ML19208A429

From kanterella
Jump to navigation Jump to search
Summary of 790725 Meeting W/Review Group in Bethesda,Md Re Integrated small-break Test Program.Next Meeting on 791101-02
ML19208A429
Person / Time
Issue date: 08/17/1979
From: Mcpherson G
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
To: Johnston W, Kondic N, Landry R
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
References
NUDOCS 7909130570
Download: ML19208A429 (70)


Text

~

fa ascoq'o UNITED STATES

[ " ),7 (',i NUCLEAR REGULATORY COMMISSION g

WASHINGTON, D. C. 23555

}[ s

9. A AUG 17 1979 Those on Attached List Gentlemen:

Subject:

Joint Semiscale and LOFT Review Group Meetings A.

Sumary of Meeting of Meeting held on July 25, 1979 B.

Announcement of meeting to be held Nov.1 and 2,1979 On July 25, 1979 the NPC Review Group members cognizant on both Semiscale and LOFT met in Bethesaa to discuss an integrated small-break test program. This program was proposed and presented by the contractor, EG&G, in response to earlier meetings and varicus discussions with NRC.

A sumary of the Review Group meeting,togethe, with hard copies of the viewgraphs, is enclosed in this letter which is sent to all members, advisors, and consultants to the Semiscale and LOFT Review Group. All coments on this sumary should be sent to me, and I will coordinate them with the Semiscale project.

Please note that on Nov. I and 2 1979, just prior to the WRSR Infor-mation Meeting, a joint meeting of the Semiscale and LOFT Review Groups will be held in Room 150 of the Willste Bldg, 7915 Eastern Avenue, Silver Spring, Maryland. All members, advisors, and consultants are cordially invited to attend. More details and material for discussion will be supplied later.

Sincerely, Y

W G. D. McPherson, Chief LOFT Research Branch Division of Reactor Safety Research

Enclosure:

As stated

, '- 4 i<* S

{} g 7% M D*tWO

MEETING

SUMMARY

==

Introduction:==

Dr. Tong described the information needed from NRC's Small Areak and c

anomalous transients research program and the facilities expected to supply this infomation (Table 1).

Dr. Ybarrondo described INEL's objectives as they form an integral part of NRC's program.

J. Dearien reported that INEL had completed audit calculations for comparison with vendor analyses submitted to NRR and showed how these related to the Semiscale and LOFT test programs discussed in the remainder of the meeting (Fig.1)

LOFT Tests T. Samuels described the following Small Break test series in LOFT, to be run between December 1979 and June 1980, proposed in response to NRR's request for small break tests.

L3-1 Break location in cold leg of " broken loop" with break flow greater than the HPIS flow and secondary side of S.G. isolated. Analysis of this case predicts a continuous depressurization with short tem cooling from the HPIS and accumulator, and long term cooling from the LPIS. The secondary side acts as a heat sink for the first 50 seconds and a heat source after 230 seconds with a balance in between these times (see Fig. 2).

O LC5%&

, The transient is relatively rapid and for natural circulation or reflux boiling play a minor role in this transient. The pressure vessel liquid level drops to a minimum of 4-ft above the core.

y Break location in cold leg of broken loop, with brea'k flow L3-2 less than HPIS T1ow and secondary side of S.G.1solated. Analysis of this case predicts a PCS depressurization to about 1250 psi where the secondary side acts as a heat sink via a periodic release of its relief valve. (Note secondary side pressure periodicity due to valve action).

Except for the pressurizer which emptied, the PCS remains liquid filled, in a natural circulation mode, and as the secondary side heat sink degrades through inventory depletion, the pressurizer refills and the primary side eventually repressurizes. At this point energy would be rejected through the pressure relief valve on the primary side (occurs further into the pressure scenario than that shown in Fig. 3).

L3-3 Break location in cold leg of " broken loop" with break flow equal to the HPIS flow and secondary side of S.G. isolated. Analysis of this case predicts depressurization to the setting of the secondary relief valve where the secondary side acts as a mild heat sink. At this point the principal path of energy rejection is through the break while natural circulation is established in the PCS - first single phase and later t:so-phase - the vessel liquid level drops to the hot leg nozzle centerline and then, poss'ibly, natural circulation degcades to the reflux boiler mode. Eventually (Fig. 4), as the decay heat and PCS inventory diminish, the primary side pressure drops and the secondary fM7020

, side b*comes a heat source, leading to a slow but steady tail-off of PCS pressure.

L3-4

" break" location: pressurizer relief valve remains open, with break flow equal to the HPIS flow and seconda.y side iColated. The same

?

events occur as in L3-3 with the exception that the pre;surizer fills when the break flow passes up the surge line and through the p'ressurizer.

While L3-1 recovers without operator intervention, the other experiments must be recovered by initiating secondary side steam flow, thus re-establishing a heat sink and recucing the PCS pressure to bring on the ECCS accumulator and LPIS.

If natural circulation had degraded to reflux boiling, this action would probably involve the reestablishment of natural circulation.

Additional instrumentation and calibration plans were also described.

Comon features of all four tests are:

the pump and S.G. simulator in the broken loop will remain in

~

place the HPIS flow is degraced, assuming loss of one train the ccre is not predicted to uncover the PC pumps are wipped at the beginning of each test coincident Df[dJJL D

with reactor trip b

s.

  • M l "ru 1 /~1 [

Semiscale Tests pj{

p D. Olson described the following small break test series in Semiscale to be run between August and October 1979.

5-5B-1, 2 and 3 are des'gned toSU@.'4 relate LOFT, a comercial PWR and Semiscale, all at the L3-1 conditions

e (Cold-leg break flov greater than HPIS flow).

S-SB-1 would simulate the PWR (Zion) audit calculation in the Semiscale M00-3 geometry (12-ft long core, insulation in the downcomer, active

~

broken loop components).

~

~

S-Sb-2 would simulate the PWR (Zion) audit calculation initial conditions as closely as possible with the LOFT geometry (LOFT intact loop pump suction, broken loop components valved off).

S-SB-3 would simulate LOFT L3-1 initial conditions and geometry (LOFT intact loop pump suction, broken loop components valved off). The course of all tnree of these tests is expected to be similar to that described for L3-1.-

S-SB-4 would simulate the PWR (Zion) audit calculations for a break size smaller T. nan 5-58-1 with the same MOD-3 geometry as in S-SB-1. The course of this test is expected to be similar to the L3.' test.

S-SB-5 is an optional test to be run in December, contingent upon the outcome of the first four tests. 5-58-5 would be a small (10%) break with the S-07-10 initial conditions, MOD-3 geometry, and UHI.

The purpose of this would be to study the effect of UHI during a small brdak.

G. Johnson discussed scaling issues with an emphasis on support for the Semiscale tests.

First, it was recognized that certain parameters could not be scaled accurately, but it was then demonstrated that in such cases, it is known how tcr make adequate corrections. The following topics were singled out for special attention:

critical flow and small break s'izes: orifices will be calibrated; 34/OTd5

. experience shows small holes do not clog; conventional saturated break flow model shown to be appropriate to ver; small break sizes.

surface-to-volume ratio (relative metal - at and system heat loss):

~

TMI simulation in Semiscale showed correcti$n v[a core power gave accurate result.

Insulation and trace-heating will be used in future.

flow regimes: pipe diameters in LOFT and Semiscale are relatively large compared to the scale of these facilities; calculations at one location indicate the same flow regimes in Semiscale as in a commercial PWR, with exceptions for short time periods.

steam generator secondary side too large, also a height mismatch between S.G. in intact and broken loons. Tests can be run to demonstrate and to minimize effects.

New S.G. ordered to reduce these discrepancies.

347Gt'G

. Recommendations of July 25 Meeting with NRR Recormiendations Specific t s_f.0FT The proposed tests should provide the data required with the following exception: in L3-2 the RCS repressurizes after a long period at intermediate -*,

T pressure and as the result of the PCS going solid. This situation is of less interest than PCS repressurization due to a degradation of the S.G.

as a heat sink (e.g., running dry).

Possibly this scenario could be combined into the L3-3 test. Together with a reccver;

~tcedure which is conceivable and appropriate for a cannercial PWR.

Consideration should be given to tests which :tudy the effect of intact loop PC pump operation for periods of time extending part way and entirely through the course of the accident.

Recommendations Common to LOFT and Semiscale The following phenomena should be studied in these small-break tests:

Steam and steam-water flow from the pressure vessel to the S.G.

In this case the pressure vessel liquid level would be at or below the hot leg nozzle and the PC steam-water mixture would either carry through the SG (natural circulat' ion) or condense and fall back into the hot leg in a reflux boiller mode. In the latter case of counter-current flow, the tubes may flood and plug intermittently. A parameter to be examined is both cases is the SG secondary side liquiv level.

The following parameters should be re-examined:

- the PC average and hot leg temperatures

- the HPIS flow degraded vs normal 84.70,0

Finally, it ras recommended that INEL consider alternative operator acticns which might be taken during the course of the accident.

