ML18212A233

From kanterella
Jump to navigation Jump to search
Calculation No. NEE-323-CALC-003, Documentation of the RU1 Emergency Action Levels
ML18212A233
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 12/12/2017
From:
NextEra Energy Duane Arnold
To:
Office of New Reactors
References
NG-18-0090 NEE-323-CALC-003
Download: ML18212A233 (42)


Text

{{#Wiki_filter:CALC NO. NEE-323-CALC-003 JI ENERCON CALCULATION COVER I SHEET REV. 00 Excelknce-Every pro;~ct. Every day. PAGE NO. 1 of 9 Documentation of the RU1 Emergency Action Client: Duane Arnold Energy Center

Title:

Levels Project Identifier: NEE-323 Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions, including preliminary ~ D information, that require confirmation? (If YES, identify the assumptions.) 2 Does this calculation serve as an "Alternate Calculation"? (If YES, identify the design D ~ verified calculation.) Design Verified Calculation No. -- 3 Does this calculation supersede an existing Calculation? (If YES, identify the design D ~ verified calculation.) Superseded Calculation No. -- Scope of Revision: Initial Issue Revision Impact on Results: Initial Issue Study Calculation D Final Calculation [8J Safety-Related D Non-Safety-Related [8J (Print Name and Sign) Originator: Jay Bhatt Date: 12/12/17 Design Verifier1 (Reviewer if NSR): Ryan Skaggs Date: 12/12/17 Approver: Aaron Holloway Date: 12/12/17 Note 1: For non-safety-related calculation, design verification can be substituted by review.

ENERCON CALCULATION CALC NO. NEE-323-CALC-003 Excellence-fvtry projtcr. fvtry day REVISION STATUS SHEET REV. 00 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 00 12/12/17 Initial Issue PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION All 00 APPENDIX/ATTACHMENT REVISION STATUS APPENDIX NO. NO. OF REVISION ATTACHMENT NO.OF REVISION PAGES NO. NO. PAGES NO. 1 4 00 2 18 00 3 9 00 Page 2 of 9

I ENERCON TABLE OF CONTENTS &cellence-Evtry pro]<<r. Evety day.. Section

1.0 Purpose and Scope

2.0 Summary of Results and Conclusions 3.0 References 4.0 Assumptions 5.0 Design Inputs 6.0 Methodology 7.0 Calculations 8.0 Computer Software 9.0 Impact Assessment List of Attachments - Calculation Preparation Checklist - Gas Effluent Setpoints - Liquid Effluent Setpoints Page 3 of 9 CALC NO. NEE-323-CALC-003 REV. 00 Page No. 4 4 5 5 6 6 8 9 9

  1. of Pages 4

18 9

ENERCON Excellena-Every profec Every day.

1.0 Purpose and Scope

CALC Documentation of RU1 Emergenc NO. N EE-323-CALC-003 Action Levels REV. 00 The Duane Arnold Energy Center site is implementing the guidance of Revision 6 to the Document NEI 99-01, "Development of Emergency Action Levels for Non-Passive Reactors," which is the industry-developed methodology for emergency classification for the current operating fleet. Changes to the definitions of the condition for entry into the Emergency Action Level (EAL) RU1 result in the development of a new entry threshold value for this EAL. This calculation provides calculated threshold values for the following EALs (from NEI 99-01, Rev. 6). Note that NEI 99-01 designates abnormal radiological conditions as "AU," NEE has adopted the "RU" designation permitted under the guidance. (1) Reading on ANY effluent radiation monitor greater than 2 times the (site-specific effluent release controlling document) limits for 60 minutes or longer. (2) Reading on ANY effluent radiation monitor greater than 2 times the alarm setpoint established by a current radioactivity discharge permit for 60 minutes or longer. This calculation uses the latest radiation monitor setpoints to determine the resultant EAL thresholds. Page 4 of 9

I ENERCON CALC Documentation of RU1 Emergenc NO. NEE-323-CALC-003 &cellence-Everyprojecr. Every day. Action Levels 1-------- --------< REV. 00 2.0 Summary of Results and Conclusions Values for the RU1 Gaseous EALs were determined and are shown below. Table 1 - Gaseous Effluent Setpoints Location Detector Offgas Stack Kaman 10 Turbine Building Vent Kaman 2 Reactor Building Vent Kaman 4 Reactor Building Vent Kaman 6 Reactor Building Vent Kaman 8 LLRPSF Building Vent Kaman 12 RU1 Threshold (µCi/cc) 1.97E-01 7.74E-04 6.00E-04 9.60E-04 9.60E-04 1.19E-03 Values for the Liquid Effluent RU1 EALs were determined and are shown below. Table 2 - Liquid Effluent Setpoints Location GSW RHRSW/ESW RHRSW Dilution Line*

  • RE-4268 was previously known as the RHRSW Rupture Disk 3.0 References Equipment ID RE-4767 RE-1997 RE-4268 RU1 Unusual Event Level C S 1.53E+03 8.42E+02 1.06E+03 3.1 NEI 99-01, Revision 6, "Development of Emergency Action Levels for Non-Passive Reactors." November 2012.

3.2 DAEC Offsite Dose Assessment Manual (ODAM), Rev. 37. 3.3 Plant Chemistry Procedure PCP 8.3, Alarm Setpoints and Background Determination for KAMAN Normal Range Monitors. 3.4 Plant Chemistry Procedure PCP 8.7, Alarm Setpoints For Liquid Rad Monitors. 3.5 Technical Specifications, Section 5.5.4, Radioactive Effluent Controls Program. 3.6 DAEC Emergency Plan, Section 'I', Rev. 27 Page 5 of 9

N EE-323-CALC-003 ENERCON CALC Documentation of RU1 Emergenc NO.

  • 1-----------------i Action Levels txcellen~Every project. Every day.

REV. 00 4.0 Assumptions It is assumed that the current setpoint for the Kaman 4 monitor is 3.00E-04 µCi/cc. The latest setpoint determination received is from 3/4/2016 which exceeds the 18 month frequency specified by PCP 8.3. 5.0 Design Inputs 5.1 The setpoint determinations from Attachment 2 and Attachment 3, represent the latest responses at the associated gaseous and liquid effluent monitors. While the three most recent surveillances for each monitor are included for information, only the latest setpoint is used to determine the EAL threshold. It should be noted that the "RM" equipment designations are equivalent to the "RE" equipment IDs. 5.2 The gaseous effluent equipment ID number, monitor common name and range are taken from DAEC Emergency Plan Section "I" and ODAM Figure 3-1, and are presented in Table 3. Table 3 - Gaseous Effluent Design Inputs Monitor Monitor Location Common Name Equipment ID Range (µCi/cc) Offgas Stack KAMAN 9/10 RE-4176, RE-4175 1 E 1 E+05 Turbine Building KAMAN 1/2 RE-5945 / RE-5946 1 E 1 E+05 Vent Reactor Building KAMAN 3/4 RE-7645, RE-7644 KAMAN 5/6 RE-7647, RE-7646 1 E 1 E+05 Vent KAMAN 7/8 RE-7649, RE-7648 LLRPSF Building KAMAN12 RE-8801 1 E 3E-01 Vent 5.3 The liquid effluent equipment ID number, and range are taken from ODAM Table 1-2, and are presented in Table 4. Table 4 - Liquid Effluent Design Inputs Location Equipment Monitor Range ID (cps) GSW RE-4767 1 E 1 E+06 RHRSW/ESW RE-1997 1 E 1 E+06 RHRSW Dilution Line RE-4268 1 E 1 E+06 Page 6 of 9

    • ~

ENERCON &cellence-Every project. Every day. 6.0 Methodology N EE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. Action Levels

  • 1------------------,

REV. 00 The alarm setpoint of a radioactive noble gas effluent monitor is calculated on the basis of whole body dose equivalent rate offsite of 500 mrem/yr per the ODAM. The alarm setpoint for liquid radwaste effluent line provides automatic isolation when 10 times the water effluent concentration listed in 10 CFR 20 Appendix B, Table 2, is being exceeded in the unrestricted area per the ODAM. These setpoints are in accordance with Technical Specifications limits specified in 5.5.4b and 5.5.4g. This calculation considers historical setpoint determination for gaseous release (PCP 8.3) and liquid effluent (PCP 8.7). The latest three setpoints for each monitor were reviewed. Due to the high variance for some of the monitors, the latest alarm setpoint is used to determine the EAL thresholds. Page 7 of 9

NEE-323-CALC-003 ENERCON CALC Documentation of RU1 Emergenc NO. ------------------< Excellence-Ev<ry prof ea Every day. Action Levels REV. 00 7.0 Calculation 7.1 Gaseous Setpoints Plant Chemistry Procedure PCP 8.3 is used by Chemistry Technicians to calculate setpoints for building vent KAMAN monitors at least once every 18 months. The three latest setpoint determinations for each location are shown in for information. It should be noted that where the original PCP 8.3 setpoint calculation sheet is unavailable, the value is taken from the associated monitor calibration procedure. Thresholds corresponding to the latest setpoints are calculated and presented here. For example the latest PCP 8.3 setpoint for Offgas stack is 9.84E-02 µCi/cc. This value is doubled to 1.97E-01 µCi/cc to correspond to the RU1 threshold. The remaining threshold values are shown in Table 5. Table 5 - Gaseous Effluent Setpoints and Thresholds Location Detector Latest PCP 8.3 RU1 Threshold Setpoint (µCi/cc) (µCi/cc) Offgas Stack Kaman 10 9.84E-02 1.97E-01 Turbine Building Kaman 2 3.87E-04 7.74E-04 Vent Reactor Building Kaman 4 3.00E-04 6.00E-04 Vent Reactor Building Kaman 6 4.80E-04 9.60E-04 Vent Reactor Building Kaman 8 4.BOE-04 9.60E-04 Vent LLRPSF Building Kaman 12 5.95E-04 1.19E-03 Vent 7.2 Liquid Setpoints As a result of variability in the isotopic mix of reactor water, background radiation levels and detector efficiencies, the calculated liquid effluent setpoints will fluctuate over time. Chemistry Technicians perform effluent liquid radiation monitor setpoint calculations at least once per 18 months with guidance provided by Plant Page 8 of 9

ENERCON Excellence-Every pro/ecr. Every day. NEE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. Action Levels -t---------------; REV. 00 Chemistry Procedure PCP 8.7. The three latest setpoint determinations for each location are shown in Attachment 3. It should be noted that where the original PCP 8. 7 setpoint calculation sheet is unavailable, the value is taken from the associated monitor calibration procedure. Thresholds corresponding to the latest setpoints are calculated and presented here. For example the latest PCP 8.7 setpoint for the RHRSW Dilution Line is 421 cps. This value is doubled to 842 cps to correspond to the RU1 threshold. The remaining threshold values are shown in Table 6. Table 6 - Liquid Effluent Setpoints and Thresholds Location GSW RHRSW/ESW RHRSW Dilution Line 8.0 Computer Software None. 9.0 Impact Assessment Latest PCP 8.7 RU1 Threshold Setpoint (cps) (cps) 7.65E+02 1.53E+03 4.21E+02 8.42E+02 5.30E+02 1.06E+03 This calculation is based on "realistic" conditions for the purpose of declaring EALs, rather than typical conservative "bounding" type design basis analyses. The calculation documents the order of magnitude setpoints to assist Operations and Emergency Response personnel in determining an unusual event in accordance with NEI 99-01 Rev. 6. Page 9 of 9

ENERCON Excellence-Every projec Every day. CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS1 CALC NO. REV. GENERAL REQUIREMENTS

1.

