CNRO-2018-00031, Request for Exemptions from Portions of 10 CFR 50.47 and 10 CFR Part 50, Appendix E

From kanterella
(Redirected from ML18186A635)
Jump to navigation Jump to search

Request for Exemptions from Portions of 10 CFR 50.47 and 10 CFR Part 50, Appendix E
ML18186A635
Person / Time
Site: Pilgrim
Issue date: 07/03/2018
From: Halter M
Entergy Nuclear Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CNRO-2018-00031
Download: ML18186A635 (335)


Text

Entergy Nuclear Operations, Inc.

1340 Echelon Parkway Jackson, MS 39213 Tel 601-368-5573 Mandy K. Halter Director, Nuclear Licensing CNRO-2018-00031 July 3, 2018 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

SUBJECT:

Request for Exemptions from Portions of 10 CFR 50.47 and 10 CFR Part 50, Appendix E Pilgrim Nuclear Power Station Docket No. 50-293 Renewed License No. DPR-35

REFERENCE:

1. PNPS Letter to NRC,

Subject:

Notification of Permanent Cessation of Power Operations, dated November 10, 2015 (Letter Number 2.15.080)

(ML15328A053)

Dear Sir or Madam:

Pursuant to Title 10 of the Code of Federal Regulations (CFR), 50.12, Entergy Nuclear Operations, Inc. (ENO) requests exemptions from portions of 10 CFR 50.47(b), 10 CFR 50.47(c)(2) and 10 CFR Part 50, Appendix E for the Pilgrim Nuclear Power Station (PNPS). The requested exemptions would allow PNPS to reduce emergency planning requirements consistent with the anticipated permanently defueled condition of the station.

In Reference 1, ENO notified the NRC that it plans to permanently cease power operations of PNPS no later than June 1, 2019, in accordance with 10 CFR 50.82(a)(1)(i). Once certification of permanent removal of fuel from the reactor vessel is submitted to the NRC in accordance with 10 CFR 50.82(a)(1)(ii), and docketed, the 10 CFR Part 50 license will no longer authorize operation of the reactor or emplacement or retention of fuel in the reactor vessel in accordance with 10 CFR 50.82(a)(2).

The requested exemptions are permissible under 10 CFR 50.12 because they are authorized by law, will not present an undue risk to the public health and safety, are consistent with the common defense and security, and present special circumstances.

More specifically, application of the portions of the regulations from which exemptions are sought is not necessary to ensure adequate emergency response capability for PNPS and to achieve the underlying purpose of the rules in the permanently shut down and defueled condition. Furthermore, continued application of these portions of the regulations from which exemptions are sought would result in an undue hardship or other costs to ENO and the PNPS Decommissioning Trust Fund by

CNRO-2018-00031 Page 2 of 3 requiring continued implementation of unnecessary emergency response capabilities. Finally, granting the requested exemptions would result in benefit to the public health and safety and would not result in a decrease in safety, because they would enhance the ability of the emergency response organization to respond to credible scenarios.

The exemption requests are contained in Attachment 1 to this letter. ENO has performed an analysis which shows that, 10 months after shutdown, the spent fuel stored in the spent fuel pool will have decayed to the extent that the requested exemptions may be implemented at PNPS. The analysis demonstrates that 10 months after permanent cessation of power operations, there is sufficient time to mitigate events that could lead to a zirconium fire. Following the PNPS shut down, which is expected to occur no later than June 1, 2019, 10 months after shutdown would fall on April 1, 2020. This analysis is included in Attachment 2. contains an analysis to determine the dose rate as a function of time after shutdown at the PNPS Exclusion Area Boundary and Control Room from a Spent Fuel Pool (SFP) drain down event while in SAFSTOR.

Separate from this request for exemptions, PNPS also plans to submit a Permanently Defueled Emergency Plan (PDEP) containing a Permanently Defueled Emergency Action Level scheme, for NRC review and approval pursuant to 10 CFR 50.54(q)(4) and 10 CFR Part 50, Appendix E, Section IV.B.2.

In support of the requested exemptions, PNPS has held meetings with cognizant state and local response organizations that have included discussions of the regulatory exemption requests to be submitted to the NRC as indicated above. PNPS will continue to meet with representatives from the Commonwealth of Massachusetts, local emergency preparedness personnel, and Regional leadership from the Federal Emergency Management Agency.

ENO requests review and approval for the requested exemptions by June 30, 2019, with an effective date of April 1, 2020. Approval of these exemptions by June 30, 2019 will allow PNPS adequate time to implement changes to the emergency plan and emergency response organization by the requested effective date.

If you have any questions or require additional information, please contact Mr. Peter J. Miner at (508) 830-7127.

This submittal contains one new regulatory commitment in Attachment 4.

Sincerely, MKH/dd/mp

CNRO-2018-00031 Page 3 of 3 Attachments: 1. Request for Exemptions from Portions of 10 CFR 50.47(b), 10 CFR 50.47(c)(2) and 10 CFR Part 50, Appendix E

2. Calculation No. PNPS-EC-73355-M1418, Adiabatic Heatup Analysis for Drained Spent Fuel Pool
3. Calculation No. PNPS-EC-73355-M1417, Dose at Exclusion Area Boundary and Control Room Due to Shine from Drained Spent Fuel Pool During SAFSTOR
4. List of Regulatory Commitments cc:

Mr. David C. Lew Acting Regional Administrator, Region I U.S. Nuclear Regulatory Commission 2100 Renaissance Blvd, Suite 100 King of Prussia, PA 19406-2713 Mr. John Lamb, Senior Project Manager Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Mail Stop O-8C2A Washington, DC 20555-0001 Mr. John Giarrusso, Jr.

Planning, Preparedness and Nuclear Section Chief Mass. Emergency Management Agency 400 Worcester Road Framingham, MA 01702 Mr. John Priest, Director Massachusetts Department of Public Health Radiation Control Program Commonwealth of Massachusetts 529 Main Street, Suite 1M2A Charlestown, MA 02129-1121 NRC Senior Resident Inspector Pilgrim Nuclear Power Station

Attachment 1 CNRO-2018-00031 Request for Exemptions from Portions of 10 CFR 50.47(b), 10 CFR 50.47(c)(2) and 10 CFR Part 50, Appendix E (72 pages follow)

CNRO-2018-00031 ATTACHMENT 1 REQUESTS FOR EXEMPTIONS FROM PORTIONS OF 10 CFR 50.47(b); 10 CFR 50.47(c)(2); AND 10 CFR PART 50, APPENDIX E

SUBJECT:

Request for Exemptions from Portions of 10 CFR 50.47 and 10 CFR Part 50, Appendix E 1.0

SUMMARY

DESCRIPTION

2.0 BACKGROUND

3.0 DETAILED DESCRIPTION

4.0 TECHNICAL EVALUATION

4.1 Accident Analysis Overview 4.2 Comparison to NUREG-1738 Industry Decommissioning Commitments and Staff Decommissioning Assumptions 4.3 Consequences of a Beyond Design Basis Earthquake 4.4 Conclusion 5.0 JUSTIFICATION FOR EXEMPTIONS AND SPECIAL CIRCUMSTANCES 5.1 Special Circumstances 5.2 Precedent

6.0 ENVIRONMENTAL CONSIDERATION

S

7.0 REFERENCES

Page 1 of 72

CNRO-2018-00031 ATTACHMENT 1 1.0

SUMMARY

DESCRIPTION Pursuant to 10 CFR 50.12 Specific exemptions, Entergy Nuclear Operations (ENO) requests the following regulatory exemptions for the Pilgrim Nuclear Power Station (PNPS):

Certain standards in 10 CFR 50.47(b) regarding onsite and offsite emergency response plans for nuclear power reactors; Certain requirements of 10 CFR 50.47(c)(2) to establish Plume Exposure and Ingestion Pathway Emergency Planning Zones (EPZs) for nuclear power plants; and Certain requirements of 10 CFR Part 50, Appendix E, which establishes the elements that make up the content of emergency plans.

The requested exemptions would allow PNPS to revise the scope of the PNPS Emergency Plan to reflect the permanently shut down and defueled condition of the station. The current 10 CFR Part 50 regulatory requirements for emergency planning (developed for operating reactors) ensure protection of the health and safety of the public while PNPS is licensed to operate. However, once the station is permanently shut down and defueled, some of these requirements exceed what is necessary to protect the health and safety of the public.

The requested exemptions and justification for each are based on, and consistent with, Interim Staff Guidance (ISG) NSIR/DPR-ISG-02, Emergency Planning Exemption Requests for Decommissioning Nuclear Power Plants, issued May 11, 2015 (Reference 1).

2.0 BACKGROUND

PNPS is located in the town of Plymouth, Plymouth County, in the Commonwealth of Massachusetts. It is situated on the western coast of Cape Cod Bay, on approximately 1600 acres of land, owned by Entergy. A detailed description of the plant is given in the PNPS Updated Final Safety Analysis Report (UFSAR). The Independent Spent Fuel Storage Installation (ISFSI) consists of HI-STORM vertical dry spent fuel storage casks on a concrete slab located within the protected area. A detailed description of the HI-STORM storage casks is given in the HI-STORM 100 Cask System FSAR.

Chapter 14 of the PNPS UFSAR describes the design-basis-accident (DBA) scenarios that are applicable to PNPS during power operations. The most severe postulated accidents for nuclear power plants involve damage to the nuclear reactor core and the release of large quantities of fission products. The UFSAR accident scenarios include a Control Rod Drop Accident (CRDA),

a Loading Error Accident, a Loss-of-Coolant Accident (LOCA), a Fuel Handling Accident, a Radwaste System Accident, and a Main Steam Line Break Accident.

Many of the accident scenarios postulated in the UFSAR for operating power reactors involve failures or malfunctions of systems, which could affect the fuel in the reactor vessel, which in the most severe postulated accidents, would involve the release of large quantities of fission products. With the termination of reactor operations and the permanent removal of fuel from the reactor vessel, such accidents are no longer possible. Therefore, the postulated accidents involving failure of malfunction of the reactor, reactor cooling system, steam system, or turbine generator are no longer applicable.

On November 10, 2015, ENO submitted a notification of permanent cessation of power operations pursuant to 10 CFR 50.82(a)(1)(i), certifying that ENO has decided to permanently cease power operations at PNPS no later than June 1, 2019 (Reference 2). Once certification Page 2 of 72

CNRO-2018-00031 ATTACHMENT 1 of permanent removal of fuel from the reactor vessel is submitted to the NRC in accordance with 10 CFR 50.82(a)(1)(ii), and docketed, the 10 CFR Part 50 license will no longer authorize operation of the reactor or emplacement or retention of fuel in the reactor vessel in accordance with 10 CFR 50.82(a)(2).

When the reactor is permanently defueled, the Spent Fuel Pool (SFP) and its supporting systems will be modified and dedicated only to spent fuel storage. With the reactor defueled, the reactor vessel assembly and supporting structures, systems, and components will no longer be in operation and will have no function related to the safe storage and management of irradiated fuel in the SFPs. A SFP cooling and clean-up system is provided to remove decay heat from spent fuel stored in the SFP and to maintain a specified water temperature, purity, clarity, and level. The irradiated fuel will be stored in the SFP and in the ISFSI until it is removed by the Department of Energy (DOE).

3.0 DETAILED DESCRIPTION In order to allow a reduction in emergency planning requirements commensurate with the hazards associated with PNPSs permanently shut down and defueled condition, exemptions from portions of 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E, are needed. ENO has performed an analysis indicating that 10 months after permanent cessation of power operations, the spent fuel stored in the SFP will have decayed to the extent that the requested exemptions can be implemented at PNPS. The analysis demonstrates that 10 months after permanent cessation of power operations, there is sufficient time to mitigate events that could lead to a zirconium fire. This analysis is included in Attachment 2. Because PNPS expects permanent cessation of power operations to occur no later than June 1, 2019, 10 months after permanent cessation of power operations will occur on April 1, 2020. Separate from this request for exemptions, ENO plans to submit a Permanently Defueled Emergency Plan, including a Permanently Defueled Emergency Action Level scheme, for NRC review and approval pursuant to 10 CFR 50.54(q)(4) and 10 CFR 50, Appendix E, Section IV.B.2. The proposed emergency plan will be based on the exemptions requested herein.

Based on the analyses detailed in Section 4.0, below, ENO has concluded that the portions of 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E identified in Tables 1 and 2 below will not be necessary to protect the health and safety of the public when PNPS is in the permanently shut down and defueled condition and would be unduly burdensome. Approval of the exemptions requested in Tables 1 and 2 would not present an undue risk to the public or prevent an appropriate response in the event of an emergency at PNPS.

Page 3 of 72

CNRO-2018-00031 ATTACHMENT 1 EXEMPTIONS TO EMERGENCY PLAN REQUIREMENTS DEFINED BY 10 CFR 50.47 AND PART 50, APPENDIX E ENO requests exemptions from portions of 10 CFR 50.47(b) and (c)(2) and 10 CFR Part 50, Appendix E to the extent that these regulations apply to specific provisions of onsite and offsite emergency planning that will no longer be applicable to PNPS when the certifications required by 10 CFR 50.82(a)(1)(i) and (ii) have been submitted and sufficient decay of the spent fuel has occurred. The specific portions of 10 CFR 50.47 and 10 CFR Part 50, Appendix E from which exemptions are being requested are identified using strikethrough text in Table 1 (Exemptions Requested from 10 CFR 50.47(b) and (c)(2)) and Table 2 (Exemptions Requested from 10 CFR Part 50, Appendix E), below. The portions of regulation that are not identified using strikethrough text (i.e., those portions for which exemption is not being requested), will remain applicable to PNPS. Details related to specific exemption requests are provided in the Basis for Exemption column in each table.

Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption 1 10 CFR 50.47(b): The onsite and, except as provided in In the Statement of Considerations for the Final Rule for Emergency paragraph (d) of this section, offsite emergency response plans Planning requirements for Independent Spent Fuel Storage for nuclear power reactors must meet the following standards: Installations (ISFSIs) and for monitored retrievable storage (MRS) facilities (60 FR 32430; June 22, 1995) (Reference 3), the Commission responded to comments concerning offsite emergency planning for ISFSIs or an MRS and concluded that, the offsite consequences of potential accidents at an ISFSI or a MRS [monitored retrievable storage installation] would not warrant establishing Emergency Planning Zones. In a nuclear power reactors permanently defueled state, the accident risks are more similar to an ISFSI or MRS than an operating nuclear power plant. The draft proposed rulemaking in SECY-00-0145 (Reference 4) suggested that after at least one year of spent fuel decay time, the decommissioning licensee would be able to reduce its emergency planning program to one similar to that required for an MRS under 10 CFR 72.32(b) and additional emergency planning reductions would occur when: (1) approximately five years of spent fuel decay time has elapsed; or (2) a licensee has demonstrated that the decay heat level of spent fuel in the pool is low enough that the fuel would not be susceptible to a zirconium fire for all spent fuel configurations.

Page 4 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption Because of the slow rate of the event scenarios in the postulated accident and postulated beyond design basis events analyses and because the duties of the on-shift personnel at a decommissioning reactor facility are not as complicated and diverse as those for an operating reactor, significant time is available to complete actions necessary to mitigate an emergency without impeding timely performance of emergency plan functions. Exemptions from offsite emergency planning requirements have been approved when the specific site analyses show that at least 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is available from a partial drain down event where cooling of the spent fuel is not effective until the hottest fuel assembly reaches 900 degrees Celsius

(°C). Because 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> allows sufficient time to initiate mitigative actions to prevent a zirconium fire in the SFP or to initiate offsite protective actions in accordance with a comprehensive approach to emergency planning, offsite emergency plans are not necessary for these permanently defueled nuclear power plant licensees.

The ENO analysis has demonstrated that within 46 days after permanent cessation of power operations, the radiological consequences of the postulated accident will not exceed the limits of the U.S. Environmental Protection Agency's (EPA) Protective Action Guides (PAGs) at the Exclusion Area Boundary (EAB).

ENO has performed an analysis indicating that after the spent fuel has decayed for 10 months, for beyond design basis events where the SFP is partially drained, and air cooling is not possible, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is available to take mitigative actions or, if needed, implement offsite protective actions using a comprehensive approach to emergency planning from the time spent fuel cooling is lost until the hottest fuel assembly reaches a temperature of 900°C.

Page 5 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption PNPS maintains procedures and strategies for the movement of any necessary portable equipment that will be relied upon for mitigating the loss of SFP water. These mitigative strategies, addressing events involving a loss of SFP cooling and/or water inventory, include implementation of SFP inventory makeup strategies required under 10 CFR 50.54(hh)(2), which will continue to be maintained to satisfy applicable License Conditions of the Renewed Facility Operating License. These diverse strategies provide defense-in-depth and ample time to provide makeup water or spray to the SFP prior to the onset of zirconium cladding ignition when considering very low probability beyond design basis events affecting the SFP. The on-shift individuals described in the Permanently Defueled Emergency Plan will be able to implement the necessary tasks withinthe required timeframe.

2 10 CFR 50.47(b)(1): Primary responsibilities for emergency See the basis for 10 CFR 50.47(b).

response by the nuclear facility licensee and by State and local organizations within the Emergency Planning Zones have been assigned, the emergency responsibilities of the various supporting organizations have been specifically established, and each principal response organization has staff to respond and to augment its initial response on a continuous basis.

3 10 CFR 50.47(b)(2): On-shift facility licensee responsibilities No exemption is requested.

for emergency response are unambiguously defined, adequate staffing to provide initial facility accident response in key functional areas is maintained at all times, timely augmentation of response capabilities is available and the interfaces among various onsite response activities and offsite support and Page 6 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption response activities are specified.

4 10 CFR 50.47(b)(3): Arrangements for requesting and Discontinuing offsite emergency planning activities and reducing the effectively using assistance resources have been made, scope of onsite emergency planning is acceptable given the arrangements to accommodate State and local staff at the significantly reduced offsite consequences when PNPS is in the licensee's Emergency Operations Facility have been made, permanently defueled condition. The PNPS emergency plan will and other organizations capable of augmenting the planned continue to maintain arrangements for requesting and using response have been identified. assistance resources from offsite support organizations.

Decommissioning power reactors present a low likelihood of any credible accident resulting in radiological releases requiring offsite protective measures because of the permanently shut down and defueled status of the reactor. An emergency operations facility (EOF) is not required. The control room or another location can provide for the communication and coordination with offsite organizations for the level of support required.

Offsite emergency measures are limited to support provided by local police, fire departments, and ambulance and hospital services as appropriate.

Also see the basis for 10 CFR 50.47(b).

5 10 CFR 50.47(b)(4): A standard emergency classification and PNPS will adopt the Permanently Defueled Emergency Action Levels action level scheme, the bases of which include facility system (EALs) consistent with those detailed in Appendix C of Nuclear and effluent parameters, is in use by the nuclear facility Energy Institute (NEI) 99-01, Development of EALs for Non-Passive licensee, and State and local response plans call for reliance Reactors, Revision 6 (Reference 5), endorsed by the NRC in a letter on information provided by facility licensees for determinations dated March 28, 2013 (Reference 6). PNPS analysis shows that after of minimum initial offsite response measures. the spent fuel has decayed for 10 months, for beyond design basis events where the SFP is partially drained, and air cooling is not possible, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is available to take mitigative or, if needed, offsite protective actions using a comprehensive approach to emergency Page 7 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption planning from the time spent fuel cooling is lost until the hottest fuel assembly reaches a temperature of 900°C. No offsite protective actions are anticipated to be necessary. Therefore, classification above the Alert level will no longer be required.

Also see the basis for 10 CFR 50.47(b).

6 10 CFR 50.47(b)(5): Procedures have been established for Per SECY-00-0145 (Reference 4), after approximately one (1) year of notification, by the licensee, of State and local response spent fuel decay time (and specifically 10 months as supported by organizations and for notification of emergency personnel by all analysis), the NRC staff believes an exception to the offsite EPA PAG organizations; the content of initial and followup messages to standard is justified for a zirconium fire scenario considering the low response organizations and the public has been established; likelihood of this event together with time available to take mitigative and means to provide early notification and clear instruction to or protective actions between the initiating event and before the onset the populace within the plume exposure pathway Emergency of a postulated fire. SECY-13-0112, Consequence Study of a Planning Zone have been established. Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S. Mark I Boiling Water Reactor, (Reference 7) provides that depending on the size of the pool liner leak, releases could start anywhere from eight hours to several days after the leak starts, assuming that mitigation measures are unsuccessful. If 10 CFR 50.54(hh)(2)-type mitigation measures are successful, releases could only occur during the first several days after the fuel was removed from the reactor. As previously indicated, a PNPS analysis shows that after the spent fuel has decayed for 10 months, for beyond design basis events where the SFP is partially drained, and air cooling is not possible, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is available to take mitigative or, if needed, offsite protective actions using a comprehensive approach to emergency planning from the time spent fuel cooling is lost until the hottest fuel assembly reaches a temperature of 900°C. Therefore, offsite emergency plans are not necessary for permanently defueled nuclear power plants.

Page 8 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption Also see the basis for 10 CFR 50.47(b).

7 10 CFR 50.47(b)(6): Provisions exist for prompt See the basis for 10 CFR 50.47(b).

communications among principal response organizations to emergency personnel and to the public.

8 10 CFR 50.47(b)(7): Information is made available to the See the basis for 10 CFR 50.47(b).

public on a periodic basis on how they will be notified and what their initial actions should be in an emergency (e.g., listening to a local broadcast station and remaining indoors), [T]he principal points of contact with the news media for dissemination of information during an emergency (including the physical location or locations) are established in advance, and procedures for coordinated dissemination of information to the public are established.

9 10 CFR 50.47(b)(8): Adequate emergency facilities and No exemption is requested.

equipment to support the emergency response are provided and maintained.

10 10 CFR 50.47(b)(9): Adequate methods, systems, and See the basis for 10 CFR 50.47(b).

equipment for assessing and monitoring actual or potential offsite consequences of a radiological emergency condition are in use.

11 10 CFR 50.47(b)(10): A range of protective actions has been In the unlikely event of a SFP accident, the iodine isotopes which developed for the plume exposure pathway EPZ for emergency contribute to an offsite dose from an operating reactor accident are workersand the public. In developing this range of actions, not present, so potassium iodide (KI) distribution offsite would no consideration has been given to evacuation, sheltering, and, as longer serve as an effective or necessary supplemental protective a supplement to these, the prophylactic use of potassium action. Protective actions will be maintained for emergency workers Page 9 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption iodide (KI), as appropriate. Evacuation time estimates have and any offsite emergency responders who would respond to the site.

been developed by applicants and licensees. Licensees shall The Commission responded to comments in its Statement of update the evacuation time estimates on a periodic basis.

Considerations for the Final Rule for Emergency Planning Guidelines for the choice of protective actions during an requirements for ISFSIs and MRS facilities (60 FR 32435), and emergency, consistent with Federal guidance, are developed concluded that, the offsite consequences of potential accidents at an and in place, and protective actions for the ingestion exposure ISFSI or a MRS would not warrant establishing Emergency Planning pathway EPZ appropriate to the locale have been developed.

Zones. Additionally, in the Statement of Considerations for the Final Rule for Emergency Planning requirements for ISFSIs and for MRS facilities (60 FR 32430) (Reference 3), the Commission responded to comments concerning site-specific emergency planning that includes evacuation of surrounding population for an ISFSI not at a reactor site, and concluded that, The Commission does not agree that as a general matter emergency plans for an ISFSI must include evacuation planning.

Because the NRC concludes that evacuation planning is not needed for a decommissioning reactor site that meets the criteria for an exemption from offsite EP requirements as discussed in the exemption from 10 CFR 50.47(b), evacuation time estimates are also not needed.

Also see the basis for 10 CFR 50.47(b) detailing the low likelihood of any credible accident resulting in radiological releases requiring offsite protective measures and the basis for Section IV.1 exemptions for a discussion on the similarity between a permanently defueled reactor and a non-power reactor.

12 10 CFR 50.47(b)(11): Means for controlling radiological No exemption is requested.

exposures, in an emergency, are established for emergency workers. The means for controlling radiological exposures shall Page 10 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption include exposure guidelines consistent with EPA Emergency Worker and Lifesaving Activity Protective Action Guides.

13 10 CFR 50.47(b)(12): Arrangements are made for medical No exemption is requested.

services for contaminated injured individuals.

14 10 CFR 50.47(b)(13): General plans for recovery and reentry No exemption is requested.

are developed.

15 10 CFR 50.47(b)(14): Periodic exercises are (will be) No exemption is requested.

conducted to evaluate major portions of emergency response capabilities, periodic drills are (will be) conducted to develop and maintain key skills, and deficiencies identified as a result of exercises or drills are (will be) corrected.

16 10 CFR 50.47(b)(15): Radiological emergency response No exemption is requested.

training is provided to those who may be called on to assist in an emergency.

17 10 CFR 50.47(b)(16): Responsibilities for plan development No exemption is requested.

and review and for distribution of emergency plans are established, and planners are properly trained.

18 10 CFR 50.47(c)(2): Generally, the plume exposure pathway PNPS has developed an analysis indicating that 10 months after EPZ for nuclear power plants shall consist of an area about 10 permanent cessation of power operations, no credible accident at miles (16 km) in radius and the ingestion pathway EPZ shall PNPS will result in radiological releases requiring offsite protective consist of an area about 50 miles (80 km) in radius. The exact actions. The analysis of the potential radiological impact of the size and configuration of the EPZs surrounding a particular postulated accident for PNPS in a permanently defueled condition nuclear power reactor shall be determined in relation to local indicates that any releases beyond the site boundary are limited to emergency response needs and capabilities as they are small fractions of the EPA PAG exposure levels. Current Federal Page 11 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 1 Exemptions Requested from 10 CFR 50.47(b) and 50.47(c)(2)

Item # Regulation in 10 CFR 50.47 Basis for Exemption affected by such conditions as demography, topography, land guidance provided in the EPAs Protective Action Guides and characteristics, access routes, and jurisdictional boundaries. Planning Guidance for Radiological Incidents, EPA-400/R- 17/001, The size of the EPZs also may be determined on a case-by- dated January 2017 (EPA PAG Manual) states that the EPZ is based case basis for gas cooled nuclear reactors and for reactors with on the maximum distance at which a PAG might be exceeded an authorized power level less than 250 MW thermal. The (Reference 8).

plans for the ingestion pathway shall focus on such actions as Also see the basis for 10 CFR 50.47(b).

are appropriate to protect the food ingestion pathway.

Page 12 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 19 10 CFR 50 Appendix E No exemption is requested.

III. The Final Safety Analysis Report; Site Safety Analysis Report The final safety analysis report or the site safety analysis report for an early site permit that includes complete and integrated emergency plans under § 52.17(b)(2)(ii) of this chapter shall contain the plans for coping with emergencies. The plans shall be an expression of the overall concept of operation; they shall describe the essential elements of advance planning that have been considered and the provisions that have been made to cope with emergency situations. The plans shall incorporate information about the emergency response roles of supporting organizations and offsite agencies. That information shall be sufficient to provide assurance of coordination among the supporting groups and with the licensee. The site safety analysis report for an early site permit which proposes major features must address the relevant provisions of 10 CFR 50.47 and 10 CFR part 50, appendix E, within the scope of emergency preparedness matters addressed in the major features. The plans submitted must include a description of the elements set out in Section IV for the emergency planning zones (EPZs) to an extent sufficient to demonstrate that the plans provide reasonable assurance that adequate protective measures can and will be taken in the event of an emergency.

Page 13 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 20 10 CFR 50 Appendix E Following docketing of the Certification of Permanent Removal of Fuel from the Reactor Vessel, in accordance with 10 CFR IV. Content of Emergency Plans 50.82(a)(1)(i) and (ii), PNPS will become a permanently shut down

1. The applicant's emergency plans shall contain, but not facility with spent fuel stored in the SFP. In the EP Final Rule (76 FR necessarily be limited to, information needed to 72596, Nov. 23, 2011) (Reference 9), the NRC defined hostile demonstrate compliance with the elements set forth below, action as, in part, an act directed toward a nuclear power plant or its i.e., organization for coping with radiological emergencies, personnel. This definition is based on the definition of "hostile action" assessment actions, activation of emergency organization, provided in NRC Bulletin 2005-02. NRC Bulletin 2005-02 was not notification procedures, emergency facilities and applicable to nuclear power reactors that have permanently ceased equipment, training, maintaining emergency preparedness, operations and have certified that fuel has been removed from the and recovery, and onsite protective actions during hostile reactor vessel. The NRC excluded non-power reactors (NPRs) from action. In addition, the emergency response plans the definition of hostile action at that time because an NPR is not a submitted by an applicant for a nuclear power reactor nuclear power plant and a regulatory basis had not been developed operating license under this part, or for an early site permit to support the inclusion of NPR in that definition. Similarly, a (as applicable) or combined license under 10 CFR part 52, decommissioning power reactor or ISFSI is not a nuclear reactor as shall contain information needed to demonstrate defined in the NRCs regulations.

compliance with the standards described in § 50.47(b), and The following similarities between PNPS and NPRs show that the they will be evaluated against those standards.

PNPS facility should be treated in a similar fashion as an NPR.

Similar to NPRs, PNPS will pose lower radiological risks to the public from accidents than do power reactors because: (1) PNPS will be a permanently shut down facility (with fuel stored in the SFP and ISFSI) and will no longer generate fission products; 2) Fuel stored in the PNPS SFP will have lower decay heat resulting in lower risk of fission product release in the event of a beyond design basis boil off or drain down event; and 3) no credible accident at PNPS will result in radiological releases requiring offsite protective actions.

Page 14 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 21 IV.2 This nuclear power reactor license applicant shall also See the basis for 10 CFR 50.47(b)(10).

provide an analysis of the time required to evacuate various sectors and distances within the plume exposure pathway EPZ for transient and permanent populations, using the most recent U.S. Census Bureau data as of the date the applicant submits its application to the NRC.

22 IV.3 Nuclear power reactor licensees shall use NRC approved See the basis for 10 CFR 50.47(b)(10).

evacuation time estimates (ETEs) and updates to the ETEs in the formulation of protective action recommendations and shall provide the ETEs and ETE updates to State and local governmental authorities for use in developing offsite protective action strategies.

23 IV.4 Within 365 days of the later of the date of the availability of See the basis for 10 CFR 50.47(b)(10).

the most recent decennial census data from the U.S. Census Bureau or December 23, 2011, nuclear power reactor licensees shall develop an ETE analysis using this decennial data and submit it under § 50.4 to the NRC. These licensees shall submit this ETE analysis to the NRC at least 180 days before using it to form protective action recommendations and providing it to State and local governmental authorities for use in developing offsite protective action strategies.

24 IV.5 During the years between decennial censuses, nuclear See the basis for 10 CFR 50.47(b)(10).

power reactor licensees shall estimate EPZ permanent resident population changes once a year, but no later than 365 days from the date of the previous estimate, using the most recent U.S. Census Bureau annual resident population estimate and Page 15 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption State/local government population data, if available. These licensees shall maintain these estimates so that they are available for NRC inspection during the period between decennial censuses and shall submit these estimates to the NRC with any updated ETE analysis.

25 IV.6 If at any time during the decennial period, the EPZ See the basis for 10 CFR 50.47(b)(10).

permanent resident population increases such that it causes the longest ETE value for the 2-mile zone or 5-mile zone, including all affected Emergency Response Planning Areas, or for the entire 10-mile EPZ to increase by 25 percent or 30 minutes, whichever is less, from the nuclear power reactor licensee's currently NRC approved or updated ETE, the licensee shall update the ETE analysis to reflect the impact of that population increase. The licensee shall submit the updated ETE analysis to the NRC under § 50.4 no later than 365 days after the licensee's determination that the criteria for updating the ETE have been met and at least 180 days before using it to form protective action recommendations and providing it to State and local governmental authorities for use in developing offsite protective action strategies.

26 IV.7 After an applicant for a combined license under part 52 of No exemption is requested. PNPS is not an applicant for a combined this chapter receives its license, the licensee shall conduct at license. Therefore, this regulation is not applicable to PNPS and an least one review of any changes in the population of its EPZ at exemption is not necessary.

least 365 days prior to its scheduled fuel load. The licensee shall estimate EPZ permanent resident population changes using the most recent U.S. Census Bureau annual resident population estimate and State/local government population data, if available. If the EPZ permanent resident population Page 16 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption increases such that it causes the longest ETE value for the 2-mile zone or 5-mile zone, including all affected Emergency Response Planning Areas, or for the entire 10-mile EPZ, to increase by 25 percent or 30 minutes, whichever is less, from the licensee's currently approved ETE, the licensee shall update the ETE analysis to reflect the impact of that population increase. The licensee shall submit the updated ETE analysis to the NRC for review under § 50.4 of this chapter no later than 365 days before the licensee's scheduled fuel load.

27 A. Organization No exemption is requested.

The organization for coping with radiological emergencies shall be described, including definition of authorities, responsibilities, and duties of individuals assigned to the licensee's emergency organization and the means for notification of such individuals in the event of an emergency. Specifically, the following shall be included:

28 A.1. A description of the normal plant operating organization. Following docketing of the certifications required by 10 CFR 50.82(a)(1)(i) and (ii), PNPS will not be a facility that can be operated to generate electrical power. Therefore, PNPS will not have a plant operating organization. Rather, the station will be maintained by a defueled on-shift staff.

29 A.2. A description of the onsite emergency response No exemption is requested.

organization (ERO) with a detailed discussion of:

a. Authorities, responsibilities, and duties of the individual(s) who will take charge during an emergency; Page 17 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption

b. Plant staff emergency assignments;
c. Authorities, responsibilities, and duties of an onsite emergency coordinator who shall be in charge of the exchange of information with offsite authorities responsible for coordinating and implementing offsite emergency measures.

30 A.3. A description, by position and function to be performed, of The number of staff at PNPS during the decommissioning process the licensee's headquarters personnel who will be sent to the will be small but commensurate with the need to safely store spent plant site to augment the onsite emergency organization. fuel at the facility in a manner that is protective of public health and safety. PNPS will maintain a level of emergency response that does not require response by headquarters personnel. The on-shift and emergency response positions will be defined in the Permanently Defueled Emergency Plan.

31 A.4. Identification, by position and function to be performed, of PNPS has developed an analysis indicating that 10 months after persons within the licensee organization who will be permanent cessation of power operations, no credible accident at responsible for making offsite dose projections and a PNPSS will result in radiological releases requiring offsite protective description of how these projections will be made and the actions.

results transmitted to State and local authorities, NRC, and PNPS will maintain the capability to determine if a radiological release other appropriate governmental entities.

is occurring and perform dose projections. If a release is occurring, PNPS will communicate release and dose projection information to offsite authorities for their consideration. The offsite organizations are responsible for deciding what, if any, protective actions should be taken.

32 A.5. Identification, by position and function to be performed, of As indicated by the PNPS adiabatic heatup analysis, the time other employees of the licensee with special qualifications for available to initiate compensatory actions in the event of a loss of coping with emergency conditions that may arise. Other SFP cooling or inventory precludes the need to identify and describe persons with special qualifications, such as consultants, who the special qualifications of these individuals in the emergency plan.

Page 18 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption are not employees of the licensee and who may be called upon The number of staff at PNPS when it is in the permanently defueled for assistance for emergencies shall also be identified. The state will be small but will be commensurate with the need to operate special qualifications of these persons shall be described. the facility in a manner that is protective of public health and safety.

The on-shift individuals described in the Permanently Defueled Emergency Plan will be able to implement the necessary tasks within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

33 A.6. A description of the local offsite services to be provided in No exemption is requested.

support of the licensee's emergency organization.

34 A.7. By June 23, 2014, identification of, and a description of the A decommissioning power reactor has a low likelihood of a credible assistance expected from, appropriate State, local, and Federal accident resulting in radiological releases requiring offsite protective agencies with responsibilities for coping with emergencies, measures. For this reason and those described in the basis for including hostile action at the site. For purposes of this Section IV.1 of 10 CFR Part 50, Appendix E, a decommissioning appendix, "hostile action" is defined as an act directed toward a power reactor is not a facility that falls within the definition of "hostile nuclear power plant or its personnel that includes the use of action."

violent force to destroy equipment, take hostages, and/or Similarly, for security, risk insights can be used to determine which intimidate the licensee to achieve an end. This includes attack targets are important to protect against sabotage. A level of security by air, land, or water using guns, explosives, projectiles, commensurate with the consequences of a sabotage event is vehicles, or other devices used to deliver destructive force.

required and is evaluated on a site-specific basis. The severity of the consequences declines as fuel ages, and over time, the underlying concern that a sabotage attack could cause offsite radiological consequences is removed.

Although, the analysis described above and in the basis for 10 CFR Part 50, Appendix E, Section IV.1 provides a justification for exempting PNPS from "hostile action" related requirements, some EP requirements for security-based events will be maintained. The classification of security-based events, notification of offsite authorities, and coordination with offsite agencies under a Page 19 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption comprehensive emergency management plan concept will still be required.

PNPS will maintain appropriate actions for the protection of onsite personnel in a security-based event. The scope of protective actions will be appropriate for the defueled plant status, but will not be the same as actions necessary for an operating power plant. Although the NRC has previously exempted decommissioning power reactors from "hostile action" considerations, the PNPS physical security plan will continue to provide high assurance against a potential security event impacting a designated target set. Therefore, some EP requirements for security-based events are maintained. Protective actions are maintained for onsite personnel through the classification of security-based events, notification of offsite authorities, and coordination of offsite response organizations (i.e., local law enforcement, firefighting, medical assistance) onsite under a comprehensive emergency management plan.

35 A.8. Identification of the State and/or local officials responsible Offsite emergency measures are limited to support provided by local for planning for, ordering, and controlling appropriate protective police, fire departments, and ambulance and hospital services as actions, including evacuations when necessary. appropriate. A PNPS analysis has been developed indicating that 10 months after permanent cessation of power operations, no credible accident at PNPS will result in radiological releases requiring offsite protective actions. Therefore, protective actions such as evacuation should not be required.

Also see the basis for 10 CFR 50.47(b)(10).

36 A.9. By December 24, 2012, for nuclear power reactor Responsibilities of the on-shift and emergency response personnel licensees, a detailed analysis demonstrating that on shift will be detailed in the Permanently Defueled Emergency Plan and personnel assigned emergency plan implementation functions implementing procedures and will be regularly tested through drills Page 20 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption are not assigned responsibilities that would prevent the timely and exercises, audited, and inspected by PNPS and the NRC. The performance of their assigned functions as specified in the duties of the on-shift personnel at a decommissioning reactor facility emergency plan. are not as complicated and diverse as those for an operating power reactor.

In the EP Final Rule (Reference 9), the NRC acknowledged that the staffing analysis requirement was not necessary for non-power reactor licensees because staffing at non-power reactors is generally small, which is commensurate with operating the facility in a manner that is protective of the public health and safety. The minimal systems and equipment needed to maintain the spent nuclear fuel in the SFP or in a dry cask storage system in a safe condition requires minimal personnel and is governed by Technical Specifications. Because of the slow rate of the event scenarios in the postulated accident and postulated beyond design basis events analyses and because the duties of the on-shift personnel at a decommissioning reactor facility are not as complicated and diverse as those for an operating reactor, significant time is available to complete actions necessary to mitigate an emergency without impeding timely performance of emergency plan functions. For these reasons, it can be concluded that a decommissioning NPP is exempt from the requirement of 10 CFR Part 50, Appendix E, Section IV.A.9.

37 B. Assessment Actions PNPS will develop EALs consistent with the Permanently Defueled EALs detailed in Appendix C of NEI 99-01, Revision 6 (Reference 5).

B.1. The means to be used for determining the magnitude of, PNPS proposes to continue to review EALs with the Commonwealth and for continually assessing the impact of, the release of of Massachusetts and the Town of Plymouth on an annual basis.

radioactive materials shall be described, including emergency However, based upon the reduced scope of EALs for the permanently action levels that are to be used as criteria for determining the defueled facility, the scope of the annual review of EALs is expected need for notification and participation of local and State to be limited (i.e., informal mailings, etc.).

agencies, the Commission, and other Federal agencies, and Page 21 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption the emergency action levels that are to be used for determining Also see the basis for Section IV.1 for the justification from the when and what type of protective measures should be requirements in Appendix E related to hostile action.

considered within and outside the site boundary to protect health and safety. The emergency action levels shall be based on in-plant conditions and instrumentation in addition to onsite and offsite monitoring. By June 20, 2012, for nuclear power reactor licensees, these action levels must include hostile action that may adversely affect the nuclear power plant. The initial emergency action levels shall be discussed and agreed on by the applicant or licensee and state and local governmental authorities, and approved by the NRC.

Thereafter, emergency action levels shall be reviewed with the State and local governmental authorities on an annual basis.

38 B.2. A licensee desiring to change its entire emergency action No exemption is requested.

level scheme shall submit an application for an amendment to its license and receive NRC approval before implementing the change. Licensees shall follow the change process in § 50.54(q) for all other emergency action level changes.

39 C. Activation of Emergency Organization The Permanently Defueled EALs, developed consistent with Appendix C of NEI 99-01, Revision 6 (Reference 5), will be adopted, C.1. The entire spectrum of emergency conditions that involve as previously described. This scheme eliminates the Site Area the alerting or activating of progressively larger segments of the Emergency and General Emergency event classifications.

total emergency organization shall be described. The Additionally, the need to base EALs on containment parameters is no communication steps to be taken to alert or activate emergency longer appropriate. The EAL scheme presented in NEI 99-01, personnel under each class of emergency shall be described.

Revision 6 was endorsed by the NRC in a letter dated March 28, Emergency action levels (based not only on onsite and offsite 2013 (ML12346A463) (Reference 6). No offsite protective actions are radiation monitoring information but also on readings from a anticipated to be necessary, so classification above the Alert level is number of sensors that indicate a potential emergency, such as no longer required. In the event of an accident at a defueled facility Page 22 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption the pressure in containment and the response of the that meets the conditions for relaxation of emergency planning Emergency Core Cooling System) for notification of offsite requirements, there will be available time for event mitigation, and if agencies shall be described. The existence, but not the details, necessary, implementation of offsite protective actions using a of a message authentication scheme shall be noted for such comprehensive approach to emergency planning. See the basis for agencies. The emergency classes defined shall include: (1) 10 CFR 50.47(b) detailing the low likelihood of any credible accident Notification of unusual events, (2) alert, (3) site area resulting in radiological releases requiring offsite protective measures.

emergency, and (4) general emergency. These classes are Containment parameters will not provide an indication of the further discussed in NUREG-0654/FEMA-REP-1.

conditions at PNPS and emergency core cooling systems will no longer be required. Other indications, such as SFP level or temperature, will be used while there is spent fuel in the SFP.

In the Statement of Considerations for the Final Rule for Emergency Planning requirements for ISFSIs and for MRS facilities (60 FR 32430) (Reference 3), the Commission responded to comments concerning a General Emergency at an ISFSI and MRS, and concluded that, an essential element of a General Emergency is that a release can be reasonably expected to exceed EPA Protective Action Guidelines exposure levels off site for more than the immediate site area. The probability of a condition reaching the level above an emergency classification of Alert is very low. In the event of an accident at a defueled facility that meets the conditions for relaxation of EP requirements, there will be time to take measures to protect the public in accordance with a comprehensive approach to emergency planning.

As stated in NUREG-1738, Technical Study of Spent Fuel Pool Accident Risk at Decommissioning Nuclear Power Plants (February 2001) (Reference 10) for instances of small SFP leaks or loss of cooling scenarios, these events evolve very slowly and generally leave many days for recovery efforts. Offsite radiation monitoring will Page 23 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption be performed as the need arises. Due to the decreased risks associated with defueled plants, offsite radiation monitoring systems are not required.

40 C.2. By June 20, 2012, nuclear power reactor licensees shall In the Proposed Rule (74 FR 23254) (Reference 11) to amend certain establish and maintain the capability to assess, classify, and emergency planning requirements for 10 CFR Part 50, the NRC declare an emergency condition within 15 minutes after the asked for public comment on whether the NRC should add availability of indications to plant operators that an emergency requirements for non-power reactor licensees to assess, classify, and action level has been exceeded and shall promptly declare the declare an emergency condition within 15 minutes and promptly emergency condition as soon as possible following declare an emergency condition. The NRC received several identification of the appropriate emergency classification level. comments on these issues. The NRC believed there may be a need Licensees shall not construe these criteria as a grace period to for the NRC to be aware of security-related events early on so that an attempt to restore plant conditions to avoid declaring an assessment of the likelihood that the event is part of a larger emergency action due to an emergency action level that has coordinated attack can be made. However, the NRC determined that been exceeded. Licensees shall not construe these criteria as further analysis and stakeholder interactions are needed prior to preventing implementation of response actions deemed by the changing the requirements for non-power reactor licensees.

licensee to be necessary to protect public health and safety Therefore, the NRC did not include requirements in the 2011 EP Final provided that any delay in declaration does not deny the State Rule (Reference 9) for non-power reactor licensees to assess, and local authorities the opportunity to implement measures classify, and declare an emergency condition within 15 minutes and necessary to protect the public health and safety. promptly declare an emergency condition.