For example, if two reasonable courses of operator actions ace f(entified, a Semiscale test be run twice to examine each course. More generally, these 'ests should provide information on rethods for PWR's to recover from small breaks and anomalous transients.

R:comendations Specific to Semiscale Small hot leg break behavior when the PC pumps remain running both part way and entirely through tne accident is of special interest to NRR.

They suggest the foll,pwing hot-leg Semiscale hot-leg tests:

1.

PC pumps tripped at initiation of test 2.

PC pumps running through entire test 3.

PC pumps tripped at a time in the test to be detemined by the results of test 2.

During pump operation the conditon of interest is when liquid is being carried to the hot leg break and a two-phase mixture is being carried into the SG witi'. liquid falling back into the hot-leg, thus leading to a large mass inventory loss through the break.

It was suggested that the break be sized so that in test 2 the equilibrium system void fraction exceeds 80%.

This suggestion was made following the meeting when it was thought by HRR that such tests could better be performed on Semiscale before identifying an appropriate test for LOFT. In achieve these conditions the degraded pump characteristics under two-phase operation should typify those of a cocnercial PWR pump.

34.70%8

8-NRR would be interested in tests involving core uncovery from which core heat transfer data could be provided. They are also interested in studying the effect of non-condensible ; gases on system behavior and in. particular on SG heat transfer and flow rates. After some experience has been gef ned in running small breaks and in studying these two effects in Semiscale, consideration could then be given to their study in LOFT.

Finally, NRP. asked that INEL review the need for all three of the Semiscale tests SB-1, 2, and 3, with the objective of reducing their number.

6 S

,e

j i

I i

.g.

I a

J i

IDAlt0 N All0NAL

[NCINI[HING i

6 I

I t

f LAB 0HA10Hy I

i I

I i

i i

l i

i g

t i

a i

l l !i,,ij'!

l i

i i

i i

~'

I I

I j

l l

l l

l l

l I

e i

l

's I

+

i i.,

l-i l

1 j

LOFT SMALL BREAK i

i -

i

-l i

4 i

t I

l l

l EXPERIMENTS i

l l

t

.i I

i

(.

.)

c -+' i

-i l

l

-BY i

l l

i ma tw r

.O l

,I l_. _.J i

1 g

e t

y a, g, '

u_:

T. K. SAMUELS :

i m al.

i i

a l

e

.t_ms.

g I

t g

l l

~'

l 3

I

{M l

I i

i I

i i

i l

l l

1 t

CO l

i I

l I

i i

i,!

s EI' I

I l

i l

'j l

1 c;; i i

i i

l I

i l

I l

R-l 8

1 I

l i

Ol l

l l

t l

t i

l l

4 i

i l

i 8

l l

I I

i!

I i

I I

i i

g

  1. 4
  1. O ;

*h 8",C-l, (i

I l

l l

i i

0 c

S-SB-1 LOFT I,

l l

AUDIT S-SB-2 L3-1

=l

> CALCULATION' IN AUDIT A

S-SB-3 i

L3-2 i- > CALCULATION kl EXPT / ANALYTICAL AUDIT A

L3-3 i

> CALCULATION S-SB-4 j

/

l l

Il l

l L3-4 i

L_________________.1 C,0 S-SB-5 c.:

'A 6

O IDAHO N Al!0N AL a

[NGIN(lit 1NG LAB 06 TAI 0fty t

j LOSS-0F-FLUID TEST (LOFT)

I SMALL BREAK AGENDA I

1 i

,.ii i

i'l SMALL BREAK'0BJECTIVES i

i SMALL BREAK INSTRUMENTS c

i I

I i

i i

i i

I SCAL lNG CRITERIA.

1

_SMALL BREAK COMPARISONS

! TEST, CONDITIONS

!i

' DECAY llEAT 5

I D

9 i

Es

'D: RECOMMENDED LOFT EXPERIMENTS PRELIMINARY TEST SCHEDilLE i

5 5) R !

. cm i

. W _aJ l t

NT REC 0VERY

SUMMARY

EEJ c

i b

i i

4 i

l t

I 1

l t

i t

i I

!' !!j!'

to l

l I!

A i

i I

2 i

i

,i X

i j!

j l

ij,;.

l l

l-7:

l i

l i

l l

l 66E6 Idaho,Inc. I I

(I iJ i.

i i

i i

i i

i i

.s....

,l I. *

!s.

,.d.

i 6

IDAt:0 NAli0NAL i

1NGINfiRING 3

tABORAIORY 4

, - j LOFTTESTOBJECTIVgS i

i i

i 4

n I

l

'e! PROVIDE ASSISTANCE TO NUCLEAR REGULATORY COMMISSION IN DEFINING THE{

i 1

i i

i SCENARIO FOR SMAll;. BREAKS IN WillC}l:,

~

l l..

l.

i i

i i

i l

l j, t le BREAK FLOW.IS Gl' EATER THAN 111 611 PRESSURE INJECTION i

l I

l SYSTEM (llPIS) FLOW t

i i

(.

9 i

j i

.gg l

c-.

,7f1 M,

' e BREAK FLOW IS LESS TilAN llPIS FLOW j

>S H i

t y d, '

, o i

i BREAK FLOW IS APPR0XIMATELY EQUAL TO HPIS FLOW P

g i

!e PORV STICKS OPEN i

i li.

I l-i i

l l

i j

I i

l l

I l

l l

i l

i I

l l

l l

I i

I l

l l

l l

i I. l i

i i

i i

r LO l

3 i

t i

I l

t i

Wa i

l i,

L

.i I

Si i I

i i

i l

l i

i.

i i

i i

i r;I l

l l

i i

i l

l t

I i

I I

.(

I l'

l l

l l

t i

j I

I i

I l

3 10A110 NAll0NAL j

E NQNiiltlNG t

?

l LABORAIDHY 1

I l

l LOFT TEST OBJECTIVES (CONTINUED) i I

l i

.e!PROVIDEDATATOEVALUATECOMPUTERCODESABILITYTOANALYZE I

i i

i Tile SMALL BREAK TRANSIENT.

!i I

i I

Li l

i i

l l

~

' a: INDENTIFY ANY UNEXPECTED PilEH0MENA IN SMALL_ BREAK i

! TRANSIENTS.

(c 9

i i

p[m %l. l l

l I

gF] (.

9!-

e INVESTIGATE Tile EXISTENCE AND PLANT STATUS OF SMALL

" E2),

' BREAK TRANSIENT AS INTERPRETED BY TYPICAL LOW W

d l< j' l '

i PRESSURIZED WATER REACTOR PROCESS INSTRUMENTS.

h3D i

b

'I j

i

', e INVESTIGATE NEW INSTRUMENT CCNCEPT WillCil COULD BE i

i i.-

j i

, BENEFICIAL IN DETECTING AND TRACKING T!!E SMALL BREAK :

I i

l TRANSIENT.

j to i

i i

i 3

l

,j y l' i

- 'i!I N

i l

ll ii' li b

'I!!

l lii l

l I

ll d, EssG Joho,inlc.I I2 l':

i

( ';

i l

I i

iii i

I i

')

il I

i t

ii G

i 6

[3\\

)

IDAHO NAl10hAL L NGINI[ftlNG r

LAl$0RAIORY j

i a

t l

s

.s i

i LOFT TEST OBJECTIVES (CONTINUED)

I l

i

' e EVALUATE PLANT RECOVERY METil0DS USING Tile SECONDARY

. COOLING SYSTEM.iS REQUIRED.

ii i

t t

I s

(-

>J 9 ai i l-INVESTIGATE OPERATOR ACTIONS, SAFETY VALVE ACTION,

.c-g,et W) N-l AND IMPACT OF NON-CONDENSIBLE GASES.

di?

3 r4.. _.

1 L

j' l

l S

i i

U i

i i

1 I

l i

i I !:.

i i

i i

i I

i i

i j

l C.O

)

i l

l i

l l

l l

.g.

I i

i i

i 5

l I

i l

l l

l l

)

6 3

l *kEscs ia.nd.ine. !

5 I

i

! Iil li j

i Ul i

i i v i,

i i

i i

i i

i i

i i

t 1

-ta 10 Alto N All0N AL INGINI(HING t ^"^

  • LOFT SCALIllG CRITERIA j

i I

i i

.l, of HPIS - POWER SCALED l'

I ii

,i

..e I ACCUMULATOR LIQUID - VOLUME SCALED '

l.

I ij, i

el ACCUMULATOR GAS - GAS / LIQUID RATIO ltAINTAINED (ca).

ll !{!,

i i

i E"$

i j

e, LP13 - CORE FLOOD AREA SCALED i

u _._. n M.