If the calculation is being performed to a client procedure, is the procedure being used the latest revision? The calculation is being prepared to ENERCON's procedures.

2.

Are the proper forms being used and are they the latest revision?

3.

Have the appropriate client review forms/checklists been completed? The calculation is being prepared to ENERCON's procedures.

4.

Are all pages properly identified with a calculation number, calculation revision and page number consistent with the requirements of the client's procedure?

5.

Is all information legible and reproducible?

6.

Is the calculation presented in a logical and orderly manner?

7.

Is there an existing calculation that should be revised or voided? This is a new calculation to support implementing NEI 99-01 Rev. 6

8.

Is it possible to alter an existing calculation instead of preparing a new calculation for this situation?

9.

If an existing calculation is being used for design inputs, are the key design inputs, assumptions and engineering judgments used in that calculation valid and do they apply to the calculation revision being performed.

10.

Is the format of the calculation consistent with applicable procedures and expectations? 11. Were design input/output documents properly updated to reference this calculation?

12.

Can the calculation logic, methodology and presentation be properly understood without referring back to the originator for clarification? OBJECTIVE AND SCOPE

13.

Does the calculation provide a clear concise statement of the problem and objective of the calculation?

14.

Does the calculation provide a clear statement of quality classification?

15.

Is the reason for performing and the end use of the calculation understood?

16.

Does the calculation provide the basis for information found in the plant's license basis?

17.

If so, is this documented in the calculation?

18.

Does the calculation provide the basis for information found in the plant's design basis documentation? Page 1 of 4 NEE-323-CALC-003 00 YES NO N/A D D ~ ~ D D D D ~ ~ D D ~ D D ~ D D D ~ D D ~ D ~ D D ~ D D D D ~ ~ D D ~ D D ~ D D ~ D D ~ D D D D ~ D ~ D CALC N EE-323-CALC-003 JI ENERCON NO. CALCULATION PREPARATION &cellenc~ Evt.ry projecr. Every day. CHECKLIST REV. 00 CHECKLIST ITEMS1 YES NO N/A

19.

If so, is this documented in the calculation? D D ~

20.

Does the calculation otherwise support information found in the plant's design basis D ~ D documentation?

21.

If so, is this documented in the calculation? D D ~

22.

Has the appropriate design or license basis documentation been revised, or has the D D ~ change notice or change request documents being prepared for submittal? DESIGN INPUTS

23.

Are design inputs clearly identified? ~ D D

24.

Are design inputs retrievable or have they been added as attachments? ~ D D

25.

If Attachments are used as design inputs or assumptions are the Attachments ~ D D traceable and verifiable?

26.

Are design inputs clearly distinguished from assumptions? ~ D D

27.

Does the calculation rely on Attachments for design inputs or assumptions? If yes, are ~ D D the attachments properly referenced in the calculation?

28.

Are input sources (including industry codes and standards) appropriately selected and ~ D D are they consistent with the quality classification and objective of the calculation?

29.

Are input sources (including industry codes and standards) consistent with the plant's ~ D D design and license basis?

30.

If applicable, do design inputs adequately address actual plant conditions? ~ D D 31. Are input values reasonable and correctly applied? ~ D D

32.

Are design input sources approved? ~ D D

33.

Does the calculation reference the latest revision of the design input source? ~ D D

34.

Were all applicable plant operating modes considered? ~ D D ASSUMPTIONS

35.

Are assumptions reasonable/appropriate to the objective? D D ~

36.

Is adequate justification/basis for all assumptions provided? D D ~

37.

Are any engineering judgments used? D ~ D

38.

Are engineering judgments clearly identified as such? D D ~

39.

If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, D D ~ engineering principles, physical laws or other appropriate criteria? Page 2 of 4

ENERCON Excellence-Ev*ry pro}ttr. Emy do~ CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS1 CALC NO. REV. METHODOLOGY

40.

Is the methodology used in the calculation described or implied in the plant's licensing basis? 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated?

42.

Is the methodology used consistent with the stated objective?

43.

Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION

44.

Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis?

45.

Is there reasonable justification provided for the use of equations not in common use?

46.

Are the mathematical operations performed properly and documented in a logical fashion?

47.

Is the math performed correctly?

48.

Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied?

49.

Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES

50.

Are computer codes or software languages used in the preparation of the calculation? 51. Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met?

52.

Are the codes properly identified along with source vendor, organization, and revision level?

53.

Is the computer code applicable for the analysis being performed?

54.

If applicable, does the computer model adequately consider actual plant conditions?

55.

Are the inputs to the computer code clearly identified and consistent with the inputs and assumptions documented in the calculation?

56.

Is the computer output clearly identified?

57.

Does the computer output clearly identify the appropriate units? Page 3 of 4 NEE-323-CALC-003 00 YES NO N/A D 0 D D D 0 0 D D 0 D D 0 D D D D 0 0 D D 0 D D 0 D D 0 D D D 0 D D D 0 D D 0 D D 0 D D 0 D D 0 D D 0 D D 0

58.
59.

ENERCON Excellencr-Every projecr. Every day. CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS1 CALC NO. REV. Are the computer outputs reasonable when compared to the inputs and what was expected? Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results? RES UL TS AND CONCLUSIONS

60.

Is adequate acceptance criteria specified? 61. Are the stated acceptance criteria consistent with the purpose of the calculation, and intended use?

62.

Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?

63.

Do the calculation results and conclusions meet the stated acceptance criteria?

64.

Are the results represented in the proper units with an appropriate tolerance, if applicable?

65.

Are the calculation results and conclusions reasonable when considered against the stated inputs and objectives?

66.

Is sufficient conservatism applied to the outputs and conclusions?

67.

Do the calculation results and conclusions affect any other calculations?

68.

If so, have the affected calculations been revised?

69.

Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation?

70.

If so, are they properly identified? DESIGN REVIEW 71. Have alternate calculation methods been used to verify calculation results? No, a Design Review was performed. Note: N EE-323-CALC-003 00 I YES I NO I N/A I D I D I IX] I D I D I IX] I I I I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I rgi I D I D I D I IX] I D I D I D I IX] I D I IX] I D I D I D I rgi I I I I D I D I IX]

1. Where required, provide clarification/justification for answers to the questions in the space provided below each question. An explanation is required for any questions answered as "No' or "N/A".

Originator: Jay Bhatt 12/12/17 Print Name and Sign Date Page 4 of 4

v O ll f =?:iY1 NEE-323-CALC-003 Page 1 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 14 of 14 RANGE MONITORS ATTACHMENT 2 KAMAN OFFGAS STACK GASEOUS DETECTOR HI HI SETPOINT 1, Sample 1.0. K /o ( W\\-Rfl'J~

2. Sample No

_..:_n..:;_;-SSi

...=;,..,;,,.lo0

=,.=..~:,---,....-,,----

3. Sample Date 8 -3o*l7
4. s a,wM'Time

_ _.03c..:sy

...4-. _____ 5. MWT

____ l...,_"!_o\\o ..;;;c_,, __

6. Count Date g-}c-,,
  • l' *~
7. Count Time 0 "'11;r:

t:l:""1"1 8 Monitor Reading (µCi/cc} -=?l:l c; '* 6 7 7o e*7 9. Process Flow Rate (CFM) £, 17 e ' ~T;o,ooo

10. Sample Volume (ml)

'{. SO e

  • 1

\\I 1s. 1: k, = L ki 15b. = L (ki

  • DFSI) 1.0 X
16. Limit = L =-

F 12 Dose Factor Stack mrem sec yr - µCi 4.09E-5 1.81E-4 1.91E-3 2.84E-4 6.97E-4 1.08E-3 3.39E-4 3.61 E-5 1.32E-3 1.0SE-3.. ./ ( Ill ) = ( #!Sa ) L k, = L (k.

  • OF

( k, X DFSi

f. 57-e-lO
14. 8kg = instrument background 8kg = '2, 15" C'

µCl/cc

  • These dose factors are from ODAM:

stack release at a distance of 1260 meters NNW of DAEC £ Arbitrarily set equal to Xe-138 15a. I,, 1k,

  • OF.. )

/52 e-1° 1/" I. y I e.*' 9.2B e -z..v- = /. 5'2 1:. 10 1.06 x (The Less of #15b OR 3436) f/9 ) 1.06 Umit = L = -----) ( ( I01f>A> ) = 't.8~ e--z.. / '}

  • g '-1 e.. -"'2.- µCi/cc,/'

.,Z..

17. Hi Hi ALARM ::: A x ( #16 ) = (1.0){ 't.o e

) = The radioactive gas now corresponding to the HI Hi setpolnt: Performed by:. __ ~=-....;..::,: ~ ;..._ _ Date: g - 3° --,7 "; r~ 0 t, 8* "':l: : \\ Independent Verification by.