PNPS will maintain the capability to assess, classify, and declare an emergency condition within 30 minutes after the availability of indications to operators that an EAL threshold has been reached.

Emergency declaration is required to be made as soon as conditions warranting classification are present and recognizable, but within 30 minutes in all cases of conditions being present. In the permanently defueled condition, the rapidly developing scenarios associated with events initiated during reactor power operation are no longer credible.

The consequences resulting from the only remaining events (e.g., fuel Page 24 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption handling accident) develop over a significantly longer period. As such, the 15 minute requirement to classify and declare an emergency is unnecessarily restrictive.

Because of the geographic location of PNPS, emergency planning and responsibilities have historically involved coordination with the Commonwealth of Massachusetts and local towns.

Decommissioning-related emergency plan submittals for PNPS have been discussed with cognizant offsite response organizations since PNPS provided notification that it would permanently cease power operations. During these meetings have included discussions of the regulatory exemption requests. PNPS will continue to meet with representatives from the Commonwealth of Massachusetts, local emergency preparedness personnel, and Regional leadership from FEMA. These discussions have addressed changes to onsite and offsite emergency preparedness throughout the decommissioning process, including the proposed 30-minute declaration time and the 60-minute notification time. Emergency management officials have not objected to the proposed changes.

See the basis for 10 CFR 50.47(b) detailing the low likelihood of any credible accident resulting in radiological releases requiring offsite protective measures and 10 CFR Part 50, Appendix E, Section IV.1 for discussion on the similarity between a permanently defueled reactor and a non-power reactor.

41 D. Notification Procedures See the basis for 10 CFR 50.47(b) and 10 CFR 50.47(b)(10).

D.1. Administrative and physical means for notifying local, State, and Federal officials and agencies and agreements reached with these officials and agencies for the prompt Page 25 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption notification of the public and for public evacuation or other protective measures, should they become necessary, shall be described. This description shall include identification of the appropriate officials, by title and agency, of the State and local government agencies within the EPZs.

42 D.2. Provisions shall be described for yearly dissemination to See the basis for Section IV.D.1.

the public within the plume exposure pathway EPZ of basic emergency planning information, such as the methods and times required for public notification and the protective actions planned if an accident occurs, general information as to the nature and effects of radiation, and a listing of local broadcast stations that will be used for dissemination of information during an emergency. Signs or other measures shall also be used to disseminate to any transient population within the plume exposure pathway EPZ appropriate information that would be helpful if an accident occurs.

43 D.3. A licensee shall have the capability to notify responsible While the capability needs to exist for the notification of offsite State and local governmental agencies within 15 minutes after government agencies within a specified time period, previous declaring an emergency. The licensee shall demonstrate that exemptions have allowed for extending the State and local the appropriate governmental authorities have the capability to government agencies notification time up to 60 minutes based on the make a public alerting and notification decision promptly on site-specific justification provided.

being informed by the licensee of an emergency condition.

PNPS proposes to complete emergency notification to the Prior to initial operation greater than 5 percent of rated thermal Commonwealth of Massachusetts and Town of Plymouth within 60 power of the first reactor at a site, each nuclear power reactor minutes after an emergency declaration or a change in classification.

licensee shall demonstrate that administrative and physical This timeframe is consistent with the 10 CFR 50.72(a)(3) notification means have been established for alerting and providing prompt to the NRC and is appropriate because in the permanently defueled instructions to the public within the plume exposure pathway condition, the rapidly developing scenarios associated with events EPZ. The design objective of the prompt public alert and Page 26 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption notification system shall be to have the capability to essentially initiated during reactor power operation are no longer credible and complete the initial alerting and initiate notification of the public there is no need for State or local response organizations to within the plume exposure pathway EPZ within about 15 implement any protective actions. The PDEP includes primary and minutes. The use of this alerting and notification capability will backup means for conducting the required notifications.

range from immediate alerting and notification of the public Because of the geographic location of PNPS, emergency planning (within 15 minutes of the time that State and local officials are and responsibilities have historically involved coordination with the notified that a situation exists requiring urgent action) to the Commonwealth of Massachusetts and local towns.

more likely events where there is substantial time available for Decommissioning-related emergency plan submittals for PNPS have the appropriate governmental authorities to make a judgment been discussed with offsite response organizations since ENO whether or not to activate the public alert and notification provided notification that it would permanently cease power system. The alerting and notification capability shall additionally operations. These discussions have addressed changes to onsite and include administrative and physical means for a backup method offsite emergency preparedness throughout the decommissioning of public alerting and notification capable of being used in the process, including the proposed 60-minute notification to the event the primary method of alerting and notification is Commonwealth of Massachusetts and the town of Plymouth.

unavailable during an emergency to alert or notify all or Emergency management officials have not objected to the proposed portions of the plume exposure pathway EPZ population. The notification to the Commonwealth of Massachusetts and Town of backup method shall have the capability to alert and notify the Plymouth within 60 minutes.

public within the plume exposure pathway EPZ, but does not need to meet the 15-minute design objective for the primary PNPS analyses demonstrate that 10 months after permanent prompt public alert and notification system. When there is a cessation of power operations, no remaining postulated accidents at decision to activate the alert and notification system, the PNPS will result in radiological releases requiring offsite protective appropriate governmental authorities will determine whether to actions, or in the event of beyond design basis accidents, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is activate the entire alert and notification system simultaneously available to take mitigative actions, and if needed, implement offsite or in a graduated or staged manner. The responsibility for protective actions using a comprehensive emergency management activating such a public alert and notification system shall plan. Therefore, there is no need to maintain an Alert and Notification remain with the appropriate governmental authorities. System.

Also see the basis for 10 CFR 50.47(b) and 10 CFR 50.47(b)(10).

44 D.4. If FEMA has approved a nuclear power reactor site's alert See the basis for Section IV.D.3 regarding the alert and notification Page 27 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption and notification design report, including the backup alert and system requirements.

notification capability, as of December 23, 2011, then the backup alert and notification capability requirements in Section IV.D.3 must be implemented by December 24, 2012. If the alert and notification design report does not include a backup alert and notification capability or needs revision to ensure adequate backup alert and notification capability, then a revision of the alert and notification design report must be submitted to FEMA for review by June 24, 2013, and the FEMA-approved backup alert and notification means must be implemented within 365 days after FEMA approval. However, the total time period to implement a FEMA-approved backup alert and notification means must not exceed June 22, 2015.

45 E. Emergency Facilities and Equipment No exemption is requested.

Adequate provisions shall be made and described for emergency facilities and equipment, including:

E.1. Equipment at the site for personnel monitoring; 46 E.2. Equipment for determining the magnitude of and for No exemption is requested.

continuously assessing the impact of the release of radioactive materials to the environment; 47 E.3. Facilities and supplies at the site for decontamination of No exemption is requested.

onsite individuals; 48 E.4. Facilities and medical supplies at the site for appropriate No exemption is requested.

emergency first aid treatment; Page 28 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 49 E.5. Arrangements for medical service providers qualified to No exemption is requested.

handle radiological emergencies onsite; 50 E.6. Arrangements for transportation of contaminated injured No exemption is requested.

individuals from the site to specifically identified treatment facilities outside the site boundary; 51 E.7. Arrangements for treatment of individuals injured in No exemption is requested.

support of licensed activities on the site at treatment facilities outside the site boundary; 52 E.8.a(i) A licensee onsite technical support center and an PNPS analyses demonstrate that 10 months after permanent emergency operations facility from which effective direction can cessation of power operations, no remaining postulated accidents at be given and effective control can be exercised during an PNPS will result in radiological releases requiring offsite protective emergency; actions, or in the event of beyond design basis accidents, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is available to take mitigative actions, and if needed, implement offsite protective actions using a comprehensive emergency management plan. Therefore, there is no need to maintain a TSC or an EOF.

Offsite agency response will not be required at an EOF and onsite actions may be directed from the Control Room or another location, without the requirements imposed on a Technical Support Center (TSC).

An onsite facility will continue to be maintained, from which effective direction can be given and effective control may be exercised during an emergency. The PNPS emergency plan will continue to maintain arrangements for requesting assistance and using resources from appropriate offsite support organizations.

Page 29 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 53 E.8.a(ii) For nuclear power reactor licensees, a licensee onsite NUREG-0696, Functional Criteria for Emergency Response operational support center; Facilities, (Reference 12) provides that the operational support center (OSC) is an onsite area separate from the Control Room and the TSC where licensee operations support personnel will assemble in an emergency. For a permanently shut down and defueled power plant, an OSC is no longer required to meet its original purpose of an assembly area for plant logistical support during an emergency. A single onsite facility will continue to be maintained at PNPS, from which Control Room support, emergency mitigation, radiation monitoring, and effective control may be exercised during an emergency.

54 E.8.b. For a nuclear power reactor licensee's emergency In accordance with paragraph 8.e. the requirements of paragraph operations facility required by paragraph 8.a of this section, 8.b.(1) - (5) do not apply to the PNPS EOF because it was an either a facility located between 10 miles and 25 miles of the approved facility prior to December 23, 2011. However, the nuclear power reactor site(s), or a primary facility located less exemption is requested to clearly reflect that the requirement no than 10 miles from the nuclear power reactor site(s) and a longer applies to PNPS in a permanently shut down and defueled backup facility located between 10 miles and 25 miles of the condition.

nuclear power reactor site(s). An emergency operations facility See also basis for 10 CFR 50.47(b)(3).

may serve more than one nuclear power reactor site. A licensee desiring to locate an emergency operations facility more than 25 miles from a nuclear power reactor site shall request prior Commission approval by submitting an application for an amendment to its license. For an emergency operations facility located more than 25 miles from a nuclear power reactor site, provisions must be made for locating NRC and offsite responders closer to the nuclear power reactor site so that NRC and offsite responders can interact face-to-face with emergency response personnel entering and leaving the Page 30 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption nuclear power reactor site. Provisions for locating NRC and offsite responders closer to a nuclear power reactor site that is more than 25 miles from the emergency operations facility must include the following:

55 E.8.b.(1) Space for members of an NRC site team and Federal, State, and local responders 56 E.8.b.(2) Additional space for conducting briefings with emergency response personnel; 57 E.8.b.(3) Communication with other licensee and offsite emergency response facilities; 58 E.8.b.(4) Access to plant data and radiological information; and Page 31 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 59 E.8.b.(5) Access to copying equipment and office supplies; 60 E.8.c. By June 20, 2012, for a nuclear power reactor licensee's See the basis for 10 CFR 50.47(b)(3).

emergency operations facility required by paragraph 8.a of this section, a facility having the following capabilities:

(1) The capability for obtaining and displaying plant data and radiological information for each reactor at a nuclear power reactor site and for each nuclear power reactor site that the facility serves; 61 E.8.c.(2) The capability to analyze plant technical information and provide technical briefings on event conditions and prognosis to licensee and offsite response organizations for each reactor at a nuclear power reactor site and for each nuclear power reactor site that the facility serves; and 62 E.8.c.(3) The capability to support response to events occurring simultaneously at more than one nuclear power reactor site if the emergency operations facility serves more than one site; and 63 E.8.d. For nuclear power reactor licensees, an alternative See the basis for Section IV.1 regarding hostile action.

facility (or facilities) that would be accessible even if the site is under threat of or experiencing hostile action, to function as a staging area for augmentation of emergency response staff and collectively having the following characteristics: the capability for communication with the emergency operations facility, control room, and plant security; the capability to perform offsite notifications; and the capability for engineering assessment Page 32 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption activities, including damage control team planning and preparation, for use when onsite emergency facilities cannot be safely accessed during hostile action. The requirements in this paragraph 8.d must be implemented no later than December 23, 2014, with the exception of the capability for staging emergency response organization personnel at the alternative facility (or facilities) and the capability for communications with the emergency operations facility, control room, and plant security, which must be implemented no later than June 20, 2012.

64 E.8.e. A licensee shall not be subject to the requirements of See the basis for 10 CFR 50.47(b)(3) and Appendix E, Section paragraph 8.b of this section for an existing emergency IV.E.8.b.

operations facility approved as of December 23, 2011; 65 E.9. At least one onsite and one offsite communications See the basis for 10 CFR 50.47(b) and (b)(10).

system; each system shall have a backup power source. All PNPS maintains primary and backup communications with the communication plans shall have arrangements for Commonwealth of Massachusetts, the Town of Plymouth, and the emergencies, including titles and alternates for those in charge NRC. The onsite response facilities will be combined into a single at both ends of the communication links and the primary and facility, as described in IV.E.8.a(ii). A description of the backup means of communication. Where consistent with the communications systems and the testing frequencies will be included function of the governmental agency, these arrangements will in the Permanently Defueled Emergency Plan.

include:

E.9.a. Provision for communications with contiguous State/local governments within the plume exposure pathway EPZ. Such communications shall be tested monthly.

66 E.9.b. Provision for communications with Federal emergency No exemption is requested.

response organizations. Such communications systems shall Page 33 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption be tested annually.

67 E.9.c. Provision for communications among the nuclear power PNPS analyses demonstrate that 10 months after permanent reactor control room, the onsite technical support center, and cessation of power operations, no remaining postulated accidents at the emergency operations facility; and among the nuclear PNPS will result in radiological releases requiring offsite protective facility, the principal State and local emergency operations actions, or in the event of beyond design basis accidents, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is centers, and the field assessment teams. Such available to take mitigative actions, and if needed, implement offsite communications systems shall be tested annually. protective actions using a comprehensive emergency management plan. Therefore, there is no need for the TSC, EOF, or field assessment teams.

Also see justification for 10 CFR 50.47(b)(3).

The provisions remaining in 10 CFR Part 50, Appendix E, Section IV.E.9.a, b, and d include the necessary requirements.

Communication with State and local EOCs will be maintained to coordinate assistance on site, if required.

68 E.9.d. Provisions for communications by the licensee with NRC The functions of the Control Room, EOF, TSC, and OSC may be Headquarters and the appropriate NRC Regional Office combined into one or more locations due to the smaller facility staff Operations Center from the nuclear power reactor control and the greatly reduced interaction required with State and local room, the onsite technical support center, and the emergency emergency response facilities. An onsite facility will continue to be operations facility. Such communications shall be tested maintained, from which effective command and control will be monthly. maintained and direction can be given during an emergency. PNPS will maintain communications capability with the NRC.

Also see the basis for 10 CFR 50.47(b).

Page 34 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 69 F. Training No exemption is requested.

F.1. The program to provide for: (a) The training of employees and exercising, by periodic drills, of emergency plans to ensure that employees of the licensee are familiar with their specific emergency response duties, and (b) The participation in the training and drills by other persons whose assistance may be needed in the event of a radiological emergency shall be described. This shall include a description of specialized initial training and periodic retraining programs to be provided to each of the following categories of emergency personnel:

70 F.1.i. Directors and/or coordinators of the plant emergency organization; 71 F.1.ii. Personnel responsible for accident assessment, including control room shift personnel; 72 F.1.iii. Radiological monitoring teams; 73 F.1.iv. Fire control teams (fire brigades);

74 F.1.v. Repair and damage control teams; 75 F.1.vi. First aid and rescue teams; 76 F.1.vii. Medical support personnel; 77 F.1.viii. Licensee's headquarters support personnel; The number of staff at PNPS during the decommissioning process will be small but commensurate with the need to safely store spent Page 35 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption fuel at the facility in a manner that is protective of public health and safety. PNPS will maintain a level of emergency response that does not require additional response by headquarters personnel. The on-shift and emergency response positions are defined in the Permanently Defueled Emergency Plan and will be regularly tested through drills and exercises, audited, and inspected by PNPS and the NRC.

Also see the basis for 10 CFR 50.47(b). Therefore, exempting licensee's headquarters personnel from training requirements is considered to be reasonable.

78 F.1.ix. Security personnel. No exemption is requested.

79 F.1. In addition, a radiological orientation training program shall Because there will no longer be any expected actions that must be be made available to local services personnel; e.g., local taken by the public during an emergency, it is no longer necessary to emergency services/Civil Defense, local law enforcement pre-plan the dissemination of this information to the public or to personnel, local news media persons. provide radiological orientation training to local news media persons.

The phrase "Civil Defense" is no longer a commonly used term and is no longer applicable as an example in the regulation.

80 F.2. The plan shall describe provisions for the conduct of PNPS analyses demonstrate that 10 months after permanent emergency preparedness exercises as follows: cessation of power operations, no remaining postulated accidents at PNPS will result in radiological releases requiring offsite protective Exercises shall test the adequacy of timing and content of actions, or in the event of beyond design basis accidents, 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is implementing procedures and methods, test emergency available to take mitigative actions, and if needed, implement offsite equipment and communications networks, test the public alert protective actions using a comprehensive emergency management and notification system, and ensure that emergency plan. Therefore, the public alert and notification system will not be organization personnel are familiar with their duties.3 used and no testing would be required.

Page 36 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption Also see the basis for 10 CFR 50.47(b).

81 F.2.a. A full participation exercise4 which tests as much of the PNPS will continue to invite the Commonwealth of Massachusetts licensee, State, and local emergency plans as is reasonably and the Town of Plymouth to participate in the periodic drills and achievable without mandatory public participation shall be exercises conducted to assess their ability to perform responsibilities conducted for each site at which a power reactor is located. related to an emergency at PNPS, to the extent defined by the PNPS Nuclear power reactor licensees shall submit exercise emergency plan. Because the need for offsite emergency planning is scenarios under § 50.4 at least 60 days before use in a full relaxed due to the low probability of the postulated accident or other participation exercise required by this paragraph 2.a. credible events that would be expected to result in an offsite radioactive release that would exceed the EPA PAGs and the 82 F.2.a.(i) For an operating license issued under this part, this available time for event mitigation, no offsite emergency plans will be exercise must be conducted within two years before the in place to test.

issuance of the first operating license for full power (one The intent of submitting exercise scenarios at power reactors is to authorizing operation above 5 percent of rated power) of the verify that licensees utilize different scenarios in order to prevent the first reactor and shall include participation by each State and preconditioning of responders at power reactors. For defueled sites, local government within the plume exposure pathway EPZ and there are limited events that could occur and the previously routine each state within the ingestion exposure pathway EPZ. If the progression to General Emergency in power reactor site scenarios is full participation exercise is conducted more than 1 year prior to not applicable to a decommissioning site.

issuance of an operating licensee for full power, an exercise which tests the licensee's onsite emergency plans must be ENO considers PNPS to be exempt from F.2.a.(i) - (iii) because conducted within one year before issuance of an operating PNPS will be exempt from the umbrella provision of Section IV.F.2.a.

license for full power. This exercise need not have State or local government participation.

83 F.2.a.(ii) For a combined license issued under part 52 of this chapter, this exercise must be conducted within two years of the scheduled date for initial loading of fuel. If the first full participation exercise is conducted more than one year before the scheduled date for initial loading of fuel, an exercise which tests the licensee's onsite emergency plans must be conducted Page 37 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption within one year before the scheduled date for initial loading of fuel. This exercise need not have State or local government participation. If FEMA identifies one or more deficiencies in the state of offsite emergency preparedness as the result of the first full participation exercise, or if the Commission finds that the state of emergency preparedness does not provide reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency, the provisions of § 50.54(gg) apply.

84 F.2.a.(iii) For a combined license issued under part 52 of this chapter, if the applicant currently has an operating reactor at the site, an exercise, either full or partial participation,5 shall be conducted for each subsequent reactor constructed on the site.

This exercise may be incorporated in the exercise requirements of Sections IV.F.2.b. and c. in this appendix. If FEMA identifies one or more deficiencies in the state of offsite emergency preparedness as the result of this exercise for the new reactor, or if the Commission finds that the state of emergency preparedness does not provide reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency, the provisions of § 50.54(gg) apply.

85 F.2.b. Each licensee at each site shall conduct a subsequent See the basis for Section IV.F.2.a.

exercise of its onsite emergency plan every 2 years. Nuclear The low probability of the postulated accident or other credible events power reactor licensees shall submit exercise scenarios under that would result in an offsite radioactive release that would exceed

§ 50.4 at least 60 days before use in an exercise required by the EPA PAGs and the available time for event mitigation at PNPS this paragraph 2.b. The exercise may be included in the full during decommissioning render the TSC, OSC, and EOF participation biennial exercise required by paragraph 2.c. of this Page 38 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption section. In addition, the licensee shall take actions necessary to unnecessary. The principal functions required by regulation can be ensure that adequate emergency response capabilities are performed at a single onsite location that does not meet the maintained during the interval between biennial exercises by requirements of the TSC, OSC, or EOF. The onsite response facilities conducting drills, including at least one drill involving a at PNPS will be combined into a single facility.

combination of some of the principal functional areas of the PNPS will continue to conduct biennial exercises and will invite the licensee's onsite emergency response capabilities. The Commonwealth of Massachusetts, the Town of Plymouth, and local principal functional areas of emergency response include support organizations (firefighting, law enforcement, and activities such as management and coordination of emergency ambulance/medical services) to participate in periodic drills and response, accident assessment, event classification, exercises to assess their ability to perform responsibilities related to notification of offsite authorities, assessment of the onsite and an emergency at PNPS, to the extent defined by the PNPS offsite impact of radiological releases, protective action emergency plan.

recommendation development, protective action decision making, plant system repair and mitigative action The intent of submitting exercise scenarios for use by power reactor implementation. During these drills, activation of all of the licensees is to check that licensees utilize different scenarios in order licensee's emergency response facilities (Technical Support to prevent the preconditioning of responders at power reactors. In Center (TSC), Operations Support Center (OSC), and the PNPSs permanently shut down and defueled condition, there are Emergency Operations Facility (EOF)) would not be necessary, limited events that could occur and the previously routine progression licensees would have the opportunity to consider accident to General Emergency in scenarios is not applicable to a management strategies, supervised instruction would be decommissioning site.

permitted, operating staff in all participating facilities would have the opportunity to resolve problems (success paths) rather than have controllers intervene, and the drills may focus on the onsite exercise training objectives.

86 F.2.c. Offsite plans for each site shall be exercised biennially See the basis for Section IV.F.2.a.

with full participation by each offsite authority having a role under the radiological response plan. Where the offsite authority has a role under a radiological response plan for more than one site, it shall fully participate in one exercise every two years and shall, at least, partially participate in other offsite plan Page 39 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption exercises in this period. If two different licensees each have licensed facilities located either on the same site or on adjacent, contiguous sites, and share most of the elements defining co-located licensees,6 then each licensee shall:

87 F.2.c.(1) Conduct an exercise biennially of its onsite emergency plan; 88 F.2.c.(2) Participate quadrennially in an offsite biennial full or partial participation exercise; 89 F.2.c.(3) Conduct emergency preparedness activities and interactions in the years between its participation in the offsite full or partial participation exercise with offsite authorities, to test and maintain interface among the affected State and local authorities and the licensee. Co-located licensees shall also participate in emergency preparedness activities and interaction with offsite authorities for the period between exercises; 90 F.2.c.(4) Conduct a hostile action exercise of its onsite emergency plan in each exercise cycle; and 91 F.2.c.(5) Participate in an offsite biennial full or partial participation hostile action exercise in alternating exercise cycles.

92 F.2.d. Each State with responsibility for nuclear power reactor See the basis for Section IV.2.

emergency preparedness should fully participate in the ingestion pathway portion of exercises at least once every Page 40 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption exercise cycle. In States with more than one nuclear power reactor plume exposure pathway EPZ, the State should rotate this participation from site to site. Each State with responsibility for nuclear power reactor emergency preparedness should fully participate in a hostile action exercise at least once every cycle and should fully participate in one hostile action exercise by December 31, 2015. States with more than one nuclear power reactor plume exposure pathway EPZ should rotate this participation from site to site.

93 F.2.e. Licensees shall enable any State or local government See the basis for Section IV.2.

located within the plume exposure pathway EPZ to participate in the licensee's drills when requested by such State or local government.

94 F.2.f. Remedial exercises will be required if the emergency plan FEMA is responsible for evaluating the adequacy of an offsite is not satisfactorily tested during the biennial exercise, such response exercise. No action is expected from State or local that NRC, in consultation with FEMA, cannot (1) find government organizations in response to an event at a reasonable assurance that adequate protective measures can decommissioning site other than receiving notification of the and will be taken in the event of a radiological emergency or (2) emergency and firefighting, law enforcement, and ambulance/medical determine that the Emergency Response Organization (ERO) response services. Letters of Agreement will continue to be in place has maintained key skills specific to emergency response. The for those services. Offsite response organizations will continue to extent of State and local participation in remedial exercises implement actions to protect the health and safety of the public as must be sufficient to show that appropriate corrective measures they would at any other industrial site.

have been taken regarding the elements of the plan not properly tested in the previous exercises.

95 F.2.g. All exercises, drills, and training that provide No exemption is requested.

performance opportunities to develop, maintain, or demonstrate key skills must provide for formal critiques in order to identify Page 41 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption weak or deficient areas that need correction. Any weaknesses or deficiencies that are identified in a critique of exercises, drills, or training must be corrected.

96 F.2.h. The participation of State and local governments in an No exemption is requested.

emergency exercise is not required to the extent that the applicant has identified those governments as refusing to participate further in emergency planning activities, pursuant to

§ 50.47(c)(1). In such cases, an exercise shall be held with the applicant or licensee and such governmental entities as elect to participate in the emergency planning process.

97 F.2.i. Licensees shall use drill and exercise scenarios that At PNPS, there will be limited events that could occur that could result provide reasonable assurance that anticipatory responses will in radiological releases that exceed the EPA PAGs and the previously not result from preconditioning of participants. Such scenarios routine progression to General Emergency in power reactor site for nuclear power reactor licensees must include a wide scenarios will not be applicable. Therefore, PNPS does not expect to spectrum of radiological releases and events, including hostile demonstrate response to a wide spectrum of events.

action. Exercise and drill scenarios as appropriate must Also see the basis for 10 CFR 50.47(b) detailing the low likelihood of emphasize coordination among onsite and offsite response any credible accident resulting in radiological releases requiring organizations.

offsite protective measures and basis for Section IV.1 regarding hostile action.

98 F.2.j. The exercises conducted under paragraph 2 of this See the basis for Section IV.F.2.

section by nuclear power reactor licensees must provide the Periodic drills and exercises will be completed to demonstrate ERO opportunity for the ERO to demonstrate proficiency in the key proficiency in key skills necessary to implement the principal skills necessary to implement the principal functional areas of functional areas of emergency response as applicable for the emergency response identified in paragraph 2.b of this section.

permanently defueled plant status. Critiques will follow each drill or Each exercise must provide the opportunity for the ERO to exercise activity. PNPS will continue to invite the Commonwealth of demonstrate key skills specific to emergency response duties Massachusetts, the Town of Plymouth, and local support Page 42 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption in the control room, TSC, OSC, EOF, and joint information organizations to participate in the periodic drills and exercises to center. Additionally, in each eight calendar year exercise cycle, assess their ability to perform responsibilities related to an emergency nuclear power reactor licensees shall vary the content of at PNPS to the extent defined by the PNPS emergency plan.

scenarios during exercises conducted under paragraph 2 of this section to provide the opportunity for the ERO to demonstrate proficiency in the key skills necessary to respond to the following scenario elements: hostile action directed at the plant site, no radiological release or an unplanned minimal radiological release that does not require public protective actions, an initial classification of or rapid escalation to a Site Area Emergency or General Emergency, implementation of strategies, procedures, and guidance developed under § 50.54(hh)(2), and integration of offsite resources with onsite response. The licensee shall maintain a record of exercises conducted during each eight year exercise cycle that documents the content of scenarios used to comply with the requirements of this paragraph. Each licensee shall conduct a hostile action exercise for each of its sites no later than December 31, 2015. The first eight-year exercise cycle for a site will begin in the calendar year in which the first hostile action exercise is conducted. For a site licensed under Part 52, the first eight-year exercise cycle begins in the calendar year of the initial exercise required by Section IV.F.2.a.

99 G. Maintaining Emergency Preparedness No exemption is requested.

Provisions to be employed to ensure that the emergency plan, its implementing procedures, and emergency equipment and supplies are maintained up to date shall be described.

Page 43 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption 100 H. Recovery No exemption is requested.

Criteria to be used to determine when, following an accident, reentry of the facility would be appropriate or when operation could be resumed shall be described.

101 I. Onsite Protective Actions During Hostile Action See the basis for Section IV.1.

By June 20, 2012, for nuclear power reactor licensees, a range of protective actions to protect onsite personnel during hostile action must be developed to ensure the continued ability of the licensee to safely shut down the reactor and perform the functions of the licensees emergency plan.

102 10 CFR 50 Appendix E No exemption is requested.

V. Implementing Procedures No less than 180 days before the scheduled issuance of an operating license for a nuclear power reactor or a license to possess nuclear material, or the scheduled date for initial loading of fuel for a combined license under part 52 of this chapter, the applicants or licensee's detailed implementing procedures for its emergency plan shall be submitted to the Commission as specified in § 50.4.

103 10 CFR 50 Appendix E The regulation that identifies the requirement to maintain the Emergency Response Data System (ERDS) is not applicable to VI. Emergency Response Data System nuclear power facilities that are permanently shut down.

1. The Emergency Response Data System (ERDS) is a direct When PNPS is permanently defueled, this system will no longer be Page 44 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption near real-time electronic data link between the licensee's onsite necessary to transmit safety system parameter data. No exemption is computer system and the NRC Operations Center that provides requested because this change in the ERDS data requirement is for the automated transmission of a limited data set of selected identified in 10 CFR Part 50, Appendix E, Section VI.2.

parameters. The ERDS supplements the existing voice transmission over the Emergency Notification System (ENS) by providing the NRC Operations Center with timely and accurate updates of a limited set of parameters from the licensee's installed onsite computer system in the event of an emergency.

When selected plant data are not available on the licensee's onsite computer system, retrofitting of data points is not required. The licensee shall test the ERDS periodically to verify system availability and operability. The frequency of ERDS testing will be quarterly unless otherwise set by NRC based on demonstrated system performance.

2. Except for Big Rock Point and all nuclear power facilities that are shut down permanently or indefinitely, onsite hardware shall be provided at each unit by the licensee to interface with the NRC receiving system. Software, which will be made available by the NRC, will assemble the data to be transmitted and transmit data from each unit via an output port on the appropriate data system.

104 10 CFR 50 Appendix E ENO considers PNPS to be exempt from Footnotes 3, 4, 5, and 6 because PNPS will be exempt from the umbrella provisions of Footnotes 3, 4, 5, and 6 are proposed for exemption.

Section F.2.

3 Use of site specific simulators or computers is acceptable for any exercise.

4 Full participation when used in conjunction with emergency preparedness exercises for a particular site means appropriate Page 45 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 2 Exemptions Requested from 10 CFR 50, Appendix E Item # Regulation in Part 50, Appendix E Basis for Exemption offsite local and State authorities and licensee personnel physically and actively take part in testing their integrated capability to adequately assess and respond to an accident at a commercial nuclear power plant. Full participation includes testing major observable portions of the onsite and offsite emergency plans and mobilization of State, local and licensee personnel and other resources in sufficient numbers to verify the capability to respond to the accident scenario.

5 Partial participation when used in conjunction with emergency preparedness exercises for a particular site means appropriate offsite authorities shall actively take part in the exercise sufficient to test direction and control functions; i.e., (a) protective action decision making related to emergency action levels, and (b) communication capabilities among affected State and local authorities and the licensee.

6 Co-located licensees are two different licensees whose licensed facilities are located either on the same site or on adjacent, contiguous sites, and that share most of the following emergency planning and siting elements:

a. Plume exposure and ingestion emergency planning zones;
b. Offsite governmental authorities;
c. Offsite emergency response organizations;
d. Public notification system; and/or
e. Emergency facilities.

Page 46 of 72

CNRO-2018-00031 ATTACHMENT 1

4.0 TECHNICAL EVALUATION

4.1 Accident Analysis Overview 10 CFR 50.82(a)(2) specifies that the 10 CFR Part 50 license no longer authorizes operation of the reactor or emplacement or retention of fuel in the reactor vessel after docketing the certifications for permanent cessation of operations and permanent removal of fuel from the reactor vessel in accordance with 10 CFR 50.82(a)(1). Following the termination of power operations at PNPS, and the permanent removal of the fuel from the reactor vessel, the postulated accidents involving failure or malfunction of the reactor and supporting structures, systems, and components are no longer applicable.

A summary of the postulated radiological accidents analyzed for the permanently shut down and defueled condition is presented below. Current Federal guidance provided in the EPAs, Protective Action Guides and Planning Guidance for Radiological Incidents, EPA-400/R-17/001, dated January 2017 (Reference 8), Section 2.2.4, PAGs and Nuclear Facilities Emergency Planning Zones (EPZ), states that the EPZ is based on the maximum distance at which a PAG might be exceeded.

Section 5.0 of Interim Staff Guidance (ISG) - 02 (Reference 1) indicates that site-specific analyses should demonstrate that: (1) the radiological consequences of the remaining applicable postulated accidents would not exceed the limits of the EPA PAGs at the EAB; (2) in the event of a beyond design basis event resulting in the partial drain down of the SFP to the point that cooling is not effective, there is at least 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> (assuming an adiabatic heat up) from the time that the fuel is no longer being cooled until the hottest fuel assembly reaches 900 °C; (3) adequate physical security is in place to assure implementation of security strategies that protect against spent fuel sabotage; and (4) in the unlikely event of a beyond design basis event resulting from a loss of all SFP cooling, there is sufficient time to implement pre-planned mitigation measures to provide makeup or spray to the SFP before the onset of zirconium cladding ignition.

Table 3 contains a listing of seven analyses that are expected to be evaluated by a decommissioning power reactor licensee requesting exemption of emergency planning requirements. The table also contains a description of how PNPS addresses each of these analyses.

Page 47 of 72

CNRO-2018-00031 ATTACHMENT 1 TABLE 3 Interim Staff Guidance-02 Comparison Analysis ISG-02 Description Response 1 Applicable design DBAs (i.e., fuel The postulated accident that will remain applicable to PNPS handling accident in the spent and could contribute to dose upon implementation of the fuel storage facility, waste gas requested exemptions is the fuel handling accident (FHA) in the system release, and cask Reactor Building, where the SFP is located. The results of the handling accident if the cask analysis indicate that the dose at the EAB would not exceed the handling system is not licensed EPA PAGs within 46 days after permanent cessation of power as single-failure-proof) (Indicates operations.

that any radiological release This analysis is described in Section 4.1.1 of this attachment.

would not exceed the limits of EPA PAGs at EAB);

2 Complete loss of SFP water PNPS performed an analysis that conservatively evaluates the inventory with no heat loss length of time (number of hours) it takes for uncovered spent (adiabatic heatup) demonstrating fuel assemblies in the SFP to reach the temperature at which a minimum of 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> is the zirconium cladding would fail. Based on the limiting fuel available before any fuel cladding assembly for decay heat and adiabatic heat up analysis, at 10 temperature reaches 900 months after permanent cessation of power operations, the degrees Celsius from the time all time for the hottest fuel assembly to reach 900°C is 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> cooling is lost (Demonstrates after spent fuel is uncovered.

sufficient time to mitigate events This analysis is described in Section 4.1.2 of this attachment that could lead to a zirconium and is included in Attachment 2.

cladding fire);

3 Loss of SFP water inventory PNPS performed an analysis to determine the offsite resulting in radiation exposure at radiological impact of a complete loss of SFP water. It was the EAB and control room; determined that the gamma radiation dose rate at the EAB (Indicates that any release is less would be limited to small fractions of the EPA PAG exposure than EPA PAGs at EAB); and levels.

This analysis is described in Section 4.1.3.1 of this attachment and is included in Attachment 3.

4 Considering the site-specific PNPS conducted a structural integrity seismic risk assessment seismic hazard, either an of the SFP to assess seismically-induced structural failure and evaluation demonstrating a high rapid loss of inventory. The seismic evaluation demonstrates confidence of a low-probability that the risk of a SFP seismically induced structural failure and (less than 1 x 10-5 per year) of -6 rapid loss of inventory is 6.6 x 10 per year, which is less than seismic failure of the spent fuel the generic bounding estimates provided in NUREG-1738 (<1 x storage pool structure or an 10-5 per year including non-seismic events).

analysis demonstrating the fuel The analysis is described in Section 4.3 and is referenced in has decayed sufficiently that SDA-6 of Table 5, both in this attachment.

natural air flow in a completely drained pool would maintain peak cladding temperature below 565 degrees Celsius (the point of incipient cladding damage)

(Indicates that any release is less than EPA PAGs at EAB).

5 The analyses and conclusions IDCs and SDAs are addressed in Section 4.2 and Tables 4 and described in NUREG-1738 are 5 of this attachment.

predicated on the risk reduction Page 48 of 72

CNRO-2018-00031 ATTACHMENT 1 Analysis ISG-02 Description Response measures identified in the study as Industry Decommissioning Commitments (IDC) and Staff Decommissioning Assumptions (SDA), listed in Tables 4.1-1 and 4.1-2 of that document. The staff should ensure that the licensee has addressed these IDCs and SDAs for the decommissioning site if they are storing fuel in an SFP.

6 Verify that the licensee presents The onsite restoration plans for repair of the SFP cooling a determination that there is system and to provide makeup water to the SFP are sufficient resources and incorporated into PNPS procedures and utilize adequately adequately trained personnel trained on-shift resources for implementation.

available on-shift to initiate There are multiple ways to initiate mitigative actions and add mitigative actions within the 10-makeup water to the SFP within the 10-hour minimum time hour minimum time period that period with or without entry to the SFP floor.

will prevent an offsite radiological release that exceeds the EPA Refer to SDA-2 in Table 5 of this attachment.

PAGs at the EAB.

7 Verify that mitigation strategies PNPS maintains procedures and strategies for the movement are consistent with that required of any necessary portable equipment that will be relied upon for by the Permanently Defueled mitigating the loss of SFP water. These mitigative strategies, Technical Specifications or by addressing events involving a loss of SFP cooling and/or water retained license conditions. inventory, include implementation of SFP inventory makeup strategies required under 10 CFR 50.54(hh)(2), which will continue to be maintained to satisfy applicable License Conditions of the Renewed Facility Operating License. These diverse strategies provide defense-in-depth and ample time to provide makeup water or spray to the SFP prior to the onset of zirconium cladding ignition when considering very low probability beyond design basis events affecting the SFP.

Refer to SDA-4 in Table 5 of this attachment.

Page 49 of 72

CNRO-2018-00031 ATTACHMENT 1 4.1.1 Consequences of Design Basis Events The current design basis FHA is a drop of a fuel assembly over the reactor cavity, the most limiting location for a FHA to occur at PNPS. After permanent shutdown and removal of fuel from the reactor, a FHA in the reactor cavity is no longer a credible accident. While spent fuel remains in the SFP, the postulated DBA that will remain applicable to PNPS that could contribute to dose upon implementation of the requested exemptions is the FHA in the reactor building, where the SFP is located. PNPS performed an analysis documenting that the current design basis FHA results are bounding. The DBA FHA analysis uses the AST guidelines outlined in NUREG-1465 (Reference 13), Regulatory Guide 1.183 (Reference 14), and Regulatory Guide 1.194 (Reference 15). The results of the analysis, detailed in FSAR Table 14-5.5, indicate that the EAB, Low Population Zone (LPZ), and Control Room doses are within their respective regulatory allowable limits for a FHA occurring in the reactor building. Additionally, the analysis concludes that the dose at the EAB 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> after shutdown is 0.91 rem Total Effective Dose Equivalent (TEDE), which is below the EPA PAG limit of 1 rem.

PNPS FSAR Section 14.5 incorporated the GE Hitachi Nuclear Energy Report, Fuel Handling Accident in the Spent Fuel Pool Generic Dose Assessment (Reference 16) for the fuel handling accident involving an unchanneled fuel assembly in the SFP. The assessment concluded that for the consequences of the design basis FHA to remain bounding, an unchanneled fuel assembly must be allowed to decay for a minimum of 45 days from the time of reactor shutdown in which the assembly in question was part of the critical reactor core. The 45-day decay period ensures the radiological source term is sufficiently reduced so that the consequences of the design basis FHA remain bounding. The PNPS design basis FHA assumes the source term in an irradiated fuel assembly has been reduced by 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (1 day) of decay since the time of reactor shutdown. To ensure the consequences of postulated drop of an unchanneled fuel assembly in the SFP are bounded by the PNPS design basis FHA, an additional 45 days of decay is required. Therefore, PNPS maintains a procedurally enforced administrative restriction prohibiting the handling of unchanneled assemblies unless they have decayed for a minimum of 46 days following reactor shutdown to ensure the consequences of the design basis FHA remains bounding for the drop of an unchanneled irradiated fuel assembly in the SFP.

Due to the amount of decay calculated (72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />) and the procedurally enforced administrative restriction prohibiting the handling of unchanneled assemblies unless they have decayed for a minimum of 46 days following reactor shutdown, the results of this analysis may be applied after August 15, 2019, assuming a PNPS shut down no later than June 1, 2019 (Reference 2).

4.1.2 Consequences of a Beyond Design Basis Event With respect to beyond design basis events, PNPS analyzed a partial drain down of the SFP water that would effectively impede any decay heat removal (adiabatic heatup). The analysis (Reference

17) compares the conditions for the hottest fuel assembly stored in the PNPS SFP to a criterion proposed in SECY-99-168 (Reference 18) applicable to offsite emergency response for a unit in the decommissioning process. This criterion considers the time for the hottest assembly to heat up from 30°C to 900°C adiabatically. Based on SECY-99-168, if the heat up time is greater than 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> from the time the spent fuel is uncovered, then offsite emergency preplanning involving the facility is not necessary.

Based on the limiting fuel assembly for decay heat and adiabatic heat up analysis, 10 months after permanent cessation of power operations is the time for the hottest fuel assembly to reach 900°C 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> after the assemblies have been uncovered. As stated in NUREG-1738, Technical Study of Spent Fuel Pool Accident Risk at Decommissioning Nuclear Power Plants (February 2001)

(Reference 10), 900°C is an acceptable temperature to use for assessing the onset of fission Page 50 of 72

CNRO-2018-00031 ATTACHMENT 1 product release under transient conditions (to establish the critical decay time for determining availability of 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> to evacuate) if fuel and cladding oxidation occurs in air.

Based on the length of time it would take for the adiabatic heat up to occur, there is ample time to respond to any partial drain down event that might cause such an occurrence by restoring SFP cooling or makeup, or providing SFP spray. As a result, the likelihood that such a scenario would progress to a zirconium fire is deemed not credible, and offsite emergency preplanning involving the facility is not necessary.

The analysis is included in Attachment 2.

4.1.3 Consequences of Other Analyzed Events 4.1.3.1 Spent Fuel Pool Drain Down Event PNPS analyzed a drain down event of the SFP to determine a dose rate curve at the EAB and Control Room. NUREG-0586, Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities, (Reference 19) Supplement 1, Section 4.3.9, identifies that a SFP drain down event is beyond design basis. Although the analysis provided in Attachment 2 demonstrated that a significant release of radioactive material from the spent fuel is not possible within 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> from the time the spent fuel is uncovered after approximately 10 months following permanent cessation of power operations, the potential exists for radiation exposure to an offsite individual if shielding of the fuel is lost. The SFP water and the concrete pool structure serve as radiation shielding. A loss of water shielding above the fuel could increase the offsite radiation levels because of the gamma rays streaming up out of the pool and being scattered back to a receptor at the site boundary.

PNPS analyzed the offsite and Control Room radiological impact of a postulated complete loss of SFP water. The analysis (Reference 20), provided in Attachment 3, determined that the gamma radiation dose rate at the EAB would be limited to small fractions of the EPA PAGs. The EPA PAGs were developed to respond to a mobile airborne plume that could transport and deposit radioactive material over a large area. In contrast, the radiation field formed by scatter from a drained SFP would be stationary rather than moving and would not cause transport or deposition of radioactive materials. The extended period required to exceed the integrated EPA PAG limit of 1 Rem Total Effective Dose Equivalent (TEDE) would allow sufficient time to develop and implement onsite mitigative actions and provide confidence that additional offsite measures could be taken without preplanning if efforts to reestablish shielding over the fuel are delayed.

Based on the data presented in Attachment 3, it is reasonably estimated that 10 months following permanent cessation of power operations, the dose rate in the Control Room during an event involving a complete loss of SFP water will be less than 0.02 mrem/hr. There are no acceptance criteria for dose rates in the Control Room in NSIR/DPR-ISG-02 (Reference 1).