@i).E_3 y

LOFI 8'i e[COREPOWER-PLOFT " V plPWR = 73 MW i

LPWR c

i g[ i.

l l'

- MAXIMUM LOFT POWER = 50 MW l

I ie' DECAY llEAT - 401100RS LOFT OPERATION l

l

!t

!.l i

l i

l

-t i

{

.i i

i l

i l

i CORRECTED) l l

I i

l j

isi BREAK AREA,- VOLUME SCALED (CD cp i

,i i,

ii l

i l

l i

i N

i i

l li l

ESEG Idaho,Inc.

s e!

i i

i i

i i

i i

i;iiii i,

i i

i i

i e

i i

IDAlt0 tJ A160NAL

[NGINfiHING l

{

I LABORAIORY I

I TEST CONDITIONS i

l i

i I

i i

i i

o! POWER-50MW i

i i

i l

i i

l I.'l lo:!PCSFLOW-3'.8X10 i

G LBM/HR

~

i i

i i

i i

i l

t j

l i

i l

. e; TC-Sil2.5'Fl j

i i

li E-9 l

i-

~

. AT - 35'F -

U,.N, l. %

l l

i l

h g p 'e ECC INJECTION LOCATION e g

-~f r 7 INTACY COLD LEG

&J i

i I

p ;J g' ]

' te! STEAM GENERATOR - ISOLATED ON SCRAM CONTROL PRESSURE i

i

.E_*D,

b_ _,

i BETWEEN 1020 AND 920 PSIG l

3 l

3 l

1 l

I I

j

'ei BREAK LOCATION - BROKEN LOOP COLD, LEG AND PRESSURIZER II

.I I

I I i-l1 to I

i l

t I

i j

I I;

I l

j I (}'lii I

EGEG idano,inc. !

I lI b

i

)

l t

i i

l l)

I i

I i

t l

l 1

i I

4 9

.T I

X l

i x

.,,.t.

i i

i 10Atl0 NAll0NAL J

j l

(NCINI(R!NG i

LADORAIORY l

i l

i 3

I i

I i

i i

i i

i i

i It t

i i

i l

4 I

I l

i i

TEST CONDITIONS (CONTINUED)

,' 1 i

i l

i i

i I,

I j

.l l

i i

i.'

l I

i i

j i

i l

1 1

I 1

1 l

8 foi PCPs TRIP ON SCRAM l

i

+

~

i j..

1 l

i i

e i

i i

I i

.i a

e l

e: L3-1 SCRAM CONCURRENT WITil BREAK L3-2 TilRU L311 SCRAM i

'.I ON LOW PRESSURE I

t I

il I

I i

i i

i i

i i

(Q I

I.

i b

i

$o lM!

-l 3

i i

i i

i bb M.f'

.' !l l

I r

i wy,.

Ed Q

,i-

>]a3 i

i j

I i

i i,

l 8

l i

l l

l

,i

[

i I

i I

j j

-l i

i l

l i

j ii, i

g

{

i i

j l

l l

l l

i j

i g

i I

I i

i i

i i

i ll l

l I

E G E G Idaho,inc. I l.

l l

l l

i

('

I lj i

I l

l

(

l l

l l

i l

I i

i i

!I

i i

1 t

IDAll0 N All0NAL g

resuninc EXPERIMENT L3-1 LAB 0HAIOM i

i j

l i,

i i

i l

l e, BREAK SIZE I

i I

i i

i I

i l

i i

i 2

9 j

l- -

i

'e LPWR AREA e 0.1 FT /2.5%

i i

i i

i i

i i

le

[.0FT GRIFICE AREA - 0.0025'l FT.

2 i

l 1

i i

.4 l.le LOFT ORIFICE ID - 0.6830 INCilES U

9 c o,J c'

'3q;I e

BREAK FLOW

.APPROXIMATELY 21 LBM/SEC (APPR0XIMATELY

@~ (r9 '

1000 PSIG) c-~

' EI) i i.;

Yd g '

l 7%

>uW

' s. BREAK LOCATION - COLD LEG 0F BROLEN. LOOP.

+- m l

j l

I j

e I

I i

l l

l

,l l

l i

i i

l l

I j

i 1

I i

i i

l I'

8 CO

[

l l

i i

i

!i i

i i

s, i

i i

7d j

l l

l l

l l

i i

l i

I l

0

~

!!l l i n " S P,' n '" N b 0 G i

i c

[

I 1

ioAno uAnonAt i

i ENGINIIHiNG t

LAB 0f;ATOHV l

l 1

EXPERIMENT L3-1 (CONTINUED) i i

i i

i i

o! BREAK' FLOW IS: GREATER TilAtj llPIS FLOW

?

I i

i l

6 i

!.I l

l, j

Ie CONTINUOUS DEPRESSURIZATION' t

i;i t

j' i

i I

j l

,i

i i'

l i

ie

$ll0RT TERM COOLING BY llPIS AND ACCUMULAT0lt AND BREAK i

s

..i i

i l

l l

i

.i

(< )'

i e.

LONG TERM COOLING FROM LPIS q-c yg i,

e MINIMUM VESSEL LEVEL - APPR0XIMATELY la FT AB0VE CORE g rg g

'_a gj '

ll

,i N

EJ'I i

E e, LOOP PUMP SEAL BLOWS DRY (LOOP SFAL APPR0XIMATELY fi FT tHa

,' AB0VE TOP 0F LOFT CORE) li p,,:

+

i.i

,i i

i

.i i

4

?

I 1

i l

l l

j l e i SEC0iiDARY SIDE OF STEAM GENERATOR'WAS IS0UiTED IN Tile'

{;:

i to i

i A

i i

i i

I i

l l ANALYSES

?

i j

74 i

l l

i i

l j

j i

i v

i i

i e

i i

l l

l i

n l

l gEGEG Idaho,Inc.

l) 1 O

l'

('

l i

l l

i e

i I

I i

i i

e

(

f

\\

\\

i ioAno uriimat 2

(NGmflH&G EXPERIMENT L3-1 LPWR BREAK SIZE - 0.1 FT i

LADOHAIDHY 1

i

(

j I

PRIMARY PRESSURE 2200.-

i, l

i

~

j i

e t

e l

i SECONDARY PRESSURE --

i

-m) j.(d--

i 20001 l

i l' i I

b Ed' l

ll' i

l lf!

i 180a-i.

rgiB E 3; i

i t

j

![:

2

" 3 (-

9l

!1

!" l t

i i

{

160'~r -

My i

l l

l q@~

l i.*.

I t

t l

l i

1 i

tg 1403--

i i

i

?

i b,

i i

I 23 m

1 i

I m

to 1200--

r i

l m

i a.