...:q.,.3 ~~. ~~

.'::L Date:1 J 1 j _) 114

NEE-323-CALC-003 Page 2 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 14 of 14 RANGE MONITORS ATTACHMENT 2 KAMAN OFFGAS STACK GASEOUS DETECTOR HI HI SETPOINT 1 Sample I.D Kl O Cha.r M~r 3 Sample Date

) -d(? - J lo
4. Sample Time
2. Sample No.

j l, - J 5>'! 0 )5 ~ 0

5. ~

7917

7. Count Time I '5 '5 ~

6 Count Date

a - ~(p I lo
8. Monitor Reading { Ci/cc)

(i;,IL, I e - 7

9. Process Flow R--a-te_(_C_,_FM-=-)~:.._,)-Q-,-0-0_0 ___
10. Sample Volume (ml)

'i 5J 000 rn L Flow meter ID #_=l---=-7...,.J'-q_. ____ _ Isotope 11 uCl/ml k, 12 Dose Factor Stack mrem sec r- µCi Cal Due Date I O - G - 17 13

  • These dose factors are from ODAM.

stack release at a distance of 1260 meters NNW of DAEC L;N~13~_::::...L.J.!...J....,;.~..!.l.l._.:1:.:.!.0~8::E-~3-** ____ --.11..1..Ll"-=;~~ ** Arbitrarily set equal to Xe-138

15. Lk, =

I, r:s e -ry . DFS. i, )3 e - 10 i.: ki

  1. 15 15b. i.: (ki
  • DFSi)

= ( #15a 1.06 x L

16. Limit -= L = - F-

-i.:- k,-.-0-F-S._)_ = Limit = L e l./3e-7 _ /.I 3e-/O - /,()() tL3 1.06 x (The Less of #15b OR 3436)

  1. 9

) ~

i,-:lG-/b

) = Q, I ek:: /,00 e -t 1.06 ) ( /000 /tJtJoO

17. Hi Hi ALARM = Ax( #16} ={10)( j.06e-/ )-

/.O(ee-f iJCi/cc The radioactive gas flow corresponding to the HI Hi setpomt: Perto,medby ~k/~o,te ,;/-d-/,-/f; ~ AAA/\\ ~- ......t i. - /, D t * :i-iG-1~ Independent Verification by: :::,µ'iz:"s;\\;: Cf:'.'. ~ a e._::___:=---:.=--- 75

.t. NEE-323-CALC-003 Page 3 of 18 DAEC SURVEILLANCE TEST PROCEDURE STP NS791013 TITLE: K10 CALIBRATION Page 10 of 68 DUANE ARNOLD ENERGY CENTER Prerequisites Performance Date:, ~, w {L, io t '--1 PREREQUISITES 6.0 6.1 Make a copy of the EMS database display. Rev. 17 6.2 From the Chemistry Supervisor or designee, obtain and record the following alarm setpoints. (Values will be used to confirm AS FOUND data.) 6.2.1 HI 8.(,Q ~- k µCi/cc 6.2.2 HIHI 3, bl..\\ 8 - l µCi/cc 6.3 From the Chemistry Supervisor or designee, obtain and record the desired New HI alarm setpoint. (Value will be used for the AS LEFT setpoint.) 6.3.1 Desired HI a, bQ f...-b µCi/cc 6.4 Verify Sr-90 0.09 µCi source (UID #687) is available for use. 6.5 Verify the KAMAN/EMS 'lbrtime and the HPGe System Computer time are within +/- 30 seconds. NOTE I 1 When Kaman point sources are decay corrected, decay is to be from the date marked on the source to the test date. 6.6 Decay correct permissible range (8.5E4 - 9.0E4 cpm) for UID #687 and record below. PERMISSIBLE DECAY CORRECTED RANGE: .:?. 8 0 f'-( cpm to Y.I I E' 'i cpm ~. ' INITIALS ~~ (CHEM) ~ (CHEM) ~ (CHEM) --b (CHEM) ..lb (CHEM) ..(~ 'fV1 (CHEM) .¥r-. (CHEM) ~ (IV)

i-t 047cl0(, 1 NEE-323-CALC-003 Page 4 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample 1. D.

J<..-.:)_ CIAa-.r v~--..a.r

2. Sample No
3. Sample Date s;*. c::;
  • 1-i
4. Sample Time j.>'-(l-fl.[( 0
5. MWT ~i9~1 ~I __ _
6. Count Date

'5;.__- -"'-5_...... n--'--------- 7. Count Time -:-:::1'-::Y~I,,.,[ ________ _

8. MonitorReading(µCi/cc)

~,.,oG;_ -- 7

9. ProcessFlowRate(CFM) 4~c,c 2()

11 Isotope k,

  • JCi/mL Xe 133 Kr85m Kr 88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar 41 N 13

'1, I l i:-; - <-( 16.'" k; = t...L1 l l::: J"I 16b I k, ( I l k,

  • DFV,)

( 1.06

17. Limit = L =

(F)(X I (,)) 12 Dose Factor Vent DFV; mrem m3 yr µCi 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3.. 16a. L (k, DFV,) = 4.1 L

  1. 16

) y ;ll ~A l

10. Sample Volume (ml)

-f 7 Cn t) 13 l Product k; x DFV, '-l. 1 b f *.'. E -.C I 13 Flow Meter ID#_L_-_7:....2=- C:X+---- Cal Due Date ( 0 --t.J(, -{ ]

14. Bkg = ln~trumentJa-jround Bkg =

I. 1\\'.i e - µCi/cc

15. X/Q = 4.3 x 10*0 sec/mJ (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 E- ~

= --- = '-' \\-6 e- ~

  1. 16a

) X I ki 1.06 I (ki

  • DFVi) x (The lesser of #1 Sb OR 1.81 E-4) =

(

  1. 9

)( #15 1.06 Limit= L = ( l l oc l) )( '{::, i: - b ) ei.1 3.v

18. H1Hi ALARM = Ax( #17

) = {1.0)( 3.~1 E:-L\\ ) = J.R) t" - ::{ JCi/cc The radioact,ve gas flow corresponding to the Hi Hi setpoint: Performed by;_ ~_u-..,,_-'-_ Date: 05 -o.f" - (] Independent Verification by: ___ ~/?A ____________ Date: 5 : 5 - J 7 76

NEE-323-CALC-003 Page 5 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample LD.

Kcro9Y) 2

2. Sample No.

--'""'16:c---..... '3.....__,':f:,_('::---=:-----

3. Sample Date

'°l. - s*-IG

4. Sample Time Jr I;>
5. MWT (11(
6. Count Date _....,2-::;._-..c.5_-_.l=y'---------- 7. Count Time

--,--,-~ll~**_\\_<"1~=-------

8. Monitor Reading (µCi/cc) j.G.S' e -8
9. Process Flow Rate (CFM)
  • 72. c.OC 11 Isotope k,

µCi/ml Xe 133 ""' \\,t_ ik,.* l:1:....I Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41

  • ,1 N 13 c.ac;- (" -'l 16.' k. =

,.o5c -*i 16b. L k; L(k,

  • ocv.}

1.06

17. limit=L=

(F)(X I Q) Limit = L = (,2,00.:... 12 Dose Factor Vent DFV1 mrem m: yr uCi 294 1.17E3 1.47E4 1.81E3 5 92E3 8.83E3 3.12E3 2.51 E2 8.84E3 8.83E3 ** -._.,..;..=4-=...;;;.... ___

10. Sample Volume (ml) 45.o:o 13 Product k, x DFV,

,,,,. 1,._ *.1 1J. I (.i,.L3 e-5 Flow Meter ID# L {'2 9 Cal Due Date: \\() 11

14. 8kg = Instrument background 8kg = G,, '3S e-'T

µCi/cc

15. X/Q = 4.3 x 1 o-<> sedm 0 (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 16a. l: (k; DFV;) =

G. -L~~-s

  1. 16

) {,0-'i <: I

  1. ]6u

) C,. L'!. e-5

== X z.: ki L (ki

  • a=\\/i}

1.06 )( 'i.3 }(. IC - l.) 1 =

  • 3.0 1 e-\\.{

1.\\3,:, ) o_

18. HiHi ALARM = Ax( #17

) = (1.0)( 3 o1el.{ )= 3,'g7e-'t- µCi/cc The radioactive gas flow corresponding to the Hi H1 setpoint: Perronned by,uJj -fl, rvlJ' Date: __ 2_-_5"_--_I_,_ Independent Venf1cation by: _________ +-(s:-'7"-'--- -"'"-'--L-,4.- Date: __ z_-_s_-_, _c.,_ 98

NEE-323-CALC-003 Page 6 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATT AC HM ENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample I.D.

_,_K-=c..=--""'c;.,.,,='-"-~d..-____ __ 2. Sample No. / 4-J.(p ~ C 1

3. SampleDate 5-&: -,~-
4. SampleTime 12.:31 _ -

13:C} 5.MWT !107

6. Count Date 5 - k'* I~
7. CountTime

/~ Z. '1

8. Monitor Reading (µCi/cc}

J... J f{ e.. * -Z

9. Process Flow Rate (CFM}

7J. O o O

10. Sample Volume (ml}

'i'i Yo D 11 12 Isotope k; Dose Factor Vent µCi/ml DFV1 !D!fil!l m3 yr µCi Xe 133 IVO Al.#! 294 Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.51E2 Ar41 IV o,.J (. 8.84E3 N 13 ,.s"I~*" 8.83E3 **

16. I k1 =
1. \\"'f~-,

16a. L (k; DFV;) = 16b. I. kt (

  1. 16

) '. 'r'1c. *" = I:(~* DFV,) (

  1. 16a

) ,.*u.c.*f' 1.06 X I. ki

17. Limit= L=

(F )(X IQ) I. (ki

  • DFVi)

( 13 Product kt X DFV; -"V<Jtvl=.. I I I I I I ,vo-e '6 c;;.1 * *,- ,.n.,.s Flow Meter ID# __ L~7_1_5~-- Ca1 Due Date: _ _ 7_.. _2._2_-~I_'-_

14. Bkg = Instrument backtound Bkg =

/, /0 ~... µCi/cc

15. X/Q = 4.3 x 10-<1 sec/m~

(atmospheric dispersion}

    • Arbitrarily set equal to Xe-136

/,/'Sc.*"' = 1.06

  1. 9 )( #15

) x(Thelesserof#16bOR 1.8] E-4) = Limi) = L =

  • I.06 I-{ ~ * "

( /, / ~ t * 'l ) = 3, \\-1 C... '-I ( 1 '). ooc) )( C. ) 3 U"J .~,

18. Hi Hi ALARM= Ax ( #17

} = (1.0)( 'J,~1t.*., } =

  • C.