However, Appendix A to 10 CFR Part 50, General Design Criteria (GDC), Criterion 19 - Control Room states, in part:

A control room shall be provided from which actions can be taken to operate the nuclear power unit safely under normal conditions and to maintain it in a safe condition under accident conditions, including loss-of-coolant accidents. Adequate radiation protection shall be provided to permit access and occupancy of the control room under accident conditions without personnel receiving radiation exposures in excess of 5 rem whole body, or its equivalent to any part of the body, for the duration of the accident.

Page 51 of 72

CNRO-2018-00031 ATTACHMENT 1 The dose rate in the Control Room conservatively does not include shielding provided by walls and floors between the SFP and Control Room. This includes the 30-inch concrete slab ceiling of the Control Room, which would provide a considerable reduction in the dose rate.

4.1.3.2 Radioactive Waste Handling Accident This analysis evaluated the drop of a high integrity container (HIC) containing radioactive waste.

The event considered a waste handling accident where a fully loaded HIC is dropped onto another fully loaded HIC and a fraction of the contents from both HICs are released. The spilled contents from the two HICs are then assumed to be engulfed in a fire resulting in a fraction of the contents being aerosolized. The accident evaluated the drop of a HIC containing a bounding activity of 945 curies of 22 various radionuclides representing a bounding isotopic mix. The calculation postulates that the accident occurs 100 meters (328 feet) from the EAB with subsequent container failure. The analysis assumes that 1% of the contents are released and 0.78% of the release becomes aerosolized and carried in the direction of the EAB. The resulting two-hour dose at the EAB is projected to be 27 millirem TEDE, which is below the EAB limit of 1 rem TEDE.

4.2 Comparison to NUREG-1738 Industry Decommissioning Commitments and Staff Decommissioning Assumptions ENO also evaluated the Industry Decommissioning Commitments (IDCs) and Staff Decommissioning Assumptions (SDAs) contained in NUREG-1738 (Reference 10). NUREG-1738 contains the results of the NRC staffs evaluation of the potential accident risk in SFPs at decommissioning plants in the United States. The study was undertaken to support development of a risk-informed technical basis for reviewing exemption requests and a regulatory framework for integrated rulemaking. The NRC staff performed analyses and sensitivity studies on evacuation timing to assess the risk significance of relaxed offsite emergency preparedness requirements during decommissioning. The staff based its sensitivity assessment on the guidance in Regulatory Guide (RG) 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis (Reference 21). The staff's analyses and conclusions apply to decommissioning facilities with SFPs that meet the design and operational characteristics assumed in the risk analysis.

The study found that the risk of a potential SFP accident at decommissioning plants is low and well within the Commissions Safety Goals. The risk is low because of the very low likelihood of a zirconium fire (resulting from a postulated irrecoverable loss of SFP cooling water inventory).

The study provided the following assessment:

The staff found that the event sequences important to risk at decommissioning plants are limited to large earthquakes and cask drop events. For emergency planning (EP) assessments, this is an important difference relative to operating plants where typically a large number of different sequences make significant contributions to risk. Relaxation of offsite EP a few months after shutdown resulted in only a "small change" in risk, consistent with the guidance of RG 1.174. Figures ES-1 and ES-2 [in NUREG-1738] illustrate this finding. The change in risk due to relaxation of offsite EP is small because the overall risk is low, and because even under current EP requirements, EP was judged to have marginal impact on evacuation effectiveness in the severe earthquakes that dominate SFP risk. All other sequences including cask drops (for which emergency planning is expected to be more effective) are too low in likelihood to have a significant impact on risk.

Page 52 of 72

CNRO-2018-00031 ATTACHMENT 1 For comparison, at operating reactors, additional risk-significant accidents for which EP is expected to provide dose savings are on the order of 1x10-5 per year, while for decommissioning facilities, the largest contributor for which EP would provide dose savings is about two orders of magnitude lower (cask drop sequence at 2x10-7 per year).

The Executive Summary in NUREG-1738 states, in part, "the staff's analyses and conclusions apply to decommissioning facilities with SFPs that meet the design and operational characteristics assumed in the risk analysis. These characteristics are identified in the study as IDCs and SDAs.

Provisions for confirmation of these characteristics would need to be an integral part of rulemaking." The IDCs and SDAs are listed in Tables 4.1-1 and 4.1-2, respectively, of NUREG-1738 (Reference 10). Tables 4 and 5 of this attachment identify how the PNPS SFP meets or compares with each of these IDCs and SDAs. includes a new regulatory commitment to update the PNPS FSAR with this information.

4.3 Consequences of a Beyond Design Basis Earthquake NUREG-1738 (Reference 10) identifies beyond design basis seismic events as the dominant contributor to events that could result in a loss of SFP coolant that uncovers fuel for plants in the Central and Eastern United States. Additionally, NUREG-1738 identifies a zirconium fire resulting from substantial loss-of-water inventory from the SFP, as the only postulated scenario at a decommissioning plant that could result in significant offsite radiological release. The scenarios that lead to this condition have very low frequencies of occurrence (i.e., on the order of one to tens of times in a million years) and are considered beyond design basis events because the SFP and attached systems are designed to prevent a substantial loss of coolant inventory under accident conditions. However, the consequences of such accidents could potentially lead to an offsite radiological dose in excess of the EPA PAGs (Reference 8) at the EAB.

The risk associated with zirconium cladding fire events decreases as the spent fuel ages. When the spent fuel ages, the decay time increases, the decay heat decreases, and the short-lived radionuclides decay away. As the decay time increases, the overall risk of zirconium cladding fire continues to decrease due to two factors: (1) the amount of time available for preventative actions increases, which reduces the probability that the actions would not be successful; and (2) the increased likelihood that the fuel is able to be cooled by air, which decreases the reliance on actions to prevent a zirconium fire. The results of the research conducted for NUREG-1738 and NUREG-2161, Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S. Mark I Boiling Water Reactor, (September 2014) (Reference 22) suggests that, while other radiological consequences can be extensive, a postulated accident scenario leading to a SFP zirconium fire, where the fuel has had significant decay time, will have little potential to cause offsite early fatalities due to dose, regardless of the type of offsite response (i.e.,

formal offsite radiological emergency preparedness plan or Comprehensive Emergency Management Plan).

The purpose of NUREG-2161 (Reference 22) was to determine if accelerated transfer of older, colder spent fuel from the SFP at a reference plant to dry cask storage significantly reduces the risks to public health and safety. The study states that this studys results are consistent with earlier research studies conclusions that spent fuel pools are robust structures that are likely to withstand severe earthquakes without leaking cooling water.

NUREG-2161 also states:

Page 53 of 72

CNRO-2018-00031 ATTACHMENT 1 The study shows the likelihood of a radiological release from the spent fuel pool after the analyzed severe earthquake at the reference plant to be about one time in 10 million years or lower. If a leak and radiological release were to occur, this study shows that individuals cancer fatality risk for a member of the public is several orders of magnitude lower than the Commissions Quantitative Health Objective of two in one million (2 x 10-6/year). For such a radiological release, this study shows public and environmental effects are generally the same or smaller than earlier studies.

The reference plant for the study (a General Electric Type 4 BWR with a Mark I containment) generated approximately 3500 MWt and the SFP contained 2844 fuel assemblies. PNPS is a General Electric Type 3 BWR with a Mark I containment licensed to generate 2028 MWt. Following permanent cessation of power operations and transfer of all fuel from the reactor vessel to the SFP, the SFP will contain a maximum of 2992 fuel assemblies.

PNPS conducted a structural integrity seismic risk assessment of the PNPS SFP to assess seismically-induced structural failure and rapid loss of inventory. This assessment was performed using EPRI 3002009564, Seismic Evaluation Guidance: Spent Fuel Pool Integrity Evaluation, (Reference 23) and is comprised of several complementary seismic evaluations of the PNPS SFP, which satisfy the expectations and intent of SDA-6 of NUREG-1738 (Reference 10).

Consistent with NUREG-1738, the seismic risk assessment considers catastrophic structural failure as governing the seismic risk. In addition to the primary seismic evaluation, a structural drawing review of the PNPS SFP was conducted. The review was based on the Enhanced Seismic Checklist in NUREG-1738 using the as-built drawings of the PNPS Reactor Building and the SFP.

The structural drawing review did not identify any specific design or detail any vulnerability of the PNPS SFP that would challenge its seismic capacity. Additionally, a review of non-structural considerations related to the seismic capacity of the PNPS SFP was conducted. This review was based on the EPRI SFP Evaluation Guidance Report (Reference 23). Reference 23 provides screening-type evaluation criteria for demonstrating that a SFP will retain adequate water inventory for 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> following a seismic event, including non-structural considerations. The non-structural consideration review confirms that non-structural failure modes do not govern the overall seismic capacity of the SFP. This conclusion supports the use of structural integrity as the governing contributor for SFP seismic risk assessment. A seismic walkdown was also performed and confirmed the conclusions of the structural drawing review and of the non-structural considerations review, which also supports the SFP seismic risk assessment being governed by structural integrity of the SFP walls and slab (Reference 24).

The seismic evaluation demonstrates that the risk of a SFP seismically induced structural failure and rapid loss of inventory is 6.6 x 10-6 per year, which is less than the generic bounding estimates provided in NUREG-1738 (<1 x 10-5 per year including non-seismic events).

4.4 Conclusion ENO has demonstrated that no postulated accident or reasonably conceivable beyond design basis accident will result in radiological releases requiring offsite protective actions, or there is sufficient time, resources, and personnel available to initiate mitigative actions that will prevent a release that exceeds EPA PAG doses offsite.

Page 54 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 4 PNPS Compliance with NSIR/DPR-ISG-02 Industry Decommissioning Commitments (IDCs)

IDC Industry Commitments Response 1 Cask drop analyses will be The PNPS crane design is consistent with this commitment.

performed or single failure-proof Heavy load lifts in and around the area of the spent fuel cranes will be in use for handling of pool (SFP) are performed by the Reactor Building heavy loads (i.e., phase II of Overhead Crane (RBOC). The design of the crane is single NUREG-0612 will be implemented). failure-proof. Therefore, the likelihood of dropping the spent fuel casks in and around the SFP is extremely low.

The design meets the requirements of NUREG-0554, Single-Failure-Proof Cranes for Nuclear Power Plants, and Appendix C of NUREG-0612, Control of Heavy Loads at Nuclear Power Plants. PNPS procedures provide instructions for lifting activities to meet the guidance provided in NUREG-0612.

Because the RBOC is single failure-proof, an accidental load drop is considered not to be a credible event such that condition 5.1.2(1) of NUREG-0612 is satisfied and analysis of cask drop accidents in accordance with condition 5.1.2(4) of NUREG-0612 is not required.

2 Procedures and training of PNPS procedures are in place to ensure onsite and offsite personnel will be in place to ensure resources can be brought to bear during an event, including that onsite and offsite resources the following:

can be brought to bear during an event. EP-PP PNPS Emergency Plan EP-IP-100 - Emergency Classification and Notification EP-IP-100.1 - Emergency Action Levels (EALs)

EP-IP-263 - Incident Command Center Operations EP-IP-240 - Emergency Security Organization Activation and Response EMG-100 - Emergency Management Guideline 3.02 - Suspending Safeguards Measures During Emergencies 3.12 - Missing Security Force Members/Security Duress Code/Signals and Alarms 3.29 - Response to National Terrorism Advisory System Threat Level Changes SI-SC.1209, Security Fire Emergency 5.3.14 - Security Incidents 5.3.14.1 - Airborne Threat 5.3.35 - Operations Management Emergency and Transient Response Expectations for Operating Crews 5.3.35.2 - Operations Emergency and Transient Response Strategies 5.3.36 - Extensive Damage Mitigation Guidelines (EDMG)

Support Procedures and Strategies 5.3.37 - Loss of Spent Fuel Pool Cooling Event 12.7 - Dry Fuel Storage Response to Abnormal Conditions The procedures listed above (or equivalent) and associated training will be updated as necessary to reflect the permanently shut down and defueled condition. Following Page 55 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 4 PNPS Compliance with NSIR/DPR-ISG-02 Industry Decommissioning Commitments (IDCs)

IDC Industry Commitments Response permanent shut down and permanent removal of fuel from the reactor vessel, the on-shift plant operators, including Certified Fuel Handlers (CFH) and Non-Certified Operators, will be appropriately trained on the relevant procedures and on the various actions needed to provide makeup to the SFP based on a systematic approach to training to ensure appropriate personnel receive initial and continuing training on B.5.b event-related procedures and strategies credited in applicable License Conditions required by 10 CFR 50.54(hh)(2). The PNPS CFH Training and Retraining Program was approved by the NRC by letter dated April 12, 2017 (Reference 25).

Following permanent cessation of power operations, maintaining SFP cooling and inventory would be the highest priority activity. Therefore, the personnel needed to perform these actions will be available at all times.

Finally, periodic Emergency Plan drills are conducted with opportunities for offsite response organization participation, to maintain proficiency in response to a plant event.

3 Procedures will be in place to PNPS procedures are in place to establish and maintain establish communication between communications between onsite and offsite organizations onsite and offsite organizations during severe weather and seismic events, including the during severe weather and seismic following:

events. EP-PP PNPS Emergency Plan EP-IP-100 - Emergency Classification and Notification EP-IP-100.1 - Emergency Action Levels (EALs)

EP-AD-270 - Equipment Important To Emergency Response (EITER)

EN-LI-108 - Event Notification and Reporting 1.5.22 - Risk Assessment Process 2.1.15 - Daily Surveillance Log (Technical Specifications, FSAR, And Regulatory Agencies) 2.1.37 - Coastal Storm - Preparations and Actions 2.1.42 - Operation During Severe Weather 2.2.1 - 345 kV System 5.2.1 - Earthquake 5.2.2 - High Winds (Hurricane) 5.2.3 - Tornado 12.7 - Dry Fuel Storage Response to Abnormal Conditions The procedures listed above (or equivalent) will be updated as necessary to reflect the permanently shut down and defueled condition.

4 An offsite resource plan will be The following procedures provide guidance for developed which will include access communication with offsite resources which may be used to to portable pumps and emergency support mitigation strategies for SFP damage and water power to supplement onsite supply:

resources. The plan would Page 56 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 4 PNPS Compliance with NSIR/DPR-ISG-02 Industry Decommissioning Commitments (IDCs)

IDC Industry Commitments Response principally identify organizations or EP-PP PNPS Emergency Plan suppliers where offsite resources EP-IP-100 - Emergency Classification and Notification could be obtained in a timely EP-AD-270 - Equipment Important To Emergency manner. Response (EITER)

EN-LI-108 - Event Notification and Reporting 2.1.15 - Daily Surveillance Log (Technical Specifications, FSAR, And Regulatory Agencies) 2.1.37 - Coastal Storm - Preparations and Actions 2.1.42 - Operation During Severe Weather 5.2.2 - High Winds (Hurricane) 5.3.36- Extensive Damage Mitigation Guidelines (EDMG)

The procedures listed above (or equivalent) will be updated as necessary to reflect the permanently shut down and defueled condition.

5 SFP instrumentation will include PNPS maintains a Technical Specification that the SFP be readouts and alarms in the control maintained at an elevation of 111 3. The SFP is also room (or where personnel are equipped with a local level indicator (ruler) for alternate stationed) for SFP temperature, means of determining spent fuel pool level.

water level, and area radiation levels. SFP water level is monitored via two independent level channels that were added to meet the requirements of Fukushima (NRC order EA-12-051). Two independent indicators are installed on the North wall in the Control Room and provide indication via digital indication LI-4816A and LI-4816B. These indicators utilize Mohr instrumentation that utilize a guided wave radar method for measuring level. The devices have a range of 93 3 to 116 7. These indicators do not provide any inputs to the plant computer or the plant annunciator. A low-level alarm is provided via LS-4801A and LS-4801B on panels C39 and C903. The setpoint for these alarms is 115 decreasing.

PNPS currently has instrumentation in the SFP that meets the intent of this IDC. TS-4807, which alarms on Panel C2 in the control room at a value of 115°F increasing, is located in the SFP. TE-4831, installed in the skimmer surge tank discharge line, provides temperature indication via a local recorder on panel C39 (TRU-4830).

Area radiation monitors are located at the new fuel storage racks, refuel floor area / spent fuel area, and refuel area /

shield plug area. Alarm is provided on panel C903 in the control room.

6 SFP seals that could cause leakage The PNPS SFP gates have static seals. There is no leading to fuel uncovery in the event credible catastrophic failure mechanism for these seals. If of seal failure shall be self-limiting SFP inventory were to leak due to seal rupture or to leakage or otherwise engineered degradation, the SFP water level would not go below the so that drainage cannot occur. top of the spent fuel racks. The fixed top elevation of the refueling slot between the SFP and reactor vessel where Page 57 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 4 PNPS Compliance with NSIR/DPR-ISG-02 Industry Decommissioning Commitments (IDCs)

IDC Industry Commitments Response the removal gates is above the top of fuel. Therefore, leakage by the gates could not lead to fuel uncovery.

7 Procedures or administrative PNPS procedure 2.2.85 allows specified volumes to be controls to reduce the likelihood of pumped to or letdown from the SFP for cooling, makeup, or rapid draindown events will include: to support dry cask operations. The procedure meets the (1) prohibitions on the use of pumps requirements of this IDC by controlling the suction and that lack adequate siphon discharge points. The SFP is designed such that there is protection or (2) controls for pump no drain piping tied to the SFP, and the only lines to enter suction and discharge points. The the SFP are two 6 inlet lines which enter the SFP from the functionality of anti-siphon devices top. The SFP cooling pump suction flow path is from weirs will be periodically verified. at Elevation 116 through the skimmer surge tanks. Due to this arrangement, pump suction cannot draw the water level down below the elevation of the weirs. Each line is outfitted with a siphon break, which consists of a 1/2 nominal pipe welded to the inlet line. The normal SFP level is below the elevation of the siphon break. Therefore, a siphon event is not possible because the presence of the 1/2 pipe prevents the development of any vacuum in the line.

The inlet lines and associated siphon breaks are routinely inspected as part of normal Operator tours. These inspections ensure that there is no degradation or otherwise undesirable condition associated with the siphon break piping.

During dry cask operations, procedure 2.2.85 notes that the displacement of the HI-TRAC will raise the SFP level by approximately 8.5 inches and provides instructions to preemptively lower the SFP level to accommodate this displacement by pumping water from the SFP directly into the skimmer surge tanks via a portable pump and hose.

Just prior to this evolution, the procedure includes a prerequisite activity to establish a SFP level control team in assigned locations and for this team to establish communication with the Control Room. Also included are instructions to establish abort criteria based on SFP temperature and level. The portable equipment used to lower the SFP level is continuously monitored during this operation; therefore, use of a siphon break is not required.

Additional Dry Cask operations in the SFP are controlled under procedures 12.2 and 12.6. Review of these procedures confirms that there are no Dry Cask-related SFP operations which could result in a rapid drain down event. This complies with the Technical Specification requirement that the SFP be maintained to prevent inadvertent draining of the SFP below elevation 115.

8 An onsite restoration plan will be in PNPS Procedure 5.3.37 provides multiple methods to align place to provide repair of the SFP makeup sources to the SFP without requiring entry to the cooling systems or to provide refueling floor, including:

Page 58 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 4 PNPS Compliance with NSIR/DPR-ISG-02 Industry Decommissioning Commitments (IDCs)

IDC Industry Commitments Response access for makeup water to the a) Condensate transfer system with either of two SFP. The plan will provide for condensate transfer pumps.

remote alignment of the makeup b) Demineralized water transfer system source to the SFP without requiring c) Fire Protection System via hose station entry to the refuel floor. d) Fire Protection System via Cross-Tie to RHR If access to the refuel floor is available, an additional option includes Fire Protection via hose station as described in procedure 5.3.37 (or equivalent).

There are multiple ways to add makeup water to the SFP with or without entry to the refuel floor.

9 Procedures will be in place to PNPS procedure 2.2.85 allows specified volumes to be control SFP operations that have pumped to or letdown from the SFP for cooling, makeup, or the potential to rapidly decrease to support dry cask operations. The procedure meets the SFP inventory. These requirements of this IDC by controlling the suction and administrative controls may require discharge points. The SFP is designed such that there is no additional operations or drain piping tied to the SFP, and the only lines to enter the management review, management SFP are two 6 inlet lines which enter the SFP from the top.

physical presence for designated SFP cooling pump suction flow path is from weirs at operations or administrative Elevation 116 through the skimmer surge tanks. Due to limitations such as restrictions on this arrangement, pump suction cannot draw the water level heavy load movements. down below the elevation of the weirs.

During dry cask operations, procedure 2.2.85 notes that the displacement of the HI-TRAC will raise the SFP level by approximately 8.5 inches and provides instructions to preemptively lower the SFP level to accommodate this displacement by pumping water from the SFP directly into the skimmer surge tanks via a portable pump and hose.

Just prior to this evolution, the procedure includes a prerequisite activity to establish a SFP level control team in assigned locations and this team establish communication with the Control Room. Also included are instructions to establish abort criteria based on SFP temperature and level. The portable equipment used to lower the SFP level is continuously monitored during this operation; therefore, use of a siphon break is not required.

Additional Dry Cask operations in the SFP are controlled under procedures 12.2 and 12.6. Review of these procedures confirms that there are no Dry Cask-related SFP operations which could result in a rapid drain down event. Movement of the HI-TRAC or other heavy load in the vicinity of the SFP is performed in accordance with PNPS procedure 3.M.1-14 which provides instructions to ensure that the requirements of NUREG-0612 are met for heavy loads. These controls ensure compliance with the Technical Specification requirement that the SFP be maintained to prevent inadvertent draining of the SFP below elevation 115.

Page 59 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 4 PNPS Compliance with NSIR/DPR-ISG-02 Industry Decommissioning Commitments (IDCs)

IDC Industry Commitments Response 10 Routine testing of the alternative PNPS practices align with this IDC. PNPS Procedure fuel pool makeup system 5.3.37 provides multiple methods to align makeup sources components will be performed and to the SFP without requiring entry to the refueling floor.

administrative controls for equipment out of service will be If access to the refuel floor is available, an additional option implemented to provide added includes Fire Protection via hose station as described in assurance that the components procedure 5.3.37 (or equivalent).

would be available, if needed.

For the pumps identified in this section, PMs shall be in place to ensure that they will perform as required when placed in service. These PMs shall be implemented and scheduled in accordance with the PM Program.

Procedures provide guidance for the conduct of Operations administrative processes and specifies the authority and responsibilities of individuals to ensure the requirements of federal regulations, industry good practices, and standards are met, including adherence to operating procedures.

Performance of the procedures identified above will be in accordance with these requirements.

Page 60 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 5 PNPS Compliance with NSIR/DPR-ISG-02 Staff Decommissioning Assumptions (SDAs)

SDA Staff Assumptions Response 1 Licensee's SFP cooling design will The Pilgrim design aligns with the intent of this description.

be at least as capable as that The SFP structure and siphon breaks on the SFP cooling assumed in the risk assessment, return piping are classified as Safety Related. The return including instrumentation. piping inside the SFP is seismically analyzed using criteria Licensees will have at least one applicable for a Class I SCC (Ref. Calculation M684-2).

motor-driven and one diesel-driven Likewise, the SFP structure has been analyzed for seismic fire pump capable of delivering loads as part of a seismic risk assessment further inventory to the SFP. described in response to SDA-5. The seismic risk assessment included a physical walk-down validating that the seismic design has been maintained, and remains capable of sustaining its inventory boundary considering today`s excitation values. The instrumentation includes the Fukushima Lesson`s learned dual, independent level monitors with indicators and alarms in the Control Room.

Temperature indication, and alarms are available.

The SFP has redundant cooling pumps, redundant heat exchangers, and multiple make-up sources, in addition to the normal condensate transfer system. The additional sources include tie-ins to the Firewater system, with Jockey pump P-146, Electric pump P-135, and diesel driven pump P-140. The make-up source for the firewater is a Municipal water system.

Any changes to the SFP cooling configuration as a result of permanent cessation of power operations will be evaluated to confirm that the resulting configuration is at least as capable as the design assumed in NUREG-1738 Section 3.0.

2 Walk-downs of SFP systems will be Currently Pilgrim performs walk-downs of the SFP system performed at least once per shift by each shift as driven by Operator rounds and by surveillance the operators. Procedures will be testing procedures. There are multiple methods to alert the developed for and employed by the MCR in a SFP event, including alarms and redundant SFP operators to provide guidance on water level indicators.

the capability and availability of onsite and offsite inventory makeup Pilgrim procedures meet the requirements of this SDA by sources and time available to providing guidance on the capability and availability of initiate these sources for various permanent and portable make up sources. PNPS 5.2.1 loss of cooling or inventory events. specifically requires inspection of the SFP following a seismic event. While PNPS 2.4.31, and 5.3.37 include methods to diagnose the loss of cooling and/or inventory with description of steps, and sequence to establish make up. FSG 5.9.7 provides direction in a Beyond Design-Basis External Event (BDBEE).

Walkdown of the SFP system will remain in place following permanent cessation of power operations. Above procedures (or equivalent) will be in place and updated as necessary to reflect the permanent shut down condition.

Page 61 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 5 PNPS Compliance with NSIR/DPR-ISG-02 Staff Decommissioning Assumptions (SDAs)

SDA Staff Assumptions Response 3 Control room instrumentation that Pilgrim maintains a Technical Specification value that the monitors SFP temperature and SFP be maintained at an elevation of 111 3. These water level will directly measure the parameters are directly monitored via a level switch.

parameters involved. Level instrumentation will provide alarms SFP water level is monitored via two independent level at levels associated with calling in channels that were added to meet the requirements of offsite resources and with declaring Fukushima (NRC order EA-12-051). Two independent a general emergency. indicators are installed on the North wall in the Control Room and provide indication via digital indication LI-4816A and LI-4816B. These indicators utilize Mohr instrumentation that utilize a guided wave radar method for measuring level. The devices have a range of 93 3 to 116 7. These indicators do not provide any inputs to the plant computer or the plant annunciator. A low-level alarm is provided via LS-4801A and LS-4801B on panels C39 and C903. The setpoint for these alarms is 115 decreasing.

PNPS currently has instrumentation in the SFP that meets the intent of this SDA. TS-4807, which alarms on Panel C2 in the control room at a value of 115°F increasing, is located in the SFP. TE-4831, installed in the skimmer surge tank discharge line, provides temperature indication via a local recorder on panel C39 (TRU-4830).

Regarding the declaration of a general emergency, PNPS will employ permanently defueled EALs using an NRC-approved EAL Scheme, based on Appendix C of NEI 99-01, Development of Emergency Action Levels for Non-Passive Reactors, Revision 6. Station conditions will not have the capacity to reach any threshold requiring the declaration of a general emergency.

4 Licensee determines that there are The SFP is designed such that there is no drain piping tied no drain paths in the SFP that could to the SFP, and the only lines to enter the SFP are two 6 lower the pool level (by draining, inlet lines which enter the SFP from the top. SFP cooling suction, or pumping) more than 15 pump suction flow path is from weirs at Elevation 116 feet below the normal pool through the skimmer surge tanks. Due to this arrangement, operating level and that licensee it is not possible to drain or pump water from the SFP below must initiate recovery using offsite the level of the weirs at Elevation 116.

resources.

Each 6 line which enters the SFP from the top is outfitted with a siphon break, which consists of a 1/2 nominal pipe welded to the inlet line. The normal SFP level is below the elevation of the siphon break. Therefore, a siphon event is not possible because the presence of the 1/2 pipe prevents the development of any vacuum in the line.

The above discussion demonstrates that there are no drain paths which could lower the SFP by draining, suction, or pumping below the normal SFP level.

Page 62 of 72

CNRO-2018-00031 ATTACHMENT 1 Table 5 PNPS Compliance with NSIR/DPR-ISG-02 Staff Decommissioning Assumptions (SDAs)

SDA Staff Assumptions Response 5 Load drop consequence analyses The PNPS design is in alignment with this description.

will be performed for facilities with Heavy load lifts in and around the area of the SFP are non-single failure-proof systems. performed by the RBOC. The design of the RBOC is single The analyses and any mitigative failure-proof as noted in response to IDC-1. Therefore, actions necessary to preclude performance of load drop consequence analyses is not catastrophic damage to the SFP required.

that would lead to a rapid pool draining would be sufficient to demonstrate that there is high confidence in the facilities ability to withstand a heavy load drop.

6 Each decommissioning plant will PNPS conducted a structural integrity seismic risk successfully complete the seismic assessment of the SFP to assess seismically-induced checklist provided in Appendix 2B structural failure and rapid loss of inventory. The to this study [NUREG-1738]. If the assessment demonstrates that the risk of a SFP seismically checklist cannot be successfully induced structural failure and rapid loss of inventory is 6.6 x completed, the decommissioning 10-6 per year, which is less than the generic bounding plant will perform a plant specific estimates provided in NUREG-1738 (<1 x 10-5 per year seismic risk assessment of the SFP including non-seismic events).

and demonstrate that SFP seismically induced structural failure Additional details of the seismic risk assessment are and rapid loss of inventory is less provided in Section 4.3.

than the generic bounding estimates provided in this study

-5

[NUREG-1738] (<1 x10 per year including non-seismic events).

7 Licensees will maintain a program Nine SFP racks utilize sheets of Boraflex poison material to provide surveillance and sandwiched between stainless steel sheets. A commitment monitoring of Boraflex in high- was made in response to Generic Letter 96-04 to perform density spent fuel racks until such periodic inspection of the Boraflex material. FSAR license time as spent fuel is no longer renewal commitments include implementation of the PNPS stored in these high-density racks. Boraflex Monitoring Program, excerpted as follows:

The Boraflex Monitoring Program assures that degradation of the Boraflex panels in the spent fuel racks does not compromise the criticality analysis in support of the design of the spent fuel storage racks. The program relies on (1) neutron attenuation testing, (2) determination of boron loss through correlation of silica levels in spent fuel pool water samples and periodic areal density measurements, and (3) analysis of criticality to assure that the required 5% sub-criticality margin is maintained.

The PNPS Boraflex Monitoring Program will remain in place and the commitment as written continues to apply until spent fuel is no longer stored in racks outfitted with Boraflex panels or until the Boraflex panels are no longer credited for neutron absorption in the SFP criticality analysis.

Page 63 of 72

CNRO-2018-00031 ATTACHMENT 1 5.0 JUSTIFICATION FOR EXEMPTIONS AND SPECIAL CURCUMSTANCES 10 CFR 50.12 states that the Commission may, upon application by any interested person or upon its own initiative, grant exemptions from the requirements of 10 CFR Part 50 which are authorized by law, will not present an undue risk to the public health and safety, and are consistent with the common defense and security. 10 CFR 50.12 also states that the Commission will not consider granting an exemption unless special circumstances are present. As discussed below, this request for exemptions satisfies the provisions of Section 50.12.

A. The exemptions are authorized by law 10 CFR 50.12 allows the NRC to grant exemptions from the requirements of 10 CFR Part 50. The proposed exemptions would not result in a violation of the Atomic Energy Act of 1954, as amended, or the Commission's regulations. Therefore, the exemptions are authorized by law.

B. The exemptions will not present an undue risk to public health and safety The underlying purpose of 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E, is to ensure that there is reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency, to establish Plume Exposure and Ingestion Pathway EPZs for nuclear power plants, and to ensure that licensees maintain effective offsite and onsite emergency plans.

As discussed in this request, PNPS performed an analysis indicating that within 46 days after shut down, the radiological consequences of the postulated accident will not exceed the limits of the EPA PAGs at the EAB. In addition, PNPS has developed an analysis for beyond design basis events related to the SFP which show that 10 months after permanent cessation of power operations, the analyzed event is either not credible, is capable of being mitigated, or the radiological consequences of the event will not exceed the limits of the EPA PAGs at the EAB.

Additionally, the offsite and Control Room radiological impacts of a postulated complete loss of SFP water were assessed. It was determined that the gamma radiation dose rate at the EAB would be limited to small fractions of the EPA PAG exposure levels and the dose rate in the Control Room will be below 0.02 mRem/hr.

For these reasons, offsite emergency response plans will no longer be needed for protection of the public beyond the EAB 10 months after permanent cessation of power operations. Based on the reduced consequences of radiological events possible at PNPS in the permanently defueled condition, the scope of the onsite emergency preparedness organization and corresponding offsite requirements in the emergency plan may be accordingly reduced without an undue risk to the public health and safety.

Therefore, the underlying purpose of the regulations will continue to be met. Because the underlying purpose of the rules will continue to be met, the exemptions will not present an undue risk to the public health and safety.

Page 64 of 72

CNRO-2018-00031 ATTACHMENT 1 C. The exemptions are consistent with the common defense and security The reduced consequences of the remaining possible radiological events at PNPS when it is in the permanently defueled condition allows for a corresponding reduction in the scope of the onsite emergency preparedness organization and associated reduction of requirements in the emergency plan. These reductions will not adversely affect PNPSs ability to physically secure the site or protect special nuclear material. Physical security measures at PNPS are not affected by the requested exemptions. Therefore, the proposed exemptions are consistent with the common defense and security.

5.1 Special Circumstances Pursuant to 10 CFR 50.12(a)(2), the NRC will not consider granting an exemption to its regulations unless special circumstances are present. ENO has determined that special circumstances are present as discussed below.

Special circumstances exist at PNPS because the plant will be permanently shut down and defueled and the radiological source term at the site will be reduced from that associated with reactor power operation. With the reactor permanently shut down and defueled, the accidents postulated to occur during reactor operation will no longer be possible. Specifically, the potential for a release of a large radiological source term to the environment from the high pressures and temperatures associated with reactor operation will no longer exist.

A. Application of the regulation in the particular circumstances would not serve the underlying purpose of the rule or is not necessary to achieve the underlying purpose of the rule. (10 CFR 50.12(a)(2)(ii))

The underlying purpose of 10 CFR 50.47(b), 10 CFR 50.47(c)(2), and 10 CFR Part 50, Appendix E is to ensure that there is reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency, to establish Plume Exposure and Ingestion Pathway EPZs for nuclear power plants, and to ensure that licensees maintain effective offsite and onsite emergency plans.

The standards and requirements in 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E, were developed taking into consideration the risks associated with operation of a nuclear power reactor at its licensed full power level. These risks include the potential for a reactor accident with offsite radiological dose consequences.

The radiological consequences of the postulated accident that will remain possible at PNPS upon permanent shut down of power operations are substantially lower than those at an operating plant.

The upper bounds of the analyzed dose consequences limit the highest attainable emergency class to the Alert level. In addition, because of the reduced consequences of radiological events that will still be possible at the site, the scope of the onsite emergency preparedness organization may be reduced accordingly. Thus, the underlying purpose of the regulations will not be adversely affected by eliminating offsite emergency planning activities or reducing the scope of onsite emergency planning as described in this request.

Radiological analysis indicates that within 46 days after shutdown, the radiological consequences of the postulated accident that will remain possible at PNPS upon permanent removal of fuel from the reactor will not exceed the limits of the EPA PAGs at the EAB. In addition, an analysis has been developed for beyond design basis events related to the SFP which show 10 months after permanent cessation of power operations, the analyzed event is either not credible, is capable of being mitigated, or the radiological consequences of the event will not exceed the limits of the EPA Page 65 of 72

CNRO-2018-00031 ATTACHMENT 1 PAGs at the EAB. Therefore, application of all of the standards and requirements in 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E are not necessary to achieve the underlying purpose of those rules.

Because the underlying purposes of the rules would continue to be achieved even with PNPS being permitted to reduce the scope of emergency preparedness requirements consistent with placing the facility in the permanently defueled condition, application of the rules is not necessary to achieve the underlying purpose, and the special circumstances are present as defined in 10 CFR 50.12(a)(2)(ii).

B. Compliance would result in undue hardship or other costs that are significantly in excess of those contemplated when the regulation was adopted, or that are significantly in excess of those incurred by others similarly situated. (10 CFR 50.12(a)(2)(iii))

Application of all of the standards and requirements in 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E is not necessary for adequate emergency response capability and is excessive for a permanently shut down and defueled facility. Application of all of these standards and requirements would result in undue costs being incurred for the maintenance of an ERO in excess of that actually needed to respond to the diminished scope of credible events. Other licensed sites similarly situated, such as Omaha Public Power Districts (OPPD) Fort Calhoun Station (FCS), ENOs Vermont Yankee Nuclear Power Station (VY), Southern California Edison Companys San Onofre Nuclear Generating Station (SONGS), Duke Energy Florida, Inc.s Crystal River Unit 3 Nuclear Generating Station (CR3), and Dominion Energy Kewaunee, Inc.s Kewaunee Power Station (KPS), have recently been granted similar exemptions.

Therefore, compliance with the rule would result in an undue hardship or other costs that are significantly in excess of those contemplated when the regulation was adopted, or that are significantly in excess of those incurred by others similarly situated. The special circumstances required by 10 CFR 50.12(a)(2)(iii) exist.

C. The exemptions would result in benefit to the public health and safety that compensates for any decrease in safety that may result from the grant of the exemptions. (10 CFR 50.12(a)(2)(iv))

The plant will be permanently shut down and defueled and the radiological source term at the site will be reduced from that associated with reactor power operation. With the reactor permanently shut down and defueled, the postulated accidents that could occur during reactor operation will no longer be possible. Specifically, the potential for a release of a large radiological source term to the environment from the high pressures and temperatures associated with reactor operation will no longer exist.

The proposed exemptions would allow PNPS to revise the onsite emergency plan to correspond to the reduced scope and consequences of remaining accidents and events. As such, the emergency plan would no longer need to address response actions for events that would no longer be possible. The revised emergency plan would thereby enhance the ability of the ERO to respond to those scenarios that remain credible because emergency preparedness training and drills would focus only on applicable activities. Elimination of requirements for classification of EALs for events that were no longer possible would enhance the ability of the ERO to correctly classify those events that remain credible. As the proposed exemptions will enhance the ability of the organization to respond to credible events, a resultant benefit to the public health and safety is realized.

Page 66 of 72

CNRO-2018-00031 ATTACHMENT 1 Therefore, because granting the exemptions would result in benefit to the public health and safety and would not result in a decrease in safety, the special circumstances required by 10 CFR 50.12(a)(2)(iv) exist.

5.2 Precedent The exemption requests for 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E requirements are consistent with exemptions on the same emergency planning requirements that recently have been issued by the NRC for other nuclear power reactor facilities beginning decommissioning. Specifically, the NRC granted similar exemptions to OPPD for FCS (Reference 26) to ENO for VY (Reference 27); to Southern California Edison Company for SONGS, Units 1, 2, and 3 (Reference 28); to Duke Energy Florida, Inc. for CR3 (Reference 29);

and to Dominion Energy Kewaunee, Inc. for KPS (Reference 30). Similar to the current request, these precedents each resulted in exemptions from certain emergency planning requirements in 10 CFR 50.47(b); 10 CFR 50.47(c)(2); and 10 CFR Part 50, Appendix E, related to the elimination of offsite radiological emergency plans and reduction in the scope of the onsite emergency planning activities. For the same reasons that the NRC recently issued these exemptions, ENO seeks approval of the enclosed proposed exemption requests. The requested exemptions also are consistent with the phased approach to emergency planning provided in the ongoing decommissioning rulemaking, but ENO is seeking approval of the exemptions prior to the expected final rule with the decommissioning changes.

6.0 ENVIRONMENTAL CONSIDERATION

The proposed exemptions meet the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(25), because the proposed exemptions involve: (i) no significant hazards consideration; (ii) no significant change in the types or significant increase in the amounts of any effluents that may be released offsite; (iii) no significant increase in individual or cumulative public or occupational radiation exposure; (iv) no significant construction impact; (v) no significant increase in the potential for or consequences from radiological accidents; and (vi) requirements of an administrative, managerial, or organizational nature. Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed exemptions.

(i) No Significant Hazards Consideration Determination The requested exemptions from portions of 10 CFR 50.47(b), 10 CFR 50.47(c)(2), and 10 CFR Part 50, Appendix E would allow PNPS to revise the scope of the PNPS Emergency Plan to reflect the permanently shut down and defueled condition of the station. Entergy Nuclear Operations (ENO), Inc. has evaluated the proposed exemptions to determine whether or not a significant hazards consideration is involved by focusing on the three standards set forth in 10 CFR 50.92 as discussed below:

1. Does the proposed exemption involve a significant increase in the probability or consequences of an accident previously evaluated?

The proposed exemptions have no effect on structures, systems, and components (SSCs) and no effect on the capability of any plant SSC to perform its design function. The proposed exemptions would not increase the likelihood of the malfunction of any plant SSC. The proposed changes do not affect accident initiators or precursors, nor does it alter design assumptions that could increase the probability or consequences of previously evaluated accident.

Page 67 of 72

CNRO-2018-00031 ATTACHMENT 1 When the exemptions become effective, there will be no credible events that would result in doses to the public beyond the Exclusion Area Boundary (EAB) that would exceed the Environmental Protection Agency (EPA) Protective Action Guides (PAGs). The probability of occurrence of previously evaluated accidents is not increased, because most previously analyzed accidents will no longer be able to occur and the probability and consequences of the remaining postulated accident, a fuel handling accident (FHA), is unaffected by the proposed exemptions.

Therefore, the proposed exemptions do not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Do the proposed exemptions create the possibility of a new or different kind of accident from any accident previously evaluated?

The proposed exemptions do not involve a physical alteration of the plant. No new or different type of equipment will be installed and there are no physical modifications to existing equipment associated with the proposed exemptions that could create the possibility of a new or different kind of accident. Similarly, the proposed exemptions will not physically change any SSCs involved in the mitigation of any accidents. Thus, no new initiators or precursors of a new or different kind of accident are created. Furthermore, the proposed exemptions does not create the possibility of a new accident as a result of new failure modes associated with any equipment or personnel failures. No changes are being made to parameters within which the plant is normally operated, or in the set points which initiate protective or mitigative actions, and no new failure modes are being introduced.

Therefore, the proposed exemptions do not create the possibility of a new or different kind of accident from any accident previously evaluated.

3. Do the proposed exemptions involve a significant reduction in a margin of safety?

The proposed exemptions do not alter the design basis or any safety limits for the plant. The proposed exemptions do not impact station operation or any plant SSC that is relied upon for accident mitigation.

Therefore, the proposed exemptions do not involve a significant reduction in a margin of safety.

Based on the above, ENO concludes that the proposed exemptions present no significant hazards consideration, and, accordingly, a finding of "no significant hazards consideration" is justified.

(ii) There is no significant change in the types or significant increase in the amounts of any effluents that may be released offsite.

There are no expected changes in the types, characteristics, or quantities of effluents discharged to the environment associated with the proposed exemptions. There are no materials or chemicals introduced into the plant that could affect the characteristics or types of effluents released offsite. In addition, the method of operation of waste processing systems will not be affected by the exemptions. The proposed exemptions will not result in changes to the design basis requirements of SSCs that function to limit or monitor the release of effluents. The SSCs associated with limiting the release of effluents will continue to be able to perform their functions. Therefore, the proposed exemptions will not result in Page 68 of 72

CNRO-2018-00031 ATTACHMENT 1 changes to the types or significant increases in the amount of any effluents that may be released offsite.

(iii) There is no significant increase in individual or cumulative public or occupational radiation exposure.

The exemptions will result in no expected increases in individual or cumulative occupational radiation exposure on either the workforce or the public. There are no expected changes in normal occupational doses. Likewise, the dose of the postulated accident is not impacted by the proposed exemptions.

(iv) There is no significant construction impact.

No construction activities are associated with the proposed exemptions.

(v) There is no significant increase in the potential for or consequences from radiological accidents.

See the no significant hazards considerations discussion in Item (i)(1) above.

(vi) Requirements of an administrative, managerial, or organizational nature.

The proposed exemptions will form the basis for a reduction in the size of the PNPS ERO commensurate with the reduction in consequences of radiological events that will be possible at PNPS when the facility is in the permanently defueled condition. They also will modify the requirements for emergency planning. Therefore, the exemptions address requirements of an administrative, managerial, or organizational nature.