y 1000 -

~~~

__[!,

t m

t i

800<r' i

s n

e s

600 -

s w

  1. ^

400 i

i I

0 100 200 300 400 500 600 700.

.800

?.:

1

~

i i

l r

i j

l ll l

EGEG IEaho,inc.

i l TIME (SEC) j i

E' l

(

I 1.I i 1 i

f) i i

l l

l f

i 4

i e

.e 9

\\

g IDA 10 NAll0HAL (ECINIiRING i

LAH0HAIDHr EXPERIMENT L3-2 I

i j

i i

'e' BREAK SIZE i

i i

i l

2 l

i I

j le LPWR AREA i 0.003 FT /0,076 I

I i

l. '

I

.i j

i i

i l

I le LOFT ORIFICE AREA - 0.0000762 FT2 i

i i

i l

l i

i I

e LOFT ORIFICE ID.- 0, 182 ]NCilES E^j %,'

2 m

i i

i i

EE> D)

! e BREAK FLOW - 0.85 LB MSEC (1200 PSIG)

, ;cw i

CA ['

c I

p

90. 3 I.ie' BREAK FLOW IS GREATER TilAN llPIS FLOW (AFTER 1200 SEC) ix b

l l

i i

~ !

!a'RVREMAINEDFULLOFLIQUID l

l i

I i

i I

i i

i I

i i

i l

i l

l l

j i

l t

(y i

s I

i f

I e

l l

e i

l g

e e

Ja I

i l

'.I 4

=

l j

l l

l 3

c 8

i g

e l.

l i

i l

gN6E6. Idaho,Inc. I I

e

'N f

l l

l I

i l

l l

l l

e i

i l

l e

e h

i pm2.

l l

g 10AHO N41 ONAL

[

l i

[NGINfEHING l;

j LA80fiAI0aY l

. EXPERIMENT L3-2 (CONTINUED) i i

i i

l i

i I

o!DECAYllEATDISCllARGEDTOSECONDARYSYSTEM(PVOPENS) i j

I i

i i

i i

i i

i i

l i

i i

I e

NATURAL CIRCULATION COOLS CORE '

i i

l l

l 8

I I

I i

l l

i l

I i

l

's: STEAM GENERATOR ISOLATED IN ANALYSIS I

i l

I i

l l

I l

l i

l i

l i

I i

i s

l l

l l

d i

I r---

j i

i Eg t _.._ _ s.

l i

a i

h. },]I GD l

C i

l 8

i' CJ, L- --. GQI l

Cd i

j 'r! c ll U

r i

t

~l i

t i

i l

l i

.i i

t l

l l

']'e 4

7

{'.

I i

i t

l j

l l

ii l

l j

i I

I

!',[

f I

I i

i I

I I

(c I

i l

I t Iii' I

i i

g h

l l

1 l

!'I h g 6 6 E 6 Idaho,Inc. l V 33

('

I i

l i

i i

l l

I i

i i.iii e

i i

4

f D

j F

IDAHO NAll0N AL 7

t NGINTE HING EXPERIMENT L3-2 LPWR BREAK SIZE - 0,003 FT t

LABORAIGHY Le-]

l

2500, g(4,g)c.d-I i

i e

i

'i l

i 2300 r

a i

!{@ @ii'I i

l i

i i

i

'GSD 2100 l

e I

t g- ~1 ',-_

l e

L i

I i

~

H i

l i

e 8

l l

t' ' -

^

i 1900-r-

i I

i m

i i

br -

a.

i i

1700-W i

1

3 M

1500-PRIMARY M

I.

I 6

10 E*

l l

I r

1300 i

y m

M 1100 I.

900-i I

i I

U SECONDARY i

i

~

i I

l i

i l

700-i j'

i e

g; i..;

j i

i l

i j

l l

l i

t l

i f2 500 e

i e

i i

i i

I I

0 1000; i

i2000 1

3000' 4000' i

5000

'd i

i 6000 7000 8000

(.

l TIME'(SEC) l lj MD

, 'daho, Inc.

]

i."

i i*

4N 3

[:.ib..\\

o IDAHO N All0N AL

,I i

iNCRd[HING tAnoaxicay EXPERIMENT L3-3 i

i i

i i

~

BREAK SIZE le!

i i

I i

l l

ja I

j i

2 le LPWR AREA + 0.0075 FT /0.19% lii i

i i

t j

i g

l le LOFT ORIFICE AREA - 0.00019 FT t

2 l

l 1

I I

I l-

'e LOFT ORIFICE ID - 0.1869 INCllES i

i i

l i

g o

BREAK FLOW - 1.65 LBM/SEC (1000 PSIG)

c. a e

i 37._3 LE5] 8 i

e BREAK FLOW APPR0XIMATELY EQUAL.T0 HPIS FLOW (SATURATED BLOWDOWN)

N p@J 3 l

l i

i i

qr3 i

,e VESSEL LEVEL DROP T0110T AND COLD. LEG N0ZZLE ( :

'i F

i j

j l

i l

i i

i l

l

!i l'

l l

I i.']',,

i n

9s l

i l

l!

e I

l l

e

,i I

l I

l l

i pEGEG idaho,Inc. I 1

i

..:s I

i i

g i

i i

i.

Z ('

l l

I 3

c;;

l l

l l

1 I

e i

l i

I

')

i 9

e 4.. % =..-

l 10All0 NAll0HAL t NGINt L filNG LAbollA10ftY l

EXPERIMENT L3-3 i

j

-l i

i i

l i

I ei NATURAL CIRCULATION (NC) COOLS CORE, POTENTIAL FOR LOSING i

l NC.

l j

i l

l I

i i

i i

i i

i e, STEAM GENERATOR REFLUXING MAY BE REQUIRED i

l i.

i I

I i

i i

I I

i l

i I

i

.4 l

i i

}

i i

tc=J l.

i i

i i

ma I.

i

.i La w;.;i F@ T@

l Ea g-m_ a th 5d;' !

l 1

I l.

l l

i eu i

I j

l i

j

!',i P.

l t

i I

i t

j i

i i

i l

.i, i

i i

i i

k l

l f

l l

i

~

a 6

i i

i i

t g

l l

C l

l 8

i 8

.+

i.e A

l l

l l

i l

l:

j i

ll kgEGEG Idaho,Inc.

l i

i t

s l

l l

l l

l

%p, ('!

l

-)

~,

i i

I l

i i

i I

l I

i 1

i i

i l

i 9

(

2 ioxna"$7 snit EXPERIMEiii L3-3 LPWR BREAKI AREA - 10.0075 FT l

~(NGIN(flung LA80HAIOM 10 0 l

i 3

i j

2200-PRIMARY PRESSURE G'

i SECONDARY PRESSURE - -

2000 i l E.i$ 3 i

I

!l I

1800-t e

. ?_r. G'J i

i v-

.x

.[

ip' I

l l

l y

o. 1600' Q

tN.3 I

'~'

i

l b

,t ui s 1l00 1

i i

m M

us g: 1200-i b

l 4

/ % ' ~~. ss s " ~ r s _, r ms'"s ^

,7' p

1000 l

V 800' j

i l

l l

t e

600' i

s s.

15do '

2000

.i,2500 EI/50 7250

!',0-500 1000

+

w i

p I

l l

l l

i i

TilME (SEC) l I

a s-i i

E6EO idaho, lnc. _

.ij I

i I

l l

r,-[;

k,~

I i

lQ l

l l

l l

l I

n!

i 6

t

}

i 8

a+

e

-2 e

'N \\

)

[

\\

,fj,;;a;;,uy EXPERIMENT L3-il ENGINtlluNG LABORAIDHY I

e' BREAK SIZE (PORV)

I i

2 e

LPWR AREA - 0.0075 FT 4.19%

i I

j i

l i

i l

2 l-iie LOFT ORIFICE AREA'- 0.00019 FT i

i i

t i

i i

l i

i e

LOFT ID - 0.1869 INCil i

BREAK FLOW - 1.GS LBM/SEC (1000 PSIG)

'.,s c c2 g

I l _ _J s

i

, r% i

e. VESSEL LEVEL DROPS T0110T AND COLD LEG N0ZZLE (

c _ ;)

C_

i p

tp J ),

r?

e NC COOLS CORE, POTENTIAL FOR LOSING NC b.

i i

t i

i.

i i

i l

l I

STEAM GENERATOR REFLUXING MAY BE REQUIRED i

!.e i

e i

j 3

l l

i I

l i

j 1

I

+

i a

l l

i i

i l

l l

l l

I I

8 I

A l

l l

l

!'t l

(i i

l 1

I I

l l

l l

1 I f GGEG idaho. inc. I t

I)

I i

i i

i.

ra 9

-n 1s-10Alla N All0NAL l

ENGINf[Rik0 LABORATORY I

i l

i l

i i

j i

i 4

[l!

I i

I I

l EXPERIMENT L3-it' t

l i

i i

l I

e e;PRESSURIZERFILLS-(RELAP4/ MOD 6CALCULATIONAND i

i l

I l

L3-0 EXPERIMENT) t I

i i

i i

l 6

l I

I i

l i

I i

I l

l l

I l

I 8

(Q i

l

[

i cf;p i

i i

i i

c-u _ _ _, rY b?) bd ll l

i r

s t

L.

i 1

c. g c i

l I

l i

l C -t l

l t

l i

i j

l i

i i

i i.

l 8

i t

i i

i i

l l

l j

i i

I

-- t j

I i

i i

l l

i l

!I

! s.'l l

i j

i i

i 1

I i

t l

l l

1 l

CO f