µC1/cc The radioactive gas flow corresponding to the Hi Hi setpoint: Performed by: ___ *l_\\_1t-_\\ \\_':'\\ __________ Date: S'.. {(... I '1 \\. _____.,I~ /'\\/V\\ -. 5 ~ 11£ Independent Verification by: _ ___..~~ ......... ~ r T_ ~ Date: - o" n

NEE-323-CALC-003 Page 7 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample 1.0 kawie111 j
2. Sample No.

//o-155t

3. Sample Date

_3-:L-JIP

4. Samplenme

/JL--/7


'-::5-:. MWT-c:-:-:~-T'./q.,...,....,,"'TJ--

6 Count Date 3:4 -IG

7. Count Time

-=1:,lL1-:,5,......-kl.._,..,r-=-----.:-:----- 8 Monitor Reading (µCi/cc) Lf I l/tp e. - '3 9.. Process Flow Rate (CFM) ! 3.: 00?

10. Sample Volume (ml)

-~--..S;:,-()'-'O;...;Q_ ___ _ 11 12 13 Isotope k, Dose Factor Vent Product

.1C1/ml
DFV, mrem mJ k, X DFV, yr 1,1Ci Xe 133 1\\0/b ~ II 294 l'\\ONe.

\\ ""'m~-, rJ Kr85m 117E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2 51E2 Ar41 11 884E3 1 / N 13 G,,1 I e-'l 8.83E3 ** f:;, '-fT/p-Cj 16.~ki = (o.Jqe,-q 16a. l: (k. DFV1l = ~* 1./ 7P-&, Flow Meter ID# L '"J 'd-. 'l Cal Due Date: /Of Gf /7 rJ

14. Bkg = Instrument b'ground Bkg = Co,/q t! -

µCi/cc

15. X/Q = 4.3 x 10"' sec/mj (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 1sb l:k.

= < m6 > = toJqe-<:f _ t.13e..-~ l:(k,. DFV,)

  1. 16a

) S:'1'1e-~- I.06 x L ki 1.06

17. L1mit= L=

x(Thelesserof#16bOR 1.81 E-4) = (F (X I Q) L (ki

  • DFVi )

(

  1. 9

( #15 ) Limit=L =f-'f I.06l/°?;, fo ~ )i/?;,e_-'-() = 3,00e -tt ~ ~ODO )( I (2.. - V

18. Hi Hi ALARM = AX ( #17

) = {1.0) ( 3,eo e -t.,/ ) = '::>,OD e-L{ µCi/cc The uid1oactive gas flow corresponding to the Hi Hi setpoiht: Pe*onnedby. ~ \\ k ' (,i,,~te* 3,-l-j-{o Independent Verificalion by: '9.. f3 -JU;;.. " Date* '3,- Y - (;;, 14

NEE-323-CALC-003 PLANT CHEMISTRY PROCEDURES 3200 MANUAL .. ALARM SETPOINTS AND BACKGROUND DETERMINATION FOR KAMAN NORMAL RANGE MONITORS ATTACHMENT 1 Page 8 of 18 PCP 8.3 Rev. 33 Page 13 of 14

1. Sample I.D.
3. Sample Date
6. Count Date

--+--=--+---=-+:;--=--=--,:---- 7. Count Time ---'-4--,,,:."'4!.-.,,..,-=---:-:::--,--,~.!.::....,;.-- /'f ____,=--4-....::+-..1...:...-,__ __ 9. Process Flow Rate (CFM) ~(1 11 Isotope k; µCi/ml Xe 133 Kr85m ~ Kr88

s;

Xe 135 \\"' Kr87 Xe 138 l~ Xe 135m ~~ Xe 133m ~ Ar41 ~ N 13 _\\\\

16. I k; =

JJIA-12 Dose Factor Vent DFV; mrem m: yr µCi 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. Z: (k, DFV;) ;:: ilJ ~

10. ~;mple Volume (ml)

'f'J-~ Product k1 x DFV; C::... ~ ~ R ~ ~ ~- 'tj' Flow Meter ID# __ L_*---~....,__,.,p_CJ __ Cal Due Date: __ t/...._ . _.__J/ (.___,--'!~::/_

14. Bkg ;:: lnstru.r;ient back;g;und Bkg = :;: '/ 5' £--

µCi/cc

15. X/Q = 4.3 x 10-ti sedm~

(atmospheric dispersion) "* Arbitrarily set equal to Xe-138 I k, C #1 6 ) = >J/k-1 sb. L(ki

  • DF-V,)

( #l6a ) ---;;w = 1.06 x L ki 1.06

17. Limit=L= ----

x(Thelesserof#16bOR 1.81E-4) = (F)(X IQ)" L (ki

  • DF-Vi )

(

  1. 9

)( #15 ) Limit=L= ( '(3~0f/ 1.~t '(.3-£-~) (/,{?(G-f) =

18. Hi Hi ALARM =.Ax( #17

) =(1.0)(

f. f30 e-'f )=

If ~C-~Ci/cc The radioactive gas flow corresponding to the Hi Hi setpoint: Performed by: ~ 5ft:f: Date: Independent Verification by: ~9:YY\\ ~ /Z~ct-lF Date: (]_ -11 ;I <<

NEE-323-CALC-003 Page 9 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL

  • PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.31 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT
1. Sample I.D. /<~'I -I "?

l.'59~cJc:.(

2. Sample No.

I 3 - /151

3. Sample Date

} -/ - !,.}

4. Sample Time
6. Count Date 3 /3 l;;..;;

3J'-o;:;;..

  • ---- 5. MWT 13.3 8
7. Count Time
8. Monitor Reading (µCi/cc)

/, ?G.r- - IS

9. Process Flow Rate (CFM)
10. Sample Volume (ml) 13 5....7'1 ~a.:t~-,-, > 9'3,oo.:>

'/, /'6 E..., 11 12 Isotope k; Dose Factor Vent Product µCi/ml DFV1 Flow Meter ID# L 71.,,D mrrun ml kl X DFV; yr µCi Cal Due Date: S /y Xe 133 ,I\\.JDN fl.. 294 1-)c.,,,..;{+/- Kr85m '1:.D~chE-1) 1.17E3 J..:~,tf-1 <;*-I Kr 88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar 41 N 13 'l 'J' 16.:[k; = /)} I l'r I k1 ( 1Gb. °2:(k1

  • DFV,)

( 1.47E4 1.81 E3 5.92E3 8.83E3 3.12E3 2.51 E2 8.84E3 8.83E3.. 16a. L Ck, DFV;) = N/4

  1. 16

) /Y /. = /Vlr

  1. 16a

) =

14. 8kg = Instrument background Bkg = S, '7 z. ~-,

µCi/cc

15. X/Q = 4.3 x 10-e sec/m3 (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 A//,r l.06 X

L ki 1.06 x (The lesser of#16b Oe=

17. Limit = L =

I (F)(X IQ) (ki

  • DFVi)

(

  1. 9

)( Limit = l = l.06 ( / c.,? E. 4 ( "l 300o )(,;,."?:,Ytv' '- )

  • I
  1. 15

) -4 ) = 1.1. -io E

18. Hi Hi ALARM = Ax ( #17

) = (1.0) ( '-/. 'l/Jf Li d. oa -;. ~ ) "'_-_ 10 _ ~ ___ µCi/cc The radioactive gas flow corresponding to the Hi Hi setpoint:

19. Q = 472 (A
  • #17)#9..

Q: 472 (1.0) ( '-/, SJo £_ 'I ) ( q ~ DD C> ) \\ Q = ..q, I I~

,* ifo'

µCi/sec 2.., II £--4....._c:.*./-;;u.... Performed by: £<1J~ /)'ie( Date :.-=-3---'-/-_1_.3c...._ __ Independent Verification by: _ __ _,,_ffi--,L__,__-4-'t...;.:_::...A---=--________ Oate: s-1-1~

NEE-323-CALC-003 Page1 0of18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT V I. C t 1- - ~ - ~LI l

1. Sample I.D.

,..__.. ~ v=,,-,.,.,.,..

2. Sample No.

_"< _ ___ -=---:------

3. Sample Date

, I - ~ o

  • l 4'
4. Sample Time I '5 I Y
5. MWT

__,_lq-'-'-1.._( __ _

6. Count Date

_lc...:.1_-_..jc...:o==--...:...' ::::c.'=> _______ 7. Count Time ..... i'7.... ";>...__,,__,--______ _

8. Monitor Read ing (µCt/cc),2 ~E.-*1
9. Process Flow Rate (CFM) -~:..,:3:,,.0::.......;_e_C:;..,)-----

11 12 Isotope k, Dose Factor Vent

Ci/ml DFV; mrem m3 yr

µ C 1 Xe 133 ':'(1.,,...s,_ -,:r,4i,,.o r. J294 Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81 E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.51E2 Ar41 8.84E3 N 13 \\... 8.83E3 ** 16.~K; = rvlA-16a. I: (k; DFV,) = I: k.

  1. 16

) 16b. =

== 1:(k,

  • DFV,)

( ill 6u ) 1.06 X I: k:i

17. Limit= L =

I: (ki

  • DFVi)

(F)(X I Q)

10. Sample Volume (ml)

':1~000 13 Product k, x DFV, f'{c,"4:'. ~,t-.(; f"V"7A. F low Meter ID# L- -7J. q Cal Due Date. I D-G - I 1 b.J 1 1

4. 8kg = Instrument background 8kg = i.i.., -i 0 t

µClfcc

5. X/Q = 4.3 x 10"° sec/m:i (atmospheric dispersion)
  • Arbitrarily set equal to Xe-138

= "1-A 1.06

  1. 9
  2. 15

)( x (The lesser of f16b OR ~ly = ) 1.06 u Limit = L :: ( /. ¥" l <=.