Page 69 of 72

CNRO-2018-00031 ATTACHMENT 1

7.0 REFERENCES

1. NSIR/DPR-ISG-02, Interim Staff Guidance, Emergency Planning Exemption Requests for Decommissioning Nuclear Power Plants, dated May 11, 2015 (ML14302A490)
2. Letter, Entergy Nuclear Operations, Inc. to USNRC, Notification of Permanent Cessation of Power Operations, Letter Number 2.15.080, dated November 10, 2015 (ML15328A053)
3. Federal Register Notice, Vol. 60, No. 120 (60 FR 32430), Emergency Planning Licensing Requirements for Independent Spent Fuel Storage Facilities (ISFSI) and Monitored Retrievable Storage Facilities (MRS), dated June 22, 1995
4. USNRC, Integrated Rulemaking Plan for Nuclear Power Plant Decommissioning, Commission Paper SECY-00-0145, dated June 28, 2000 (ML003721626)
5. Nuclear Energy Institute (NEI) 99-01, Revision 6, Development of Emergency Action Levels for Non-Passive Reactors, dated November 2012 (ML12326A805)
6. Letter, Mark Thaggard (USNRC) to Susan Perkins-Grew (NEI), U.S. Nuclear Regulatory Commission Review and Endorsement of NEI 99-01, Revision 6, dated November, 2012 (TAC No. D92368), dated March 28, 2013 (ML12346A463)
7. Commission Paper SECY-13-0112, Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S. Mark I Boiling Water Reactor, dated October, 2013 (ML13256A334)
8. U.S. Environmental Protection Agency, Protective Action Guides and Planning Guidance for Radiological Incidents, EPA-400/R-17-001, dated January 2017 (EPA PAG Manual)
9. Federal Register Notice, Vol. 76, No. 226 (76 FR 72596), Enhancements to Emergency Preparedness Regulations, dated November 23, 2011. (ML13091A112)
10. NUREG-1738, Technical Study of Spent Fuel Pool Accident Risk at Decommissioning Nuclear Power Plants, dated February 2001 (ML010430066)
11. Federal Register Notice, Vol. 74, No. 94 (74 FR 23254), Enhancements to Emergency Preparedness Regulations, dated May 18, 2009
12. NUREG-0696, Functional Criteria for Emergency Response Facilities, dated February 1981 (ML051390358)
13. NUREG-1465, Accident Source Terms for Light-Water Nuclear Power Plants, dated February 1995 (ML041040063)
14. USNRC Regulatory Guide 1.183, Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors, July 2000 (ML003716792)
15. RG 1.194, Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants, June 2003 (ML031530505)
16. GE Hitachi Nuclear Energy, Fuel Handling Accident in the Spent Fuel Pool Generic Dose Assessment, dated June 2009 (GEH Proprietary Information)

Page 70 of 72

CNRO-2018-00031 ATTACHMENT 1

17. PNPS Calculation No. EC-73355-M1418, Adiabatic Heatup Analysis for Drained Spent Fuel Pool
18. Commission Paper SECY-99-168, Improving Decommissioning Regulations for Nuclear Power Plants, dated June 30, 1999
19. NUREG-0586, Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities, dated October 2002
20. Calculation No. PNPS-EC-73355-M1417, Dose at Exclusion Area Boundary and Control Room Due to Shine from Drained Spent Fuel Pool During SAFSTOR
21. Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis
22. NUREG-2161, Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent Fuel Pool for a U.S. Mark I Boiling Water Reactor September 2014 (ML14255A365)
23. Electric Power Research Institute, "Seismic Evaluation Guidance: Spent Fuel Pool Integrity Evaluation," EPRI 3002009564, 2017
24. Electric Power Research Institute, EPRI Report No. 1025286, Seismic Walkdown Guidance:

For Resolution of Fukushima Near-Term Task Force Recommendation 2.3: Seismic, 2012

25. Letter, NRC to Entergy Nuclear Operations, Inc., Approval of Certified Fuel Handler Training and Retraining Program (CAC No. MF9275), dated April 12, 2017 (ML17058A325)
26. Federal Register Notice, Vol. 82, No. 226 (80 FR 56060), Omaha Public Power District, Fort Calhoun Station, Exemption, issuance, dated November 27, 2017
27. Federal Register Notice, Vol. 80, No. 242 (80 FR 78776), Entergy Nuclear Operations, Inc.;

Vermont Yankee Nuclear Power Station, Exemption; issuance, dated December 17, 2015

28. Federal Register Notice, Vol. 80, No. 113 (80 FR 33558), Southern California Edison Company; San Onofre Nuclear Generating Station, Units 1, 2, and 3, and Independent Spent Fuel Storage Installation, Exemption; issuance, dated June 12, 2015
29. Federal Register Notice, Vol. 80, No. 69 (80 FR 19358), Duke Energy Florida, Inc.; Crystal River Unit 3 Nuclear Generating Station, Exemption; issuance, dated April 10, 2015
30. Federal Register Notice, Vol. 79, No. 214 (79 FR 65715), Dominion Energy Kewaunee, Inc.;

Kewaunee Power Station, Exemption; issuance, dated November 5, 2014 Page 71 of 72

Attachment 2 CNRO-2018-00031 Calculation No. PNPS-EC-73355-M1418, Adiabatic Heatup Analysis for Drained Spent Fuel Pool (21 pages follow)

ANO-1 ANO-2 GGNS IP-2 IP-3 PLP JAF PNPS RBS VY W3 NP-GGNS-3 NP-RBS-3 CALCULATION COVER EC # 73355 Page 1 of 15 PAGE Design Basis Calc. YES NO CALCULATION EC Markup Calculation No: M1418 Revision: 0

Title:

Adiabatic Heatup Analysis for Drained Spent Fuel Pool Editorial YES NO System(s): 19 Review Org (Department): Nuclear Analysis Safety Class: Component/Equipment/Structure Type/Number:

Safety / Quality Related Spent Fuel SFP Augmented Quality Program Non-Safety Related Document Type: CALC Keywords (Description/Topical Codes):

Decommissioning, SFP, zirconium fire REVIEWS Name/Signature/Date Name/Signature/Date Name/Signature/Date Preparer, Reviewer and Approver by ENERCON / See Dominick Fucito John Tucker Page 1A (See AS for Signature and Date) (See AS for Signature and Date)

Owners Review Responsible Engineer Design Verifier Supervisor/Approval Reviewer Comments Attached Comments Attached EN-DC-126 REV 6

Digitally signed by Michael Cymbor Date: 2017.11.16 08:30:49 -07'00'

CALCULATION REFERENCE CALCULATION NO: M1418 SHEET REVISION: 0 PAGE: 2 I. EC Markups Incorporated (N/A to NP calculations)

II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc Y/N No.

1. M1417 000
2. S&SA201 000
3. MDBR11 002
4. S&SA202 000
5. N143 000
6.
7.
8.

III. CROSS

REFERENCES:

1. NSIR/DPR-ISG-02, Emergency Planning Exemption Requests for Decommissioning Nuclear Power Plants, May 11, 2015 (ML14106A057).
2. NUREG-0586, Supplement 1, Volume 1, Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities.
3. Glasstone and Sesonske, Nuclear Reactor Engineering, Van Nostrand Reinhold Company, 1981 (Attachment 1).
4. NUREG-1738, "Technical Study of Spent Fuel Pool Accident Risk at Decommissioning Nuclear Power Plants", February 2001 (ML010430066).
5. SECY-99-168, "Improving Decommissioning Regulations for Nuclear Power Plants",

June 30, 1999 (ML992800087).

6. NUREG/CR-6451, "A Safety and Regulatory Assessment of Generic BWR and PWR Permanently Shutdown Nuclear Power Plants", August 1997 (ML082260098).
7. Incropera & DeWitt, Fundamentals of Heat and Mass Transfer, Third Edition, John Wiley & Sons, Inc., 1990.
8. Nuclear Fuel Data Design Input Record, 6/13/17 (Attachment 2)

IV. SOFTWARE USED:

Title:

N/A Version/Release: Disk/CD No.

V. DISK/CDS INCLUDED:

Title:

Version/Release Disk/CD No.

VI. OTHER CHANGES EN-DC-126 REV 6

RECORD OF REVISION CALCULATION NO: M1418 REVISION: 0 PAGE: 3 Revision Record of Revision 0 Initial issue.

EN-DC-126 REV 6

TABLE OF CONTENTS CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 4 OF 15 Table of Contents 1 Purpose and Background ...................................................................................................... 5 2 Conclusion ............................................................................................................................. 6 3 Input and Design Criteria ....................................................................................................... 8 4 Assumptions .........................................................................................................................10 5 Method of Analysis ...............................................................................................................11 6 Calculation ............................................................................................................................13 7 Attachments ..........................................................................................................................15 Attachment 1: Page from Glasstone and Sesonske, Nuclear Reactor Engineering (1 page)

Attachment 2: Nuclear Fuel Data Design Input Record (3 pages)

Attachment 3: Estimate of Initial Temperature Difference Between Cladding and Surrounding Air (1 page)

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 5 OF 15 1 Purpose and Background The purpose of this calculation is to conservatively evaluate the length of time it takes for an uncovered spent fuel bundle in the spent fuel pool to reach the temperature where the zirconium cladding would fail. This analysis conservatively assumes that there is no air cooling of the assemblies and supports decommissioning of Pilgrim Nuclear Power Station (PNPS). Specifically, this analysis will be used to support a License Amendment Request submittal to reduce Emergency Planning (EP) staffing once the hottest fuel bundle decay time is sufficient to demonstrate a heat-up time of 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> to reach 900°C which supports the requirements of ISG-02, Section 5.0 (Reference III.1).

The number of hours it takes for the fuel to heat up (the heat-up time) is determined as a function of the decay time after shutdown. The heat load from a GNF2 bundle is used in this analysis as determined in Attachment 7 of Reference II.1.

NUREG-0586 Supplement 1, Section 4.3.9, identifies that a spent fuel pool (SFP) drain down event is beyond design basis (Reference III.2). This calculation is non-safety related as it is beyond design basis in support of decommissioning.

Radiological accidents considered in licensing nuclear power plants are classified as design basis accidents (DBAs) and severe (beyond design basis) accidents.

DBAs are those accidents that both the licensee and the NRC staff evaluate to ensure that the plant can withstand normal and abnormal transients and a broad spectrum of postulated accidents without undue hazard to the health and safety of the public. Severe accidents are those that are beyond the design basis of the plant.

They are more severe than DBAs because they may result in substantial damage to the fuel, whether or not there are serious offsite consequences. For the most part, DBAs focus on reactor operation and are not applicable to plants undergoing decommissioning. The only DBAs or severe accidents (beyond design basis) applicable to a decommissioning plant are those involving the spent fuel pool. These postulated accidents are not expected to occur during the life of the plant, but are evaluated to establish the design basis for the preventive and mitigative safety systems of the spent fuel storage facility.

There are no specific acceptance criteria for this analysis; however, SECY-99-168 (Reference III.5) reports that a plant specific EP exemption determined "10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> will be sufficient time to take mitigative action" and that for BWRs, 2 years is expected to be the decay time needed to reach a 10 hour1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> heat-up time from 30°C to 900°C. NUREG-1738 shows that a 10 hour1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> heat-up time for a BWR requires less than 2 years of cooling time (Reference III.4, Figure 2.1).

NUREG/CR-6451 (Reference III.6) presents several studies discussing the maximum allowable temperature of zirconium cladding that will ensure that failure of the zirconium cladding will not occur. NUREG/CR-6451 states 565°C (1049°F) as the lowest temperature where incipient cladding failure might occur. Per NUREG-1738 (Reference III.4, page 3-7), 900°C (1652 °F) is the temperature where "runaway oxidation" (zirconium fire) is expected to occur. These two temperatures are the failure temperatures of interest for this calculation.

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 6 OF 15 2 Conclusion The results are shown in Table 1.

Table 1: Results Heat-Up Time (Hours) to 565°C (1049°F)

Decay Time SFP Temp SFP Temp SFP Temp (months) 125°F 110°F 90°F 9 5.67 5.76 5.89 10 6.05 6.15 6.28 11 6.48 6.59 6.73 12 6.86 6.97 7.12 15 8.02 8.15 8.32 18 9.19 9.34 9.54 24 11.59 11.78 12.03 36 16.52 16.79 17.15 60 24.89 25.29 25.83 Heat-Up Time (Hours) to 900°C (1652°F)

Decay Time SFP Temp SFP Temp SFP Temp (months) 125°F 110°F 90°F 9 9.37 9.47 9.59 10 10.00 10.10 10.23 11 10.72 10.82 10.96 12 11.33 11.45 11.59 15 13.25 13.38 13.56 18 15.19 15.34 15.54 24 19.16 19.35 19.60 36 27.31 27.58 27.94 60 41.13 41.53 42.07 The 10 hour1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> heat-up time from the normal operations maximum SFP temperature of 125°F to a clad failure temperature of 565°C (1049°F) occurs at a decay time just over 1.5 years. The 10 hour1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> heat-up time from the normal operations maximum SFP temperature of 125°F to a runaway oxidation (zirconium fire) temperature of 900°C (1652°F) occurs at a decay time of 10 months after shutdown, which is less than the 2 year decay time calculated in NUREG-1738 and SECY-99-168 (Reference III.4, Figure 2.1, & Reference III.5). Based on the results of this analysis, Emergency Planning (EP) staffing could potentially be reduced 10 months after shutdown.

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 7 OF 15 Figure 1 below shows the heat-up time vs decay time for both of the temperatures of interest from a normal operations SFP maximum temperature of 125°F.

45.00 40.00 Heat-Up Time from 125 F to Temperature of Interest (hrs) 35.00 30.00 25.00 20.00 15.00 10.00 5.00 0.00 9 10 11 12 15 18 24 36 60 Months After Shutdown Time to 565C Time to 900C Figure 1: Heat-Up Time vs. Decay Time EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 8 OF 15 3 Input and Design Criteria 3.1 Zirconium Properties The cladding, water rods and channel for the GNF2 fuel bundle are zircaloy-2 (Reference II.2 and II.4). The specific heat capacity of zircaloy-2 at 500°F (533 K) (Assumption 4.4) is linearly interpolated to 0.3166 kJ/kg K (0.0756 Btu/ lbm-°F) (Reference III.3, Table A.6, which has temperatures in Kelvin). The density of zircaloy-2 is 6.56 g/cm3 (409.53 lb/ft3) (Reference III.3). The specific heat capacity unit conversion is 1 kilojoule/kilogram/K [kJ/(kg*K)] = 0.238845896627 Btu/pound/°F [Btu/(lb*°F)].

3.2 Uranium Properties The specific heat capacity of uranium dioxide at 500°F (533 K) (Assumption 4.4) is linearly interpolated to be 0.2822 kJ/kg K (0.0674 Btu/lbm°F) (Reference III.3, Table A.6, which has temperatures in Kelvin). The density of uranium dioxide is 10.41 g/cm3 (649.88 lb/ft3)

(Reference II.1).

3.3 Properties for Limiting Bundle The table below shows the geometry inputs for the GNF2 fuel bundles evaluated in this analysis.

The final cycle 22 core prior to decommissioning contains all GNF2 fuel (Ref III.8), therefore the analysis herein will only evaluate the heat up of a GNF2 fuel bundle and not any other types in the SFP because the offload fuel directly after a cycle bounds all other fuel bundles in the pool. Table 2 contains fuel bundle input data used in this analysis for a GNF2 fuel bundle.

Table 2: Fuel Bundle Inputs for GNF2 Fuel Number of Heated Rods 92 rods II.2 & II.4 Number of Water Rods 2 rods II.2 & II.4 Number of Full Length Rods 78 rods II.2 & II.4 Number of 2/3 Length Partial Rods 8 rods II.2 Number of 3/8 Length Partial Rods 6 rods II.2 Active Length of Rods 145.24 in III.8, II.2, & II.4 Total Length of Rods 155.77 in III.8, II.2, & II.4 Length of 2/3 Length Partial Rod 102 in II.5 Length of 3/8 Length Partial Rod 54 in II.5 Uranium Pellet Diameter 0.3496 in III.8, II.2, & II.4 Fuel Rod Outer Diameter 0.404 in III.8, II.2, & II.4 Fuel Clad Thickness 0.0236 in III.8 Fuel Rod Inner Diameter 0.3568 in Calculated Water Rod Outer Diameter 0.98 in II.2 & II.4 Water Rod Thickness 0.03 in II.2 & II.4 Water Rod Inner Diameter 0.92 in Calculated Channel Inside Width 5.283 in II.2 Channel Groove Thickness 0.05 in II.2 Mass of Upper Plenum 13.217 lbm III.8 Mass of Lower Plenum 14.612 lbm III.8 Fuel Rod Pitch 0.510 in III.8 EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 9 OF 15 3.4 Heat Load Attachment 7 of Reference II.1 determines the maximum heat load from a single fuel bundle. To bound any bundle in the Cycle 22 core the lowest enrichment bundle, the highest burnup bundle, and the greatest mass of uranium (MTU) from Reference II.1 were used. Specifically, these values were:

- 3.716% enrichment

- 50,434 MWd/MTU

- 0.1814 MTU The bundle with the highest heat load will have the shortest heat-up time. The table showing the maximum fuel bundle heat generation rates for several decay times is located in Attachment 7 of Reference II.1 and is reproduced in Table 3 below.

Table 3: Decay Heat Source Terms from ORIGEN-ARP 9 Month 10 Month 11 Month 1 Year 1.25 Year Decay Time Decay Decay Decay Decay Decay (W/MTU) (W/MTU) (W/MTU) (W/MTU) (W/MTU)

Cycle 22, max.

burnup, min.

1.11E+04 1.04E+04 9.71E+03 9.18E+03 7.85E+03 enrichment, max. MTU 1.5 Year 2 Year 3 Year 5 Year Decay Time Decay Decay Decay Decay (W/MTU) (W/MTU) (W/MTU) (W/MTU)

Cycle 22, max.

burnup, min.

6.85E+03 5.43E+03 3.81E+03 2.53E+03 enrichment, max. MTU The worst-case (hottest) bundle is one that was discharged at the date of plant shutdown and has been cooling for 9 months. From Table 3, it has a heat load of 1.11E+04 W/MTU, which is converted to BTU/hr:

3.412

= 1.11 + 04 x x 0.1814

/

= 6,870.20 The worst case bundle heat load is determined at the remaining decay times (10 months, 11 months, 1 year , etc), using the same methodology.

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 10 OF 15 4 Assumptions 4.1 The heat-up time is conservatively assumed to start when the spent fuel pool has been completely drained. This is conservative as the drain down time (boil-off) would increase the time to cladding failure.

4.2 Three starting temperatures 125°F, 110°F, and 90°F for the heat-up analysis are assumed.

The temperature 125°F is the maximum initial pool temperature (Reference II.3) during normal operations. A temperature of 90°F is a realistic long-term pool temperature and 110°F is an approximate midpoint between the two. SECY-99-168 (Reference III.5) and NUREG-1738 (Reference III.4) both set the starting water temperature at 30°C (86°F) so the analyzed initial temperatures are conservative because the heat-up time would be increased with a lower starting temperature.

4.3 The final core bundles are limiting in terms of heat load (Reference II.1), therefore, the analysis herein will only evaluate the heat up of the final offload (referred to as the hottest fuel bundle herein).

4.4 The specific heat capacity for uranium dioxide and the zircaloy-2 cladding are determined at a temperature of 500°F. A temperature of 500°F is in the temperature range of this analysis.

From Reference III.3 (Attachment 1), the specific heat capacity slightly increases with an increase in temperatures; at higher temperatures, the uranium dioxide and cladding would heat up more slowly. Thus, using a temperature around or less than the midpoint for material properties is conservative with respect to the bundle heat-up. This temperature is used as representative of the full temperature range in this analysis.

4.5 This analysis conservatively assumes that there is no air cooling of the assemblies (i.e.,

adiabatic conditions): the flow paths that would provide natural circulation cooling are assumed to be blocked.

4.6 The upper and lower plenum are assumed to be zircaloy-2. Reference II.5 indicated that the upper and lower tie plates are composed of Type 304 Stainless Steel, but tie into to other structures that are made of zircaloy-2 (water rods, and channel). This assumption is conservative since the specific heat capacity of zircaloy-2 is less than that of steels (Reference III.3) and a lower specific heat capacity results in a shorter heat-up time.

4.7 Initial temperatures within the fuel bundle are assumed to be uniform at the starting temperature in Assumption 4.2. Under adiabatic conditions (Assumption 4.5) any initial temperature gradients present between regions (fuel rods, water rods, structural elements and water/air region) approach zero on a shorter time scale than the calculated heat-up times due to the lack of cooling. This assumption is reasonable as slight variations in the starting temperature have minimal effect on the calculated time to 900°C (~0.4 minutes per initial degree, per Table 1) and these variations are bounded by the overall conservatisms in Assumption 4.5 (adiabatic conditions) and Assumption 4.1 (no credit assumed for drain down/boil-off time). An approximation of the initial difference between the cladding temperature and the temperature of the surrounding air was calculated to be ~15°F (Attachment 3). This equates in a difference of the calculated time to 900°C on the order of 6 minutes, confirming that the effect is minimal.

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 11 OF 15 5 Method of Analysis This analysis determines the heat-up time of the fuel bundle using the specific heat capacity of materials.

Equation 5-1 (Reference III.7, Ch. 8):

= x x Where:

is the heat generation rate in BTU/hr is the mass of material in lbm. (=V) is the specific heat in BTU/lb-°F is the temperature increase in °F is the heat-up time in hr is density in lbm/ft3 V is volume in ft3 For this analysis, there are two materials that are considered: the uranium dioxide fuel pellets and the zircaloy-2. The zircaloy-2 is in the cladding, water rods, channel, and upper and lower plenums, which are also being heated. Under adiabatic conditions, zircaloy-2 and the uranium dioxide heat up at the same rate, so the T/t will be the same for both materials.

Equation 5-2:

= x x , + x ,

Where:

signifies the property is for uranium dioxide signifies the property is for zircaloy-2 This calculation seeks the heat-up time, so Equation 7-2 is solved for t.

Equation 5-3:

= x x , + x ,

The volume of uranium is given below.

Equation 5-4:

2 2 2

= x x + x 2 x 2 + x 3 x 3 4 4 3

3 4 8

8 Where:

is the diameter of the uranium pellet in ft EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 12 OF 15 is the number of full length heated rods is the heated length of the full length rods in ft 2 is the number of 2/3 length heated rods 3

2 is the heated length of 2/3 length rods in ft 3

3 is the number of 3/8 length heated rods 8

(3) is the heated length of 3/8 length rods in ft 8

The volume of zircaloy-2 in the heated rods and water rods is given below. The length of the cladding is the active length of the rods. Since the water rods vary in diameter, only the active length of the full length fuel rods is conservatively modeled as being the same as the heated length of uranium dioxide. For the channel box only the inside width and minimum groove thickness are used along with the total length of the rods. In reality the channel box is slightly thicker the thickness at the grooves and longer than the length of the fuel pellets.

Equation 5-5:

, 2 , 2 , 2 , 2

, = x x + x 2 x 2 4 4 3

3

, 2 , 2

+ x 3 x 3 4 8 8 Where:

, is the volume of zircaloy-2 in the cladding of heated fuel rods in ft3

, is the outer diameter of the cladding in ft

, is the inner diameter of the cladding in ft Equation 5-6:

, 2 , 2

, = x x 4

Where:

, is the volume of zircaloy-2 in the water rods in ft3

, is the outer diameter of the water rods in ft

, is the inner diameter of the water rods in ft is the number of water rods EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 13 OF 15 Equation 5-7

, = 4 x x x Where:

, is the volume of zircaloy-2 in the channel box in ft3 is the total length of the fuel rods in ft is the inside width of the channel box in ft is the channel groove thickness of the channel box in ft Equation 5-8:

= , + , + ,

The temperature increase () for this analysis is taken to be from the initial pool temperatures of 125°F, 110°F and 90°F (Assumption 4.2 and 4.7), to the zirconium cladding failure temperatures of interest, 1049°F (565°C) and 1652°F (900°C) (Section 1).

The heat-up time is calculated as a function of the decay time for each of the times in Section 3.4.

The hottest bundle source term methodology is described in Attachment 7 of Reference II.1.

6 Calculation The volume of Uranium Dioxide in the hottest fuel bundle is determined below using Equation 5-4:

0.3496 2 0.3496 2

( ) 145.24 ( ) 102 12 / 12 /

= x 78 x + x 8 x 4 12 / 4 12 /

0.3496 2

( ) 54 12 /

+ x 6 x = 0.693 3 4 12 /

The resulting mass of Uranium Dioxide using the density from Input 3.2 is:

= 0.693 3 x 649.88 = 450.136 3

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 14 OF 15 The volume of zircaloy-2 in the cladding is determined below using Equation 5-5:

0.404 2 0.3568 2

( ) ( ) 145.24 12 / 12 /

, = x 78 x 4 12 /

0.404 2 0.3568 2

( ) ( ) 102 12 / 12 /

+ x 8 x 4 12 /

0.404 2 0.3568 2

( ) ( ) 54 12 / 12 /

+ x 6 x = 0.204 3 4 12 /

The volume of zircaloy-2 in the water rods is determined below using Equation 5-6:

0.98 2 0.92 2

( ) ( ) 145.24 12 / 12 /

, = x 2 x = 0.0151 3 4 12 /

The total zircaloy-2 volume of the channel box is determined below from Equation 5-7:

155.77 5.283 0.05

, = 4 x x x = 0.0952 3 12 / 12 / 12 /

The total zircaloy-2 volume is then determined below from Equation 5-8:

= 0.204 3 + 0.0151 3 + 0.0952 3 = 0.314 3 The resulting total mass of zircaloy-2 is calculated using the volume above times density from Input 3.1 then added of the mass of the upper and lower plenums:

= 0.314 3 x 409.53 + 13.217 + 14.612 = 156.539 3

The heat-up time is then determined for end temperatures of 565°C (1049°F) and 900°C (1652°F) using the maximum bundle heat load at different decay times with Equation 5-3. The heat-up time from 125°F to 1049°F for the 9 months decay maximum bundle (Section 3.4) is shown below; the heat-up for the remaining decay times is solved in the same exact manner (i.e., changing the heat load and keeping the remaining inputs constant) and the results are reported in Section 2.

EN-DC-126 REV 6

CALCULATION CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 15 OF 15 (1049° 125°)

= 450.136 x 0.0674 + 156.539 x 0.0756 = 5.67 6,870.20 / ° ° 7 Attachments Attachment 1: Page from Glasstone and Sesonske, Nuclear Reactor Engineering (1 Page)

Attachment 2: Nuclear Fuel Data Design Input Record (3 pages)

Attachment 3: Estimate of Initial Temperature Difference Between Cladding and Surrounding Air (1 page)

EN-DC-126 REV 6

M1418 Rev. 0 Attachment 1 Page 1 of 1

-.)

00 00 TABLE A.6 . PHYSICAL PROPERTIES OF SOME REACTOR MATERIALS (Average values for preliminary calculations only; not to be used for design purposes.)

Yield Coefficient of Ultimate Strength or Linear Thermal Thermal Tensile Compressive Young's Density Expansion* Specific Heat Conductivity Strength Strength (C) Modulus Poisson's Temperature (K) (kg/m 3 ) (per K X 10 6 ) (J/kg* K X 10- 3 ) (W/m*K) (MPa) (MPa) (10 9 Pa) Ratio Materfal 300 1700 0.71 156 13.8 58 (C)

Graphite (average 3.6t 1.25 118 15 .9 9.0 nuclear grade) 500 800 5.ot 1.67 73 17.2 1400 6.3t 1.88 36 19.3 2500 8.5t 31 27.6 0.50 52 550 340 207 0.28 Steel, carbon 300 7860 10.2 0.59 43 530 280 182 (A 533-B) 600 10.4 0.63 38 450 240 172 750 10.4 0.67 35 390 200 169 800 300 7950 0.50 14 520 210 Steel, stainless 16.9 0.52 17 420 173 0.30 (type 34 7) 500 7860 17.4 0.55 20 400 150 166 0.31 700 7710 18.5 0.57 22 390 157 0.32 800 300 13,630 0.15 372 (C) 214 Uranium carbide (UC) 800 23 1250 10.3 23 Uranium dioxide 300 10,980 0.23 8.0 960 (C) 183 500 9.0 0.28 6.1 800 10.1 0.30 4.1 165 1100 0.31 2.6 1400 12.8 0.32 2.2 2300 0.42 2.3 Zircaloy-2 300 6560 0.28 12.7 490 300 95 0.43 500 0.31 15.2 280 170 90 0.38 600 6.5 0.33 16.5 210 117 78 800 0.35 18.9 1000 0.37 21.6

  • Average values from 20°C to indicated temperatures.

t Average of longitudinal and transverse properties.

)

M1418 Rev. 0 Page 1 of 3

M1418 Rev. 0 Page 2 of 3

M1418 Rev. 0 Page 3 of 3 CALCULATION NO.: M1418 REVISION NO.: 0 EC NO.: 0000073355 PAGE 1 OF 1 Estimate of Initial Temperature Difference Between Cladding and Surrounding Air With the adiabatic assumption and no air cooling of assemblies (Assumption 4.5) the cylindrical wall heat conduction equation was used to estimate the temperature difference between the cladding and surrounding air for a single fuel rod. The temperature difference is calculated for the bounding element decay heat at 9 months divided by the total number of heated rods (92).

This estimated a bounding temperature difference that would only reduce over longer decay periods or if any credit was taken for convective cooling of the rod. The 1-D cylindrical wall heat conduction equation from Reference III.7 is:

2 x () x

( ) = x ()

()

ln( 2 ())

1 Where:

L = the active length of the fuel from Table 2 = 145.24 in = 3.689 m k = the thermal conductivity of air at 300K (~80°F) from Reference III.7 is 26.3 x10-3 W/m-K

() = the estimated temperature difference between the surface of the cladding and the surrounding air (to be calculated) r1 = the outer radius of the cladding from Table 2 = 0.404 in / 2 = 0.202 in = 0.00513 m r2 = half the pitch between fuel rods from Table 2 = 0.510 in / 2 = 0.255 in = 0.00648 m; and q = the decay heat at 9 months in a single fuel rod = 1.11 x 104 W/MTU (Table 3) x 0.1814 MTU (Input 3.4) ÷ 92 heated rods (Table 2) = 21.9 watts per rod Solving the equation above for () using the referenced values results in the temperature difference of:

21.9 () x ln( 0.00648()0.00513())

() = = 8.39 ~ 15.1 2 x 3.689 () x 26.3 x 103 (

)

EN-DC-126 REV 6

Attachment 3 CNRO-2018-00031 Calculation No. PNPS-EC-73355-M1417, Dose at Exclusion Area Boundary and Control Room Due to Shine from Drained Spent Fuel Pool During SAFSTOR (235 pages follow)

ATTACHMENT 9.2 ENGINEERING CALCULATION COVER PAGE Sheet 1 of 1 ANO-1 ANO-2 GGNS IP-2 IP-3 PLP JAF PNPS RBS VY W3 NP-GGNS-3 NP-RBS-3 CALCULATION EC # 73355 Page 1 of 44 COVER PAGE Design Basis Calc. YES NO CALCULATION EC Markup Calculation No: M1417 Revision: 0

Title:

Dose at Exclusion Area Boundary and Control Room Due to Editorial Shine from Drained Spent Fuel Pool During SAFSTOR YES NO System(s): 19 Review Org (Department): DESMECH Safety Class: Component/Equipment/Structure Type/Number:

Safety / Quality Related Spent Fuel Augmented Quality Program SFP Non-Safety Related Document Type: CALC Keywords (Description/Topical Codes):

Spent Fuel, SAFSTOR, CR, EAB, Dose, Shine REVIEWS Name/Signature/Date Name/Signature/Date Name/Signature/Date ENERCON (See Page 1A) Vikram Patel (ENERCON) John Tucker (See AS) (See AS)

See Page 1A for OAR Responsible Engineer Design Verifier Supervisor/Approval Reviewer Comments Attached Comments Attached EN-DC-126 R006

Digitally signed by Michael Cymbor Date: 2017.11.16 08:29:38

-07'00'

CALCULATION REFERENCE CALCULATION NO.: M1417 SHEET REVISION NO.: 0 EC NO.: 0000073355 PAGE 2 OF 44 ATTACHMENT 9.3 CALCULATION REFERENCE SHEET Sheet 1 of 3 CALCULATION CALCULATION NO: M1417 REFERENCE SHEET REVISION: 0 I. EC Markups Incorporated (N/A to NP calculations) 1.None II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc Y/N No.

1. C173 009 N
2. C331 010 N
3. M270 015 N
4. M110 001 N
5. M174 000 N
6. M1090 003 N
7. M1070 001 N
8. ERHS-XIII.BB-69 002 N
9. S&SA201 000 N
10. S&SA202 000 N
11. C109 004 N
12. M1418 000 Y EC 73355 III. CROSS

REFERENCES:

1. NUREG-0586, Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities, Supplement 1, Volume 1, November 2002
2. NSIR/DPR-ISG-02, Emergency Planning Exemption Requests for Decommissioning Nuclear Power Plants, May 11, 2015 (ADAMS Accession Number ML14106A057)
3. ORNL/TM-2005/39, SCALE6.1 Users Manual, June 2011
4. LA-UR-03-1987, MCNP5 Users Manual, Version 5, April 24, 2003 (Revised 2/1/2008)
5. SAND94-2019, Extensions to the Integral Line-Beam Method for Gamma-Ray Skyshine Analyses, August 1995 (Attachment 3)
6. J. Lamarsh and A. Baratta, Introduction to Nuclear Engineering, Third Edition, 2001
7. Email from Fred Mogolesko (Entergy) to David Daigle (ENERCON), Design Inputs for upcoming analysis, 7/17/2017 (Attachment 6), and Attachment PNPS Cycle 22 (Attachment 4)
8. Email from Fred Mogolesko (Entergy) to David Daigle (ENERCON), Design Inputs for upcoming analysis, 7/17/2017 (Attachment 6), and Attachment Discharged Fuel (Attachment 5)
9. Nuclear Fuel Data Design Input Record, 6/13/17 (Attachment 8)
10. ORNL/TM-11018, Standard- and Extended-Burnup PWR and BWR Reactor Models for the ORIGEN2 Computer Code, December 1989
11. Chilton, A.B.; Shultis, J.K., Faw, R.E, Principals of Radiation Shielding. Prentice-Hall, Inc. 1984.

(Attachment 9)

12. EPA-400-R-92-001, EPA Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, May 1992 https://www.epa.gov/sites/production/files/2016-03/documents/pags.pdf ,

accessed 5/11/17 EN-DC-126 R006

CALCULATION REFERENCE CALCULATION NO.: M1417 SHEET REVISION NO.: 0 EC NO.: 0000073355 PAGE 3 OF 44

13. Stabin, Michael G., Radiation Protection and Dosimetry: An Introduction to Health Physics, Edition 1, https://books.google.com/books?id=tXhmo5H_HfIC&pg=PA73&lpg=PA73&dq=is+rad+in+air+the+s ame+as+rad+in#v=onepage&q=is%20rad%20in%20air%20the%20same%20as%20rad%20in&f=fa lse , accessed 5/23/2017
14. PNPS FSAR, Rev. 30 IV. SOFTWARE USED:

Title:

MCNP5 Version/Release:1.6 Disk/CD No. N/A

Title:

SCALE Version/Release:6.1 Disk/CD No. N/A V. DISK/CDS INCLUDED:

Title:

N/A Version/Release:N/A Disk/CD No. N/A VI. OTHER CHANGES:

EN-DC-126 R006

RECORD OF REVISION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 4 OF 44 ATTACHMENT 9.4 RECORD OF REVISION Sheet 1 of 1 Revision Record of Revision 0 Initial issue.

EN-DC-126 R006

TABLE OF CONTENTS CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 5 OF 44 Table of Contents 1.0 Purpose ............................................................................................................................................. 6 2.0 Inputs ................................................................................................................................................. 6 3.0 Assumptions .................................................................................................................................... 10 4.0 Identification of Computer Programs .............................................................................................. 12 5.0 Method of Analysis .......................................................................................................................... 12 6.0 Numeric Analysis ............................................................................................................................ 15 7.0 Conclusion....................................................................................................................................... 42 Attachments: : ORIGEN Inputs (12 pages) : MCNP5 Inputs (36 pages) : Line Beam Response Method Journal Paper Excerpts (18 pages) : PNPS Cycle 22 (30 pages) : Discharged Fuel (76 pages) : Email transmittal of Attachments 4 & 5 (11 pages) : Decay Heat Source Terms (3 pages) : Nuclear Fuel Data Design Input Record (3 pages) : Reference III.11, Table 7.1 (1 page)

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 6 OF 44 1.0 Purpose The purpose of this calculation is to determine the dose rate as a function of time after shutdown curve at the Pilgrim Nuclear Power Station (PNPS) site exclusion area boundary (EAB) and main control room (MCR) from a spent fuel pool (SFP) drain down event while in safe storage (SAFSTOR). The EAB is defined as 320 meters from the stack per the PNPS FSAR, which is consistent with offsite radiological consequences calculation ERHS-XIII.BB-69 (References III.14 & II.8). The dose rate curve will provide input to the Emergency Planning (EP) exemption submittal for SAFSTOR per Interim Staff Guidance (ISG) 02, Emergency Planning Exemption Requests for Decommissioning Nuclear Power Plants. ISG-02 states that site-specific analyses provide sufficient assurance that an offsite radiological release is not postulated to exceed the EPA Protective Action Guides (PAGs) at the site boundary. The EPA PAG limit to start evacuation of the public is 1 rem (Reference III.12). There is no acceptance criterion for the main control room in ISG-02 (Reference III.2).

NUREG-0586 Supplement 1, Section 4.3.9, identifies that a spent fuel pool drain down event is beyond design basis (Reference III.1). This calculation is non-safety related as it is beyond design basis in support of SAFSTOR.

Radiological accidents considered in licensing nuclear power plants are classified as design basis accidents (DBAs) and severe (beyond design basis) accidents. DBAs are those accidents that both the licensee and the NRC staff evaluate to ensure that the plant can withstand normal and abnormal transients and a broad spectrum of postulated accidents without undue hazard to the health and safety of the public. Severe accidents are those that are beyond the design basis of the plant. They are more severe than DBAs because they may result in substantial damage to the fuel, whether or not there are serious offsite consequences. For the most part, DBAs focus on reactor operation and are not applicable to plants undergoing decommissioning. The only DBAs or severe accidents (beyond design basis) applicable to a decommissioning plant are those involving the spent fuel pool.

These postulated accidents are not expected to occur during the life of the plant, but are evaluated to establish the design basis for the preventive and mitigative safety systems of the spent fuel storage facility.

Additionally, this calculation determines the decay heat as a function of time for the fuel in the spent fuel pool. This can be used in a separate analysis to support additional cladding temperature requirements for the Emergency Planning exemption submittal per ISG-02 (Reference III.2).

2.0 Inputs 2.1 Characteristics of the discharged spent fuel currently in the SFP through the expected Cycle 22 discharge at the end of May 2019 were transmitted from Reference III.8 (Attachment 6) and presented in Attachment 5. The end of Cycle 22 fuel information is presented in Attachment 4, transmitted from Reference III.7 (Attachment 6). These parameters include assembly IDs, initial enrichment, discharge date, average burnup, initial mass of U-235, and total mass of uranium.

2.2 The rated thermal power is 2028 MWt (Reference II.9).

2.3 There are 580 assemblies in the core (Reference II.9).

2.4 The reactor parameters and fuel geometry of the GNF2 10x10 fuel used in Cycle 22 are included in Table 2-1, based on the DIR (Reference III.9) as well as ORIGEN-ARP manual (Reference III.3).

GNF2 10x10 fuel is utilized because it has been used in the last five reloads as well as the current Cycle 22.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 7 OF 44 Table 2-1 Fuel Assembly Geometry (References III.9 and III.3)

Characteristic Unit Value Seating Surface to Bottom of in 5.261 Fuel Rods Number of Water Rods # 2 Water Rod Outer Diameter in 0.980 Water Rod Inner Diameter in 0.920 Total Upper Hardware Mass lbs 13.217 for the Upper Plenum Number of Fuel Rods per

  1. 92 Assembly (full and partial)

Fuel Rod Pitch in 0.510 Fuel Rod Outer Diameter in 0.404 Fuel Clad Thickness in 0.0236 Clad/Water Rod Material

- Zirc-2 (Zirc-2, Zirc-4, etc.)

Active Fuel Length in 145.24 Pellet Material - UO2 Pellet Diameter in 0.3496 Assembly Height in 171.4 2.5 The end of Cycle 22 fuel discharge date is May 31, 2019 is from Reference III.7.

2.6 The spent fuel pool rack dimensions are based on an existing SFP MCNP model developed in calculation S&SA202 (Reference II.10) and are summarized in Table 2-2.

Table 2-2 SFP Racks Model Parameters Dimension Value Reference Rack Bottom Height (in) 7.5 II.10 Fuel Rack Height (in) 165.375 II.10 Rack Cell Pitch (in) 6.257 II.10 Rack Thickness (in) 0.090 II.10 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 8 OF 44 2.7 The spent fuel pool geometry is based on an existing SFP MCNP model developed in calculation S&SA202 (Reference II.10) and are summarized in Table 2-3.

Table 2-3 Spent Fuel Pool Geometry SFP Geometry Parameter Value Reference Nominal Pool Width (in) 366 II.10 Nominal Pool Length (in) 484 II.10 Bottom of SFP Elevation (ft) 78.25 II.10 SFP Top Elevation (ft) 117.0 Calculated in Section 6.5.1 Pool Steel Thickness (in) 0.1875 II.10 Pool Concrete Thickness (in) 73 II.11 Pool Height (in) 465.0 II.10 2.8 The material properties are formulated using the SCALE Standard Composition Library (Reference III.3). Materials compositions are summarized in Table 2-4. A ZAID is a numerical way of listing the element by a 3 digit atomic number (Z) followed by a 3 digit mass number (A) with the leading zeroes omitted (or simply ZAID=Zx1000+A). Listing 3 zeroes for the mass number means the natural composition of the element is used (if this option is available).

Table 2-4 Standard Composition Library Material Descriptions MCNP5 Weight Density Material Material ZAID Reference Fraction (g/cm3)

Number 92000 1 Design UO2 1 10.41 Input 2.9, 8000 2 III.3 40000 9.825E-01 50000 1.450E-02 26000 1.350E-03 Zirc2 2 6.56 III.3 24000 1.000E-03 28000 5.500E-04 72000 1.000E-04 6000 8.000E-04 14000 1.000E-02 Stainless 15031 4.500E-04 Steel 3 24000 1.900E-01 7.94 III.3 (Type 25055 2.000E-02 304) 26000 6.838E-01 28000 9.500E-02 1001 1.000E-02 8016 5.320E-01 11023 2.900E-02 Concrete 4 13027 3.400E-02 2.30 III.3 14000 3.370E-01 20000 4.400E-02 26000 1.400E-02 2.9 The UO2 fuel density is 10.41 g/cm3, which is consistent with the density used in ORIGEN-ARP (Reference III.3, Table D1.A.3).

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 9 OF 44 2.10 The key elevations and distances to determine the dose rate from a drained SFP to the EAB and MCR are presented in Table 2-5. Note, directions are based on site north, not true north.

Table 2-5 Elevations, Dimensions, and Columns Parameter Value Reference SFP North-South Center Row L II.1 Distance Between Row L 69-9 II.5 and H (34-3 + 12-3 + 23-3)

Distance Between Rows H 40-0 II.7 and E Distance Between Rows E 48-0 II.6 and C (24-0 + 24-0)

Stack North-South 9-6 South of Row C (10/2 +

II.2 & II.4 Centerline 4-6) 29-5 East of Column 5 SFP East-West Center II.1 (14-2 + 30-6 / 2)

Distance Between Column 3 38-3 II.5 and 5 Stack East-West Centerline 11-3 West of Column 3 II.4 MCR North-South Centerline Row H II.3 (Approximate) 139-6 Distance Between Columns (14-2 + 30-6 + 25-1 + 24- II.1 5 and 17 5 + 43-10 + 1-6)

Distance Between Columns 39-8 3/8 II.3 17 and 19 (1-5 3/8 + 14-3 + 24-0)

MCR East-West Centerline Column 19 II.3 (Approximate)

MCR El. 37-0 II.3 Station Grade 20 MSL III.14 The minimum distance to the exclusion area boundary is 320m from the stack (Reference II.8).

The distance to the EAB is offset by the distance from the stack center to the spent fuel pool center in Section 6.1. This distance is more conservative than the nearest property boundary, which is 1,800 feet (548.64m) from the reactor (III.14, Section 2.2.3).

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 10 OF 44 2.11 The fuel photon source terms are reported in the standard 18-group photon group structure shown in Table 2-6 (Reference III.3, Figure F15.A.1).

Table 2-6 Photon Energy Group Structure Lower Bound Upper Bound Group (MeV) (MeV) 1 1.00E-02 5.00E-02 2 5.00E-02 1.00E-01 3 1.00E-01 2.00E-01 4 2.00E-01 3.00E-01 5 3.00E-01 4.00E-01 6 4.00E-01 6.00E-01 7 6.00E-01 8.00E-01 8 8.00E-01 1.00E+00 9 1.00E+00 1.33E+00 10 1.33E+00 1.66E+00 11 1.66E+00 2.00E+00 12 2.00E+00 2.50E+00 13 2.50E+00 3.00E+00 14 3.00E+00 4.00E+00 15 4.00E+00 5.00E+00 16 5.00E+00 6.50E+00 17 6.50E+00 8.00E+00 18 8.00E+00 1.00E+01 2.12 The concrete control room wall is a minimum of 2 thick (Reference II.3). This is consistent with the FSAR, which also lists the Control Room ceiling as 2 thick (Reference III.14, Section R.6.1.5).

