023" wall CC-2L93 silicon / glass insulatica, cabled, alucinc:/ ylar tape, is tinned copper drain, sylar tape,.050" *.nli UL grade braided asbestos jacKe: - type NSGA-S300-16-3 (shielded) were tested with the following results:
Elapsed time of gas flame application - 20 minutes Propagation of fla=e above test fla=e 0 inches Time of cable burning after gas flate recoved - 0 =inutes Arount of scoke there was a coderate a=ount of s=cke during first 15 =inutes of :he tes:
There was no dripping or falling of particles from the cable There were no cable failures he gas flame was 1050 F at the point of i=pingement and was applied horizontally two fee fra: the ficar with a fla=e are of about 14 inches.
The fla:e source was a 10 inch wide 7,000 3TU/ inch ribbon burner. The cable tray was six inches wide, three inches deep and eight feet high.
Total length burned - 14 inches above point of i=pingement. Total leng:h that insulation burned - 14 inches above point of i=pingement.
? ver Cables Environ = ental cualificat, ion of pcwar cable is discussed in 3.11.2.1.2 of_
tha FSAR.
Equip:ent design specification require ents are as follows:
Cables c:all be able to be stored and operated in an ambient te=perature r:nge o#
'-"5 5 degrees Fahrenheit to plus 100 degrees Fahrenheit without
- king occurring in either the insula: ion, shielding or jacket.
Cables w;_1 be ins:211ed in ca ambient te=perature range of plus 20 degrees T2hrenbeit to pics.30 degrees Fahrenhei:.
SI:;les cf cables shall be subjected :: the fire tests as described herein.
- r22:::
s"1 frrnish certification that the cables being furnished urder
- iis spec-fi:2:ica shall be,able to withstand, wi:hout injury or da: age, an i
'. :e;ra:ed d se of 3.5 x 10'R over a 40 year period.
m
- 2. M s3-222-4cha
- r. s-,., 4 _..... "u4 w4
. u.... D. 4. s e.,
ce...,. o, O_ u, 4., 2 4 s.-
a.
Ins unent cables for reg: ired transducers and valve actuaters
- .e
-a e.,..,..,ab.'=.s "- ". a C v.
a.'a.
- v..T. a+.". a. rq" 4 - a a '.
+
, -~
c.
Diesel Genera:crs d.
D.' a. s a' G=..". e.- a.'..-
3"#--
T s ans
. ~ _ - _ =
... C.47
- v.,.,
T. ans.'a..-
7.
,s e.
f.
Valve Actuators
.w. e Cw,n+..,1... u,,4, d.4. e-7..,,.. l. 5 r _.d.4,. _......
e....l4.w 4..
s
-v
.m
~---
w.
d a*
a.
ma. "- a...t cab.7 a.s.'+- C a.#e'./
'ea." e
'gu,
b.
D-.4e and. C ^ " ".*. ^. 7 c _a k.l a. s.#o.
. a.#a '.f "e s'."- = 7qu'.#.~ e.".'
C r
y
(.
%., i o.,
7 s.. e, e.y.,,
T.3 +w,w,.,..
?. Q,,.4 - o.,.+.
s,.
y-v w.
.~.
d.
,* -.,. o.7 a.A C a w._
- 0...- r a, C.n.1.. s e,
e.
n.-..., 7 aa a...
2.., _s
.,.s w
...e.
f.
'Talve Actuators g.
R.S Cabinets 3.,,.2
. L7 9. - :
d.,m.,7.
.,-.S.S.C. D,..n. v. e r-wo s.m. a 3.,,.2.,_
r-_2..._._.,p +_u $g._~.,._ p._.,,,~,,,.
2_,, 4 _, a 4 g 4
m 3.,,. 2. _,..-
s-, __.. Ca., e s w
Inst: :nen cables a e designed to operate under the nor al Reacter Euilding 0
4, e_,.,..,. -......,, _ -.
,, o :' a.d. *o vds a-d, v *_* u+. # - j ur, o.- d a -"s.,
4 3
v e
an integ sted dose :f 1 I 10'E and e qcsure to a dilute ix ure of sodiu:2 s.4 x.42..
(g., y/-), a 24--
- ".4, s"~'.'.a.
a (.'.O v/o) a-d
%~^ 4..c ac.i.d ('000 sy ).
+.
% '. #.'.u' e
..s.7.....-ad..-a.s.'..-_'-a-.._-__.'.='.-4.-~..
.- a % ' a s
- a. -.-.-. '.m. d in I'.-*
'< ' i a da u
..-..,w e., _,4 e.. e. a 2 -s a '-2', ".as. c.' 7'~..+.4.-al Cablas
- .a...
c-,,--
4.a.
~a
'.v s a
-'-Cvo.l an*. Ac -4 d a..*.
-, - :e.a
- 2.,.2 4.e 4.,.._.....a-a e,.w w.-
3 04-,*,s..J
", aA
(*7. M...*, " s*.. _37 4.#.4
- s. 4.-.
s..
e
- 7 e..
4.-11 "vables U.d.e.-
.a v.
- a- ?~ns a-o f-voo a.e.4
[-e..a4 4
..a-
.O.,4 7 _a. _4 -
% a..s.., * - *. '.~**p4-- m.,
.c o. *f.c a.
o a w., 7 n.
t.. ~.
3 th.
J.ae4 9..
C1 7.s.#_17 7
%. a. su _4+.eA a4.= a
.73 = e dad =e.
vda4 4
_,- ".9. S-
".,' a*_1.#.d.. 4 s *..* * **. p
- h.
k 4
9 v
h.
3. ' '
?.
9-9 3.11.2.2.2 Power and Control Cables
?cuer and control cables are designed to opera:e properly in a temperature range of -5F to 100F and to withstand, without injury or damage, an integrated dose of 5.6 x 10#R.
The vendor has supplied guaran:ces that cables will opera:e properly under these conditions.
In addition, camplas of the power and con:rol cables have been tested in simulated post-LCCA environment; to deconstrate suitabill:y for service. These tests involved exposing the cables to an integrated radiation exposure of 1 x 100R, sprays of dilute boric acid, sedium hydroxide and sodiu thiosulfate, and terceratures and pressures ir.-
O cluding a 13 hour1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> test period at 82 psig and 320 F, exceeding D3A conditions.
Tests conducted on pcwar and control cables are described in Franklin Insti-tute Research Laboratories test reports F-C2737, " Qualification Tests of Elect:i:31 Cables Under Si ulated Post-Accident Reactor Containten: Service Candi:icns", and F-C2770, " Qualification Tests of Electrical Cables Under Simulated Post-A iden: Reactor Contain ent Servico Conditions".
Environ-cantal :est paraceters are listed in Table 3.11-2.
3.11.2.1.3 Pene: ration Asse:blies Electrical pene:rari s have been designed, tested, and documented in accord-ante wi:h IIII 317 (1971 for low voltage and 1972 for cediu: voltage), "IEE2 S :an, a r:. :or slectr,ca..,ecetration a.sserolles in con:sistent Structure for Luclear Pcwer Genert ing Stations".
