ML18291A717
ML18291A717 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 10/04/2018 |
From: | Florida Power & Light Co |
To: | Office of Nuclear Reactor Regulation |
Shared Package | |
ML18291A749 | List: |
References | |
L-2018-172 | |
Download: ML18291A717 (395) | |
Text
TABLE 4.1-1 REACTOR INTERNALS STRESS ANALYSES METHODS
SUMMARY
Component Load Conditions Analysis Technique Computer Code
Core Support Barrel Axial & Lateral Loads Shell Analysis ASHSD (1) Beam Analysis SHOCK (2)
STARDYNE (3)(4)
Dynamic Buckling Shell Analysis SAMMSOR
- DYNASOR (5) Upper & Lower Core Lateral Loads Finite Element Analysis SAAS (6)
Support Barrel Flanges Axial Loads NAOS (7) Bending Moments
Lower Support Structure Plane grid structure analysis. STRUDL (8) - Beams Simply supported beams.
- Columns Axial Loads Column analysis. SHOCK (2) STARDYNE (3)(4) Bending Loads
Upper Guide Structure CEA Shrouds Lateral Loads Beam Analysis SHOCK (2) Axial Loads Column analysis STARDYNE (3)(4)
- Beam Structure Uniform Lateral Loading Plane grid structure STRUDL (8)
- Support Plate Flange Axial Loads Finite element analysis SAAS (6) Bending Moments NAOS (7)
4.1-6 Amendment No. 25 (04/12)
TABLE 4.1-1(Cont'd)
Component Load Conditions Analysis Technique Computer Code Core Shroud Thermal & Pressure Loading Finite element analysis EASE (9)
Expansion Compensating Torsional & Bending Finite element analysis SAAS (6)Ring Moments
CEDM and PLCEDM Pressure, fatigue Finite Element Analysis SAAS (6) and thermal loads
CEDM and PLCEDM Seismic Loading Framed Structure Analysis STRUDL (8)
CEDM and PLCEDM Thermal Loading Relaxation Analysis WIN 12100 (10)Nozzles CEDM and PLCEDM Pressure, thermal, Shell Analysis SHELL
- (11) Omega Seal rotational and displacement loadings
4.1-7
CEDM NOZZLE INCORE INSTRUMENTATION / ASSEMBLY
- I * * * * -----lJl JL Ji )l r-v (r-p,0(\ I INCORE INSTRUMENT.............__
- __-GUIDETUBE [ [r--1 STRUCTURE ASSSEMBLY CONTROL FULLY WITHDRAV\IN t-.. f-+ .. 1"-,....,.. 42" ID OUTLET....__..._ NOZZEL -.. -) r--3U'IDINLETNOZZLE SURVEILLANCE-----1 SUPPORT HOLDER ..olllll ___..-BARREL j 136.7" ACTIVE CORE LENGTH u ,.... ... CORE SHROUD =t=:f:=jl=fllf FUELASSEMBLY .... __....-CORE SUPPORT ASSEMBLY ? 1-,... CORE J __....-FLOWSKIRT 0000000000000000000000 oooooooooo oo oo o oo 0000000 000 00 00 0 00 00000 0000000000 00 00 0 00 00000 Florida Power & Light Company St. Lucie Plant Unit 1 Reactor Arrangement -Vertical Section Figure 4.1-1 Amendment No. 22 (05/07)
- * *
- CORE EQUIVALENT DIAMETER, 136" CORE SUPPORT BARREL FUEL ROD 0.440" OD I 4.64 0" _L TT -r'-.L 0 FU p ELROD FLORIDA POWER & LIGHT CO. St. Lucie Plant Unit 1 ITCH ,. It) r--1-J r -Q +0.140" I . 0.200" WATER GAP 'TT ll tOH r-1-ll J 1'-K:r 0 l-7.980" J OUTSIDE FUEL RODS REACTOR CORE CROSS-SECTION REACTOR VESSEL GUIDE TUBE I 13 SPACES AT 0.580" EQUALS 7.540" _j_ Am. 3-7/85 Figure 4.1-2
°°
°
°
°
°
°°°
°°
°°°°
°°
°
°
°
°
°
°
°°
°°
Qualification of Advanced Nuclear Fuels' PWR Design Methodology for Rod Burnups of 62 GWd/MTUGeneric Mechanical Design Criteria for PWR Fuel Designs
°
°
°
°
- * *
- FLORIDA POWER & LIGHT CO. St*. Lucie Plant (./') u >-u al LL.l g< > 0::: --' ::::::> --' u <( z <.::) ....... (./') L&.J 0 1.1... 0 0 -0 0 r-Design Curve for Cyclic-Strain Usage of Zi rca lov-4 at 700F CE FUEL Am.J-7/85 Figure 4.2-l
,..---* ( (* I I I *I I I I I * * ----------,----x. ------. L j I T! ((; t ., I j 1 r:r, r r --r . <n d I f 0 I I I L Vi VJ 0 < < ,_. --;" :;= I I c [> I I /[ I c_ I I I 0 ll .. j r* -i .J J J j I j -C) I J ' I 'S-, I -*I,... j ,...; .--:: 1 _j I u '"i >-u I g / a . . , 1 0 / I 1§ J I l ! / -___ _j --_j ____ =-_j -C:) C:* 0 C..) '.;" TE:lPERAilJRE fATlG L'E DATA FOR ZR-4 SHEET, REVERSE BEi\Ditr; CE FUEL STRESS
- ksi 0 ('...) Am. 3-7/85 ?ICTRE :...2-lA
- 145. 9"
- DISC 136. 7" ACTIVE FUEL LENGTH DISHED PELLETS 0.379511 ._____PELLET DIAMETER-BATCH B 0.3805" BATCH A 0.3765" BATCH C,D,E,F,G FUEL ClADDING ......_-0.440" CLADDING OD ........ -0.026" CLADDING WALL .. BAT C H E S A B 0.028"BATCH C.D,E,F,G SPACER DISC END CAP AMENDMENT NO. 10 (7/91) "FLORIDA Figure POWER & LIGHT CO. Fuel Rod St. Lucie Plant CE FUEL 4.2-2
- * * *
- FLORIDA POWER & LIGHT CO. St. Lucie Plant CEA GUIDE TUBES TOP VIEW FUEL ROD SPACER GRID FLOW HOLES BOTIOM VIEW RETENTION GRID }UPPER END FIITING ) ) ) ) ) ) ) l57fl I! Ill I , I I i I IIi i l l ) ) ) ) '! i!!! I 'I i' ' I ' 'II I I II 'I 1 136. 7 1 ACTIVE ' LENGTH ) ) ) I ,, I! LOWER END FITIING Fuel Assembly CE FUEL Am. 3-7/85 Figure I 4.2-3
- * * *
- FLORIDA '-POWER & LIGHT CO. St lucie Plant
- Unit 1 c z w.Jc.:> o:::z w.J-o..._ :::>u.. f I 4.2-4 1 Fuel Assembly H_ol-dD-ow_n ____ _JI CE FUEL
- * *
- FLORIDA POWER & LIGHT CO. St. Lucie Plant Unit 1 Leaf Spring Arch Perimeter Strip CEA Guide Tube Location Fuel Spacer Grid CE FUEL Am. 3-7/85 Figure 4.2-5
- *
- Figure 4.2-SA* St. Lucie Minimum Rod Internal Pressure vs Time Batches A & B 2 Fuel Cycles 95% Nominal Initial Density Figure 4.2-SB* St. Lucie Minimum Rod Internal Pressure vs Time Batch B 2 Fuel Cycles 93n;_ Nominal Initial Density Figure 4. 2-sc< St. Lucie Minimum Rod Internal Pressure vs Time Batch B 3 Fuel Cycles 937, Nominal Initial Dem1ity Figure 4.2-sn' St. Lucie Minimum Rod Internal Pressure vs Time Batch B 3 Fuel Cycles 95:', Nominal Initial Density
- Figure 4.2-SE St. Lucie Minimum Rod Internal Pressure vs Time Batch C 3 Fuel Cycles
- Reference 24, CENPD-187-P
-o Cl.lQ m t"";'IO-n p.r-0 .... :r: )> lil-t ;() p (") -* c 3 -('[) "" ('[) ::J ::t (') OJ t%1_ I"JjV) c:::_ t%j "" t-' OJ ::J < Vl -t (I) 3 "0 (I) """'I OJ -c "" (I) * , (,.,) I .p.. N I 0'-,,-..J U)" c VI .., t1) -:R 0 .. c: *c;
- 7 "' Coextruded Zr /U Metal Elements J. W. Weber ASTM-STP-426 1967 6 5 0 20 Mil Clad '\7 25 Mil Clad 6 30 Mil Clad 0 34 Mil Clad 0 Rod 79-22 Foiled Circum. 20 2. 2x10 nvt C) Rod 79-163 Bowed 20 6x10 nvt WAPD TM-631 and WAPD TM-583 *
- Theoretical Failure Curve Based on 0' Donnel's Analysis APD-TM-651) -6 35 4 0 Rod 79-62 20 2 xlO
- nvt 6 0 .... c: G> ... G> Rod 79-19 Split ) WAPD 3. 3 x 1020 nvt TM-595 0 'E 3 X Design Strains for PRTR I tiW-75267 '\7 ::> u 2 0 Rods DFL, DFM, DFN 1000-1300 Mwd/Tonne U AECL-1822 ! _________ .. 6 / 0 6/V A .... _..--"' 0 .X tJ I _,. .,.(;l 0 0 PRTR Design Strains 0 0 0 0 --'l:f-X.:::..\J. 6---o C) 0 -1% CE D
- eslgn Limit 6 0 6 Note: Solid Symbols Denote Failed Rods 0 200 300 400 500 600 700 800 900 1000 1100 Temperature, F REFER TO DRAWING 8770-2050 Florida Power & Light Company St. Lucie Plant Unit 1 Reactor Internals Assembly Figure 4.2-7 Amendment No. 26 (11113)
- * -o :I 1: po 0 CORE tlARREL--.. -*n --* r-:::0 1-'IDQO ::!! :I: )> ........ 0-t ' an p :::0 ('D Q) 0 """ < ('D "" V)CI' ::::s!!. c:, c::r CT'(""') ('1)0 9 I HARD-FACED >SURFACE ?J /' /. .. /CORE STABILIZif\!G ....... * * * (\ .. (\ * '""""" >('D BOLT SNUBOEit SPACER BLOC I< Vl V') ""c: ('I)"C 3-c::J c::ro a:J Q) """ """ (I) , N <a* ' c , ... 00 ill : (12 PER ASSEMBLY) ' REACTOR VESSEL SHIM (2 PER ASSEMBLY) t'J I ,-?.._PIN (4 ASSEMBLY) . ,, BOLT (4 PER ASSEMBLY)
- *
- I . _j FLORIDA POWER & LIGHT CO. St. Lucie Plant Core Shroud Assembly Upper Segment Lower Segment Figure 4.2-9 HOLD RING "" CEA SHROUD GRID ASSEMBLY FUEL ASSEMBLY ALIGNMENT PLATE ___ __........._ Florida Power & Light Company St. Lucie Plant Unit 1 Reactor Internals Assembly Figure 4.2-10 Amendment No. 26 (11113)
TYPICAL INSTRUMENT CONDUIT INSTRUMENT PLATE ASSEMBLY ,...__ INCORE THIMBLES Florida Power & Light Company St. Lucie Plant Unit 1 lncore Instrumentation Assembly Figure 4.2-11 Amendment No. 22 (05/07)
THIS FIGURE HAS BEEN DELETED Amendment No. 16, (1/98) FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 IN-CORE NUCLEAR DETECTOR ASSEMBLY FIGURE 4.2-12 A B c D E F GH J K LM N PR s T v w X y 1 2 0 3 0 0 0 4 0 0 0 5 0 0 6 0 0 0 0 7 -0 0 0 0 -8 9 -0 0 -0 10 0 0 0 0 0 0 1 1 --12 13 14 0 0 0 0 15 --16 0 0 0 0 0 17 0 0 18 0 0 0 19 0 0 0 BUILDING 0 NORTH 20 21 (PfUFSARfUn1t1/Rev.9} Florida Power & Light Company St. Lucie Plant Unit 1 Incore Detector Locations Figure 4.2-13 Amendment No. 25 (04112)
- LIFT COIL DRIVING LATCHES DRIVE SHAFT HOLDING lATCHES REACTOR NOZZLE CONNECT! ON1-* ELECTRICAL CONDUIT DRIVING LATCH COil PUllDOWN COIL lOAD TRANSFER COIL HOlDING LATCH COIL Figure FLORIDA POWER & LIGHT CO. St. Lucie Plant Control Element Drive Mechanism 4.2-14 Refer to Drawing 8770-15165 Florida Power & Light Company St. Lucie Plant Unit 1 CEA-1 Full Length-Full Strength CEA Figure 4.2-15A Amendment No. 26 (11113)
Refer to Drawing 8770-15142 Florida Power & Light Company St. Lucie Plant Unit 1 CEA-2 Full Length-Reduced Strength CEA Figure 4.2-lSB Amendment No. 26 (11113)
Refer to Drawing 8770-15143 Florida Power & Light Company St. Lucie Plant Unit 1 CEA-3 Full Length-Reduced Strength CEA Figure 4.2-lSC Amendment No. 26 (11113)
- *
- X .., ... ., .... i 'J . <P). i I 1.( 5." I I I '0. I '{**:;;; .J .,.J ..J A-++-ZONE c. 0" -11" -4511 -135 .. (12l"PLCEA) MATERIAlS<ll CEA c*> ABBREVIATIONS NUMBER LOCATIONS ZONE A ZONE B ZONE C ALL Ag Ag B B B B CEAl 65 OTHERS B B B Aq Aq 8 8 8 B GROUP 7 Ag Ag B B B 8 POSITION CEA2 4 D-4 AND AI At AI SYMETRICAL POSITlONS Ag Ag B B B 8 GROUP 7 Ag s B Al B AI POSITION CEA3 4 _L*3 AND e f> 6 SYMETRICAL POSITIONS131 s Ag AI B AI B N 0 T E S : (1 J See Figure 4.3-25 for Cycle 1 locations and Figure 4.2*16c for current locations cuB* 84C S* Stainless Steel Ag* Ag-In-Cd (3) See Figure 4.2-16e for orientation of Type CEA-3 CEAs in the core Nc. 17, (10/99) FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 CEA MATERIALS CYCLES 1 THROUGH 8 FIGURE 4.2*16a NOTES: (1) (2) (3) (4) (5) (6) .., .., I I ZONE B ZONE C 0" -11" -45" -135" (121" PLCEA) CEA (1) MATERIALS (2) ABBREVIATIONS NUMBER LOCATIONS ZONE A ZONE B ZONE C Ag Ag D D CEA 1 65 ALL B (3,6) OTHERS Ag Ag B B CEA2 4 GROUP? Ag Ag B B B B POSITION (5,6) (6) (6) D-4AND AI AI AI SYMETRICAL POSITIONS Ag Ag B B B B CEA3 4 GROUP? Ag s D D POSITION L-3AND B (3) SYMETRICAL POSITIONS(4) s Ag B B See Figure 4.3-25 for Cycle 1 locations B = B4C S = Stainless Steel Ag = Ag-ln-Cd AI = Ab03 Tip region (lower 8 in.) can be B or Ag. CEAs with I.D.s less than 80 (and not a type 2 CEA) have B in the tip region of the center finger. See Table 4.2-5. See Figure 4.2-160 for orientation ofType CEA-3 CEAs in the core. Starting in Cycle 19, the tip region of new Type 2 CEA incorporates a stainless steei(S) slug in the center finger. Starting in Cycle 20, the tip region of the new Type 1 CEAs (401 and higher) incorporates 12.5 inch lengths of Ag-ln-Cd. Also, the new Type 2 CEAs incorporate full length of stainless steel in the center finger. Florida Power & Light Company St. Lucie Plant Unit 1 CEA Materials Starting With Cycle 9 Figure 4.2-168 Amendment No. 21 (12/05)
- y X w v T s RPNMLKJ HG F E D c B A I I I I I I I I I 21 I I I I I 20 3 3 19 A\ 4 7 4 vA 18 7 I\ A 1 1 A/ 7 17 A'\._ 2 2 16 1'-/ A 8 6 A 15-r--4 2 s, 5 /B 2 4 '\. / 13-t---3 1 B B 1 3 11-7 5 7 5 7 i---10-9-1--3 1 B B 1 3 -* 8-/ " 7-.____ 4 2 g/ 5 'a 2 4 -6 A 6 6 A / '\ 5 A/ 2 2 !'A 4 7 VA 1 1 A"'-7 AI 4 7 4 I' A 3 2 3 3 1 I I I I I N r AMENDMENT NO .. 10 (7/911 FLORIDA POWER & LIGHT COMPANY
- y X w v T s RPNMLKJHG F E D c B A II I I I I I I I 21 I I I l l 20 19 r:;9 42 18 c 17 r;.;, L.:::J [!Z] Bj 16 15--[I] r--14-9...J 6 13--r--12-11--§] w [!] [!] r--* 10-9--a' r--8-7 7--G r--6 C-J r:"J 5 4 r .. ';;J 4-;, 0 ;:1 3 N 2 I 1 I I I I I AMENDMENT NO. 10 (7/9.11 FLORIDA POWER & LIGHT COMPANY
- ST. LUCIE PLANT UNIT 1 CEDM NUMBERING SEQUENCE FIGURE 4.2-16d y X w v T s R P NM L K J H G F E D c 8 A 21 20 I I 19 SERIAL
- 0 o*. 18 17 16 15 r---r----14 SERIAL No. SERIAL No. 13 r----It r----12 / / ore o:-11 r----* r----10
- 0
- 0 9 r----r----8 7 '-r----6 5 4 SERIAL No. 3
- 0 2 1
- 84( ----+-o Al2o3 -----.-o*
- Nt (P /U FSAR/Unitl/Rev. 7) Florida Power & Light Company St. Lucie Plant Unit 1 Orientation of Type CEA-3 CEAs In Lead Bank Figure 4.2-16e Amendment No. 25 (04112)
- 0 10 .....( " 20 -r ! 30 _j I I z i I 8 40 -i ...... i a::: I z I ...... 60 I -i I <'( i
- LI.J I u t-70 """'1 z LI.J u 80 a::: LI.J Cl.. 90 100 0 5 r:o 1.5 2.0 2.5 3.0 TIME FROM START OF CEA MOTION, sec
- FLORIDA CEA POSITION vs TIME FROM START OF ROD MOTION Figure POWER & LIGHT CO. St. Lucie Plant .. FAST SHUTDOWN 4.2-17
-u 0
- m, c,;;o, 90 0 .... -* r-;;Q ._.roG)o g-1 .... () OJ I'"T1 C') ........ z z ........ z C') p 0 ,, nC -<rn n* r-::0 rno ,!-'0 rrl ........ oz c--1 r-::0 z OJ)::> ::0 .--........ c-o X (.I') I'"Tll/') zC o::o N \J'1 0\ 0 $ .--..,., N LO I c: .., _, ro *
- H I< ll I 104(J. c c c x Minimum Pressure _ . .., For Box Peaking 6?0. 7Qr t.37. , 655. 0000. __ _ 990. oo6o. --rMaximum c c B c I A *u ; 8 0 I/, 7 I Pm PeakIng ; I 1!?52. ! : ; ,106; LOL I I 3 I aCL 0 r I J.. '-+ * * / /.). I n . I i * ,/ . *--,-s----,,\--1 I 683. 764. I 663. 670.1 680.,' 'I 685.1 4 1045. 1085. 1000. 1000. 1018_. 1020. r-C---1----C----B A 8---A-----, B A BATCH 1 2 66o. 752. I 663. 674. 683. 636. 6so. 69o. 1015. 1075. ICCJ. I 10i0. 1020. 1025. I . 1035. c 8---A----------.Tf ___ -A----8* 707. 657. 670. 683. 686. 624*1 1 6?7. 1055. 995. 1000. 1020. 1030. 1058. . 1 10:i0. 5 6 c _A _____ 8-----A-----_8 _______ A ___ ... ---,-g*------rA*--. 737. 666. 680. 636. 694. 695. 701. 700. 7 1090. 995. 1018 1025. 1033. 1045. 1050. 1050. 8 I 655. -----------------****-*-----*-*---------*-*-* --------** .. ----,-----** ... -----1020. c B I A B I A I B J/*, ! 8 I c 768. 674. I 680 690. 693. 701. I 702.1 705. I 9 1080. 1010. 1020 1035.