2.13 The tenth-value layer of concrete for 1 MeV photons (Assumption 3.4) is 14.7 cm (5.78 in)

(Reference III.11, Table 7-1 (see Attachment 9)). The tenth-value layer in Reference III.11 uses the relaxation length/value layer that indicates that buildup is considered in determining the tenth-value layer thicknesses.

3.0 Assumptions 3.1 Only the fuel gamma source term is considered in the standard 18-group photon distribution. As shown in Pilgrim Source Term calculation S&SA201 (Reference II.9), the neutron source strength is more than five orders of magnitude smaller compared to the fuel gamma source. Similarly, the hardware source strengths are three or four orders of magnitude lower than the fuel gamma source term. Omitting these sources is bounded by other conservatisms such as assuming 1 MeV photons for the line beam response method (Assumption 3.4).

3.2 Source terms are developed in ORIGEN using continuous burn until the desired level of burnup is reached. Down time between cycles is not included. This is a conservative assumption that addresses any concerns about the effect of down time between cycles on the source terms. Down time between cycles would provide time for decay of isotopes, which would decrease the intensity of the output source term from the reactor before the cool down time frame.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 11 OF 44 3.3 For photons, the kerma dose rate (rads/hr) is equal to the equivalent dose rate (rem/hr). The equivalent dose rate (rem/hr) is the product of the absorbed dose rate and the radiation weighting factor. The radiation weighting factor for photons is 1.0 (Reference III.6).

3.4 All photons are assumed to be 1 MeV in the line beam response method dose equations and for determining the shielding provided by walls around the control room. This is conservative because the photon energy distributions in Table 6-4 through Table 6-9 have the most intensity below 1 MeV. For instance, greater than 98% of photons are below 1 MeV for the 0.75-year decay source in Table 6-4.

3.5 It is assumed that no spent fuel will be removed from the spent fuel pool prior to SAFSTOR.

However, if any fuel assemblies were removed this is a conservative assumption, because it maximizes the number of assemblies in the spent fuel pool.

3.6 Standard density concrete will be analyzed for the shielding benefit of the walls around the control room. This is a reasonable assumption because most construction is with standard normal density concrete, as opposed to high density concrete.

3.7 An additional 3 feet will be added to the elevation of the control room floor and plant grade, when determining doses. The additional 3 feet represents a chest height measurement for plant personnel and members of the public.

3.8 The channel box for each fuel assembly is not credited in the shielding calculation. Omission of material is conservative for shielding purposes.

3.9 The reactor building roof is not credited to provide shielding. Not crediting the roof conservatively reduces the shielding.

3.10 Gadolinium (Gd) in the assembly fuel pins is not modeled. Gadolinium is a neutron poison. It is conservative not to model a neutron poison in a shielding calculation.

3.11 The MCNP5 model only includes full length rods. The sixteen (Reference III.9) partial length rods are modeled as full length. Similarly, chamfers on the fuel pellets are not modeled. This has negligible impact for shielding analysis for flux measurements above uncovered fuel.

3.12 Average assembly source terms are used in this calculation (i.e. no axial profile is considered).

This produces a larger source term at the top of the assemblies which creates a more conservative flux above the SFP.

3.13 Since all Cycle 22 assemblies and the last five reloads are 10x10 arrays (Attachments 5 and 8),

the GE 10x10 assembly is used as the fuel type for all ORIGEN-ARP models. Note, there is no differentiation in ORIGEN-ARP between GE 10x10 and GNF2 10x10 fuel.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 12 OF 44 4.0 Identification of Computer Programs The SCALE 6.1 code package is a comprehensive modeling and simulation suite for nuclear safety analysis and design that is developed and maintained by Oak Ridge National Laboratory (ORNL). SCALE was originally created under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC), and it continues to be supported by the NRC, as well as the U.S. Department of Energy (DOE). SCALE provides a comprehensive, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. For over 30 years, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design.

The SCALE code utilizes a variety of features to ensure quality. According to the SCALE Users Manual (Reference III.3), standardized methods of data input were adopted to allow easy data entry and for quality assurance purposes. Program verification information is also printed after the header page, which lists the name of the program, the date the load module was created, the library that contains the load module, the computer code name from the configuration control table, and the revision number for quality assurance purposes. The job name, date, and time of execution are also printed. A set of test cases is also run as part of the installation to verify the program is running correctly and produces the intended results. These test problems have been run and results compared to the provided results on ENERCON computers.

MCNP5 version 1.6 is a general-purpose Monte Carlo N-Particle code developed by the Los Alamos National Laboratory that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport, including the capability to calculate eigenvalues for critical systems (Reference III.4). The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori. To provide assurance that the MCNP5 code was installed and operates correctly, a series of test cases are run as part of the installation process. The outputs of these test cases are then compared to the expected outputs provided by the developer to ensure the software is functioning as intended.

5.0 Method of Analysis 5.1 Spent Fuel Binned Groups and Decay Times The expected Cycle 22 inventory in Attachment 4 and current Pilgrim SFP inventory in Attachment 5 are reviewed to determine the SFP inventory characteristics. The inventory includes the total number of assemblies, burnup, nominal enrichment, discharge date, and fuel geometry.

Multiple bounding initial decay times are applied to conservatively determine source terms for the assemblies. The groups are based on average burnups and minimum cool times to represent realistic source terms. This analysis will create a dose rate curve based on nine discrete decay times after the last discharge of: 0.75, 0.83, 0.92, 1, 1.25, 1.5, 2, 3, and 5 years. These are in addition to the initial decay times selected.

5.2 Fuel Source Terms using ORIGEN-ARP The fuel source terms for each decay time are computed using ORIGEN-ARP, which is part of SCALE 6.1. ORIGEN-ARP is a SCALE analytical sequence that serves as a much faster and easier-to-use alternative to traditional burnup analyses while preserving the accuracy of more complex computational systems. In the analysis scheme, time-dependent material concentrations are solved using the ORIGEN-S isotope depletion and decay code. ARP interpolates cross section libraries for the EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 13 OF 44 GE10x10 assembly design and parameters specified in the input. The cross sections from ARP are then used in ORIGEN-S, which performs depletion and decay (Reference III.3). The SCALE program package provides a cross section library for the GE10x10 assembly design for use in the ORIGEN-ARP program sequence. Since all Cycle 22 assemblies and the last five reloads are GE10x10, this is used as the fuel type for all ORIGEN-ARP models (Assumption 3.13).

5.3 Determine Flux at the Top of the SFP Using MCNP5 The MCNP5 code is used to model the SFP, which holds the fuel assemblies and SFP racks. The MCNP5 code package uses combinatorial geometry, with the option to divide the model into self-contained universes. The self-contained universe structure can be used to separate the fuel rods, fuel assemblies, and SFP racks into individual components that can be easily modified and checked.

The basic component of the geometry package is a set of general surfaces. To reduce the required user input, MCNP5 includes simplified expressions for cylinders and planes perpendicular to system axes and macrobodies (cubes, finite cylinders, wedges, etc.). Models are constructed by combining geometry components (surfaces) into cells. Cells may be embedded in individual universes to simplify modeling. A given universe may be included in different positions within the geometry by translation. Translation allows movement in the x, y, and z directions and rotation using direction cosines.

The SFP model is created using the dimensions specified on the relevant design drawings. The material definitions of stainless steel, concrete, and Zirc2 are from the SCALE Standard Composition Library (Reference III.3). The fuel (UO2) is specified on an atomic basis with a density of 10.41 g/cm3 (Input 2.9).

For this analysis, the SFP is drained down and there is no water. Similar to the ORIGEN-ARP model in Section 5.2, the Cycle 22 assembly geometry is used in the model.

Conservatisms are incorporated into the MCNP5 model where appropriate. These include modeling air as a void to reduce attenuation in air and not including shielding materials in the model such as the neutron-absorbing material in the SFP racks, the fuel channels, or the reactor building roof.

Spent assemblies are placed sequentially, group by group, in the SFP racks. All extra spaces are modeled as empty SFP rack cells. Empty cells are placed on the outside rows to conservatively concentrate irradiated fuel towards the middle of the pool. The order and placement of the assemblies is inconsequential, as the total flux out of the top of the SFP is whats ultimately calculated.

5.4 Determine Dose at Control Room and EAB Using Line Beam Response Method The line beam response function methodology (LBRF) in Reference III.5 is used to calculate the dose rate at the control room and site boundary. The line beam response function methodology is the industry standard four-parameter methodology to determine skyshine as a function of distance. This methodology is an alternative to Monte Carlo methods that require more extensive computations to determine converged dose rates at far distances. The four-factor line beam response method can accurately determine skyshine doses and is applicable for angles up to 180 degrees. The term "skyshine" refers to radiation originating from a fixed source and scattering in the atmosphere before reaching a receiver or detector. It becomes important when sufficient material shielding is present along the direct path from the source to the receiver to prevent any significant direct radiation from reaching the receiver through the intervening material. In this situation, only air-scattered or skyshine radiation contributes to the dose rate at the receptor point.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 14 OF 44 This method provides an air kerma in units of rads per photon at a distance, x, from a point source emitting photons of energy, E, into an infinite area medium at an angle relative to the source-to-detector axis. The approach is documented in Reference III.5. Excerpts of Reference III.5 are included as Attachment 3.

The LBRF is approximated as follows.

(, , ) = () ()

Where, E = energy in MeV (Assumption 3.4) k = 1.308E-11 rad/MeV/ (Reference III.5, Appendix B) x = distance in meters a, b, c, d = fit parameters for a given energy and direction (Reference III.5, Appendix B)

= emission angle R =air kerma = air-rad/photon A SFP emission source at the top of the pool in photons/sec is necessary and this is determined by multiplying the MCNP5 F2 tally value by the surface area of the pool cross section.

Shielding is provided by the concrete walls around the control room. This shielding benefit will be included. To shield against photons or neutrons, a convenient concept is that of tenth-value layer. This is the thickness of a medium required to reduce the photon intensity to a tenth of initial value. It is dependent on the energy of the photon and the material it passes through. Tenth-value layer thickness including buildup, which accounts for the scattered photons, are available in Reference III.11, and the referenced table is included in Attachment 9. The tenth-value layer of concrete with buildup for 1 MeV photons (Assumption 3.4) is used. No shielding is credited for dose rates at the EAB.

The dose rate at a distance is then the LBRF multiplied by the emission source.

air rad 1000 3600

= (, , )

( )

The dose rate in mrads/hr is assumed to be equal to mrem/hr (Assumption 3.3) 1. The dose rate at the MCR includes shielding provided by walls, which provides considerable reduction in the dose rate.

1 The dose rate in air is assumed to be equivalent to the dose rate in tissue (Reference III.14, Chapter 5),

and the dose rate in air will be measured for compliance with the EPA PAGs.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 15 OF 44 6.0 Numeric Analysis 6.1 Distance to the Main Control Room and Exclusion Area Boundary 6.1.1 The distance from the SFP center point to the MCR center point is computed using the distances in Table 2-5. To simplify the derivation, Figure 6-1 was created showing column lines, the MCR the SFP, and the stack. Note that this figure is not to scale.

The total east-west distance from the center of the pool to the center of the MCR is computed as:

139-6 (5 to 17) 5 (center of the SFP to 5) + 39-8 3/8 (17 to 19, center of the MCR) =

149-9 3/8 ft.

The total north-south distance from the center of the SFP to the center of the MCR is 69-9 (L to H).

The hypotenuse is the square root of (149.781252 + 69.752) = 165.23 ft. This is the distance on the same plane.

Now the elevation change must be considered. The MCR is on El.37-0 and the top of the SFP is on El. 117-0 (see Table 2-3 and Table 2-5). An additional 3 is subtracted to represent chest height doses in the control room. The resulting difference is 77.00 ft.

The distance from the SFP to the MCR accounting for the elevation change is the square root of (77.002 + 165.232) = 182.29 ft = 55.6 m.

Because the MCR is below the SFP, the angle is calculated as 180° - cos-1(77.00 ft/182.29 ft) =

115 degrees. The LBRF method fit parameters for the 110-degree angle are applied, which is both the closest angle and more conservative because its smaller.

Figure 6-1 Distance from SFP to MCR or Stack EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 16 OF 44 6.1.2 Per Input 2.10, the minimum distance to the EAB from the reactor center line is 320m. The minimum distance is offset by the difference between the stack centerline and the spent fuel pool midpoint.

The total east-west distance from the center of the center of the pool to the center of the stack is computed as: 29-5 (center of the pool to 5) + 38-3 (3 to 5) + 11-3 (3 to center to stack) =

78-11 ft.

The total north-south distance from the center of the pool to the center of the stack is computed is computed as: 69-9 (L to H) + 40-0 (H to E) + 48-0 (E to C) + 9-6 (C to center of stack) =

167-3.

The hypotenuse is the square root of (167.252 + 78.922) = 184.93 ft = 56.37m. This is the distance on the same plane. Thus, the minimum distance to the EAB, which is 320m from the stack, is computed as: 320 m - 56.37 m = 263.63 m = 864.93 ft.

Now the elevation change must be considered. Station grade is 20-0 and the top of the SFP is on El. 117-0 (see Table 2-5). An additional 3 is subtracted to represent chest height doses at the EAB. The resulting difference is 94.00 ft.

The distance from the SFP to the EAB accounting for the elevation change is the square root of (94.002 + 864.932) = 870.02 ft = 265.2 m.

Because the EAB is below the SFP, the angle is calculated as 180° - cos-1(94.00 ft/870.03 ft) =

96 degrees. The LBRF method fit parameters for the 95-degree angle are applied, which is both the closest angle and more conservative because its smaller.

6.2 ORIGEN-ARP Inputs This section describes the computations required to perform the fuel source term evaluation. Using Attachments 4 and 5, the expected SFP inventory was separated into six initial decay time groupings of 0 year, 2 years, 4 years, 6 years, 10 years, and 20 years post-shutdown. These six groups are subsequently decayed to represent 0.75 year (9 months), 0.83 year (10 months), 0.92 year (11 months),

1 year, 1.25 years, 1.5 years, 2 years, 3 years, and 5 years post-shutdown. Table 6-2 contains the inputs needed in the ORIGEN-ARP program. The moderator density of 0.429 g/cc is from Reference III.10. The burnup is the average burnup of the assemblies in that group. The enrichment is the average nominal enrichment of the assemblies. The values in Table 6-1 are from the Cycle 22 information (Reference III.7) and the existing SFP inventory (Reference III.8). The reference date for the Initial Cool Time is May 31, 2019 (Reference III.7).

The average assembly power level (MW/MTU) is calculated in Excel based on the core power, average fuel mass (MTU) per assembly from Attachments 4 and 5 for each of the assembly groups, and number of assemblies in the core (580 per Input 2.3). The power level of 2028 MWt is used (Input 2.2). This conservatively does not account for lower power levels from earlier years of operation. An example of the last group is presented below:

20 .

1 1

= 2028 x x 580 #

1 1

= 2028 x x = 19.15 /

580 0.1826 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 17 OF 44 Table 6-1 SFP Inventory Grouping Avg. Average Latest Average.

  1. Nominal Assembly Power Group Discharge Burnup Assemblies Enrich. Level Date (MWd/MT)

(wt%) (MW/MTU) 0 yr 580 3.917 5/31/2019 35,972 19.38 2 yr 168 3.922 4/9/2017 48,766 19.30 4 yr 144 3.983 4/19/2015 49,567 19.92 6 yr 304 3.988 4/14/2013 49,235 20.05 10 yr 784 3.969 4/17/2009 47,880 20.88 20 yr 2133 2.565 5/8/1999 24,103 19.15 Total 4113 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 18 OF 44 Table 6-2 ORIGEN-ARP Express Inputs Parameter Value Value Value Value Value Value Case Title 0Y 2Y 4Y 6Y 10Y 20Y Fuel Type GE10x10-8 GE10x10-8 GE10x10-8 GE10x10-8 GE10x10-8 GE10x10-8 1 MTU 1.00E+06 1.00E+06 1.00E+06 1.00E+06 1.00E+06 1.00E+06 Uranium (g)

Average Enrichment 3.917 3.922 3.983 3.988 3.969 2.565 (wt% U235)

Average 0.1804 0.1812 0.1756 0.1744 0.1675 0.1826 MTU/Assy Average Burnup 35,972 48,766 49,567 49,235 47,880 24,103 (MWd/MTU)

Moderator Density 0.429 0.429 0.429 0.429 0.429 0.429 (g/cm3)

Average Power 19.38 19.30 19.92 20.05 20.88 19.15 (MW/MTU) 0.00 0.00* 0.00* 0.00* 0.00* 0.00*

1.00 2.00 3.00* 3.00* 3.00* 3.00*

1.25 3.00 4.00 6.00 9.00* 9.00*

1.50 3.25 5.00 7.00 10.00 20.00 Decay Times 2.00 3.50 5.25 7.25 11.00 21.00 (years) 3.00 4.00 5.50 7.50 11.25 21.25 5.00 5.00 6.00 8.00 11.50 21.50 7.00 7.00 9.00 12.00 22.00 9.00 11.00 13.00 23.00 15.00 25.00 0.00 0.00 0.00* 0.00* 0.00* 0.00*

0.75 2.00 3.00* 3.00* 3.00* 3.00*

Additional 0.83 2.75 4.00 6.00 9.00* 9.00*

Run Decay 0.92 2.83 4.75 6.75 10.00 20.00 Times (years) 2.92 4.83 6.83 10.75 20.75 4.92 6.92 10.83 20.83 10.92 20.92

  • Note: Decay times are required by ORIGENs rule of three, but are not used in this analysis.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 19 OF 44 6.3 ORIGEN-ARP Fuel Source Term File Naming ORIGEN cases are developed for the SFP based on the different initial decay time groupings of 0 year, 2 years, 4 years, 6 years, 10 years, and 20 years. As discussed in Section 6.2, these include no decay as well as additional decay periods of 0.75 year, 0.83 year, 0.92 year, 1 year, 1.25 years, 1.5 years, 2 years, 3 years, and 5 years. The ORIGEN-ARP input files are identified in Table 6-3. The output file will be of file type .out.

Table 6-3 ORIGEN-ARP Input Files Input File Name* Cool times included 0 year, 0.75 year, 0.83 year, 0.92 year, 1 year, 1.25 years, 1.5 0Y.inp years, 2 years, 3 years, 5 years 2 years, 2.75 year, 2.83 year, 2.92 year, 3 years, 3.25 years, 3.5 2Y.inp years, 4 years, 5 years, 7 years 4 years, 4.75 year, 4.83 year, 4.92 year, 5 years, 5.25 years, 5.5 4Y.inp years, 6 years, 7 years, 9 years 6 years, 6.75 year, 6.83 year, 6.92 year, 7 years, 7.25 years, 7.5 6Y.inp years, 8 years, 9 years, 11 years 10 years, 10.75 year, 10.83 year, 10.92 year, 11 years, 11.25 10Y.inp years, 11.5 years, 12 years, 13 years, 15 years 20 years, 20.75 year, 20.83 year, 20.92 year, 21 years, 21.25 20Y.inp years, 21.5 years, 22 years, 23 years, 25 years

  • Two identical runs are created for each case because of all the decay times evaluated.

6.4 Fuel Source Terms The resulting ORIGEN generated source terms are presented in Table 6-4 through Table 6-9. All ORIGEN input files are in Attachment 1.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 20 OF 44 Table 6-4 0 Years of Initial Decay Source Terms (0Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 0 year 0.75 year 0.83 year 0.92 year 1 1.00E-02 5.00E-02 1.42E+18 1.60E+16 1.50E+16 1.40E+16 2 5.00E-02 1.00E-01 7.23E+17 5.23E+15 4.91E+15 4.58E+15 3 1.00E-01 2.00E-01 7.92E+17 5.22E+15 4.87E+15 4.53E+15 4 2.00E-01 3.00E-01 5.27E+17 1.31E+15 1.23E+15 1.15E+15 5 3.00E-01 4.00E-01 3.76E+17 1.01E+15 9.49E+14 8.86E+14 6 4.00E-01 6.00E-01 6.78E+17 5.85E+15 5.53E+15 5.24E+15 7 6.00E-01 8.00E-01 6.07E+17 1.37E+16 1.21E+16 1.07E+16 8 8.00E-01 1.00E+00 4.65E+17 1.79E+15 1.74E+15 1.68E+15 9 1.00E+00 1.33E+00 3.63E+17 4.95E+14 4.74E+14 4.52E+14 10 1.33E+00 1.66E+00 2.69E+17 2.15E+14 2.05E+14 1.94E+14 11 1.66E+00 2.00E+00 1.28E+17 2.83E+13 2.66E+13 2.48E+13 12 2.00E+00 2.50E+00 1.14E+17 1.11E+14 1.03E+14 9.56E+13 13 2.50E+00 3.00E+00 7.20E+16 1.81E+12 1.71E+12 1.61E+12 14 3.00E+00 4.00E+00 4.81E+16 1.62E+11 1.53E+11 1.44E+11 15 4.00E+00 5.00E+00 1.39E+16 1.21E+07 1.18E+07 1.14E+07 16 5.00E+00 6.50E+00 5.26E+15 4.87E+06 4.72E+06 4.57E+06 17 6.50E+00 8.00E+00 3.89E+13 9.54E+05 9.25E+05 8.96E+05 18 8.00E+00 1.00E+01 1.91E+11 2.03E+05 1.96E+05 1.90E+05 Total - - 6.60E+18 5.10E+16 4.71E+16 4.35E+16 Table 6-4 (Contd) 0 Years of Initial Decay Source Terms (0Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Bound Bound Group 1.25 (MeV) (MeV) 1 year 1.5 years 2 years 3 years 5 years years 1 1.00E-02 5.00E-02 1.33E+16 1.11E+16 9.46E+15 7.01E+15 4.27E+15 2.38E+15 2 5.00E-02 1.00E-01 4.32E+15 3.62E+15 3.06E+15 2.23E+15 1.31E+15 6.86E+14 3 1.00E-01 2.00E-01 4.26E+15 3.53E+15 2.95E+15 2.10E+15 1.16E+15 5.38E+14 4 2.00E-01 3.00E-01 1.08E+15 9.01E+14 7.59E+14 5.50E+14 3.15E+14 1.55E+14 5 3.00E-01 4.00E-01 8.35E+14 6.96E+14 5.84E+14 4.19E+14 2.33E+14 1.08E+14 6 4.00E-01 6.00E-01 5.01E+15 4.41E+15 3.92E+15 3.13E+15 2.05E+15 9.52E+14 7 6.00E-01 8.00E-01 9.77E+15 7.96E+15 7.05E+15 6.11E+15 5.07E+15 3.94E+15 8 8.00E-01 1.00E+00 1.63E+15 1.48E+15 1.35E+15 1.12E+15 7.95E+14 4.16E+14 9 1.00E+00 1.33E+00 4.35E+14 3.85E+14 3.44E+14 2.79E+14 1.95E+14 1.18E+14 10 1.33E+00 1.66E+00 1.86E+14 1.62E+14 1.41E+14 1.10E+14 6.90E+13 3.20E+13 11 1.66E+00 2.00E+00 2.34E+13 1.94E+13 1.62E+13 1.13E+13 5.54E+12 1.46E+12 12 2.00E+00 2.50E+00 8.92E+13 7.19E+13 5.80E+13 3.77E+13 1.61E+13 2.97E+12 13 2.50E+00 3.00E+00 1.52E+12 1.28E+12 1.08E+12 7.63E+11 3.83E+11 9.72E+10 14 3.00E+00 4.00E+00 1.37E+11 1.15E+11 9.72E+10 6.91E+10 3.50E+10 8.96E+09 15 4.00E+00 5.00E+00 1.11E+07 1.04E+07 9.84E+06 9.17E+06 8.52E+06 7.82E+06 16 5.00E+00 6.50E+00 4.45E+06 4.16E+06 3.95E+06 3.68E+06 3.42E+06 3.14E+06 17 6.50E+00 8.00E+00 8.73E+05 8.15E+05 7.74E+05 7.22E+05 6.70E+05 6.16E+05 18 8.00E+00 1.00E+01 1.85E+05 1.73E+05 1.64E+05 1.53E+05 1.42E+05 1.31E+05 Total - - 4.09E+16 3.44E+16 2.97E+16 2.31E+16 1.55E+16 9.33E+15 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 21 OF 44 Table 6-5 2 Years of Initial Decay Source Terms (2Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 2 year 2.75 year 2.83 year 2.92 year 1 1.00E-02 5.00E-02 8.05E+15 5.63E+15 5.45E+15 5.25E+15 2 5.00E-02 1.00E-01 2.55E+15 1.73E+15 1.67E+15 1.60E+15 3 1.00E-01 2.00E-01 2.33E+15 1.52E+15 1.46E+15 1.39E+15 4 2.00E-01 3.00E-01 6.29E+14 4.19E+14 4.03E+14 3.86E+14 5 3.00E-01 4.00E-01 4.74E+14 3.08E+14 2.96E+14 2.82E+14 6 4.00E-01 6.00E-01 4.61E+15 3.38E+15 3.27E+15 3.16E+15 7 6.00E-01 8.00E-01 8.64E+15 7.45E+15 7.35E+15 7.24E+15 8 8.00E-01 1.00E+00 1.76E+15 1.36E+15 1.32E+15 1.28E+15 9 1.00E+00 1.33E+00 3.97E+14 3.08E+14 3.01E+14 2.93E+14 10 1.33E+00 1.66E+00 1.57E+14 1.13E+14 1.10E+14 1.06E+14 11 1.66E+00 2.00E+00 1.35E+13 7.99E+12 7.55E+12 7.10E+12 12 2.00E+00 2.50E+00 3.75E+13 1.99E+13 1.86E+13 1.72E+13 13 2.50E+00 3.00E+00 9.68E+11 5.78E+11 5.47E+11 5.15E+11 14 3.00E+00 4.00E+00 8.86E+10 5.32E+10 5.04E+10 4.74E+10 15 4.00E+00 5.00E+00 3.30E+07 3.16E+07 3.15E+07 3.13E+07 16 5.00E+00 6.50E+00 1.32E+07 1.27E+07 1.26E+07 1.26E+07 17 6.50E+00 8.00E+00 2.60E+06 2.49E+06 2.48E+06 2.47E+06 18 8.00E+00 1.00E+01 5.51E+05 5.28E+05 5.26E+05 5.23E+05 Total - - 2.96E+16 2.22E+16 2.17E+16 2.10E+16 Table 6-5 (Contd) 2 Years of Initial Decay Source Terms (2Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 3 years 3.25 years 3.5 years 4 years 5 years 7 years 1 1.00E-02 5.00E-02 5.09E+15 4.63E+15 4.26E+15 3.68E+15 2.98E+15 2.39E+15 2 5.00E-02 1.00E-01 1.54E+15 1.39E+15 1.27E+15 1.07E+15 8.45E+14 6.62E+14 3 1.00E-01 2.00E-01 1.34E+15 1.19E+15 1.07E+15 8.84E+14 6.67E+14 4.98E+14 4 2.00E-01 3.00E-01 3.72E+14 3.33E+14 3.01E+14 2.51E+14 1.92E+14 1.46E+14 5 3.00E-01 4.00E-01 2.71E+14 2.40E+14 2.15E+14 1.76E+14 1.30E+14 9.53E+13 6 4.00E-01 6.00E-01 3.06E+15 2.77E+15 2.52E+15 2.08E+15 1.45E+15 7.39E+14 7 6.00E-01 8.00E-01 7.14E+15 6.86E+15 6.60E+15 6.15E+15 5.45E+15 4.56E+15 8 8.00E-01 1.00E+00 1.25E+15 1.15E+15 1.06E+15 9.00E+14 6.56E+14 3.61E+14 9 1.00E+00 1.33E+00 2.86E+14 2.67E+14 2.49E+14 2.20E+14 1.79E+14 1.31E+14 10 1.33E+00 1.66E+00 1.02E+14 9.25E+13 8.39E+13 6.96E+13 4.91E+13 2.65E+13 11 1.66E+00 2.00E+00 6.72E+12 5.66E+12 4.77E+12 3.41E+12 1.80E+12 6.04E+11 12 2.00E+00 2.50E+00 1.61E+13 1.31E+13 1.06E+13 6.97E+12 3.05E+12 6.05E+11 13 2.50E+00 3.00E+00 4.87E+11 4.10E+11 3.46E+11 2.46E+11 1.24E+11 3.20E+10 14 3.00E+00 4.00E+00 4.49E+10 3.79E+10 3.19E+10 2.27E+10 1.15E+10 3.01E+09 15 4.00E+00 5.00E+00 3.12E+07 3.09E+07 3.05E+07 2.99E+07 2.88E+07 2.67E+07 16 5.00E+00 6.50E+00 1.25E+07 1.24E+07 1.23E+07 1.20E+07 1.16E+07 1.07E+07 17 6.50E+00 8.00E+00 2.46E+06 2.43E+06 2.40E+06 2.36E+06 2.27E+06 2.10E+06 18 8.00E+00 1.00E+01 5.22E+05 5.16E+05 5.10E+05 5.00E+05 4.81E+05 4.46E+05 Total - - 2.05E+16 1.90E+16 1.76E+16 1.55E+16 1.26E+16 9.61E+15 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 22 OF 44 Table 6-6 4 Years of Initial Decay Source Terms (4Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 4 year 4.75 year 4.83 year 4.92 year 1 1.00E-02 5.00E-02 3.77E+15 3.18E+15 3.14E+15 3.09E+15 2 5.00E-02 1.00E-01 1.10E+15 9.08E+14 8.93E+14 8.77E+14 3 1.00E-01 2.00E-01 9.05E+14 7.24E+14 7.10E+14 6.95E+14 4 2.00E-01 3.00E-01 2.57E+14 2.08E+14 2.04E+14 2.00E+14 5 3.00E-01 4.00E-01 1.80E+14 1.42E+14 1.39E+14 1.36E+14 6 4.00E-01 6.00E-01 2.15E+15 1.64E+15 1.59E+15 1.54E+15 7 6.00E-01 8.00E-01 6.29E+15 5.72E+15 5.67E+15 5.61E+15 8 8.00E-01 1.00E+00 9.29E+14 7.32E+14 7.14E+14 6.94E+14 9 1.00E+00 1.33E+00 2.26E+14 1.92E+14 1.89E+14 1.86E+14 10 1.33E+00 1.66E+00 7.18E+13 5.51E+13 5.36E+13 5.20E+13 11 1.66E+00 2.00E+00 3.51E+12 2.16E+12 2.05E+12 1.94E+12 12 2.00E+00 2.50E+00 7.20E+12 3.86E+12 3.62E+12 3.36E+12 13 2.50E+00 3.00E+00 2.53E+11 1.51E+11 1.43E+11 1.35E+11 14 3.00E+00 4.00E+00 2.34E+10 1.41E+10 1.33E+10 1.25E+10 15 4.00E+00 5.00E+00 3.11E+07 3.02E+07 3.01E+07 3.00E+07 16 5.00E+00 6.50E+00 1.25E+07 1.21E+07 1.21E+07 1.21E+07 17 6.50E+00 8.00E+00 2.45E+06 2.38E+06 2.37E+06 2.36E+06 18 8.00E+00 1.00E+01 5.20E+05 5.05E+05 5.04E+05 5.02E+05 Total - - 1.59E+16 1.35E+16 1.33E+16 1.31E+16 Table 6-6 (Contd) 4 Years of Initial Decay Source Terms (4Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 5 years 5.25 years 5.5 years 6 years 7 years 9 years 1 1.00E-02 5.00E-02 3.05E+15 2.93E+15 2.83E+15 2.66E+15 2.44E+15 2.19E+15 2 5.00E-02 1.00E-01 8.63E+14 8.25E+14 7.93E+14 7.42E+14 6.75E+14 6.06E+14 3 1.00E-01 2.00E-01 6.82E+14 6.47E+14 6.17E+14 5.70E+14 5.08E+14 4.44E+14 4 2.00E-01 3.00E-01 1.96E+14 1.87E+14 1.79E+14 1.66E+14 1.49E+14 1.31E+14 5 3.00E-01 4.00E-01 1.33E+14 1.26E+14 1.20E+14 1.10E+14 9.72E+13 8.54E+13 6 4.00E-01 6.00E-01 1.50E+15 1.37E+15 1.26E+15 1.06E+15 7.62E+14 4.13E+14 7 6.00E-01 8.00E-01 5.56E+15 5.42E+15 5.28E+15 5.04E+15 4.65E+15 4.11E+15 8 8.00E-01 1.00E+00 6.77E+14 6.27E+14 5.80E+14 4.99E+14 3.72E+14 2.14E+14 9 1.00E+00 1.33E+00 1.83E+14 1.75E+14 1.68E+14 1.54E+14 1.34E+14 1.05E+14 10 1.33E+00 1.66E+00 5.06E+13 4.66E+13 4.30E+13 3.68E+13 2.73E+13 1.61E+13 11 1.66E+00 2.00E+00 1.85E+12 1.59E+12 1.37E+12 1.03E+12 6.19E+11 3.10E+11 12 2.00E+00 2.50E+00 3.14E+12 2.56E+12 2.09E+12 1.39E+12 6.24E+11 1.36E+11 13 2.50E+00 3.00E+00 1.28E+11 1.08E+11 9.08E+10 6.47E+10 3.29E+10 8.81E+09 14 3.00E+00 4.00E+00 1.19E+10 1.00E+10 8.47E+09 6.05E+09 3.10E+09 8.48E+08 15 4.00E+00 5.00E+00 2.99E+07 2.97E+07 2.94E+07 2.88E+07 2.77E+07 2.57E+07 16 5.00E+00 6.50E+00 1.20E+07 1.19E+07 1.18E+07 1.16E+07 1.11E+07 1.03E+07 17 6.50E+00 8.00E+00 2.36E+06 2.33E+06 2.31E+06 2.27E+06 2.18E+06 2.03E+06 18 8.00E+00 1.00E+01 5.00E+05 4.96E+05 4.91E+05 4.82E+05 4.64E+05 4.30E+05 Total - - 1.29E+16 1.24E+16 1.19E+16 1.10E+16 9.81E+15 8.32E+15 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 23 OF 44 Table 6-7 6 Years of Initial Decay Source Terms (6Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 6 year 6.75 year 6.83 year 6.92 year 1 1.00E-02 5.00E-02 2.65E+15 2.48E+15 2.46E+15 2.44E+15 2 5.00E-02 1.00E-01 7.40E+14 6.86E+14 6.82E+14 6.77E+14 3 1.00E-01 2.00E-01 5.68E+14 5.18E+14 5.14E+14 5.10E+14 4 2.00E-01 3.00E-01 1.65E+14 1.51E+14 1.50E+14 1.49E+14 5 3.00E-01 4.00E-01 1.09E+14 9.94E+13 9.86E+13 9.77E+13 6 4.00E-01 6.00E-01 1.05E+15 8.20E+14 7.99E+14 7.76E+14 7 6.00E-01 8.00E-01 5.01E+15 4.71E+15 4.68E+15 4.65E+15 8 8.00E-01 1.00E+00 4.95E+14 3.96E+14 3.87E+14 3.77E+14 9 1.00E+00 1.33E+00 1.53E+14 1.37E+14 1.36E+14 1.34E+14 10 1.33E+00 1.66E+00 3.65E+13 2.92E+13 2.85E+13 2.78E+13 11 1.66E+00 2.00E+00 1.03E+12 6.96E+11 6.70E+11 6.42E+11 12 2.00E+00 2.50E+00 1.40E+12 7.64E+11 7.17E+11 6.68E+11 13 2.50E+00 3.00E+00 6.46E+10 3.89E+10 3.68E+10 3.47E+10 14 3.00E+00 4.00E+00 6.04E+09 3.65E+09 3.46E+09 3.26E+09 15 4.00E+00 5.00E+00 2.79E+07 2.72E+07 2.71E+07 2.70E+07 16 5.00E+00 6.50E+00 1.12E+07 1.09E+07 1.09E+07 1.08E+07 17 6.50E+00 8.00E+00 2.20E+06 2.14E+06 2.13E+06 2.12E+06 18 8.00E+00 1.00E+01 4.67E+05 4.54E+05 4.52E+05 4.51E+05 Total - - 1.10E+16 1.00E+16 9.94E+15 9.84E+15 Table 6-7 (Contd) 6 Years of Initial Decay Source Terms (6Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 7 years 7.25 years 7.5 years 8 years 9 years 11 years 1 1.00E-02 5.00E-02 2.43E+15 2.39E+15 2.35E+15 2.28E+15 2.18E+15 2.03E+15 2 5.00E-02 1.00E-01 6.73E+14 6.61E+14 6.50E+14 6.32E+14 6.04E+14 5.65E+14 3 1.00E-01 2.00E-01 5.06E+14 4.95E+14 4.85E+14 4.68E+14 4.42E+14 4.05E+14 4 2.00E-01 3.00E-01 1.48E+14 1.45E+14 1.42E+14 1.38E+14 1.31E+14 1.21E+14 5 3.00E-01 4.00E-01 9.69E+13 9.48E+13 9.29E+13 8.97E+13 8.51E+13 7.90E+13 6 4.00E-01 6.00E-01 7.57E+14 6.98E+14 6.45E+14 5.53E+14 4.10E+14 2.37E+14 7 6.00E-01 8.00E-01 4.62E+15 4.54E+15 4.46E+15 4.32E+15 4.09E+15 3.74E+15 8 8.00E-01 1.00E+00 3.69E+14 3.43E+14 3.20E+14 2.78E+14 2.13E+14 1.30E+14 9 1.00E+00 1.33E+00 1.32E+14 1.28E+14 1.24E+14 1.17E+14 1.04E+14 8.55E+13 10 1.33E+00 1.66E+00 2.71E+13 2.53E+13 2.36E+13 2.06E+13 1.60E+13 1.02E+13 11 1.66E+00 2.00E+00 6.18E+11 5.54E+11 4.99E+11 4.14E+11 3.09E+11 2.25E+11 12 2.00E+00 2.50E+00 6.27E+11 5.14E+11 4.23E+11 2.87E+11 1.36E+11 3.68E+10 13 2.50E+00 3.00E+00 3.29E+10 2.78E+10 2.35E+10 1.69E+10 8.79E+09 2.67E+09 14 3.00E+00 4.00E+00 3.09E+09 2.62E+09 2.22E+09 1.60E+09 8.45E+08 2.66E+08 15 4.00E+00 5.00E+00 2.69E+07 2.66E+07 2.64E+07 2.59E+07 2.49E+07 2.31E+07 16 5.00E+00 6.50E+00 1.08E+07 1.07E+07 1.06E+07 1.04E+07 1.00E+07 9.28E+06 17 6.50E+00 8.00E+00 2.12E+06 2.10E+06 2.08E+06 2.04E+06 1.96E+06 1.82E+06 18 8.00E+00 1.00E+01 4.50E+05 4.45E+05 4.41E+05 4.33E+05 4.17E+05 3.87E+05 Total - - 9.76E+15 9.52E+15 9.30E+15 8.90E+15 8.27E+15 7.40E+15 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 24 OF 44 Table 6-8 10 Years of Initial Decay Source Terms (10Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 10 year 10.75 year 10.83 year 10.92 year 1 1.00E-02 5.00E-02 2.06E+15 2.01E+15 2.00E+15 1.99E+15 2 5.00E-02 1.00E-01 5.73E+14 5.60E+14 5.59E+14 5.57E+14 3 1.00E-01 2.00E-01 4.15E+14 4.02E+14 4.01E+14 3.99E+14 4 2.00E-01 3.00E-01 1.23E+14 1.20E+14 1.20E+14 1.19E+14 5 3.00E-01 4.00E-01 8.05E+13 7.85E+13 7.83E+13 7.80E+13 6 4.00E-01 6.00E-01 3.03E+14 2.48E+14 2.43E+14 2.37E+14 7 6.00E-01 8.00E-01 3.81E+15 3.69E+15 3.68E+15 3.67E+15 8 8.00E-01 1.00E+00 1.61E+14 1.34E+14 1.32E+14 1.29E+14 9 1.00E+00 1.33E+00 9.12E+13 8.47E+13 8.41E+13 8.34E+13 10 1.33E+00 1.66E+00 1.23E+13 1.04E+13 1.03E+13 1.01E+13 11 1.66E+00 2.00E+00 2.52E+11 2.28E+11 2.26E+11 2.24E+11 12 2.00E+00 2.50E+00 6.93E+10 4.32E+10 4.12E+10 3.91E+10 13 2.50E+00 3.00E+00 4.73E+09 3.05E+09 2.91E+09 2.77E+09 14 3.00E+00 4.00E+00 4.59E+08 2.99E+08 2.86E+08 2.73E+08 15 4.00E+00 5.00E+00 2.16E+07 2.10E+07 2.09E+07 2.09E+07 16 5.00E+00 6.50E+00 8.67E+06 8.43E+06 8.40E+06 8.37E+06 17 6.50E+00 8.00E+00 1.70E+06 1.65E+06 1.65E+06 1.64E+06 18 8.00E+00 1.00E+01 3.61E+05 3.51E+05 3.50E+05 3.49E+05 Total - - 7.63E+15 7.33E+15 7.31E+15 7.27E+15 Table 6-8 (Cond)10 Years of Initial Decay Source Terms (10Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Bound Bound Group 11 years 11.25 11.5 12 years 13 years 15 years (MeV) (MeV) years years 1 1.00E-02 5.00E-02 1.99E+15 1.97E+15 1.96E+15 1.93E+15 1.87E+15 1.77E+15 2 5.00E-02 1.00E-01 5.56E+14 5.52E+14 5.48E+14 5.40E+14 5.27E+14 5.01E+14 3 1.00E-01 2.00E-01 3.98E+14 3.94E+14 3.91E+14 3.84E+14 3.71E+14 3.47E+14 4 2.00E-01 3.00E-01 1.19E+14 1.18E+14 1.17E+14 1.15E+14 1.12E+14 1.05E+14 5 3.00E-01 4.00E-01 7.78E+13 7.72E+13 7.67E+13 7.55E+13 7.34E+13 6.96E+13 6 4.00E-01 6.00E-01 2.32E+14 2.18E+14 2.05E+14 1.82E+14 1.45E+14 9.93E+13 7 6.00E-01 8.00E-01 3.65E+15 3.62E+15 3.59E+15 3.52E+15 3.41E+15 3.21E+15 8 8.00E-01 1.00E+00 1.27E+14 1.20E+14 1.13E+14 1.02E+14 8.33E+13 5.87E+13 9 1.00E+00 1.33E+00 8.28E+13 8.09E+13 7.90E+13 7.55E+13 6.92E+13 5.86E+13 10 1.33E+00 1.66E+00 9.89E+12 9.40E+12 8.95E+12 8.13E+12 6.80E+12 5.02E+12 11 1.66E+00 2.00E+00 2.22E+11 2.17E+11 2.12E+11 2.04E+11 1.93E+11 1.79E+11 12 2.00E+00 2.50E+00 3.73E+10 3.25E+10 2.85E+10 2.25E+10 1.56E+10 1.05E+10 13 2.50E+00 3.00E+00 2.65E+09 2.32E+09 2.04E+09 1.60E+09 1.07E+09 6.60E+08 14 3.00E+00 4.00E+00 2.61E+08 2.30E+08 2.03E+08 1.60E+08 1.08E+08 6.62E+07 15 4.00E+00 5.00E+00 2.08E+07 2.06E+07 2.04E+07 2.00E+07 1.93E+07 1.79E+07 16 5.00E+00 6.50E+00 8.35E+06 8.27E+06 8.19E+06 8.04E+06 7.74E+06 7.18E+06 17 6.50E+00 8.00E+00 1.64E+06 1.62E+06 1.61E+06 1.58E+06 1.52E+06 1.41E+06 18 8.00E+00 1.00E+01 3.48E+05 3.44E+05 3.41E+05 3.35E+05 3.23E+05 2.99E+05 Total - - 7.24E+15 7.16E+15 7.08E+15 6.93E+15 6.66E+15 6.22E+15 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 25 OF 44 Table 6-9 20 Years of Initial Decay Source Terms (20Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Group Bound Bound (MeV) (MeV) 20 year 20.75 year 20.83 year 20.92 year 1 1.00E-02 5.00E-02 8.17E+14 8.02E+14 8.00E+14 7.99E+14 2 5.00E-02 1.00E-01 2.42E+14 2.38E+14 2.38E+14 2.37E+14 3 1.00E-01 2.00E-01 1.55E+14 1.52E+14 1.52E+14 1.51E+14 4 2.00E-01 3.00E-01 4.80E+13 4.70E+13 4.70E+13 4.68E+13 5 3.00E-01 4.00E-01 3.29E+13 3.23E+13 3.22E+13 3.21E+13 6 4.00E-01 6.00E-01 2.77E+13 2.64E+13 2.62E+13 2.61E+13 7 6.00E-01 8.00E-01 1.46E+15 1.44E+15 1.43E+15 1.43E+15 8 8.00E-01 1.00E+00 1.33E+13 1.24E+13 1.23E+13 1.22E+13 9 1.00E+00 1.33E+00 1.58E+13 1.49E+13 1.48E+13 1.47E+13 10 1.33E+00 1.66E+00 1.26E+12 1.19E+12 1.18E+12 1.18E+12 11 1.66E+00 2.00E+00 8.37E+10 8.22E+10 8.20E+10 8.18E+10 12 2.00E+00 2.50E+00 4.30E+09 4.21E+09 4.20E+09 4.19E+09 13 2.50E+00 3.00E+00 1.08E+08 1.07E+08 1.06E+08 1.06E+08 14 3.00E+00 4.00E+00 6.08E+06 5.81E+06 5.78E+06 5.75E+06 15 4.00E+00 5.00E+00 1.95E+06 1.89E+06 1.89E+06 1.88E+06 16 5.00E+00 6.50E+00 7.80E+05 7.60E+05 7.57E+05 7.55E+05 17 6.50E+00 8.00E+00 1.53E+05 1.49E+05 1.48E+05 1.48E+05 18 8.00E+00 1.00E+01 3.25E+04 3.16E+04 3.15E+04 3.14E+04 Total - - 2.82E+15 2.76E+15 2.76E+15 2.75E+15 Table 6-9 20 Years of Initial Decay Source Terms (20Y.out)

Lower Upper Source strength at each decay time (photons/sec/MTU)

Bound Bound Group 21 years 21.25 21.5 22 years 23 years 25 years (MeV) (MeV) years years 1 1.00E-02 5.00E-02 7.97E+14 7.92E+14 7.87E+14 7.77E+14 7.58E+14 7.22E+14 2 5.00E-02 1.00E-01 2.37E+14 2.35E+14 2.34E+14 2.32E+14 2.27E+14 2.18E+14 3 1.00E-01 2.00E-01 1.51E+14 1.50E+14 1.49E+14 1.47E+14 1.43E+14 1.35E+14 4 2.00E-01 3.00E-01 4.67E+13 4.64E+13 4.61E+13 4.55E+13 4.43E+13 4.20E+13 5 3.00E-01 4.00E-01 3.21E+13 3.19E+13 3.17E+13 3.13E+13 3.05E+13 2.90E+13 6 4.00E-01 6.00E-01 2.60E+13 2.56E+13 2.52E+13 2.46E+13 2.34E+13 2.15E+13 7 6.00E-01 8.00E-01 1.43E+15 1.42E+15 1.41E+15 1.40E+15 1.36E+15 1.30E+15 8 8.00E-01 1.00E+00 1.22E+13 1.19E+13 1.17E+13 1.12E+13 1.04E+13 9.08E+12 9 1.00E+00 1.33E+00 1.47E+13 1.44E+13 1.41E+13 1.36E+13 1.27E+13 1.10E+13 10 1.33E+00 1.66E+00 1.17E+12 1.15E+12 1.13E+12 1.09E+12 1.02E+12 9.00E+11 11 1.66E+00 2.00E+00 8.16E+10 8.11E+10 8.06E+10 7.96E+10 7.76E+10 7.38E+10 12 2.00E+00 2.50E+00 4.18E+09 4.15E+09 4.13E+09 4.07E+09 3.97E+09 3.78E+09 13 2.50E+00 3.00E+00 1.06E+08 1.06E+08 1.05E+08 1.04E+08 1.03E+08 1.00E+08 14 3.00E+00 4.00E+00 5.73E+06 5.66E+06 5.59E+06 5.46E+06 5.23E+06 4.85E+06 15 4.00E+00 5.00E+00 1.88E+06 1.86E+06 1.84E+06 1.81E+06 1.75E+06 1.63E+06 16 5.00E+00 6.50E+00 7.53E+05 7.46E+05 7.39E+05 7.26E+05 7.01E+05 6.53E+05 17 6.50E+00 8.00E+00 1.48E+05 1.46E+05 1.45E+05 1.42E+05 1.37E+05 1.28E+05 18 8.00E+00 1.00E+01 3.13E+04 3.10E+04 3.08E+04 3.02E+04 2.92E+04 2.72E+04 Total - - 2.75E+15 2.73E+15 2.71E+15 2.68E+15 2.61E+15 2.49E+15 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 26 OF 44 6.5 MCNP5 Input Development This section describes the computations required to perform this evaluation.