The penetrations were designed to operate con inucusly in a nor:21 operating envircement of 110F, atmospheric pressure and 20 :o 100% humid::y, and in taxi =u: e=ergency environment conditions of 256F, 60 psig and 120% huridity for two hours. The assemblies are also desi,med 7
to wi:hs:::d an in:egra:ad radiation exposura et 2 10 R without datage.
The ::::ainten: ele:::::21 penetraticas were qualified in sequential phases, e::p; sing tha pare:ra:i { o 352 F,124 psig LOCA environmen: for thirty tinu:as, and then :o.: :.
c2 psig t ar 23h hours.
Environmental qualifi-cc: : ca:a ro- --> - ::ainment electrical penetrations' are included in Ge ar:; I;entric Tes: Zeper: IPA?!O.5, " Electrical Penetration Assemblies -
=....-...=..es.<,...zu..------.;,-,,po..n.
a. a. - =>,;;
c.,;
_2_
Iransi: :: fiali spli:es 2 ave been providad, where required, on all power, instruxe::, and 01:::1 circuits penetrating cantain=ent which will be re-
.. a_
, a.-___...,_,._a..a__3-,, - _ a w-
.a, e _-
n - - >_ _a. a..-...
vu.e.c.ae., d op lice.4 nsu-3%
.w i.
12:in; nacerial h2s :een subjected to a test progrs: to si=ulate normal
~
sereize, a loss of :: clan: acciden: (LCCA), and cocidown post LOCA, and shich included si=ultaneous stern, che ical spray, and radiation exposure.
T..a Fr:21_in Insti:::e Research Laboratories has conducted a test progra:
subf :::ing Rayche: Thar::fi: in-containment transitica field splices and in-line field splices to 2 environ =en:al test progra: based on the guide-
_ ices f :EEI 223-197-and 333-1974. The tes: progra= co==encad with a o
sava:-2 f co bined :her:2; and radia: ion aging period at 302'? and 5 x 10/-
?.1.D 3.11-2a
4 m
r::s ;,-- radiation dose.
This was followed by a simultaneous exposure to s:c22, chemical spray and ga :a radiation (1.5 x 103 rads) which included aa initial dwell at >351 F at a stea: pressure >70 psig for 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />, fo!-
loved by 4.5 days at 275 F at a 31 psig stea pressure and concluded with o
a 26 day dwell at 212 F and 10 psig. During the testing periods, the spe:imans were T
rically energi:ed. The test progra: is described in Franklin Institute Research Laboratories Report F-C4033-3, " Tests of Rayche:
Ther:afit Insulatica Syste=s Under Simultaneous Exposure to Heat, Ca==a Radiation, Stea: and Chemical Spray While Electrically Charged".
Environ-cental test paracetars are listed in Table 3.11-2.
3.11.2.1.5 Valve A :cators o
The valve actuators are designed to operate at 60 psig, 236 F, 100% hu idity and an integrated radicactivity exposure of 2.3 x 10 R.
7 Motor operators vera typa tested for approxi=ately one hour at 329 F, 90 psig, and 100 percent Relative Eu=idity (RH). Conditions were then reduced step o
wise :o 254 F, 15 psig and 100 percent RH over a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period. This test is dascribed #a o ' '"alphia Gear Corporation-Li=itorque Valve Contro l Engi-neering Order No. 600195, " Test of Li=1:orque Valve Operator to Meet General Requira: ants of an Ela :ric Valve Actuator in Nucicar Reac:or Containten:
Environnant".
In a separate test, a valve actuator and cotor were subjected to an at=osphere of 200 ? and 70 psig f:: 30 =inutes.
Ad:er cooling for two hours, the equip-cen: was subj ected :: 320~F/70 psig for another thirty =inutes.
During the 75 ricutes, c"*-"er :est paraceters were reduced to 250 F/30 psig.
nex:
4nese con:it?.ons <= = - ained for 92 hours0.00106 days <br />0.0256 hours <br />1.521164e-4 weeks <br />3.5006e-5 months <br />. Conditions in the chamber wara far-her reduced :: 1;Q F/LO psig and held for 26 days. The RH of the chan;ar was nain:ained 2: 100 percent. Control and power lead connections
- hrough flaxibla pressure tight c nduit connections between the we:c ru:
2 i:s ani :he a : ass p;in:s of the tas: chamber.
This tes is described in Lini::rque C:rpers:i : !2s: Labor :ory Proj ec: No. 600456, "Scclear Power 5:a:i;r ;;alifica:i: !;pe Tast Repor: - Lini: rque Valve Actuators for
' car so;arati val as vera tested with the power cable connected to the terni:2_3 f or the selan:id which ara located within the valve housing.
Tha 2f:14 for positic: inil:2 tion was connected to the terminals for the ra:d posi:fon swi:chas which also are loca:ed within the valve housing.
Ihe cas valve was a: posed initially to a te:perature environ =ent of 313 ?
o for 172 hours0.00199 days <br />0.0478 hours <br />2.843915e-4 weeks <br />6.5446e-5 months <br />, durins which tire the solenoid was deenergized, During the 12CA sinul2 tion, tha valte was subjected to a seca: che:ical spray acros-phara 2: a pressure 102iing of 44 psig.
The te=perature and pressure wera raised :o 2-6~F and 113 psig and =ain:ained for a 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> period. The te:-
o pa:::ura was reducci during the next 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> to 100 F.
Stea: infected into i
tha :as: chamber raisad :ha environment to 3 6 F and 113 psig, which was I
3.11-2b
o held for 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />. The temperature and pressure were then reduced go 335 F/
93 psi; and held for 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> before reducing the parame:ers to 315 F/69 psig for 2 - h:ur period.
Af ter the 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> period, a centrolled drop was initiated o
that reduced the parare:ars to 270 F/33 psig in 30 cinutes. The ce:pera:ure and prassure were =sintained at 272i2*F/23 psig for the balance of 3b days, at whiqa tiae a controlled drop reduced the para =eters over the next l\\ hours to 245'F/13 psig for the retainder of the 13 day LOCA exposure period.
This testing procedure is described in Valcor ngineering Corporation Doca ent No. QR32600-515, " Qualification Test Report f or IETE Class lh Solenoid Valve P/S V526CO-515, Valva Type I".
The hydraulically operated contain=ent purge valves receive a 4 psig cen-tain=ent isolation si;nal and will be closed during LCCA and before the co - ent vapor temperature exceeds the valve qualification temperature during an MSL3 accide :. These valves have been certified by the manu-f acturer to cperate pr:perly af ter being subjected to an environ =ent of 286 F/60 psig and 100 percent RH.
3.11.2.1.5 Reac:or Zuilding Air Cooling Uni:s Fan co:ler notors were tested in a pressure vessel which was heated by relaasing stea= into the vessel to maintain a te=perature and pressure profi
- during the tes: pericd as outlined in Table 3.11-3.