- 10-'10. 1050. I 1053. 1C58. _ 10 I 705 * --------------------------------------------** *. -* -i* -------., 1()£10: B A B A B I A 8 !i I ---655. 6:70. :rQ. zr:J-i 11 990. . hlOJ. 1020 1035. lU.*10. __ lC'JLJ. L .. 1X'. I 1L:>J:j ____ B _________ C D E-----*.F .... -G . J . L-A
- _____, "
- m C ;:o-n r-r-2. gpo 0 .... -* r-:::0 (\) ..... (;)0 .... () p ,., z 0 0 ...., ('") -<.., ('") c: r-,., ,., r-,!-' ::::0 ,o .00 c ...... ...... z ,--t ...... ,., o:J::::o :;;oZ ...,..):> c ,-$-o x::::o ,.,,., zl.l'l ol./'l zc -::::0 "' \J1 o-0 s < :::.. ,., +;:!. -n . -* N l.O I C ....... -... ......... ("!)
- BATCH c c c H K c 804. 1? ... J.:Jf ). c C, 837. 1405. 0 u
- 1 X 1 Minimum 802 . For Box Peakt ng 1375. 848. ' I I 2 ,.-------t---1 I ----,-*-A B I i\ 853. 887. 873. I 3 15£0 *c45 0
- l,.,. * ,-s--------,\ *----'";j--1430. 0000. -.i-FQctor . C C B 0000. 411-!-Maxi rl)U m re 82?. 923. 360. Pm Peal<mg 14z:;. 1520. 1535. Factor c ,-c--1 8 A 822. 93tl. 878. 870. 890. 875. 892. I 4 1425. 154.0. 1550. 1545. 1560. 1 1545. 1560. c A--8-,-A-js----,-f-. -1 802. 23. 87B. 873. 892. 873. ,, 892. I 873. i 5 1375. 20. 1550. 1550. 1560. 1543. l560. 1545. 1-c--B -lA 1B ___ IA _____ 8_ 848. 860. 1 87rl. 892. 875. gqo. I 870. 887. 1 6 1430. 1535. I .. 1550. 1555. I 15L:O. I l c A 7 BM _1510_. _15}?_:_ ___ ___ i 1375* C 8 I A B A B. A 0 950 887 8-1 lj 8°2 0.70 q):!? ot;.'l 880 I 9 C * . c:; ;[*" f.. .. :. 1c;
- 1555. 1560. 1..-4.t. 15o0.
- 1?*-tO. 1 '"5.J0. .. .. 35. g*:q -*-*-* *----------------*-*--,.**---*-*: . -*----,---. **------1405. B . I A B A J B A . B i ,*., . _ 1 J n 8 10 A B C D E F G J l
- * * *o 0 . r-A' (1)--,..... G)CJ ::2:r:}> 0-1 :J ...... () p ro 1'"11 C) 1-1 z z ....... .., Zc: C>rn o* .., ::::0 no -<0 n.,_. r-z 1'"11--j NI'Tl -:::v H K D lD l 695. I '748. I r-:=-D ---r.=-D ---r-:::o---'---rs ___.___, x I Minimum Pr?ssure 705. 757. 798. j 832. 818. I 2 0000 .,.. __ For Box Peakmg 1095. 1125. 1145. 1480. 1145. 0000: ... 0-, B co -B T01,0 8_-ror P 1n Peak 1no 729. 77t. i:>L2. '".10. -:u. -50. I 3 Factor " 1130. 1090. 14)0. 1 1525. ro=-o B 810. B 800. B c 960. I 4 I no-l FQ I r,'10 ' , , "0 , 1 I -D B ::a-: \'::7:-li <:0: : 5 Io4§: I I 1460. _ I4oo. 1405. , , 1480. 1 l:JIO. o _s ___ s--------8-----c -----c-------,e;-----s-BATCH 1 zZ X -u 1'"11 :::::0 z rn OV> z V> -c: N :::::0 Vlm C)'\ 0 $ I ! I 757. 822.
- 8oo. 79o. 98?. . §57. 1 6 1125. 1450. 1430. I 1405. 1440. 1515. 156). ! lJ05. I o rror------1 798. 830. 79o. 825. 9-t5. fvv. 9C8. 1145. 1465. ll20.. 1465. 1515. 1515. 1545. 1555. s---c ----s---------c---------c--------c---,-s----c-"" I 832. 948. 840 937. I 990. C:SG. 863. S87. I 9 10 I 748 I ____ __ __ ____ -_!580. 1095: I -ll 8 A B C. D E F G J L r-* \) ' I
- m ., C r-r* {?<> 0 .... -* r-:;:v ....... _ *v r.. CJ .--o \II)> -:r g .... -n p m z c 0 ., ("') -<"'T1 CJC ,m mr-N;::o -0 m o o ..... c:z --t r-rn t-t;::o coz ::::0)> ........ c: :s:-o ;::o X m 1 rn t.n Zt.n Oc: Z;::o
- m N \..11 0 ;? ;S.. ...... .,; --* lO N C I -, ...... ,...., _.., "* 0 _1 *
- H K ro----*---ro-; 810. I I 83 J. I 1 Batch j 1335. 1 1370 . roi[)jD-----ls ___ ro__j_---x i Minimum 1 I_ 9?7. I 9!:.5. I 933. 12 0000. _, _For Box Peal<mg 1 1415. 11465. 114*: J. ! ; :.450. 0000. Pressure D jD ______ B ____ FF-------r(--, d:l Pin Peaking ; I 1m. ! 1 3 Facwr 14 L. l ..... ) . , L !J. _ . : * , . , . J ... ../. 1 0------0---.. ----:* B -**-* -(f --*-----D I D. ' .. -----; 845. 917. 963. 955. 952. 970. 1 '078. 14 1445. 144(1,, 1808, 1795, 1460, 1815, I i975, ro---0 -9o7 ___ ::*o-.l 11 I '5. ) . J . ,o . Lv1U * .. .. I J, I 5 ,1415. 1435. 180[1. 1930. 1790. 1808. t935. l955 .. -o s ____ s ____ s---,c---,-c:-----rc*----,j 1 885. 963. 952. ilC53. 11073. llOS3. : 968. '6 1465 1800 179r 1"'05 : ,r-:>0 ,r--'OQ 1 "815 I * * ;I . I () . i l. -} .J * ' l ..,, ') J . : l ') .. . I *.
- __J o-------B-------o----------5 -------, -c--------c -----,-c-------1 c--j -'I 927. 963. 94f:. 963. lC73. ]073. I !075. ; i 7 14n0 1808 l4trl F(' I ; '*"t;n ; 8 I I .,_.__ c* . _.:_ -s __ 'c :_ c c __ i
- __ I Cl. . i fl ?*_: t'::-1 illU, 1 1 975. 11 19 1uOO. l97J. lu,_. L_,.J. 1 L:.-0. 1 it..-. 1830. ",\J/. 1 10 [D ____ s _____ c -,. -s*-* c _ ---:c _ --is-j 933. 968. l0t3. 96§. !pi3. !0{2* I Jll __ .. __ 1955. )?1J:__ 1 J30. __ __ A B C D E F G J L
- ""0 g
- m ;;o'"TI Cr-r-:!. g 90 0 .... -* r-;Q o-:J -1 .... () Cx::J rrt C) ....... z p z "'TI ....... c: Zrrt C) r-o:::::O -r"10 ("")0 -< ....... nz r--f rrtf'T"' w;o .. z zit! 0-o x:::::o r.-1 rrt z V> OV> z c: .. ;o "'f'T"' \Jl 0'> 0 s "' I ....... -.J ...,.., -r; f.(.} c (i; *
- H K E -l I I 682. I 727. I 10:1o. 1 Ilo5. t BATCH I . . f,;lE E --rc--IE--lil X 1 Mm 1m u 111 Pressure For 695 76.7 .. :7 ., r:r" L ... , oz 2 LBox Peakmg
- 1 ,._. 1 .. '
- 0000. Factor _I 1080. __ __ :.tlO. oooo. E ;z:. I D I c o, ! :; , ;.1 3 E 8 E 10 Faclcr 1 ... 110. l.LJ. U, I _._)*.--* .. 1 ., .... i ... 5. -* .. -* .... _ .. ____ I ____ ****----------... --.. ***---* ---..... ----.-... 68t. 1040. 730. 1110. A E c c IE 'c jD 780 1 o-8 1022 I , n--I . 1 1 . I .. , ,. l*.JlJ.
- 1100 18""0 1°5r ;'?!: '*,FO . *) . -) . l )_ ... :. J. :)/). : *-: J * ---***----*-E 717. 1110. 4 *-*o o_1_2. 18---1110 lr:;,""O I lr--I 1"'"" I '--o E E 695. 777 1080. 1100 5 . )J. . 4 . I ..J j . . OJ). I u. I ; t)) * --c _ .. ______ --o--r-e -----To-------,-o-*--*-r-o*-*---E D 750. 887 1115. 1375 ------*----E c 780. 1025 1130. 1860 '----.. -----------c D , f1{13 J ' .. J\...
- I,_. 10 ...... }/lC'-'!/) E c 795. 1022 1115. 1880 -* *--------------B c 1025. 980. 1032. 972. 935. 397. I 6 1o(,o 19-o 1 ,5_ ---D -'* llJl,. I /L.1 'l;oj.! ;co'!. 'U u 7 mo. 1 1530. mo. 1 I1FJ. 1 I -*o_ \q.TD iK ' 9 looO. . lJ ,\.J. *l 1 1-. :._.. I .1 .J ........ 1 -.. :LL. 1 +------.......... ----***-----*-----.......... ---*---**** ----........... --_____ ____J . 0 Q40.J I 0 397. 2.111 D m. 'B 111 1465 .. ... __ I I 0 r. L F G J L
- -o
- m., .... -* r-;;>o o--..... G)O ::2:z:)> -.. n p fTI z 0 0 , ("') -<., nc r-fT1 fTir-.. w ::::0 ITIO .00 c ...... ...... 2 r--i ...... fT1 OJ ::;:o ::::02 t-t)> C:r-$-o x::;:o I'TlfTl zV> oV> zc ::;:o NfTl VI "' 0 i ..(:::l. .., N (.Q I c ..... ' ...... CD .., *
- H K E E I /Batch 813. 868. 1390. 1440. rc--'EI 2 Minimum Pressure 817. 883. 920. I 1118. 933. For Box Peaking "1410. 1460. 1485. 1 2230. l4LD. :1-_ E E j"D *c . -nf--fc _____ _ {v;aXtr0U m *; 843 9r?. 1 10?8 ! 1 ("::' ! i 1::.---l 3 For Pin Peaking I. . d.J. I _] . I *. ' *. * .t *.*-'* 14?.0 1425 1° '5
- 2"t:J ' 1 "*rcr-* 2?'