6.5.1 Fuel Assembly and SFP Geometry Calculations Values requiring further calculation using design inputs or assumptions are shown below. Note, calculated values may differ slightly from as-presented equations due to rounding in Excel.

Because the SFP model origin is at elevation 78.25 feet (Table 2-3), the pool liner is below the model origin and extends from -0.47625 cm (3/16 in) to 0 cm.

Pool Height (in) = 465.0 in = 1181.1 cm.

The SFP rack size of 58 x 77 was calculated based on the total number of assemblies from References III.7 and III.8. This results in 4466 spaces. Since only 4113 assemblies are modeled (Table 6-1), 353 spaces are left empty. This conservative, as the actual licensed number of assemblies is 3859 (Reference II.10).

Top of Fuel Rack in Model = Rack Bottom Thickness (Table 2 2) + Rack Height (Table 2 2)

= (7.5 in + 165.375 in) = 172.875 in = 439.1025 cm Assembly Height (cm) = 171.4 in = 435.356 cm 465.0 Pool Elevation () = 78.25 ft + = 117 ft 12 Upper Hardware Height (cm)

= Assembly Height (in) (Table 2 1) Active Fuel Length (in) (Table 2 1)

Lower Height (in) (Table 2 1) = 171.4 in - 145.24 in - 5.261 = 20.899 in = 53.08 cm 6.5.2 Upper Hardware Material Description A homogenized material is used to represent the upper hardware region of the assembly. To homogenize the upper hardware region, the density of steel and the total mass of steel are used to determine the total volume of steel in the upper hardware region. The calculation of the volume of the upper region is shown below. The remainder of the upper hardware region volume is filled with void at a density of 0 g/cm3. The total stainless steel mass is used to determine the homogenized weight fractions in the upper hardware region. The resultant weight fractions for the upper hardware region are the same as steel, but the density is reduced due to the void that occupies the rest of the region. The density and material composition are presented in Table 6-10. Note, calculated values may differ slightly from as-presented equations due to rounding in Excel.

Fuel upper region volume = (fuel rod pitch (Table 2 1) x 10 rods on each side)2 x (Upper Hardware height) = (1.295 cm 10)2 x ( 53.08 cm) = 8902.15 cm3 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 27 OF 44 Table 6-10 Homogenized Upper Hardware Region Composition Calculation Upper Region Homogenization (Material 3)

ZAID Homogenized Parameter Value Weight Fraction 6000 -8.00000E-04 Upper region cm3 8902.15 14000 -1.00000E-02 kg steel 6.01 15031 -4.50000E-04 kg void 0.00 24000 -1.90000E-01 Upper region kg 6.01 Upper region 25055 -2.00000E-02 0.67 density (g/cm3) 26000 -6.83750E-01 28000 -9.50000E-02 6.6 Determine Flux at Top of SFP Using MCNP5 6.6.1 Geometry Characterization The MCNP5 models of the fuel, spent fuel rack, and spent fuel pool use the universe structure option to simplify the geometric description. Beginning with the containing universe, the fill option is used to fill finite pieces of the geometry with infinite universes.

Each universe is constructed by alternatively defining surfaces and cells for each universe. In the input file, the required order is cells followed by surfaces. In the following sections, an inverse presentation will be used to provide the intuitive progression of surface to cell. All of the dimensions are defined in terms of x, y, and z coordinates. The origin of the system is at the center of the spent fuel pool in the x and y direction and at the bottom of the pool (water level 0) in the z direction.

Fuel Rod Model Based on the fuel assembly details described in Table 2-1 and rack details in Table 2-2, the fuel rod universe is a simple model of a UO2 cylindrical rod surrounded by a void gap, Zirc-2 cladding, and void outside the cladding that spans the length of the active fuel region. Therefore, the fuel rod universe is constructed using 3 surfaces and 4 cells, as shown in Figure 6-2 and Figure 6-3, respectively. The material numbers and respective densities in the cell definitions are taken from the material listing in Table 2-4.

Figure 6-2 MCNP5 Model of Fuel Assembly Surfaces 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 28 OF 44 Figure 6-3 MCNP5 Model of Fuel Assembly Cells 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod Water Rod Model Every fuel assembly contains two water rods, which are modeled as Zirc-2 cylinders. The water rods are modeled in the same universe, universe 4, as the fuel assembly. The water rods are modeled using 2 surfaces and 4 cells and filled with void, as shown in Figure 6-4 and Figure 6-5, respectively. Surfaces 8 and 9 in Figure 6-8 are the upper and lower cut planes for the water rods. The trcl is a cell transformation used to translate the water rod cell into the correct location.

Figure 6-4 MCNP5 Water Rod Surfaces 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior Figure 6-5 MCNP5 Water Rod Cells 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod Single Fuel Assembly Model Other than the fuel rods, which fill the single fuel assembly lattice structure, the single fuel assembly model contains the homogenized upper hardware region, lower hardware region, and the void between the fuel rods. Spacer material is not included in the model. The active fuel region contains the fuel rod lattice structure universe (universe 3), which fills the greater fuel assembly universe (universe 4). The greater fuel assembly universe (universe 4) also contains the water rods and the upper and lower hardware regions. The fuel rod lattice structure universe is constructed using a single surface and a single cell, as shown in Figure 6-6 and Figure 6-7, respectively. The greater fuel assembly model is constructed using 2 surfaces and 3 cells and is filled with the fuel rod lattice structure universe, as shown in Figure 6-8 and Figure 6-9, respectively. The material numbers and respective densities in the cell definitions are taken from the material listing in Table 2-4 and homogenization performed in Table 6-10.

Figure 6-6 MCNP5 Model of Active Fuel Region Lattice Structure Surface 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 29 OF 44 Figure 6-7 MCNP5 Model of Active Fuel Region Lattice Structure Cell 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1111111111 1111111111 1111111111 1111133111 1111133111 1113311111 1113311111 1111111111 1111111111 1 1 1 1 1 1 1 1 1 1 imp:p=1 Figure 6-8 MCNP5 Model of Single Fuel Assembly Surfaces 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane Figure 6-9 MCNP5 Model of Single Fuel Assembly Cells 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.25 +9 u=4 imp:p=1 $ Upper nozzle Single SFP Rack Model The single SFP rack model is constructed using seven (7) distinct universes composed of four cells each.

These six universes are needed to differentiate between the assemblies that have decayed for the 0 year, 2 years, 4 years, 6 years, 10 years, 20 years, or empty rack location groups. These universes are identical dimensionally. Each rack universe is filled by the fuel assembly universe as well as the void surrounding the assembly and the rack walls. The rack universes are created using 4 surfaces and 4 cells for each group and are shown in Figure 6-10 and Figure 6-11, respectively. The assembly surface is a right parallelepiped ten times the rod pitch. Each location in the SFP rack is a right parallelepiped the width of a rack opening minus the rack thickness. The pool outer dimensions are used to create the rack array boundary (surface 12).

The parameters needed to model a single rack assembly are taken from Table 2-2.

Figure 6-10 MCNP5 Model of SFP Rack Surfaces 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.45 $ Assembly Envelope 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.45 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 30 OF 44 Figure 6-11 MCNP5 Model of SFP Rack Cells c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks SFP Rack Lattice Structure Model The SFP racks lattice structure model is constructed using a single universe. This universe contains a lattice structure of a single simple surface and cell that is filled by either a fuel assembly that has initial decayed for 0 year, 2 years, 4 years, 6 years, 10 years, 20 years or empty rack. The SFP racks lattice structure surface and cell are in Figure 6-12 and Figure 6-13, respectively.

SFP racks lattice structure model parameters are taken from Table 2-2 and Table 2-3, respectively.

Figure 6-12 MCNP5 Model of SFP Racks Lattice Surfaces 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.45 $ Rack Envelope Figure 6-13 MCNP5 Model of SFP Racks Lattice Cells 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 31 OF 44 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells SFP Area Model The SFP area model contains the SFP liner, void on the outside of the racks, surrounding concrete, and the space above the SFP racks. The location where the rack area is located is filled with the SFP rack universe while everything else is located in the master universe. The model contains no water in the SFP or around the assemblies. The SFP area model is constructed using a single master universe. The SFP area model is created using 6 surfaces and 8 cells and is shown in Figure 6-14 and Figure 6-15, respectively. Pool dimensions are from Table 2-3. Surface 500 is the plane 30 cm from the top of the SFP to determine the flux across.

Figure 6-14 MCNP5 Model of SFP Area Surfaces c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe Figure 6-15 MCNP5 Model of SFP Area Cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe 6.6.2 MCNP5 File Naming MCNP5 cases are developed for the SFP based on initial decay time as indicated by the naming scheme below:

<decay time after Cycle 22 discharges><.i for input or .o for output>

The MCNP5 input files and the fuel cool times in each are identified in Table 6-11.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 32 OF 44 Table 6-11 MCNP5 Input Files Input File Name Years After Shutdown Fuel Cool Times Included 0.75 year 2.75 years 4.75 years 75Y.i 0.75 year 6.75 years 10.75 years 20.75 years 0.83 year 2.83 years 4.83 years 83Y.i 0.83 year 6.83 years 10.83 years 20.83 years 0.92 year 2.92 years 4.92 years 92Y.i 0.92 year 6.92 years 10.92 years 20.92 years 1 year 3 years 5 years 1Y.i 1 year 7 years 11 years 21 years 1.25 years 3.25 years 5.25 years 125Y.i 1.25 years 7.25 years 11.25 years 21.25 years 1.5 years 3.5 years 5.5 years 15Y.i 1.5 years 7.5 years 11.5 years 21.5 years 2 years 4 years 6 years 2Y.i 2 years 8 years 12 years 22 years 3 years 5 years 7 years 3Y.i 3 years 9 years 13 years 23 years EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 33 OF 44 Input File Name Years After Shutdown Fuel Cool Times Included 5 years 7 years 9 years 5Y.i 5 years 11 years 15 years 25 years 6.6.3 MCNP5 Source Description The geometric description of a source region involves both its spatial extent and a characterization of the material present in the region.

Two cards are required to define the source using MCNP5. In the sdef card, the spatial, energy, and cell distributions are defined. The spatial description is given in the coordinate system of the fuel assembly universes. The source cells are mapped using the cel option and separate sources for each of the decay times are applied to the different assemblies. The source strength is defined on the tally card(s).

6.6.4 MCNP5 SDEF The six different initial decay groups (0 year, 2 years, 4 years, 6 years, 10 years, and 20 years) are arranged in the SFP in six distinct areas. The regions, decay times, number of assemblies, sdef source distribution, and universe number are shown in Figure 6-16. The dimensions used in the sdef are from Table 2-1.

The 0.75-year decayed source definition is shown in Figure 6-17, which has energy distinct energy distributions and source probabilities for each of the six groups. The cel distribution refers to each individual cell that contains a source and specifies the source probabilities. The pos is the reference point for the sampling position. The rad is the radial distance from axs. The ext is the distance from pos along axs. The axs is the reference vector for ext and rad, which is along the fuel pin on the z axis. The energy distribution, sdef erg changes depending on the decay time. Figure 6-16 presents a cartoon of the spent fuel groups, applicable cells, universes, energy distribution, and number of assemblies.

The source probabilities specified in the cel distribution are based on the fraction of photons emitted by a decay group divided by the total photons emitted for all groups. As such, each MCNP5 run has six source probabilities, one for each of the 0 year, 2 years, 4 years, 6 years, 10 years, and 20 years groups.

An example of the 0.75 year group decayed source probability derivation is shown below, where photon totals are taken from Table 6-4 through Table 6-9. Note, calculated values may differ slightly from as-presented equations due to rounding in Excel.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 34 OF 44 5.1016

= (580 )

6 4 0.1804 ÷ 5.1016 (580 )

6 4 0.1804 +

2.2216 (168 )

6 5 0.1812 +

1.3516 (144 )

6 6 0.1756 +

1.0016 (304 )

6 7 0.1744 +

7.3315 (784 )

6 8 0.1675 +

2.7615 (2133 )

6 9 0.1826 = 0.5977 The resulting source probabilities are presented in Table 6-12. All of the MCNP5 input files are included in Attachment 2.

Table 6-12 MCNP5 Source Probabilities Decay Source Total from Photons/sec/ Source Group # Assemblies MTU Time Tables 6-4 through 6-9 group Probability A B C D = AxBxC E = Di/(sum(D) 1Y 580 0.1804 5.10E+16 5.33E+18 0.5977 2Y 168 0.1812 2.22E+16 6.77E+17 0.0759 0.75 4Y 144 0.1756 1.35E+16 3.42E+17 0.0383 Year 6Y 304 0.1744 1.00E+16 5.31E+17 0.0595 10Y 784 0.1675 7.33E+15 9.63E+17 0.1079 20Y 2133 0.1826 2.76E+15 1.08E+18 0.1206 1Y 580 0.1804 4.71E+16 4.93E+18 0.5810 2Y 168 0.1812 2.17E+16 6.59E+17 0.0777 0.83 4Y 144 0.1756 1.33E+16 3.37E+17 0.0397 Year 6Y 304 0.1744 9.94E+15 5.27E+17 0.0621 10Y 784 0.1675 7.31E+15 9.59E+17 0.1130 20Y 2133 0.1826 2.76E+15 1.07E+18 0.1266 1Y 580 0.1804 4.35E+16 4.55E+18 0.5642 2Y 168 0.1812 2.10E+16 6.40E+17 0.0792 0.92 4Y 144 0.1756 1.31E+16 3.31E+17 0.0410 Year 6Y 304 0.1744 9.84E+15 5.22E+17 0.0646 10Y 784 0.1675 7.27E+15 9.55E+17 0.1183 20Y 2133 0.1826 2.75E+15 1.07E+18 0.1327 1Y 580 0.1804 4.09E+16 4.28E+18 0.5508 2Y 168 0.1812 2.05E+16 6.23E+17 0.0803 4Y 144 0.1756 1.29E+16 3.26E+17 0.0420 1 Year 6Y 304 0.1744 9.76E+15 5.17E+17 0.0666 10Y 784 0.1675 7.24E+15 9.51E+17 0.1225 20Y 2133 0.1826 2.75E+15 1.07E+18 0.1377 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 35 OF 44 Decay Source Total from Photons/sec/ Source Group # Assemblies MTU Time Tables 6-4 through 6-9 group Probability A B C D = AxBxC E = Di/(sum(D) 1Y 580 0.1804 3.44E+16 3.60E+18 0.5143 2Y 168 0.1812 1.90E+16 5.77E+17 0.0825 1.25 4Y 144 0.1756 1.24E+16 3.12E+17 0.0447 Years 6Y 304 0.1744 9.52E+15 5.05E+17 0.0722 10Y 784 0.1675 7.16E+15 9.40E+17 0.1345 20Y 2133 0.1826 2.73E+15 1.06E+18 0.1519 1Y 580 0.1804 2.97E+16 3.11E+18 0.4837 2Y 168 0.1812 1.76E+16 5.37E+17 0.0836 1.5 4Y 144 0.1756 1.19E+16 3.00E+17 0.0467 Years 6Y 304 0.1744 9.30E+15 4.93E+17 0.0767 10Y 784 0.1675 7.08E+15 9.30E+17 0.1448 20Y 2133 0.1826 2.71E+15 1.06E+18 0.1644 1Y 580 0.1804 2.31E+16 2.42E+18 0.4323 2Y 168 0.1812 1.55E+16 4.72E+17 0.0843 2 4Y 144 0.1756 1.10E+16 2.79E+17 0.0499 Years 6Y 304 0.1744 8.90E+15 4.72E+17 0.0844 10Y 784 0.1675 6.93E+15 9.10E+17 0.1627 20Y 2133 0.1826 2.68E+15 1.04E+18 0.1865 1Y 580 0.1804 1.55E+16 1.62E+18 0.3535 2Y 168 0.1812 1.26E+16 3.84E+17 0.0837 3 4Y 144 0.1756 9.81E+15 2.48E+17 0.0541 Years 6Y 304 0.1744 8.27E+15 4.39E+17 0.0957 10Y 784 0.1675 6.66E+15 8.75E+17 0.1909 20Y 2133 0.1826 2.61E+15 1.02E+18 0.2220 1Y 580 0.1804 9.33E+15 9.76E+17 0.2670 2Y 168 0.1812 9.61E+15 2.93E+17 0.0800 5 4Y 144 0.1756 8.32E+15 2.10E+17 0.0575 Years 6Y 304 0.1744 7.40E+15 3.92E+17 0.1072 10Y 784 0.1675 6.22E+15 8.17E+17 0.2233 20Y 2133 0.1826 2.49E+15 9.69E+17 0.2649 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 36 OF 44 Figure 6-16 Fuel Pool Source Arrangement Cartoon SFP Length empty racks 177 rack locations cell 624 u=11 0 yr cooled 580 assemblies d5 cell 24 u=5 2 yr cooled 168 assemblies d6 cell 124 u=6 4 yr cooled 144 assemblies d7 SFP Width cell 224 u=7 6 yr cooled 304 assemblies d8 cell 324 u=8 10 yr cooled 784 assemblies d9 cell 424 u=9 20 yr cooled 1153 assemblies d10 cell 524 u=10 empty racks 176 rack locations cell 624 u=11 Figure 6-17 Fuel Gamma Source Definition c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 sp4 0.5977 0.0759 0.0383 0.0595 0.1079 0.1206 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 1.60E+16 5.23E+15 5.22E+15 1.31E+15 1.01E+15 5.85E+15 1.37E+16 1.79E+15 4.95E+14 2.15E+14 2.83E+13 1.11E+14 1.81E+12 1.62E+11 1.21E+07 4.87E+06 9.54E+05 2.03E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 37 OF 44 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 5.63E+15 1.73E+15 1.52E+15 4.19E+14 3.08E+14 3.38E+15 7.45E+15 1.36E+15 3.08E+14 1.13E+14 7.99E+12 1.99E+13 5.78E+11 5.32E+10 3.16E+07 1.27E+07 2.49E+06 5.28E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 3.18E+15 9.08E+14 7.24E+14 2.08E+14 1.42E+14 1.64E+15 5.72E+15 7.32E+14 1.92E+14 5.51E+13 2.16E+12 3.86E+12 1.51E+11 1.41E+10 3.02E+07 1.21E+07 2.38E+06 5.05E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.48E+15 6.86E+14 5.18E+14 1.51E+14 9.94E+13 8.20E+14 4.71E+15 3.96E+14 1.37E+14 2.92E+13 6.96E+11 7.64E+11 3.89E+10 3.65E+09 2.72E+07 1.09E+07 2.14E+06 4.54E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 2.01E+15 5.60E+14 4.02E+14 1.20E+14 7.85E+13 2.48E+14 3.69E+15 1.34E+14 8.47E+13 1.04E+13 2.28E+11 4.32E+10 3.05E+09 2.99E+08 2.10E+07 8.43E+06 1.65E+06 3.51E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 8.02E+14 2.38E+14 1.52E+14 4.70E+13 3.23E+13 2.64E+13 1.44E+15 1.24E+13 1.49E+13 1.19E+12 8.22E+10 4.21E+09 1.07E+08 5.81E+06 1.89E+06 7.60E+05 1.49E+05 3.16E+04 6.6.5 MCNP5 Tally Multipliers Tally multipliers are used to relate the MCNP5 tally result into the units desired by the analyst. In this case, the MCNP5 tally results in photons/cm2/source particle and the tally multiplier converts the result into photons/s/cm2 above the SFP. The source terms in Table 6-12 are used to determine tally multipliers for the MCNP5 models in the tally card(s). The photons/second/group in Table 6-12 are summed to produce the tally multipliers in Table 6-13.

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 38 OF 44 Table 6-13 MCNP5 Tally Multipliers Photons/sec/group Total Tally Decay Time Group from Table 7-13 Multiplier 0Y 5.33E+18 2Y 6.77E+17 4Y 3.42E+17 0.75 Year 8.92E+18 6Y 5.31E+17 10Y 9.63E+17 20Y 1.08E+18 0Y 4.93E+18 2Y 6.59E+17 4Y 3.37E+17 0.83 Year 8.49E+18 6Y 5.27E+17 10Y 9.59E+17 20Y 1.07E+18 0Y 4.55E+18 2Y 6.40E+17 4Y 3.31E+17 0.92 Year 8.07E+18 6Y 5.22E+17 10Y 9.55E+17 20Y 1.07E+18 0Y 4.28E+18 2Y 6.23E+17 4Y 3.26E+17 1 Year 7.76E+18 6Y 5.17E+17 10Y 9.51E+17 20Y 1.07E+18 0Y 3.60E+18 2Y 5.77E+17 4Y 3.12E+17 1.25 Years 6.99E+18 6Y 5.05E+17 10Y 9.40E+17 20Y 1.06E+18 0Y 3.11E+18 2Y 5.37E+17 4Y 3.00E+17 1.5 Years 6.42E+18 6Y 4.93E+17 10Y 9.30E+17 20Y 1.06E+18 0Y 2.42E+18 2Y 4.72E+17 4Y 2.79E+17 2 Years 5.59E+18 6Y 4.72E+17 10Y 9.10E+17 20Y 1.04E+18 0Y 1.62E+18 2Y 3.84E+17 4Y 2.48E+17 3 Years 4.58E+18 6Y 4.39E+17 10Y 8.75E+17 20Y 1.02E+18 0Y 9.76E+17 2Y 2.93E+17 4Y 2.10E+17 5 Years 3.66E+18 6Y 3.92E+17 10Y 8.17E+17 20Y 9.69E+17 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 39 OF 44 6.6.6 Detector Description The MCNP5 model uses an f2 tally to determine the flux across the plane at the top of the SFP. The f2 tally is a surface flux tally and provides results of photons/area. The cross section of the top of the SFP is computed in MCNP5 using surface 500 as: 366 in x 484 in (Table 2-3) = 177,144 in2 =

1.14286E+06 cm2, which matches the area in the MCNP5 outputs. The tally multiplier applied in the f2 tallies are from Table 6-13.

Figure 6-18 Detector Description c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 8.92E+18 6.6.7 MCNP5 Visual Representation of the Model The following figures show a visual representation of the MCNP5 model, where red represents fuel rods, yellow is the SFP racks, white is the void around the assembly and green is concrete.

Figure 6-19 MCNP5 Visual Model of Fuel Assembly Lattice EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 40 OF 44 Figure 6-20 MCNP5 Visual Model of SFP and Surrounding Area El. 117-0 F2 tally surface 30 cm from top of SFP Fuel Racks El. 78-3 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 41 OF 44 6.7 Determine Dose at Control Room and EAB Using Line Beam Response Method The methodology in Section 5.4 is followed to determine the dose rate at the MCR and EAB. Table 6-14 contains the MCNP5 generated flux 30 cm from the top of the SFP. The MCNP5 results are all under 5%

error, which is the standard criteria for acceptable tally results (Reference III.2). Table 6-15 contains the a, b, c, and d fit parameters from Reference III.2 (included as Attachment 3) for the LBRF method at 95 degrees for the EAB and 110 degrees for the MCR (see Section 6.1).

The shielding factor of the walls around the control room is based on Input 2.12 and 1.1. The concrete wall to the east of the control room is 2 feet thick. This represents four tenth-value layer thicknesses.

Therefore, the control room shielding factor is 0.0001 (0.1x0.1x0.1x0.1). Four tenth-value layers is a realistic representation of the shielding provided by the 2-foot thick walls. Using a 2-foot thickness conservatively does not account for the additional shielding provided by concrete floors between the elevation of the control room and spent fuel pool.

Table 6-14 Flux at Top of SFP MCNP Flux (/cm2-s) Error (%)

Input File 75Y.i 7.63E+08 0.0061 83Y.i 7.23E+08 0.0061 92Y.i 6.81E+08 0.0060 1Y.i 6.56E+08 0.0060 125Y.i 5.98E+08 0.0060 15Y.i 5.62E+08 0.0061 2Y.i 5.08E+08 0.0059 3Y.i 4.36E+08 0.0057 5Y.i 3.58E+08 0.0055 Table 6-15 LBRF a, b, c, and d Fit Parameters Angle a b c d (degrees) 95 -14.8431 -0.98171 0.001045 0.001257 110 -15.0579 -0.98864 0.000881 0.001355 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 42 OF 44 7.0 Conclusion The beyond design basis drained down SFP dose rate to the main control room and exclusion area boundary during SAFSTOR are shown in Table 7-1, Figure 7-1, and Figure 7-2. These results will be utilized in the Emergency Planning exemption request for SAFSTOR. This calculation is applicable for a final shutdown of May 31st, 2019.

A loss of water shielding above the fuel could increase the offsite radiation levels, because of the gamma rays streaming up out of the pool being scattered back to a receptor at the site boundary. The offsite radiological impact of a postulated complete loss of SFP water was assessed. It was determined that the gamma radiation dose rate at the EAB would be less than the EPA PAG exposure levels. The PAGs were developed to respond to a mobile airborne plume that could transport and deposit radioactive material over a large area. In contrast, the radiation field formed by scatter from a drained SFP would be stationary rather than moving and would not cause transport or deposition of radioactive materials. The extended period required to exceed the integrated PAG limit of 1 rem TEDE would allow sufficient time to develop and implement onsite mitigative actions and provide confidence that additional offsite measures could be taken without planning if efforts to reestablish shielding over the fuel are delayed.

The dose rate to the Control Room was determined to be <0.02 mrem/hr. There is no acceptance criteria for the Control Room in ISG-02 (Reference III.2).

The decay heat source term results were also calculated and are presented in Attachment 7.

The dose rate results are computed using the equations in Section 5.4 and Assumption 3.3 with the MCNP5 generated photons per second at the top of the drained SFP. These results will be utilized in the Emergency Planning exemption request for SAFSTOR. Distance is x in the table below. A sample calculation for the dose rate at the exclusion area boundary 0.75 year after shutdown is provided.

(, , ) = () ()

1.308E 11 rads

= 1 MeV 265.2 m0.98171(0.001257)(265.2 m)

MeV/

air rad e14.8431(0.001045)(265.2 m) = 2.306E 21( )

photon air rad 1000 3600

= (, , ) ( )

air rad 8.72 + 14 1000 3600

= 2.306E 21

= 7.24 /

EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 43 OF 44 Table 7-1 Drain Down Shine to MCR and EAB Dose Results Distance

/s at Dose x to LBRF Boundary e(a-cx) x(b-dx) Flux (/cm2-s) top of Rate Boundary (rad/)

pool (mrem/hr)

(m) 0.75 yr 7.63E+08 8.72E+14 7.24 0.83 yr 7.23E+08 8.26E+14 6.85 0.92 yr 6.81E+08 7.78E+14 6.46 Exclusion 1 yr 6.56E+08 7.50E+14 6.22 Area 265.2 2.71E-07 6.50E-04 2.306E-21 1.25 yr 5.98E+08 6.84E+14 5.67 Boundary 1.5 yr 5.62E+08 6.42E+14 5.33 2 yr 5.08E+08 5.81E+14 4.82 3 yr 4.36E+08 4.99E+14 4.14 5 yr 3.58E+08 4.09E+14 3.40 0.75 yr 7.63E+08 8.72E+14 0.016 0.83 yr 7.23E+08 8.26E+14 0.015 0.92 yr 6.81E+08 7.78E+14 0.014 Main 1 yr 6.56E+08 7.50E+14 0.014 Control 55.6 2.75E-07 1.39E-02 5.01E-20 1.25 yr 5.98E+08 6.84E+14 0.012 Room 1.5 yr 5.62E+08 6.42E+14 0.012 2 yr 5.08E+08 5.81E+14 0.010 3 yr 4.36E+08 4.99E+14 0.009 5 yr 3.58E+08 4.09E+14 0.007 EN-DC-126 R006

CALCULATION CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 44 OF 44 Figure 7-1 SFP Drain Down Dose Rate at the EAB in Years After Shutdown 8.000 7.000 6.000 Dose Rate (mrem/hr) 5.000 4.000 3.000 2.000 1.000 0.000 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Years after Shutdown EAB Figure 7-2 SFP Drain Down Dose Rate at the MCR in Years After Shutdown 0.018 0.016 0.014 Dose Rate (mrem/hr) 0.012 0.010 0.008 0.006 0.004 0.002 0.000 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Years after Shutdown Control Room EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 1 OF 12 Attachment 1: ORIGEN Inputs 0Y.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 3.917 2

927.98 927.98 19.38 19.38 1

1 0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 3$$ 33 a3 1 27 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.5 e 95$$ 0 t 0Y 1 MTU 58** 19.38 19.38 19.38 19.38 19.38 19.38 19.38 19.38 19.38 19.38 60** 92.798 185.596 278.394 371.192 463.99 556.788 649.586 742.384 835.182 927.98 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 348.613 39170 180.182 960301.2 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 927.98 a3 1e-05 0.5 e 95$$ 0 t 0Y 1 MTU 58** 19.38 19.38 19.38 19.38 19.38 19.38 19.38 19.38 19.38 19.38 60** 1020.778 1113.576 1206.374 1299.172 1391.97 1484.768 1577.566 1670.364 1763.162 1855.96 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 7 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t 0Y 1 MTU 60** 0 1 1.25 1.5 2 3 5 61** f0.05 65$$

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 2 OF 12 82$$ 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS NPOSITION=1 2 3 4 5 6 7 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\0Y.f71" del ft71f001 end 2Y.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 3.9220001 3

842.3833 842.3833 842.3833 19.300001 19.300001 19.300001 1

1 1

0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 3$$ 33 a3 1 27 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.3333333 e 95$$ 0 t EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 3 OF 12 2Y 1 MTU 58** 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 60** 84.23833 168.4767 252.715 336.9533 421.1917 505.43 589.6683 673.9067 758.145 842.3833 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 349.058 39220 180.412 960250.5 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 10 a15 3 a18 1 e 57** 842.3833 a3 1e-05 0.3333333 e 95$$ 0 t 2Y 1 MTU 58** 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 60** 926.6217 1010.86 1095.098 1179.337 1263.575 1347.813 1432.052 1516.29 1600.528 1684.767 66$$ a1 2 a5 2 a9 2 e t ge10x10-8 3$$ 33 a3 3 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 1684.767 a3 1e-05 0.3333333 e 95$$ 0 t 2Y 1 MTU 58** 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 60** 1769.005 1853.243 1937.482 2021.72 2105.958 2190.197 2274.435 2358.673 2442.912 2527.15 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 8 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t 2Y 1 MTU 60** 0 2 3 3.25 3.5 4 5 7 61** f0.05 65$$

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e 82$$ 2 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 4 OF 12 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ 0 0 a10 8 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS NPOSITION=1 2 3 4 5 6 7 8 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\2Y.f71" del ft71f001 end 4Y.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 3.983 3

829.6133 829.6133 829.6133 19.92 19.92 19.92 1

1 1

0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 3$$ 33 a3 1 27 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.3333333 e 95$$ 0 t 4Y 1 MTU 58** 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 60** 82.96133 165.9227 248.884 331.8453 414.8067 497.768 580.7293 663.6907 746.652 829.6133 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 354.487 39830 183.218 959632.3 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 10 a15 3 a18 1 e 57** 829.6133 a3 1e-05 0.3333333 e EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 5 OF 12 95$$ 0 t 4Y 1 MTU 58** 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 60** 912.5747 995.536 1078.497 1161.459 1244.42 1327.381 1410.343 1493.304 1576.265 1659.227 66$$ a1 2 a5 2 a9 2 e t ge10x10-8 3$$ 33 a3 3 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 1659.227 a3 1e-05 0.3333333 e 95$$ 0 t 4Y 1 MTU 58** 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 60** 1742.188 1825.149 1908.111 1991.072 2074.033 2156.995 2239.956 2322.917 2405.879 2488.84 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 9 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t 4Y 1 MTU 60** 0 3 4 5 5.25 5.5 6 7 9 61** f0.05 65$$

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e 82$$ 2 2 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ 0 0 a10 8 e t 56$$ 0 0 a10 9 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 6 OF 12 NPOSITION=1 2 3 4 5 6 7 8 9 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\4Y.f71" del ft71f001 end 6Y.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 3.9880001 3

818.5833 818.5833 818.5833 20.05 20.05 20.05 1

1 1

0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 3$$ 33 a3 1 27 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.3333333 e 95$$ 0 t 6Y 1 MTU 58** 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 60** 81.85833 163.7167 245.575 327.4333 409.2917 491.15 573.0083 654.8667 736.725 818.5833 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 354.932 39880 183.448 959581.6 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 10 a15 3 a18 1 e 57** 818.5833 a3 1e-05 0.3333333 e 95$$ 0 t 6Y 1 MTU 58** 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 60** 900.4417 982.3 1064.158 1146.017 1227.875 1309.733 1391.592 1473.45 1555.308 1637.167 66$$ a1 2 a5 2 a9 2 e t ge10x10-8 3$$ 33 a3 3 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 1637.167 a3 1e-05 0.3333333 e 95$$ 0 t 6Y EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 7 OF 12 1 MTU 58** 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 60** 1719.025 1800.883 1882.742 1964.6 2046.458 2128.317 2210.175 2292.033 2373.892 2455.75 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 9 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t 6Y 1 MTU 60** 0 3 6 7 7.25 7.5 8 9 11 61** f0.05 65$$

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e 82$$ 2 2 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ 0 0 a10 8 e t 56$$ 0 0 a10 9 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS NPOSITION=1 2 3 4 5 6 7 8 9 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\6Y.f71" del ft71f001 end 10Y.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 3.9689999 EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 8 OF 12 3

764.52 764.52 764.52 20.88 20.88 20.88 1

1 1

0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 3$$ 33 a3 1 27 a11 2 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.3333333 e 95$$ 0 t 10Y 1 MTU 58** 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 60** 76.452 152.904 229.356 305.808 382.26 458.712 535.164 611.616 688.068 764.52 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 353.241 39690 182.574 959774.2 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a11 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 10 a15 3 a18 1 e 57** 764.52 a3 1e-05 0.3333333 e 95$$ 0 t 10Y 1 MTU 58** 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 60** 840.972 917.424 993.876 1070.328 1146.78 1223.232 1299.684 1376.136 1452.588 1529.04 66$$ a1 2 a5 2 a9 2 e t ge10x10-8 3$$ 33 a3 3 27 a11 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 1529.04 a3 1e-05 0.3333333 e 95$$ 0 t 10Y 1 MTU 58** 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 20.88 60** 1605.492 1681.944 1758.396 1834.848 1911.3 1987.752 2064.204 2140.656 2217.108 2293.56 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 10 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t 10Y 1 MTU 60** 0 3 9 10 11 11.25 11.5 12 13 15 61** f0.05 65$$

EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 9 OF 12

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e 82$$ 2 2 2 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ 0 0 a10 8 e t 56$$ 0 0 a10 9 e t 56$$ 0 0 a10 10 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS NPOSITION=1 2 3 4 5 6 7 8 9 10 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\10Y.f71" del ft71f001 end 20Y.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 2.5650001 2

629.265 629.265 19.15 19.15 1

1 0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 10 OF 12 3$$ 33 a3 1 27 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.5 e 95$$ 0 t 20Y 1 MTU 58** 19.15 19.15 19.15 19.15 19.15 19.15 19.15 19.15 19.15 19.15 60** 62.9265 125.853 188.7795 251.706 314.6325 377.559 440.4855 503.412 566.3385 629.265 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 228.285 25650 117.99 974003.7 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 629.265 a3 1e-05 0.5 e 95$$ 0 t 20Y 1 MTU 58** 19.15 19.15 19.15 19.15 19.15 19.15 19.15 19.15 19.15 19.15 60** 692.1915 755.118 818.0445 880.971 943.8975 1006.824 1069.75 1132.677 1195.603 1258.53 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 10 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t 20Y 1 MTU 60** 0 3 9 20 21 21.25 21.5 22 23 25 61** f0.05 65$$

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e 82$$ 2 2 2 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ 0 0 a10 8 e t 56$$ 0 0 a10 9 e t EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 11 OF 12 56$$ 0 0 a10 10 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS NPOSITION=1 2 3 4 5 6 7 8 9 10 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\20Y.f71" del ft71f001 end Bounding Element.inp

'This SCALE input file was generated by

'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010

=arp ge10x10-8 3.7160001 3

872.1667 872.1667 872.1667 19.280001 19.280001 19.280001 1

1 1

0.429 ft33f001 end

  1. origens 0$$ a4 33 a11 71 e t ge10x10-8 3$$ 33 a3 1 27 a16 2 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 0 a13 4 a15 3 a18 1 e 57** 0 a3 1e-05 0.3333333 e 95$$ 0 t Bounding Element 1 MTU 58** 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 60** 87.21667 174.4333 261.65 348.8667 436.0833 523.3 610.5167 697.7333 784.95 872.1667 66$$ a1 2 a5 2 a9 2 e 73$$ 922340 922350 922360 922380 74** 330.724 37160 170.936 962338.3 75$$ 2 2 2 2 t

ge10x10-8 3$$ 33 a3 2 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a6 3 a10 10 a15 3 a18 1 e 57** 872.1667 a3 1e-05 0.3333333 e 95$$ 0 t Bounding Element 1 MTU 58** 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 60** 959.3833 1046.6 1133.817 1221.033 1308.25 1395.467 1482.683 1569.9 EN-DC-126 R006

Attachment 1 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 12 OF 12 1657.117 1744.333 66$$ a1 2 a5 2 a9 2 e t ge10x10-8 3$$ 33 a3 3 27 a33 18 e t 35$$ 0 t 56$$ 10 10 a10 10 a15 3 a18 1 e 57** 1744.333 a3 1e-05 0.3333333 e 95$$ 0 t Bounding Element 1 MTU 58** 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 19.28 60** 1831.55 1918.767 2005.983 2093.2 2180.417 2267.633 2354.85 2442.067 2529.283 2616.5 66$$ a1 2 a5 2 a9 2 e t 54$$ a8 1 a11 0 e 56$$ a2 7 a6 1 a10 10 a14 5 a15 3 a17 2 e 57** 0 a3 1e-05 e 95$$ 0 t Bounding Element 1 MTU 60** 0 1 1.25 1.5 2 3 5 61** f0.05 65$$

'Gram-Atoms Grams Curies Watts-All Watts-Gamma 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 3z 3z 3z 1 0 0 3z 6z 81$$ 2 0 26 1 a7 200 e 82$$ 2 2 2 2 2 2 2 e 83**

1.0000000e+07 8.0000000e+06 6.5000000e+06 5.0000000e+06 4.0000000e+06 3.0000000e+06 2.5000000e+06 2.0000000e+06 1.6600000e+06 1.3300000e+06 1.0000000e+06 8.0000000e+05 6.0000000e+05 4.0000000e+05 3.0000000e+05 2.0000000e+05 1.0000000e+05 5.0000000e+04 1.0000000e+04 e 84**

2.0000000e+07 6.3763000e+06 3.0119000e+06 1.8268000e+06 1.4227000e+06 9.0718000e+05 4.0762000e+05 1.1109000e+05 1.5034000e+04 3.0354000e+03 5.8295000e+02 1.0130000e+02 2.9023000e+01 1.0677000e+01 3.0590000e+00 1.8554000e+00 1.3000000e+00 1.1253000e+00 1.0000000e+00 8.0000000e-01 4.1399000e-01 3.2500000e-01 2.2500000e-01 1.0000000e-01 5.0000000e-02 3.0000000e-02 1.0000000e-02 1.0000000e-05 e t

56$$ 0 0 a10 1 e t 56$$ 0 0 a10 2 e t 56$$ 0 0 a10 3 e t 56$$ 0 0 a10 4 e t 56$$ 0 0 a10 5 e t 56$$ 0 0 a10 6 e t 56$$ 0 0 a10 7 e t 56$$ f0 t end

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=WATTS LIBTYPE=ALL TIME=YEARS NPOSITION=1 2 3 4 5 6 7 end end

