NG-18-0090, Calculation No. NEE-323-CALC-003, Documentation of the RU1 Emergency Action Levels

From kanterella
(Redirected from ML18212A233)
Jump to navigation Jump to search
Calculation No. NEE-323-CALC-003, Documentation of the RU1 Emergency Action Levels
ML18212A233
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 12/12/2017
From:
NextEra Energy Duane Arnold
To:
Office of New Reactors
References
NG-18-0090 NEE-323-CALC-003
Download: ML18212A233 (42)


Text

{{#Wiki_filter:CALC NO. NEE-323-CALC-003 JI ENERCON CALCULAT I ON COVER I SHEET REV. 00 Excelknce-Every pro;~ct. Every day. PAGE NO. 1 of 9 Documentation of the RU1 Emergency Action Client: Duane Arnold Energy Center Title: Levels Project Identifier: NEE-323 Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions , including preliminary D i nformation , that require confirmation? (If YES , identify the assumptions .) 2 Does this ca l cu l ation serve as an " Alternate Calculation "? (If YES , identify the design D verified calcu l ati o n.) Design Ver ifi ed Calculat i on No. --3 Does th i s calculation supersede an existing Calculation? (If YES , identify the design D verified calculation .) Superseded Calculation N o. --Scope of Revision: Initia l I ssue Revis i o n Im pact o n R esults: Initial Issue Study Calcu l ation D Final Ca l culation [8J Safety-Re l ated D Non-Safety-Related [8J (Print Name and Sign) Originator: Jay Bhatt Date: 12/12/17 Design Verifier 1 (Reviewer if NSR): Ryan Skaggs Date: 12/12/17 Approver: Aaron Holloway Date: 12/12/17 Note 1: For non-safety-related calculation , design verification can be substituted by review. ENERCON CALCULATION CALC NO. NEE-323-CALC-003

  • Excellence-fvtry projtcr. fvtry day REVISION STATUS SHEET REV. 00 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 00 12/12/17 Initial Issue PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION All 00 APPENDIX/ATTACHMENT REVISION STATUS APPENDIX NO. NO.OF REVISION ATTACHMENT NO.OF REVISION PAGES NO. NO. PAGES NO. 1 4 00 2 18 00 3 9 00 Page 2 of 9 I ENERCON TABLE OF CONTENTS &cellen c e-Evtry pro]<<r. Evety da y.. Section 1.0 Purpose and Scope 2.0 Summary of Results and Conclusions 3.0 References 4.0 Assumptions 5.0 Design Inputs 6.0 Methodology 7.0 Calculations 8.0 Computer Software 9.0 Impact Assessment List of A ttac h me n ts Attachment 1 -Calculation Preparation Checklist Attachment 2 -Gas Effluent Setpoints Attachment 3 -Liquid Effluent Setpo i nts Page 3 of 9 CALC NO. NEE-323-CALC-003 REV. 00 Page No. 4 4 5 5 6 6 8 9 9 # of Pages 4 18 9 ENERCON Excellena-Every profec Every day. 1.0 Purpose and Scope CALC Documentation of RU1 Emergenc NO. N EE-323-CALC-003 Action Levels >------------

---< REV. 00 The Duane Arnold Energy Center site is implementing the guidance of Revision 6 to the Document NEI 99-01 , " Development of Emergency Action Levels for Non-Passive Reactors ," which is the industry-developed methodology for emergency classification for the current operating fleet. Changes to the definitions of the condition for entry into the Emergency Action Level (EAL) RU1 result in the development of a new entry threshold value for this EAL. This calculation provides calculated threshold values for the following EALs (from NEI 99-01, Rev. 6). Note that NEI 99-01 designates abnormal radiological conditions as " AU ," NEE has adopted the " RU" designation permitted under the guidance. (1) Reading on ANY effluent radiation mon i tor greater than 2 times the (site-specific effluent release controll i ng document) limits fo r 60 minutes or longer. (2) Reading on ANY effluent radiation monitor greater than 2 times the alarm setpoint established by a current radioactivity discharge permit for 60 minutes or longer. This calculation uses the latest radiation monitor setpoints to determine the resultant EAL thresholds. Page 4 of 9 I ENERCON CALC Documentation of RU1 Emergenc NO. NEE-323-CALC-003 &cellence-Everyprojecr. Every day. Action Levels 1----------------< REV. 00 2.0 Summary of Results and Conclusions Values for the RU1 Gaseous EALs were determined and are shown below. Table 1 -Gaseous Effluent Setpoints Location Detector Offgas Stack Kaman 10 Turbine Building Vent Kaman 2 Reactor Building Vent Kaman 4 Reactor Building Vent Kaman 6 Reactor Building Vent Kaman 8 LLRPSF Building Vent Kaman 12 RU1 Threshold (µCi/cc) 1.97E-01 7.74E-04 6.00E-04 9.60E-04 9.60E-04 1.19E-03 Values for the Liquid Effluent RU1 EALs were determined and are shown below. Tabl e 2 -Liquid Effluent Setpoi n ts Location GSW RHRSW/ESW RHRSW Dilution Line* *RE-4 2 68 w as previou s ly kn own as the RHRSW Ruptur e D isk 3.0 References Equipment ID RE-4767 RE-1997 RE-4268 RU1 Unusual Event Level C S 1.53E+03 8.42E+02 1.06E+03 3.1 NEI 99-01, Revision 6 , " Development of Emergency Action Levels for Passive Reactors." November 2012. 3.2 DAEC Offsite Dose Assessment Manual (ODAM), Rev. 37. 3.3 Plant Chemistry Procedure PCP 8.3 , Alarm Setpoints and Background Determination for KAMAN Normal Range Monitors. 3.4 Plant Chemistry Procedure PCP 8.7 , Alarm Setpoints For Liquid Rad Monitors. 3.5 Technical Specifications , Section 5.5.4 , Radioactive Effluent Controls Program. 3.6 DAEC Emergency Plan, Section 'I', Rev. 27 Page 5 of 9 N EE-323-CALC-003 ENERCON CALC Documentation of RU1 Emergenc NO. *1-----------------i Action Levels txcellen~Every pr oj e c t. Every d ay. REV. 00 4.0 Assumptions It is assumed that the current setpoint for the Kaman 4 monitor is 3.00E-04 µCi/cc. The latest setpoint determination received is from 3/4/2016 which exceeds the 18 month frequency specified by PCP 8.3. 5.0 Design Inputs 5.1 The setpoint determinations from Attachment 2 and Attachment 3 , represent the latest responses at the associated gaseous and liquid effluent monitors. While the three most recent surveillances for each monitor are included for information, only the latest setpoint is used to determine the EAL threshold. It should be noted that the " RM" equipment designations are equivalent to the "RE" equipment IDs. 5.2 The gaseous effluent equipment ID number , monitor common name and range are taken from DAEC Emergency Plan Section "I" and ODAM Figure 3-1 , and are presented in Table 3. Table 3 -Gaseous Effluent Design Inputs Monitor Monitor Location Common Name Equipment ID Range (µCi/cc) Offgas Stack KAMAN 9/10 RE-4176, RE-4175 1 E-07 -1 E+05 Turbine Building KAMAN 1/2 RE-5945 / RE-5946 1 E-07 -1 E+05 Vent Reactor Building KAMAN 3/4 RE-7645 , RE-7644 KAMAN 5/6 RE-7647 , RE-7646 1 E-07 -1 E+05 Vent KAMAN 7/8 RE-7649, RE-7648 LLRPSF Building KAMAN12 RE-8801 1 E-07 -3E-01 Vent 5.3 The liquid effluent equipment ID number , and range are taken from ODAM Table 1-2, and are presented in Table 4. Table 4 -Liquid Effluent Design Inputs Location Equipment Monitor Range ID (cps) GSW RE-4767 1 E-01 -1 E+06 RHRSW/ESW RE-1997 1 E-01 -1 E+06 RHRSW Dilution Line RE-4268 1 E-01 -1 E+06 Page 6 of 9 **~ I I ENERCON &cellence-Every project. Every day. 6.0 Methodology N EE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. Action Levels *1------------------, REV. 00 The alarm setpoint of a radioactive noble gas effluent monitor is calculated on the basis of whole body dose equivalent rate offsite of 500 mrem/yr per the ODAM. The alarm setpoint for liquid radwaste effluent line provides automatic isolation when 10 times the water effluent concentration listed in 10 CFR 20 Appendix B , Table 2 , is being exceeded in the unrestricted area per the ODAM. These setpoints are in accordance with Technical Specifications limits specified in 5.5.4b and 5.5.4g. This calculation considers historical setpoint determination for gaseous release (PCP 8.3) and liquid effluent (PCP 8.7). The latest three setpoints for each monitor were reviewed. Due to the high variance for some of the monitors , the latest alarm setpoint is used to determine the EAL thresholds. Page 7 of 9 NEE-323-CALC-003 ENERCON CALC Documentation of RU1 Emergenc NO. ------------------< Excellence-Ev<ry prof ea Every day. Action Levels REV. 00 7.0 Calculation 7.1 Gaseous Setpoints Plant Chemistry Procedure PCP 8.3 is used by Chem i stry Technicians to calculate setpoints for building vent KAMAN monitors at least once every 18 months. The three latest setpoint determinations for each location are shown in Attachment 2 for information. It should be noted that where the original PCP 8.3 setpoint calculation sheet is unavailable , the value is taken from the associated monitor calibration procedure. Thresholds co r responding to the latest setpoints are calculated and presented here. For example the latest PCP 8.3 setpoint for Offgas stack is 9.84E-02 µCi/cc. This value is doubled to 1.97E-01 µCi/cc to correspond to the RU1 threshold. The remaining threshold values are shown in Table 5. Ta bl e 5 -Gas eo us Effluen t Set points a n d Thr e sh o lds Location Detector Latest PCP 8.3 RU1 Threshold Setpoint (µCi/cc) (µCi/cc) Offgas Stack Kaman 10 9.84E-02 1.97E-01 Turbine Building Kaman 2 3.87E-04 7.74E-04 Vent Reactor Building Kaman 4 3.00E-04 6.00E-04 Vent Reactor Building Kaman 6 4.80E-04 9.60E-04 Vent Reactor Building Kaman 8 4.BOE-04 9.60E-04 Vent LLRPSF Building Kaman 12 5.95E-04 1.19E-03 Vent 7.2 Liquid Setpoints As a result of variability in the isotopic mix of rea c tor water , background radiation levels and detector efficiencies , the calculated liquid effluent setpoints will fluctuate over time. Chemistry Technicians perform effluent liquid radiation monitor setpoint calculations at least once per 18 months with guidance provided by Plant Page 8 of 9 ENERCON Excellence-Every pro/ecr. Every day. NEE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. Action Levels -t---------------; REV. 00 Chemistry Procedure PCP 8.7. The three latest setpoint determinations for each location are shown in Attachment

3. It should be noted that where the original PCP 8. 7 setpoint calculation sheet is unavailable, the value is taken from the associated monitor calibration procedure.