$!l ll i

l l

l:iI EGEG idaho,inc..!

I I

l i

d l

l l

l 1

I l

l l

l I

I) l i

i-t I

i i

i i

O

/ \\

3 g

,3,,,f;'gon,t EXPERIMENT L3 fi PRESSURIZER RELIEF VALVE LPilR AREA - 0.0058 FT2' ENGINIi RING LADORAIDHf

.,0 0 '-

F) c, Ji PRIMARY PRESURE

-0 W'

l>Pir)CS,'

SECONDARY PRESSURE i

,200&-

_ _. _.. ;g

(

Wj g ED j

3 i

gm i

m S 1500 to 1

4 m

m ta 5 A-~

1000" r

-'~~~~

.ih I

s 8

i m

a s

s m

500 l

i i

'0 a

p g

! 0+

1000 -

'2000 3000' 11000' 5000 6000

-7000 8000 e

l l

I

!, TIME (SEC]i i

l I

e i

i i

i i;

i i

i i

[]

i i

I

'I i

Q66E6. Ioaho, Inc.,

d

!j C. ~

I I

I I

I l

l l

l l

i l

l I

i i

e i

i i

i i

i o

i IMHO HA HONAL INCINI(HlHG SMALL BREAK INSTRUMENTS

  • * " " ^ "

i i

I g

e j

e ' USE EXISTING INSTRUMENTS INSTALLED FOR L2-3 WITil THE i

I i

l i

FOLLOWING CilANGES:

l

~l 1

l

( lll i

i i

i i

i i

4 1

i i

l l

!ie Tile AP [lANGES WILL pE ADJUSTED WilERE POSSIBLE i

i I

i i

i

- !~

e NEW AP MEASUREMENTS. AT PCP SUCTION (Pli."? SEAL) i I

i l

l i

I i

j pp l

! e NEW AP - UPPER VESSEL LEVEL CE, %

M[ES) Q i

e PRESSURllER SURGE LINE DENSIT014ETER ei y-g,l i

l, l'

ll:

l l

m 4

i l.;

i i

ii i

i i

I

'l

'l 7d i

l i

I I

l Di I

i i

l l

i I

u i

l l

.i i

i i,

i l

i i gEGsG id.no. inc. !

n i

I l

l 1

I i

i i

I l

,)

6 I

l

.I l

l l

i i

i i

O

e e

i i

e IDAllG N All0NAL l

LNQNE[ RING i

i i

LABORAIORY j

i i

i l.;i SMALL BREAK INSTRUMENTS (CONTINUED) e; SUPPRESSION TANK LOW RANGE A P FOR LEVEL i

i ff l

l I

l I

l l

1 I

g j

f i

I l

e PNA INSTALLATidN i

i i

i t

i i

I t

a j

e' SUBC00 LED DISPLAY i

i i

i l

I (q

INSTALL A PRESSURIZER SP0OL PIECE TO MEASURE ORIFICE A P, j

e C; %,!

, PRESSURE, TEMPERATURE DENSITY, AND M0 MENTUM FLUX AT PORV

(?S 53 '

Q_. m l a

, CAllBRATE IN TWO-PilASE FLOW Tile BREAK PLANE PRESSURE, L

8 e

'_- g I f

Wrq' TEMPERATURE, AND ORIFICE AP IN A MANNER TO DETERMINE F

' BREAK PLANE FLOW i

i i

I i

l t

l l

f l

i i

l j

~

i i

i l

i I

Y, l

l i

i l

l

!l l

1 1

t..

e t

I-l l

l l

g p.

l l

l j

l l

i 8

8 I

':0 I

l

\\

!'I i

i i

EGcG isano, nac.

l Li4 i

i i

i i

i i

i i

i iJ i

9

e

/w 10 Alt 0 NAll0N AL i

iNGINf[HING L^ama m PLANT RECOVERY

6. DURING SATURATED BLOWDOWN, MAINTAIN STEAM GENERATOR WATER

' LEVEL AB0VE Tile TOP OF TiiE TUBES,i i

i

. j 8

1

e; NO OPERATOR ACTION REQUIRED FOR L3-1 i

i i

i MANUALLY INITIATE PLANT C00LDOWN AT TO + 3600 SECONDS e

FOR L3-2, L3-3, AND L3-11 i

y

,{T l

e AFTER To + 3600 SECONDS INITIATE STEAM FLOW WillLE c

ggal i MAINTIANING STEAM GENERATOR WATER LEVEL AB0VE TOP 0F TUBES p-]- (a) I E

E=

ED. f)

,e C00LDOWN RATE LIMITED TO 70 - 90*F/Il0UR I

g-I!

CO i

i i

9 l

l

,1. '

i t

i l

I

[5 l

l l

-l l

l l

l l

j l

l l

j C

I I

. !l i

I i

ta I

I 1

I g

i i

!l l

l I

I GGEG Idaho,inc. i l) l

.(i I

l l

i i

i l

l l

l 1

l 1

e i

i e

i

t j

0-)'

~

u SMALL BREAK COMPARISONS Ohlil1 NAll0NAL 6 hLN((H5NG

,i FADOHAIDHV l

1 BREAK SIZES LDEIj' SEMISCALE AUDIT CALCULAT10'lS j

+

j i

i

'L3-1 l

O.6285 INCllES 0.110 INCllES ll INCHES

[2.5%

[-

(2.5%

{

2.19%

i W.28 INCllES) LPW,1 (4.28 IN BREAK) tpyg i

I, L3-2 1

0.1182 INCilES N/A h INCH I.076%

I 0

O.03%

(q l

(0.711 INCllES) LPWR EF EiI M ffFj ~CQ L3-3 i

0.1869 INCilES 0.028 INCHES 1 INCH fi I.' 9%

y 01

/0,19%

i 0.14%

'-; 'ay (1.17 IN BREAi<jLPWR pl. / 7. 'IN BREAK) LPWR r

g-,

t L3-4 l

0.1869 INCllES N/A N/A h

l

\\

j 0.19%

i j

[3 (1.17,IN BREAKl LPWR I

i i

I i

I!

l M

U Viii I!,ii l

I li[ pgEGES i

i Idaho.inc.

i

,i i

i i

i J

0 9

1 h

[

)

1 IDAHO N AIX)N AL i

LNCINilHahG i

I LOFT DECAY HEAT 1.5 i

i Irradiaison l

l 1

i1 l

ll l!0 l,

l 7 day 0'S 8 "'

40 g

10 hr Q

o.

i 2 nr N b)

!0,0 0

1 2

3 4

5 c,g, i

10 10 10 10 10 10 i,

cw COOLING TIME (SEC)

" c_

p'P)

L u._,

I Ppp(T) = FISSION POWER AFTER COOLING TIME T d, edl glPpp(1,YR) = FISSION POWER AFTER 1 YEAR OF 1RRADIAT10N,

CD i 401100RS i

j O.!.

LF9,'.j,SELEC7EDLOFTOPERATINGTIMEIS A

i i.

'I i

j i

i s,

i i

i i

i l

l l

! [g.ElGrG Idaho,inc.

hi

( :,

i i

l l

ij i

I i

I l

i I

l l

1 l

l-i l

i. i e

i i

l I

I) t e

P' f

10A110 NAllONAL

[NGlhit htNG L AB0ftAIDHY l

PRELIMINARY LOFT TEST SCllEDULE I

t i

i l!

1979 1980 JULY AUG SEPT OCT NOV DEC JAN FEB MARCll APRIL MAY JUNE JULY AUG i

C' C

+,

C 3

PLANT liARDWARE L3-1 L3-2 L3-3 L3 11 l

I CllANGES AND t

s TESTING J

I L3 i

l i

g _ta' r, g !

l

{s j i

b'M 'b l

i

,: =)

i i

i

(

!j, l

i CO

=oj l,',

f E3D ~.

i l

i I'

I r-n l

l l

i l

l f.

l l

M, l

8 i

6 i

.n

'2 I i

l l

l l

l l

I 6

I I

g66E6 Idaho,Inc.

(i l

l l

l I

I l

e e

i I

t l

lj 1

I I

l l

P

(.

l 10 Alt 0 N All0NAL

[NG4Nilitif4G LADOHA10RV i

LOFT SMALL BREAK

SUMMARY

j i

e Tile SIMULATORS WILL STAY IN PLACE l

i j

i i

I I

I e ~llP'S FLOW - POWER SCALED (LOSS OF ONE TRAIN) l l

I i

i elCORESil0ULDNOTUNC0VERDURINGTl1ESEEXPERIMENTS i

o Tile PUMP SEAL IS AB0VE Tile TOP OF Tile CORE AND WILL NOT 1

13E LOWERED FOR TilESE EXPERIMENTS I

e :FAlilRCATE A NEW BREAK SPOOL PIECE FOR L3-4 M

y g;-

.. _d

[d CALIBRATE Tile COLD LEG BREAK PLANE INSTRUMENTS TO DETERMINE e

E d E=9 I i

BREAK FLOW

,&R WD.

l GrF

e ;s3 '

i j

e l

e,.

i r

i e

c

=.

j6 6

l l

l f

a e

kl-U,i'!

ll

!l i

i I

l l

l EGEG Idaho', Inc. I l

i I:

I IJ i

i i

i i

i i

i i

i i

I

g.s

[h l

64 N..,,.$.

I IDAtto NAllONAL

[f4GINI[ RING LABORA10HY e

.1 LOFT SMALL BREAKS

SUMMARY

(CONTINUED) i l

Ie LOFT EXPERIMENTS DO NOT EVALUATE PUMP OPERATION I

i j

e iLOFT EXPERIMENTS DO EVALUATE Tile FOUR SMALL BREAK SCENARIOS I

l i