- Factor E IE ' . ,:; . c_: 1133. 1 947 .. 1137. , 4 2275. 2270. ' 1450. li f..275. ---' ' jl) 1062. Till08. °105-_3. 1 5 18qr znl5 . ). u. . L-). 1 co). 1 0000. 0000. 900. I 908. 1390 ... 1425. E c 817. 903. 1133. 1410. 1425. 2275. 1 o-----__ t ___ Ii _ ni 8so. 1 1042. 1 1J40. 1uo8. 1140. no). 6 1460. 1850. 2270. 2015. 2£85. 2025. 19)0. l8u;. IE0_0* ---cl_l_3 __ 7_ --i (--9-4--7-cl-13_3_ ' ,_____ 'i\ . . I . . ll f.J. I \JC:. ll-h). I 1 :_,I
- I 7 8 I 813 ____ __ ___ 1 _ ___ ?.z-,-\J_. 1390: C D C D Dr lc"' .. lD,n"' 10 It 868. _i2F:__ Hit _I 9 E . ? c 0 c ' D ' c
- I 0 00 151 -1 I 1140. 10.90 .. _n;o. 1121. 1. I "9e._. Ju 14_99* ___ __ .---o--re E A B C D E F G J L 155.597 REF [3952.16]--,------\ll§ll 157.24 REF (3993.9) 56.718 REF (3980.61) 134.06 (3472.2) ACTIVE FUEL LENGTH (BATCH K,L,M) (136.70) BATCH P.R) GUIDE TUBE WEAR SLEEVE UPPER TIE PLATE ASSEMBLY SPACER ASSEMBLY (9 PLACES) FUEL RODS (176 PLACES) FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 AREVA FUEL ASSEMBLY FIGURE 4.2-18 Amendment No. 27 (04/15) r 0 .-cx:i l r l r ::: 0 ('(") 0 cx:i l 0 UJ > b co a:: UJ u ct 1./'l UJ > a.. FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 AREVA FUEL ASSEMBLY FIGURE 4.2-19 Amendment No. 27 (04/15) 5980 (154.43) 5.98REFUO, (154.43) 134.70 REF (3472.2) 145.70 REF (3708.10) 124.70 REF (2803.1) 6.34 REF UO, (183.3) 304 REF (83.1) j 0 PLENUM SPRING NATURAL PELLET UO,PELLET NATURAL PELLET ROD SERIAL NUMBER G) For Batch X, these are 6 in. 2.6 w/o U-235. FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 TYPICAL BATCH S, T, U AND X AREVA FUEL ROD FIGURE 4.2-20 Amendment No. 27 (04/15)
(157.116) [3990.73] (155.598) [3952.19] (156.711) [3980.46] (1.59MIN) [40.4] (136.70) ACTIVE FUEL LENGTH [3472.2] GUIDE TUBE WEAR SLEEVE UPPER TIE PLATE ASSEMBLY FUEL ASSEMBLY SERIAL NUMBER CAGE ASSEMBLY FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 AREVA FUEL ASSEMBLY STARTING WITH CYCLE 20 FIGURE 4.2-21 Amendment No. 27 (04/15)
FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 AREVA FUEL ASSEMBLY STARTING WITH CYCLE 17 FIGURE 4.2-22 Amendment No. 27 (04/15) 145.77 [3702] (5.98) [151.9) 136.70 [3472.2) [.387] [9.83] 5.92 [149.9] CLOSED PLENUM 6.00 [152.4) (124.70) [3167.4) r 6.00 [152.4) (2.786) [70.76) BLANKET PELLET CLADDING UO,PELLET / CLADDING I ROD IDENTIFICATION / NUMBER ON BOTIOM END / BLANKETPELLET A FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 TYPICAL AREVA FUEL ROD STARTING WITH CYCLE 20 FIGURE 4.2-23 Amendment No. 27 (04/15) 145.77 [3702] (5.98} [151.9] 136.70 [3472.2] [.387] [9.83] 5.92 [149.9) CLOSED PLENUM 6.00 [152.4) (124-10) [3167.4] 6.00 [152.4) (2.786} [70.76] CLADDING A(10:1} / CLADDING I ROD IDENTIFICATION / NUMBER ON BOTTOM END A FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 TYPICAL AREVA FUEL ROD STARTING WITH CYCLE 22 FIGURE 4.2-24 Amendment No. 27 (04/15)
°°°
e 237.2 = P d T d P 0.1062-f °
=f T d d P d d+m f T d dp P d T dP d T d m
()Ip()Ip()Ii()Ip==F F F A z HP r
=F e
()Ip F N q()N q F()Ip
()F N q
()F z()I p()P fdn()p fdn I P()I pP and P fdn fdl()I p
()P fdl
()P fdn p fdn I vs P()p I
°
°
°
20 21 21
27
°
°°
- * * *
- No. Shims/ Batch Assemblies Assembly A B c C* C+ 69 0 80 12 40 0 12 12(Low Cone) .16 12(High Cone) 8 c 10 c A Shimmed Fuel Assembly c c c+ C+ B B v C* B A B A c c C* B A B A B D c c 1 c c C+ C+ B 2 C* B A B A 3 B A B A B 4 A B A B A 5 B A B A B 6 A B A B A 7 B A B A B 9 A B A B A 11 E F G J L POISON ROD .--, I I FUEL ROD L_.J D CEA GUIDE TUBE Am. 3-7/85 FLORIDA POWER & LIGHT CO. St. lucie Plant Unit 1 Cycle 1 BURNABLE POISON ROD DISTRIBUTION Note: See Section 4.3.5, Table 4.3.5-1 & Figure 4.3.5-2. Figure 4.3-l I
- ""0
- m -n Cr-;;Qr-* tACIUK :!. 9'> 0 --* r-;;Q ..... ., ........... ENRICHMENT TYPE BOX PEAKING ENTHALPY RI )E FACTOR -aG>e -::r:....-g .... -n p " Q) :::J OJ Q) CD '"""' u:::l )> -* < :::J CD :::J N'"""' __ \1'11:>> u:::l ......, CD o:S:<J -so r-;;:+.'"""' -* CD _ ...... CD t.n -c ... -o zn=E ooCD '""""""' :::J ;;;* 0 ...... :::J '"""' 0: c: ...... c:r :::J o. oo :+PIN PEAKING MAXIMA BOX PEAKING FACTOR ENTHALPY RISE FACTO PIN PEAKING FACTOR '* 1 w I .b. -nl =::: . ca* 00 \,/.) c \,J1 G_--I ..., N ro FACTOR 1. 20 1. 27 1.30 c 0.58 0,95 0.98 c 0.80 1. 09 1. 12 C+ 0.95 c 1. 24 B o. 59 1 24 0.99 C+ 1. 0] 1.09 c l. 20 ) 0.78 1. 23 1. 07 B 1. 09 0.95 1.06 1.08 A B
- c 0.68 1.06 1. 09 c c. 0.68 1. 05 1.06 1. 20 1 09 1. 23 c. B+ 1. 01 0.99 1.17 1.10 1. 20 1. 11 B A 0.95 1. 02 1. 07 1. 09 1. 09 1. 13 A B 1. 01 1. 07 1. 08 1. 16 1. 11 1. 18 B A 1. 04 1. 07 1. 13 J. 14 1. 15 1. 18 A B 1. 03 1. 10 1.10 1. 17 1. 14 1. 20 c D L------.1.----------_.....-------**----*-----------------*
- H K c c 0.59 0.78 1 0.99 1. 07 1. 01 1. 09 c c C+ C+ B 0. 58 0.80 0.95 1. 09 0.95 2 0.95 1. 09 1. 24 1. 20 1. 06 0.98 1. 12 1. 24 1. 23 1. 08 c. B A B A 1. 01 0.95 1. 01 1. 04 1. 03 3 1. 17 1.07 1.08 1. 13 I. 10 1. 20 1.09 1.11 1. 15 t 14 B A B A B 0.99 1. 02 1. 07 1. 07 1.10 4 1. 10 1. 09 1. 16 1. 14 1.17 1. 11 1. 16 1. 18 1. 18 1. 20 A B+ A B A 1. 03 1. 09 1. 09 1. 13 1. I 1 1. 10 1. 17 1. 17 1. 21 1.19 5 1. 14 1. 20 1. 20 1. 23 1. 22 B A B A B 1. 09 1.10 1. 15 1. 14 1.17 6 1. 17 1. 17 1. 22 1. 21 1. 24 1. 19 1. 21 1. 25 1. 25 1. 26 A B A B A 1. 09 1. 15 1. 15 1. 19 I. 17 1. 17 1.22 1. 22 1. 26 1. 24 7 1. 20 l. 25 1. 26 1. 28 1. 28 B A B A B 1. 13 1. 14 1.19 1. 18 1. 20 9 1. 21 1. 21 1. 26 1. 25 1. 27 1. 23 1. 25 1. 28 l. 29 1. 30 A B A B A 1.11 1. 17 1.17 1. 20 1.19 1. 19 1. 24 1. 24 l. 27 1. 26 ll 1. 22 1. 26 1.28 1.30 1. 30 L-E F G J l ----------
- -o
- m., Cr-;:;Qr-po 0 .... -* r-;:;Q (!) .............. '""' G)O ::2::r:)> g-. -n 0 . -o 00 fl.) (1) :::J <e. m ...., ::J )> ::J < ...... CD ::J N...., t.o Vlw 0@0 -CD ::;::s_o (1) ...., .. CD ....... men -o ..o-o -o c;:....,...., -,CDc -* -* c en 3 -...., X O:l (I) s::: ::J -0 0 ::J :::J ..e::."'TT w c.e* I C w...., (1) . . \.I.) I """' ...... 00 VI
- ENRICHMENT TYPE MAXIMA BOX PEAKIN ENTHALPY R PIN PEAKIN BOX PEAKING FACTOR ENTHALPY RISE FACTO PIN PEAKING FACTOR 8 10 G. --. G FACTOR [SE FACTOR 3 FACTOR* l. 22 R 1.29 l. 32
- co. 57 0.94 0.96 ----c 0.78 1. 07 1.10 c6.94 c 1. 22 o. 58 1. 23 0. 96 C+ 0.98 1. 07 c 1. 18 0. 76 1. 21 1. 04 8o. 93 1.06 1. 05 1. 07 A B
- c 0.67 1. 04 1. 07 c c .. 0.67 1.04 1. 04 1. 18 1. 07 1. 22 c.o. 99 B 0. 98 1. 16 1. 10 1. 19 1. 12 -----r----*---B A 0.94 1. 02 1. 07 1.10 1. 09 1. 13 A 1. 00 B 1. 08 l. 08 1. 17 1. 11 1. 19 -B A 1. 04 1. 08 1. 13 1. 16 1. 15 1.19 A 1.03 81.11 1.10 1. 19 1. 14 1. 21 -c D * -H K c 0. 58 c 0. 76 0.96 1. 04 l 0.98 1. 06 c c C+ C+ B 0. 57 0. 78 0.94 1. 07 0.93 0.94 1. 07 1. 22 1. 18 I. 05 2 0. 96 1. 10 1. 23 l. 21 1.07 c. B A B A 0. 99 0. 94 1. 00 1. 04 1.03 I. 16 1. 07 1. 08 1. 13 I. 10 3 1. 19 1. 09 1. 11 1. 15 I. 14 -B A B A B 0.98 1. 02 1. 08 1. 08 I. 11 1.10 1. 10 1. 17 1. 15 I. 19 4 1. 12 1. 13 1. 19 1. 19 I. 21 A1.04 B 1. 10 Al. 11 B 1. 14 AI. 13 1.11 1. 19 1. 18 1. 23 I. 21 5 1. 15 1. 21 1. 22 1. 25 I. 24 -----* *-*-B A B A B 1.10 1. 11 1. 16 1. 16 I. 18 1. 19 1. 19 1. 25 1. 24 I. 26 6 1. 21 1. 23 1. 27 l. 27 I. 28 A 1. 11 B 1 1 AL 17 B 1. 20 A .. 6 I. 19 1. 18 1. 25 1. 24 1. 28 I. 26 7 1. 22 1. 27 1. 28 1. 30 1.30 B A B A B 1. 14 1. 15 1. 20 1. 20 I. 22 1. 23 1. 24 1. 28 1. 27 I. 29 9 1. 25 1. 27 1. 30 1. 31 I. 32 A 1. 13 B L 18 19 B 1. 22 AI. 21 1. 21 1. 26 1. 26 1. 29 I. 28 11 I. 24 1. 28 1. 30 I. 32 I. 32 E F G J l *--------* --------
- * * * * ""0 ENRICHMENT TYPE H . K X
- m., -BOX PEAKING FACTOR c c Cr-;;or-2. po 0 0.00 ...... ENTHALPY RISE o. 57 0.72 1 --* r-;;o o.oo ..... PIN PEAKING FACTOR 0. 91 0.99 .... "'t!G)O o. 92 1. 00 -:r:l> MAXIMA g--t .... () BOX PEAKING FACTOR 1.17 c c C+ C+ B 2 p 0.56 0.76 0.95 1.11 1. 07 ENTHALPY RISE FACTOR 1. 26
- 0.90 1. 04 1. 18 1. 26 1. 17 PIN PEAKING FACTOR l. 30 0.92 1. 05 1. 22 1.30 1. 21 c c. B A B A 0.65 1. 01 1. 05 1. 00 1. 15 1. 05 3 1. 01 1. 21 1. 16 1. 08 1. 21 1. 09 ""0 1 02 l 24 1 20 l 09 1 25 1. 11 OJ c c. B A B A B fT1 :J :J w 0.65 1. 05 1. 12 1. 04 1. 16 1.06 1. 17 4 c. ...., 1. 01 1. 23 1. 19 1. 09 1. 21 1. 09 I. 21 I 0 )> 1 .. 02 1.27 1. 23 1.11 1. 25 1. 11 1. 25 -< c c. B A B A B A '< V'IDJ nou:l 0.56 1. 01 1.12 1. 05 1. 17 1.06 1. 17 I. 05 5 (i)C:::HD 0.90 1. 21 1. 19 1. 10 1. 21 1. 09 1. 21 I. 09 ... 3=;:n JL92 1 24 1 23 1. 12 1. 25 1.11 1. 25 1.11 ...0 ...., c B A B A B A B C: CD _, ........ 0.76 1. 05 1. 04 1. 17 1.06 1. 16 1. 04 1. 15 6 -t.n ""0 c;:-o 1. 04 1. 16 1. 09 1. 21 1.10 1. 20 1. 08 1. 19 -,n:E 1. 05 1. 20 1.11 1. 25 1. 12 1. 24 1. 10 1. 23 -*oCD c:....,...., C+ A B A 8 A B A 3CD0 0.95 1. 00 1. 16 1.08 1. 16 1. 04 1. 14 1. 03 7 X "' c 1. 18 1. 08 1. 21 1. 09 1. 20 1. 08 1. 18 1. 07 CD -:J ...., 0.57 1. 22 1. 09 1. 25 1.11 1:24 1. 10 1. 22 1. 08 0 c:r 8 :J c: 0. 91 (+ B A B A B A B -0.92 1. 13 9 0 1.11 1. 15 1.06 1. 17 1. 04 1. 14 1. 02 :J c 1. 26 1. 21 1. 09 1. 21 1. 08 1. 18 1. 06 1. 16 10 0.72 1.30 l. 25 1.11 1. 25 1.10 1. 22 1. 08 1. 20 0.99 B A B A B A B A G_ --1. 00 1. 07 1. 05 1. 17 1. 05 1. 15 1. 03 1. 13 1. 02 11 w 1. 17 1. 09 1. 21 1. 09 1. 19 1.07 1. 16 1. 05 I ...a 1. 24 .r:::.. ::!! ....... 1. 21 1.11 1.11 1. 23 1. 08 1. 20 I. 07 . (Q <>> w c \J1 A B c D E F G I .... J L .r:::.. (0 ----
- * * * -'"'0 ENRICHMENT TYPE
- m X BOX PEAKING FACTOR H K Cr-:;Q;!! 0.00 c c 2. po 0 0.00 ENTHALPY RISE o. 61 0.79 1 .... -* r-:;Q m--0.00 PIN PEAKING FACTOR 1. 01 1. 07 1-' G)O ::!!::r:)> MAXIMA 1. 03 1. 09 g-i -n BOX PEAKING FACTOR 1.32 c c C+ C+ 8 p 0. 54 0.80 0.98 1. 08 0.90 2 ENTHALPY RISE FACTOR 1.40 0.91 1. 11 1. 26 1. 19 0.97 PIN PEAKING FACTOR 1.43
- o. 93 1. 14 1. 27 l. 22 1. 01 c c. B A B A N 0.47 0.88 o. 95 1.03 0.98 0.72 3 V1 0.75 1. 08 1. 10 I. 11 1. 12 0.79 B" 0.76 1. 11 1.11 1. 14 1. 14 0.79 ::J c c. B A B* A 8 0. 47 0.53 0.84 1. 03 1. 13 1. 09 1. 05 4 CD I-I::J> 0.75 0.66 1. 05 1. 12 1. 25 1. 19 1. 22 <.0 V'l -*-< o. 76 0.80 1. 06 1. 16 1. 27 1. 22 1. 24 ::J ::!.o;;1 c c. 8 A 8 A B A ::J"""'<.C 0.54 0. 88 0.84 0. 99 1. 16 1. 21 1. 25 1. 22 5 <.C .. co co o:;:on 0. 91 1. 08 1. 05 1. 10 1. 29 1. 30 1. 36 1. 31 -0 0.93 1.11 1. 06 1. 14 1. 31 1. 34 1. 38 1. 35 ,o"""' _.c.. co c B A B A B A B -CDG:1"'tJ 0.80 0. 95 1. 03 l. 16 1. 23 1. 30 1. 29 1. 32 6 ... QJ 0 z:J::E 1.11 1.10 1. 12 1. 29 1. 32 1. 40 1. 38 1. 39 o ="""co 1. 14 1. 11 1.16 l. 31 1. 36 1. 42 1. 42 1. 42 ""'"""' X-,o C+ A B A B A B A CDC:-* 0.98 1. 03 1. 13 1. 21 1. 30 1. 30 1. 30 1. 26 7 ::J V'l o=-c 1. 26 1.11 1. 25 1. 30 1. 40 1. 38 1. 40 1. 35 :J'< :::!. ,_.0'" 8 o. 61 1. 27 1. 14 I. 27 1. 34 1. 42 1.43 1. 42 1. 39 :JC: 1. 01 C+ B A B A B A B V'l=: coo 1. 03 1. 08 0.98 1. 09 1. 25 1. 29 1. 30 1. 18 1. 09 9 ::l:J c 1. 19 1. 12 1.19 1. 36 I. 38 1. 40 1. 28 1. 28 CD c. 10 o. 79 1. 22 1.14 1. 22 1. 38 1. 42 1. 42 1. 32 1. 30--F 1. 07 B A B A B A B A 1. 09 w G. --0 .. 90 0. 72 1. 05 1. 22 1. 32 I. 26 I. 09 I 0.63 11 I 0.97 0.79 1. 22 1.31 1. 39 1. 35 1. 28 o. 73 ...... ::!1 ........ J 01 0. 79 1 24 J 35 1 A? 1 39 1. 30 0 78 (Q eo \J.) c VI I .., A B c D E F G J L V1 (I) -----------*----
"'0
- m., Cr-::Qr-?i po 0 .... -* r-;:Q (I) -,_. ._. G)O g-. -n p m s;w lCs;:::J -* ;:;.w ::J "" ::J -< lC ('") ('1) ooOJ _.,lC r-... m m -*:::o mo(} .. 0.0 "" ,.,., o::J (1) ..Cru-o C:::so ="':E 0: .....,m "" ..., __ ., ceo 3 =in* "<-CD ::sO" ::JtnC oro=. ::J.,o (t::J 0.