Thresholds corresponding to the latest setpoints are calculated and presented here. For example the latest PCP 8.7 setpoint for the RHRSW Dilution Line is 421 cps. This value is doubled to 842 cps to correspond to the RU1 threshold. The remaining threshold values are shown in Table 6. Table 6 -Liquid Effluent Setpoints and Thresholds Location GSW RHRSW/ESW RHRSW Dilution Line 8.0 Computer Software None. 9.0 Impact Assessment Latest PCP 8.7 RU1 Threshold Setpoint (cps) (cps) 7.65E+02 1.53E+03 4.21E+02 8.42E+02 5.30E+02 1.06E+03 This calculation is based on " realistic" conditions for the purpose of declaring EALs , rather than typical conservative " bounding" type design basis analyses. The calculation documents the order of magnitude setpoints to assist Operations and Emergency Response personnel in determining an unusual event in accordance with NEI 99-01 Rev. 6. Page 9 of 9 ENERCON Excellence-Eve ry projec E v ery da y. Attachment 1 CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS 1 CALC NO. REV. GENERAL REQUIREMENTS

1. If t h e calculat i on is be i ng performed to a client procedu r e , is the pro ce dure being us e d the latest rev i s i on? The calculation is be ing prepared to ENERCON's procedures. 2. Are th e proper forms b e ing used and are they the latest rev i sion? 3. Have the appropriate client review forms/checklists been comp l eted? The calculation is being prepared to ENERCON's procedures. 4. Are all pages properly ident ifi ed with a calculation number , ca l cu l ation revision and page number consistent with the requirements of the client's procedure?
5. Is all i nformatio n l eg i ble and reproducible?
6. I s the calculation presented in a logical and orderly manner? 7. Is there an e x isting calculation that should be revised or voided? This is a new calculation to support imp l ementing NEI 99-01 Rev. 6 8. Is it possible to alter an e xi sting ca l culation instead of preparing a new calcu lation for t hi s situation?
9. If an e x isting calculation is being used for design inputs , are the key design inputs , assumptions and engineering judgments used in t hat calculation valid and do they app l y to the ca l culation revision being performed. 10. Is t h e format of the calculation consistent with applicable procedures and e x pectat i ons? 11. Were design input/output documents properly updated to reference this calculation?
12. Can the calculation logic , methodology and presentation be properly understood without referring back to the originator for clarification?

OBJECTIVE AND SCOPE 13. Does the ca l cu l ation provide a c l ear concise statement of the problem and objective of the calculation ? 14. Does the calculation provide a c l ea r statement of quality classification?

15. Is the reason for performing and the end use of the calculation und erstood? 16. Does the calcu la t i on provide the basis for information found in the plant's license bas i s? 17. If so , is this documented in the ca l c ulat ion? 18. Does the calculation provide the basis for information found in th e plant's design basis documentation?

Page 1 of 4 NEE-323-CALC-003 00 YES NO N/A D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D Attachment 1 CALC N EE-323-CALC-003 JI ENERCON NO. CALCULATION PREPARATION &celle n c~Evt.ry pro j e cr. E v ery da y. CHECKLIST REV. 00 CHECKLIST ITEMS 1 YES NO N/A 19. If so , i s this documented in the calculation? D D 20. Does the calculation otherwise support information found in the plant's design basis D D documentation?

21. If so , is this documented in the calculation?

D D 22. Has the appropriate design or li cense basis documentation been revised, or has the D D change notice or change request documents being prepared for submittal? DESIGN INPUTS 23. Are design i nputs clearly identified? D D 24. Are design inputs retrievable or have they been added as attachments? D D 25. If Attachments are used as design inp uts or assumptions are the Attachments D D traceable and verifiable ? 26. Ar e design inputs clearly distinguished from assumptions? D D 27. Does the calculat ion rely on Attachments for design inputs or assumptions? I f yes, are D D the attachments prope rly re ferenced i n the calcu la tion? 28. Are input sources (including industry codes and standards) appropriately se l ected and D D are they consistent with the quality classification and objective of t h e calculation?

29. Are input sources (including industry codes and standards) consistent with the p l ant's D D design and license bas is? 30. If appl icable , do design inputs adequately address actual p lan t conditions? D D 31. Are input values reasonable and correctly applied? D D 32. Are design input sources approved? D D 33. Does the ca lculation reference the latest revisio n of the design input source? D D 34. Were all applicable plant operating modes considered? D D ASSUMPTIONS
35. Are assumptions reasonable/appropriate to the objective?

D D 36. Is adequate justification/basis for all assumptions provided? D D 37. Are any enginee ring judgments u sed? D D 38. Are engineering judgments clearly identified as such? D D 39. I f e ngin eering judgments are utilized as design in puts, are they reasonab l e and can they be quantified or substantiated by reference to site or industry standards , D D eng in eering pr inciple s, physical laws or other appropriate criteria? Page 2 of 4 ENERCON Excellence-Ev*ry pro}ttr. Emy do~ Attachment 1 CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS 1 CALC NO. REV. METHODOLOGY

40. Is the methodology used i n the calculation described or impl i ed in the plant's licensing basis? 41. If the methodology used d i ffers from that described in the plant's licensing basis , has the appropriate license do c ument change not i ce been initiated?
42. Is the methodology used c onsistent with the stated objective?
43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION
44. Are equat i ons used in the calculation consistent with recogn i zed eng i neer i ng practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly?
48. Have adjustment factors , uncertainties and empir i cal correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?
51. Have the requi r ements of CSP 3.09 for use of computer codes or software languages , including verification of accuracy and applicability been met? 52. Are the codes properly i dentified along with source vendor , organization , and revision level? 53. Is the computer code appl i cable for the analysis being performed?
54. If appl i cable , does the computer model adequately consider actual plant conditions?
55. Are the inputs to the computer code clearly identified and consistent with the inputs and assumptions documented in the calculation?
56. Is the computer output clearly identified?
57. Does the computer output clearly identify the appropriate units? Page 3 of 4 NEE-323-CALC-003 00 YES NO N/A D 0 D D D 0 0 D D 0 D D 0 D D D D 0 0 D D 0 D D 0 D D 0 D D D 0 D D D 0 D D 0 D D 0 D D 0 D D 0 D D 0 D D 0
58. 59. ENERCON Exce l lencr-Ev e ry pro j ec r. E v ery day. Attachment 1 CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS 1 CALC NO. REV. Are the computer outputs r e asonable when compared to the inputs and what was expected?

Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results? RES UL TS AND CONCLUSIONS

60. Is adequate acceptance criteria specified?
61. Are the stated acceptance c riteria consistent with the purpose of the calculation , and intended use? 6 2. Are the stated acceptance cr i teria cons i stent with the plant's design basis , applicable licensing commitments and industry codes , and standards?
63. Do the calculation results and conclusions meet the stated acceptance criteria?
64. Are the results represented in the proper un i ts w i th an appropriate tolerance , if applicable?
65. Are the calcu l ation results and conclusions reasonable when considered against the stated inputs and objectives?
66. Is suffic i ent conservatism applied to the outputs and conclus i ons? 67. Do the calculation results and conclusions affect any other calculations?
68. If so , have the affected calculations been revised? 69. Does the calculation conta i n any conceptual , unconfirmed or open assumptions requiring later confirmation?
70. If so , are they properly identified?

DESIGN REVIEW 71. Have alternate calculat i on methods been used to ver i fy calculat i on results? No , a Des i gn Review was performed. Note: N EE-323-CALC-003 00 I YES I NO I N/A I D I D I IX] I D I D I IX] I I I I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I D I IX] I D I D I D I IX] I D I IX] I D I D I D I rgi I I I I D I D I IX] 1. Where required , provide clarification/justification for answers to the questions in the space provided below each question. An e x planation is required for any questions answered as " No' or " N/A". Originator: Jay Bhatt 12/12/17 Print Name and Sign Date Page 4 of 4 v O ll f =?:i Y1 NEE-323-CALC-003 Attachment 2 Page 1 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 14 of 1 4 RANGE MONITORS ATTACHMENT 2 KAMAN OFFGAS STACK GASEOUS DETECTOR HI HI SETPOINT 1 , Sampl e 1.0. K/o (W\-Rfl'J~

2. S ampl e N o _..:_n..:;_;-SSi:;...=;,..,;,,.

lo0=,.=..~:,---,....-, ,----3. Sample Date 8-3o*l7 4. s a,wM'T i me _ _.0 3c..:sy:...4-. _____ 5. MWT ____ l...,_"!_o\o..;;;c_,, __ 6. Count Dat e g-}c-,, *l' *~ 7. Count T i me 0"'1 1;r: t:l:"" 1"1 8 Mon i tor Re a di n g (µC i/cc} -=?l:l c; '* 6 7 7o e*7 9. Pr o cess Flow Rate (CFM) £, 17 e' ~T;o ,ooo 10. Sampl e Volu m e (ml) '{. SO e *1 \I 1s. 1: k , = L ki 15b. = L (ki

  • DFS I) 1.0 X 16. Lim i t= L=-F 1 2 Dose Factor Stack . mrem s ec yr-µC i 4.09E-5 1.81E-4 1.91E-3 2.84E-4 6.97E-4 1.08 E-3 3.39E-4 3.61 E-5 1.3 2 E-3 1.0SE-3 .. ./ ( Ill ) = ( #!S a ) L k, = L (k .* O F ( k , X DFS i f.57-e-l O 14. 8kg = instrum e nt backgr ou n d 8kg = '2, 15" C' µC l/c c
  • These dos e factors are from ODAM: s t ack re l ease at a d i s t ance of 12 60 m e ters NN W of DAEC £ Arb i trarily set equal t o X e-1 38 15a. I, , 1 k ,
  • OF .. ) /52 e-1° 1/" I. y I e.*' 9.2B e -z..v-= /. 5'2 1: .10 1.06 x (T h e L e s s of #1 5b OR 34 36) f/9 ) 1.0 6 Umit = L = -----) ( ( I 0 1 f>A> ) = 't.8~ e--z.. / '}
  • g '-1 e.. -"'2.-µCi/cc ,/' .,Z.. 17. H i H i ALARM ::: A x ( #16 ) = (1.0){ 't .o e ) = Th e r ad i oact i v e gas now co rr e sp o nd i ng to t he HI H i s e t po l nt: Pe rfo rmed by:. __ ~=-....;..::,:

~;..._ ___________ Dat e: g -3° --,7 "; r~ 0 t, 8* "':l: :-1-\ I nd e pendent Ve ri ficat i on by. :...:q. ,.3 ~~.'::L Da t e:1 J 1 j _) 114 N E E-323-CAL C-0 0 3 Atta c h me nt 2 Page 2 of 1 8 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 14 of 14 RANGE MONITORS ATTACHMENT 2 KAMAN OFFGAS STACK GASEOUS DETECTOR HI HI SETPOINT 1 Sample I.D Kl O Cha.r M~r 3 Sample Date ;) -d (? -J lo 4. Sample Time 2. Sample No. j l, -J 5>'! 0 )5~0 5.~ 7917 7. Count T i me I '5 '5 6 Count Date :a -~(p I lo 8. Mon i tor Reading { C i/cc) (i; ,IL, I e -7 9. Process Flow R--a-te_(_C_,_FM-=-)~:.._,)-Q-,-0-0_0 ___ _ 10. Sample Volume (ml) 'i 5J 0 00 rn L Flow meter ID #_=l---=-7...,.J'-q_. ____ _ Isotope 1 1 u C l/ml k , 12 Dose Factor Stack mrem sec r-µC i Ca l Due Date I O -G -17 13

  • These dose factors are from ODAM. stack release at a d i stance of 1260 meters NNW of DAEC L;N~13~_::::...L.J.!...J....,;.~..!.l.l._.:1:.:.!

.0~8::E-~3-*

  • ____ --.11..1..Ll"-=;~~
    • Arb itrarily set equal to Xe-138 1 5. Lk , = I, r:s e -ry . DFS. i, )3 e -10 i.: ki #15 15 b. i.: (ki
  • DFSi) = ( #15a 1.06 x L 16. Lim i t-= L = -F--i.:-k,-.-0-F-S._)_ = Lim i t= L e l./3 e-7 _ / .I 3 e-/O -/,()()tL 3 1.06 x (The Less of #15b OR 3436) #9 ) :i,-:lG-/b ) = Q, I ek:: /,00 e-t 1.06 ) ( /000 /tJtJoO 17. H i H i ALARM = Ax( #16} ={10)( j.06 e-/ )-/.O(e e-f iJ C i/cc The rad i oact i ve gas flow corresponding to the HI Hi setpomt: Perto,medby

~k/~o,te ,;/-d-/,-/f; AAA/\ ~-......t i. -/, D t * :i-iG-1~ Independent Verificat i on by: :::,µ'iz:"s;\;: Cf:'.'. a e._::___:=---:.=- --7 5 .t . *'.: NEE-323-CAL C-00 3 Atta c hm e n t 2 Pag e 3 of 1 8 DAEC SURVEILLANCE TEST PROCEDURE STP NS791013 TITLE: K10 CALIBRATION Page 10 of 68 DUANE ARNOLD ENERGY CENTER Prerequisites Performance Date: , ~, w {L, io t '--1 PREREQUISITES 6.0 6.1 Make a copy of the EMS database display. Rev. 17 6.2 From the Chemistry Supervisor or des i gnee, obtain and record the following alarm setpoints. (Values will be used to confirm AS FOUND data.) 6.2.1 HI 8.(,Q ~-k µCi/cc 6.2.2 HIHI 3, bl..\ 8 -l µCi/cc 6.3 From the Chemistry Supervisor or designee , obtain and record the desired New HI a l arm setpoint. (Value will be used for the AS LEFT setpoint.) 6.3.1 Desired HI a, bQ f ...-b µCi/cc 6.4 Verify Sr-90 0.09 µCi source (UID #687) is available for use. 6.5 Verify the KAMAN/EMS 'lbrtime and the HPGe System Computer time are within +/- 30 seconds. NOTE ' ' I ' 1 ' When Kaman point sources are decay corrected, decay is to be from the date marked on the source to the test date. 6.6 Decay correct permissible range (8.5E4 -9.0E4 cpm) for UID #687 and record below. PERMISSIBLE DECAY CORRECTED RANGE: .:?. 8 0 f'-( cpm to Y .I I E' 'i cpm ; . ' INITIALS (CHEM) (CHEM) (CHEM) --b (CHEM) ..lb (CHEM) ..(~ 'fV1 (CHEM) .¥r-. (CHEM) (IV) i-t 047cl0(, 1 NEE-323-CAL C-003 Attac h ment 2 Page 4 of 18 P LA N T CHEM I STRY PROC ED URES 320 0 MANUA L PCP 8.3 AL A R M SE T POINTS AND BACKGROUND R ev.3 3 DETE RMINATION FOR KAMAN NORMA L Page 13 of 14 R A N GE MONITOR S AT TACHMENT 1 VE N T M O N IT ORS G A SE OUS DETECTO R HI HI SETPOINT 1. Samp l e 1.D. J<..-.:)_ CIAa-.r v~--..a.r 2. Sample No 3. Samp l e Date s;*. c::;

  • 1-i 4. Samp l e Time j.>'-(l-fl.[( 0 5. MWT ~i9~1 ~I __ _ 6. Count Date __ '5;.__--"'-5_ ...... n--'---------
7. Count Ti me -:-:::1'-::Y~I,,.,[

________ _ 8. MonitorRe a ding(µCi/c c) ,.,oG;_--7 9. ProcessF l owRate(CFM) 4~c,c 2 () 1 1 Iso t ope k , *J Ci/mL Xe 133 Kr85m K r 88 Xe 135 Kr87 Xe 138 Xe 135m Xe 1 33m A r 41 N 13 '1, I l i:-; -<-( 16.'" k; = t...L1 l l::: J"I 16b I k , ( I l k ,

  • DFV ,) ( 1.06 17. Li mi t = L = (F)(X I (,)) 12 Dose Fac t o r Vent DFV; mrem m 3 y r µCi 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 .. 16a. L (k , DFV ,) = 4 .1 L #16 ) y;ll ~A l 10. Samp l e Vo lum e (ml) -f 7 Cn t) 13 l Product k; x DFV , '-l .1 b f * .'. E-.C I 13 Flow Mete r ID#_L_-_7:....2

=-C:X+----Ca l Due D a te ( 0 --t.J(, -{ ] 14. Bkg = l n~trume n tJa-jround Bkg = I. 1\'.i e -µCi/c c 15. X/Q = 4.3 x 10*0 sec/m J (atmosphe ri c d i spe r sion) ** Arbitrari l y set equa l to Xe-138 E-~ = ---= '-' \-6 e-#16a ) X I ki 1.0 6 I (ki

  • DFVi) x (The lesser of #1 Sb OR 1.8 1 E-4) = ( #9 )( #1 5 1.06 Li mit= L = ( l l oc l) )( '{::, i: -b ) ei.1 3.v 1 8. H1H i ALARM = Ax( #17 ) ={1.0)( 3.~1 E:-L\ )= J.R) t"-::{J C i/cc "-The rad i oa c t , ve gas flow corresponding to the Hi H i setpo in t: Pe r formed by;_~_u-..,,_-'-

___________ Date: 05 -o.f" -(] Independent Verification by: ___ ~/?A ___________ _ Date: 5: 5 -J 7 76 NEE-323-CALC-003 Attachment 2 Page 5 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample LD. Kcro9Y) 2 2. Sample No. --'""'16:c--- ..... '3.....__,':f:,_('::---=:-----

3. Sample Date '°l. -s*-IG 4. Sample T i me Jr I;> 5. MWT (11( 6. Count Date _....,2-::;._-..c.5_-_.l=y'----------
7. Count Time --,--,-~ll~
    • _\_<"1~=-------
8. Monitor Reading (µCi/cc) j.G.S' e -8 9. Process Flow Rate (CFM) *72. c.OC 11 Isotope k , µCi/ml Xe 133 ""' \,t_ ik, .* l:1: ....I Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 *,1 N 13 c .ac;-(" -'l 16.' k. = ,.o5c -*i 16b. L k; L(k,
  • ocv.} 1.06 17. limit=L= (F)(X I Q) L i mit= L = ( ,2,00.:... 12 Dose Factor Vent DFV 1 mrem m: yr u Ci 294 1.17E3 1.47E4 1.81E3 5 92E3 8.83E3 3.12E3 2.51 E2 8.84E3 8.83E3 ** -._.,..;..=4-=...;;;....

___ _ 10. Sample Volume (ml) 45.o:o 13 Product k, x DFV , ,,,,.1 ,._ *.1 1J. I ,,., (.i,.L3 e-5 Flow Meter ID# L {'2 9 Cal Due Date: \() 11 14. 8kg = Instrument background 8kg = G,, '3S e-'T µCi/cc 15. X/Q = 4.3 x 1 o-<> sedm 0 (atmospheric d i spers i on) ** Arbitrarily set eq u al to Xe-138 16a. l: (k; DFV;) = G. -L~~-s #16 ) <' { ,0-'i <: -I #]6u ) C,. L'!. e-5 == X z.: k i L (ki

  • a=\/i} 1.0 6 )( 'i .3 }(. IC -l.) 1 = *3.0 1 e-\.{ 1.\3,:, ) o_ 1 8. HiH i ALARM = Ax( #17 ) =(1.0)( 3 o1el.{ )= 3,'g7e-'t-

µCi/cc The rad i oact i ve gas flow corresponding to the Hi H1 setpo i nt: Perronned by ,uJj -fl, rvlJ' Date: __ 2_-_5"_--_I_,_ Independent Ve nf1c ation by: _________ +-(s:-'7"-'-- --"'"-'--L-,4.-___ Date: __ z_-_s_-_, _c.,_ 98 NEE-3 2 3-C ALC-003 Att a chment 2 P age 6 o f 1 8 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPO IN TS AND BA C KGRO U ND Rev.33 DETERMINAT I ON FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATT AC HM ENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. _,_K-=c..=--""'c;.,.,,='-"-~d..- ______ 2. Sample No. / 4-J.(p C 1 3. SampleDate 5-&:-,~-4. SampleTime 12.:31_-13:C} 5.MWT !107 6. Count Date 5 -k'* I~ 7. CountTime /~ Z. '1 8. Monito r Reading (µCi/cc} J. .. J f{ e.. * -Z 9. P r oc e ss Flow Rate (CFM} 7J. O o O 10. Sample Vol u me (ml} 'i'i Yo D 1 1 1 2 Isotope k; Dose Fa c tor Ven t µCi/ml DFV 1 !D!fil!l m 3 yr µCi Xe 133 IVO Al.#! 2 9 4 Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.5 1 E2 Ar41 IV o,.J (. 8.84E3 N 13 ,.s"I~*" 8.83E3 ** 16. I k 1 = 1. \"'f~-, 16a. L (k; DFV;) = 16b. I. k t ( #1 6 ) '. 'r'1c. *" = I:(~* DFV ,) ( #16 a ) ,.*u.c.*f' 1.06 X I. ki 17. Lim i t= L= (F)(X IQ) I. (k i

  • DFVi) ( 1 3 Product k t X DFV; -"V<Jtvl=..