  • I

( q ~ C..">00 )( t.i.:,~ -& )

==

18. Hi Hi ALARM = Ax( #17

) =(1.0)( 4.~o(:. L( )= 4-

  • CCO E:.
  • L{

µCi/cc The radioactive gas flow corresponding to the Hi Hi setpoint: Performed by:. _________ >1;_......Sl._'-.:::,,_------Date: ) I - '30

  • I~
    • '"/ -

II-3-v--/l,- independent Verification by :._..::~:::__ ______________ Oate:. _ ____ 77

NEE-323-CALC-003 Page 11 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample I.D. NSlOf \\ bC::A.

~ - lo

3. Sample Date L\\ - \\\\er\\ S
4. Sample Time
6. Count Date L\\- ll..o- \\S
2. Sample No.

\\ S - d,. ) ci S __;.l..;;;;lo..;;;C()"""'----~-- 5. MvVT _._\\9..L-'tc.LI __

7. Count Time

-'-l~lo~I_Y~----=-----.c-----

8. Monitor Reading (µCi/cc) l.l OE-,
9. Process Flow Rate (CFM) -.,..,..-9!~* ~

.......,.o'--'o'-,>O ___ _

10. Sample Volume (ml)

Y.,rj,S EL\\ 11 12 Isotope k1 Dose Factor Vent µCi/ml DFV; mrem m3 yr µCi Xe 133 ~',.1 ~... c.*. *1294 Kr 85m 1.17E3 Kr88 1.47E4 Xe 135 1.81 E3 Kr 87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.51E2 Ar 41 8.84E3 N 13 ,/ 8.83E3 ** 16.I k; = µ\\A 16a. I (k; DFV;) = 16b. I: k, ( #16 ) I:(k,

  • DFV,)

(

  1. 16a

)

17. limit= L =

1.06 X I: ki (F)(X IQ) I: (ki

  • DFVi)

( 13 Product k, x DFV1 ~~q,e:/ I I I / ~\\L Flow Meter ID# __ L_l_d._°{~- - Cal Due Date: ___ \\ _0_-_(.o_-_\\ I_

14. Bkg = Instrument background Bkg =

µCi/cc

15. XJQ = 4.3 x 1 o~ seclm-'

(atmospheric dispersion)

    • Arbitrarily set equal to Xe-138

= t0 \\4. 1.06 x (The lesser of #16b 06 =

  1. 9 )( #_15

) Limit = L = I.06 ( UH E:. - ~ ) = i-\\-:~Oc:. -Y C <~(SiOOO )C '-\\.3r;- i..c )

18. Hi Hi ALARM =A x( #17

) =(1.0)( L\\5sOE. - L\\ )= l....\\.~D£- 4 µCi/cc The radioactive gas flow corresponding to the Hi Hi set~oint: Performed by: ~~ Date: W-lea- \\s=- lodepeodeol Vecif<aboo by, ~r oate: f-/p-(5 . I

N EE-323-CALC-003 DAEC SURVEILLANCE TEST PROCEDURE STP TITLE : K6 CALIBRATION Page DUAffi: ARNOLD ENERGY CENTER Rev. Performance Date: q-la-1~ 7.15.6 Record the following AS LEFT values:

a. AS LEFT HI-HI ALARM SETPOINT (from Step 7.15.4):

~ ~-1:.--13 4.~OE,~ '1- ~D e ~;, µCi/cc

b. AS LEFT HI ALARM SET POINT (from Prerequisite 6.3.1 ):

µCi/cc

c. AS LEFT BACKGROUND (from Step 7.13.50 or 7.14.49):

7, ~4 E-7 µCi/cc 7.15.7 At the Kaman EMS IDT, verify the following has been correctly entered into the EMS database:

a. HI-HI alarm setpoint (from Step 7.15.6.a)
b. HI alarm setpoint (from Step 7.15.6.b)
c. Background concentration {from Step 7.15.6.c) 7.15.8 7.15.9 Update database values on the status board{nd in Labstats./

Attach completed setpoint calculation documentation (Step 7.15.4) to this STP. (PRINT I SIGN) Lo..rr-'tr -:1:s~c..s R,~L-iarJ p~ Performed by: Date: Time: Page 12 of 18 NS791009 64 of 66 14 INITIALS lnit.

NEE-323-CALC-003 4 o l :S Y: (p I (p Page 13 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1 Sample I.D K<o Char: [Ylyy 2 Sample No I J-7:2.~~ 3 Sample Date lf -1'.3 -17

4. Sample Time

)1. ~q

5. MWT

__,_I 1..1.:0:e.:O:__ __

6. Count Date

'~'-'--..._)}"'--..... 11....._ __ ~---- 7. Count Time

--:-'-12.=S=......lf:--:::::-------- 8 Monitor Reading (uCi/cc)

B J(q e-9
9. Process Flow Rate (CFM) _9.........:3.:::0::.::0::.::0:::__ ___ _

10 Sample Volume (ml) _.'-1_71..::5':::..;;0;;..:0=----- 11 Isotope ki µCi/ml Xe 133 1111,n..

  • J...l.1..l Kr85m Kr88 Xe 135 Kr 87 Xe 138 Xe 135m Xe 133m Ar41 N 13 16.~ki =

'r',l} A I kJ ( 16b = I k..OFV,) ( 12 Dose Factor Vent

DFV, m3

!Il.(fil!l. yr µCi 294 117E3 1.47E4 1.81E3 5.92E3 8.83E3 3 12E3 2.51E2 8.84E3 8.83E3 ** 16a. ~ (I<; DFV1} =

  1. 16

) ~(I+- =

  1. 16a

) 13 Product k, x DFV, lnc.n..

  • 1 '.r...1 I

j l rJ/A. = Flow Meter ID# t--1z. Cal Due Date: fo - - I 1

14. Bkg = Instrument background Bkg =

1-f 81 e. - 7 µCi/cc

15. X/Q = 4.3 x 10-<> sec/m.,

(atmospheric dispersion)

    • Arbitrarily set equal to Xe-138 1.06 X

L ki

17. Limit = L =
  • DFVi) 1.06 x (The lesser of #16b OR 1 81 E-4) =
  1. 9

)( #15 (F (X I Q I (ki Limit = l = I.06 ( 1:i I e-'1 ) = ( 931000 )( t.f,J;:,l lO-. ) u - ~ )

18. Hi HI ALARM = AX ( #17

) = (1.0) ( -,.'~a e = u _Lj ,.! 'BO e µCi/cc The radioactive gas flow corresponding to the Hi HI setpoint* Performed by*__:~~

(...~QaS,..,

d---'='/3'-.~~~"""'~::...: '--"'- ~----Date .. _ '1,_-_,_l,c_3 _-...._IJ~ Independent Verification by. ____.-L~~=-=~-fi~~'---_::...:c....;.;;..=-_Date: L{ - \\ ~ - / I 80

NEE-323-CALC-003 Page 14 of 18 . PLANT CHEMISTRY-PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample I.D.

i<'4M'll\\ "ii

2. Sample No.

_Is-_* ---~ __ 3_

  • _'i' ______ _
3. Sample Date iD-i"-;&
4. Sample Time I/ 3o
5. MWT

/'1//

6. Count Date 10 ---S-t'.r
7. Count Time

// 39

8. Monitor Reading (µCi/cc) 7,s-9e-- 41
9. Process Flow Ra-te_(_C~F-M~) ~-q.,.,.-,3=-o:x;:,~

--=* ----

10. Sample Volume (ml) --~--e_'f ____ _

11 12 13 Isotope k; Dose Factor Vent Product µCi/ml DFV; mrem mJ k1 x DFV, yr µCi Xe 133 rJ Mt ":zl/JYf', 294 ~tie'-- Kr85m 1.17E3 ~ ,;i71h~- Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m . 2.51E2 Ar41 t:" 8.84E3 \\ N 13 '{, t,]_ e _., 8.83E3 ** "1.61, e. ~~ 16.1:ki = t/./J') e-'-'1 16a. 1: (k; DFV1) = if~ {J - S I: k; ( #16 ) 16b. = I:(k,, DFV,) ( #16a ) 1.06 x L ki 1.06

17. Limit= L= ----

(F)(X IQ) I: (ki

  • DFVi )

(

  1. 9

)( #15 Flow Meter ID# __ '--_7_-z.,q ___ _ Cal Due Date: JO-6 ~ / 7

14. 8kg = Instrument background Bkg = -!.)3e - 7

µCi/cc

15. X/Q = 4.3 x 10-ti sedm~

(atmospheric dispersion)

    • Arbitrarily set equal to Xe-138 x (The lesser of#16b OR 1.81E-4) =

) ,o~'b~l~ Limit= l = l.06 ( \\,(*~e.- y (?'3"Cu )('(,3~- C, ) ) =

~

j,Obe,-'1

18. HiHiAlARM = Ax( #17

) =(1.0)( *,.t>o-e--'1 The radioactive gas flow corresponding to the Hi Hi setpoint: Performed by: ~ 2_.oo,r.,_ Y ) = __ ~ ___ µCi/cc Date: Independent Verification by: ______ s=_~_l:\\-1_

  • _A---

Date: 10- B - IS 72

NEE-323-CALC-003 Page 15 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Samplel.D.

K..~""'1/\\ 1

2. Sample No.

II.\\ - 2'1Cfl

3. Sample Date

- j ---Z.-'\\---,j---4-_-s_a_m-pl_e_T-im_e_ JI D 3 --'-----5-. MWT----,-=,-o--.-/-

6. Count Date LJ-z.. '1-1 'i
7. Count Time

__ __.I..._I._/0'-----=------

8. Monitor Reading (µCi/cc)

/. Z 2.. E - 7

9. Process Flow Rate (CFM)

<J 3 <)oO...-:--

10. Sample Volume (ml) 48 fuOO 11 12 13 Isotope k;

Dose Factor Vent Product µCi/ml DFV1 Flow Meter 1D# __ L_7_6_0 ___ _ !!!!filD. m3 k1 x DFV1 Cal Due Date: __ S"_- _7_-_,4 ___ _ yr µCi Xe 133 /Vl>fll k:.. 294 ,U()µe.. Kr85m

J.:?l)eA 7j p;eJ 1.17E3 r,,..k.,..-n'l"JeJ Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 16.Ik; =

,v/4-16b. 1: k1-( I:(k

  • DFV1)

( 1.47E4 . 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. I (k; DFV1) =

  1. 16

) =

  1. 16a

) ,v/4-' /1//.4-.