  1. shell copy ft71f001 "C:\Users\bfroese\Desktop\Pilgrim SFP Shine Dose Calc\ORIGENARP Results\Bounding Element.f71" del ft71f001 end EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 1 OF 36 Attachment 2: MCNP5 Inputs 75Y.i Pilgrim SFP Drain Down Dose Calculation, 0.75 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 2 OF 36 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 3 OF 36 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 sp4 0.5977 0.0759 0.0383 0.0595 0.1079 0.1206 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 1.60E+16 5.23E+15 5.22E+15 1.31E+15 1.01E+15 5.85E+15 1.37E+16 1.79E+15 4.95E+14 2.15E+14 2.83E+13 1.11E+14 1.81E+12 1.62E+11 1.21E+07 4.87E+06 9.54E+05 2.03E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 5.63E+15 1.73E+15 1.52E+15 4.19E+14 3.08E+14 3.38E+15 7.45E+15 1.36E+15 3.08E+14 1.13E+14 7.99E+12 1.99E+13 5.78E+11 5.32E+10 3.16E+07 1.27E+07 2.49E+06 5.28E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 3.18E+15 9.08E+14 7.24E+14 2.08E+14 1.42E+14 1.64E+15 5.72E+15 7.32E+14 1.92E+14 5.51E+13 2.16E+12 3.86E+12 1.51E+11 1.41E+10 3.02E+07 1.21E+07 2.38E+06 5.05E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.48E+15 6.86E+14 5.18E+14 1.51E+14 9.94E+13 8.20E+14 4.71E+15 3.96E+14 1.37E+14 2.92E+13 6.96E+11 7.64E+11 3.89E+10 3.65E+09 2.72E+07 1.09E+07 2.14E+06 4.54E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 2.01E+15 5.60E+14 4.02E+14 1.20E+14 7.85E+13 2.48E+14 3.69E+15 1.34E+14 8.47E+13 1.04E+13 2.28E+11 4.32E+10 3.05E+09 2.99E+08 2.10E+07 8.43E+06 1.65E+06 3.51E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 8.02E+14 2.38E+14 1.52E+14 4.70E+13 3.23E+13 2.64E+13 1.44E+15 1.24E+13 1.49E+13 1.19E+12 8.22E+10 4.21E+09 1.07E+08 5.81E+06 1.89E+06 7.60E+05 1.49E+05 3.16E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 4 OF 36 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 8.92E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 5 OF 36 83Y.i Pilgrim SFP Drain Down Dose Calculation, 0.83 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 6 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 7 OF 36 sp4 0.581 0.0777 0.0397 0.0621 0.113 0.1266 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 1.50E+16 4.91E+15 4.87E+15 1.23E+15 9.49E+14 5.53E+15 1.21E+16 1.74E+15 4.74E+14 2.05E+14 2.66E+13 1.03E+14 1.71E+12 1.53E+11 1.18E+07 4.72E+06 9.25E+05 1.96E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 5.45E+15 1.67E+15 1.46E+15 4.03E+14 2.96E+14 3.27E+15 7.35E+15 1.32E+15 3.01E+14 1.10E+14 7.55E+12 1.86E+13 5.47E+11 5.04E+10 3.15E+07 1.26E+07 2.48E+06 5.26E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 3.14E+15 8.93E+14 7.10E+14 2.04E+14 1.39E+14 1.59E+15 5.67E+15 7.14E+14 1.89E+14 5.36E+13 2.05E+12 3.62E+12 1.43E+11 1.33E+10 3.01E+07 1.21E+07 2.37E+06 5.04E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.46E+15 6.82E+14 5.14E+14 1.50E+14 9.86E+13 7.99E+14 4.68E+15 3.87E+14 1.36E+14 2.85E+13 6.70E+11 7.17E+11 3.68E+10 3.46E+09 2.71E+07 1.09E+07 2.13E+06 4.52E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 2.00E+15 5.59E+14 4.01E+14 1.20E+14 7.83E+13 2.43E+14 3.68E+15 1.32E+14 8.41E+13 1.03E+13 2.26E+11 4.12E+10 2.91E+09 2.86E+08 2.09E+07 8.40E+06 1.65E+06 3.50E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 8.00E+14 2.38E+14 1.52E+14 4.70E+13 3.22E+13 2.62E+13 1.43E+15 1.23E+13 1.48E+13 1.18E+12 8.20E+10 4.20E+09 1.06E+08 5.78E+06 1.89E+06 7.57E+05 1.48E+05 3.15E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 8 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 8.49E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 9 OF 36 92Y.i Pilgrim SFP Drain Down Dose Calculation, 0.92 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 10 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 11 OF 36 sp4 0.5642 0.0792 0.041 0.0646 0.1183 0.1327 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 1.40E+16 4.58E+15 4.53E+15 1.15E+15 8.86E+14 5.24E+15 1.07E+16 1.68E+15 4.52E+14 1.94E+14 2.48E+13 9.56E+13 1.61E+12 1.44E+11 1.14E+07 4.57E+06 8.96E+05 1.90E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 5.25E+15 1.60E+15 1.39E+15 3.86E+14 2.82E+14 3.16E+15 7.24E+15 1.28E+15 2.93E+14 1.06E+14 7.10E+12 1.72E+13 5.15E+11 4.74E+10 3.13E+07 1.26E+07 2.47E+06 5.23E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 3.09E+15 8.77E+14 6.95E+14 2.00E+14 1.36E+14 1.54E+15 5.61E+15 6.94E+14 1.86E+14 5.20E+13 1.94E+12 3.36E+12 1.35E+11 1.25E+10 3.00E+07 1.21E+07 2.36E+06 5.02E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.44E+15 6.77E+14 5.10E+14 1.49E+14 9.77E+13 7.76E+14 4.65E+15 3.77E+14 1.34E+14 2.78E+13 6.42E+11 6.68E+11 3.47E+10 3.26E+09 2.70E+07 1.08E+07 2.12E+06 4.51E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.99E+15 5.57E+14 3.99E+14 1.19E+14 7.80E+13 2.37E+14 3.67E+15 1.29E+14 8.34E+13 1.01E+13 2.24E+11 3.91E+10 2.77E+09 2.73E+08 2.09E+07 8.37E+06 1.64E+06 3.49E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.99E+14 2.37E+14 1.51E+14 4.68E+13 3.21E+13 2.61E+13 1.43E+15 1.22E+13 1.47E+13 1.18E+12 8.18E+10 4.19E+09 1.06E+08 5.75E+06 1.88E+06 7.55E+05 1.48E+05 3.14E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 12 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 8.07E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 13 OF 36 1Y.i Pilgrim SFP Drain Down Dose Calculation, 1 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 14 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 15 OF 36 sp4 0.5508 0.0803 0.042 0.0666 0.1225 0.1377 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 1.33E+16 4.32E+15 4.26E+15 1.08E+15 8.35E+14 5.01E+15 9.77E+15 1.63E+15 4.35E+14 1.86E+14 2.34E+13 8.92E+13 1.52E+12 1.37E+11 1.11E+07 4.45E+06 8.73E+05 1.85E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 5.09E+15 1.54E+15 1.34E+15 3.72E+14 2.71E+14 3.06E+15 7.14E+15 1.25E+15 2.86E+14 1.02E+14 6.72E+12 1.61E+13 4.87E+11 4.49E+10 3.12E+07 1.25E+07 2.46E+06 5.22E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 3.05E+15 8.63E+14 6.82E+14 1.96E+14 1.33E+14 1.50E+15 5.56E+15 6.77E+14 1.83E+14 5.06E+13 1.85E+12 3.14E+12 1.28E+11 1.19E+10 2.99E+07 1.20E+07 2.36E+06 5.00E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.43E+15 6.73E+14 5.06E+14 1.48E+14 9.69E+13 7.57E+14 4.62E+15 3.69E+14 1.32E+14 2.71E+13 6.18E+11 6.27E+11 3.29E+10 3.09E+09 2.69E+07 1.08E+07 2.12E+06 4.50E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.99E+15 5.56E+14 3.98E+14 1.19E+14 7.78E+13 2.32E+14 3.65E+15 1.27E+14 8.28E+13 9.89E+12 2.22E+11 3.73E+10 2.65E+09 2.61E+08 2.08E+07 8.35E+06 1.64E+06 3.48E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.97E+14 2.37E+14 1.51E+14 4.67E+13 3.21E+13 2.60E+13 1.43E+15 1.22E+13 1.47E+13 1.17E+12 8.16E+10 4.18E+09 1.06E+08 5.73E+06 1.88E+06 7.53E+05 1.48E+05 3.13E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 16 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 7.76E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 17 OF 36 125Y.i Pilgrim SFP Drain Down Dose Calculation, 1.25 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 18 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 19 OF 36 sp4 0.5143 0.0825 0.0447 0.0722 0.1345 0.1519 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 1.11E+16 3.62E+15 3.53E+15 9.01E+14 6.96E+14 4.41E+15 7.96E+15 1.48E+15 3.85E+14 1.62E+14 1.94E+13 7.19E+13 1.28E+12 1.15E+11 1.04E+07 4.16E+06 8.15E+05 1.73E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 4.63E+15 1.39E+15 1.19E+15 3.33E+14 2.40E+14 2.77E+15 6.86E+15 1.15E+15 2.67E+14 9.25E+13 5.66E+12 1.31E+13 4.10E+11 3.79E+10 3.09E+07 1.24E+07 2.43E+06 5.16E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 2.93E+15 8.25E+14 6.47E+14 1.87E+14 1.26E+14 1.37E+15 5.42E+15 6.27E+14 1.75E+14 4.66E+13 1.59E+12 2.56E+12 1.08E+11 1.00E+10 2.97E+07 1.19E+07 2.33E+06 4.96E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.39E+15 6.61E+14 4.95E+14 1.45E+14 9.48E+13 6.98E+14 4.54E+15 3.43E+14 1.28E+14 2.53E+13 5.54E+11 5.14E+11 2.78E+10 2.62E+09 2.66E+07 1.07E+07 2.10E+06 4.45E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.97E+15 5.52E+14 3.94E+14 1.18E+14 7.72E+13 2.18E+14 3.62E+15 1.20E+14 8.09E+13 9.40E+12 2.17E+11 3.25E+10 2.32E+09 2.30E+08 2.06E+07 8.27E+06 1.62E+06 3.44E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.92E+14 2.35E+14 1.50E+14 4.64E+13 3.19E+13 2.56E+13 1.42E+15 1.19E+13 1.44E+13 1.15E+12 8.11E+10 4.15E+09 1.06E+08 5.66E+06 1.86E+06 7.46E+05 1.46E+05 3.10E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 20 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 6.99E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 21 OF 36 15Y.i Pilgrim SFP Drain Down Dose Calculation, 1.5 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 22 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 23 OF 36 sp4 0.4837 0.0836 0.0467 0.0767 0.1448 0.1644 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 9.46E+15 3.06E+15 2.95E+15 7.59E+14 5.84E+14 3.92E+15 7.05E+15 1.35E+15 3.44E+14 1.41E+14 1.62E+13 5.80E+13 1.08E+12 9.72E+10 9.84E+06 3.95E+06 7.74E+05 1.64E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 4.26E+15 1.27E+15 1.07E+15 3.01E+14 2.15E+14 2.52E+15 6.60E+15 1.06E+15 2.49E+14 8.39E+13 4.77E+12 1.06E+13 3.46E+11 3.19E+10 3.05E+07 1.23E+07 2.40E+06 5.10E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 2.83E+15 7.93E+14 6.17E+14 1.79E+14 1.20E+14 1.26E+15 5.28E+15 5.80E+14 1.68E+14 4.30E+13 1.37E+12 2.09E+12 9.08E+10 8.47E+09 2.94E+07 1.18E+07 2.31E+06 4.91E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.35E+15 6.50E+14 4.85E+14 1.42E+14 9.29E+13 6.45E+14 4.46E+15 3.20E+14 1.24E+14 2.36E+13 4.99E+11 4.23E+11 2.35E+10 2.22E+09 2.64E+07 1.06E+07 2.08E+06 4.41E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.96E+15 5.48E+14 3.91E+14 1.17E+14 7.67E+13 2.05E+14 3.59E+15 1.13E+14 7.90E+13 8.95E+12 2.12E+11 2.85E+10 2.04E+09 2.03E+08 2.04E+07 8.19E+06 1.61E+06 3.41E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.87E+14 2.34E+14 1.49E+14 4.61E+13 3.17E+13 2.52E+13 1.41E+15 1.17E+13 1.41E+13 1.13E+12 8.06E+10 4.13E+09 1.05E+08 5.59E+06 1.84E+06 7.39E+05 1.45E+05 3.08E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 24 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 6.42E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 25 OF 36 2Y.i Pilgrim SFP Drain Down Dose Calculation, 2 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 26 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 27 OF 36 sp4 0.4323 0.0843 0.0499 0.0844 0.1627 0.1865 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 7.01E+15 2.23E+15 2.10E+15 5.50E+14 4.19E+14 3.13E+15 6.11E+15 1.12E+15 2.79E+14 1.10E+14 1.13E+13 3.77E+13 7.63E+11 6.91E+10 9.17E+06 3.68E+06 7.22E+05 1.53E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 3.68E+15 1.07E+15 8.84E+14 2.51E+14 1.76E+14 2.08E+15 6.15E+15 9.00E+14 2.20E+14 6.96E+13 3.41E+12 6.97E+12 2.46E+11 2.27E+10 2.99E+07 1.20E+07 2.36E+06 5.00E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 2.66E+15 7.42E+14 5.70E+14 1.66E+14 1.10E+14 1.06E+15 5.04E+15 4.99E+14 1.54E+14 3.68E+13 1.03E+12 1.39E+12 6.47E+10 6.05E+09 2.88E+07 1.16E+07 2.27E+06 4.82E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.28E+15 6.32E+14 4.68E+14 1.38E+14 8.97E+13 5.53E+14 4.32E+15 2.78E+14 1.17E+14 2.06E+13 4.14E+11 2.87E+11 1.69E+10 1.60E+09 2.59E+07 1.04E+07 2.04E+06 4.33E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.93E+15 5.40E+14 3.84E+14 1.15E+14 7.55E+13 1.82E+14 3.52E+15 1.02E+14 7.55E+13 8.13E+12 2.04E+11 2.25E+10 1.60E+09 1.60E+08 2.00E+07 8.04E+06 1.58E+06 3.35E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.77E+14 2.32E+14 1.47E+14 4.55E+13 3.13E+13 2.46E+13 1.40E+15 1.12E+13 1.36E+13 1.09E+12 7.96E+10 4.07E+09 1.04E+08 5.46E+06 1.81E+06 7.26E+05 1.42E+05 3.02E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 28 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 5.59E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 29 OF 36 3Y.i Pilgrim SFP Drain Down Dose Calculation, 3 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 30 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 31 OF 36 sp4 0.3535 0.0837 0.0541 0.0957 0.1909 0.222 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 4.27E+15 1.31E+15 1.16E+15 3.15E+14 2.33E+14 2.05E+15 5.07E+15 7.95E+14 1.95E+14 6.90E+13 5.54E+12 1.61E+13 3.83E+11 3.50E+10 8.52E+06 3.42E+06 6.70E+05 1.42E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 2.98E+15 8.45E+14 6.67E+14 1.92E+14 1.30E+14 1.45E+15 5.45E+15 6.56E+14 1.79E+14 4.91E+13 1.80E+12 3.05E+12 1.24E+11 1.15E+10 2.88E+07 1.16E+07 2.27E+06 4.81E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 2.44E+15 6.75E+14 5.08E+14 1.49E+14 9.72E+13 7.62E+14 4.65E+15 3.72E+14 1.34E+14 2.73E+13 6.19E+11 6.24E+11 3.29E+10 3.10E+09 2.77E+07 1.11E+07 2.18E+06 4.64E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.18E+15 6.04E+14 4.42E+14 1.31E+14 8.51E+13 4.10E+14 4.09E+15 2.13E+14 1.04E+14 1.60E+13 3.09E+11 1.36E+11 8.79E+09 8.45E+08 2.49E+07 1.00E+07 1.96E+06 4.17E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.87E+15 5.27E+14 3.71E+14 1.12E+14 7.34E+13 1.45E+14 3.41E+15 8.33E+13 6.92E+13 6.80E+12 1.93E+11 1.56E+10 1.07E+09 1.08E+08 1.93E+07 7.74E+06 1.52E+06 3.23E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.58E+14 2.27E+14 1.43E+14 4.43E+13 3.05E+13 2.34E+13 1.36E+15 1.04E+13 1.27E+13 1.02E+12 7.76E+10 3.97E+09 1.03E+08 5.23E+06 1.75E+06 7.01E+05 1.37E+05 2.92E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 32 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 4.58E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 33 OF 36 5Y.i Pilgrim SFP Drain Down Dose Calculation, 5 yr of additional decay time c B. Froese, ENERCON c MCNP5, Source from 4113 Assemblies c Cell Cards 1 1 -10.41 -1 u=1 imp:p=1 $ Fuel rod 2 0 +1 -2 u=1 imp:p=1 $ Gap 3 2 -6.56 +2 -3 u=1 imp:p=1 $ Cladding 4 0 +3 u=1 imp:p=1 $ Void outside fuel rod 5 0 -4 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Inside water rod 6 2 -6.56 +4 -5 +8 -9 trcl (-1.295 1.295 0) u=4 imp:p=1 $ Water rod 7 like 5 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Inside water rod 8 like 6 but *trcl (1.295 -1.295 0) u=4 imp:p=1 $ Water rod c GNF2 10x10 lattice 11 0 -6 u=3 lat=1 trcl (0.6475 0.6475 0) fill=-5:4 -5:4 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 imp:p=1 20 0 +8 -9 #5 #6 #7 #8 fill=3 u=4 imp:p=1 $ Active fuel zone 21 0 -8 u=4 imp:p=1 $ Lower nozzle 22 3 -0.67 +9 u=4 imp:p=1 $ Upper nozzle c Rack Array 24 0 -7 fill=4 u=5 imp:p=1 $ Cooled 0 yrs inside assembly 25 0 +7 -10 u=5 imp:p=1 $ Cooled 0 yrs void outside assembly 26 3 -7.94 +10 -13 u=5 imp:p=1 $ Cooled 0 yrs fuel 30 0 +10 +13 #24 u=5 imp:p=1 $ Cooled 0 yrs void directly above racks 124 0 -7 fill=4 u=6 imp:p=1 $ Cooled 2 yrs inside assembly 125 0 +7 -10 u=6 imp:p=1 $ Cooled 2 yrs void outside assembly 126 3 -7.94 +10 -13 u=6 imp:p=1 $ Cooled 2 yrs fuel 130 0 +10 +13 #124 u=6 imp:p=1 $ Cooled 2 yrs void directly above racks 224 0 -7 fill=4 u=7 imp:p=1 $ Cooled 4 yrs inside assembly 225 0 +7 -10 u=7 imp:p=1 $ Cooled 4 yrs void outside assembly 226 3 -7.94 +10 -13 u=7 imp:p=1 $ Cooled 4 yrs fuel 230 0 +10 +13 #224 u=7 imp:p=1 $ Cooled 4 yrs void directly above racks 324 0 -7 fill=4 u=8 imp:p=1 $ Cooled 6 yrs inside assembly 325 0 +7 -10 u=8 imp:p=1 $ Cooled 6 yrs void outside assembly 326 3 -7.94 +10 -13 u=8 imp:p=1 $ Cooled 6 yrs fuel 330 0 +10 +13 #324 u=8 imp:p=1 $ Cooled 6 yrs void directly above racks 424 0 -7 fill=4 u=9 imp:p=1 $ Cooled 10 yrs inside assembly 425 0 +7 -10 u=9 imp:p=1 $ Cooled 10 yrs void outside assembly 426 3 -7.94 +10 -13 u=9 imp:p=1 $ Cooled 10 yrs fuel 430 0 +10 +13 #424 u=9 imp:p=1 $ Cooled 10 yrs void directly above racks 524 0 -7 fill=4 u=10 imp:p=1 $ Cooled 20 yrs inside assembly 525 0 +7 -10 u=10 imp:p=1 $ Cooled 20 yrs void outside assembly 526 3 -7.94 +10 -13 u=10 imp:p=1 $ Cooled 20 yrs fuel 530 0 +10 +13 #524 u=10 imp:p=1 $ Cooled 20 yrs void directly above racks 624 0 -7 u=11 imp:p=1 $ No assembly 625 0 +7 -10 u=11 imp:p=1 $ No assembly void outside assembly 626 3 -7.94 +10 -13 u=11 imp:p=1 $ No assembly Fuel 630 0 +10 +13 #624 u=11 imp:p=1 $ No assembly void directly above racks EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 34 OF 36 27 0 -11 u=13 lat=1 trcl (0 7.9464 0) fill=-38:38 -29:28 0:0 11 176R $ 177 empty rack cells 10 2132R $ 2133 cooled 20 yrs 9 783R $ 784 cooled 10 yrs 8 303R $ 304 cooled 6 yrs 7 143R $ 144 cooled 4 yrs 6 167R $ 168 cooled 2 yrs 5 579R $ 580 cooled 1 yr 11 175R imp:p=1 $ 176 empty rack cells 28 0 -12 fill=13 imp:p=1 $ Rack array 41 0 500 #28 imp:p=1 $ Pool 42 0 -20 +500 imp:p=1 $ Air space within pool 43 3 -7.94 +20 -23 imp:p=1 $ Pool liner 44 4 -2.3 +23 -24 imp:p=1 $ Concrete surrounding pool 46 0 -26 imp:p=1 $ Space above pool 47 0 +24 +26 -999 imp:p=1 $ Exterior 999 0 +999 imp:p=0 $ Universe c Surface Cards 1 rcc 0 0 32.413 0 0 368.91 0.444 $ Active Fuel 2 rcc 0 0 32.413 0 0 368.91 0.453 $ Clad Interior 3 rcc 0 0 32.413 0 0 368.91 0.513 $ Clad Exterior 4 rcc 0 0 32.413 0 0 368.91 1.1685 $ Water Rod Interior 5 rcc 0 0 32.413 0 0 368.91 1.2445 $ Water Rod Exterior 6 rpp -0.6475 0.6475 -0.6475 0.6475 32.413 401.323 $ Pin Cell 7 rpp -6.475 6.475 -6.475 6.475 19.05 454.406 $ Assembly Envelope 8 pz 32.413 $ Lower Nozzle and Plenum Cut Plane 9 pz 401.323 $ Upper Nozzle and Plenum Cut Plane c Spent Fuel Rack 10 rpp -7.7178 7.7178 -7.7178 7.7178 19.05 439.1025 $ Rack Interior 11 rpp -7.9464 7.9464 -7.9464 7.9464 19.05 454.406 $ Rack Envelope 12 rpp -611.8728 611.8728 -460.8912 460.8912 19.05 454.406 $ Rack Array Boundary 13 pz 439.1025 $ Rack Top Cut Plane c Pool 20 rpp -614.68 614.68 -464.82 464.82 0 1181.1 $ Spent Fuel Pool 23 rpp -615.1563 615.1563 -465.2963 465.2963 -0.47625 1181.1 $ Pool Liner 24 rpp -800.5763 800.5763 -650.7163 650.7163 -0.47625 1181.1 $ Pool Concrete 26 rpp -800.5763 800.5763 -650.7163 650.7163 1181.1 1363.98 $ Space Above Pool 500 pz 1151.1 $ Top of Pool -30 cm c Universe 999 rpp -5000 5000 -5000 5000 -5000 5000 $ Universe c Source Specification mode p sdef erg=fcel=d1 pos=0 0 216.868 rad=d2 ext=d3 axs=0 0 1 cel =d4 ds1 s d5 d6 d7 d8 d9 d10 si2 0 0.4439 sp2 -21 1 si3 -184.454 184.454 sp3 0 1 si4 l 28:27:24:20:11:1 28:27:124:20:11:1 28:27:224:20:11:1 28:27:324:20:11:1 28:27:424:20:11:1 28:27:524:20:11:1 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 35 OF 36 sp4 0.267 0.08 0.0575 0.1072 0.2233 0.2649 c 0 yrs gamma si5 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp5 0.00E+00 2.38E+15 6.86E+14 5.38E+14 1.55E+14 1.08E+14 9.52E+14 3.94E+15 4.16E+14 1.18E+14 3.20E+13 1.46E+12 2.97E+12 9.72E+10 8.96E+09 7.82E+06 3.14E+06 6.16E+05 1.31E+05 c 2 yrs gamma si6 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp6 0.00E+00 2.39E+15 6.62E+14 4.98E+14 1.46E+14 9.53E+13 7.39E+14 4.56E+15 3.61E+14 1.31E+14 2.65E+13 6.04E+11 6.05E+11 3.20E+10 3.01E+09 2.67E+07 1.07E+07 2.10E+06 4.46E+05 c 4 yrs gamma si7 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp7 0.00E+00 2.19E+15 6.06E+14 4.44E+14 1.31E+14 8.54E+13 4.13E+14 4.11E+15 2.14E+14 1.05E+14 1.61E+13 3.10E+11 1.36E+11 8.81E+09 8.48E+08 2.57E+07 1.03E+07 2.03E+06 4.30E+05 c 6 yrs gamma si8 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp8 0.00E+00 2.03E+15 5.65E+14 4.05E+14 1.21E+14 7.90E+13 2.37E+14 3.74E+15 1.30E+14 8.55E+13 1.02E+13 2.25E+11 3.68E+10 2.67E+09 2.66E+08 2.31E+07 9.28E+06 1.82E+06 3.87E+05 c 10 yrs gamma si9 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp9 0.00E+00 1.77E+15 5.01E+14 3.47E+14 1.05E+14 6.96E+13 9.93E+13 3.21E+15 5.87E+13 5.86E+13 5.02E+12 1.79E+11 1.05E+10 6.60E+08 6.62E+07 1.79E+07 7.18E+06 1.41E+06 2.99E+05 c 20 yrs gamma si10 1.00E-02 5.00E-02 1.00E-01 2.00E-01 3.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.33E+00 1.66E+00 2.00E+00 2.50E+00 3.00E+00 4.00E+00 5.00E+00 6.50E+00 8.00E+00 1.00E+01 sp10 0.00E+00 7.22E+14 2.18E+14 1.35E+14 4.20E+13 2.90E+13 2.15E+13 1.30E+15 9.08E+12 1.10E+13 9.00E+11 7.38E+10 3.78E+09 1.00E+08 4.85E+06 1.63E+06 6.53E+05 1.28E+05 2.72E+04 c Materials c UO2 m1 92000 1 8000 2 c Zirc2 m2 40000 -0.9825 50000 -0.0145 26000 -0.00135 24000 -0.001 72000 -0.00055 c Stainless_Steel m3 6000 -0.0008 14000 -0.01 15031 -0.00045 EN-DC-126 R006

Attachment 2 CALCULATION NO.: M1417 REVISION NO.: 0 EC NO.: 0000073355 PAGE 36 OF 36 24000 -0.19 25055 -0.02 26000 -0.68375 28000 -0.095 c Concrete m4 1001 -0.01 8016 -0.532 11023 -0.029 13027 -0.034 14000 -0.337 20000 -0.044 26000 -0.014 c Tally Cards fc2 Surface Detector at Top of Pool -30 cm (surface 500) f2:p 500 fm2 3.66E+18 c

c Problem Cutoff NPS 500000000 c Print Settings prdmp 60 1 2 print 50 120 126 EN-DC-126 R006

M1417 Rev. 0 Page 1 of 18

M1417 Rev. 0 Page 2 of 18

M1417 Rev. 0 Page 3 of 18

M1417 Rev. 0 Page 4 of 18

M1417 Rev. 0 Page 5 of 18

M1417 Rev. 0 Page 6 of 18

M1417 Rev. 0 Page 7 of 18

M1417 Rev. 0 Page 8 of 18

M1417 Rev. 0 Page 9 of 18

M1417 Rev. 0 Page 10 of 18

M1417 Rev. 0 Page 11 of 18

M1417 Rev. 0 Page 12 of 18

M1417 Rev. 0 Page 13 of 18

M1417 Rev. 0 Page 14 of 18

M1417 Rev. 0 Page 15 of 18

M1417 Rev. 0 Page 16 of 18

M1417 Rev. 0 Page 17 of 18

M1417 Rev. 0 Page 18 of 18

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 1 of 30 PNPS Cycle 22 Bundle Design Max Lat Enr (%) Avg Enr (%)

1 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.752 2 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.754 3 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.754 4 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.755 5 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.755 6 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.749 7 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.753 8 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.755 9 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.755 10 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.757 11 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.756 12 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.755 13 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.751 14 GNF2-P10DG2B375-6G6.0/7G5.0-100T2-145-T6-3434 4.20 3.751 15 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 16 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.016 17 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 18 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.016 19 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 20 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 21 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 22 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 23 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.016 24 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.016 25 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.016 26 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.015 27 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.015 28 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.016 29 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 30 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.019 31 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.014 32 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.017 33 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.018 34 GNF2-P10DG2B401-6G6.0/2G5.0/6G4.0-100T2-145-T6-3640 4.49 4.018 35 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.059 36 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.057 37 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.055 38 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.058 39 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.058 40 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.056 41 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.056 42 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.056 43 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.059 44 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.059 45 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.057 46 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.057 47 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.056 48 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.058 49 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.058 50 GNF2-P10DG2B406-6G6.0/6G5.0/2G4.0-100T2-145-T6-3641 4.54 4.057 51 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 52 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.069 53 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.071 54 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.070 55 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.066

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 2 of 30 56 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.067 57 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.065 58 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.066 59 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.065 60 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.062 61 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.063 62 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.065 63 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.063 64 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.063 65 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.069 66 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 67 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.065 68 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 69 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 70 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.069 71 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.067 72 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 73 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.070 74 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.067 75 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.067 76 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 77 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 78 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 79 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.066 80 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 81 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.069 82 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.068 83 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.069 84 GNF2-P10DG2B407-6G6.0/2G5.0/6G4.0-100T2-145-T6-3642 4.55 4.070 85 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.015 86 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.015 87 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.013 88 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.010 89 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.012 90 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.013 91 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.012 92 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.014 93 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.014 94 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.016 95 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.014 96 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.016 97 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.015 98 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.016 99 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.017 100 GNF2-P10DG2B401-6G6.0/8G5.0/1G4.0-100T2-145-T6-3421 4.49 4.015 101 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 102 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.952 103 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 104 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 105 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.953 106 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.953 107 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.953 108 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.951 109 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.956 110 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.955 111 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.957 112 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 113 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 114 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 115 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.953 116 GNF2-P10DG2B395-6G6.0/9G5.0-100T2-145-T6-3422 4.42 3.954 117 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.052 118 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.052

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 3 of 30 119 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.053 120 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 121 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 122 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 123 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 124 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.053 125 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 126 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 127 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 128 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 129 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 130 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 131 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.052 132 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.054 133 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.054 134 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 135 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 136 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 137 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 138 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 139 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 140 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 141 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 142 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 143 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 144 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 145 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 146 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 147 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.054 148 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.053 149 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 150 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 151 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 152 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.061 153 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.060 154 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.061 155 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.061 156 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 157 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 158 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 159 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 160 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 161 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.058 162 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.054 163 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.055 164 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.059 165 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 166 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.057 167 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.056 168 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.055 169 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.053 170 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.053 171 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.055 172 GNF2-P10DG2B406-6G6.0/2G5.0/6G4.0-100T2-145-T6-4171 4.54 4.060 173 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.976 174 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.974 175 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.973 176 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.974 177 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.973 178 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.974 179 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.972 180 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.973 181 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.973

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 4 of 30 182 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.973 183 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.976 184 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.977 185 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.978 186 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.980 187 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.978 188 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.979 189 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.980 190 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.980 191 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.980 192 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.977 193 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.976 194 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.977 195 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.976 196 GNF2-P10DG2B398-5G6.0/8G5.0-100T2-145-T6-4172 4.45 3.977 197 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 198 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 199 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 200 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.900 201 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.899 202 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 203 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.892 204 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.893 205 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 206 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.897 207 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.894 208 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.891 209 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.892 210 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.891 211 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.893 212 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.894 213 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 214 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 215 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 216 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.894 217 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 218 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.896 219 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 220 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.897 221 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.900 222 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.898 223 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.897 224 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.894 225 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.892 226 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.894 227 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 228 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 229 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.891 230 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.901 231 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.893 232 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 233 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.897 234 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.897 235 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.899 236 GNF2-P10DG2B389-15G5.0-100T2-145-T6-4173 4.36 3.895 237 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.752 238 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 239 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 240 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 241 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.750 242 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.750 243 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.747 244 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.747

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 5 of 30 245 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 246 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 247 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.750 248 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.756 249 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.755 250 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 251 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 252 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 253 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.752 254 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 255 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.750 256 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.750 257 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 258 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 259 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.751 260 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.749 261 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.752 262 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 263 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 264 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.753 265 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.752 266 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.748 267 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.748 268 GNF2-P10DG2B375-7G6.0/6G5.0-100T2-145-T6-4174 4.20 3.752 269 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 270 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 271 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 272 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 273 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.872 274 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.873 275 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 276 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 277 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.869 278 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 279 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 280 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 281 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.868 282 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.868 283 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.869 284 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 285 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.873 286 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.873 287 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.872 288 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 289 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 290 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 291 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 292 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.874 293 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.870 294 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 295 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.869 296 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 297 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.871 298 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.872 299 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.867 300 GNF2-P10DG2B387-15G6.0-100T2-145-T6-4308 4.33 3.867 301 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.868 302 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.869 303 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.871 304 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.868 305 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.868 306 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.868 307 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 6 of 30 308 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.869 309 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.871 310 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870 311 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.871 312 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870 313 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.869 314 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870 315 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.871 316 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870 317 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.869 318 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.868 319 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.869 320 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.873 321 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.874 322 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.874 323 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 324 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.867 325 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.871 326 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870 327 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 328 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 329 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.873 330 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 331 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 332 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 333 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.872 334 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.874 335 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.875 336 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.878 337 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.877 338 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.875 339 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.870 340 GNF2-P10DG2B387-12G6.0/4G5.0-100T2-145-T6-4309 4.33 3.869 341 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983 342 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.984 343 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.984 344 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.987 345 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.988 346 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.987 347 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.987 348 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.988 349 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.988 350 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.986 351 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983 352 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.989 353 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.990 354 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.988 355 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.984 356 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.982 357 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 358 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 359 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.980 360 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.987 361 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.988 362 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.989 363 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.985 364 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.985 365 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983 366 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.980 367 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 368 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.984 369 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.982 370 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 7 of 30 371 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 372 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.980 373 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 374 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.980 375 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.980 376 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.979 377 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.987 378 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.990 379 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.987 380 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983 381 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 382 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.984 383 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.985 384 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983 385 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.983 386 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.982 387 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 388 GNF2-P10DG2B398-14G5.0-100T2-145-T6-4310 4.45 3.981 389 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.875 390 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.873 391 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.872 392 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 393 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.870 394 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.868 395 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.872 396 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.872 397 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 398 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.873 399 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.873 400 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.872 401 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 402 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 403 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 404 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 405 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.874 406 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.873 407 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.872 408 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.872 409 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 410 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.870 411 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 412 GNF2-P10DG2B387-13G6.0-100T2-145-T6-4311 4.33 3.871 413 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 414 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 415 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 416 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 417 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 418 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 419 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 420 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 421 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 422 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 423 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 424 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.962 425 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.960 426 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.961 427 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.958 428 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.958 429 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 430 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 431 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 432 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 433 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 8 of 30 434 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 435 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.963 436 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 437 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 438 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 439 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 440 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 441 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 442 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 443 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.969 444 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.969 445 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.970 446 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 447 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 448 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 449 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.969 450 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.969 451 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 452 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 453 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 454 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.971 455 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.974 456 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 457 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.962 458 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 459 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 460 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 461 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.963 462 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 463 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 464 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 465 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.963 466 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 467 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.968 468 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 469 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 470 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 471 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.967 472 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.966 473 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.964 474 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.965 475 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.969 476 GNF2-P10DG2B397-2G7.0/11G6.0-100T2-145-T6-4474 4.42 3.963 477 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.811 478 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.811 479 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.812 480 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.811 481 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.810 482 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 483 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.811 484 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.812 485 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 486 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 487 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 488 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 489 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 490 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 491 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 492 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.811 493 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.811 494 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.812 495 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.812 496 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.807

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 9 of 30 497 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.807 498 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.808 499 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.813 500 GNF2-P10DG2B381-2G7.0/11G6.0-100T2-145-T6-4475 4.25 3.814 501 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.796 502 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.795 503 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.795 504 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.795 505 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.794 506 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 507 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.794 508 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 509 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 510 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 511 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.794 512 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.795 513 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 514 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 515 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 516 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 517 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.789 518 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.789 519 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.789 520 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 521 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 522 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.794 523 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 524 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 525 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.789 526 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 527 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 528 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 529 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 530 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 531 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 532 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 533 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 534 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 535 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 536 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 537 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 538 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 539 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 540 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 541 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 542 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 543 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 544 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 545 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 546 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 547 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 548 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 549 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.791 550 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.790 551 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 552 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 553 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 554 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 555 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.792 556 GNF2-P10DG2B379-14G6.0-100T2-145-T6-4476 4.23 3.793 557 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.723 558 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.723 559 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.722

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 10 of 30 560 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.722 561 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.721 562 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.720 563 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.720 564 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.721 565 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.719 566 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.719 567 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.718 568 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.718 569 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.716 570 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.719 571 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.719 572 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.720 573 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.722 574 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.721 575 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.722 576 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.720 577 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.720 578 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.722 579 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.721 580 GNF2-P10DG2B372-14G6.0-100T2-145-T6-4477 4.15 3.721

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 11 of 30 EOC22=12,100 MWD/ST Data for CMRr1 EOC22=12,765.5 Data for CMRr1 EOC22=13,117 exposure; corresponds to MWD/ST exposure; MWD/ST exposure; corresponds 92% CF if startup on corresponds to 97% CF if to 99.8% CF if startup on 5/12/2017 at 23:00 startup on 5/12/2017 at 23:00 5/12/2017 at 23:00 RODPAT.LNG.12100MWD-ST.txt WRAPUPEDIT_EOC.2D-FUE.EXP.OUT RODPAT.LNG.13117MWD-ST.txt UO2 Burnup (MWD/MTU)* Burnup (MWD/MTU)* Burnup (MWD/MTU)* Discharge Date MTU 47,508 47,594 47,638 5/31/2019 0.1813 47,464 47,549 47,593 5/31/2019 0.1812 47,527 47,613 47,658 5/31/2019 0.1813 47,016 47,101 47,144 5/31/2019 0.1811 47,637 47,722 47,766 5/31/2019 0.1810 46,900 46,983 47,027 5/31/2019 0.1812 47,383 47,577 47,679 5/31/2019 0.1813 47,502 47,696 47,798 5/31/2019 0.1813 47,289 47,480 47,580 5/31/2019 0.1812 47,405 47,599 47,700 5/31/2019 0.1813 47,608 47,803 47,904 5/31/2019 0.1812 47,636 47,830 47,932 5/31/2019 0.1812 47,483 47,678 47,780 5/31/2019 0.1812 47,574 47,769 47,870 5/31/2019 0.1812 49,355 49,683 49,854 5/31/2019 0.1813 49,592 49,918 50,088 5/31/2019 0.1813 47,212 47,416 47,523 5/31/2019 0.1813 47,187 47,391 47,498 5/31/2019 0.1813 49,533 49,860 50,030 5/31/2019 0.1813 49,595 49,920 50,091 5/31/2019 0.1813 49,451 49,766 49,931 5/31/2019 0.1813 49,526 49,852 50,022 5/31/2019 0.1813 47,832 48,047 48,159 5/31/2019 0.1813 48,035 48,249 48,360 5/31/2019 0.1813 47,978 48,192 48,304 5/31/2019 0.1813 47,949 48,163 48,274 5/31/2019 0.1814 47,995 48,210 48,321 5/31/2019 0.1813 48,059 48,273 48,384 5/31/2019 0.1813 48,003 48,216 48,327 5/31/2019 0.1812 48,009 48,222 48,333 5/31/2019 0.1811 47,120 47,207 47,252 5/31/2019 0.1812 48,072 48,202 48,269 5/31/2019 0.1811 48,478 48,607 48,674 5/31/2019 0.1811 47,609 47,697 47,743 5/31/2019 0.1812 49,246 49,421 49,512 5/31/2019 0.1809 49,167 49,342 49,434 5/31/2019 0.1810 49,144 49,321 49,413 5/31/2019 0.1810 49,030 49,206 49,297 5/31/2019 0.1811 49,078 49,253 49,345 5/31/2019 0.1812 49,267 49,442 49,532 5/31/2019 0.1811 49,093 49,265 49,356 5/31/2019 0.1810 49,102 49,276 49,367 5/31/2019 0.1811 49,520 49,738 49,853 5/31/2019 0.1811 49,517 49,736 49,850 5/31/2019 0.1811 49,336 49,554 49,668 5/31/2019 0.1812 49,469 49,686 49,800 5/31/2019 0.1813 48,735 48,952 49,065 5/31/2019 0.1812 48,664 48,881 48,994 5/31/2019 0.1810 48,540 48,757 48,870 5/31/2019 0.1810 48,690 48,907 49,020 5/31/2019 0.1810 48,148 48,272 48,336 5/31/2019 0.1811 48,245 48,368 48,432 5/31/2019 0.1811 48,227 48,354 48,420 5/31/2019 0.1812 48,117 48,240 48,304 5/31/2019 0.1812 48,859 48,991 49,059 5/31/2019 0.1810

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 12 of 30 48,835 48,963 49,030 5/31/2019 0.1811 48,664 49,002 49,178 5/31/2019 0.1811 48,767 49,104 49,279 5/31/2019 0.1812 48,606 48,943 49,119 5/31/2019 0.1811 48,665 49,001 49,176 5/31/2019 0.1809 46,879 47,003 47,067 5/31/2019 0.1811 46,958 47,082 47,145 5/31/2019 0.1811 47,090 47,224 47,293 5/31/2019 0.1814 47,046 47,179 47,248 5/31/2019 0.1813 48,015 48,148 48,216 5/31/2019 0.1811 48,070 48,201 48,269 5/31/2019 0.1812 47,719 47,841 47,905 5/31/2019 0.1813 47,684 47,806 47,870 5/31/2019 0.1812 47,246 47,419 47,509 5/31/2019 0.1811 47,241 47,413 47,503 5/31/2019 0.1812 47,185 47,358 47,449 5/31/2019 0.1810 47,192 47,365 47,455 5/31/2019 0.1811 47,278 47,450 47,540 5/31/2019 0.1810 47,259 47,431 47,520 5/31/2019 0.1811 47,053 47,219 47,306 5/31/2019 0.1811 47,277 47,448 47,537 5/31/2019 0.1811 47,776 47,992 48,105 5/31/2019 0.1811 47,603 47,819 47,932 5/31/2019 0.1811 47,664 47,880 47,993 5/31/2019 0.1812 47,648 47,864 47,977 5/31/2019 0.1812 47,719 47,933 48,045 5/31/2019 0.1811 47,540 47,754 47,867 5/31/2019 0.1811 47,601 47,814 47,926 5/31/2019 0.1811 47,702 47,916 48,028 5/31/2019 0.1811 47,970 48,189 48,304 5/31/2019 0.1808 47,976 48,195 48,310 5/31/2019 0.1809 47,924 48,143 48,258 5/31/2019 0.1809 47,900 48,119 48,234 5/31/2019 0.1809 48,156 48,377 48,493 5/31/2019 0.1809 48,208 48,429 48,544 5/31/2019 0.1809 48,124 48,345 48,460 5/31/2019 0.1810 48,080 48,301 48,416 5/31/2019 0.1810 49,738 50,041 50,199 5/31/2019 0.1809 49,777 50,079 50,237 5/31/2019 0.1810 49,702 50,007 50,167 5/31/2019 0.1810 49,704 50,006 50,164 5/31/2019 0.1809 49,734 50,035 50,193 5/31/2019 0.1809 49,801 50,101 50,259 5/31/2019 0.1810 49,635 49,935 50,092 5/31/2019 0.1810 49,787 50,088 50,245 5/31/2019 0.1809 48,804 49,055 49,186 5/31/2019 0.1808 48,859 49,110 49,240 5/31/2019 0.1809 48,805 49,056 49,188 5/31/2019 0.1809 47,782 47,985 48,090 5/31/2019 0.1809 48,868 49,118 49,249 5/31/2019 0.1809 48,934 49,183 49,314 5/31/2019 0.1809 48,682 48,927 49,055 5/31/2019 0.1809 48,798 49,047 49,177 5/31/2019 0.1810 47,758 47,960 48,066 5/31/2019 0.1809 47,760 47,962 48,067 5/31/2019 0.1809 49,872 50,193 50,361 5/31/2019 0.1810 49,889 50,209 50,377 5/31/2019 0.1809 47,641 47,843 47,948 5/31/2019 0.1810 47,676 47,878 47,983 5/31/2019 0.1810 49,940 50,264 50,434 5/31/2019 0.1809 48,661 48,912 49,042 5/31/2019 0.1809 41,632 42,537 43,011 5/31/2019 0.1808 41,821 42,720 43,191 5/31/2019 0.1807