I I I I I I ,vo-e '6 c;;.1 ** ,-,.n.,.s F l ow Meter ID# __ Ca 1 Due Dat e: __ 7_ .. _2._2_-~I_'-_ 1 4. Bkg = Instrument backtound Bkg = /, /0 ~... µCi/cc 15. X/Q = 4.3 x 10-<1 sec/m~ (atmospher i c d i spersion}

    • Arb i trarily set equal to Xe-136 /,/'Sc.*"'

1.06 #9 )( #15 ) x(Thelesserof#16bOR 1.8]E-4) = Lim i) = L

  • I.0 6 I-{ * " ( /, / t * 'l ) = 3 , \-1 C. .. '-I ( 1'). ooc) )(
  • C. ) * ., 3 U"J .~, . 1 8. H i Hi ALARM= Ax ( #17 } =(1.0)( 'J,~1t.*., }= **
  • C. µC1/cc The rad i oactive gas flo w corresponding to the Hi Hi setpo i n t: Perform e d by: ___ *l_\_1t-_\

\_':'\ __________ Da t e: S' .. {( ... I '1 \. _____.,I~ /'\/V\ -. . . 5 11£ Independent Verificatio n by: _ ___..~~ ......... ~-'--' r T_ _________ Date: -o" n NEE-323-CALC-003 Attachment 2 Page 7 of 1 8 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample 1.0 kawie111 j 2. Sample No. //o-155t 3. Sample Date _3-:L-JIP

4. Samplenme

/JL--/7 -----'-::5-:. MWT-c:-:-:~-T'./q.,...,....,,"'TJ-- 6 Count Date 3:4 -IG 7. Count Time -=1:,lL1-:,5,......-kl.._,..,r-=-----.:-:----- 8 Mon i tor Reading (µCi/cc) Lf I l/tp e. -'3 9 .. Process Flow Rate (CF M) ! 3.: 0 0? 10. Sample Vo lume (ml) -~--..S;:,-()'-'O;...;Q_ ___ _ 11 12 13 Isotope k, Dose Factor Vent Product ;.1 C1/ml DFV , mrem m J k , X DFV , yr 1,1 Ci Xe 133 1\0/b II " 294 l'\ONe. \ ""'m~-, rJ Kr85m 117E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2 51E2 Ar41 11 884E3

  • 1 / N 13 G,,1 I e-'l 8.83E3 ** f:;, '-fT/p-Cj 16.~ki = (o.Jqe,-q 16a. l: (k. DFV 1 l = ~* 1./ 7P-&, . Flow Meter ID# L '"J 'd-. 'l Ca l Due Date: /Of Gf /7 rJ 14. Bkg = Instrument b'ground Bkg = Co,/q t! -µC i/cc 15. X/Q = 4.3 x 10"' sec/m j (a tmosphe ric dispers i on) ** Arb itrarily set equa l to Xe-138 1sb l:k. = < m 6 > = toJqe-<:f

_ t.13e..-~ l:(k ,. DFV ,) #16a ) S:'1'1e-~-I.06 x L ki 1.06 17. L1m i t=L= x(Thelesserof#16bOR 1.81 E-4) = (F (X I Q) L (ki

  • DFVi ) ( #9 ( #15 ) Lim i t=L =f-'f I.0 6 l/°?;, fo )i/?;,e_-'-()

= 3,00e-tt ~O DO )( I (2..-V 18. H i H i ALARM = AX ( #17 ) = {1.0) ( 3,eo e -t.,/ ) = '::>,OD e-L{ µCi/cc The uid 1oact i ve gas flow corresponding to the H i Hi setpoiht: Pe*onnedby. ~\ k ' (,i,,~te* 3,-l-j-{o Independent Verificalion by: '9 .. f3 -J U;;.. " Date* '3,-Y -(;;, 14 NEE-323-CAL C-00 3 Att ac hm e n t 2 PLANT CHEMISTRY PROCEDURES 3200 MANUAL .. ALARM SETPO I NTS A N D BACKGRO U ND DETERMINATION FOR KAMAN NORMAL RANGE MONITORS ATTACHMENT 1 Pag e 8 of 18 PCP 8.3 Rev. 33 Page 13 of 14 1. Sample I.D. 3. Sample Date 6. Count Date --+--=--+---=-+:;--=--=--,:----

7. Count Time ---'-4--,,,:."'4!.-.,,..,-=---:-:::--,--,~.!.::....,;.--

/'f ____,=--4-....::+-..1...:...-,__ __ 9. Process Flow Rate (CFM) ~(1 11 Isotope k; µCi/ml Xe 133 -Kr85m Kr88 ;s;: Xe 135 \"' Kr87 Xe 138 l~ Xe 135m Xe 133m Ar41 N 13 _\\ ' 16. I k; = ..., JJIA-12 Dose Factor Vent DFV; mrem m: yr µCi 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. Z: (k, DFV;) ;:: ilJ 10. ~;mple Volume (ml) 'f'J-~ Product k 1 x DFV; C::... --R "" ~-'tj' Flow Meter I D# __ L_*---~....,__,.,p_CJ __ Cal Due Date: __ t/...._. _.__J/ (.___,--'!~::/_

14. Bkg ;:: lnstru.r;ient back;g;und Bkg = :;: '/ 5' £--µCi/cc 15. X/Q = 4.3 x 10-ti sedm~ (atmospheric dispersion)

"* Arb i trarily set equal to Xe-138 I k , C #1 6 ) = >J/k-1 sb. L(ki

  • DF-V,) ( #l6a ) ---;;w = 1.06 x L ki 1.06 17. Lim i t=L= -----------x(Thelesserof#16bOR 1.81E-4) = (F)(X IQ)" L (ki
  • DF-Vi ) ( #9 )( #15 ) Limit=L= ( '(3~0f/ 1.~t '(.3-£-~)

(/,{?(G-f) = 18. Hi Hi ALARM =.Ax( #17 ) =(1.0)( f. f30 e-'f )= If ~C-~Ci/cc The rad i oactive gas flow corresponding to the Hi Hi setpo i nt: Performed by: 5ft:f: Date: Independent Verification by: ~9:YY\ /Z~ct-lF Date: (]_ -11 ;I <<


****-------

    • ---------------------------------------------

N E E-323-CALC-0 03 A tta c hm en t 2 Page 9 o f 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL

  • PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.31 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPO I NT 1. Sample I.D. /<~'I -I"? l.'59~cJc:.( 2. Sample No. I 3 -/15 1 3. Sample Date }-/-!,.} 4. Sample Time 6. Count Date 3 /3 ___ l;;..;;3 J'-o;:;;..
  • ----5. MWT 13.3 8 7. Count Time 8. Mon i tor Reading (µCi/cc) /, ?G .r--IS 9. Process Flow Rate (CFM) 10. Sample Volume (ml) 13 5....7'1 ~a.:t~-,-, > 9'3,oo.:> '/, /'6 E..., 11 12 Isotope k; Dose Factor Vent Product µCi/ml DFV 1 F l ow Meter ID# L 71.,,D --------mrrun m l kl X DFV; yr µCi Cal Due Date: S-7-/y Xe 133 ,I\.JDN fl.. 294 1-)c.,,,..;{+/-

Kr85m '1:.D~chE-1) 1.17E3 J..:~,tf-1 <;*-I Kr 88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar 41 N 13 'l 'J' 16.:[k; = /)} I l'r I k 1 ( 1Gb. °2:(k 1

  • DFV,) ( 1.47E4 1.81 E3 5.92E3 8.83E3 3.12E3 2.51 E2 8.84E3 8.83E3 .. 16a. L Ck , DFV;) = N/4 #16 ) /Y /.-9-= /Vlr #16a ) ' = 14. 8kg = Instrument background Bkg = S, '7 z. ~-, µCi/cc 15. X/Q = 4.3 x 10-e sec/m 3 (atmospheric d i spersion)
    • Arbitrarily set equal to Xe-138 A//,r l.06 X L k i 1.06 x (The lesser of#16b Oe= 17. Limi t = L = I (F)(X IQ) (ki
  • DFVi) ( #9 )( Limit = l = l .0 6 ( / c.,? E. 4 ( "l 300o )( ,;, ."?:,Ytv-)
  • I #15 ) -4 ) = 1.1. -io E 18. Hi Hi ALARM = Ax ( #17 ) = (1.0) ( '-/. 'l/Jf Li d. oa -;. ) "'_-_10 __ ___ µCi/cc The r ad i oact i ve gas flow corresponding to the Hi Hi setpo i n t: 19. Q = 472 (A * #17)#9 .. Q: 472 (1.0) ( '-/, SJo £_ 'I ) ( q DD C> ) \ Q = ..q, I I~ ;,* ifo' µCi/sec 2.., II £--4 ....._c:.*./-;;u

.... Performed by: £<1J~ /)'ie( Date:.-=-3---'-/ -_1_.3c...._ __ Independent Verification by: ___ _,,_ffi--,L__,__-4-'t...;.:_::...A---=-- ________ Oate: s-1-1~ NEE-323-CALC-003 Attachm ent 2 Pag e1 0of18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT V I. C t 1--~-~LI l 1. Samp l e I.D. ,..__ .. v=, ,-,.,.,.,.. 2. Sample No. _"< ____ -=---:------

3. Sample Date , I -o
  • l 4' 4. Sample Time I '5 I Y 5. MWT __,_lq-'-'-1 .._( __ _ 6. Count Date _lc...:.1_-_..jc...:o==-