- w I .&:::a. VJ I a. ., I "'-! -* ....... (Q co c 1.11 .,
- ENRICHMENT TYPE BOX PEAK ENTHALPY PIN PEAKI NG FACTOR FACTOR FACTOR MAXIMA BOX PEAKING FACTO ENTHALPY RISE FACTI PIN PEAKING FACTO OR t c c 1 ' 1.33 1.42 1.45 0.59 0.97 1. 00 o.n 1. 03 G. * **cos A co.sJ 0. 8? 0. 91 c 0.79 1. 09 1. 12 C+ 0. 96 1. 23 1. 25 C+ 1. 05 1. 16 1. 20 8 a. ea 0. 94 0. 93 B
- co.-46 0.74 0.75 c c. 0.52 0.74 0.65 0.75 0.80 C.O.C7 8 0.84 1.07 1. 05 1. 10 1. 07 8 0.94 A 1. 04 1. 10 1. 13 1.11 1. 17 A 8 1. 03 1. 14 1.11 1. 26 1. l4 1. 28 & A 0.97 1. 10 1. 12 1. 20 1. 14 1. 24 A 0. 71 B
- 1. 05 o.n 1. 24 0.78 1. 25 c D *
- H K c 0.59 co.n o. 97 1. 03 1 1.00 1. 05 c c C+ C+ 8 o. 53 0.79 o. 96 1.05 0.88 o. 89 1. 09 1. 23 1. 16 o. 94 2 o. 91 1. 12 1. 25 1. 20 o. 98 c. o. 87 B A & 0 .. 97 A o. 94 1. 03 o. 71 I. 07 1. 10 1. 11 1. 12 0.77 3 I. 10 1.11 1.U 1. 14 0.78 8 A 8 A 8 0.84 1. 04 1. 14 1. 10 1.05 I. 05 1. 13 1. 2!> 1. 20 1. 24 I. 07 1. 17 1. 23 1. 24 1. 25 4 A 1.00 8 1 .. 17 Al. 22 & 1. 26 A 1.24 I. 12 1. 31 1. 32 1.38 1.33 I. 16 1. 33 1. 36 I. 40 1.37 5 B I. 17 A B 1. 32 A 1. 31 6 1.33 1. 25 I. 31 1. 34 l. 42 1. 40 1. 41 6 I. 33 1. 38 1. 45 1. 45 1.44 A B 1. 32 A & 1.32 A 1.28 I. 22 1. 32 I. 32 1. 42 1. 41 1. 42 1.37 7 I. 36 1. 45 1. 45 1. 45 1. 42 B A . 8 A 8 I. 26 1. 31 1. 32 1. 19 1. 10 I. 38 1. 40 1. 42 1. 30 1.30 9 I. 40 1. 45 1. 45 1. 35 1.32 A 1. 24 B 1. 33 A 1. 2S & 1. 10 A 0.63 1. 33 1. 41 1. 37 1. 30 0.74 11 1. 37 1. 44 1. 42 1. 32 0.79 E F G J L --.. ... *-------...
- * " .;---ENRICHMENT TYPE
- m..., Cr-;::or-o. oo BOX PEAKING FACTOR 2. po 0 --* r-;::o .... -:r--g-. .... () 0 . Q'\ . ::::JS:w 0.;+-c 0 ...... )> ("")("")CD CDCDCD .. .. ("") FTt:::oo ..co-, c o.CD =m-e C"'W 0 -*=""CD c -c 3-.. 0 X "'Tl_, ::::J --c o'< 0: ::::J l-Ie ::::J ...... V" -* CDo -c::::J ........ CD 0. o. oo ENTHALPY RIS 0* 00 PIN PEAKING MAXIMA BOX PEAKING FACTOR ENTHALPY RISE FACTO PIN PEAKING FACTOR 8 l 10
- w I .b \,.).) I -.. :nl (Q 00 c VI G.--.., ro c 0.58 0. 91 0.92 c 0.72 0. 98 0. 98 A )R
- IC o. 53 0.87 0.88 c 0.76 1.06 1.06 IC+ 0. 97 1. 19 1. 22 C+ 1. 09 1. 21 1. 24 B 1. 00 1.06 J. 09 B *
- c c 0.53 o. 76 0.87 1.06 0.88 1.06 c c. B 0.45 0. 89 1. 05 0. 71 1. 12 1. 18 0.72 1.15 1. 22 IL I <.:. B A 0.45 o. 52 0.95 1. 05 0.71 0.68 1. 14 I. 15 0. 72 0.86 1.17 1. 17 c. B A IB 0. 89 0.95 1. 01 1. 25 1. 12 1. 14 1. 14 1. 34 1. 15 1. 17 1. 16 1. 38 B -lA f] lA 1. 05 1. 05 1. 25 1. 18 1. 18 1. 15 1. 34 1. 24 1. 22 1.17 1. 38 1. 26 A B A B 1. 02 1. 23 1. 17 1. 33 1. 10 J. 30 1. 23 1. 37 J. 12 1. 34 1. 25 J. 42 B A B A J. 08 1. 07 1. 29 1. 19 1. 19 1. 17 1. 36 J. 24 J. 23 1. 19 J. 40 1. 26 A B A B 0. 73 1. 1 1 1. 15 1. 31 0.87 1. 25 1. 22 I. 35 0.90 L29 1. 24 I. 40 c D E F 1-*----*-----------------------------------* -*--*-" H K c c 0.58 0.72 1 o. 91 0.98 0.92 0.98 C+ C+ B 0.97 1.09 1.00. 2 1. 19 1. 21 1.06 1. 22 1. 24 1.09 A B lA 1. 02 1. 08 0.73 1. 10 1. 19 0.87 3 1. 12 1. 23 0.90 B A 8 1.23 1. 07 1.11 1. 30 1. 17 1. 25 4 1. 34 1. 19 1. 29 lA !B lA 1. 17 1. 29 1. 15 1.23 1. 36 1. 22 5 1.25 1. 40 1. 24 B B 1. 33 1. 19 1. 31 1. 37 1. 24 1. 35 6 1. 42 1. 26 1. 40 A B A 1. 19 1. 28 1. 13 7 1. 24 1. 35 1. 21 1. 27 1. 40 1. 22 B A B I. 23 1. 05 1. 05 I 1. 35 1.17 1. 21 I 9 1. 40 1. 18 1. 24 A B A I. 13 1. 05 0.57 L 21 l. 21 o. 72 11 1.22 l. 24 0.78 ----G J L
- * * ., ENRICHMENT TYPE p' H K
- m PEAKING FACTOR c.-:::o;:!! c c ENTHALPY RISE FACTOR 0.66 0.87 1 --* r-:::0 PIN PEAKING FACTOR ...,.m--1. 09 1. 18 ..,G)O 1. 12 1. 21 -:r:l> MAXIMA g ..... -n BOX PEAKING FACTOR 1.23 c c C+ C+ 8 0 0.67 0.91 1. 06 1. 19 1. 03 2 . ENTHALPY RISE FACTOR 1.38 1. 10 1. 23 1. 34 I. 29 1. 12 PIN PEAKING FACTOR 1.42 1. 13 1. 26 1. 36 1. 32 1. 15 N roc* c. B A B A \.11 0.80 1. 17 1. 07 1. 03 1. 06 1. 02 3 l. 23 1. 34 1. 17 1. 16 1. 16 1. 10 ::::::J"" 1. 27 1. 37 1. 20 1. 19 1. 18 1. 13 3:--;s_::rtu A A B m::::J c c. B B w 0.80 l. 23 1. 13 1. 11 1. 09 0.96 0.89 4 ...... ::0..., 1. 23 1. 38 1. 22 1. 19 1. 17 1. 05 1. 04 -t.O n-*< 1. 27 1. 42 1. 24 1. 22 1. 19 1. 09 1. 05 0om _,::J..., c c. B A B A B A m s:u 0.67 1. 17 1. 13 1. 14 1. 14 1. 05 0. 89 0. 51 5 CO::::::Jn 1. 10 1. 34 1. 22 1. 21 1. 22 1. 12 1. 05 0.60 m-o 1 13 1 37 1 24 1 25 1. 24 1. 16 1.07 0.64 t.C c B A B A B A 8 ::J::::::J"" 0. 91 1. 07 1.11 1. 14 1.10 1. 08 0. 96 0.89 6 -toO 1. 23 1. 17 1. 19 1. 22 1. 18 I. 16 1. 05 1. 04 1. 26 1. 20 1. 22 1. 24 1. 21 1. 18 1.08 1.06 OQJ-, -:l.o C+ A B A B A B A C.-v;* 1. 06 1. 08 1. 09 1. 05 1. 08 1. 07 1. 07 1. 04 7 -m-m::::::J..., c 1. 34 1. 16 1. 17 1. 13 1. 16 1. 14 1. 16 1. 12 8 0.66 1.36 1. 19 1.19 1.1§_ 1. 18 1. 17 L 18 1. 15 o::::::J"S. 1.09 C+ B A B A B A B x::oo* 1 12 1. 19 1.06 0.96 0. 89 0. 96 1. 07 J. 09 1. 12 9 mO::J c 1. 29 1. 15 1. 05 1. 05 1.05 1. 16 1. 16 1. 19 ::::Ja. otll 10 0.87 1.32 1. 18 J. 09 1. 07 1.08 1. 18 1. 20 1. 22 ::::J J. 18 --r-:-*-------:----B A B A B A B A g-t -n 0 . a. 0 3:.....,. ..... -w-VI ::J :J ...... CDQ) 0:::0""'1 oro)> ""'1\.0 < ('I) -* .. 0 CD t:O:J"""' ('I) Q) -*o :J:,:j("") :J ...... o :J::i'm t.O -*-a o:Jo -u:J:E *-a CD :;:Q)., .. ('!) :::Lo -* I"Tllc,n ..C CD ...... c: :J :::!. -tO 0' =::::c: c:r-...... "" -* -*:::co C:o:J X CD :J 0 :J A . VJ I ..0 :!] ({) c .., t1) ENRICHMENT TYPE MAXIMA BOX PEAK ENTHALPY PIN PEAK BOX PEAKING FACTO ENTHALPY RISE FACT1 PIN PEAKING FACTO <t --[NG FACTOR RISE FACTOR NG FACTOR 1. 21 OR l. 37 , l. 41 ' c 8 0.66 1. 09 1. 11 ------c 0.89 10 1. 21 I. 24 C+ J. 04 c 0.65 1. 33 I. 34 1. 07 r------1. 09 C+ 1. 16 c 1. 26 0. 85 l. 30 1. 15 L 17 B 1. 00 1. 10 1. 13 A B
- c 0. 79 1. 21 1. 25 c c. 0.79 l. 21 1. 21 1. 37 1. 25 1. 41 c. B 1. 15 1. 12 l. 32 1. 22 1. 36 1. 25 ---------B A 1.06 1. 12 1. 18 1. 19 1. 20 1. 23 ------------A B 1. 08 1. 09 1. 15 1. 18 1. 19 1. 20 ---------B l. 05 A 0.97 1. 14 1.06 1. 17 1. 09 A B 1. 02 0.89 1. 09 1. 04 1. 13 1. 05 c D
- H K r co. 85 '-0.65 1. 07 1. 15 1 1. 09 1. 17 --c c C+ C+ B 0.66 0.89 1. 04 1. 16 1. 00 1. 09 1. 21 1. 33 1. 26 1.10 2 1. 1 1 1. 24 1. 34 1. 30 1. 13 c. 1. 15 B1.06 A 1. B 1. 05 A 1. 02 1. 32 1. 18 1. 15 L 14 1. 09 3 1. 36 1. 20 l. 19 1.17 1. 13 B A B A B 1.12 1. 12 1. 09 0.97 0.89 1. 22 1.19 1. 18 1.06 1. 04 4 1. 25 1. 23 1. 20 l. 09 1. 05 A B A B A 1. 14 1. 15 1.06 0.90 0. 51 1. 22 1. 23 1. 14 1. 07 0.60 5 1. 26 1. 25 1. 18 1. 08 0.64 -----------------B A 1. 12 B A B I. 15 I. 10 0.98 U.90 1. 23 1. 20 1. 18 1. 07 1. 07 6 1. 25 1. 23 1. 21 1. 1 1 1. 08 -------A B A B A 1. 06 1.10 1. 09 1.10 1.06 1. 14 1. 18 1. 16 J. 18 1. 14 7 1. 18 1. 21 1. 20 1. 20 1. 18 ---------------B 0.90 A 0. 98 E L 10 A 1. 12 B I. 15 1. 07 l. 07 1. 18 1. 19 1. 22 1. OE 1.11 1. 20 1. 23 1. 25 9 --------A 0. 51 B Al. 06 B 1. 15 A 0.90 1. 14 0.60 1. 07 J. 14 1. 22 1. 22 11 0.64 1. 08 I. 18 I. 25 I. 26 '--E F G J L
- . --"'tl
- m, c,:::o ...... =* 90 0 .... -* ....... :::a ..... mG)G :::2::r:)> g-1 -n p N \.11 0' o_ S::::J::!:? s-m .;;+:::::r:::J .....,mm Vt :;o-, -m )> n.o..< oom """:::J""" ro m .. (""')!.Q mom :::l:::J("J c.S"o 0-., -:JeD ("') -*-o '<:::Jo nte ::E --om J'Dm., m:::l.o ..0 -* c ttf\ ::r -*...J --* :::!.::rs_ t: -* 3 ::::oo O:::J x6} m :::J 0 :::J .a::::.. w I ....... 0 ::!'! (Q c .., I'D ENRICHMENT TYPE X 0.00 o. 00-4 o.oo MAXIMA BOX PEA ENTHAL P1N PEA BOX PEAKING FA ENTHALPY RISE F PIN PEAKING fAC l ct.--KING FACTOR Y RISE fACTOR KING FACTOR TOR 1. 26 \CTOR 1. 41 TOR l. 45 c 0.64 1.04 1.04 c 0.85 1. 16 1. 17 C+ 1. 05 c l. 28 0.63 1. 31 1.00 C+ 1.01 I. 20 c I. 33 0. 79 1.37 1. 09 1------1.09 B I. 14 I. 23 I. 27 A B
- c 0. 76 . 1. 17 1 18 c. 1. 16 1.37 1. 41 B 1. 17 1. 28 1.32 A 1. 07 1. 13 1. 15 B 1. 17 1.23 1.27 ----*-A 1. 05 1.11 1. 13 c
- H K c c 0.63 0.79 1 I. 00 1. 09 1. 01 1. 09 c c C+ C+ B 0.64 0 .. 85 1. 05 1. 20 1. 14 2 1.04 1. 16 1. 28 1. 33 1. 23 1.04 1. 17 1. 31 1. 37 1. 27 c c. B A B* A 0. 76 1. 16 1. 17 1. 07 1. 17 1. 05 1. 17 1.37 1. 28 1. 13 1. 23 1.11 3 1. 18 1. 41 1. 32 l. 15 1. 27 1. 13 c .. 8 A B A B 1. 21 1. 26 1. 13 1. 18 0. 96 0. 96 4 1. 41 1.33 1.19 1. 26 1. 07 1.11 1. 45 1.37 1. 21 1. 30 1. 09 1. 14 B A 8 A B A 1. 26 1. 16 1. 23 1. 02 0.93 0.50 1.33 t 21 1. 31 1.11 1. 08 0.64 5 1.37 1. 23 l. 35 l. 13 L 12 0.70 A B A B A B 1. 13 1.23 1. 06 1. 10 0.88 0.88 6 1. 19 1. 31 1. 14 1. 18 0.97 0.99 1. 21 1.35 1. 16 1. 22 0.98 1. 02 B A B A B A 1. 18 1. 02 1.10 0. 97 1. 03 0. 91 7 1.26 1.11 . 1. 18 1. 03 1. 08 0.96 l. 30 1. 13 1. 22 1. Oil 1.11 0.98 A B A B A B 0.96 0.93 0.88 l. 03 0.94 1. 05 1. 07 1. 08 0.97 1. 08 0.98 1. 08 9 L09 1. 12 0.98 1. 11 0.99 I. 12 -------B A B A B A 0. 96 0.50 0.88 0. 91 l. 05 0.95 1.11 0.64 0.99 0. 96 1. 08 0.98 I 1.14 0.70 1.02 0. 98 1. 12 1. 00 '-11 D E F G J l