During the of ficial :est period, ' -ha-4 cal water solution having a pH of 7.2 was inj e::ed in:: the test :br:ber, containing hydra:ine, boric acid, sodiu:
hydroxida, potassic: hyir:xide and sodiu: thiosulfate.
Ihis test is de-scrf bed in Joy Manuf ae:uring C pany Test Report X-421, " Report on Modified r-~' --- > - - -l Te s :
and Law Speed Heat Test en Joy Manufacturing Cc pany 2_2_-
_ o _e t.a..__:
r _.:, n.
_:_a.u..oa..
- o. av-e.e_oc".
...i v n_
In 2fii:i:n, a pr::::77e :est was perfor ed under envirac= ental conditions eq_:v _e:: := the pos:-10CA Reactor 3uilding Environ =ent.
This test of fan ::::: assa: Slits was perf orced in 2:c dance with the Air M,ving and C :di::::ing Aase ' 2 -- -- etic No. 210-67.
A discussion of the test
- d ras._:s is con:2 ins; in 6.2.2.3.2.2.
3._1.2._.
?r:s rari::: Safety Relief Valves Pres surin ar saf e ty -= ' =#
721ves are required during some accident and tre. sie. : situati::s. Tha pressurizer safety relief valves are connected to #
"'~d""
-o::les c the pressuricer. The valve construction includes a 21:52: bonnet housing all cc ponents, which thereby are subject to stea:
relief f :ha RCS as :he design operating condition. The pressurizer safety relief.aires are cons:ructed of the sa:e =aterials as the rest of the re-ac:ar :::122: sys:er. Therefore, neither contaianent te perature nor pres-sura :; ring accidas: :: pos: accident conditi:ns represent a core severe c:nciri:n chan opera:ic: for the desig condition.
2?. JL(J<1 3.ll-2c
At!9 3.11.2.
5 Instrumentatica Tne qualification of ins:rurentation inside containment during accident and post a::ident condi:icas is as described in 3Al-10003.
Qualification tests O
were perf ar=ed at a temperature of 290 F.
3.11.2.2 Equip en: '41:hin the Auxiliary and Fuel Handling Buildings Since no abnor=211y severe environmental condi: ions are expected in the auxiliaq building during and subsequent to any of the design basis events, the nor:al and customary industry standards and tests as discussed in Chapter 3 are considered adequate to assure acceptable perfor:ance of safety-related equip =ent.
3.11.2.2.1 Instru en Cables The design and qualifi:ati:n of instru=ents c: les is the e =e as described in 3.11.2.1.1.
In ins:Inces when the predictec environ =ent of cables foc specific circui:s does net recuire :he characteris. tics describea in 3.11.2.1.1, substi:uze cable which will nee: :he require:ents of the predicted environ:ent will be specified.
3.11.2.2.2 Power and Control Cables The design and qualifica:icn of power and :ontrol cables is the sace as described i,.3..,,..,..,._,.
3.11.2.2.2 M:: ors All zo:::s have class 1 igsulation. Mctors are designed to operate in an anblan: :e:peratura :f -U~C.
2.105 3.11-3
T.ible 3 1.1-2 Environmental Tes: Paranecers for Cab and Ter=inal Connections i
i Cable Press./Tero./Ouration Hunidity Reference scrite (Fcwer 82 psig/220 F/13 hrs.
100%
1
& Ccatral)
Kerite (Power FC psig/322 F/2 hrs. (tested twice) 100%
2 s Control)
Sa uel Maare &
103 psig/340 F/3 hrs.
100%
3 C pany (Instru-O psig/200 F/26 days 100%
rection Cable)
Raycha: Ther ofi:
70 psig/351 F/10 hrs..
100" 4
r 4 e.-
.ep.3.4 e s.
31 rsi;/275 F/4.5 days 100%
o 10 psig/212 F/26 days 100%
Ana:cada/Can:1-110 psig/346 F/S hrs.
100%
3 nen: 1 'Instru-36 psig/335 F/3 hrs.
10C%
rentati:n Cable) 69 psig/315 F/4 hrs.
100%
23 psig/263 F/81 brs.
100%
2eferences:
1)
Reper: No. F-C2737, Ctalification Tests of Electrical Cables Under Strulated
?:st-Acciden: Re2 ::: Con:2 intent Service Condi:icns, The Franklin Institute Research Labars: ries, Philadalphia, Fenasylvania, prepared for the Kerite c.
, g.
, s e.._.-,
c..
.. a c ~..' c u ~..
2)
Re,::: No. F-C2770, Ju211 fica:1:n Tes:s of Electrical Cables Under Simulated
,._.,..<.2__
- ...,. c,..., 4.
e. _
- e. e, <. C _ a.4
- 4.,. _ s, T u..e
- .a,.id. i r..a-4....,
t ss
.a....ca.
.. c a.._.. ~,.
.....a a.%.;s.;, p.aa,
.c... a f.1..an..; a, p r,p a, A..
.cor e%..e ye,4.e a...
a..
.. __ _ ;, e,-...
..._-,s..e....
_ _c
~.
3)
Re;;r: No. F-C3di3,.' 211fication Tests of Electric Cables Under Cendi:10ns
- cier Ner:21 Zar:::: Cents #--o--
Service and a Loss-of-Ccolant Accident, he Fran'- I:5:1:::e Research Laboratories, Philadelp hia, Pennsylvania, prepared for Sa=nal M: Ora and Cccpany, Dekoren Division, Aurora, Ohio.
-)
Reper: So. F-CIO33-3, Tests of Ravche: The r:c fi: Insulation Svsters Under 3 '-" ' '- ="" s Erro sur e :: Heat, Ga==a Radia tio n, Stes: and Chemical Sora.-
Thila Electricall-Ener;ized, The Franklin Institute Resear2h Laboratories,
- :liad elp hia, Penns71tania, prepared f or Raychan Corporation, Menlo Park, i
v_=___
-_r_,.
3; E:p::: No. F-C1330-2, Tes of Electrical Cables Subject to Therra! Azine.
l J=--' 2adia: ice. and a Less-of-Cocian: A :idan: Strulation, The Franklin P hilad alp hia, Pennsylvania, prepared for
~
_ scitu:e Easearch laboratories,
- a Anac;nda Cc:panr, '.!a r io n, Indiana.
l k3 )b([b5
- 3. 11 -7
~
8 lrCIP E'II-E 2us.T:euzen rT lesa 3eupT:ious - gru 30oTP: 3c c J...sbu,C 3 a.,:-,.a _ cc = -~
sr
~ n.S
. - -~
O'rm,; T t h3 3q
?-.]c-e-
dS.-
in d EI d'ZY 1 DA D7 2 0
8Z c :rc-
-G c..
//
iO :T
- 70 252 Ig :Tu-yZ SE cu
.m
-7.,.