-...:...' ::::c.'=> _______ 7. Count Time _ ..... i'7 .... ";>...__,,__,-- ______ _ 8. Mon it or Read i ng (µC t/cc) ,2 ~E.-*1 9. P r ocess Flow Rate (CFM) -~:..,:3:,,. 0::.......;_e_C:;..,)----- 1 1 12 Isotope k, Dose Factor Vent ;;Ci/ml DFV; mrem m 3 yr µC 1 Xe 133 ':'(1.,,...s,_ -,:r,4i,,.o

r. J294 Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81 E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.51E2 Ar41 8.84E3 N 13 \ ... 8.83E3 ** 16.~K; = rvlA-16a. I: (k; DFV ,) = I: k. #16 ) 16b. = == 1:(k ,
  • DFV ,) ( ill 6u ) 1.06 X I: k:i 17. L im i t= L = I: (ki
  • DFVi) (F)(X I Q) 10. Sample Volume (ml) ':1~000 13 Product k, x DFV , f'{c,"4:'. ~,t-.(; . f"V"7A. F lo w Meter ID# L--7J. q Ca l Due Date. I D-G -I 1 b.J 1 1 . 4. 8kg = Ins t rument background 8kg = i .i.., -i 0 t µC lf cc 5. X/Q = 4.3 x 10"° sec/m:i (atmospheric d is persion)
  • Arbitrarily set equal to Xe-138 = "1-A 1.06 #9 #15 )( x (The lesser of f16b OR ~ly = ) 1.06 u Limit = L :: ( / . ¥" l <=.
  • I ( q C..">00 )( t.i.:,~ -& ) == 18. H i H i ALARM = Ax( #17 ) =(1.0)( 4.~o(:. L( )= 4-* CCO E:.
  • L{ µCi/cc The rad io active gas flow corresponding to the Hi Hi setpo in t: Performed by:. _________ >1;_......Sl._'-.:::,,_-

Date: ) I -'30

  • I~ ** '"/ -II-3-v--/l,-independent Verification by:._..::~:::__

______________ Oate:. _____ _ 77 N E E-32 3-CALC-003 Atta c hm e n t 2 Pag e 11 of 1 8 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. NSlOf \ bC::A. -lo 3. Sample Date L\ -\\er\ S 4. Sample Time 6. Count Date L\-ll..o-\S 2. Sample No. \ S -d,. ) ci S __;.l..;;;;lo..;;;C()"""'----~--

5. MvVT _._\9..L-'tc.LI

__ _ 7. Count Time -'-l~lo~I_Y~----=-----.c-----

8. Monitor Read i ng (µC i/cc) l.l OE-, 9. Process Flow Rate (CFM) -.,..,..-9!~
  • .... ...,.o'--'o'-,>O

___ _ 1 0. Sample Volume (ml) Y., rj,S EL\ 11 12 Isotope k 1 Dose Factor Vent µCi/ml DFV; mrem m3 yr µC i Xe 133 ~Ž ,.1~ ... c.*. *1 294 Kr 85m 1.17E3 Kr88 1.47E4 Xe 135 1.81 E3 Kr 87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.51E2 Ar 41 8.84E3 N 13 ,/ 8.83E3 ** 16.I k; = µ\A 16a. I (k; DFV;) = 16b. I: k , ( #16 ) I:(k ,

  • DFV ,) ( #16a ) 17. lim it= L = 1.06 X I: ki (F)(X IQ) I: (ki
  • DFVi) ( 13 Product k , x DFV 1 ~~q,e:/ I I I / ~\L Flow Meter ID# __ L_l_d._°{~

--Cal Due Date: ___ \ _0_-_(.o_-_\ I_ 14. Bkg = Instrument background Bkg = µC i/cc 15. XJQ = 4.3 x 1 o~ seclm-' (atmospheric dispersion)

    • Arbitrarily set equal to Xe-138 = t0 \4. 1.06 x (The lesser of #16b 06 = #9 )( #_15 ) L i m i t= L = I.0 6 ( UH E:. -) = i-\-:~Oc:.

-Y C <~(SiOOO )C '-\.3r;-i..c ) 18. H i H i ALARM =A x( #17 ) =(1.0)( L\5sOE.-L\ )= l....\.~D£-4 µC i/cc The radioactive gas flow correspond i ng to the Hi Hi set~oint: Performed by: Date: W-lea-\s=-lodepeodeol Vecif<aboo by , ~r oate: f-/p-(5 . I N EE-323-CALC-003 Attachm e nt 2 DAEC SURVEILLANCE TEST PROCEDURE STP T I TLE: K6 CALIBR A TION Page DUAffi: ARNOLD ENERGY CENTER Rev. Performance Date: q-la-1~ 7.15.6 Record the following AS LEFT v a lues: a. AS LEFT HI-HI ALARM SETPOINT (from Step 7.15.4): ~-1:.--13 4 .~OE,~ '1-~D e ~;, µCi/cc b. AS LEFT HI ALARM SET POINT (from Prerequisite 6.3.1 ): µCi/cc c. AS LEFT BACKGROUND (from Step 7.13.50 or 7.14.49): 7, ~4 E-7 µCi/cc 7.15.7 At the Kaman EMS IDT, verify the following has been correctly entered into the EMS database: a. HI-HI alarm setpoint (from Step 7.15.6.a) b. HI alarm setpoint (from Step 7.15.6.b) c. Background concentration {from Step 7 .15.6.c) 7.15.8 7.15.9 Update database values on the status board{nd in Labstats./ Attach completed setpoint calculation documentation (Step 7.15.4) to this STP. (PRINT I SIGN) Lo..rr-'tr -:1:s~c..s R ,~L-iarJ p~ Performed by: Date: Time: Page 12 of 18 NS791009 64 of 66 14 INITIALS lnit. NEE-32 3-CALC-003 4 o l :S Y: (p I (p Attachment 2 Pag e 13 of 1 8 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1 Sample I.D K<o Char: [Ylyy 2 Sample No I J-7:2.~~ 3 Sample Date lf-1'.3 -17 4. Sample Time )1. ~q 5. MWT __,_I 1..1.: 0:e.: O:__ __ 6. Count Date ----'~'-'--..._) }"'--..... 11....._ __ ~----7. Count Time --:-'-1 2.=S=......lf:--:::::----


8 Mon i tor Reading (u C i/c c) :B J(q e-9 9. Process Flow Rate (CFM) _9.........:3.:::

0::.:: 0::.:: 0:::__ ___ _ 1 0 Sample Volume (ml) _ _.'-1_71..:: 5':::..;;0;;..:0=-----1 1 Isotope ki µC i/ml Xe 133 1111, n.. *J . ..l.1..l Kr85m Kr88 Xe 135 K r 87 Xe 138 Xe 135m Xe 133m Ar41 N 13 *' 16.~ki = 'r',l}A I kJ ( 16b = I k..OFV ,) ( 12 Dose Factor Vent DFV , m 3 !Il.(fil!l. yr µC i 294 117E3 1.47E4 1.81E3 5.92E3 8.83E3 3 12E3 2.51E2 8.84E3 8.83E3 ** 16a. (I<; DFV 1} = #16 ) ~(I+-= #16a ) 13 Product k , x DFV , lnc.n..

  • 1 '.r . ..1 I j l rJ/A. = Flow Meter ID# t--1z. --------Cal Due Date: f o--I 1 14. Bkg = Instrument background Bkg = 1-f 81 e. -7 µC i/c c 15. X/Q = 4.3 x 10-<> sec/m., (atmosphe ri c d i spers i on) ** Arb i trar i ly set equa l to Xe-138 1.06 X L ki 17. Li mit= L =
  • DFVi) 1.06 ------x (The lesser of #16b OR 1 81 E-4) = #9 )( #15 (F (X I Q I (ki Limit= l = I.0 6 ( 1:i I e-'1 ) = ( 9 3 1 000 )( t.f , J;:,l lO-.) u -~ ) 1 8. H i H I ALARM = AX ( #17 ) = (1.0) ( -,.'~a e = u _Lj ,.! 'B O e µC i/cc The radioact i ve gas flow corresponding to the H i H I setpo i nt* Performed by*__:~~::(...~QaS,.., d---'='/3'-.~~

~"""'~::...: '--"'-~----Date .. _'1 ,_-_,_l,c_3 _-...._IJ~ Independent Verification by. ____ .-L~~=-=~-fi~ ~'---_::...

c....;.;;.

.=-_Date: L{ -\ -/ I 80 NEE-323-CALC-003 Attachment 2 Page 14 of 18 ' . P LA N T CHEMISTRY-P R OC E DU RES 32 00 MAN U AL PCP 8.3 ALARM SETPO INT S A ND B A CKGR OU ND Rev.33 DETE R MINAT I O N F O R KA MAN NORMAL Page 13 of 14 RANGE MO N ITO R S ATTACHME N T 1 VE NT MO N IT OR S G A SE OU S DETECTOR H I H I SETP OIN T 1. Sample I.D. i<'4M'll\ "ii 2. Sample No. _Is-_* ---~ __ 3_* _'i' ______ _ 3. Sample Date iD-i"-;& 4. Sample T ime I/ 3o 5. MWT /'1// 6. Count Date 1 0 ---S-t'.r 7. Count Time // 39 8. Monitor Reading (µCi/cc) 7,s-9e--41 9. Process F l ow Ra-te_(_C~F-M~) ~-q.,.,.-,3=-o:x;:,~ --=* ----10. Sample Volume (ml) --~--e_'f ____ _ 11 12 13 Isotope k; Dose Factor Vent Product µCi/ml DFV; mrem mJ k 1 x DFV , yr µCi Xe 133 rJ Mt ":zl/JYf', 294 ~tie'--Kr85m 1.17E3 ~,;i71h~-Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m . 2.51E2 Ar41 t:" 8.84E3 \ N 13 '{, t,]_ e _., 8.83E3 ** "1.61, e. 16.1:k i = t/./J') e-'-'1 16a. 1: (k; DFV 1) = if~ {J -S I: k; ( #16 ) 16b. = I:(k , , DFV ,) ( #16a ) 1.06 x L ki 1.06 17. Limit= L= ----(F)(X IQ) I: (ki

  • DFVi ) ( #9 )( #15 Flow Meter ID# __ '--_7_-z.,q ___ _ Ca l Due Date: JO-6 / 7 14. 8kg = Instrument background Bkg = -!.)3e -7 µCi/cc 15. X/Q = 4.3 x 10-ti sedm~ (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 x (The lesser of#16b OR 1.81E-4) = ) ,o~'b~l~ Limit= l = l.0 6 ( \,(*~e.-y (?'3"Cu )('(,3~-C, ) ) = :~ j,Obe,-'1
18. HiHiAlARM

= Ax( #17 ) =(1.0)( *,.t>o-e--'1 The radioactive gas flow corresponding to the Hi Hi setpo int: Performed by: ~-2_.oo,r .,_ Y ) = __ .,, __ ___ µCi/cc Date: Independent Verificat i on by: ______ s=_~_l:\-1_