14. Bkg = Instrument background Bkg =

A/(A- µCi/cc

15. X/Q = 4.3 x 10*b sec/m~

(atmospheric dispersion)

    • Arbitrarily set equal to Xe-138

. /4-IV 1.06 X 1: ki 1.06

17. Limit= L =

(F)(X IQ) I: (ki

  • DFVi)

(

  1. 9 )(

1.06 _I( Limit = L = ( I,~\\ e. < l\\ 3oc.>0 )( 'f.3 e~ )

18. HiHi ALARM =Ax( #17

) =*(1.0)( ¥.&e-'1 The radioactive gas flow corresponding to the Hi Hi setpoint: /7/7~...i'A.* - Performed by: ~~ ladepeadeat Verif"'3tioa by ~

  1. 15

) x(Thelesserof#16bOR 1.81E-4) = -l{ ) = 'f.J,o e v- -'( ) = tf_ ~ e µCi/cc v" Date: Date:

' ~ 1 \\ C l\\ 0 t ~L '6 - C NEE-323-CALC-003 Page 16 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample I.D. K - I :l. C...k °'.,..

e,.._,r 3 Sample Date 4 -~ \\ 7

4. Sample Time
2. Sample No.

l 7 - J... ~ (p 11;2..:i...


5-. M_wr

___ q_\\ D---

7. Count Time

--"-'r3'-Y,.._5-=--------

9. Process Flow Rate (CFM) 1 '3 o c c,
6. Count Date Lj - ::i.o ~t 7
8. Monitor Reading (µCi/cc)

,;;:>_. t.., 1 E. <iS"' -~------ 11 Isotope k, µCi/ml Xe 133 'lo.,.. 'T...C,, A+- Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 16.!:ki = rv'IA 16b. Z: ki ( = L(k,

  • DFV,)

( 1.06

17. limit = L = (F)(X I Q) 12 Dose Factor Vent DFV1 mJ

.[!lliilll yr µCi 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. ~ (k1 DFV,) =

  1. 16

) r-rk = t

  1. 16a

) )( Z: ki L (ki

  • DFVi)

(

10. Sample Volume (ml) 4'c', OOQ 13 I

Product k1 X DFV1 N 0o'<:l~'4... +- ,J rv/-A Flow Meter ID# L--, ~ 'i Cal Due Date: I () - £.c, - I t

14. 8kg = Instrument background Bkg = 4,0? G. 7

µCi/cc

15. X/Q = 4.3 x 10-<> sedmJ (atmospheric dispersion)

.. Arbitrarily set equal to Xe-138 = N{lt 1.06 x (The lesser of #16b o@ =

  1. 9

)( #15 ) Limit=L = I.OG ( l.~\\G - ~ ) = ( -, '5oo c )( L.f, :iE. - (p )

18. HI Hi ALARM = Ax( #17

) =(1.0)( ? <\\~ 6 l( )= 5'.'-l5 G - L( µCi/cc The radioactive gas flow corresponding to the Hi Hi setpoint Performed by: _______ -~ Date. '-l - d.. ' 17 /-/-- t...J~ 2.D-t t Independent Verification by:_ 1_i_-_____________ Date:_/' ____ 94

NEE-323-CALC-003 Page 17 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev. 33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample I.D.

l<-4,,,,,4 /Z--

2. Sample No.

15' ~~ ~.?O

3. Sample Date 11~ /1-15"
4. Sample Time

/ 3 '/ Y

5. MWT _1_9....;;/ __ _
6. Count Date 11 1 :r
7. Count Time

/ ~ : l-7

8. Monitor Readi-ng-"'-{µ_C....

i/c"'-c"""") -"'-e;.--.-3-e 7 ____ 9. Process Flow Ra-,-te-(c-::C""A~M.,..::) c.....:....=7'"".s=z;.;a---=-,------- 11 Isotope k, µCi/ml Xe 133 \\G Kr 85m \\'>!., Kr88 \\t(' Xe 135 \\ """' Kr87 '\\V:. Xe 138 '\\. ">A Xe 135m '\\:~:- Xe 133m \\~ Ar41 '\\ N 13 --f"f'l~*"

16. ~kJ ::.
5. ltlfc'.. -'l I: k, 16b

= L(k,

  • DFV,)

1.06

17. Limit= L = F)(X I Q) 12 Dose Factor Vent
DFV, mrem ml yr

µCi 294 1.17E3 1.47E4 1 81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. I: (k. DFV,) =

  1. 16

) 'i-o/11!-, ? =

4. 'jl>('.- S"
  1. 16a ki
10. Sample Volume (ml)

--==3=-, "~t~'f.-t::,-4,-,----- 13 Product k, x DFV1 i\\.-? \\~,-~ \\ !\\ \\ "?:.-- '\\""" \\'1._;> '\\.!.. 1/, it.e-S '1.-io.,. -:; = 1.06 Flow Meter ID#_l_?_I_S""" ___ _ Cal Due Date:_ 'l_-_t_2_-_f_7 __

14. Bkg = Instrument background Bkg = 5* 'i&J e -'1

µCi/cc

15. X/Q = 4.3 x 10'° sedmJ

{atmospheric dispersion) - Arbitrarily set equal to Xe-138 X I: t (ki

  • DFVi) ------) x(Thelesserof#16bOR 1.81E-4) =
  1. 9 )( #15

( 1.06 ( /, /'? v Y Limit = L = ----------

,c.

(,~ )( I.(, 3,c,a ~b ) = .. '1

18. Hi Hi ALARM = Ax{ #17

) = (1.0)( °J11 le ".2 ) =- 7.,,e µCi/cc The radioactive gas flow corresponding to the Hi Hi setpoint: Performed by*_._~......,_ ___ ~_~ Date: l!-l ?--/5' Independent Verification by: ____ __.&.,...,....__ __ k_z_'4-- Date. /1-19 IS 162

N EE-323-CAlC-003 Page 18 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT

1. Sample I. D.

_a.,...:....:_,n_~"-'-"=-'-~-'-e.,-'(""'---- 2. Sample No. l Y - L/ 3 k"

3. Sample Date

...........,=-=-..........,.----- 4. Sample Time -------- 5. MWT 1 'l J'

6. Count Date -~~~~------ 7. Count Time

_..,.l...... )....... ~"-1-=--~~----- 8 Monitor Reading (µCi/cc) J,'i'::i<.~ 7 *

9. Process Flow Rate (CFM) __ 1~54_0_d_O ___ _

11 12 Isotope k; Dose Factor Vent µCi/ml DFV; mrem mJ yr µCi Xe 133 A///\\- 294 ,,J. 11 - Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 \\ Xe 135m 3.12E3 \\ Xe 133m 2.51E2 \\ Ar41 8.84E3 \\ N 13 8.83E3 ** I 16.Lk; = I" Jv 16a. L (k; DFV;) = M ~ I k; ( #16 16b. = ) --'----'- =

10. Sample Volume (ml)

(1~(.(?o 13 Product k; X DFV;. 11./I~ N I¥ Flow Meter ID# __ l=-7-~_C,_-....- Cal Due Date: __ /_0_--~---'-'-q-t--

14. Bkg = lnst'}Jment back9.1:.ound Bkg =

4, GI E...-7 µCi/cc

15. XJQ = 4.3 x 10'° sedmJ (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 I(i<;
  • DFV,)

(

  1. 16a

) 1.06 X

17. Limit= L =

L (F)(X IQ) L ki 1.06 x(Thelesserof#16bOR 1.61E-4) = (

  1. 9 )( #15

) (ki

  • CF'Vi) 5- 'f-5 S 6 S.c,:; t--.{

Limit;: l = I.06 ( /,~/ 4.-"( ) t ~ f*&.'l.-t"( c, S-ooo )< '{, 'J :,.10-~ 'I _ 13, ~ s-. 'j s-c.- ""I

18. HiHiALARM = Ax( #17

) "(1.0)( 5G Se..-~ )" -5.. ~z::

    • Jcj)cc The radioactive gas flow corresponding to the.Hi Hi setpoint:

Performed by: ~~/. Date:

  • _Q_c./1""1 A-I Z.Z-I 4-lndependent Verification by: _________ a __

(_~_ ~ ___ Date: __ 5\\&..r:\\- ll'Sl

5 Tl, P I~~.)

\\,.g1) t.~M.

1.
3.
4.
5.
6.
7.
8.
9.
10.
11.

NEE-323-CALC-003 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 PCP 8.7 Rev. 17 Page 9 of 11 Page 1 of 9 Page 1 of 3 LIQUID EFFLUENT RADl0ACTIV1TY MONITOR SETPOINT Sample No. /7..... 5'L{qC,

2. Sample Date & Time f-z;B-17 / oo?S-Stream/Monitor Description ~

R. ff\\ - 4 7 6 7 Effluent Monitor Reading ( cps)---::..,----~/...:;D'-. ------------------ Effluent Flow (gpm) Cf h 00

  • Average effluent flow during time represented by sample, F1 (gpm) _ __.,&--'/_,t--..:..,------,---

Average dilution (discharge canal) flow during time re12resented by sample, F2 (gpm) ~)/A-- Monitor calibration factor, 9 1 (cps/µCi/mL) __

z:;-'.-;/~"f=-'e_v-____________ _

Previous alarm value setpoint (cps) ___ --::7~--C:,=-=-S' _____________ _ Fraction to apply as a safety margin, A= 0.5 Setpoint ""10 x[ .,,.'i.,_K1 xg x ~2 xA]+Bkg = 'i.1(K1..,. WECi) Fi Setpoint== sx[(lS)(S)(?)J+ (4) (16)(6) -'Z-(, [( J. o(pe.- )( ";.,l'le )( ~/~ Setpomt "" Sx /. (

i_ I q

)( JV/,r ~t/7 cg-ZS -/7 Setpoint = --~-_.:.__ __ --- 5 Ll.D >"" Setpoint=lOx[(lS)(S)(7) x(l 0)]+(4) (16)(6)

] + (

/0 ) Fractional Change= New value - Previous Value= ( 11 ) - ( 9) = ( 5'<../f> ) - ( 7 ~ ) Previous Value ( 9 ) ( '-}(:;.!, )

12.