,,,c
,c S.
f
!? T '
70 CSE ED TU' 70 ESO Cd'YI: I;;D C031 10 0 dSID EC :72-0 272 51frI EC! DID'I - I.HCR O IO 90 dSIO - S SIDCKCS
- E
- T*
90 EOP 7E :72-90 ETO cO :72' 9E Z65 EE T*
96 Z6I T.22~
90 Z60 s,...
,3
.r 5 e.
.S9 t
o T n..,.. c., _r
.si c,oc I it
- TE ~
- GC 289
,t
- 4....v r...
EC
,88 I 4';~
- 5 :T*
55
- SS
- n
.v
-r t
,S6 c
^--
cc T.--
EE :T*
E9 Z60 2'
,o. D cc u
I u
ec
,S6 I
.r cc 0.6 u ce sbu I
((
.c 6c f
. o, e 3
c.
i, w
ce
.c 6 c, 1
- c. -..- -r re
,c 6.,
_r.
,c69
.: _r cE
.c. 6,e.
.-. ~ ~. ;. _r...
$ c_
.c.o. S
-n
,u
.r
- -e e9
,c 6,,
c.-
.u cc 60
- - ~
c
. r ~.
3 Ec
~6T c
?0* iC -.
- CL Z60
- a
- - :c : :-
wo.c CC Z6E c
I
-r-
,59
. c..u.
c I
E'II-P 3 J][
~
l 1
Table 3.11-3 (Canrinued)
C" A.'~.7. 't C." 2 ' ".> 7 '.'.
rr m r, PR;Sa.
- n_. m..
A.
T D'E PSIG F
3 br. 12 =in.
56 292 3 hr. 15 min.
55 292 3 hr. 20 min.
55 292 3 hr. 25 tia.
55 292 3 hr. 30 min.
55 292 3 hr. 33 cia.
55 293 3 hr. 20 =ia.
55 292 BRI"G CFUEER PRESSURE TO 0 PSIG 3 hr. 45 min.
47 290 3 hr. 50 min.
45 2S6 3 hr. 35 213.
40 272
., hr.
35 266 hr.
3 sin.
25 244 4
, w sn 4 a.
2<
4,...
4.
4 br. 15 sin.
13 229 e.
.r.
_a : n.
A.
, l a, c
4
.c 4
4 hr. 23 212.
5 207 4 hr. 32 112.
5 2C6 4 hr. 33 nin.
0 205 u...,.
-u,
-4_a.
0 "0" PRESSURE 4 'ar.
45 =ir.
0 229 4 hr. 30 212.
0 234 4 5.r. 33 nia.
0 239 y b.. S..
v,--
c.
5 hr.
0 223 5 nr.
3 212.
0 227 ST32.T MCTOR i 0 PSIG FOR 1 F. CUR TEST v
..e 2i2-0 216 5.i.-
0 212
.i.,_._.._...
0
,.n8 v
15ru-0 205
,n 0
.0.,
e 25 212.
0 198 30 cir-0 194 33 112.
0 194
'C cir.
0 190
-3 212.
O IS9 20 212.
O 186 33 tix.
C 134 50 212-0 133 d5 cir.
O 182
>~.4r8
.41 7
4 (1.j Serk:witz, L.:
Seismic Analvsis of Prinarv Picing Systems for Nuclea:
Genera:ine Stations, Reactor and Fu21 Processing Technology, P. 302,
,0..
_1 _7,..o.
,/
193'1".
st (15 ) Din gwell, I.'.v*.
- Generalized Picing Svsten Rescanse to Ground-Shock Saectra, Arthur D. Li::le, Inc., Ca: bridge, Massachusetts.
(16) PSA2 - Three Mile Island Station, L'ni: No. 2, Docket 50-320
" Appendix 5J - Report on Reco== ended Concrete Creep and Shrinkage Values for C :puting Prestressing Losses by Schupack Associa::s & Co."
" Appendix 5K - Report on the Reco==anded Relaxation Values for Prestressing Steel by Schupack Associates and Co."
(17) L.C. Richardson e: al: A C : cuter Progra for Fredictin: the
_C ntain=ent Pressure-Tercerature Resconse to a Loss of Ccolanc A cident - 100 17:20 - Distribu:ed by Clearing House for Federal Scientific and Technical Infor:ation.
(13) White, R.N. and E:lley, N.J.:
Membrane Shear Transfer in R/C Contain-
'lessels, ASCI Na:ional Structural Engineering Meeting - April 1971.
ren:
(19) 0.5. Savin: " Stress Concentration Around Holes", Pergatan Press 1961.
(20) A.I. Lurie: " Con entration of Stresses in the Vicinity of an Acerature in :he Surf ace f a Circular Cylinder", Prikl. Mat. Mekh. 10, 1946, pp. 397-407 (Inglish transla:ica by N. Eurnswick, N.Y. Univ., Ins:. of Ma:h. Science, l.'C).
(21; S. Ar:hanari, C.F. Tu:
"An Analvsis cf the Creeo and Shrinka2e If f e :s uten ?rts ressed Con: rete Me bars under Temoerature Gradient and its A:ali:::L:n, Maga:ine of Cencre:e Research, Sep:. 1967,
. =. _ _. _ _ a,.. 2 C.,___._....
. 2 s, - 4 a.,,...
.. u
=
..=
(22; J... liggs: ":::::::::1:n :: Stru :urai Ovn2=ics (Chaoter 5)",
..... u _
_.. _ _ :../.
.. x
(;2)
~7 T7 - 3.a:::=anda:icns for an International Code of Practi:a for 72 4 "-- ad C ::re:e, C :ite' Iur: peen du Seton, Paris, 1964 Inglish translari:n - A erican Concreta Institute).
(2-) Sab::ck & Wil: x Suelear Power Generation Division.
Cualification Testing l
f Protectic: Svsce: Instru=cntation - Revision 4, BAW 10CO3, Rev. 4 i
1 a':::: : 5 Wil::x C::pany, Lynchburg, Vi:ginia, January, 1976.
k J. _y a.-
dip-19) i i
(23) _enaral Electric Tes: Repor: Proposition No. EPA?TQS, Electrical Penetra iag u se:blies - Prote:v,e Testin: Cualitiestion Recort, General Electric j
Cc ;any, San Jose, California.
i i
(26) Jc;. Manuf. ::t-ing Ca:pany Report No. X-421, Reoort on Modified Enviro >- al Tes: and Low Snaed Heat Test on Jov lbnuf acturin, Cercanv Fan 'dadel 43-269 -
1173/370 RPM Part No. 5C0722-66, Joy Manuf acturing Ccapany, New Philadelphia, Chic f or Jersey Central Power and Light Company, Three File Island Nuclear Station, Unit No. 2, Custo:cr: A=arican Air Filter Cc=pany, Louisville, Kentucky.