- '"0
- m :!. Qo 0 ....... -* r-:::0 ._.mG)a ::2:r:)> g .... ..... () 0 . 1'\)()'"0 0Zz s-t)> ..,.Zl> ..... _< nG'>> Oo:JQ "'Om ,m-t . ... :r: () :;:,o Q)>;;;o _,.,m z-t-o zZm QAJ *"-to o:r:v; "TT;::o-t !:fiOo:J mtnC .. )>:::! ZzO OoZ )(AJ-mQZ ZO-t 0 o:J :r: Zl>m z,., ......,_ 0 z !"' ::!1 (;..) (Q I c ., ...... 11) ...... ENR [ CHMENT TYPE v' "A 0.00 .... 0. 00 '4 0. 00 -41 A BOX PEAK ENTHALPY PIN PEAKI AKING FACTO PY RISE AKING FACTO 8 1 ct NG FACTOR USE FACTOR FACTOR l. 23 OR l. 40 l. 42
- c 0.63 1.06 1. 08 -----co. 92 1. 27 1. 30 ------C+ 1.11 c 1. 40 0. 71 I. 42 1. 16 t--*-*-1. 19 C+ l. 22 c 1. 32 0.92 1. 36 1. 23 ----J. 26 B* '* 01 l. 09 1. 14 A B
- c 0.55 0.88 0.88 c ---:::--c. 0.55 o. 61 0.88 0.75 0.88 0. 91 c. B 1. 02 0.94 1. 23 1. 15 1. 26 l. 17 --B 1. 07 A 1. 12 1. 21 1. 21 1. 23 1. 24 ---------A B l. 12 1. 15 1. 21 1. 25 1. 24 1. 27 ------------B A 1. 02 0.98 l. 18 1. 08 l. 20 1. 1 1 r-*---A 0. 73 e v. 82 0.84 0.92 0.85 0.94 c D
- H K c c 0. 71 0. 92 1. 16 1. 23 1 1. 19 1. 26 c c C+ C+ B 0.63 0.92 1. 12 1. 22 1. 01 1.06 1. 27 1. 40 1. 32 1. 09 2 1. 08 1. 30 1. 42 1. 36 1. 14 c. B A B A 1. 02 1. 07 1. 12 1. 02 0.73 1. 23 1. 21 1. 21 1. 18 0.84 3 1. 26 1. 23 1. 24 1. 20 0.85 B A B A B 0.94 1. 12 1. 15 0.98 0.82 1. 15 1. 21 1. 25 1. 08 o. 92 4 1. 17 L 24 1. 27 1. 11 0. 94 A B A B A 1. 80 I. 2 I 1. 16 0.98 0.56 1. 19 1. 31 1. 25 1. 18 0.67 5 1. 23 1. 33 1. 29 1. 20 0.72 -* ----B 1. 21 A 1. 23 B A 1. 10 B* I. 01 l. 23 1. 31 1. 31 1. 33 1. 20 1. 18 6 1. 33 1. 35 1. 35 I. 24 1. 19 -------A B A B A 1. 16 1. 23 1. 22 1. 19 1. 13 1. 25 1. 33 1. 30 1. 29 1. 20 7 1. 29 1. 35 1. 34 1. 31 1. 24 ----1--* B A B A B 0.98 1. 10 l. 19 1.10 1. 02 1. 18 1. 20 l. 29 1. 19 1. 18 9 I. 20 1. 24 1. 31 1. 23 1. 20 --A 0. 56 B 1. 01 A1. 13 B I. 02 Ao. 59 0.67 1. 18 1. 20 l. 18 0.89 11 0.72 1. 19 l. 24 1. 20 0. 74 --** E F G J L
- " *m X c ;::o-n r-o. 00 ... -* 0 90 0 r-ENT* --* r ;::o 0.00 .. ..... 1-PIN -oG)O 0.00 ... -::r:l> g-t MAXIMA .... () p BOX PEAKING N()-u ENTHALPY R IS PIN PEAKING ozz _,Zl> nQ;::o )> ;=:;om ... -1 () *O'::t:Q m-o;;o Ol>m ..... ;;o z-t-u zZm oQ;;o "Tl;;o-1 mtAC .. )>;:::! mzo 0oz c -;;o-coz ...... O'::r: C)>m 3:z:::o X:AQ m'-1_ z 0 0 z i--z :.:!:!
- tC 'f c: -"""' "" C'D * ---------------------------CHMENT TYPE PEAKING FACTOR ALPY RISE FACTO PEAKING FACTOR R FACTOR l. 25 E FACTOR l. 38 FACTOR l. 39 --I c c c c 0.69 811.12 IC 1. 15 c 0.89 10 I 1. 18 IB l. 22 -1. 63 .04
- 07 0. 91 1. 25 1. 28 ----+ 1. 09 1. 38 1. 39 ---+ 1. 18 1. 29 1. 33 -*---0. 98 1.06 1. 11 c 0.54 0.86 0. 87 c. 1. 0 l 1. 23 1. 26 B 1.06 1. 21 1. 23 ----A 1. 12 1. 20 1. 24 -----B 1. 01 1. 17 1. 19 ------A 0.72 0. 82 o. 82 ---* A B c c 0.63 1. 04 1. 07 c_ co. 54 c.1.o1 0.86 1. 23 0.87 1. 26 c .. B 0.60 o. 94 0.74 1. 16 0.90 1. 18 B A 0.94 I. 09 l. 16 I. 20 1. 18 I. 25 1-A B 1. 13 I. 22 1. 22 I. 33 1. 26 I. 35 -----B 1. 15 A I. 18 1. 26 I. 27 1. 28 I. 31 ---------A B 0.98 l. 00 1. 09 I. 20 1. 12 I. 22 --------B u.82 A 0.56 0.92 0.68 0.94 0. 73 D E
- H K c 0.69 c 0.89 1. 12 1. 18 l. 15 1. 22 c C+ IC+ B 0. 91 1. 09 1. 18 D.98 l. 25 1. 38 1. 29 1.06 1. 28 1. 39 1. 33 1. 11 B 1. 06 12 B 1. 01 AD. 72 1. 21 ]. 20 1. 17 D. 82 1. 23 1. 24 1. 19 o. 83 A B A B 1. 13 1. 16 0.98 o. 82 1.22 1. 26 1. 09 o. 92 l. 26 1. 28 1. 12 0.94 B A B A 1. 22 L 18 1. 00 0.56 1. 33 l. 27 1. 20 0.68 1. 35 1. 31 1. 22 0.73 ----A B A B 1. 25 1. 25 1. 12 1. 02 1. 34 1. 36 1. 22 1. 20 1. 38 1. 38 1. 27 1. 22 B I. 25 24 B I. 21 A 1. 15 1. 36 J. 33 1. 31 1. 23 1. 38 l. 37 1. 33 1. 27 A.-------1-::----B A B l. 12 l. 21 1. 12 1. 04 1. 22 1. 31 1. 22 1. 21 1. 26 1. 33 1. 26 1. 22 ----B 1. 02 A 1. 15 B l. 04 A0.60 1. 20 '* 23 1. 21 0.70 1. 22 l. 27 1. 22 0.75 ----F G J L *----------*--*--* ----*----1 2 3 4 5 I 6 7 9 j 11
- .,
- m po 0 .... -* r-;;:o '"""---::r:,p-g-c .... () p N()-o 0Zz ,.. .... > -zl> --< !:.zm b )> .. m..-o Zm:;;o ozm oGl-o ()00 ... )>.;: mz_ c,., .... -o-!:oo z m'Jm z ;;:o 0 m z G) 0 z .:a. .., ;.., u:;* I C ..... ...., W CD ENRICHMENT TYPE ....._____. MAXIMA BOX PEAKI ENTHAlPY PIN PEAKI BOX PEAKING FACTO ENTHALPY RISE FAC PIN PEAKING FACTO 8 lO <t FACTOR USE FACTOR JG FACTOR R 1.31 *oR 1.36 c 0. 61 1. 00 1. 01 c 0.87 1. 19 1.20 C+ 1. 09 c 1. 31 0.66 1. 35 1.03 C+ 1. 04 1. 20 c 1. 32 0.82 1.36 1.10 B 1. 10 1.11 1. 15 1. 18 A B
- c 0. 52 o. 82 0.83 c c. 0. 52 0.60 0. 82 0.77 0. 83 0.97 c B 1. 02 1.06 1. 27 1. 25 1. 30 1. 29 B A 1. 17 1. 14 1. 30 1. 21 1. 34 1. 23 A B 1.11 1. 25 1. 1B 1. 33 1.20 1. 37 B A 1. 12 0. 97 1. 24 1.10 1. 2B 1.11 A 0. 74 B 0. 89 0.93 0.97 0.97 o. 99 c D
- H K c c 0.66 0.82 1. 03 1. 01 1 1. 04 1.11 c c IC+ C+ B 0. 61 0.87 1. C9 1. 20 1.10 2 1.00 1.19 1. 31 1.32 1. 15 1. 01 1. 20 1. 35 1.36 1. 18 c 1. 01 B 1. 17 A 1. 11 B 1. 12 A 0. 74 1. 27 1. 29 1. 18 1. 24 o. 93 l. 30 1. 34 1.20 1. 28 0.97 3 -B A c A B* 1.06 1. 14 1. 25 0.97 0.89 1. 25 1. 21 1.33 1.10 0. 97" 1. 29 1. 23 1. 37 1. 11 0.99 4 A B A B A 1.10 1. 3 J 1. 13 1. 03 0. 54 1. 22 1. 36 1.22 1. 20 0.70 5 1. 24 1. 40 1. 24 1. 23 0. 76 *------B A B A B 1. 31 1. 19 1. 27 1. 02 I. 01 1. 36 1. 24 1. 35 1. 13 1. 14 1. 40 1. 26 1. 39 1.15 1. 17 6 ---A B A B A 1. 13 1. 27 1. 12 1. J 7 1. 01 1. 2 J 1. 35 1. 20 1. 25 1.06 1 1. 24 1. 39 1.22 1. 29 1. 07 B A 1-----B A B 1. 03 1. 02 1. 17 0.98 0. 99 1. 20 1. 13 1. 25 1. 09 1. 12 9 1. 23 1. 15 1. 29 1.10 1. 15 A 0. 54 B I. 01 Al. 01 B 0. 99 Ao. 54 0.70 L 14 1. 06 1. 12 0.68 ll 0. 76 1. 17 I. 07 1.15 0. 74 -----------------E F G J l
- * * "'V
- m ::J c !""'" ::;n900 .... ;;* !""'" ;;11:1 ,56 -:J:l> g .... -n p co,... mX t.O _.o.. ::.. -(1 :J""'C<l -*00 :J t.O ('1) I'D o"'"' _(./') ....... C:::T -Q) ('t')"'O ('1) A .., ,(i" I 1--' '!J .t,l. z ...... 1-0::: LLJ 500 a.. O.tro ' 0. 100 0.00 50.00 TOP OF CORE 100.00 150.00 200.00 250.00 MESH SPACING, em 300.00 350.00 400.00 441. 22 BOTTOM OR CORE
- *
- FLORIDA POWER & LIGHT CO. St. lucie Plant Unit 1 0 0 0 0 0 ('1'"\ ..---c:) c:) c:) c:) c:) . . . 0 0 0 Cycle 1 Core Axial Power Shape 3, 200 Mwd/MTU C".J N ..-""" """ 0 0 0 0 0 0 U"\ ("('\ 0 0 0 0 ('f'\ 0 E 0 u c::> -U"\ c.::> C'--.1 z -u <( 0 c.. 0 V> 0 :::c 0 N V> i.I.J :§: 0 0 0 :.1"\ r-1 g 0 0 r-1 0 0 0 0 8ci <::::> . 0 Fi*-..ur-4.3-15 N N ...-4
- 8 @ 0 0 0 Li'\ (V'\ 8 0 E 0 (V'\ u I.J.J 0... 8 <( :::t: fR V> N 0:: I.J.J s: 0 0 c 0... c: .....J
- 0 N ...... X <(. 0 0 0 1.1"'1 .--1 0 0 8 ....... 8
- * . . . ..................... 0 FLORIDA POWER & LIGHT CO. St. lucie Plant Unit 1 "" ("\,j ........ :g 0 0 0 8 0 Lf'l ("("\ 0 0 0 0 ("("\ 0 0 -=> Lf'l C'J 0 0 0 0 ('..J 0 => 0 Lf'l ........ 0 0 0 0 ........ 25 8 § 0 8 0 8 ,._ t't"\ ....... . 0 . 0 0 0 . 0 0 0 0 NO Cycle 1 Core Axial Power Shape 9600 Mwd/MTU 0 0 00 _8 . 0 t:: u c.::> z ....... u a.. l/) :r:: (,/") L.U Figure 4.3-17
- . . . . .................. 0 FLORIDA POWER & LIGHT CO. St. Lucie Plant Unit 1 0 0 0 0 0 H3MOd . . 0 0 Cycle 1 . . 0 0 . Core Axial Power Shape 12, 700 Mwd/MTU Figure 4.3-18
- *
- CJl .CJT . 98 . 96 . 97 . 99 ' I, 95 .97 . 99 "" .95 . 95 . 97 . 98 . 98 . 96 . 93 .94 . 95 . 95 . 95 . 94 .93 £ Historical Information Amendment No. l6, (l/98) Normalized Power Distribution Within Figure Typical Assembly 4.3-19
- N . N Q N . -. . . . ----/
- I )1 : \ ' ' ) / \. ,' *. ' ) \
- I
- I I I \ '
- I I / ( ') \ . \ I / I \ \ \ I 1 ',
- I
- I l .. I /( ------t.- ,. I --I I I I \ / \ / .... __ N -. -0 00 0 ...0 0 U"\ 0 oo:::t 0 -V') ,._ ..c:: .. Q> E i-Jopej 6u Plead 1 e!X\f a6eJaA V "FLORIDA Cycle 1 Figure POWER & LIGHT co. Core Average Axial Peaking Factor vs Time, hrs St. Lucie Plant 4.3-20 Unit 1
- *
- I * * .. Q Q &n * ..... * * * -l " * .. .. 0 0 -* .... If. .. I! I! *
- I! * * * .... I! *
- I! I! Ill' ... .. * * ** .. IIi * * * * * * .. w. I
- I( * .. * * !I! !i II< ,.. ll! *
- I
- 0 0 C") * """ I! * * , *: C) C> C\J * """ I ( .t.:. OTX ) >tti3d .. ll! I 0 0 0 * ..... -I --...,.. -.. I_.-:: . -""--...... -0 C> 01
- 00 0'1 -.-i ' < \0 0 .-i N i 0 C""\ 0 z '0 ...::-* .j..) c: 0 Q) r-. E '0 ::J c: t,:) Q) .... 1&. 0 0
- 0 c.o 0 0
- 0 U') 0 0 0 ..... *-w :E<<r 0 Ho 0 1-.4
- 0 X M 0 0
- 0 C\J 0 0
- 0 ....