e!SE111SCALECOUNTERPART.TESTSWILLBEPERFORMEDFORL3-1AND I

L3-3 L0ET TESTS CORRELATE WELL WITil Tile AUDIT CALCULATIONS e

I e 'WE WILL USE EXISTING LOFT INSTRUMENTS E9 a

I '

p r[ '@;

i i

c

>ci?):j@-

i ra ;m.

7

-. ' - ' l 9 Gi EU: i l . +. tr s m._ ~ ;. i t i %,I (_ '. 3.-.) 6 I I 9 fP [ i i j l i I b l l I i i i i i l E G E G Idah,inc, i (' i l l l i I i i l i i i I i. ,) i 1 i i

te i (,.n ~.. IDAlto NAll0NAL ENGmffmNG SMALL AND INTERMEDIATE BREAK SIZES t LABORAIDHY t VOLUME SCALED LPWR BREAK LPWR PERCENT LPWR BREAK LOFT BREAK LOFT BREAK 2 2 AREA (FT ) BREAK' . DIAMETER AREA (FT )+ DIAMETER i b.5 12.6: i 9.58 a I ' O.012695 1.526" : i I i 0.3 7.5 7.42 " 0.00762 1.182" - ,) 0.1 l 2.5 11.28 " 0.00254 0.683" aa: u_ 3 % 0.01 ' O.25 1.35 " ' O 000254 0.216" O O ! 0.075 0.19 1. 1 7 ".! lI 0.00019 0.187" a p) - ' O.000076 .0.118" 4 0.003 0.076 0.742" I @ E o) 0.0014 i 0.0034 0.50 " O.0000356 0.081", i J

  • PERCENT BREAK IS DETERMINED BY Tile RATION OF BREAK SIZE TO COLD LEG PIPE SIZE. j f h g Q X 100 = PERCENT BREAK.

j 4 CORRECTED FOR DISCilARGE COEFFICIENT (CD = 0.848). l l l l I l l l r i l l l l l l l l l l l E6 I sh, Inc. (i l l I I i l l 1 !l l l l l) l I i i 4 i

~_ REQUESTED INFORMATION FROM SMAlL BREAK TESTS 1. TWO-PilASE NATURAL CIRCULATION WITil UTSG AND OISG (REFLUX BOILER) 2. STEAM GENERATOR EFFECTS ON PLANT SYSTEM TRANSIENT 3. CORE UNC0VERY AND NATURAL CONVECTION llEAT TRANSFER ~ 11. NON-CONDENSIBLE EFFECT ON NATURAL CIRCULATION 5. TUBE RUPTURE EFFECT ON NATURAL CIRCULATION 6. SYSTEM RECOVERY OF PLANT La ? 96 i a .. ~..... ..h.. ~.~...

t e. i i ACRS RECOMMENDATION TO CllAIRMAN HENDIE, MAY 16, 1979 1 1 " Tile ACRS RECOMMENDS THAT SAFETY RESEARCil 0N Tile BEllAVIOR OF LI611T-WATER REACTORS DURING AN0MALOUS TRANSIENTS (INCLUDING SMALL LOCA) BE INITIATED AS S00N AS POSSIBLE AND BE ASSIGNED A HIGH PRIORITY. THE ACRS WOULD EXPECT TO SEE PLANS AND PROPOSALS WITilIN ABOUT TilREE MONTilS, PRELIMINARY RESULTS WITillN AN ADDITIONAL SIX MONTilS, AND MORE COMPREllENSIVE RESULTS WITHIN A YEA.R." I h J:, I w,n ~

~ SCALING REQUIREMENT 0F'SMALL'BREAX' TEST FACILITY 1. FACILITY SHOULD BE CAPABLE OF TESTING SMALL BREAK INTERACTING WITH MULTIPLE FAILURES, BUT NOT ONLY WITH A SINGLE FAILURE, 2. HEIGHT MUST BE PRESERVED IN NATURAL CIRCULATION AND REFLEX BOILER (BECAUSE OF GRAVITATION), 3. GOOD SIMULATION OF THE STEAM GENERATORS, BOTH PRIMARY AND SECONDARY SIDE. 4. CORE UNC0VERY IN A 12' LONG CORE, 5. SAME HEAT INPUT TO THE COOLANT FROM HOT WALL AS PWR (HOT WALL AREA TO VOLUME RATIO BE MAINTAINED). 6. TWO ACTIVE LOOPS WITH SIMULATED PUMPS AND FLOW RESISTANCE. 7. ACCURATE DISCHARG'E FLOW RATE. 0 e -w

t = I i 3 MALL LIAKS CMPERIMCfTS seslocale 14f7 Tif7T Flech t-TLTA FEL Lcs! CCTF TFTT SCTT MOSA 111 t i i uth ' ? ' '** $ in & A Cyx 19tr Mae JMn TAf*d TA n* A d _. utA I il Integrei Teste el Free convec-l tion 2-pneee 2 1 2 . 1 g g .* 2 3 integrel behe. 9 9 g v1or 18W83 l (etoedy statal b) seector I Trenetent 3*' s (Energy and + l g Maes Trenefer) 2) Seperate Effect l Teste I 3 al Reflue boiler s 3 +3 i P P i 1 I I b) Core uncovered +1 3 3 g P P p heet tran s f e r c) Minture level I

  • 2 (Core. Deal *
  • 1 39 comerI d) Neat Trecefer I

I in SG s e 3 3 P g i I el Countercurrent +2 flow in pri-sesy horisontal loop pipea f) Influence of non-condenalble +1 39 gas g) flow blockage +1 + 2 (coral h) anclear feedbaca +1 first priority (key taatal q,73 + = b) U early available (before sept. 1930) 1 = lata eva11able, Laproved Lastrumentatica f(, l{ 2 = ,j eealing and supporting I s = 3 aceling with respect to geometrie fespport g'3 f U ) ll i = a t.e 3, aceLing with ruepect to pressure ) ,, j{ ; ,0,3, g fg g 3, eupportiaq ouclear = TAS1A I < g ; m., (% 4 e ~7

l l l AUDIT CALCULATIONS OllJECTIVE: ' PROVIDE PWR SMALL BREAK CALCULATIONS USING RELAPli/ MOD 7 FOR COPPARIS0N WITil A VARIETY OF VENDOR CALCULATIOllS. i 1 i (.O p. I'5 g,a i n i

1

l S-SB-1 CODE ASSESSENT

,___________________,1 AUDIT S-SB-2 j L3_1

F CALCULATION, l

! IN j / AUDIT S-SB-3 L3-2 > CALCULATION y EXPT / ANALYTICAL l g 2 IN AUDIT Ml S-SB fi L3-3 tF CALCULATION l IN I l__________________j L3 ll S-SB-5 g i I s.!:

l A U D I. T CALCULATIONS ELN{I IlllEAK SIZE WJDITIONS B & W OCONEE 1.35" DIA (0.23%) ONE IIPI PUMP, NORMAL AUXILI ARY FEEDWATER INITI ATION 1.35" DIA (0.23%) Til0 llPI P11MPS, AUXILIARY FEEIMATER INITIATION DELAYED 20 MINUTES CE CALVERT CLIFFS 11.28" DI A (2.0%) ONE IIPl 8 LPI PUFP, WITil AUXILIARY FEEDWATER 1.91" DIA (0 l11%) ONE IIPI 8 LPI PDP, W1111 AUXIL1ARY FEEDWATER 1,91" DI A (0,811%) ONE IIPI 8 LPI PUMP, WITil00T AUXILIARY FEEIMATER i HESTINGIOUSE ZION 11" DIA (2.1%) ONE IIPI PUMP, WITH AUXILIARY FEEIMATER 1" DIA (0.13%) ONE IIPl PUMP, WITil AUXILIARY FEEIMATER h" DIA (0.033%) IWO IIPI PUMPS, WITH AUXILIARY FEEIMATER s 5

O b a JL 7p, o o JO _ ga 7J11h s m ._a.,,0. _ 5.Et(4) 5583 55s4 t3 1(a) a.ett ,"pi an t t (a) LDFT N

    1. )

Tmjaa krstam usute eeham: (ft ) .El 7.258 7.254 25g e 3 Pmssertze Locattan latact Laus latact Laos f atact Laas f atact Lose Istact Laee EIC lajectten Lac 4ttas lacact ama tream, latact ma treaas latact Laos Cald Leg latact Laos Cald Leg Istact Laos Accumulater Llas Resistanca (5 /ft.te..o Cald Legs Lag) Lamp Cald Legs Cold Leg 2 3 latact Lose 6.88 a 10-4 1.50 a 103 817 817 0.64 tresca Lana 6.01 a N-3 1.44 a 104 m/A s/A R/A treet Locatten Cald Leg Cold Leg Cald Leg Cald Leg Cold Leg Breat Tsve Cammise mative Cammustcative suecommanicattve mancommunicat tve omstammsitcattee tre a Site 2.11 t s.te.) 2.15 (0.110.la.) 2.51 (0.110.to.) 2.55 (J.110.ta.) 2.51 (0.6285.la. ) 1 veles. not Let astzle ta grees e/A s/A 141 les 141 staan Generstar (!stact Lane) 3) Total Sacandary volme (f t}) 't Sa49 3.04 3.04 3.04 130 Secmaary Lieuse valuse (f I 17600 7 7 7 275