(27) ?niladelphia Gear Corporation - Limitorque Valve Control Engineering Order No. 600198, Tes: ef Limitorcue Valve Onerator to Meet General Recuiremen:s of an Electric Valve Actuater in Nuclear Reactor Containment Environment, January 2, 1969, including Addendu: 1, April 29, 1969, and Franklin Institute Report No. F-C2232-01, Tes of a Limitorcue Valve Operator Under a Simulated i
Rea c tor Centainten: Post-Acciden: S team and Che ical Environment, the
{
Fr:nklin Insti:::e ?esearch Laboratories, Philadelphia, Pennsylvania.
I (23) Project No. 60C156, Nc: lear Power Ctatica Gualification Tvoe Test Recor: -
lixircreue Valve A:: a: ors f or ?WR Service, Limitorque Corporation Test i
Labora:orv..
(29) Raport No. QR32600-515, Cualification Test Recor: for IEEE Class 1E Sciencid Valve ?/5 V52600-515, Valva Tvoa I, Valcor Engineering Ccopany,
- s e. _._..o.. x.,
. _x.
..es. ae...,
(30) Reper: No. F-C2737, Cualifiestion Tests of Electrical Cables Under Siculated
? s:-Acciden: Reatr:: Contain=en: Service Conditions, The Franklin Institute 7.esearch Labcra:: ries, Philadelphia, Pennsylvania, preptred for the Kerite
,.n...,
- e.., n.. i n...
.. - -,,, ag
',T_,
R2 ::: No. F-C27 2, 2:alifica:icn Tas:s ^f Electrical Caoles Under Sinulated i
i T ;:-.::iden: Rea:::: C:ntain=an: Service " aditions, The Franklin Instizu:e l
?.:5 =ar:h Latcra::rnas. ?hilaaelphia, Pennsylvania, prepared for the seri e I
-...a-...
(33; Z-;;r: No. F-C-v33-3, Tests of Ravche: Thereofic Insulation Systems Under 51:21:aneous 7-- - :--
2
=a:,
G=--,
Rad ia tion, Stes: and Chemical Sora.
^
~.hi' a Ele:r:1:al_- Ener:iz ed, The Franklin Ins:itute Research Laborator1es, hi_adelphia, ?anns: rania, prepared for Rayche: Corporation, Menlo Park, California.
(33) Re:: : No. F-C2533, _cualification Tests of Electric Cables Under conditions Sinulatin: Ncr:al Reactor Contain=en: Service and a Loss-of-Coolant Accident, T.- Frankli - s i ute Research Laboratories, Philadelphia, Pennsylvania,
- a;ared for Sarcel.2cre and Cc pany, Dekoron Division, Auror2, O hio.
,3, 7.ep:r: No. F-C'35C-2, Tes of Electrical Cablas Subj ec: to Ther:21 Agin:.
---' ladiatior. and : Loss-of-Coolan: A ident Si=ulation, Ihe Franklin
- s: :::e Research Labor 2:ories, Philadelphia, Pennsylvania, prepared for
..u..2,-
..,.a,
...;.< a, _.
- '.1Li()
3.12-3
e,
._. _.=.,......--.a
> : = c.
.. : n 2,,,,. ; a., :....,,
--u o
..,:.... a.
,,? 27 a
%....a>.
..a.,
s o.s i _.
.u.. a n......,
..a
,:,., t n.:., a. u., i a t,..
e e
e.,_.,.
_1 c,, 4 (.:_.s.;...2... 4.)
.3
,., v..' " a.
s a t <. s., w-. o., c.. =_.. i s l p =. -
r..
b s.
._ - - a
.4 _,
a,-.,.
.a.
--41u.os c.c g.4. 3..
c, a,
-.4..,
- c. _-,a.,.e. tg,
gyg_
. a _..a u. _., 2 _4 _= s, 2. o -,,.,.,,. e, s - s
- a..:. -
%..;..c..c _.s, d a s p.a,. sys,,.w, re_
. ;_e._-
3_.<..._....
%..,.2.a.#. v.' t a.- a ' s..'.i.
k..v.a o v...i d. a. As a re 3
s "_ '..'.# -".'a-
. _- =_,
s e.a.t ".-
".'".s"-e'.>.
.. a'.s r.
-k..=_ 'aildi-o '
.A 3
a s._'. s.vs =__
'f_'
3 a. >. v a.'. =..- '. a."..= e n. '. a.
t _-
'.s- --> ~ '. =.p.sy p".
p f
m_.
w..
2.a _c
.'-_3=-
s s_ '.
- =,a-.
c a _- _< _ _'s
.4
_4.< a e. by a 30 psi,- hi,ch reac :or build ing d
pressure (SFAS) signal. This SFAS signal cc==an s the reactor building d
spray pu=ps :: star:. The opening of the spray valves (SS-VlA/13),
and the bc ::ad va:ar s: ors ~ee :ank (3"ST) outlet valves (C'd-V3A/3) 4.-
4_4.4,.->
- irsis rea :cr building pressure (SyAS) signal.
.w.
o t.%..a o e-<-*
.3
_ ' _ = 2.- J_ ' " _ %..p.. c ~.1. e t.,..>.. c".1 c.. a '.~ (D u.-y 3 A / a )
J
. ~4 is initiated eithar by :he 4 psig building pressure si;n:1 or by the
_'. 's O p s i -. =. = -. _- _ _- _ '..-. p. a a s "...= ( S r.*,S ) s i.t.a.'.'
- d. a 1 v 3WST 3
_ ave _.
&ca 2.:.--
oa :
_a a- _s
%: san to assure,. C..
inj. ec: ion a: a
-;3. 13.7e-
. _u _, _ -. 4 - _ = 4, a-,u ~. 4. ".. 4. a c. a,..a'3 '.= i.d __4 s. The :"a o 3
f o ---.. e t _a _s _ - 2,..-
,.._p a- %a.1 1 s. a..., 'N.4,,
S....e,-
- U *4. l db1 4
y
.@s..._,.
-6
_3 sj f -_
w..
- __. _ w. : *,-_ _
,_2
___ a 2 _4.__. s,.. a._.c4 ;,.,., +.. %.. c,_,3 a. %.
ut.31 a
.s w
__s_
s.._4 __ *s-
- a. a _e._2
..s_. g....%... n.a. -,
pS.
A.,. 3 C
3
.,.a _1,y.
,r 3.a e.a 1
w s
f_
hrm.u$
%..-..,.. d..a. E.
4_a_
s?. - _,.4 4.._O
.d.,
.3
- b. 41 A
..y
.l h dua7 4j A
% --_J s._ 3. J -
_--s._ 32 g.
4.-,.1_1y aS,a.'a.
.O a s s u.* *. w...' *. * *".e
- O t _~ 1 d
b 3,
w-w.
%,-4_.~ *aT
,-.sa.cE-._4
,_ C.=
%.u.14 4.y 4*s b 1, n.s. s e. od 4
1 u%.....
.J_b a3,.gy.
--.3..
._is.
gg?.