  • _A---_______ Date: 10-B-IS 72 NEE-323-CALC-003 Attachment 2 Pag e 15 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPO I NTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Samplel.D. K..~""'1/\

1 2. Sample No. II.\ -2'1Cfl 3. Sample Date -j---Z.-'\---,j-- _-s_a_m-pl_e_T-im_e_ JI D 3 --'-----5-. MWT----,-=,-o--.-/-

6. Count Date LJ-z.. '1-1 'i 7. Count Time __ __.I..._I._/0'-----=------
8. Mon i tor Reading (µCi/cc) /. Z 2.. E -7 9. Process Flow Rate (CFM) <J 3 <)oO ...-:--10. Sample Volume (ml) 48 fuOO 11 12 13 Isotope k; Dose Factor Vent Product µCi/ml DFV 1 Flow Meter 1D# __ L_7_6_0 ___ _ !!!!filD.

m 3 k 1 x DFV 1 Ca l Due Date: __ S"_-_7_-_,4 ___ _ . yr µCi Xe 133 /Vl>fll k:.. 294 ,U()µe.. Kr85m :J.:?l)eA 7j p;eJ 1.17E3 r,,..k.,..-n'l"JeJ Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 16.Ik; = ,v/4-16b. 1: k 1-( I:(k

  • DFV 1) ( 1.47E4 . 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. I (k; DFV 1) = #16 ) = #16a ) ,v/4-' /1//.4-. 14. Bkg = Instrument background Bkg = A/(A-µCi/cc 15. X/Q = 4.3 x 10*b sec/m~ (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 . /4-IV 1.06 X 1: ki 1.06 17. Limit= L = (F)(X IQ) I: (ki
  • DFVi) ( #9 )( 1.06 _I( Lim it = L = ( I,~\ e. < l\ 3oc.>0 )( 'f.3 e~ ) 18. HiH i ALARM =Ax( #17 ) =*(1.0)( ¥.&e-'1 The radioactive gas flow corresponding to the Hi Hi se t point: /7/7~...i'A.
  • -Performed by: ladepeadeat Verif"'3tioa by #15 ) x(Thelesserof#16bOR 1.81E-4) = -l{ ) = 'f.J,o e v-. -'( ) = tf_ e µCi/cc v" Date: Date:

' 1 \ C l\ 0 t ~L '6 -C NE E-323-CALC-003 Attac h ment 2 Page 16 o f 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND R e v.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 1 4 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. K -I :l. C...k °'.,.. e,.._,r 3 Sample Date 4 -\ 7 4. Sample Time 2. Sample No. l 7 -J... (p 11;2..:i...


5-. M_wr ___ q_\ D---7. Count Time --"-'r 3'-Y,.._5-=--------

9. Process Flow Rate (CFM) 1 '3 o c c, 6. Count Date Lj -::i.o ~t 7 8. Monitor Reading (µCi/cc) ,;;:>_. t.., 1 E. <iS"' -~------11 Isotope k , µCi/ml Xe 133 'l o., .. 'T...C, , A+-Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 , , 16.!:ki = rv'IA 16 b. Z: ki ( = L(k ,
  • DFV ,) ( 1.06 17. li mit= L = (F)(X I Q) 12 Dose Factor Vent DFV 1 mJ .[!lliilll yr µC i 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. (k 1 D FV ,) = #16 ) r-rk = t #16a ) )( Z: ki L (ki
  • DFV i) ( 10. Sample Volume (ml) 4'c', OO Q 13 I Product k 1 X DF V 1 N 0o'<:l~'4 ... +-,J rv/-A Flow Meter ID# L--, 'i Cal Due Da t e: I () -£.c, -I t 14. 8kg = Instrument backgr o und Bkg = 4 , 0? G. 7 µC i/cc 1 5. X/Q = 4.3 x 10-<> sedm J (atmospher i c dispersion)

.. Arbitrarily set equal to Xe-138 = N{lt 1.06 x (The lesser of #1 6b o@ = #9 )( #15 ) Lim i t=L = I.OG ( l.~\G-~ ) = ( -, '5 oo c )( L.f , :iE. -(p ) 18. HI H i ALARM= Ax( #1 7 ) =(1.0)( ? <\~6 l( )= 5'.'-l5 G-L( µCi/cc The radioactive gas flo w corresponding t o the Hi Hi setpoint Performed by: _______ -~ ________ Date. '-l -d.. ' 1 7 /-/--t...J~ 2.D-t t Independent Verificat i on by:_1_i_-_____________ Date:_/' ____ _ 94 NEE-32 3-C ALC-00 3 Atta c h me nt 2 Pag e 17 of 1 8 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 A L ARM SETPOIN T S AND BACKGROUND R ev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS A T TACHMENT 1 VE NT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. l<-4,,,,,4 /Z--2. Sample No. 15' ~.?O 3. Sample Date 11~ /1-15" 4. Sample Time / 3'/ Y 5. MWT _1_9....;;/ __ _ 6. Count Date 11-19-1 :r 7. Count Time / ~: l-7 8. Mon it or Read i-ng-"'-{µ_C .... i/c"'-c"""") -"'-e;.--.-3-e ___ 7 ____ 9. Process Flow Ra-,-te-(c-::C""A~M.,..::) c.....:....=7'"".s=z;.;a---= -,-------11 Isotope k , µC i/ml Xe 133 \G Kr 85m \'>!., Kr88 \t(' Xe 135 \ """' Kr87 '\V:. Xe 138 '\. ">A Xe 135m '\:~:-Xe 133m \~ Ar41 '\ N 13 --f"f'l~*" 16. ~k J ::. 5. ltlfc'.. -'l I: k , 16b = L(k ,

  • DFV ,) 1.06 17. Limit= L = F)(X I Q) 12 Dose Factor Vent DFV , mrem m l yr µCi 294 1.17E3 1.47E4 1 81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. I: (k. DFV ,) = #16 ) 'i-o/11!-,? = 4. 'j l>('.-S" #16a ki 10. Sample Volume (ml) --==3=-, "~t~'f.-t::,-4,-,-----

13 Product k , x DFV 1 i\.-? \~ ,-~ \ !\ \ "?:.--'\""" \'1._;> '\.!.. " 1/, it.e-S '1.-io.,.-:; = 1.06 Flow Mete r ID#_l_?_I_S""" ___ _ Ca l Due Date:_'l_-_t_2_-_f_7 __ _ 14. Bkg = Instrument background Bkg = 5* 'i&J e -'1 µC i/cc 15. X/Q = 4.3 x 10'° sedm J {atmospheric d i spers i on) -Arb i trarily set eq u a l to Xe-138 X I: t (ki

  • DFVi) ------) x(Thelesserof#16bOR 1.81E-4) = #9 )( #15 ( 1.06 ( /, /'? v Y Lim i t= L = ----------
,c. ( ,~ )( I.(, 3,c,a~b ) = .. '1 18. Hi H i ALARM= Ax{ #17 ) =(1.0)( °J 1 1 l e ".2 -.., ) =-7.,,e µC i/cc The rad io ac ti ve gas flow corresponding to the H i H i setpo i nt
Performed by*_._~......,_

___ __________ Date: l!-l?--/5' Independent Verificat i on by: ____ __.&.,...,....__ __ k_z_'4--_______ Date. /1-19 I S 16 2 N EE-323-CAlC-003 Attachment 2 Page 18 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I. D. _a.,...:....:_,n_~"-'-"=-'-~-'-e.,-'(""'----

2. Sample No. l Y -L/ 3 k" 3. Sample Date ...........,=-=-..........,.-----
4. Sample Time --------5. MWT 1 'l J' 6. Count Date -~~~~------
7. Count Time _..,.l ...... )... .... ~"-1-=--~~-----

8 Monitor Reading (µCi/cc) J ,'i'::i<.~ 7

  • 9. Process Flow Rate (CFM) __ 1~54_0_d_O

___ _ 11 12 Isotope k; Dose Factor Vent µCi/ml DFV; mrem mJ yr µCi Xe 133 A///\-294 ,,J . 11 -Kr85m . 1.17E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 \ Xe 135m 3.12E3 \ Xe 133m 2.51E2 \ Ar41 8.84E3 \ N 13 8.83E3 ** I 16.Lk; = I" Jv 16a. L (k; DFV;) = M I k; ( #16 16b. = ) --'----'-= 10. Sample Volume (ml) (1~(.(?o 13 Product k; X DFV; . 11./I~ N I¥ Flow Meter ID# __ Cal Due Date: __ /_0_--~---'-'-q-t--

14. Bkg = lnst'}Jment back9.1:.ound Bkg = 4, GI E...-7 µCi/cc 15. XJQ = 4.3 x 10'° sedmJ (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 I(i<;
  • DFV ,) ( #16a ) 1.06 X 17. Limit= L = L (F)(X IQ) L ki 1.06 ------x(Thelesserof#16bOR 1.61E-4) = ( #9 )( #15 ) (ki
  • CF'Vi) 5-'f-5 S 6 S .c,:; t--.{ Limit;: l = I.0 6 ( /,~/ 4.-"( ) t f*&.'l.-t"( c , S-ooo )< '{, 'J :,.10-~ ,,,.. 'I _ 13 , s-. 'j s-c.-""I 18. HiHiALARM

= Ax( #17 ) "(1.0)( 5G Se..-~ )" -5 .. ~z:: **Jcj)cc The rad i oactive gas flow corresponding to the.Hi Hi setpoint: Performed by: . Date: .

  • _Q_c./1""1 A-I Z.Z-I 4-lndependent Verification by: _________

a __ (_~_ ___ Date: __ -___ _ 5\&..r:\-ll'Sl :5 Tl, P I~~.) \ ,.g1) t.~M.