0 C) ...0 ("i"\ ("1'"'\ 1-...-4 * -I 0 0 -CJ X 0 C",J ...0 ("1'"'\ 0 N + N 0 '+-1-,..._ I 0 N ..... X ...0 lo . ...0 00 . u... ..... 'N . -I-.J--I 0... .. 0 -2: X 0 LJ....I 00 0 I-0 ...0 N _J ,..._ L.I.J . :::;) ...0 u... I + I L.I.J e1 00 Ln 0 <( ,..._ 0 a::: . ...0 L.I.J ' ..... > I I II <( I I 0 I -tO 0 i tO N ..... i I 0 I 0 I 00 I I 0 I I 0 I t::::1' ,..._""' I 0 0 d 0 d Lt\ ""' . . . . . ..... ..... ..... ..... ..... ..... I I I I I I I
- I
- _OtX::J /dv dW3113n::J FLORIDA Cycle 1 Figvre POWER & LIGHT CO. Fuel Temperature Coefficient 4. 3-21 I St. lucie Plant vs Average Fuel Temperature Unit 1
- * * *
- If) I 0 .j.J c Q) .,.., u .,.., "'-' "'-' C! 0 u H Q,) ,....; P.. P.. 0 0 20 10 FIGURE 4 _ 3-71 A Doppler Coefficient Cycle 1 2000 Fuel Temperature (°F) Note: See Cycle 6 RSE Table 6.1 for current doppler coefficients 3000 Am. 3-7/85
- * * *
- u... -I 0 ...-4 X 1-z I..L..I -(_) -u... u... 0.0 u I..L..I 0::: ::::> 1-<( 0::: I..L..I 0.. I..L..I 1-0::: 0 -1.0 1-<( 0::: I..L..I 0 0 0 100 200 300 400 500 600 MODERATOR TEMPERATURE (F) Note: See Cycle 6 RSE Table 6.1 for current moderator temperature coefficients Am. 3-7/85 FLORIDA Figure POWER & LIGHT CO. MODERATOR TEMPERATURE COEFFICIENT, BOL St. Lucie Plant No Xenon, 8ZO PPM Boron 4.3-22 Unit 1
- Cycle 1
- * * +.10 MODERATOR DENSITY L COEFFICIENT 0.0 (L).p/gm/cc) .8 .75 .70 MODERATOR DENSITY (gm/cc) Historical Information Amendment No. 16, (1/98 FLORIDA POWER & LIGHT CO. St. Lucie Plant Unit 1 Moderator Densitv Coefficient, BOL No xenon, 82'0 PPM Boron Figure 4.3-23
- * * -1.0 0 -2.0 ...... 0 > --3.0 0.. <1 > -o -a. -5.0 -o -6.0 -7.0 10 20 850 PPM 30. 40 50 60 70 PERCENT VOID Amendment No. 16, (1/99) FLORIDA POWER & l.IGHT COMPANY ST. LUCIE PLANT UNIT 1 Historical Information MODERATOR VOID COEFFICIENT vs PER CENT VOID FIGURJ:
- 3-23JI
- Ll'\ 0 Ll'\ . . ('t"\ ('t"\ N I I I £-0 Ll'\ N . ...... I I 01 X lJ./M>I/ 0 \Q ...... 0 I I 00 00 Ll'\ ...... 0 "__ rn_f_o_rm_a_t_io_n ____ Am_e_n_dm __ en_t __ No_. __ __ FLORIDA POWER & LIGHT co. Fuel Temperature Contribution to Power Coefficient Figure St. Lucie Plant VS l<wlft Unit 1 4.3-24
- -o
- m,., c,:::o,... Qo 0 ..... -* r-:;:o ro--QO g-c -n 0 . (j . ,., )> G") d c (") -o'< ...... 0 0.1-' CD ('!) ::J !:Z:I-' = n Q.) -0 :::J !=>-\.).) I N \.n c ., <D , w I ..., ....... ClO VI *
- ASSEMBLY TYPE UCEAGROUP DENTIFICATION 1, 2, 3, 4, 5, 6, 7 REGULA A, B SHUTDOW P-1, P-2 PART liN BATCH: A 69 ASSY's AT 0 SHIM B+ 80 ASSY's AT 12 SHIM C 40 ASSY's AT 0 SHIM C. 12 ASsv*s AT 12 SHIM C+ 16 ASSY's AT 12 SHIM 8 10 cr_--TING N(DUAU ;TH * , , ; (LO. CONC.) ; (HI. CONC.) c c C+ c C+ 3 c f----*--B A B c c. A ' B A 4 B '----*---A 7 c c c c . A ' c. B 7 B A P-2 '\.A B A B A 2 A B I ------. -------B A P-1 D . E ------H K c c 1 c C+ C+ B 3 2 B A B A 4 7 3 ['A B A B A 1 4 B A B A 2 P-1 5 A B A B 6 6 B A B A B 5 7 ' A B "'A B* B 9 ---B A B A 5 7 ll F G J . L -----* --* -----
- * * *
- 0:: 0 Q. I-<( q 0:::(./') LLJI-'II! cu '-0 QLLJ d u. o::LLJ LLJ oLLJ u...O:: I-....... :=::> CD Zl-0<( . ....... 0::: X 1--LLJ <( CS:o.. :2: ZLLJ LLJI-c.._, :ELLJ 0:::::> uu... <(C LLJZ U<( 0 0 0 0 0 00 '-0 q' ,.... 110:1 % '13/\31 L . Unit 1 Technical Specifications Note: See St. uc1e 0 ('('\ 8 ..--4 0 I..U 1-0 LLJ 0 (./') -z ....... 0 '#-00 . z 0 Lt"'\ ....... 1-0 ....... 0 (./') -0 0 0... 00 ::.c.:: z <( co '-0 <( 0 LLJ 0 u -0 00 0 '-0 ,...._ 0 oo::::t 0 N 0 (./') z <( co Am. 3-7/85 Figure FlORIDA POWER & liGHT CO. St. Lucie Plant Unit 1 Cycle 1 Power Dependent CEA Insertion Limits 4.3-26
- * * * * -I c-J ---<;;;. : '-...1 u -""-l .r= ........ 01 '= i.:i.C:.> Ct. C':l.. 0*-' c-, 0 1-t::: 1--1-rn n>v-:l r:t :.. .. ***-. )..... C::'> C:;l r:J .. ("1 01'\ C..)'"' uf'; u . c;--. I E+ F* '""-'<-.,'"" E ..... ( jl'""\ <.<i (..) 'I 0 II ...... *-"-*-.,.._ ro '*-f* **I ._.._ 1--! '""'"' .. ro o-. ..-I'-If\ oi f"" ;:::;
- r::::l.. ('-l ,....._ )..... ., ..* n:ll-0 *""' 0 C: I en Fe, ,,:; (') "'(.) .'<. c ()l.f' _ .... '(.) (* \ *-....... \"-' (. *, .-: * .J ... l> .J . CD '"{*1 r ... L'> * * \.-...... -1"'""\ I ( *** L) Cl..*;*:, :::! ..... If C'-1 0 ('J 0 *-l.... l.f\ t,)"'"i (.j **-* L.r\ ,. .... l..f"' C' * (:) C) r-1 t:..:: (1:: ,_ , . . .. ,, c.::( ("t.') u ___ .l ___ L _____ L_j_. _j__.J_L_L _ 0 ,-,, 00 t-...0 -.:::::1' rt"\ N r--t C.: c> o c::i c::) o ci o o ...,___ __ ---Cycle 1 I POVIER [:... l.lGHT co. ..,I
- v Ill \I'
- I fl 1 FtornDA L-. B V.IORTu vs Pia:__ _ ___ TIMf :\OD Am. 3-7/85 Fioure i ..J \ I 4.3-26A! I
- -o V\9 ;,. < ,., ,_;:>;;., s:>oo' ;;;* ,_ :;o I -ooa -:r:l> g-1 () p 1--1 z -; ,., C) ::::0 )> I ...-I ::::0 -; -; .$? ::;:: :r: 0 0 "< ....... c: (/) ro-; 1--l ...... -::::;1 z r-l/) ::::o,., l/) ::::v --J ...-I 0 z ::t> --! Q_ <] <l:: l.J..J u 4.0 LJ.... 0 :::i.: 1-0::: 0 $ >-}-> 2.0 1--' f_.) <l:: 1.0
- Bank 1 Worth ("/ot:.p) 8 &7 6 I . * .FJ 5 i . 4J 4 1 1. 46 3 . 59 2 1. 60 1 . 73 * --co 0 I 01 --+/-:::::1 I I I I ! 1 ; I n ?O 40 60 80 100 0 20 40 6-20 40 60 80 l OJ 0 20 40 60 1----* .. -,-, . --' . ' ., ....,.., "-*--' c N -; Q'\ 0 'CO p w I """' "" 00 U1 .. L--. _____ l ............... Bank 8iic7 Ba'll< 5 I :*1 "nn p l.jl.; lt.:\J lJ Bank 3 Bank l I ! I ! ! I I I I I I '"'u**-*'f"'l 6'.' V;) 10(\ 0 21'\ I*) { 0 no i 00 t.. --u {);..) "J , 'J t.;.*--... .-c .1. ** Bank 4 Bank 2 CEA POSIT ION % INSERTED
- * * *
- 00 "' 0 0 FLORIDAj POWER & LIGHT CO. St. Lucie Plant 0 0 0 c.) 0 NOilt13SNI %/ ,d \1% * --DIFFERENTIAL WORTH vs INSEHTION AT BOL SEQUENTIAL INSERTION OF ROD GROUPS WITH 40 PERCENT OVERLAP-NO PLRS Cycl 0 c:o Oo.Z$ ...:.:>oo ""=:j*C ro oc:a N 0 Am. 3-7/85 Figure 4.3-26Cj
- ----r--------1*--------r l -----*--------.,_ r* ---------1 * * * ., I '-0 8 0 c -' LL..l 1--1--' II (;Q A PO\'/ER & Li(:-,i :T CO. St. Lucie P!wnt 0 c:) c:5 c:::) 0 . 0 0 Noll\!""l_('NI O'J d \1 (If '*** J J;_l v 1.il DIFFERfJJTIAL WORT!: vs HJSF.RTION AT EOL V\L Of GROUPS WITH pVERLI\P-NO PLRS 0 Am. 3-7/85 4.3-260 r * -o m _:;;-:J-n . r-9':'.'"" 1* -oG)O a I> :)-I -..n p 1-1 --. 1-i fT'! --1 C'> :r: :::0 p )> I 0'\ --* <:: 0 C.l C> ;v -; ::c < ro 1-1 Vl --1 1-'r.i 1--! -z :< (./) c::.. rn 1-1 ::::0 --1 --1 :r::: 1-i 0 0 c z -: ..,.._I u r-ro :;::} V> 0 r-,l:::.. !1 . -* w LC I c N .. c-(i) rr1 w I """' ....... ClO IJ1 * * * -0 I I 1 1 *
- 1 1 1 1 1 r 1 1 1 1 r
- l ;§ 5.0 I Bclnk Worth t 7 . u 6 1.7;8 4.0, . ..,. : 5 .40 4 1.46 '"' .59 a:: l ' / J / I l.SG 1 I . 78 J 2.0 !--::..,) < i.W 1.0 I I ill i 0 20 40 6Q 80 lCO 0 2n t1.Q 60 80 100 0 20 40 60 80 lGO 0 20 40 60 80 100 Bank Bank j Bank 3 Bank 1 ! I I I _l_J L,__j_.l I I I l_L I I I I 0 2J 6.0 60 SIJ 10:) .J 20 40 60 80 100 0 20 60 80 100 Bank 6 4 Bank 2 I * *
- 00 ('J 0 0 ("("\ L.W ........ I--+ ()_":) II tf.. "'-' ...=.t-0 -* -I. -*----,----0 CJ (..) r-4 C') -'(.)('\"'\ C:') C: -,.;;t C'O CLl 0 (.'-J Am. 3-7/85 L. FLORIDA
- OV/ER & LIGHT CO. St. lucie Plunt . VVOeTH vs 1\T BOL SEQLJ[NTlAL IN OF G!<OUf) S WITH OVERLAP-NO f!.3-2C:FJ Cycle 1 ______ __._! ___ _
- * * *
- t'-*.-1-.. r r-tr, "-7: tr*, '-(;:; C't\ 0 "' dn rt v i!J . 0 0 0 L<'\ tv\ c-.i ,.....; SV::J:) .:JO AJ l/\ T 11\il ( '*"'*: c: ('."' Rj:**i INTEGF!AL WORTH vs INSERTION 1\T [()L (\fiJITH 0. 6%6 p BITE) (\'V lTHOUT PiH S) Am. 3-7/85 .. .J I I ! 1!. 3-26(;1 l -FLO!UDA f'OWER & LIGl-IT CO
- St. Lucie Plont -----*-Cycle 1 *-------'lFlc u re 1
- *
- II *-.... o
- 1-10 _ _j__ \{) "'-! 00 t'\ ) t3 c) . 0 0 . r-----*. FLORIDA
- PO\'/f:i'! & C:l *. St. Lucte Plont ***---* "') .....__ ___ _ --------0 ,,, C-.1 r'-l 0 0 C.) d c..:) 0 NOIJ.ti3SNl %/ d\1%-C<) o;;::t c:J L:> 0 0 0 0 I. ['.. 0 Am. 3-7/85 ; I SEQUENTIAl. Ii'JSERTTON OF GfH)UPS vs r_ Al EOL. WITH PLRS 4.3-26H1 _____ 1 *----_
I * * * * ---r--*-,-600 -500 z 0 cr. g 40Q "s: ..:::.. Cl.. Cl.. 300 100 OL_L_ _____ L_ __ L __ .... l_ _. ____ __._ 0 2 4 6 8 10 ':1 12 14 l POW[i; 8, UCHT CO. St. Lucie Plar.:-CORE AVG EUI<NUP, MWD/T x leY Am. l-7tas I CRITICAL GOR r)l --l4F is.t.;2r6e_ il GUr\1\!tJP i\T FULL. POVvER _ ALL Cf:!\s WITl-l!HzAWN ___ ________ 0'cl_:_.!_ .. ____ *---_L _ *----*
..,
- m -n c,.-:::o,.... 2. po 0 --* r-:::0 ::!:!:x:)> g .... -n "Cf4 0 -.., 0 . =.. ....... -< 'C ""0 -* on *:E (I)("') ...,0 <..., V) ('I) ..... Vl :::JOJ --('1) ('I) ...,-<t :::J O.>r-__ . l>3. x ..... Ol("') -c VI, ::T< Q)C'D "0 ('I) ....... :::J 0. ('1) X
- J;:lt. -n c§' ( I .., c N r. -.J *
- 150 140 I DNBR LIMITED 130 120 / LINEAR HEAT RATE LIMITED .....1 --' ::;) u... o 110 I I DESIGN MINIMUM FLOW, 100 I NO AZIMUTHAL TILT, CEA's AT MAXIMUM ALLOWED INSERTION 90 I I I ] -0.7-0.6-0.5-0.4-0.3-0.2-0.10.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 INTERNAL AXIAL SHAPE INDEX
- 3. 2 ----r---.------,----r----r--r---.-C} -0 .'1 c:::: 0 1--u <( 3.0 2.8 2.6 2.4
- UJ c.. 2. 2 c:::: UJ 0.. 2.0 1.8 1. 80 -.60
- FlORIDA POWER & LIGHT CO. St. lucie Plant 0 c co *o ()r; 0 ?o ") i) -. 40 -. 20 0 . 20 . 40 PERIPHERAL SHAPE INDEX I-SUB-P Cycle 1 TYPICAL AXIAL ANALYSIS RESULTS BANK IN 50%, ALL PLR's ,...;.-. 60 I I I i J i I . 80 Figure 4.3-27 A l .I
- *
- _J 0 u.. a.. 200.0 190.0 180.0 170.0 160.0* 1500 140.0 130.0-120.0-110.0 FLORIDA 0 -.600 POWER & LIGHT CO. St. lucie Plant 0 0 0 I :") ,..:.J -} C) g :') ._,) c ) (-' :-) ) (J ::) 0 ::) J 0 ) 0 '"=' 1: '_) 0 -, 0 v c *:) (_) -l -D .) D ("\ .. ()r>-.. D '-V .) 0 ,\ () () COQJ 0 ,-, '6 0 oB oo 0 0 0 -. 400 -. 200 . 000 . 200 . 400 .600 .800 PERIPHERAL SHAPE INDEX, lp TYPICAL AXIAL ANALYSIS RESULTS Figure BANK IN 50%, ALL PLR's 4.3-278 Cycle 1
- 3.000 1-r...sou -2..b00 -* 2..400 -2..2.00 0
- t.:) :z; e_.ooo j tz:l -p.. ..:I < L .800 -* l..bOO -1.400 -l..e.oo -1 I I * -.bl)t) I I . Axial Peaking Factor -vs Peripheral Shape Index for Unrodded Core;NEAR BOC i, oti (11 A 0 II J' "' e 0 r. u (I 0 C:t -I J I I I I -.400 -.2.1.10 .aoo * ?.0 I) ... oo .bOll .IiilO PERIPHERAL SHAPE INDEX (I ) p FIGURE , 4.3-27C
- /If . , . I -I-Axial Peaking Factor 2..90 0 vs Peripheral Shape -Index with First Rod -Group in 50 % NEAR BOC 2..60 0 i-0 I-0
- I-z .. oo 0 I-0 B e .... c9 1.80 a 0 (;I I-G G ' laEiO 0 0 a & 1-rP G a C.c 0 . 1 .. 40 1f -1.2.0 0 --* 0 I J I I I I I I LaOO -.sou -.41)0 -.2.00 .ooo * .: eln
- PERIPHERAL SHAPE INDEX (Ip) FIGURE 4.3-27D
- 2.600 1-2.400 0 GJ C) 1-G 2.200 .... 0 0 2.000 -e 1.800 (") "" 0 %0 oi.J () r-co 0 0
- 00 1.600 """ (!) Cll Ill p.. 1-_I r-4 G> Cll 1.400 ."" >: <¥ 0 <: e ?/ 1. 200 f.-1.000 I I I I I I I I .800 .600 .400 .200 .000 .200 .400 .600 .eo Peripheral Shape Index (Ip) FLORIDA POWER & LIGHT CO. St. Lucie Plant Unit 1 Axial Peaking Factor vs Peripheral Shape Index for Unrodded Core NEAR EOC Figure 4.3-27E
- !-< 0 .u CJ ctl ClO c:: ...... ,!l. ctl Q) (l.. * ,....; ctl ...... >:: <
- 2.600 t-2.400 r-:> 0 2.200 t-2.000 t-1.800 1.600 1. 400 -1. 200 -1.000 I .800 .600 FLORIDA POWER & LIGHT CO. St. Lucie Plant Unit 1 t 0 i6l e 0 0 .I G , C> Cb A \;;J c 0 (!) 0 l t I l .400 .200 .000 .200 .400 Peripheral Shape Index (Ip) Axial Peaking Factor vs Peripheral Shape Index with First Group Inserted 50% NEAR EOC (:) e 0 G 0 I J .600 .80 Figure 4.3-27F
- *
- 1=4 p.. I .....