3.. %.. g a. 3 1.,y lgy 1,
. k..e g g, C O ".
J
._a.
- s... e 2 4.. sp _a;
..__:,8 c, _-. _ A. 3 1 J
- s.... e.w._o,
.4s. anaue,.,cd 3
to the ra2a::: i:: g emergency su=p automatically.
=..
.,.s_y.__
7
... q.qb, n g
$.n_1,
._2..~_...,.. --_:--
2: _-:.._
_1....a 5..-_,.4.,..,2 f..
.__~.
,2.:--
%. a -. -
... _. _ ~..~~ - _..
.. z. _.. 2 %..,.a
- 2.., '. y.
<3 JO ' As) a d hor. On.aj ena
-=
- 2..__. _* ; a _
a f __ _
j r s_.
4
- 7
_fa w
e
._2. _ _..
3_._._J_a...-
. a_. %.
s.;.3
_.-.g.-.a
_.ugr J On a C
.n b'9s_-
_.. ~,.
,. - f a c,._
3" 4.*.
24,,d f
..s.
.. _.. _.a a.
_2.,..
- s... p tov..On no..l,_
.w f__7 g
- 4. gg. i4-.g2.y,, O,,.1.,.
2 _4.a..s _ _. -, a. ____s
_to L. -. a.. ;
.%......%. 3 2
3 aw.
.e-
.f
-..... 3
.. e..
s__
7 w3, 41. dvered at...=.
e"..#
C' e__.. M..Sg.
_w._
7
_. a-L._e e.
3 3 g
u.J.;4.*sC a. i.. C ' a~..o *. '
.#.#. *. a d
.%2 e..3 211,._
. s.. 3, ?
s.w,
.a f
.... c.- s _% *.. z.
J_e3 a.
.%.O s Cp e..s. e..
n e...d
( %.. a. %c,e
.bdd D-
.Tne C
..J_. %_
_g,*
c 3
w
~..a w
..M-:_
.g.
_].. _-..
-6 M._. p w a6_..3
.a
%f.
.Y.._.ah..,.
.w
.$ a
.f 7
9
$$9
.a_,
4 -, d._t s.,
..t..,
w..d
-... %. g 3. J
%2.
4, i -.
.6
.==
d p p.C.a.._
...-. r.
a..__. =._.
7 a.*-33 2..
4.._.%,_
g mua
-a
__=.- __
.a a..,-..
e
- 4. d i 3.-...
siaj e:: to the appropriate rupture and valve trips.
FILAP' output in
- he for: of feedwa:er inflow and tenperature to the stea: generator is usad as input to the FLASEP :odel to evaluate the re2e.ar criticality.
".cnen satisf ac Ory cc parison has been found between the RELAP'. and FLA5EP p cgrans transient stea: generato r para:eters, the FLASHP evalu-atica of reactor criticality is finalized. When co=parison is not satisf ac cry, the calculation c'/cle is begun again with MSHP primary coolant data re-input to the RELAP4 nodel.
Analys s of fuel perfor ance were calculated using the SiW ther al-hydraulics code, RADAR, which is described in the topical report 3AW-10069, PA0AR-Reactor Thernal and Hydraulic Analysis During Reactor Flow Coastdown, Rev. 1, October 1974. RADAR provides =odels for both the average and hot channels. The 3AW-2 correlation was used to calculate minicu: DN3R.
RADAL takes as input the total power, core inlet enthalpy, core pressure, and coolant fi:V rares calculated using the FLASHP code described above.
Contain=en: pressure analyses were perferred using the SiW version of the CONTD2: 00de.
This version is described in the topical report, 3A.i-lC095, 3abe::k i Wilcox Revisions to CON D2T, Rev. 1, June 1976.
C NTI.'d?T takas as input the mass and energy release rates calculated using ?LASHP.
10 provides a cass and energy balance for the atmosphere and su=p regions of the co
-H-ent building, a one-di=ensional transient con-ductica hea ::ansfer ecdel for passive heat sinks, and =odels of the bulding air :::lers and spray systers.
The cen:ainen: tenperature responue was calculated using CONTEMPT-II.' 2 6. This ersi:n is identical to the one issued by the Argonne Code Stater (ACC) wi:h the three card upda:e issued by ACC.
In addition,
- S!D2T-II/;f h23 :he following options for heat transfer coefficients:
!agari ::ndansing stea: accordin3 to 3 ranch Technical Position CS3 l
- -1, and A general f:::ii conveccian fa cula.
Addi:icr=
, :p:icus are available for co= paring heat transfer
- des and ch:csing :ha: tode which provides the largest heat flux.
- r arisons are nada for:
2 112 la_ _a -v-
3)
Forced convaction or Uchida condensing stea=,
- )
Forced convection or Taga=1 condensing steam, and 3)
Forced convecti n, four times Uchida condensing steam or four times Tagasi condensing steam.
In all cases, forced convectica can be chosen as either a default value (Lyon cc: relation) or an externally specified correlation. Use of option 5) allows codeling cf the temperature response of the equip-ment in accordance with the guidelines of CS3 Interis Calculation Model for MSL3 inside contain=ent.
133.3.i.3.2 Modeling Descriotions a)
EWHAM Ihe pressure histories at the stca: generator feed pu=p sucti:n used as input to the RELAP4 feedvater systes model were developed with the aid of EDS :!uclear program, EW.AM, a characteristics =ethod program for analy:ing hydraulic tran-sients in large liquid piping networks. The EWEAM codel, cc ; sed of pipe sections (legs) and points of connection (junctions), describes the transient behavior of ficus and pressures for the Three Mile Island Unit 2 condensate, bestar drain, and feedwater systa=s extending from the condenser hotwell and heater drain tank to the tube inlet secti:n3 of both stea= generators. Tais r.odel is shcwn in figure 133-2.
Junctions in the codel were chosen at the 1 :a:icas of the feedwater valving, pu=ps, tees and points :f P_igh pressure loss such as the feedwater heaters.
The ;:::: ions are joined by pipe sections (l_3s) divided int: :n* :: ten segnants of equal length.
133-92 4
4 A
s.
s..v
_. 0_ 6 s.
Cen:2in=ent pressure nalyses were perforced with the CCNTDt2T cod 2 c _n; the following assurpticas. Condensing heat transfe was codeled using the "AEC-Taga 1 Correlatica" described in the topical report 5A4-10095, A:pendix A, Part 3.
The Uchida & Tagari correla: ions were used with cui:1 pliers F1 and F9 (described in above reference) se:
equal to 1.0,,end :he initial heat transfer coeffician F3 reset to 5.0 STU/ hr-f t'-7.
For all cases, the temperature used in calculating condensing hea: transfer to passive heat sinks was the contain=ent ate sphere tc:pera:ure, which can be superheated. The analytic codel used to a ::unt for redistribution of = ass between the liquid and a: osphere regi:ns in CCNTEMPT is described in Section 3.9 of 3 A*.;-1009 5.