11. Isttial Candtuans(c)

Pressare (pst3) 2L*50 2250 2250 2154 2156 Po.or ut.) 3250 2.05 2.05 1.2 50 Eastal Prettle Flat Flat Flat Flat Cen tne Care Fles (It/ar) 1.a5 a 108 g.25 a 104 g.25 a 104 g.25 a 104 3.8 a 106 Care talet fewerstere (eF) E30 130 130 54?.5 542.5 Cars AT (eF) to 80 60 35 35 Pressartaa (teuse felme.1 Fell l 54 63 73 73 45 3 Assum=1 ster LieutJ volume (f t ) 3272 2.11 2.11 2.13 76.2 3 are-letar Gas valme (f t ) ZZs4 1.45 1.a5 1.20 42.8 Steam Generatar Levels Iatact Lane (ta.) 390 11 6 116 126 125 Bream Lamo (la.) 8 3 98 3g3 39 3 393 n/A Feektse Teograture (ay) 437 417 437 a07 407 Accassulatar Pfossure (pstg) M M M 603 M !!I. Test Seeuence Cars Trte Crttartam 1810 pstg 1810 pstg 1810 pet, at Cwtsco At tote.. (3.4 s anlay) (3.4 s eclt;) (3.4 s delsy) Pines Trty Criterian 1810 pstg 1810 pstg 1810 psig ^" ! $ AFtar tuotare genen red totten (3.4 s eslay) (3.4 s seley) (3.4 s eslay) Ilgats tuem as Pune Caastaswa See Ftpare See FIpsre See Figure See Figure See Figure Preuertsar meaters A/A Trts just arter to Trio just priar to Tris Just si ter to Trip Jest yter rw ture rwtore rwtare retare Pressertry sprey m/A a/A R/A E/A Torn off ww puse ture of f Pas Lasaage afA Baptace Us1ag Masaus iasIaca Uslag Reaemp Res.Iace t#stng maaog <10E $nte. we s-es't s: Ac1metiem C.*1 tartan 1800 psia (25 s deIay) 1800 es1a (25 s enlay) 1800 ps1a (25s toIay) 18gd astg 1896 estg F1om vs P 5 Pmuere $se Ftgare See Ftpere See 7tgure See Ftpre See F1gurt fassersture Amstet Amelant Amblet Amst emt Amatant LPIS: Actuae1an Criterion 130 es1a 130 psia 130 ps1a 130 pstg 130 er:9 Fie, rs PCS Pressure See Fipre See Floure See 7tpre see Ftpsre see Floere Tancer atwe Ameisit Amtiant Amtt unt Ambt ont ameIamt Decay nest Am3

  • 2C1 See Flysre See 7tpare See Fleste See 7tp re Pressure 5.seressten Tana 4

4 Pmsaare (esig) Staan Generatar Secondary Feemtar toelatlan 5 s after scram 5 s oftar Scram 5 s attar Seren At scram At scram (rasses ta o te (rameos to O ta (rampes to O ta oest 5 si mest 5 s) eest 5 s) Staan Isalatien 1825 ps1a 1825 ps1a 1825 psta At Sc*as. Then At Scran. Then steestates Setween tenenlaces tetweep 920 and 1020 pste 920 and 1020 pst g teltef valve 1190 psia 1190 psia 1130 pela 12 patg 11133 pstg Amat1I1ery Fene.ater Actuet t me W s aftar scrum 80 e after Scram 83 s after Scres liammally natstata saaminally maintaie Level Aeove Twees Level Ateve Twenes Fler tata totact Laos 750 was 0.442 pe 0.443 was 0.22e gne 8 gen Sresan Laos 250 pim 0.341 pm R/A a/A s/A (a) mod.3 comf tparetten vita veierne scallag free llan. (b) mus.3 cumftgurettan ametf teJ % staulata L&T by changtag sino sastian levert and salviat off treman lose het leg. (c) taittal consittans f r Seelsca e Tests b58 2 and 5 58 3 are besad on values used la the endit calcolatten. latttal condittens far Test 5 58 L are bases em LOFT Test L31. (4) Test 5 58 5 etlt to tasetical to 'est 5 58 2 nacaot tre treat sine stil to 0.1E "" ' *~.q. .3 pe (e) Test L3 3 etil ne teentical ta T tst L3-1 escset tae treae g rtil be 0.1E

  • ~~ -

1 ~ .m

)$f a SMALL-BREAK RESEARCil. OBJECTIVES / / I GENERATE StiALL-BREAK INTEGRALIESLDATA AND-CALCULAT!0flS WHICil e SPECIFICALLY ADDRESS CURRENT LICENSING NEEDS FOR DEVELOPMENT AllD EVALUATION OF ANALYTICAL CODES te e F. VALUATE Tile EFFECT OF SCALE ON SMALL-BREAK BEii,iVIOR la INVESTIGATE Tile ADF'"JACY OF TYPICAL LPWR PROCESS lilSTRute!TS e Af!D i:EW MEASUREMENT C0t! CEPT 6' TO DEFillE THE EXISTEllCE AND g gm STATUS OF SMALL-DREAK TRAi!SiEllTS g Sp) (__) INVESTIGATE SYSTEM RECOVERY TECHNIQUES e h DEVELOP A BETTER UllDERSTANDlilG'0F SYSTEM M M e re b n IDEt!TIFY UNANTICIPATED EEHAVIOR c0 4 ~

e 9 g O e 9 SEMISCALE SMALL BREAK TEST PLAN AtlD OBJECTIVES G 0 t;tg Ju 34inb3

  • i)l

~ T (gr o fu j u@uJu!/de

SEMISCALE TESTS ARE DIRECTED AT INITIATING A S!'ALL 3REAK DATA SASE WHICH ADDRESSES SPECIFIC LICENSING NEEDS IN EVALUATING SYSTEM ANALYSIS CAPA3ILITIES WHICH HAVE NOT YET BEEN RESOLVED. h wer p xno a JL j b L LILI a

SPECIFIC TEST OBJECTI!ES FOR SEMISCALE SMALL BREAK SERIES t e IDENTIFY POTENTIAL FOR CORE UNC0VERY s LEVEL SWELL e IN-CORE HEAT TRANSFER CHARACTERISTICS o INVESTIGATE NATURAL CIRCULATION PHENOMENA e SYSTEM RECOVERY TECHNIQUES e INFLUENCE OF LOFT /SEMISCALE GEOMETRY d 4 O

SEMISCALE i l l S-SB-1 l l l i j l AUDIT i S-SB-2 L3-1 > CALCULAT10tl. l l 'l lit. AUDIT A l S-SB-3 i L3-2 > CALCULATI0il N EXi'T/AllALYTICAL l AUDIT > CALCULATI0li l S-SB ji L3-3j i til ~ i L3 li L1A l l ?i O l N S-SB-5 l l i i i i 6

8cm 9 OU c= c==J DM 8 TEST PLAN EED LP TEST BREAK SIZE INITIAL CONDITIONS CONFIGURATION 'l'-[lv.d5D-3 S-SB-1 0.110 IN. (2.5%) PWR AUDIT CALCULATION ' ap e ( fg/ p/ S-SB-2 0.110 INI (2.5%) PWR AUDIT CALCULATION LOFT pa t.)' ' ' ' ' S-SB-3 0.110 IN. (2.5%) LOFT TEST L3-1 LOFT 1 9 9'O (~ S-SB-4 0.029 IN. (0.185%) PWR AUDIT CALCULATION MOD-3 S-SB-5 0.21 IN. (10%) S-07-10 MOD-3 (U111) to ss s. CJ t e

s C iM l M Broken loop steam generator Intact toep steam generator m 6 Vessel Pressunzer EfE!} Inta loco pump y ~ 15 .. Nt3:E12 d p, 5 l s ' 14

f 011 i

-.. e - i-t 2 i G 21 20 n5 3; 1 4 10 i I Pressure Broken, i 1. lg !' 9 suppression Icco pumo g 1;;9 l \\' Break (3 tank% 27 assembly / Pressure suppression I header S. [ - u ] 25 g o qra 7 g r I ] d u IJ [ Numbers refer to Downcomer I __a pipi.ig spool pieces assembly ( INEL-A-64 75 e. .<ven h i), 8 ( / 'u.

ANTICIPATED SMALL BREAK OPERATING SEQUENCE e INITIATE RUPTURE e DEPRESSURIZE TO STABLE CONDITION e IDENTIFY COOLING MODE (NATURAL CIRCULATION) e BREAK NATUPAL CIRCULATION e RECOVER SYSTEM e e _ d } 4 s.