Fractional Change=... 0,7-1'1 i/

13.
14.

If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint Monitor Hi Alarm= '7{, s"'./ Radwaste Monitor Hi Alarm=.16 (11) =.16 ( ) = _.v_i_~ __ cps./ 65

NEE-323-CALC-003 Page 2 of 9 ' 1. ' 3. "'- 4. "' 5. " 6.

7.

'-.... 8. ""-9. ""- 10. ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. \\ S - *7192 /

2. Sample Date & Time
  • 1'2. - l-tS /tP o3

/ Stream/Monitor Description G S'uJ :x'.'9~~*'; R(O-YJG;,1 v Effluent Monitor Reading (cps)_-"'-'t O ___ ___,_i[_ __ ~.___-<-------------- - - Effluent Flow (gpm) 00 Average effluent flow during time represented by sample, F1 (gpm) N ./ Average dilution (discharge canal) flow duri~epresented by sample, F2 (gpm) N'R Monitor calibration factor, g, (cps/µCi/ml) ~

  • '"2,11 e4 v
  • Previous alarm value setpoint (cps) __ --z

...... ro""":"'$'.__,c=:..ifl'-"s--=v:::----- -------- Fraction to apply as a safety margin, A = 0.5 Setpoint = sx[(l S)(S)(7)] + ( 4) (16)(6) Setpoint = sx[( 9,Y3 ~-> )( '.2-,l<t e" )( }t(( ( 11 7. 5 ~ )( WY{.. Setpoint=l ox[(l S)(S)(?) x(l o)J+( 4) (16)(6) IC * ) -~

11.

Setpoint = - =5_9.._*2 ____ / Fractional Change = New value - Previous Value = ( 11 ) - ( 9 ) = ( 5 i 2 ) - ( "?<c,5 ) Previous Value ( 9 ) ( -, GS" ) ""-.. 12. Fractional Change= o '22~ v' Uf)ractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint

13.

Monitor Hi Alarm = 7C> -S cf s /

14.

Radwaste Monitor Hi Alarm=.16 (11) =.16 ( ) = N/A cps i/ 24

s-'3\\-tL\\ NEE-323-CALC-003

1.
3.

cp

6.
7.
9.
10.

ALARM SETPOINTS FOR,LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. ____ Jlf_-_1~_~_7 _____ v'_ 2. Sample Date & Time "3-.;;).<?"'-(4 /oo~O..,, Stream/Monitor Description _ ___,.G'"'~=-°""'~--L.\\---'..... le._;1_v Effluent Monitor Reading (cps) v Effluent Flow (gpm) C\\ <.oC> D v Average effluent.flow during time represented by sample, F1 (gpm)__._M....;..&...:.A..._ ______ ~v Average dilution (discharge canal) flow during time represented by sample, F2 (gpm)_cl'(Ai...L+,...._ __ Monitor calibration factor, g, (cps/µCi/mL) ___ .;)._,......,1_q.;...E.-=-4>..;....;./_..,__. _________ ...:.-v-Previous alarm value setpoint (cps) ~ ~'? 4 V Fraction to apply as a safety margin, A = 0.5 [ I: K F ] Setpoint = !Ox >;<_g -~ - 2 xA +Bkg = I:,(K,..,.. WEC1) F., Setpoint=l ox[ (l S)(S)(?) x(l O)] +( 4) (16)(6) Setpoint = 5x[(1S)(S)(?)J+(4) (16)(6) ... [< 7. (oC\\E.-3,( ~.19 E..~)( ~,1 ) ] Setpomt = 5x -------'------~__._~.-c--'-) + ( ( I I I. 3 ~ )( tV"fll )

11.

Setpoint = __ 7-'--(e....:;..S ___ /" Fractional Change ::: New value - Previous Value = ( 11 } - ( 9 ) = ( 7i.&J '5 } - ( ~.:>. S ~ } Previous Value ( 9 ) . ( ~ d'\\"=>Y )

12.

Fractional Change= 0, l.£,1.e:, s/

13.

If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm =.Setpoint Monitor Hi Alarm = 7 &;; 13.. *v7

14.

Radwaste Monitor Hi Alarm=.16 (11) =.16 (,1A..) = <<(rt cps./

  • NE E-323-CALC-003 Pa!'.le 4 of 9 DAEC SURVEILLANCE TEST PROCEDURE STP NS790305 TITLE: RHRSW RADIATION MONITOR Page 6 of 18 CALIBRATION DUANE ARNOLD ENERGY CENTER IRM-1997 I Rev.

Prerequisites Performance Date: d,. - l ~- l-, 6.0 PREREQUISITES 6.1 6.2 From the Chemistry Supervisor, obtain the current UPSCALE HI alarm setpoint. Record below and in the trip column of the step indicated. Step 7.1.10 __ lg ___ ~-~-- cps From the Chemistry Supervisor, obtain the current high voltage setting. Record below and in the step indicated. 14 INITIALS ~--St-ep_7_.1_.2_5 _r __ s_D __ v_Dc _________ ~ w 1 NOTE ~ Original Transfer Calibration Count Rate is the count rate of the 8 µCi source taken from the last time that the mockup was used to determine the detector efficiency. This can be found in the Effluent Monitor Alarm Setpoint book. It is then decay corrected to the date that this STP is being performed. 6.3 6.4 6.5 From the Chemistry Supervisor, obtain the following source information and record below: t.\\, 6.3.1 Original Trans Cal Count Rate ~

  • d--9. e::. cps 6.3.2 6.3.3 6.3.4 6.3.5 Source Number LA l [)-:::l=t=- lp Lt/ LS -l 37

~-~4-lc. Original Date of Cal Count Rate __ O _____ Geometry ____ P __ o __ : _""\\_+ _______ _ Old Efficiency Lo, le J.... e -1 µCi/cc/cps Decay correct the Original Transfer Calibration Count Rate. Record and transfer the value to the step indicated below: Y Decay Corrected Transfer Count Rate ~

  • ~

( E cps (Transfer to Step 7.1.37.) As directed by PCP 8.7, analyze a sample of unfiltered reactor water and calculate the UPSCALE HI setpoint. Record below and in the trip column of the table listed. Step 7.1.28 Yd\\ l cps 10

NEE-323-CALC-003

1.
3.
4.
5.
6.
7.
8.
9.
10.

11.

12.
13.
14.

wlo 'ft>32 t7~ r Page 5 of 9 ALARM SETPOINTS FOR LIQUID RAD MONITORS Rev. 17 Page 9 of 11 ATTACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT SampleNo. 1.r- 'f~&

2. SampleDate&Tir.peg'-2q - rs-/ e,;,c.z 7 Stream/Monitor Description tfm-/91)

C/2-1/.f25t1.// &s;w J Effluent Monitor Reading (cps)-,-,-~3_.* ~o~------------------ Effluent Flow (gpm) 92@

  • Average effluent flow during time represented by sample, F1 (gpm)_,/'""'V."""/'--ti-_______

Average dilution (discharge canal) flow during time represented by sample, F2 (gpm) 111/A Monitor calibration factor, g, (cps/µCi/ml)~-=/,..;;:;S ...... /_,e.__~ ____________ _ Previous alarm value setpoint (cps) ___ z;_,_q _______________ _ Fraction to apply as a safety margin, A = 0.5 Setpoint=lOx[(lS)(&)(?) x(l 0)]+(4) (16)(6) Setpoint = sx[(lS)(&)(7)] + ( 4) (16)(6) /.(0{!,, [<.. e--r!)( /,:Tie/,;, )(,,;/l~ )] Setvomt'"' Sx -=-*Wfe ')_(-=---------)- + ( ( ~ d )( 11,///4- /$3. ~' ) St. t ~ 5~?,35" 60 q e po1n =

,,, r 71_
.,.&f',-h Fractional Change= New value - Previous Value= ( 11 ) - ( 9) = ( -~)

- ( !.,I'/ ) Previous Value ( 9 ) ( h / lf ) Fractional Change= ~ ~ 0.. o, If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint Monitor Hi Alarm = (.p 14 Radwaste Monitor Hi Alarm=.1 6 (11) =.16 ( ) = _/Ji_i/.4 __ cps 33

NEE-323-CALC-003 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 6 of 9 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT

1.

Sample No. /?- e{64-

2. Sample Date & Time 2 -

IL'. -lG.. ( 0-VZ..(

3.

Stream/Monitor Description 'g..\\::\\,_$.J j ~ S *~..;!'.. '2.i*Y\\.. (0(-) 7

4.

Effluent Monitor Reading ( cps)....,......,,..-,-J"'"'---:.z ~ -r--=-----~-=------:----,-----,-----

5.

Effluent Flow (gpm) 12.l'\\-,ts..J 'A-' =.£;0::G<-i {t-fLS-.,J ~~.,' ::.. 48 '

6.

Average effluent :flow during time represented by sample,, (gpm) .-...: A----

7.

Average dilution (discharge canal) flow during time represented by sample, F2 (gpm)_...;....,;................,_

8.

Monitor calibration factor, g, (cps/µCi/ml)_-..:..:\\ 'c.,..~......,-=--' _!L_~------ ---- ---

9.

Previous alarm value setpoint (cps). ____ w_l_<'._-_____________ _

10.