The lab:::k & Wilcox version of the COSTEMPT code as described i: the T:pi:al Report 3AW-10095 does not contain a cass/
energy : del f:: 1 :ali:ed condensation on passive heat sinks or fan ::alers. 1 : ass / energy balance in the contain=ent atso sphere is csed to predi : bulk condansation when desuperheating occurs.
1 the analyses perf:rred, all cendansate was assured to go directly
- tha su=p ragi::.
Condensing heat transfer to passive heat sinks is based c expe-izen:al data (see 3AW-lC095).
C:::H-en peak terperature analyses were performed using CONTE'd.PT-EI/'5.
The c:::ain ent environ =ent response was codeled using the C:hida hea: transfer correlation. When the contain=ent bulk te:-
per::ure is superhea ed, 8% of the, condensate is assu=ed to vaporize e-=__=_-___=._-,.--__=H..'.
The ciertal ras:::se :f e,uip:ent inside contain=ent is =cdeled using
_.__-._____s,-..-__-__=:__3
..a..z.:-
,m.
_3
.,r :
t-
.)
s._ _.
a
.__.._.___,_,__-._.__2__.,_
..._1,,.,
_.. _ _ _ _ = _
h,, = ::ndensing hea: ::ansfer coefficient the larger of ax Taga:1 Correlatica
=
Of 4x Uchida Correlatica T
saturation tercarature
=
s w
surface tamperature T
- conent
=
.= t, _ c -
m
_-___,a_
o ye
_,,_ss
..,a.
y,e c__,__a_<____,.
.s
.o
.__w
.:-- 12:1c haa:
f__..,
a cn'rectica hea: :rensfer is used based on
._.,__.2
-.3..
I W
2.$.b$
133-15
4 0.S Nu - 0.0322 Re where Nu = Nussel: No.
Re = Reynolds No.
The stea: velocity used in the calculation of the Reynolds nu=ber is calculated by:
.I
%f v = 25 "30 V,.-
k b.' e where v
= velocity in ft/sec
}L,
= the blowdown rate in lb=/hr
-s 3
= contain=ent volu=e in ft Cm, _
w...
6 2.1 x 10 73
=
Modeling of eq ipren: required to func: ion during and after a =ain s = =- 'i e break wa s One-di=ensional.
In each case, the point on
- ha equipten: which was modeled was chosen as res likely to exceed its environnen:al qualifica:icn tempera:ure. Tables 153-15 and 1.6
- v_de cdeling ini:rratica and ther : physical properties used in
., _ _,. = _ = _. _.. -,
c..,.
< g.
_..-.u..s.
._.._._.a_.__=.__
=_m_.. __-._ --:.,
--_-g__.,_
- _.__,,. see: ice.al dia;ra: is shown on Figure 153-14C.
Tha far :c::: :u:ar enclosure is a right circular cylinder with fins.
Th+ fins have baa i;;; red in codeling since they will not co ntribut a
- haa: ::ansfar in:: cha surface. The hea: capacity of fins has con-sarv1:ively bean is: Orad.
The body, rather than face of the cylinder
..as cdeled since, by design, it is the principle means of heat trans-
_ =, -. _,. e...,
.=_._.-.r..,_a_
= _ _ _.,... _, > -
_s-Ii;ure 153-1-3 sh:.s a typical =c c: box.
The s=al.est size.:otor an:1:scre sMede_ 5':3-COO) was chosen f or codeling, since its bulk w:' i reach the saturation re perature first aad it has 2-
-'---
- ha :hi-as: ::usin; :hickness. The enclosure was modeled as a
- ._inier.
- her p;rtions of the valve contain equipnent which
..--- be : Ore sensi:ite to '-= = 72-
" e environment.
23.1L1Ei 15B-15a
e Con: incant Elactrical Penetration Tha ccatainment electrical penatration is a stainless steel cylinder uith an epoxy potting =aterial on its face.
The thermal response of epoxy is uch slauer than stainless steel; therefore, the stain-less steel has been codeled as the tast significant heat transfer path during the MSL3 te=perature transient.
Since the surface te perature of the stainless steel does not exceed its qualification te=perature, ther:21 stressing is not more severe during a stea:
line break than tha test conditions to which it has been qualified.
In additien, the pcteed surface is not exposed directly to the containment at osphere, but is enclosed by the contain=ent electrical ter:1 nation box.
This box is no t air-tight, but would present a sta;nant stea condition to the face of the penetration (refer to Question 42.23 3e). A typical penetration is shown on Figure 153-14A.
Solenoid Opera:: s With the excepti;; of the containment purge valves, air operated valves inside contain: ant use Valcor two-way solenoid operators (see Figure 133-l'3 for a sactional view). The thinnest portion of the casing (the vertical wal. i: Figure 153-14D) has been codeled. As can be saan, that sectice houses the electrical ec=ponents associated with tha valve, which are ccasidered the cost susceptible to ther:al effects.
The vartical sa " -- of the housing consists of a.125 inch stainless staal section, a t inch air gap and a 60 =11 stainless steel 0-ring.
The casing thicknass was codeled as a solid slab of stainless steel
.153 inches thick n.a. - the air gap was ignored, thus conservatively evarastinating tha ta perature profile across the casing wall.
!_a:tri:al Cablin:
- n:::1 cablic; with a 1/15 inch jacket thickness was chosen for
- 3 ing.
Thara is 3::a cablin; in :he plant with asbestos jacketing tils, b : ::a char =al resp::sa cf tha rubber jacket is judged
- 52 :::a ' ' ' ting.
a.
?
.-L
-: r a p a rf o - = - - > " -- '- = wo rs t cases was analyzed with the RADAR ie 2 sing tha f:11;ving additional assu=ptions. The core was ici. 1117 assunad t: be operating at 102% of rated power (2827 FMt.).
Th=
_ ant tarparature was assured to be 132-13b d
2.2 v
V can:ainten: is more than adequate to handle any boil-of f of e=er-
- ency feedwater thr7u;h the affected stea
- generator. Operator ac:ica will be taken to isolate e=argency feedwater to the affected steen generator in the long ter=.
Even without operator action, the containment pressure re=ains well below the design pressure throughout the transient.
2ue to the high en:halpy of fluid released during tha stea: line break accident, the containment vapor te=perature vill be in a superheated sta:e during the first portion of the blowdown. For the stea: line breas with turbine stop valve failure, the contain-cent vapor te perature reached a peak value of 421F and exceeded the design terparature of 256F for an interval of approximately 52 seconds. 1 the control valve failure case, the vapor te=pera-ture reached a peak of 333F, and exceeded the design te=perature cf 256F for 107 se::nds. However, due to the nature of condensing hea: transfer frc: the at=osphere to contain=ent structures and equipmen:, surface ta:peratures were much lower than vapor te=pera-
- ure durin; the ::ansient. The peak te=perature of che containment s:2el liner was only 223F and the peak temperature of the internal c:ncre:e steel liner was only 220F. Peak te=peratures for these surfaces were reached for the turbine stop valve failure case.