SYSTEM RECOVERY METHODS e SECONDARY SIDE FEED AND BLEED e PRIMARY COOLANT PUMP STARTUP ~ e DE?RESSURIZE AND INITIATE ECC e CORE POWER CONTROL 9 4 g " b g

CRITICAL SMALL BREAK INSTRUMENTATION ~ i ~ e EREAK FLOW MEASUREMENTS e NATURAL CIRCULATION MEASUREMENTS DIRECT MEASUREMENTS INDIRECT MEASUR81ENTS

3 l 6 4 w Q 3 70 A 1 4 0 9 e 5 -g j 'l . { d g ~ 7

1 Y

fl 2 g'3 2 I e U o --h d. 2 O IU 3 l 3 } s t q 3> 6 e i 7 Iu J G G 4-dd $ f3 i 'T-w = c a b i W' M W' a d e u C J 2 b o w d s Q r ]D f 'D D T C 2 2 7 d E' V Jt v o '~

  • i)l9'T 2'

odbjdLl_1. ~ _a + Y wras

T i l e .~E m w 9 ag;: 1-- 8 G B ag g m s a e< 5 e _m. b M

3 ld I~

u s a-E -Ji R2 >! 22 w .E g -g i!E W 2 EE 5 d i E 8 s e VJ emo 2ecall " ((i l fS ~ I ; ~ .o ' t si L 22 u ^ ) sma

.b f. v o* 1 I I i = O t.o". W ~ C b i O 5 W "C w i 9 a m o D 4/3 J o W O .Z. H s2 g. g w a O H M b, =E r i o C o o a v

  • C E

z x W CD w p- = E Co "8 u:\\ c 5s r = -=

== a 9 g, m u E o e L T C to e ca. =.a W o f/3 W 2: \\<Csn H W C A Q H Ul n E <C H M > 0 c::, C :: Lu A E I y- <=. u_ o aW C CC sn > W o u.1 w to ':3 o E cr1 m .L.! cn w CC LJ J( 4 k$ a i 1 I I I tr) W Q N O T (9 N. c. ..=e = o o e o e o ~ e,^ DJ D s _[ oaJl j [ ~ DI. ,_u l*- .l s Q k J-ub s u a)g,.r) n,y - f

f CRIflLAL FLOW CORRELAT10tl TO BREAK SIZE l CRITICAL ~ FLOW ~* MULTIPLIER BREAK DIA.'(CM) TEST NA."E SilBC00 LED SATURATED g 10.312 L2-2 HF

  • 1.0 HEM
  • 0.85 pm

~ E E.' o) 1.905 S0ZZI & SUTHERLAND i

  • 1.2 h

IETF] b] S-07-3 HF

  • 1.0 HEM
  • 0. 8'l re -

i 1,76 >N."g l h3

1. 38f1 L3-0

!!EM

  • 0.87.

g l 1.11 POWELL HF

  • 1.1 0.091ft S-THI-3E HEM
  • 0.8'I I

2e

  • . f

( LJ U LJ

  • O e

5 i / /r /, j i j - 9 o ~~ 4 i f / d e y 4 n0 ~ 6 o f r s Cw mj.' e a q) ( Y 3 e c W d e y 4 s S 2o ( j 2"'dlli ~ b dkb b M /fdla b

9 B !~ i E flll k ~ g E

f.*

g I U Bg n = i s = e E lm$ M. ~ 9 _E g _e i g g >= ~~$$ 5 $!lli - l 1 i _i t e e m

  • M*

E]IML 3f/083

t i e e 10 o ci o N O y> c = N in i, Co l C I a I = o ? E w w E 5 y a. _ h-o w g 3 T_ J t- = w= O T ~ & A ca D I 4O (0 O M a~ m UZ d W V3 s 1.LJ LkJ trl 6 M M t-- o g O M N J dP g W vl E e O <c w d z v 6 w N 1 [ y M r ar < .U. +11, H W LLJ N u) O M b D C M M L O a U3 og w W U3 A M LA.J w C E d J O m l3 = i O O A I M Z LAJ -w O A "I V3 a-h x

  • -* LAJ M M g

h .-2~ O EI-w U U h -Oh O l g Q 4 v N c CW3 73 A3 1 c::noI7 .. _ _. - Df90 ~~ ^ t:, J L

n.,

,,e i. a ? J mp ~ D) N ,f x\\ oLfL_.&! .}U Jd _a

f Flow Regimes t CPFCCT : i i Flpvl RcGiaA 6 TTLAN SsTIOA15 l D A T A *. (. >) Flow RcGas4C C ALcuLArs o#4s g LOPT TVST Do TA 0 oMPA R.8 % otJ 5. seca w_, (; .) pm; g_ iM Pac.T : b3 TK(\\ r4S LTt oc4 timid Gr 6 ~' I c.* 4 [ L ( [a b", e

                • -=-.em..

U O _.a

i l PREDICTED FLOW REGIMES IN SEMISCALE AND PWR COLD LEG PIPING DUKLER-TAITEL METil0D - PWR fi IN. BREAK AUDIT CALCULATION MASS FLUXES USED i 884!8CALE Puar 333g "M8 Put Pump,stog I t oum 0 .) -,L GI i E: 1 s .1 % una, m.._.. 3 5B O l M L=0 Og=8 g~,E=s) STRATirita i e s,om b P1451 = - - - -. - - - - --_--s 9 Ida 350 h 4k d Tim (uconos) (0 .4 9 r.~ s s ese soe. Mo e

[ i STEAM GENERATOR CONFI6URATION i EFFECTS: DISPROP0RTIONATE SECONDARY !! EAT SINK INTACT / BROKEN LOOP HE!611T MISMATCil d DATA: NONE 9 ETB E3 ur i SOLUTIONS: SCALE OR MlHIMIZE INITIAL SECONDARY ? ASS N '9 i 'd bb I FORCIBLY DRAIN SECONDARIES? L l l IM"ACT: SLUG 6ISH SECONDARY BEHAVIOR 4 C. ?- 4. .i ?, ..E (E 2 g'.*1.?#. f .**i.' g:y ,6 a t,. [e - .O q. ig. .......i... '. w 'ti;c1%.an* :' O' :.'i +. ' ' g,. 't ...,y, .. ~ mM *'6 ,' ^"r *: %1 - 'I h ~ ? t h.'"' -. ' ' ~* ' ' ' ' ' '

SEMISCALE STEAM GENERATORS g f'? % gia 0 0 6 "E 9 PWR PWR N g 1 INTACT THREE BROKEN ONE E23 f LOOP LOOPS LOOP LOOP b i SECOMDARY WATER VOLUME 0.62 0.43 1.79 0.14 i PRIMARY VOLUME A h NM -- N ~ ~ SUP. FACE AREA 13.05 12.37 3.47 4.12 ~~ V ,,~"C hi PRIMARY VOLUME i C 'jiy,,Rf, 2 5M HEIGHT (MP 3.5 11.1 11.1 11.1 9 i ,/ h- _ j i _ __ l'. A ^s f,.. m a I h l w {[ j l ~ _I

  • COLD LEG CENTERLINE TO LOW TUBE SPILLOVER

__..._ _.,7 ~ ' ' ~ '. ' Z ~ ' " ' ' ' _C. - _: E."' " Z _ I I P O ......_......._..A ~ cou etosions SySTEA4. EFiEc.T5 oF ' S ma A t.t - B F.E6 K Se4L104 f M4VE AloT bee 4 Co4fLETEI'f Q U A4Tt FIED i 4 TEST DATA Mb d A L COLA Tic 4 s w LL PERM e T BETTEA MFl4 Tiba.) OP C APA (SI L LT'[ i Seon.T. tsu 9,esutn totLL Assist-

  1. 4 t.orr TcST PLeeJ At id q e

Ts5T , DATA WILL A LLowJ 40DE EVALOArtod Od Esa % nv A r_... a Bi MED GED Q;: ~ ,. cgtJ S3 - 'j u g O O O 9

pg Lobby Addressees - Letter dated R. R. Landry, RES P. Schally, EG8G N. N. Kondic, RES T. Sudoh, EG&G W. V. Johnston, RES M. Shiba, JAPAN S. Fabic, RES H. Nakamura, JAPAN Y. Y. Hsu, RES L. Saukkoribi, EG&G P. Strom, RES A. Olsen, DENMARK C. Berlinger, NRR ~ Dipl.-Ing. Walterlinner, Austria D. Eisenhut, NRR L. Winters, EG&G P. Norrian, NRR K. J. Brinkman, Netherlands T. M. Novak, NRR R. T. Lahey, RPI F. Odar, NRR C. Moser, Energy, Inc. K. R. Wichman, NRR W. Kato, BNL T. Su, NRR S. Banerjee, McMaster Univ. P. Y. Chen, NRR B. Bearden, EG&G D. Houston, NRR N. C. Kaufman, EG&G S. Hanauer, NRR P. North, EG&G K. Parczewski, DOE G. Markoczy, Switzerland L. Rubenstein, NRR C. B. Davis, EG&G N. Lauben, NRR C. Mark, ACRS B. Sheron, NRR L. Agee, EPRI W. W. Bixby, DOE J. Block, CREARE L. S. Tong, RES J. Cudlin, B&W T. E. Murl ey, RES P. R. Davis, ITI R. W. Barber, DCE W. J. Johnson, W J. Solecki, DOE /ID T. Knight, EG&G L. J. Ybarrondo, EG&G W. Burchill, CE L. Leach, EG&G D. J. Olson, EG&G M. Meerbaum, B&W J. Cermak, W S. Kellman, W D. Ross, NRif G. Menzel, CE Z. Rosztoczy, NRR T. Fernandez, EPRI J. D. White, ORNL G. Brockett, ITI K. H. Sun, EPRI P. Griffin, MIT R. Fraley, ACRS., (3 s) J. Ows1ey, EXXON G. Sonneck, EG&G F. Mayinger, Germany D. Lummerzheim, FRG MiGi)O 4 %. w _. _}}