ML19221A639
| ML19221A639 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 04/21/1979 |
| From: | Levy S INDUSTRY ADVISORY GROUP |
| To: | |
| References | |
| OSC-790421, TASK 29, TASK-29, NUDOCS 7905230493 | |
| Download: ML19221A639 (5) | |
Text
-
~
a TASA CLOSE OUT COCUV.ENT O
Task Sccpe
$AT()fAL Ci2Cl)(ATtell - 1)EGRAf>ED 1CPE LEbMETRV -C/lLIVA7iov EF TEM PBAT0leJ To:
M. Levenson
- 5. Levy E. Zebroski Task No.
,4. '/
Date Complete h h/
Reason felt task is complete:
t ht Mid b d'm 00ANY a
d l
C t
I t'e:nbers of Cormii ttee Mad itb EPLE tu cltt U-d}tJbib ltr S.
Ji 6
Signed
/
Y/. [M!ap),(['iA Comittee leader 166 114 0
g 79052309'77
e 4
fd, lc vaa- >c%
/
[.
p,,
N..
O bc= % di2
^ '..
g
'h NATURAL CIRCULATI0tt/ DEGRADED CGRE EXPERIENT OBJECTIVE: To ascertain the efficiency of cooling by free convection within degraced core.
ASSUNPTION: (1) Fuel has collected in layers over central core region at grid spacer elevations. (15 inches apart)
-3 (2) Heat generation rate of 1.5x10 of nominal full power (2732 MW).
(3) Total blockage of central core region (annular bypass of scaled dimnsions) a)
3/4 blockage b) 7/8 blockage 3
SOLUTION:
(1) Use Volu:re Scaling (i.e.
G/ft water)
,(2) Q 4.1 PJ
=
gg Olayer 450 W (9 layers)
Target TMI
=
Olayer 6.3 G
=
y Laye r ft Test Vessel I.D.
- 9 inches Yest Pressure
= Atmospheric Plata to Wall Gap
= 0.300 in. (3/4 Blocked)
Plate to Vall Gap
= 0.150 in. (7/8 blocked)
Test Nodci Target Test tbdel Q
= 0.23 W/ layer Spacing between layers 1.25 inches
=
)
Olayer 0.21 W/ layer
=
1 Q
0.40 G/ layer Achieved
=
layer Q,,,,
0.67 G/Tayer j
=
3 RESULTS:
(1)
Boiling not cbservad anywhen: 6Jring free convection.
(2)
Threshold of local boilirg (tcp layer) only observed when inlet flow reduced by use of valve.
Q (3) See Figure attached for actual results.
-..,._..___.3 g
et m,icevqq
- y 9
--) -.
, k,., h M N,pq-
~
%-,,i La l.
lJ
, 2. +r 2 _ 7, ! c r3.
+
i
- y... m.
e.
i _. m.
_- w i
.i
._ _ i i
u'r..cp.:x_.9 4 d s '
b; T
',~^ *'~
i L-p_,.._
I i
'.i 6
i I.
(
W sA='6..
i i
i L _. _.
g j
I g
g i
a w
- A I_
L I
1.._].,j,_ _.i i t,i I
d J, lI i
IL.l l iI.!!
6 f l y t--
%D ]l-l I
i
_.a.., -
u si,long,r,i,sarissy, 3,_ i
( n -T
=
sgoy ;
l 7
5, j
s e
e
-_ N.'
I ll\\I!
l___I. I_.
_.l _.i !
l L.
I y
P i
( _. _L i
e i
l ase '
._ l. _
r g
N po.
I i
1 I
y
.ig_
i.
e m __ p. __:
o
- 3..L i!
.. s_
.T_
{\\i9ii v-r-
i i
.,T g
g
_i
. p......
e
,y I
o i,/.
I
~~d - ~
-g l\\
l
'i E
l l
~,
l I
't i
3
- - -/I-l!-
s
-. _. _ g!
i
.a i
\\.l. I iI M,.\\
. W.
_L. j i
i l
i I
,i.
i i
i l
1 I
l I
r L.
f
- 9 l
lu '.a,u _..s*., ursi n ri >q
's 0>w Ti -
r~ 3__e..r
,7.
i r
i -T-j I
0 I
- e, c..
r ss u 1
s/2 i
g(
l s
w
_I l
l N.
s l
t
~
i i
1
\\
g ' 'e g
s
)
f
,. \\
---\\-
N MM 4, &,...Tg.,Tl_7)'&:
, - h -;. ' A ',.,y
?
iN i
\\>
i l ; \\_ s.e! N.N.__.i c/hte h. !fc' a. ?
i I
'l'~j l\\ !
l l
F
.___ i..'. (m,
i
'C
~
i i
m.
s..
._e _,
i s
h_
i I
_p J
i _1 _ t t
l-1 I
a_
wt 8
i I
i j
l i
i i
i_.
l I
I i
l
~
o J
l /.c i
i /lc!
i f,o
~6 l
1166 1
r O
~
a
- -_r I
l I
l
,i 8
I g
P N !
l f
l t
- ] - -- j
-Ay-t-7 T
gii
'p o,et 1
h6*\\ !dl l
l f
N L C,% '
l l
l
}
i d'
,/
'( O; M
ko V C++ how 3,
i p e s us ', MbWW h =
rj Frse Consection Best T..f er Calculsticas
, Eh Throty;b "Forous" Wd1a A.
Calculate foar. cases:
1.
System pressure = 900 pai Inlet temperature = 2SO F and 350 F 2.
Syste:a precaure la atmospheric Inlet tenperature = 170 F and 200 F Asse=ctions:
1.
Pcver 2 0.2% of 25002W 2 1s 6
2.
Core divided into 8 reglens defined by spAccrS.
3.
Region with porous nadiun hns h acer of 105 in.
4.
Foreur =edium is defined by cylinders of
.4" diar.cter spaced with a pitch to dim-eter ratio of 1.065 in a staggered grid. This gives a Po:osity of 20%. For heat transfer area the ends of the cylinders are ignored.
5.
Assuse 3 " trays" cf porous r.aterial, in following geocetry.
- l05 6 d
\\
h 7/////// /O / /
2o_
+
~7'f//J/sta m *-
Mp 1 - -
NY T.
9,e IP i"
166 117 i
Results:
2 1.
The heat transfer rate required in the porous mediun is 306 23/hr f t to r
carry away the hast g en era t ed.
(If a te:nperature dif f erence cf 100 F ic
IC; M.l.ao m a V
n
~
Fage M fr9 ** *. \\,5).I=OC O #
te b
..?
5 nesulta (cont.)
jt asatred betvaca tha fluid and the surface, the hest transfer coefficient required is'about 3 BTU /hfr~ft which is typical of fres cer:vecti:n in air.)
2.
At a pressure of 900 pai free ccavection provides = ore than enough flev n
at inlet tempsratures of 2C0 F and 353 F to prevent the vstar fros reaching saturation. The heat transfer coefficiant is of order 250 BTU /br ft*#F and the te=perature rise approximately 1 F.
3.
At atscepheric pressure with inlet te=perature of 170 F cr higher, f ree convectica does not provide enough ficw to allev vator to re=ain sub-cooled. Hence local boiling vill result.
4.
Calculations using CEF correlations for beds consisting of 300 to 800 nicrou particles show that at at=cepheric conditions CH? vill pro-O bably be reached. Ecvever, due to the low pecer generation the ts=perature rise vill not be significant.
?
t 166 118 A