Equi::ent surface :arperatures are reported for the control valve failure case on Figure 133-10.
Plots of heat flux and heat trans-f ar coef fi: lect ara also provided in Figure 153-10 for the control valve failure case.
In less than 120 seconds, contain=ent vapor
- e:perature and equip ent surface te=perature have come into equi-libriu=.
Since vapcr ze:perature is below the LOCA design te:-
pera:ure Of 236F, i: can be concluded tha: this te=perature tran-sien; does n:: represent a more severe environment than the en-7irc : ant in which :he equ2p=ent was cualified.
l T.a integrity f ~-= :==~ genera:or during the rupture of the s e::niary pipi ; is dis::ssed in Chapter 5.
It is concluded in
- c.1::er i :ha: :ha pri:2ry-::-set;ndary : undary can ::aintain its in!isri!y i he e73:! : hat a secondary pipe ruptures.
133-22 k.1.1. e9 r>
4 6
e.
e Ta,= le.23-12 D e s % r.4 p *.* -.. o.
't h. e.. a.1 v.'d a.1 o' r....l'<""..*.
q.,.,.. 4.., a. D ". 4.r, a S a m..
L ' ~... ' - u' a '~-
. v..
e 1)
Containment Electrical Penetrations Cacca:ry:
Cylindrical Dia:ater:
12.7 in. CD inicxness:
0.5 in.
Material.
S:ainless Steel 7
e C J... a. t o-,n.
- r. a.6 4.,.,.1,.
Gd.,
a...
L.. s.4
.; a a.1
..y.
- j....-.
.s.43
,.G..
1.6. O' *!.4 r. CD.
e
. '.w.e s a-. 0..;,
_4,
.v.a.. a....a.1.
ba.s..,
...d.1 e
3)
.': : 1
.e y3COr a3%3s
(,..,..-..
C
'4
- .4..3.1
.---.f.
f --..
n.e,. 4 ~ B..
3.2I3 4,
u -
. % 4
'.s.., h s 0..i.a -a 4.,
...- 4 y, 10
,41 s oa.44..
.V 3.
- 3. u. 3.1.
.. 4 b.3 - %. -
.. 3 s. J'.,
D. a 4 n.
p, a..._..,.3..... r,...a-.2-s
/;*=..,.,,
s",.. *4 y -
- 4.. J... a.1
-...j.
.,_4..._.3..,.
O, 4
_4
..,3a 6
a; -.
.4..,,
- -.41-
,3.4
.. 4 aa
.3, s
a y
.J 1
. e.t ~ ~-...2 3.ami, D. a.4..
e-y
.- ---=
- .. - =. _....
.22.
a.
- e...;
e_
am
- ~....
..........aa.
_4... =..~ a.
4 _...
.-..a.
. - b o i.s
,4.;
-u,s....,,.-
..... a
,_.s
,a.
.: e _ _- a -...
.a.
j.
..a,..,,-.
c..;,
a.
.,__m........,.
.O..,,,,s..
d,3el
. - - - o -
- a: Casini; is a :ua'.l..
layared wit'n 0.125 in. S S,-.125 in. air and a-u
.s
.s.
_.. -,.,., s.-., c
,s z.gn.,.
,-.4-,..
.-. e3gu, t o-gn. 4 su,.,.,. e,
.s
.r Db 153-41
Table 15S-16 l'aterial Thermal Properties Used in Therral Zedel of Equipment Required for a Stea: Line Break Volu=etric Heat Thermal Conductivity Capacity (BTU /ER Ft-"F)
(BTU /Ft3-7) 1)
Paint on Steel
.15 36.0 2)
Faint on Concrete
.2434 36.1 3)
Concrete
.54 29.0 i) 5:21cless Steel 10.2 53.9 5)
Carbon Steel 26.0 53.9 6)
C:pper 215.0 51.31 7)
Rubber 0.08 36.0 oA.4en 153-42
c.
Cantainment isolation valves, plus the cecay heat removal valves.
c.
Seie :ed electri power and instrucentatica cabling and terminal c o n".ec : ions.
Pressurizer safety valves e.
f.
Transmitters for the following instru entation:
1.
RCS vide range pressure - Foxboro EllGH-INMZ Transmitter 0-2500 psig (Tag nu=bers RC-3A-PT-3,4; RC-33-PT-3) 2.
Stea= generatcr pressure - Foxboro EllGM-SAE1 (Tag nu bers SP-6A-PT-1,2; SP-63-PT-1,2) 3.
Pressuri:ar level - 3Y3340XA Transmitter (Tag nu bers RC-1-L!-1,2,3)
RCS hot leg and cold leg temperature - Rosecount 177 HW RTE's 4
(Tag nurbers FC-eA-IE/1,2,3,4; RC-43-TE/1,2,3,4; RC-5A-TE/1,2,3,4) 5.
Stes: genera::: level (startup and opera:e range) - BYSV41X-A Trans itter (Tag nu bers SP-1A-LT-2,3,4,5; SP-13-LT-2,3,4,5)
Qualificarica tests cave been perfor:ed on each of the above cc=ponents as described in Sectir 3.11.2.1.
Additional information concerning the con-tainten: electri:21 pena: rations has also been supplied to the Staff.
Qualific2: ion da:a f:: ela :rical penetratica asse:blies have been included ir 52 :ica 3.11.2.1..
- .i: n an:sl cu211fi:2:icn for fan coole notors is described in Section
_._,___,.2
- o__,
s, a_ __ __ 4
_ _a 4__,
S a,,_ _4 o n 3. 2 3..,.1. 3 O_1__f___:i:n ca: f:: ins:: :ent cabling are provided in Section 3.11.2.1.1.
Cu2'ift:::i:n da:2 f: ;:ver and control cables are given in Section 3.11.2.1.2, and f: ::ansition fie_d splices in Sec:i:n 3.11.2.1.4.
As __in:ified i: Se::i:n 3.L1.2.1.7, the performance of the pressuri:er safety valces h23 not been an2_7:ed for this event. Neither containment atmosphere no ;:essere during a 1CCA, post LOCA or MSLS environment represents a core severa c:ndi:ica than Operation of the pressurizer valve for its design oper-2:in; :endician, :.e.
s:aan relief of the RCS.
_am~_g___
cp 4 ry As, A.f p v
4
.s.
V
- _2Lifi
- a: ion of instr nentati:n for service during a stes: line break ccidan: 13 based on the type test data used to qualif y' equipment tested e
t o r a
_m u.s. e nvirc r.n e n t.
-,taese quall:: cation tests were perforced at a tanpera:ure of 290." as described in 2.i.4-1CC03.
The CO' !I'2I rodeling used to evaluate the response of this equip =ent and the results of the analysis are discussed in Sections 15.3.3.3.2.d and 15.5.3.4.1.
o S 3 w' '. "_ %'
d".
A-