Fraction to apply as a safety margin, A = 0.5 [ I.. K, F2

  • ]

Setpomt = I Ox .xg x -x A +Bkg = I.1(K1..,.. WEC;) .F; Satpoint = sx[(lS)(S)(?)J + (4) (16)(6) Setpoint=l Ox[ (l S)(S)(?) x(l O)] +( 4) (16)(6) Setpomt = 5x ~ ~--'---'-'--.,----'-4.--'- + (

  • 2.. S

[c7,r.o7£-1>)< Lsli~ )C l )] ( lll.. ~f,o )( 1v/~** ) ~ ) 11. Setpoint = _ __ S_._6-_* >-c._ __ v""' Fractional Change= New value - Previous Value = ( 11 ) - ( 9) = ( S S ) -( 0 <41-) Previous Value ( 9 ) ( r;,, IL!- )

12.

Fractional Change= 0 r.12..-v If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alann = Setpoint *=o OL-i::> <;~, ""( fDv,-r, /

13.

Monitor Hi Alarm=

14.

RadwasteMonitorHiAlarm=.16(11) =.16( ~I;,.-)= µ /4;- cps

N EE-323-CALC-003 Page 7 of 9

1.
3.
4.
8.
9.
10.

ALARM SETPO[NTS FOR LIQUID RAD MONITORS ATIACHMENT1 PCP 8.7 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. J 7.,. 3 10

2. Sample Date & Time l-/~-17 /

oo/C, Stream/Monitor Description &/?J - 'f'z4.!?" 1<1//!.$"~/£su.1 P,, &17&>' L.!-:?e (. llu.r,,,..,~) Effluent Monitor Reading (cps) _ _ --':::='0-:-------,------- Effluent Flow (gpm) CJ(,.c:,v Average effluent flow during time represented by sample, F1 (gpm) _ ~""'~'--';,:'-"'/1:.,__ ___ ~ - Average dilution (discharge canal) flow during time represented by sample, F2 (gpm) e/4 Monitor calibration factor, g, (cps/µCi/ml).-::::-~___./,.=i_-z____.z.e_ 0 ___ Previous alarm value setpoint (cps) __ '5_3_0 ____ ____________ _ Fraction to apply as a safety margin,. A = 0.5 Setpoint=lOx[(l 5)(&)(?) x(l O)]+( 4) (16)(6) Setpoint = sx[(lS)(&)(?)J+ (4) (16)(6) [ J ~ /I ] ( )7 '3" -- )( //l/2,e )( ntt ). Setpoint = 5x _ _._ IC_~--------~) + ( J/) ( 13"1.13 )(.,d4 ) 11. Setpdnt = ----"'S4_ g_;5....:.'-5"""-- Fractional Change = New value - Previous Value = ( 11 ) - ( 9) = ( 5~6:'5" ) - ( ~~ ) Previous Value ( 9 ) ( G 3:::> )

12.

Fractional Change = tl, IO S' If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint

13.

Monitor Hi Alarm = 5 J.?

14.

Radwaste Monitor Hi Alarm=.16 (11) =.16 ( ) = l[l/fr cps 24

NEE-323-CALC-003 Page 8 of 9 PLANT CHEMISTRY PR09EDUR1;S -~_200 MANUAL PCP 8.7 ALARM SETPOINTS FOR LIQUID RAD Rev. 17 MONITORS Page 9 of 11 ATTACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT

1.

Sample No. I ? - 0 l 16

2. Sample Date & Time IO - I q ** I c:; / (.) 0 \\ '\\
3.

Stream/Monitor Description R, H. R.;S""*/E:s*vv R,.u..p -+-v-,,..e... R. CVI -U. ;;i...vi

4.

Effluent Monitor Reading {cps)_--,-:...:.:i.....;...0=*'-------=-------,...---,-,-=--------- 5, Effluent Flow (gprn) ~\\-\\ ",S....r A - L\\ t;;;-o<.) %:~M. R H.R. s;,.,,/ 6 4 ~-oo fre""'

6.

Average effluent flow during time represented by sample, F, (gpm} cvid:

7.

Average dilution (discharge canal) flow during time represented by sample, F2 (gpm) rvf.ft:..

8.

Monitor calibration factor, g, (cps/µCi/rnl) _ _.;l._._;)..._C\\_1c;_-_4' ___________ _

9.

Previous alarm value setpoint (cps)_--'"'--'(J)=-3~----'------- --- ---

10.

Fraction to apply as a safety margin, A= 0.5

  • Setpoint = ]O x[

L;.K, xg x F2 x A]+Bkg = L,(K1 *...- WEC1) F; Setpoint=l ox[(l S)(S)(?lx(l O)]+( 4) (J 6)(6) Setpoint = sx[(l S)(&)(7)] + ( 4) (16)(6) [( cl /iOE,

  • 5 )( ~. ?-.0.f_/..r., )( r-r/A

) ] Set po ml :c:: Sx --'-'---...........:.--'-----....:....;..---'f- ' ) +* (

)._ 0

( l 74. C\\. 7 )( ,v(A 11. Setpoint = ___ i-=--l.-~_ / Fractional Change = New value - Previous Value ;::: ( 11 ) - ( 9) = ( (Q (i;,'6 ) - ( ~ <., ~ ) Previous Value ( 9 ) ( 'l)(q ~

12.

Fractional Change = - 0. ~;;\\.(Q / If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint

13.

Monitor Hi Alarm = <;?;(., '3 /

14.

RadwasteMonitorHiAlarm=.16(11) =.16( 28

N~E-323-CALC-003 Page 9 of9 ALARM SETPOINTS FOR LIQUID RAD MONITORS Rev. 17 Page 9 of 11 \\ ) ATIACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT

1.

Sample No. I 4- -~ 4-

2. Sample Date & Time
  • 2.-\\4-\\4- / 00 <-1
3.

Stream/Monitor Description 12-~CZ....Sw / £51..N R.v..~T1..qZ.. L ~ 12..\\N\\ 4 "2-b'o

4.

Effluent Monitor Reading (cps)

  • o 5.

Effluent Flow (gpm) 12\\:;\\/l--S..J 'A'~ *4Z-XXJ~r-=:= 1 ~~~J ' ~- 4exK.~~~ *

6.

Average effluent flow during time represented by sample, F1 (gpm) ,J jA--

r.
7.

Average dilution (discharge canal) flow during time represented by sample, F2 (gpm) ,.} jk'

8.

Monitor calibration factor, g, (cps/µCi/ml) __ "Z--=p-Z:."'""9._f.._i.,e, __ i/--'-,----------

9.

Previous alarm value setpoint (c.ps) ____ e_(o_* _3> __ ~v

10.

Fraction to apply as a safety margin, A = 0.5 [ "i.. K, F2

  • ]

Setpoint =)Ox _xgx-xA +Bkg = "i.1(K1.,.. WEC,) F; Setpoint=l ox[ (l S)(S)(?) x(l O)] +( 4) (16)(6) Setpoint = sx[(l 5)(S)(7)] + ( 4) (16)(6) l, [ ),07£.-~ 2,2.'-?f )(

..,/.4-

)] Setpoint = 5x ( )( ) + ( ( t I I, 8 <o )( ~ I ~ ) 11. ~o.......:..... i/ Setpoint = --------- Fractional Change = New value - Previous Value = ( 11 ) - ( 9 ) = ( "b0 7) -( 'c;,\\o*~ ) Previous Value ( 9 ) ( e:, ~ 7 )

12.

Fractional Change= *-o, 0*7 / If fractional change is greater than +/-0.3, adopt a new monitor alarm setting., Continuous Monitor Hi Alarm = Setpoint

  • i)oU*:::, S~1: f ~

.... 1 v"'

13.

Monitor Hi Alarm =

14.

RadwasteMonitorHiAlarm=.16(11) =.16(,...,jA--) = ,J /Pr-cps ~ ~I

Spent Fuel Storage Pool Water Level 3.7.8

3. 7 PLANT SYSTEMS 3.7.8 Spent Fuel Storage Pool Water Level LCO 3.7.8 The spent fuel storage pool water level shall be ;::: 36 ft.

APPLICABILITY: During movement of irradiated fuel assemblies in the spent fuel storage pool. ACTIONS A. CONDITION Spent fuel storage pool water level not within limit. REQUIRED ACTION A.1


NOTE-------

LCO 3.0.3 is not applicable.

COMPLETION TIME Suspend movement of Immediately irradiated fuel assemblies in the spent fuel storage pool.

SURVEILLANCE REQUIREMENTS SR 3.7.8.1 DAEC SURVEILLANCE Verify the spent fuel storage pool water level is ;::: 36 ft. 3.7-18 FREQUENCY In accordance with the Surveillance Frequency Control Program Amendment 280

I AOP 981 FUEL HANDLING EVENT PROBABLE ANNUNCIATORS 1C03A A1 FUEL POOL EXHAUST HIGH-HIGH RADIATION 81 FUEL POOL EXHAUST HIGH RADIATION 1C048 86 NEW FUEL STORAGE AREA ARM HI RAD 1C048 C6 SPENT FUEL STORAGE AREA ARM HI RAD 1C058 C8 PCIS GROUP "3" ISOLATION INITIATED 1C09A A2 NW DRYWELL RADIATION LEVEL HI-HI 82 NW DRYWELL RADIATION LEVEL HI 1C098 A2 SOUTH DRYWELL RADIATION LEVEL HI-HI 82 SOUTH DRYWELL RADIATION LEVEL HI 1C35A A1 REFUELING FLOOR NORTH END HI RADIATION A2 REFUELING FLOOR SOUTH END HI RADIATION PROBABLE INDICATIONS

1.

Lowering cavity and/or Spent Fuel Pool level on the 5th floor. Visual

2. Lowering cavity level Flood up Range on level indicator, Ll-4541 (at 1 C04).
3. Lowering Skimmer Surge Tank level on level indicator, Ll-3412 (at 1C04). not used in EAL
4.

Lowering Fuel Pool level on level indicator, Ll-3413 (at 1C04).

5.

Rising radiation levels on any of the following ARMs: Spent Fuel Pool Area, Rl-9178 North Refuel Floor, Rl-9163 New Fuel Vault Area, Rl-9153 South Refuel Floor, Rl-9164

6.

Rising Drywell radiation levels on either of the following (at 1 C09): NW Drywell Area Hi Range Rad Monitor, RIM-9184A South Drywell Area Hi Range Rad Monitor, RIM-91848 I AOP 981 Page 6 of 8 Rev. 6}}