1. 3. 4. 5. 6. 7. 8. 9. 10. 11. NEE-323-CALC-003 Attachment 3 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 PCP 8.7 Rev. 17 Page 9 of 11 Page 1 of 9 Page 1 of 3 LIQUID EFFLUENT RADl0ACTIV1TY MONITOR SETPOINT Sample No. /7 ..... 5'L{qC, 2. Sample Date & Time f-z;B-17 / oo?S-Stream/Monitor Description R. ff\ -4 7 6 7 Effluent Monitor Reading ( cps)---::..,----~/...:;D'-. ------------------

Effluent Flow (gpm) Cf h 00

  • Average effluent flow during time represented by sample, F 1 (gpm) _ __.,&--'/_,t--..:..,------,---

Average dilution (discharge canal) flow during time re12resented by sample, F 2 (gpm) ~)/A--Monitor calib r ation factor, 9 1 (cps/µCi/mL) __ :::::z:;-'.-;/~"f=-'e_v- ____________ _ Previous alarm value setpoint (cps) ___ --::7~--C:,=-=-S' _____________ _ Fraction to apply as a safety margin, A= 0.5 Setpoint ""10 x[ .,,.'i.,_K 1 xg x ~2 xA]+Bkg = 'i.1 (K 1 ..,. WECi) Fi Setpoint == sx[(lS)(S)(?)J+ (4) (16)(6) . -'Z-(, . [( J. o(pe.-)( ";.,l'le )( Setpomt "" Sx /. ( :i_ I q )( JV/,r ' .. . ~t/7 cg-ZS -/7 Setpoint = --~-_.:.__ __ ---5 Ll.D >"" Setpoint=lOx[(lS)(S)(7) x(l 0)]+(4) (16)(6) ; ] + ( /0 ) Fractional Change= New value -Previous Value= ( 11 ) -( 9) = ( 5'<../f> ) -( 7 ) Previous Value ( 9 ) ( '-}(:;.!, ) 12. Fractional Change= ... 0,7-1'1 i/ 13. 14. If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint Monitor Hi Alarm= '7{, s"' ./ Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ) = _.v_i_~ __ cps ./ 65 NEE-3 23-CALC-00 3 Attachm e nt 3 Page 2 of 9 ' 1. '3. "'-4. "'5. " 6. '7. '-.... 8. ""-9. ""-10. ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. \ S -*7192 / . 2. Sample Date & Time *1'2.-l-tS /tP o3 / Stream/Monitor Description G S'uJ :x'.'9~~*'; R(O-YJG;,1 v Effluent Monitor Reading (cps)_-"'-'t O ___ ___,_i[_ __ ~.___-<----------------Effluent Flow (gpm) 00 , -* Average effluent flow during time represented by sample, F1 (gpm) N ./ Average dilution (discharge canal) flow duri~epresented by sample, F 2 (gpm) N'R Monitor calibration factor, g, (cps/µCi/ml) * '"2,11 e 4 v

  • Previo u s alarm value setpoint (cps) __ --z ...... ro""":"'$'.__, c=:..ifl'-"s--=

v:::-------------Fraction to apply as a safety margin , A = 0.5 Setpoint = sx[(l S)(S)(7)] + ( 4) (16)(6) Setpoint = s x[( 9 , Y3 ~-> )( '.2-,l<t e" )( }t (( ( 11 7 . 5 )( WY{.. Setpoint=l o x[(l S)(S)(?) x (l o)J+( 4) (16)(6) IC* ) -~ 11. Setpoint = -=5_9.._*2 ____ / Fract i onal Change = New value -Previous Value = ( 11 ) -( 9 ) = ( 5 i 2 ) -( "?<c,5 ) Previous Value ( 9 ) ( -, GS" ) ""-.. 12. Fract i onal Change= *-o '22~ v' Uf)ractional change is greater than +/-0.3, adopt a new mon i tor alarm sett i ng. Continuous Monitor Hi Alarm = Setpoint 13. Mon i tor Hi Alarm = 7C> -S cf s / 14. Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ) = N/A cps i/ 2 4 .-. ---s-'3\-tL\ NEE-3 2 3-CALC-003

1. 3. cp 6. 7. @ 9. 10. . ALARM SETPOINTS FOR , LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. ____ Jlf_-_1~_~_7

_____ v'_ 2. Sample Date & Time "3-.;;).<?"'-(4 /oo~O..,, Stream/Monitor Description _ ___,.G'"'~=-°""'~--L.\---' ..... le._;1_v _____________ _ Effluent Monitor Reading (cps) v Effluent Flow (gpm) C\ <.oC> D v Average effluent .flow during time represented by sample, F 1 (gpm)__._M....;..&...:.A..._ ______ ~v Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm)_cl'(Ai...L+,...._ __ ,,,,.,. Monitor calibration factor, g, (cps/µCi/mL) ___ .;)._,......,1_q.;...E.-=-4>..;....;./_..,__. _________ ...:.-v-Previous alarm value setpoint (cps) ~'? 4 V Fraction to apply as a safety margin, A = 0.5 ,.-[ I: K , ... ,: F ] Setpoint = !Ox '. ' >;<_g-~ -2 xA +Bkg = I:,(K, ..,.. WEC 1) *

  • F., , Setpoint=l ox[ (l S)(S)(?) x(l O)] +( 4) (16)(6) . Setpo i nt = 5x[(1S)(S)(?)J+(4)

(16)(6) . . . . [< 7. (oC\E.-3,( .19 E..~)( ~,1 ) ] Setpomt = 5x -------'------~__._~.-c--'-) + ( ( I I I . 3 )( tV"fll ) 11. Setpoint = __ 7-'--(e....:;..S ___ /" Fractional Change ::: New value -Previous Value = ( 11 } -( 9 ) = ( 7i.&J '5 } -( .:>. S } Previous Value ( 9 ) . ( d'\"=>Y ) 12. Fractional Change= -0 , l.£,1.e:, s/ 13. If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = .Setpoint Monitor Hi Alarm = 7 &;; 13 .. *v7 14. Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ,1A..) = <<(rt cps ./

  • NE E-323-C A LC-003 Attachm ent 3 Pa!'.le 4 of 9 DAEC SURVEILLANCE TEST PROCEDURE STP NS790305 TITLE: RHRSW RADIATION MONITOR Page 6 of 18 CALIBRATION DUANE ARNOLD ENERGY CENTER IRM-1997 I Rev. Prerequisites Performance Date: d,. -l ~-l-, 6.0 PREREQUISITES 6.1 6.2 From the Chemistry Supervisor , obtain the current UPSCALE HI alarm setpoint.

Record below and in the trip column of the step indicated. Step 7.1.10 __ lg ___ ~-~--cps From the Chemistry Superviso r, obtain the current high voltage setting. Record below and in the step indicated. 14 INITIALS ~--St-ep_7_.1_.2_5 _r __ s_D __ v_Dc _________ w 1 NOTE Original Transfer Calibration Count Rate is the count rate of the 8 µCi source taken from the last time that the mockup was used to determine the detector efficiency. This can be found in the Effluent Monitor Alarm Setpoint book. It is then decay corrected to the date that this STP is being performed. 6.3 6.4 6.5 From the Chemistry Supervisor , obtain the fo ll owing source information and record below: t.\, 6.3.1 Original Trans Cal Count Rate

  • d--9. e::. cps 6.3.2 6.3.3 6.3.4 6.3.5 Source Number LA l [)-:::l=t=-

lp Lt/ LS -l 37 ~-~4-lc. Original Date of Cal Count Rate __ O_____ --_; Geometry ____ P __ o __ : _""\_+ _______ _ Old Efficiency Lo , le J.... e -1 µCi/cc/cps Decay correct the Original Transfer Calibration Count Rate. Record and transfer the value to the step indicated below: Y Decay Corrected Transfer Count Rate * ( E cps (Transfer to Step 7.1.37.) As directed by PCP 8.7 , analyze a sample of unfiltered reactor water and calculate the UPSCALE HI setpoint. Record be l ow and in the trip column of the table listed. Step 7.1.28 Yd\ l cps 10 NEE-323-CALC -0 0 3 Attachm ent 3 1. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. wlo 'ft>32 t7~ r Page 5 of 9 ALARM SETPOINTS FOR LIQUID RAD MONITORS Rev. 17 Page 9 of 11 ATTACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT SampleNo. 1.r-'f~& . 2. SampleDate&Tir.peg'-2q -rs-/ e,;,c.z 7 Stream/Monitor Description tfm-/91) C/2-1/.f25t1.// &s;w J Effluent Monitor Reading (cps)-,-,-~3_.* ~o~--------------


Effluent Flow (gpm) 92@

  • Average effluent flow during time represented by sample , F 1 (gpm)_,/'""'V."""/'--ti-

_______ _ Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm) 111/A Monitor calibration factor , g, (cps/µCi/ml)~-=/,..;;:;S ...... /_,e.__~ ____________ _ Previous alarm value setpoint (cps) ___ z;_,_q _______________ _ Fraction to apply as a safety margin , A = 0.5 Setpoint=lOx[(lS)(&)(?) x (l 0)]+(4) (16)(6) Setpoint = sx[(lS)(&)(7)] + ( 4) (16)(6) /.(0{!,, . [< .. e--r!)( /,:Tie/,;, )( ,,;/l~ )] Setvomt'"' Sx -=-*Wfe ___ ')_(-=---------)-+ ( ( ~d )( 11,///4-/$3. ~' ) St . t 5~?,35" 60 q ,.,-e po1n = ;, , , r 71_:.,.&f',-h Fractional Change= New value -P r evious Value= ( 11 ) -( 9) = ( -~) -( !.,I'/ ) Previous Value ( 9 ) ( h / lf ) Fractional Change= 0 .. o, If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint Monitor Hi Alarm = (.p 14 Radwaste Monitor Hi Alarm= .1 6 (11) = .16 ( ) = _/Ji_i/.4 __ cps 33 NEE-323-C ALC-003 A tt achment 3 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 6 o f 9 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT 1. Sample No. /?-e{64-2. Sample Date & Time 2-IL'. -lG.. ( 0-VZ..( 3. Stream/Monitor Description 'g..\::\,*_$.J j S*~..;!'.. '2.i*Y\.. (0(-) 7 4. Effluent Monitor Reading ( cps) . ...,......,,..-,-J"'"'---:.z ~ -r--=-----~-=------:----,-----,-----

5. Effluent Flow (gpm) 12.l'\-,ts..J

'A-' = .£;0::G<-i {t-fLS-.,J ~~.,' ::.. 48 ' 6. Average effluent :flow during time represented by sample , , (gpm) .-...: A----7. Average dilution (discharge canal) flow during time represented by sample , F2 (gpm)_...;....,;................,_

8. Monitor calibration factor, g, (cps/µCi/ml)_-..:..:\

'c.,..~......,-=--' _!L_~-----


9. Previous alarm value setpoint (cps). ____ w_l_<'._-_____________

_ 10. Fraction to apply as a safety margin , A= 0.5 . [ I.. K , . * *

  • F 2 * ] Setpomt = I Ox '. .xg x -x A +Bkg = I.1 (K 1 ..,.. WEC;) .F; Satpoint = sx[(lS)(S)(?)J