- 1.48 1.44 1.40 1.36 11.28 1.24 0 1 2 3 4 5 6 GWD/T 7 8 9 Control Bank 7 0 1-Piu Planar Peak Unrodder 0 1-Pin Planar Peak Peaks Used In X Shape Analyses 10 11 12 13 14 Am. Note: See Cycle 6 RSE Figures 6.2 & 6.3 for current 1-pin peak FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UI'-IIT 1 Cvcle 1
- UIIIIODOEir AND GROUP 7 lWliAL i'UKING FACTORS VERSUS BU'RNUP FIGURE 4.3-27G
- l. 718 6 o'cloci< 1.0 CIJ 0.213 V') c: l. 718 9 o'clock 0 c.. V') CIJ -c:::::l CIJ ......... :;:: 1.0 c: :::> w ..I::; -0 0.213 -CIJ 12 o'clock > l. 718 :;:: ro
- Q) 0! CIJ V') c: 0 l.O c.. V') CIJ '-0 -0.213 u CIJ -3 o'clock CIJ l. 718 0 1.01-----0. 213 '-----L...---.1...-------L----.......__ __ 0. 0 20 40 60 80 -100 120 Hours FLORIDA :-* :-*
- POWER & LIGHT co. Free Oscillation St. lucie Plant Response of Detectors at various Azimuthal Locations 4. 3-28 Unit 1 4.2 4. 1 4.0 3.9 3.8 3. 7 6 3.5 FlORIDA POWER & LIGHT COo St. Lucie Plant e Unit 1 0 96 , hou nter Figure 4.3-29
- *
- 0. 8 ,-----.,.---,-----,----r;----; 0.7 0.6 0.5 0 :,;::; ro e:::: 0.4 ro ::::> -:::J c... 0.3 0.2 0.1 11 CJ leu lated in 1 ----Asymptotic 1 Spedrum I Least S4uares h Straight Line Fit ;. of Measured Data I. !. I. !. Samples Submitted for Analysis in: a-Conce_ntrated Acid (11 Points, <r = O.u28) . b-Dilute Acid (11 P01nts, cr = 0.028) O. 0 Ol!._ _ ___t,l0----L20 ___ 3.J....0 ___ 40.._-----::50 FLORIDA POWER & LIGHT CO. St. lucie Plant Unit 1 U-235 Depletion, % Comparison of and M_ea?ured Plutonium to Uramum Mass Rat1o 1n the Asymptotic Neutron Spectrum for Yankee Rowe Figure 4.
10.0 Plutonium Composition, Atom o/o FLORIDA POWER & LIGHT CO. St. lucie Plant Unit 1 Experiment Calculated ----Pu-24C -----Pu-241 Pu-242 U-235 Depletion, % Plutonium Isotopic Composition vs Fuel Depletion in the Asymptotic Spectrum for Yankee Rowe Figure 4. 3-31
- <J t"t
- 0 0 -*0.5--o.4 0 0 '-0.3 --0.2 0 MEASURED 30 CALCULATION 0 l .. 2 I<W/FT SAN ONOFRE CYCLE 1 3 FUEL TEMPERATURE CONTRIBUTION TO THE POWER COEFFICIENT AT STARTUP 4 FIGURE 4. 3-32
- *
- *
- INCA PDQ 0.902 0. 804 5 0.927 0.812 0.769 +2. 8 * +1. 0 0.785 1. 193 +2.1 0.986 1. 209 1. 009* 0.712 +1. 3 +2. 3 0.715 1.077 1.213 10. 4
- 1. 062 l. 215 -1.4 * -1{). 2 0.861 1. 052 0.870 1. 055 +1.0 -+0. 3
- 0. 686 1. 126 0.717 1. 152 +4. 5 * +2.3 0.772 0.795 +3.0
- 5 BANK LOCATION 0.984 1. 119 0.949 1. 110 -3.6 * -0.8 1. 083 3 1.020 1. 095 1. 051 +1.1 +3. 0 1. 137 1. 257 1.138 l. 251 -tO. 1 "' -0.5 1. 278 l. 222 1.272 1.198 -0.5 -2.0
- 1. 069 1. 290 1. 075 1. 279 -+0. 6 * -0.9 0.9055 1. 069 0.922 1.075 +l. 9 -+0. 6
- 0. 772 1.126 0.795 1.152 +3. 0 * +2.3 0.686 0.717 +4. 5
- o/o DEV *' LOCATION CONDITIONS INCA:. 1265 MWth (51. 8%) INCA 1290 MWth (52. 9%) CALORIMETRIC 674 PPM BORON BANKS 5 4 3 IN 98% 85% 25% 0.911 0. 5394 (0. 573) 0.3905 0.871 0.544 0. 540 0.365 -4.4 * +1.0 (-5. 8)* -6.4 1. 070 0.808 0. 743 (0. 573) 1. 047 0. 780 0. 707 0.540 -2. 1 -3.5 * -4.8 (-5. 8)* 1.106 1.086 0.808 0. 4 l. 086 1. 051 0. 780 0. -1.8 * -3.2 -3.5 "' 1. 308 1.106 1. 070 0.911 1. 281 1. 086 1. 047 0. l -2. 1 -1.8 * -2. 1 -4.4
- 1. 222 1. 257 1. 020 1.1 1.198 1. 251 1. 051 1.1 -2.0 * -0.5 +3. 0 * -0.8 1. 278 1. 137 l. 0833 0. l. 272 1.138 l. 095 0. -0.5 -+0. 1 * +1. 1 -3.6
- l. 052 1. 213 0.986 0. 804 J 1.055 1. 215 1. 009 0.812 10. 3
- 10. 2 +2.3* +l. 0 0.861 1. 077 1.193 0. 0.870 1. 062 1. 209 0. +1. 0 -1.4 * +l. 3 +2.8 0. 712 0. 769 0. 715 0. 785 10. 4 * +2. 1 PDQ-QUIX-CEPIA: 1220 MWth (50%) RMS DEVIATION = 2. 3% 743 PPM BORON BANKS 5 4 3 IN 98% 85% 25% FLORIDA Maine Yankee Power Escalation Tests Fig POWER & LIGHT CO. Power Distribution, 50% Power rodded St. Lucie Plant Equilibrium Xenon ' 3 Unit 1
- 0.728 0.716 -l. 7 0.579 0.592 +2. 2
- 0.905 888 -l. 9* 0.992 0.992 0 0. 736 0. 746 +1. 4
- INCA 5 ROD BANK LO N PDQ % DEV INSTRUMENT LOCATION CONDITIONS INCA: PDQ: 1894 MWth (77. 6%) INCA 1826 MWth (7 4. 8%) CALO 657 PPM BORON 447.6 MWDIT BANK 5 IN 1% 1952 MWth (80%) 700 PPM BORON NO BURN UP ALL RODS OUT 0.579 592 +2. 2
- 0.905 0.888 -1. 9
- L 085 o. 996 1 1. 1 l. 071 l. 014 1 l. 110 \1 -1.3 +1.8 -+0.7 I 0. 947 L 102 I 0. 0. 903 l. 0. 880 -4 7 -l. 5 -L 5
- 0.615 0.686 0. 605 0. -1.6 * -1.5 RMS DEVIATION= 1.8% POWER & LIGHT co. Maine Ya Figure St. lucie Plant r Dist Unit 1 3-35
- *
- 0.833 0.7885 l. 039 l. 225 0.850 0. 788 0.994 l. 210 0.695 +2. 0
- 0 -4.3 * -l. 2 0.703 l. 102 0.967 l. 173 1. 108 +1.2 l. 103 0.973 l. 162 1. 125 0. 640 +0. l l +0. 6 * -1.0 1+1.5
- 0.642 1. 130 t +0. 3
- 0.990 l. 152 256 0.966 l. 141 1. 117 269 -2.4 * -LO +1. 0 0. 784 o. 973 I 211 192 0. 781 0. 963 192 1. 159 -0.4 -1.0 * -1.6 2. 8
- 0.616 l. 021 0.993 221 0.633 l. 028 0.980 l. 196 +2. 8
- 40. 7 -1.3 * -2.0 '--0.689 0. 821 5 0.993 0. 702 0.824 0.980 +l. 9 * +0. 4 -1.3
- 0.689 l. 021 0.702 l. 028 +l. 9 * +0. 7 0.616 INCA PDQ % DEV 5 a-ROD BANK LOCATION 0.633 +2. 8 * *" LOCATION CONDITIONS INCA: 1924 MWth (78. 9%) INCA 1830 MWth (75. 0%) CALORIMETRIC 640 PPM BORON 378 MWD/T BANKS 5 IN 98% PDQ-QUIX-CEPIA: BANKS IN 5 98% 4 43% 1952 MWth (80%) 700 PPM BORON NO BURN UP 4 43% 1. 085 0. 950 4 ! 5 (0. 823) i 0. 541 l. 059 0.956 0. 789 ; 0. 520 I -2.4 * +0.6 (-4. ll *i -3. 9 d 1.183 l. 008 0. 994 i (0. 823) 1.198 1. 047 0. 970 ! 0. 789 ' +l. 3 +3. 9* 2. 4 I (-4. l) ;:1 (1. 071) 160 I 41 1. 008 I 0. 950 ! 1. 155 1. 197 1. 047 ; o. 956 1 (+7. 8) * +3. 2 +"'9 *'+06 -* !
- _j l. 263 n. 071) 1. 183 : 1. oss I l. 289 l. 155 l. 198 !1. I +2.1 (+7. 8)* +l. 3 : -2.4. 1.192 l. 256 1.108 1. l. 159 l. 269 1. 125 l. 210 l -2. 8 *:* +1. 0 +1. 5 * . -1. 2 I . .1 l. 211 l. 130 l. 173 1 L 039 1 1. 192 l. 117 l. 162 I 0. 994 I -1.6 -1. l -L 0 i -4. 3 l 0.973 I : 5! l. 152 0.967 ! 0. 788 0.963 l. 141 0. 973 I O.J88 I -1.0 * -1. 0 +0. 6
- i lJ 0. 784 0. 990 1.102 ; 0. 833 0. 781 0.966 1. 103 j 0. 850 -0.4 -2.4 * -tO. 1 1 +2. 0
- 0. 640 0.695 0.642 0.703 +0. 3 +1. 2 DEVIATION 2. 3% FLORIDA Maine Yankee Power Escalation Tests Figure POWER & LIGHT CO. Power Distribution, 75% Power, Rodded St. Lucie Plant Unit 1 Equilibnu Xenon 4.3-36
- Measurement l at em. from Bottom of Fuel Measurement 2 at 50 em. from Bottom of Fuel q_ I Is 9 10 ll 12 13 14 15 S.---l. 158 1. 058 0.433 l. 150 l. 056 0.453 H 1.153 1. 062 0.411 l. 165 1. 115 J 1. 138 1. 111 l. 151 l. 142 l. 148 0.922 K l. 149 0.943 l. 150 0.939
- 1.076 L 1.077 l. 096 1. 061 0. 753 M 1.068 0. 783 1. 085 0.772 1.050 N 1.058 1.062 0.570 p 0.591 0.561 0.000 Meas. 1 0.000 Meas. 2 0.000 Calc. R FLORIDA Comparison Between lculated and Measured Figure POWER & LIGHT CO. Relat1ve Fission Chamber Readings at Center ot 4.3-37 St. lucie Plant Fuel Assy*s in Unrodded Portion of Conn. Yankee Core Unit 1
- G_---H J K q_ I
- Is
- L M 1.082 N 1.117 p R
- FlORIDA POWER & liGHT CO. St. Lucie Plant Unit 1 Measurement at 45 em from Top fuel 9 10 11 12 14 l. 225 l. 068 l. 267 1. 117 1. 254 1.088 l. 293 1.132 0. 749 1.068 0.567 1.115 l. 057 1. 080 1.143 0.472 l. 180 0.376 0.696 0. 720 §] Meas. Calc. 000 Comparison Between Ca ulated and Measured Relative Fission Chamber Readings at Center of Fuel Assy's in Rodded Portion of Conn. Yankee Core 15 0.558 0.564 ! 1 I I ! ! i I I I ! I i I ' I Figure 4. 3-38 I
- *
- I:' I w X CHANGE IN POWER DISTRIBUTION DUE TO DROPPED ROD IN THE FORT CALHOUN REACTOR --!:.!! /.SL !:..!!!.. : ;.a.f /.%f. 1*21 t /.2.1 /.a& /'11.,. LEGEND AFTER RATIO OF iiFOiE !r!]! RATIO OF BEFORE . ,, J.8.f -!.:.E.. '*"" , ... , ' J.Jl.a. ,,,, -/.11 /.o$" -'*"' /. 0&. "* /.Of ;;:;; --,,,, (). '14--,., 1),,, ().11/ 0 '/.Dt-().of/.1 ,.oz. o.:tti -(),9(, -o.9o IN-CORE DETECTOR SIGNALS {MEASUREMENT) PDQ FUEL BUNDLE POWEBS {CALCt,JI.AjiON) .!..:.LL '*"' --(),,., Mit. Jo.t5 ().'If --_o.?!_ ---I -().:PI Wli "' '\ ,._DUAL ELE MENT OD DROPPED R FIGURE 4. 3-38A
- * * "
- m., c,...:;:oo,... 0 .... -*,... :;:oo ltl--1-' QO :::!?::x:)> g-t .... () p 0 DJ m3 <"D-e --* ='E:J <'Dt..Cl ('D :J("'") 0 "'T'1('D c:--:J -* c..£'!. wm 3:J ('D-:J< S"tn -;o w ro ::::JW r'T1 :;;:* X-* o--K -<"DO 0..-* -V')--('D DJ.., -m ('D:J 0 ('D ., <£)" I UJ (I) ...0 -0.5 0,--.----.---,-----0 ... /Axial Space-Time, EOL Op -i. 00 X w-:> / = -1.22 x 10-3/kw/ tt /0 -0. 77 EO L, .ill.ll..., lst Ax i a I uP / 7 / \ 0.5 \ 6P ... -v -1.5 \ 16 BOL 001 , 1st. P , \ \ Azlmu-\ \thaI \\ .J -l.O \ \ BOL OlO , \ \ ' '\ ' " \ BOL BOL \ 1 .. 1.5 Modified Randall-St. Jonn \001 BOL Reflected Bare -2.0 Core Cylinder 1 _2. 0 -0.1 u -+0. 1 -+0. 2 Damping Coefficient (HR -1)
- -o 0 !4l:E
- m c ;;:ol1 :;,E' r -* 0 9'0 0 .... -* r ;;:o ...... ,G>O -::r:)> g .... .... () 0 . Q) ::::s::::O C. CD Q) mn X.-+ ("') -* -*< ..... -. 0. st= .-+CD CD-, (I') CD o::J -n OJm coco Q)CD ..,i" mCD ("')<."D '<:J ...... ..,., ::Jc C.::::s ("')Q) m ;o:J CD.-+ Q,)Q) n-..... 0 "" ..t':'a . , \,jl,) en* I c ..t':'a .... 0 C1) * * ------.. ----**---*-------*--*---*-***w-***--*------Stationary Eigen va I ues Eigenfunction 1.00 ---000* J rex 0 01 0.99 1--010 Jo(()( 01 r) Cos 2BZ -001 J 1 (0<11 r) Cos,6 Z Cos 6 0. 98 J 1 (0<11 r) Cos 2/JZ Cos 8 0.97 -011 -va ue --002 J2(cx21r) Cos6Z Cos 29 -030 0. 96 J0(C(01 r) Cos 3BZ -100 J0(cx02r) Cost3Z -022 J2(o<21 r) Cos 2r;Z Cos 28 0.95--032 J1 (r>cll r) Cos 3f.JZ Cos 8 -120 J0 (co<02r) Cos 26 z 0.94 1-0. 93 --032 J2(0(21r) Cos 38Z Cos 28 indices indicate radial, axial and a ofthe seperable modes in that order **Cl(ij indicates the jth zero of the ith Bes -----------*---Harmonic Fundamental lst Axial lst Azimuthal lst Axial, 1st Azimuth a 2nd Azimuthal 3rd Axia* 1st Radia I 2ncl Axial, 2nd Azimuthal 3rd Axial, lst Azimuthal lst Radidl, 2nd Axial 3rd Axial, 2nd Azimuthal zimuthal components sel Function *-***-*--
I *'
- I I X re With -1) 6plkwl
/ ---I
- g = .. .2 i = Q. Cl ';!! c Cll 2 !:! c:l ---------*--* -* g' g 0 ..:.> <.Q (wdd) uoJoe' !Et::>!)IJ:J 0 0 ..... *0 :! '::> 0 0 0 0 0 = 0 0 0 .... 0 c 0 ..,. 0 g "" 0 £ Q. .... !!:!. IP ... 0 Q. .. w .. CD I'll ;; > < Ill 0 u Amendment No. 19 (1 0/02) FLORIDA POWER & LIGHT COMPANY .. _$T. LUCIE PLANT UNIT i .* ST. LUCIE UNIT 1, TYPICAL BORON LETDOWN CURVE, ARO, Hf'P fiGURE 4.3-42
DELETED
Florida Power & Light Company St. Lucie Plant Unit 1 St. Lucie Unit 1, Cycle 2 6 Relative Power Densities, HFP, ARO 100 EFPH Figure 4.3
-43 Amendment No.
