ML19221A639

From kanterella
Jump to navigation Jump to search
Task 29:Natural Circulation,Degraded Core Geometry, Calculation of Temp
ML19221A639
Person / Time
Site: Crane Constellation icon.png
Issue date: 04/21/1979
From: Levy S
INDUSTRY ADVISORY GROUP
To:
References
OSC-790421, TASK 29, TASK-29, NUDOCS 7905230493
Download: ML19221A639 (5)


Text

-

~

a TASA CLOSE OUT COCUV.ENT O

Task Sccpe

$AT()fAL Ci2Cl)(ATtell - 1)EGRAf>ED 1CPE LEbMETRV -C/lLIVA7iov EF TEM PBAT0leJ To:

M. Levenson

5. Levy E. Zebroski Task No.

,4. '/

Date Complete h h/

Reason felt task is complete:

t ht Mid b d'm 00ANY a

d l

C t

I t'e:nbers of Cormii ttee Mad itb EPLE tu cltt U-d}tJbib ltr S.

Ji 6

Signed

/

Y/. [M!ap),(['iA Comittee leader 166 114 0

g 79052309'77

e 4

fd, lc vaa- >c%

/

[.

p,,

N..

O bc= % di2

^ '..

g

'h NATURAL CIRCULATI0tt/ DEGRADED CGRE EXPERIENT OBJECTIVE: To ascertain the efficiency of cooling by free convection within degraced core.

ASSUNPTION: (1) Fuel has collected in layers over central core region at grid spacer elevations. (15 inches apart)

-3 (2) Heat generation rate of 1.5x10 of nominal full power (2732 MW).

(3) Total blockage of central core region (annular bypass of scaled dimnsions) a)

3/4 blockage b) 7/8 blockage 3

SOLUTION:

(1) Use Volu:re Scaling (i.e.

G/ft water)

,(2) Q 4.1 PJ

=

gg Olayer 450 W (9 layers)

Target TMI

=

Olayer 6.3 G

=

y Laye r ft Test Vessel I.D.

- 9 inches Yest Pressure

= Atmospheric Plata to Wall Gap

= 0.300 in. (3/4 Blocked)

Plate to Vall Gap

= 0.150 in. (7/8 blocked)

Test Nodci Target Test tbdel Q

= 0.23 W/ layer Spacing between layers 1.25 inches

=

)

Olayer 0.21 W/ layer

=

1 Q

0.40 G/ layer Achieved

=

layer Q,,,,

0.67 G/Tayer j

=

3 RESULTS:

(1)

Boiling not cbservad anywhen: 6Jring free convection.

(2)

Threshold of local boilirg (tcp layer) only observed when inlet flow reduced by use of valve.

Q (3) See Figure attached for actual results.

-..,._..___.3 g

et m,icevqq

- y 9

--) -.

, k,., h M N,pq-

~

%-,,i La l.

lJ

, 2. +r 2 _ 7, ! c r3.

+

i

y... m.

e.

i _. m.

_- w i

.i

._ _ i i

u'r..cp.:x_.9 4 d s '

b; T

',~^ *'~

i L-p_,.._

I i

'.i 6

i I.

(

W sA='6..

i i

i L _. _.

g j

I g

g i

a w

A I_

L I

1.._].,j,_ _.i i t,i I

d J, lI i

IL.l l iI.!!

6 f l y t--

%D ]l-l I

i

_.a.., -

u si,long,r,i,sarissy, 3,_ i

( n -T

=

sgoy ;

l 7

5, j

s e

e

-_ N.'

I ll\\I!

l___I. I_.

_.l _.i !

l L.

I y

P i

( _. _L i

e i

l ase '

._ l. _

r g

N po.

I i

1 I

y

.ig_

i.

e m __ p. __:

o

3..L i!

.. s_

.T_

{\\i9ii v-r-

i i

.,T g

g

_i

. p......

e

,y I

o i,/.

I

~~d - ~

-g l\\

l

'i E

l l

~,

l I

't i

3

- - -/I-l!-

s

-. _. _ g!

i

.a i

\\.l. I iI M,.\\

. W.

_L. j i

i l

i I

,i.

i i

i l

1 I

l I

r L.

f

  1. 9 l

lu '.a,u _..s*., ursi n ri >q

's 0>w Ti -

r~ 3__e..r

,7.

i r

i -T-j I

0 I

e, c..

r ss u 1

s/2 i

g(

l s

w

_I l

l N.

s l

t

~

i i

1

\\

g ' 'e g

s

)

f

,. \\

---\\-

N MM 4, &,...Tg.,Tl_7)'&:

, - h -;. ' A ',.,y

?

iN i

\\>

i l ; \\_ s.e! N.N.__.i c/hte h. !fc' a. ?

i I

'l'~j l\\ !

l l

F

.___ i..'. (m,

i

'C

~

i i

m.

s..

._e _,

i s

h_

i I

_p J

i _1 _ t t

l-1 I

a_

wt 8

i I

i j

l i

i i

i_.

l I

I i

l

~

o J

l /.c i

i /lc!

i f,o

~6 l

1166 1

r O

~

a

-_r I

l I

l

,i 8

I g

P N !

l f

l t

- ] - -- j

-Ay-t-7 T

gii

'p o,et 1

h6*\\ !dl l

l f

N L C,% '

l l

l

}

i d'

,/

'( O; M

ko V C++ how 3,

i p e s us ', MbWW h =

rj Frse Consection Best T..f er Calculsticas

, Eh Throty;b "Forous" Wd1a A.

Calculate foar. cases:

1.

System pressure = 900 pai Inlet temperature = 2SO F and 350 F 2.

Syste:a precaure la atmospheric Inlet tenperature = 170 F and 200 F Asse=ctions:

1.

Pcver 2 0.2% of 25002W 2 1s 6

2.

Core divided into 8 reglens defined by spAccrS.

3.

Region with porous nadiun hns h acer of 105 in.

4.

Foreur =edium is defined by cylinders of

.4" diar.cter spaced with a pitch to dim-eter ratio of 1.065 in a staggered grid. This gives a Po:osity of 20%. For heat transfer area the ends of the cylinders are ignored.

5.

Assuse 3 " trays" cf porous r.aterial, in following geocetry.

  • l05 6 d

\\

h 7/////// /O / /

2o_

+

~7'f//J/sta m *-

Mp 1 - -

NY T.

9,e IP i"

166 117 i

Results:

2 1.

The heat transfer rate required in the porous mediun is 306 23/hr f t to r

carry away the hast g en era t ed.

(If a te:nperature dif f erence cf 100 F ic

IC; M.l.ao m a V

n

~

Fage M fr9 ** *. \\,5).I=OC O #

te b

..?

5 nesulta (cont.)

jt asatred betvaca tha fluid and the surface, the hest transfer coefficient required is'about 3 BTU /hfr~ft which is typical of fres cer:vecti:n in air.)

2.

At a pressure of 900 pai free ccavection provides = ore than enough flev n

at inlet tempsratures of 2C0 F and 353 F to prevent the vstar fros reaching saturation. The heat transfer coefficiant is of order 250 BTU /br ft*#F and the te=perature rise approximately 1 F.

3.

At atscepheric pressure with inlet te=perature of 170 F cr higher, f ree convectica does not provide enough ficw to allev vator to re=ain sub-cooled. Hence local boiling vill result.

4.

Calculations using CEF correlations for beds consisting of 300 to 800 nicrou particles show that at at=cepheric conditions CH? vill pro-O bably be reached. Ecvever, due to the low pecer generation the ts=perature rise vill not be significant.

?

t 166 118 A