+ (4) (16)(6) Setpoint=l Ox[ (l S)(S)(?) x (l O)] +( 4) (16)(6) Setpomt = 5x ~---. -~--'---'-'---1-.,----'-4.--'- + ( *2.. S . [c7,r.o7£-1>)< Lsli~ )C l )] ( lll .. ~f,o )( 1v/~**) ) 11. Setpoint = ___ S_._6-_* >-c._ __ v""' Fractional Change= New value -Previous Value = ( 11 ) -( 9) = ( S S ) -( 0 <41-) Previous Value ( 9 ) ( r;,, IL!-) 12. Fractional Change= *-0 r.12..-v If fractional change is greater than +/-0.3 , adopt a new monitor alarm setting. Continuous Monitor Hi Alann = Setpoint *=o OL-i::> <;~, ""( fDv,-r , / 13. Monitor Hi Alarm= 14. RadwasteMonitorHiAlarm= .16(11) = .16( ~I;,.-)= µ /4;-cps N EE-3 23-CA L C-003 Attac h m e nt 3 Page 7 of 9 1. 3. 4. & 8. 9. 10. ALARM SETPO[NTS FOR LIQUID RAD MONITORS ATIACHMENT1 PCP 8.7 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. J 7.,. 3 10 . 2. Sample Date & Time l-/~-17 / oo/C, Stream/Monitor Desc r iption &/?J -'f'z4.!?" 1<1//!.$"~/£su.1 P,, &17&>' L.!-:?e (. llu.r,,,..,~) Effluen t Monitor Reading (cps) __ --':::='0-:-------,------


Effluent Flow (gpm) CJ(,.c:,v Ave r age eff l uent f l ow during time rep r esented by sample , F 1 (gpm) __ ~""'~'--';,:'-"'/1:.,__

___ ~-Average dilution (d i scharge canal) flow du r ing time represented by samp l e, F 2 (gpm) e/4 Monitor calibrat i on factor, g , (cps/µCi/ml).-::::-~___./,.=i_-z____.z.e_ 0 ____________ _ Previous alarm value setpoint (cps) __ '5_3_0 ________________ _ F r ac ti on to apply as a safety margin, . A = 0.5 Setpoin t=lO x[(l 5)(&)(?) x(l O)]+( 4) (16)(6) , Setpoint = sx[(lS)(&)(?)J+ (4) . (16)(6) ... [ J /I ] ( )7 '3" --)( //l/2,e )( ntt ) . S et poi nt = 5x __ ._IC_~--------~) + ( J/) ( 13"1.13 )( .,d4 ) 11. Setpdnt = ----"'S4_g_;5....:.'-5"""--Fractional Change= New value -Previous Value= ( 11 ) -( 9) = ( 5~6:'5" ) -( ) Previous Value ( 9 ) ( G 3:::> ) 12. Fractional Change = tl, IO S' If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Con tin uous Mo n itor Hi Alarm = Setpoint 13. Monitor Hi Alarm = 5 J.? 14. Radwaste Monito r Hi Alarm= .16 (11) = .16 ( ) = l[l/fr cps 24

. NEE-323-CAL C-003 Attachment 3 Page 8 of 9 .. .. .. PLANT CHEMISTRY PR09EDUR1;S

-~_200 MANUAL PCP 8.7 . . ALARM SETPOINTS FOR LIQUID RAD Rev. 17 MONITORS Page 9 of 11 ATTACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MON I T O R SETPOINT 1. Sample No. I ? -0 l 16 2. Sample Date & Time IO -I q ** I c:; / (.) 0 \ '\ 3. Stream/Monitor Description R, H. R.;S""*/E:s

  • vv R,.u..p-+-v-,,..e...

R. CVI -U. ;;i...vi 4. Effluent Monitor Read in g {cps)_--,-:...:.:i.....;...0=

  • '-------=-------,...--

-,-,-=--------- 5, Effluent Flow (gprn) ~\-\ ",S....r A -L\ t;;;-o<.) %:~M. R H.R. s;,., ,/ 6 4 ~-oo fre""' 6. Average effluent flow during time represented by sample , F , (gpm} cvid: . 7. Average dilution (discharge canal) flow during time represented by sample , F 2 (gpm) rvf.ft:.. 8. Monitor calibration factor , g , (cps/µCi/rnl) __ .;l._._;)..._C\_1c;_-_4' ___________ _ 9. P r ev i ous alarm value setpo i nt (cps)_--'"'--'(J)=-3~----'---


10. Fraction to apply as a safety marg i n , A= 0.5

  • Setpoint = ]O x[ L;.K, xg x F 2 x A]+Bkg = L ,(K 1 *...-WEC 1) F; Setpoint=l ox[(l S)(S)(?lx (l O)]+( 4) (J 6)(6) Setpo i nt = sx[(l S)(&)(7)] + ( 4) (16)(6) . [( cl /iOE,
  • 5 )( . ?-.0.f_/ . .r., )( r-r/A ) ] Set po ml :c:: Sx --'-'---...........:.

--'-----....:....;..---'f -'---'-) +* ( ;)._ 0 ( l 74 . C\. 7 )( ,v(A 11. Setpo i nt = ___ i-=--l.-~_

  • __ / Fractional Change= New value -Previous Value;::: ( 11 ) -( 9) = ( (Q (i;,'6 ) -( ~<., ) Prev i ous Value ( 9 ) ( 'l)(q 12. Fractional Change= -0. ~;;\.(Q / If fractional change is greater than +/-0.3, adopt a new mon i tor alarm setting. --. Cont in uous Mon i tor Hi Alarm = Setpoint 13. Monitor Hi Alarm = <;?;(., '3 / 14. RadwasteMonitorHiAlarm=

.16(11) = .16( 28 N~E-323-CALC-003 Attachment 3 Page 9 of9 ALARM SETPOINTS FOR LIQUID RAD MONITORS Rev. 17 Page 9 of 11 \) ATIACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT 1. Sample No. I 4--~ 4-2. Sample Date & Time *2.-\4-\4-/ 00 <-1 3. Stream/Monitor Description 12-~CZ....Sw / £51..N R.v..~T1..qZ .. L 12..\N\ 4 "2-b'o 4. Effluent Monitor Reading (cps)

  • o . 5. Effluent Flow (gpm) 12\:;\/l--S..J

'A'~ *4Z-XXJ~r-=:= 1 '~-4exK.~~~

  • 6. Average effluent flow during time represented by sample, F 1 (gpm) ,J jA--r. 7. Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm) ,.} jk' 8. Monitor calibration factor, g, (cps/µCi/ml)

__ "Z--=p-Z:."'""9._f.._i.,e, __ i/--'-,----------

9. Previous alarm value setpoint (c.ps) ____ e_(o_* _3> __ ~v ___________

_ 10. Fraction to apply as a safety margin, A = 0.5 [ "i.. K, . *.. F 2 * ] Setpoint =)Ox '. _xgx-xA +Bkg = "i.1 (K 1 .,.. WEC,) F; Setpoint=l ox[ (l S)(S)(?) x(l O)] +( 4) (16)(6) Setpoint = sx[(l 5)(S)(7)] + ( 4) (16)(6) l, [ ),07£.-~ 2,2.'-?f )( ;..,/.4-)] Setpoint = 5x ( )( ) + ( ( t I I , 8 <o )( I ) 11. ~o ..... ..:..... i/ Setpoint = ---------Fractional Change = New value -Previous Value = ( 11 ) -( 9 ) = ( "b 0 7) -( 'c;,\o*~ ) Previous Value ( 9 ) ( e:, 7 ) 12. Fractional Change= *-o, 0*7 / If fractional change is greater than +/-0.3, adopt a new monitor alarm setting., Continuous Monitor Hi Alarm = Setpoint *:::i)oU*:::, S~1: f .... 1 v"' 13. Monitor Hi Alarm = 14. RadwasteMonitorHiAlarm= .16(11) = .16( ,...,jA--) = ,J /Pr-cps ~-------------~I Spent Fuel Storage Pool Water Level 3.7.8 3. 7 PLANT SYSTEMS 3.7.8 Spent Fuel Storage Pool Water Level LCO 3.7.8 The spent fuel storage pool water level shall be;::: 36 ft. APPLICABILITY

During movement of irradiated fue l assemblies in the spent fuel storage pool. ACTIONS A. CONDITION Spent fuel storage pool water level not within limit. REQUIRED ACTION A.1 ---------NOTE-----

--LCO 3.0.3 is not applicable.

COMPLETION TIME Suspend movement of Immediately irradiated fuel assemblies in the spent fuel storage pool. SURVEILLANCE REQUIREMENTS SR 3.7.8.1 DAEC SURVEILLANCE Ver i fy the spent fuel storage pool water level is ;::: 36 ft. 3.7-18 FREQUENCY In accordance with the Surveillance Frequency Control Program Amendment 280 I AOP 981 FUEL HANDLING EVENT PROBABLE ANNUNCIATORS 1C03A A1 FUEL POOL EXHAUST HIGH-HIGH RADIATION 81 FUEL POO L EXHAUST HIGH RADIATION 1C048 86 NEW FUEL STORAGE AREA ARM HI RAD 1C048 C6 SPENT FUEL STORAGE AREA ARM HI RAD 1C058 C8 PCIS GROUP " 3" ISOLATION INITIATED 1C09A A2 NW DRYWELL RADIATION LEVEL HI-HI 82 NW DRYWELL RADIATION LEVEL HI 1C098 A2 SOUTH DRYWELL RADIATION LEVEL HI-HI 82 SOUTH DRYWELL RADIATION LEVEL HI 1C35A A1 REFUELING FLOOR NORTH END HI RADIATION A2 REFUELING FLOOR SOUTH END HI RADIATION PROBABLE INDICATIONS
1. Lowering cavity and/or Spent Fuel Pool level on the 5th floor. Visual 2. Lowering cavity level Flood up Range on level indicator, Ll-4541 (at 1 C04). 3. Lowering Skimmer Surge Tank level on level indicator , Ll-3412 (at 1C04). not used in EAL 4. Lowering Fuel Pool l evel on level indicator , Ll-3413 (at 1C04). 5. Rising radiation levels on any of the following ARMs: Spent Fuel Pool Area, Rl-9178 North Refuel Floor , Rl-9163 New Fuel Vault Area , Rl-9153 South Refuel Floor, Rl-9164 6. Rising Drywell radiation levels on either of the following (at 1 C09): NW Drywell Area Hi Range Rad Monitor, RIM-9184A South Drywell Area Hi Range Rad Monitor , RIM-91848 I AOP 981 Page 6 of 8 Rev. 6}}