28 (05/17)
DELETED
Florida Power & Light Company St. Lucie Plant Unit 1 St. Lucie Unit 1, Cycle 2 6 Relative Power Densities, HFP, ARO 1 2 , 08 4 EFPH Figure 4.3
-44 Amendment No. 2 8 (05/17)
DELETED Florida Power & Light Company St. Lucie Plant Unit 1 St. Lucie Unit 1, Cycle 2 6 Core Loading Pattern Figure 4.3
-45A Amendment No.
28 (05/17)
.. THIS FIGURE HAS BEEN DELETED Amendment 17, (10/99) FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 FIGURE 4.3-46 This figure has been deleted Florida Power & Light Company St. Lucie Plant Unit 1 Figure 4.3-47 Amendment No. 22 (05/07)
F - ft - Btu/hr )N ( )N ( D 0.023k = h 2 0.4 Pr 0.8 Re e
=z o dy y z C y q e q C F Cz=ft G C X
()()+=v v
2
e GD e e DGe
°
°
.
°
ValueValue
Subfactor
°
- Includes reversible losses due to change in area and losses due to core support hardware.
I * * ("("\ 0 N 0 0 0 N . .-1 0 1.1'\ 0 0 -(.!) c E 0 1.... I....!... ........ ..c en (.!) I (.!) 1.... 0 u OJ *-........ u <( -0 c 0 :;::: u ro 1.... I....!... POWER & LIGHT CO. St. Lucie Plant Design Axial Power Distribution 4.4-1
- *
- 1.0 0.8 c:: ra ..r:: 1--,._ Q.) -ra 0.6 Q.) ..... <:.!) V) "'C 0 0::: -0 0.4 c:: 0 :.;::::; u ra ,._ 1..1.. 0.2 0 0. 4 0. 8 1. 2 1. 6 . FLORIDA POWER & LIGHT CO. St. Lucie Plant Rod Radial Nuclear Factor, FR Cumulative Distribution of Rod Radial Factor For Design Coolant Conditions Figure 4.4-2
- *
- FLORIDA POWER & LIGHT CO. St .. Lucie Plant "'0 0 0::: Q) c::n ro ,__ Q) > <t. . Clad Average Temperature vs Fraction of Active Core Height From Inlet C) 0 00 0 ......... Q.) c 0 1---1 E 0 .._ '=' '--0 ......._ ....... 0 .r:: 0 Q.) l..f'\ '1..... 0 0 u Q.) > 0 c 0 0 a L.!.... Figure 4.4-3
""tt
- m :l!C"'T t""'por g,....o (I)G)o .,; ::r: > 1-'-f II)() ;;p * *
- of 32 1472 2192 2912 0.08 5072 752 3632 4352 0.07
- *
- 4000 e 3ooo :::J -ro (J) 0.. E (J) 1--(J) (J) 2000 1000 FLORIDA POWER & liGHT CO. St. Lucie Plant Surface 0 10 20 Linear Heat Rate in Rod Plus Moderator, kw/ft . Figure Fuel Pellet Temperature at BOl 4.4-5
- u... I N -+-" -I ,_ ..c -::::l ....... co 4000 --------r-------,---, 3000 B. 2000 c <"0 ....... u ::J '"0 c 0 u c. <"0 '-.:) 1000 0 0 w ro-unear Heat Rate in Rod Plus Moderator, kw/ft "Figure FLORIDA POWER & LIGHT CO. St *. Lucie Plant Pellet-Clad Gap Conductance at BOL 4.4-6
- FLORIDA POWER & LIGHT CO. Hutchinson Island Plant Cumulative Distribution of Number of Fuel Rods vs DNB Ratio at 112 Percent Power and Design Coolant Conditions Figure 4.4-7
- L.t'\ .....-1 '11:1" . .....-1 ('('\ . -N .....-1 . .....-1 0 . s d d UO!PeJj P!OA a6eJ9AV '-0 -u ro 1...1-Q,) V'l e::::: ro ..c: -c L.I.J '-ro Q,) u ::::1 z
- FLORIDA POWER & LIGHT CO. Void Fraction vs Nuclear Enthalpy Rise Factor St. Lucie Plant at 112 Percent Power and Design Coolant Conditions 4.4-8
- * * ...0 oa::::t N N d 0 FLORIDA POWER.& LIGHT CO. St *. Lucie Plant 00 0 r-0 \0 0 U"\ 0 "'::::t 0 ("1"'\ 0 N 0 0 N 00 \0 """" N 0 00 \0 """" N 0 N ...-4 ...-4 ...-4 ...-4 ...-4 0 0 0 0 . . 0 0 0 0 0 0 0 0 0 0 0 0 PIO/\ Void Fraction vs Height in Design Hot Channel at 112 Percent Power and Design Coolant Conditions -Q) c 1--1 E 0 ,._ 1-l.--.r:::. c::::n Q) :c Q) ,._ 0 u Q) > -u .q:: ..._ 0 c 0 :.;::::. u ro ,._ u... I '1--Figure 4.4-9
- 0 Q) 1-. ::J Vl Vl Q) I-1--o Q) 1-. ::J Vl ro Cl.) !:?.: I I Nonuniform Lateral Power Distribution 98in. Total Length 82 in. Heated Length G 3 x 106 G l X 106 2000 -0. 09 to 0. 2 Predicted Total PressureD F .. .._,r..&ul"'\ Run CHF High Heat Flux (Below CHF) CHF 14 16 Figure POWER &. liGHT CO. Cosmo Pressure Drop Predictions For a Twenty-a Rod Bundle 4. St.* Lucie Plant
- N 0 N + I MaNa f: *y Ol JaModJaAQ u 1 U"\ I 0 ("t"\ I* FLORIDA Percent Chan_ge in OverDower vs POWER & LIGHT co. Percent Change in R"eference Assembly Peak St. Lucie Plant 4.4-11
- * & LIGHT CO *. St. Lucie Plant c 0 :,;::: :J ..0 b ...... V') c ro X c::c c ro X c::c -ro u.. Percent Change in Overpower vs Percent Change in Enthalpy Rise Factor 0 b ........ 0 + -u ro u... Q) V') a:::: >.. ..9-ro .r::::. -c 1..1...1 c Q) en c ro .r::::. 0 u Figure 4-
- V'l 0 V'l "l ro + co c Vl Q..) 0 0 E 0 :,._ w.... :,._ Q) __,-; ,.... c ::3 0 z ........ C) '....) c..;
- CL Cl.) I.""" 0 :,._ "' Q) I > c 1--1 c Q..) 0'"1 0 c ""'" ro I .r::. u C> -..o I 0 N ..;::t I I c:; c:: *; ""CQ C')Q)z
- FLORIDA Percent Change In Overpower vs Figure POWER & LIGHT CO. St. *Lucie Plant Percent Change-in Inverse Pee let Number 4. 13
- * * ---I '"til *m t"':.'IO'"TI o,...O ..... -;;o Normalized I'd :I: .......... Axial "p Power Distribution 2.0 . . Flat Design Distribution Distribution With a Peak L5 l-\ _:::....., < :;:: < to Average )> I of 1.11 >< -* w -., 0 :E CD I 1.0 ..., 0 -* V\ ..-.... ::!. C"' c:. :::::!': I 0.5 0 ::J Vt 0 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 l. 0 lraction of Active Core Height From Inlet ., .r:::.. co*
- c ......... ., (1) -----------. --------------------------
- * -ro *-V') c. Q) lo-:::::l V) V) Q) lo-0.. N @ N 0 8 N -ca.. C:a> 0 --0 c::> -0 U"'\ r--_.. 0 ...0 U"'\ "-A -0 Q) 3: 0 0.. Q) lo-0 u Figure FLORIDA POWER & LIGHT CO. St. Plant Thermal Margin limit Curves For 4 Pump Operation 4.4-15
- 0 V) 0 Q.. 0 0 Cl.> N 1-. ::J V) 0 V) Cl.> U"\ 1-. ,_ c... .....-4 ai5 -3: :E 0 '-0 U"\ N -0 0 * ,...._ . -Cl.> > Q) --1 1-. Cl.> :::i': 0 c... FLORIDA '"'"'""'.., & LIGHT CO. St:. Lucie Plant Thermal Margin U mit Curves for 3-Pump Operation 4.4-
- *
- FLORIDA POWER & LIGHT CO. St. Lucie Plant t'tl *-c.n Q. CIJ !.-=::! c.n c.n CIJ !.-a.. 0 8 N Thermal Margin Limit Curves 2 Pumps in the Same Loop 0 I.J"'\ r-.....-1 C> r--0 :5:: -.Q :2: 0 ..0 I.J"'\ C"-.1 -0 . -CIJ > CIJ .....J !.-CIJ a.. . :_ : ..... Figure 4.4-17
- m V') c.. C) Q.) r-I-:J V') V') Q,) I-....... c... 3: 0 -.o 1.1"'\ N 0 -1.1"'\ 0 r-....... 0 . -1.1"'\ Q,) > Q,) .....J I-Q,) 3:
- 0 c...
- FLORIDA Thermal Margin limit Curves POWER & LIGHT co. Two Pump Opposite Loop Operation 4. 4-18 St. Lucia Plant
- *
- 3 . po;:!:! I 1.2 orO ..... _::::o II) G)-I 1.1 t;"-t ::s n I "p 1.0 .c -::J 0. 9 \0 c:: 0 ........ 0.8 :J C" X <<.C = ::::l -0.7 l/)-(Q 3:0 Q) o-:!; :I: CJ("') c; 0.6 :J2: u o..n :;::: -Eo.s ...... ::rn (I)""" I -E 0. 4 I I Mean I SSD ,n w2!. Q 0.3 Test-Section Q Pred 1 s b. 7 foot Uniform 0.979 0.046 n 2 o 7 foot Non-Uniform 0.961 0.039 ,.., 4 foot Non-Uniform 1.062 0.064 l I Total 0.983 0.058 c ,; Predicted*-C r i U ca
- * * *
- t'LZ.I.ZZZL{)> MAIN FLOW __., BYPASS FLOW Am. 3-7/85 FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT l REACTOR VERTICAL ARRANGEMENT SHOWING BYPASS FLOW PATHS FIGURE 4.4-20
- INLET J111r NOZZLES
- ACTIVE CORE *
- OUTLET NOZZLES-)lit' .-1 FUEL ALIGNMENT PLATE CORE SUPPORT PLATE -FLOW SKIRT Am. 3-7/85 FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT I REACTOR STATIONS FIGURE 4.4-Z1
- .. Ia .. * .. .. .. ... -. .. -.. -0.816' 0.976 1.237 1.158 1.303 0.896 1.146 1.233 " n ,a., 1.038.,. 0.958 l.lll 1.129 1.159 1.272 0.957 0.346 1.046 1.349 0.962 1.014 1.000 I' 1.375 .. 1.045 l.Z64 1.048 0.819 I' 1.024 0.978 0.342 I' 0.997, 0.384 '
- W Normalized Asstmbly Power AMENDMENT NO.8 (7/89) FLORIDA POWER & LIGHT COMPANY
- 20 GWd/MTU Burnup
- IJ6 Red Lililirr.J Sr.tx:ftmtl FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 ANF 1/8 ASSEMBLY SUBCHANNEL MODEL FIGURE 4.4-23 Amendment No. 15 (1/97)
- CE 12 -.81 ' * * *
- CE ENC CE CE ENC CE ENC 8-12 1-0 -p.. 16 ..:. 1-0 --16 -1.00 1.24 .99 1.02 1.27 1.03 1.1a ENC ENC 0 CE Cf ENC CE ENC CE .84 12 0 a 12 0 12 0 1.24, 1.11 1.07 1.27 1.07 1.26 1.05 CE I' CE ENC CE ENC CE ENC 12 .39 12 12* 0 12 a 0 1.28 l.Oa 1.26 1.00 1.00 i' CE ENC CE CE ENC 4 16 8 0 0 1.21 ' 1.26 1.01 .97 .a1 'CE CE ENC CE 0 0 4 0 .99 ' 1.01 .94 .41 f'ENC CE *Limiting Assembly 0 12
- 95 ' .42 ' Fuel Type No. of B4C Pins Radial Assembly.Power Factor Figure4.4-24Cycle 6 1/8 Core Model Reload Batches XN-1 and XN-lA
- * *
- Figure 4.4-25 ENC l/8 Assembly Subchannel Model *
- * *
- Figure 4.4-26 CE 1/8 Assembly Subchannel Model *
- -* 25.0"'" 21.05 * . 20.Z7 20.0 "" -i2' KlJ'Tp-'7 .42 KUTP*7.45 15.0 "'" z 1.1.1 (j u: ..... 1&1 8 10.0 t = "" Ks
- 9x.724 Ks
- 9x.601 0 ..... KF
- 3.86 KF
- 3.88 5.0 1-KLtp*3.55 0 ENC C..E.* Re
- 5.3x1rP
- Loss coefficient for the spacers increased for Cycle 8 due to the spacer redesign. The overall assembly loss coefficient increased by 1.6% to give -21.05
- 1.016 = 21.39 FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 1 .. COMPARISON OF NOMINAL ENC AND CE COMPONENT LOSS COEFFICIENTS FIGURE 4.4-27 Amendment No. 15 (1/97)
- *
- THIS FIGURE HAS BEEN DELETED Amendment No. 16, (1/98) FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT ST. LUCIE UNIT 1, CYCLE 7 NORMALIZED ASSEMBLY POWER DISTRIBUTION AT 6,000 EFPH, HFP, ARO FIGURE 4.4-28
- *