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 13 of 30 41,644 42,548 43,022 5/31/2019 0.1807 41,847 42,745 43,216 5/31/2019 0.1807 41,823 42,726 43,199 5/31/2019 0.1807 41,985 42,883 43,353 5/31/2019 0.1806 41,825 42,728 43,202 5/31/2019 0.1806 42,016 42,913 43,382 5/31/2019 0.1807 45,667 46,488 46,914 5/31/2019 0.1808 45,636 46,457 46,884 5/31/2019 0.1808 45,681 46,502 46,928 5/31/2019 0.1807 45,733 46,553 46,979 5/31/2019 0.1807 45,786 46,605 47,031 5/31/2019 0.1808 45,793 46,613 47,038 5/31/2019 0.1807 45,844 46,663 47,089 5/31/2019 0.1807 45,851 46,670 47,095 5/31/2019 0.1807 43,082 44,007 44,498 5/31/2019 0.1808 43,115 44,039 44,529 5/31/2019 0.1807 43,137 44,060 44,552 5/31/2019 0.1808 43,183 44,105 44,595 5/31/2019 0.1808 43,140 44,063 44,553 5/31/2019 0.1808 43,114 44,035 44,524 5/31/2019 0.1808 43,133 44,055 44,546 5/31/2019 0.1808 43,181 44,101 44,590 5/31/2019 0.1808 46,404 47,245 47,684 5/31/2019 0.1808 46,378 47,218 47,656 5/31/2019 0.1808 46,372 47,212 47,651 5/31/2019 0.1808 46,380 47,219 47,658 5/31/2019 0.1808 46,432 47,271 47,709 5/31/2019 0.1808 46,380 47,219 47,658 5/31/2019 0.1808 46,407 47,246 47,685 5/31/2019 0.1808 46,387 47,226 47,664 5/31/2019 0.1809 44,261 44,774 45,044 5/31/2019 0.1807 44,221 44,733 45,003 5/31/2019 0.1808 44,235 44,747 45,017 5/31/2019 0.1807 44,215 44,725 44,994 5/31/2019 0.1808 44,379 44,892 45,163 5/31/2019 0.1807 44,293 44,805 45,075 5/31/2019 0.1807 44,357 44,870 45,140 5/31/2019 0.1807 44,319 44,830 45,100 5/31/2019 0.1808 44,398 45,277 45,741 5/31/2019 0.1808 44,405 45,283 45,746 5/31/2019 0.1808 44,424 45,302 45,765 5/31/2019 0.1807 44,431 45,309 45,772 5/31/2019 0.1807 44,513 45,389 45,851 5/31/2019 0.1807 44,480 45,355 45,817 5/31/2019 0.1808 44,510 45,386 45,848 5/31/2019 0.1808 44,548 45,423 45,886 5/31/2019 0.1806 41,645 42,071 42,295 5/31/2019 0.1807 41,633 42,059 42,283 5/31/2019 0.1807 41,653 42,079 42,303 5/31/2019 0.1806 41,676 42,102 42,326 5/31/2019 0.1806 45,627 46,260 46,596 5/31/2019 0.1805 45,574 46,207 46,543 5/31/2019 0.1806 45,586 46,218 46,554 5/31/2019 0.1806 45,613 46,245 46,581 5/31/2019 0.1806 45,471 46,282 46,703 5/31/2019 0.1807 45,476 46,286 46,707 5/31/2019 0.1805 45,520 46,330 46,751 5/31/2019 0.1806 45,541 46,350 46,770 5/31/2019 0.1807 45,472 46,282 46,703 5/31/2019 0.1806 45,433 46,243 46,664 5/31/2019 0.1805 45,474 46,284 46,705 5/31/2019 0.1805 45,521 46,330 46,750 5/31/2019 0.1806 43,283 44,160 44,619 5/31/2019 0.1806

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 14 of 30 43,476 44,348 44,803 5/31/2019 0.1805 43,269 44,146 44,604 5/31/2019 0.1807 43,437 44,308 44,762 5/31/2019 0.1807 40,806 41,467 41,817 5/31/2019 0.1806 40,782 41,442 41,792 5/31/2019 0.1806 40,777 41,437 41,788 5/31/2019 0.1806 40,808 41,467 41,817 5/31/2019 0.1806 42,605 43,005 43,215 5/31/2019 0.1806 42,566 42,965 43,175 5/31/2019 0.1806 42,649 43,048 43,258 5/31/2019 0.1806 42,642 43,040 43,250 5/31/2019 0.1807 42,547 42,945 43,154 5/31/2019 0.1807 42,499 42,896 43,106 5/31/2019 0.1807 42,445 42,838 43,045 5/31/2019 0.1806 42,587 42,983 43,192 5/31/2019 0.1806 43,084 43,973 44,441 5/31/2019 0.1804 43,272 44,155 44,619 5/31/2019 0.1805 43,144 44,032 44,500 5/31/2019 0.1804 43,371 44,254 44,717 5/31/2019 0.1803 43,529 44,366 44,801 5/31/2019 0.1803 43,475 44,312 44,746 5/31/2019 0.1804 43,473 44,309 44,743 5/31/2019 0.1805 43,512 44,348 44,782 5/31/2019 0.1805 41,980 42,431 42,668 5/31/2019 0.1806 41,989 42,439 42,677 5/31/2019 0.1805 41,976 42,424 42,660 5/31/2019 0.1805 42,122 42,571 42,808 5/31/2019 0.1803 42,312 42,764 43,002 5/31/2019 0.1802 42,269 42,719 42,957 5/31/2019 0.1803 42,298 42,750 42,988 5/31/2019 0.1803 42,347 42,797 43,035 5/31/2019 0.1802 44,471 45,013 45,300 5/31/2019 0.1804 44,462 45,004 45,291 5/31/2019 0.1804 44,530 45,071 45,359 5/31/2019 0.1804 44,529 45,070 45,356 5/31/2019 0.1805 44,656 45,195 45,482 5/31/2019 0.1804 44,606 45,145 45,431 5/31/2019 0.1805 44,555 45,090 45,375 5/31/2019 0.1804 44,689 45,227 45,513 5/31/2019 0.1804 42,959 43,386 43,610 5/31/2019 0.1804 42,915 43,342 43,567 5/31/2019 0.1804 43,005 43,432 43,657 5/31/2019 0.1804 42,956 43,382 43,607 5/31/2019 0.1804 42,914 43,338 43,561 5/31/2019 0.1804 42,855 43,278 43,502 5/31/2019 0.1804 42,913 43,336 43,559 5/31/2019 0.1804 42,893 43,316 43,539 5/31/2019 0.1804 41,291 41,709 41,929 5/31/2019 0.1804 41,306 41,724 41,943 5/31/2019 0.1805 41,277 41,692 41,911 5/31/2019 0.1805 41,324 41,741 41,960 5/31/2019 0.1805 45,158 45,779 46,108 5/31/2019 0.1805 45,118 45,739 46,069 5/31/2019 0.1805 45,103 45,724 46,054 5/31/2019 0.1805 45,184 45,805 46,134 5/31/2019 0.1805 41,265 41,610 41,790 5/31/2019 0.1806 41,237 41,581 41,761 5/31/2019 0.1805 41,340 41,684 41,865 5/31/2019 0.1805 41,336 41,680 41,860 5/31/2019 0.1805 41,440 41,783 41,962 5/31/2019 0.1804 41,372 41,714 41,893 5/31/2019 0.1805 39,147 39,370 39,487 5/31/2019 0.1805 41,453 41,794 41,974 5/31/2019 0.1804

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 15 of 30 44,280 44,768 45,026 5/31/2019 0.1804 44,284 44,772 45,029 5/31/2019 0.1804 44,343 44,831 45,089 5/31/2019 0.1805 44,367 44,853 45,110 5/31/2019 0.1804 44,388 44,874 45,130 5/31/2019 0.1805 44,341 44,826 45,082 5/31/2019 0.1805 44,262 44,746 45,002 5/31/2019 0.1805 44,419 44,903 45,158 5/31/2019 0.1805 46,391 47,001 47,325 5/31/2019 0.1804 46,366 46,976 47,300 5/31/2019 0.1804 46,423 47,031 47,355 5/31/2019 0.1805 46,431 47,039 47,363 5/31/2019 0.1806 46,379 46,985 47,308 5/31/2019 0.1806 46,303 46,910 47,233 5/31/2019 0.1807 46,247 46,853 47,175 5/31/2019 0.1807 46,393 46,999 47,321 5/31/2019 0.1807 41,332 41,749 41,968 5/31/2019 0.1804 41,340 41,757 41,976 5/31/2019 0.1804 41,367 41,783 42,002 5/31/2019 0.1805 41,352 41,768 41,987 5/31/2019 0.1806 41,595 42,014 42,234 5/31/2019 0.1806 41,532 41,951 42,172 5/31/2019 0.1806 41,511 41,930 42,151 5/31/2019 0.1806 41,618 42,037 42,258 5/31/2019 0.1806 35,552 36,521 37,034 5/31/2019 0.1802 35,561 36,529 37,041 5/31/2019 0.1802 35,542 36,511 37,024 5/31/2019 0.1802 35,545 36,512 37,024 5/31/2019 0.1803 35,629 36,595 37,106 5/31/2019 0.1803 35,648 36,612 37,124 5/31/2019 0.1803 35,629 36,595 37,107 5/31/2019 0.1802 35,647 36,612 37,123 5/31/2019 0.1803 36,685 37,649 38,155 5/31/2019 0.1802 36,686 37,647 38,152 5/31/2019 0.1803 36,672 37,634 38,140 5/31/2019 0.1803 36,726 37,687 38,192 5/31/2019 0.1802 36,749 37,711 38,216 5/31/2019 0.1801 36,748 37,708 38,213 5/31/2019 0.1802 36,731 37,693 38,198 5/31/2019 0.1801 36,785 37,745 38,249 5/31/2019 0.1802 35,937 36,885 37,382 5/31/2019 0.1803 35,969 36,914 37,408 5/31/2019 0.1803 35,935 36,883 37,380 5/31/2019 0.1803 36,048 36,992 37,487 5/31/2019 0.1801 35,992 36,939 37,436 5/31/2019 0.1801 35,995 36,939 37,433 5/31/2019 0.1802 35,964 36,910 37,407 5/31/2019 0.1802 36,034 36,977 37,471 5/31/2019 0.1803 36,991 37,971 38,489 5/31/2019 0.1803 37,008 37,986 38,503 5/31/2019 0.1803 36,984 37,964 38,482 5/31/2019 0.1802 37,009 37,987 38,503 5/31/2019 0.1803 37,094 38,071 38,588 5/31/2019 0.1803 37,110 38,086 38,602 5/31/2019 0.1803 37,100 38,078 38,595 5/31/2019 0.1802 37,144 38,119 38,635 5/31/2019 0.1802 33,699 34,625 35,119 5/31/2019 0.1802 33,723 34,647 35,140 5/31/2019 0.1802 33,687 34,613 35,107 5/31/2019 0.1802 33,713 34,637 35,129 5/31/2019 0.1802 33,849 34,772 35,264 5/31/2019 0.1803 33,870 34,792 35,283 5/31/2019 0.1803 33,837 34,760 35,252 5/31/2019 0.1802

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 16 of 30 33,878 34,800 35,290 5/31/2019 0.1802 34,484 35,400 35,887 5/31/2019 0.1804 34,464 35,381 35,870 5/31/2019 0.1803 35,656 36,607 37,108 5/31/2019 0.1803 35,684 36,636 37,137 5/31/2019 0.1802 35,680 36,631 37,132 5/31/2019 0.1802 35,679 36,630 37,131 5/31/2019 0.1802 35,727 36,676 37,175 5/31/2019 0.1803 35,724 36,673 37,173 5/31/2019 0.1803 35,732 36,682 37,182 5/31/2019 0.1802 35,753 36,702 37,201 5/31/2019 0.1802 36,652 37,624 38,139 5/31/2019 0.1802 36,662 37,631 38,144 5/31/2019 0.1802 36,611 37,582 38,097 5/31/2019 0.1803 36,655 37,622 38,135 5/31/2019 0.1803 36,052 37,020 37,530 5/31/2019 0.1804 36,117 37,082 37,591 5/31/2019 0.1802 36,033 37,001 37,511 5/31/2019 0.1804 36,094 37,058 37,566 5/31/2019 0.1804 36,100 37,066 37,575 5/31/2019 0.1804 36,126 37,088 37,596 5/31/2019 0.1805 36,091 37,057 37,567 5/31/2019 0.1804 36,167 37,129 37,636 5/31/2019 0.1803 34,499 35,417 35,905 5/31/2019 0.1802 34,525 35,440 35,927 5/31/2019 0.1801 36,066 37,045 37,564 5/31/2019 0.1803 36,094 37,071 37,589 5/31/2019 0.1802 36,064 37,044 37,563 5/31/2019 0.1802 36,109 37,086 37,603 5/31/2019 0.1801 36,226 37,204 37,722 5/31/2019 0.1801 36,262 37,237 37,754 5/31/2019 0.1801 36,197 37,174 37,692 5/31/2019 0.1802 36,224 37,197 37,714 5/31/2019 0.1803 28,064 28,764 29,136 5/31/2019 0.1807 28,089 28,788 29,160 5/31/2019 0.1807 27,967 28,664 29,035 5/31/2019 0.1807 28,072 28,771 29,143 5/31/2019 0.1806 28,457 29,157 29,528 5/31/2019 0.1806 28,439 29,138 29,509 5/31/2019 0.1808 28,435 29,134 29,506 5/31/2019 0.1808 28,443 29,141 29,512 5/31/2019 0.1808 29,905 30,650 31,045 5/31/2019 0.1806 29,924 30,666 31,061 5/31/2019 0.1807 29,866 30,610 31,005 5/31/2019 0.1808 29,901 30,643 31,037 5/31/2019 0.1807 30,162 30,903 31,297 5/31/2019 0.1807 30,173 30,913 31,306 5/31/2019 0.1808 30,107 30,847 31,240 5/31/2019 0.1809 30,151 30,889 31,281 5/31/2019 0.1808 32,242 33,179 33,679 5/31/2019 0.1807 32,278 33,213 33,712 5/31/2019 0.1807 32,222 33,158 33,658 5/31/2019 0.1806 32,246 33,181 33,679 5/31/2019 0.1808 31,641 32,614 33,132 5/31/2019 0.1808 31,666 32,640 33,157 5/31/2019 0.1807 31,642 32,616 33,133 5/31/2019 0.1808 31,642 32,616 33,133 5/31/2019 0.1808 31,944 32,918 33,435 5/31/2019 0.1807 31,934 32,907 33,425 5/31/2019 0.1807 31,919 32,892 33,409 5/31/2019 0.1808 31,937 32,910 33,427 5/31/2019 0.1807 29,710 30,427 30,809 5/31/2019 0.1808 29,744 30,461 30,841 5/31/2019 0.1807

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 17 of 30 29,726 30,444 30,826 5/31/2019 0.1807 29,756 30,473 30,854 5/31/2019 0.1805 29,935 30,650 31,031 5/31/2019 0.1805 29,949 30,663 31,042 5/31/2019 0.1806 29,867 30,580 30,960 5/31/2019 0.1806 29,931 30,644 31,023 5/31/2019 0.1806 32,121 33,062 33,564 5/31/2019 0.1807 32,155 33,093 33,594 5/31/2019 0.1807 32,103 33,043 33,544 5/31/2019 0.1807 32,115 33,053 33,553 5/31/2019 0.1808 29,464 30,195 30,584 5/31/2019 0.1807 29,452 30,183 30,571 5/31/2019 0.1807 29,431 30,162 30,550 5/31/2019 0.1808 29,428 30,158 30,546 5/31/2019 0.1809 29,537 30,264 30,650 5/31/2019 0.1809 29,553 30,279 30,666 5/31/2019 0.1807 29,551 30,277 30,664 5/31/2019 0.1806 29,577 30,304 30,690 5/31/2019 0.1806 36,935 37,863 38,348 5/31/2019 0.1806 36,955 37,880 38,364 5/31/2019 0.1806 36,948 37,876 38,360 5/31/2019 0.1806 37,009 37,935 38,418 5/31/2019 0.1805 34,846 35,803 36,313 5/31/2019 0.1805 34,873 35,829 36,339 5/31/2019 0.1805 34,858 35,814 36,324 5/31/2019 0.1805 34,880 35,835 36,345 5/31/2019 0.1805 34,939 35,897 36,408 5/31/2019 0.1805 34,929 35,886 36,396 5/31/2019 0.1805 34,918 35,875 36,386 5/31/2019 0.1805 34,955 35,911 36,421 5/31/2019 0.1805 36,077 36,994 37,472 5/31/2019 0.1806 36,094 37,011 37,488 5/31/2019 0.1805 36,105 37,023 37,501 5/31/2019 0.1805 36,130 37,046 37,523 5/31/2019 0.1805 36,228 37,142 37,618 5/31/2019 0.1805 36,242 37,153 37,629 5/31/2019 0.1805 36,233 37,145 37,621 5/31/2019 0.1805 36,289 37,200 37,675 5/31/2019 0.1805 36,235 37,147 37,623 5/31/2019 0.1805 36,247 37,158 37,633 5/31/2019 0.1804 36,211 37,123 37,599 5/31/2019 0.1806 36,286 37,197 37,671 5/31/2019 0.1805 15,449 16,374 16,868 5/31/2019 0.1798 15,483 16,405 16,899 5/31/2019 0.1798 15,456 16,379 16,874 5/31/2019 0.1798 15,476 16,399 16,893 5/31/2019 0.1796 15,374 16,297 16,791 5/31/2019 0.1797 15,419 16,340 16,834 5/31/2019 0.1796 15,304 16,224 16,717 5/31/2019 0.1797 15,371 16,291 16,784 5/31/2019 0.1797 16,417 17,407 17,938 5/31/2019 0.1797 16,450 17,439 17,969 5/31/2019 0.1797 16,425 17,414 17,946 5/31/2019 0.1797 16,429 17,418 17,948 5/31/2019 0.1797 16,331 17,320 17,850 5/31/2019 0.1796 16,370 17,358 17,888 5/31/2019 0.1796 16,283 17,270 17,800 5/31/2019 0.1796 16,335 17,323 17,852 5/31/2019 0.1796 17,203 18,216 18,758 5/31/2019 0.1796 17,229 18,241 18,783 5/31/2019 0.1797 17,197 18,210 18,752 5/31/2019 0.1797 17,214 18,226 18,768 5/31/2019 0.1796 17,085 18,097 18,639 5/31/2019 0.1796

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 18 of 30 17,121 18,131 18,672 5/31/2019 0.1796 17,055 18,065 18,606 5/31/2019 0.1796 17,080 18,090 18,631 5/31/2019 0.1797 17,266 18,286 18,833 5/31/2019 0.1797 17,283 18,302 18,848 5/31/2019 0.1797 17,263 18,283 18,829 5/31/2019 0.1797 17,266 18,284 18,830 5/31/2019 0.1797 17,119 18,136 18,682 5/31/2019 0.1796 17,133 18,149 18,693 5/31/2019 0.1798 17,099 18,115 18,660 5/31/2019 0.1797 17,112 18,129 18,673 5/31/2019 0.1797 16,794 17,808 18,351 5/31/2019 0.1796 16,801 17,815 18,358 5/31/2019 0.1796 16,783 17,797 18,339 5/31/2019 0.1796 16,782 17,796 18,338 5/31/2019 0.1797 16,625 17,636 18,178 5/31/2019 0.1796 16,640 17,651 18,193 5/31/2019 0.1796 16,622 17,633 18,174 5/31/2019 0.1797 16,615 17,626 18,166 5/31/2019 0.1797 16,596 17,561 18,077 5/31/2019 0.1797 16,634 17,597 18,112 5/31/2019 0.1797 16,587 17,552 18,067 5/31/2019 0.1798 16,609 17,572 18,086 5/31/2019 0.1797 16,532 17,496 18,011 5/31/2019 0.1796 16,581 17,543 18,057 5/31/2019 0.1796 16,496 17,458 17,973 5/31/2019 0.1796 16,537 17,498 18,012 5/31/2019 0.1796 18,737 19,839 20,426 5/31/2019 0.1796 18,751 19,852 20,439 5/31/2019 0.1797 18,729 19,830 20,417 5/31/2019 0.1797 18,720 19,819 20,405 5/31/2019 0.1798 18,614 19,714 20,301 5/31/2019 0.1796 18,641 19,740 20,326 5/31/2019 0.1797 18,601 19,700 20,287 5/31/2019 0.1797 18,617 19,715 20,302 5/31/2019 0.1797 17,008 17,971 18,484 5/31/2019 0.1797 17,062 18,023 18,535 5/31/2019 0.1797 16,998 17,960 18,473 5/31/2019 0.1798 17,010 17,969 18,480 5/31/2019 0.1799 16,969 17,931 18,443 5/31/2019 0.1798 17,026 17,986 18,497 5/31/2019 0.1798 16,951 17,911 18,424 5/31/2019 0.1798 16,994 17,954 18,465 5/31/2019 0.1797 16,845 17,934 18,516 5/31/2019 0.1798 16,887 17,975 18,556 5/31/2019 0.1797 16,849 17,938 18,521 5/31/2019 0.1797 16,868 17,956 18,537 5/31/2019 0.1797 16,762 17,851 18,432 5/31/2019 0.1797 16,809 17,895 18,476 5/31/2019 0.1797 16,738 17,825 18,407 5/31/2019 0.1797 16,776 17,863 18,443 5/31/2019 0.1797 19,707 20,772 21,329 5/31/2019 0.1798 19,805 20,866 21,421 5/31/2019 0.1797 19,703 20,768 21,325 5/31/2019 0.1798 19,775 20,836 21,390 5/31/2019 0.1797 19,678 20,743 21,299 5/31/2019 0.1798 19,779 20,840 21,395 5/31/2019 0.1798 19,686 20,750 21,307 5/31/2019 0.1798 19,758 20,818 21,373 5/31/2019 0.1797 20,103 21,145 21,688 5/31/2019 0.1797 20,138 21,178 21,720 5/31/2019 0.1797 20,091 21,132 21,675 5/31/2019 0.1797 20,110 21,149 21,691 5/31/2019 0.1797

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 19 of 30 20,078 21,119 21,662 5/31/2019 0.1797 20,136 21,176 21,718 5/31/2019 0.1796 20,078 21,119 21,662 5/31/2019 0.1797 20,084 21,123 21,664 5/31/2019 0.1798 19,425 20,537 21,127 5/31/2019 0.1798 19,465 20,574 21,163 5/31/2019 0.1798 19,427 20,538 21,128 5/31/2019 0.1797 19,439 20,548 21,137 5/31/2019 0.1798 19,327 20,438 21,027 5/31/2019 0.1797 19,380 20,489 21,078 5/31/2019 0.1797 19,329 20,439 21,029 5/31/2019 0.1797 19,354 20,463 21,052 5/31/2019 0.1797 19,278 20,364 20,941 5/31/2019 0.1798 19,355 20,438 21,014 5/31/2019 0.1797 19,282 20,368 20,946 5/31/2019 0.1797 19,325 20,408 20,983 5/31/2019 0.1797 19,264 20,351 20,928 5/31/2019 0.1796 19,341 20,424 21,000 5/31/2019 0.1796 19,259 20,344 20,922 5/31/2019 0.1796 19,312 20,395 20,970 5/31/2019 0.1795 20,236 21,337 21,919 5/31/2019 0.1796 20,264 21,363 21,943 5/31/2019 0.1796 20,232 21,333 21,914 5/31/2019 0.1795 20,238 21,337 21,917 5/31/2019 0.1796 20,122 21,222 21,802 5/31/2019 0.1796 20,163 21,261 21,840 5/31/2019 0.1797 20,121 21,219 21,799 5/31/2019 0.1797 20,131 21,227 21,806 5/31/2019 0.1797 19,312 20,418 21,002 5/31/2019 0.1797 19,422 20,523 21,104 5/31/2019 0.1798 19,309 20,414 20,998 5/31/2019 0.1798 19,388 20,488 21,069 5/31/2019 0.1798 19,280 20,384 20,968 5/31/2019 0.1798 19,397 20,497 21,078 5/31/2019 0.1797 19,277 20,381 20,965 5/31/2019 0.1798 19,356 20,456 21,036 5/31/2019 0.1798 19,824 20,900 21,465 5/31/2019 0.1798 19,845 20,921 21,486 5/31/2019 0.1797 19,814 20,891 21,456 5/31/2019 0.1797 19,822 20,897 21,462 5/31/2019 0.1797 19,740 20,816 21,381 5/31/2019 0.1797 19,766 20,840 21,405 5/31/2019 0.1798 19,752 20,828 21,393 5/31/2019 0.1797 19,741 20,816 21,380 5/31/2019 0.1798 19,798 20,862 21,418 5/31/2019 0.1797 19,847 20,908 21,463 5/31/2019 0.1798 19,783 20,845 21,402 5/31/2019 0.1798 19,812 20,872 21,427 5/31/2019 0.1798 19,723 20,785 21,341 5/31/2019 0.1798 19,795 20,855 21,410 5/31/2019 0.1798 19,750 20,812 21,369 5/31/2019 0.1797 19,774 20,834 21,389 5/31/2019 0.1797 19,066 20,098 20,635 5/31/2019 0.1799 19,076 20,108 20,644 5/31/2019 0.1799 19,069 20,101 20,638 5/31/2019 0.1798 19,078 20,110 20,648 5/31/2019 0.1797 19,065 20,097 20,635 5/31/2019 0.1797 19,087 20,119 20,657 5/31/2019 0.1797 19,072 20,105 20,642 5/31/2019 0.1797 19,061 20,093 20,630 5/31/2019 0.1798 17,241 18,337 18,920 5/31/2019 0.1798 17,299 18,393 18,974 5/31/2019 0.1798 17,252 18,347 18,931 5/31/2019 0.1797

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 20 of 30 17,278 18,371 18,953 5/31/2019 0.1797 17,182 18,277 18,860 5/31/2019 0.1797 17,242 18,334 18,916 5/31/2019 0.1797 17,166 18,259 18,842 5/31/2019 0.1797 17,202 18,293 18,874 5/31/2019 0.1798 19,552 20,661 21,247 5/31/2019 0.1798 19,626 20,731 21,316 5/31/2019 0.1798 19,564 20,673 21,260 5/31/2019 0.1797 19,604 20,709 21,294 5/31/2019 0.1797 19,490 20,598 21,184 5/31/2019 0.1797 19,564 20,668 21,253 5/31/2019 0.1798 19,476 20,583 21,170 5/31/2019 0.1798 19,526 20,631 21,215 5/31/2019 0.1798 20,169 21,264 21,840 5/31/2019 0.1797 20,246 21,338 21,912 5/31/2019 0.1797 20,161 21,255 21,831 5/31/2019 0.1798 20,203 21,293 21,867 5/31/2019 0.1798 20,093 21,187 21,762 5/31/2019 0.1798 20,177 21,267 21,841 5/31/2019 0.1798 20,097 21,190 21,765 5/31/2019 0.1798 20,140 21,230 21,804 5/31/2019 0.1798

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 21 of 30 sorted by LBS kgs 1 STonne= 2000.00 907.184740 => MWD/ST=0.9071 1LB=

KG 0.4535924 1.102311311 FUEL serial ID Fuel batch, IAT JYP736 20 JYP737 20 JYP738 20 JYP739 20 JYP741 20 JYP743 20 JYP744 20 JYP745 20 JYP746 20 JYP747 20 JYP748 20 JYP749 20 JYP750 20 JYP751 20 JYP752 13 JYP753 13 JYP754 13 JYP755 13 JYP756 13 JYP757 13 JYP758 13 JYP759 13 JYP768 13 JYP769 13 JYP770 13 JYP771 13 JYP772 13 JYP773 13 JYP774 13 JYP775 13 JYP776 13 JYP777 13 JYP778 13 JYP779 13 JYP788 15 JYP789 15 JYP790 15 JYP791 15 JYP792 15 JYP793 15 JYP794 15 JYP795 15 JYP796 15 JYP797 15 JYP798 15 JYP799 15 JYP800 15 JYP801 15 JYP802 15 JYP803 15 JYP804 12 JYP805 12 JYP806 12 JYP807 12 JYP808 12

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 22 of 30 JYP810 12 JYP812 12 JYP813 12 JYP814 12 JYP815 12 JYP816 12 JYP817 12 JYP818 12 JYP819 12 JYP828 12 JYP829 12 JYP830 12 JYP831 12 JYP832 12 JYP833 12 JYP834 12 JYP835 12 JYP836 12 JYP837 12 JYP838 12 JYP839 12 JYP840 12 JYP841 12 JYP842 12 JYP843 12 JYP844 12 JYP845 12 JYP846 12 JYP847 12 JYP848 8 JYP849 8 JYP850 8 JYP851 8 JYP852 8 JYP853 8 JYP854 8 JYP855 8 JYP864 8 JYP865 8 JYP866 8 JYP867 8 JYP868 8 JYP869 8 JYP870 8 JYP871 8 JYP872 7 JYP873 7 JYP874 7 JYP875 7 JYP876 7 JYP877 7 JYP878 7 JYP879 7 JYP880 7 JYP881 7 JYP882 7 JYP883 7 JYP884 7 JYP885 7 JYP886 7 JYP887 7 JYY575 21 JYY576 21

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 23 of 30 JYY577 21 JYY578 21 JYY579 21 JYY580 21 JYY581 21 JYY582 21 JYY583 21 JYY584 21 JYY585 21 JYY586 21 JYY587 21 JYY588 21 JYY589 21 JYY590 21 JYY591 21 JYY592 21 JYY593 21 JYY594 21 JYY595 21 JYY596 21 JYY597 21 JYY598 21 JYY599 21 JYY600 21 JYY601 21 JYY602 21 JYY603 21 JYY604 21 JYY605 21 JYY606 21 JYY607 21 JYY608 21 JYY609 21 JYY610 21 JYY611 21 JYY612 21 JYY613 21 JYY614 21 JYY615 21 JYY616 21 JYY617 21 JYY618 21 JYY619 21 JYY620 21 JYY621 21 JYY622 21 JYY623 21 JYY624 21 JYY625 21 JYY626 21 JYY627 21 JYY628 21 JYY629 21 JYY630 21 JYY631 22 JYY632 22 JYY633 22 JYY634 22 JYY635 22 JYY636 22 JYY637 22 JYY638 22 JYY639 22

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 24 of 30 JYY640 22 JYY641 22 JYY642 22 JYY643 22 JYY644 22 JYY645 22 JYY646 22 JYY647 22 JYY648 22 JYY649 22 JYY650 22 JYY651 22 JYY652 22 JYY653 22 JYY654 22 JYY655 23 JYY656 23 JYY657 23 JYY658 23 JYY659 23 JYY660 23 JYY661 23 JYY662 23 JYY663 23 JYY664 23 JYY665 23 JYY666 23 JYY667 23 JYY668 23 JYY669 23 JYY670 23 JYY671 23 JYY672 23 JYY673 23 JYY674 23 JYY675 23 JYY676 23 JYY677 23 JYY678 23 JYY679 23 JYY680 23 JYY681 23 JYY682 23 JYY683 23 JYY684 23 JYY685 23 JYY686 23 JYY687 23 JYY688 23 JYY689 23 JYY690 23 JYY691 23 JYY692 23 JYY693 23 JYY694 23 JYY695 24 JYY696 24 JYY697 24 JYY698 24 JYY699 24 JYY700 24 JYY701 24 JYY702 24

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 25 of 30 JYY703 24 JYY704 24 JYY705 24 JYY706 24 JYY707 24 JYY708 24 JYY709 24 JYY710 24 JYY711 24 JYY712 24 JYY713 24 JYY714 24 JYY715 24 JYY716 24 JYY717 24 JYY718 24 JYY719 24 JYY720 24 JYY721 24 JYY722 24 JYY723 24 JYY724 24 JYY725 24 JYY726 24 YLE479 25 YLE480 25 YLE481 25 YLE482 25 YLE483 25 YLE484 25 YLE485 25 YLE486 25 YLE487 25 YLE488 25 YLE489 25 YLE490 25 YLE491 25 YLE492 25 YLE493 25 YLE494 25 YLE495 25 YLE496 25 YLE497 25 YLE498 25 YLE499 25 YLE500 25 YLE501 25 YLE502 25 YLE503 29 YLE504 29 YLE505 29 YLE506 29 YLE507 29 YLE508 29 YLE509 29 YLE510 29 YLE511 26 YLE512 26 YLE513 26 YLE514 26 YLE515 26 YLE516 26 YLE517 26

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 26 of 30 YLE518 26 YLE519 26 YLE520 26 YLE521 26 YLE522 26 YLE523 26 YLE524 26 YLE525 26 YLE526 26 YLE527 26 YLE528 26 YLE529 26 YLE530 26 YLE531 26 YLE532 26 YLE533 26 YLE534 26 YLE535 26 YLE536 26 YLE537 26 YLE538 26 YLE539 26 YLE540 26 YLE541 30 YLE542 30 YLE543 30 YLE544 30 YLE545 30 YLE546 30 YLE547 30 YLE548 30 YLE549 30 YLE550 30 YLE551 27 YLE552 27 YLE553 27 YLE554 27 YLE555 27 YLE556 27 YLE557 27 YLE558 27 YLE559 27 YLE560 27 YLE561 27 YLE562 27 YLE563 27 YLE564 27 YLE565 27 YLE566 27 YLE567 27 YLE568 27 YLE569 27 YLE570 27 YLE571 27 YLE572 27 YLE573 27 YLE574 27 YLE575 27 YLE576 27 YLE577 27 YLE578 27 YLE579 31 YLE580 31

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 27 of 30 YLE581 31 YLE582 31 YLE583 31 YLE584 31 YLE585 31 YLE586 31 YLE587 31 YLE588 31 YLE589 31 YLE590 31 YLE591 31 YLE592 31 YLE593 31 YLE594 31 YLE595 31 YLE596 31 YLE597 31 YLE598 31 YLE599 28 YLE600 28 YLE601 28 YLE602 28 YLE603 28 YLE604 28 YLE605 28 YLE606 28 YLE607 28 YLE608 28 YLE609 28 YLE610 28 YLE611 28 YLE612 28 YLE613 28 YLE614 28 YLE615 32 YLE616 32 YLE617 32 YLE618 32 YLE619 32 YLE620 32 YLE621 32 YLE622 32 YLN193 33 YLN194 33 YLN195 33 YLN196 33 YLN197 33 YLN198 33 YLN199 33 YLN200 33 YLN201 33 YLN202 33 YLN203 33 YLN204 33 YLN205 33 YLN206 33 YLN207 33 YLN208 33 YLN209 33 YLN210 33 YLN211 33 YLN212 33 YLN213 33

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 28 of 30 YLN214 33 YLN215 33 YLN216 33 YLN217 33 YLN218 33 YLN219 33 YLN220 33 YLN221 33 YLN222 33 YLN223 33 YLN224 33 YLN225 33 YLN226 33 YLN227 33 YLN228 33 YLN229 1 YLN230 1 YLN231 1 YLN232 1 YLN233 1 YLN234 1 YLN235 1 YLN236 1 YLN237 1 YLN238 1 YLN239 1 YLN240 1 YLN241 1 YLN242 1 YLN243 1 YLN244 1 YLN245 1 YLN246 1 YLN247 1 YLN248 1 YLN249 1 YLN250 1 YLN251 1 YLN252 1 YLN253 1 YLN254 1 YLN255 1 YLN256 1 YLN257 34 YLN258 34 YLN259 34 YLN260 34 YLN261 34 YLN262 34 YLN263 34 YLN264 34 YLN265 34 YLN266 34 YLN267 34 YLN268 34 YLN269 34 YLN270 34 YLN271 34 YLN272 34 YLN273 34 YLN274 34 YLN275 34 YLN276 34

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 29 of 30 YLN277 34 YLN278 34 YLN279 34 YLN280 34 YLN281 35 YLN282 35 YLN283 35 YLN284 35 YLN285 35 YLN286 35 YLN287 35 YLN288 35 YLN289 35 YLN290 35 YLN291 35 YLN292 35 YLN293 35 YLN294 35 YLN295 35 YLN296 35 YLN297 35 YLN298 35 YLN299 35 YLN300 35 YLN301 35 YLN302 35 YLN303 35 YLN304 35 YLN305 35 YLN306 35 YLN307 35 YLN308 35 YLN309 35 YLN310 35 YLN311 35 YLN312 35 YLN313 35 YLN314 35 YLN315 35 YLN316 35 YLN317 35 YLN318 35 YLN319 35 YLN320 35 YLN321 35 YLN322 35 YLN323 35 YLN324 35 YLN325 35 YLN326 35 YLN327 35 YLN328 35 YLN329 35 YLN330 35 YLN331 35 YLN332 35 YLN333 35 YLN334 35 YLN335 35 YLN336 35 YLN337 36 YLN338 36 YLN339 36

M1417 Rev. 0 Attachment 4: PNPS Cycle 22 Page 30 of 30 YLN340 36 YLN341 36 YLN342 36 YLN343 36 YLN344 36 YLN345 36 YLN346 36 YLN347 36 YLN348 36 YLN349 36 YLN350 36 YLN351 36 YLN352 36 YLN353 36 YLN354 36 YLN355 36 YLN356 36 YLN357 36 YLN358 36 YLN359 36 YLN360 36

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 1 of 76 ID Type MTU Enr (%) Burnup (MWD/MTU) Date Discharged BE001 BE 7X7 0.19204 2.194 18443 8/6/1977 BE002 BE 7X7 0.19204 2.194 18756.9 8/6/1977 BE003 BE 7X7 0.19204 2.194 18464.5 8/6/1977 BE004 BE 7X7 0.19204 2.194 17767.2 8/6/1977 BE005 BE 7X7 0.19204 2.194 17798.1 8/6/1977 BE006 BE 7X7 0.19204 2.194 12086.8 1/29/1976 BE007 BE 7X7 0.19204 2.194 18892.7 8/6/1977 BE008 BE 7X7 0.19204 2.194 18047.7 8/6/1977 BE009 BE 7X7 0.19204 2.194 18378.3 8/6/1977 BE010 BE 7X7 0.19204 2.194 18589.9 8/6/1977 BE011 BE 7X7 0.19204 2.194 11933 1/29/1976 BE012 BE 7X7 0.19204 2.194 17787.5 8/6/1977 BE013 BE 7X7 0.19204 2.194 17386.5 8/6/1977 BE014 BE 7X7 0.19204 2.194 18142.4 8/6/1977 BE015 BE 7X7 0.19204 2.194 17151.5 8/6/1977 BE016 BE 7X7 0.19204 2.194 18729.6 8/6/1977 BE017 BE 7X7 0.19204 2.194 12379.4 1/29/1976 BE018 BE 7X7 0.19204 2.194 17615.7 8/6/1977 BE019 BE 7X7 0.19204 2.194 17847.9 8/6/1977 BE020 BE 7X7 0.19204 2.194 18974.1 8/6/1977 BE021 BE 7X7 0.19204 2.194 19184.1 8/6/1977 BE022 BE 7X7 0.19204 2.194 17621.7 8/6/1977 BE023 BE 7X7 0.19204 2.194 18618.6 8/6/1977 BE024 BE 7X7 0.19204 2.194 18228.6 8/6/1977 BE025 BE 7X7 0.19204 2.194 18092.8 8/6/1977 BE026 BE 7X7 0.19204 2.194 18515 8/6/1977 BE027 BE 7X7 0.19204 2.194 18008 8/6/1977 BE028 BE 7X7 0.19204 2.194 18362.5 8/6/1977 BE029 BE 7X7 0.19204 2.194 12219.8 1/29/1976 BE030 BE 7X7 0.19204 2.194 16961.3 8/6/1977 BE031 BE 7X7 0.19204 2.194 19082.3 8/6/1977 BE032 BE 7X7 0.19204 2.194 18689.2 8/6/1977 BE033 BE 7X7 0.19204 2.194 17591.5 8/6/1977 BE034 BE 7X7 0.19204 2.194 18518.5 8/6/1977 BE035 BE 7X7 0.19204 2.194 17753.3 8/6/1977 BE036 BE 7X7 0.19204 2.194 17540.2 8/6/1977 BE037 BE 7X7 0.19204 2.194 6237.2 12/28/1973 BE038 BE 7X7 0.19204 2.194 17826.4 8/6/1977 BE039 BE 7X7 0.19204 2.194 16514.1 8/6/1977 BE040 BE 7X7 0.19204 2.194 18357.9 8/6/1977 BE041 BE 7X7 0.19204 2.194 17586.5 8/6/1977 BE042 BE 7X7 0.19204 2.194 11990.1 1/29/1976 BE043 BE 7X7 0.19204 2.194 17642.7 8/6/1977 BE044 BE 7X7 0.19204 2.194 17699.5 8/6/1977 BE045 BE 7X7 0.19204 2.194 17027.4 8/6/1977 BE046 BE 7X7 0.19204 2.194 18429.6 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 2 of 76 BE047 BE 7X7 0.19204 2.194 17291.2 8/6/1977 BE048 BE 7X7 0.19204 2.194 17941.8 8/6/1977 BE049 BE 7X7 0.19204 2.194 12090.6 1/29/1976 BE050 BE 7X7 0.19204 2.194 12197.8 1/29/1976 BE051 BE 7X7 0.19204 2.194 17596.8 8/6/1977 BE052 BE 7X7 0.19204 2.194 17718.8 8/6/1977 BE053 BE 7X7 0.19204 2.194 12196.4 1/29/1976 BE054 BE 7X7 0.19204 2.194 18547.2 8/6/1977 BE055 BE 7X7 0.19204 2.194 18828 8/6/1977 BE056 BE 7X7 0.19204 2.194 17077.8 8/6/1977 BE057 BE 7X7 0.19204 2.194 12055 1/29/1976 BE058 BE 7X7 0.19204 2.194 12228.1 1/29/1976 BE059 BE 7X7 0.19204 2.194 6606.2 12/28/1973 BE060 BE 7X7 0.19204 2.194 14654.4 8/6/1977 BE061 BE 7X7 0.19204 2.194 18240.2 8/6/1977 BE062 BE 7X7 0.19204 2.194 12247.6 1/29/1976 BE063 BE 7X7 0.19204 2.194 12180.8 1/29/1976 BE064 BE 7X7 0.19204 2.194 17553.8 8/6/1977 BE065 BE 7X7 0.19204 2.194 18008 8/6/1977 BE066 BE 7X7 0.19204 2.194 18400.9 8/6/1977 BE067 BE 7X7 0.19204 2.194 17322 8/6/1977 BE068 BE 7X7 0.19204 2.194 17528.4 8/6/1977 BE069 BE 7X7 0.19204 2.194 17816.7 8/6/1977 BE070 BE 7X7 0.19204 2.194 18102.4 8/6/1977 BE071 BE 7X7 0.19204 2.194 11620.5 1/29/1976 BE072 BE 7X7 0.19204 2.194 18038.4 8/6/1977 BE073 BE 7X7 0.19204 2.194 18112.3 8/6/1977 BE074 BE 7X7 0.19204 2.194 12565 1/29/1976 BE075 BE 7X7 0.19204 2.194 18510.3 8/6/1977 BE076 BE 7X7 0.19204 2.194 17801.6 8/6/1977 BE077 BE 7X7 0.19204 2.194 6095.2 12/28/1973 BE078 BE 7X7 0.19204 2.194 18090.1 8/6/1977 BE079 BE 7X7 0.19204 2.194 16984 8/6/1977 BE080 BE 7X7 0.19204 2.194 6314.4 12/28/1973 BE081 BE 7X7 0.19204 2.194 18550.5 8/6/1977 BE082 BE 7X7 0.19204 2.194 18109.9 8/6/1977 BE083 BE 7X7 0.19204 2.194 16847.3 8/6/1977 BE084 BE 7X7 0.19204 2.194 17086.2 8/6/1977 BE085 BE 7X7 0.19204 2.194 18024.7 8/6/1977 BE086 BE 7X7 0.19204 2.194 18128.6 8/6/1977 BE087 BE 7X7 0.19204 2.194 17555.2 8/6/1977 BE088 BE 7X7 0.19204 2.194 11581.9 1/29/1976 BE089 BE 7X7 0.19204 2.194 18107.1 8/6/1977 BE090 BE 7X7 0.19204 2.194 17484 8/6/1977 BE091 BE 7X7 0.19204 2.194 16752.6 8/6/1977 BE092 BE 7X7 0.19204 2.194 17472 8/6/1977 BE093 BE 7X7 0.19204 2.194 18054.8 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 3 of 76 BE094 BE 7X7 0.19204 2.194 18080.4 8/6/1977 BE095 BE 7X7 0.19204 2.194 17728.6 8/6/1977 BE096 BE 7X7 0.19204 2.194 18449.1 8/6/1977 BE097 BE 7X7 0.19204 2.194 17760.1 8/6/1977 BE098 BE 7X7 0.19204 2.194 16561.3 8/6/1977 BE099 BE 7X7 0.19204 2.194 6434.2 12/28/1973 BE100 BE 7X7 0.19204 2.194 17341.3 8/6/1977 BE101 BE 7X7 0.19204 2.194 12276.1 1/29/1976 BE102 BE 7X7 0.19204 2.194 18015.8 8/6/1977 BE103 BE 7X7 0.19204 2.194 12012.2 1/29/1976 BE104 BE 7X7 0.19204 2.194 6801.9 12/28/1973 BE105 BE 7X7 0.19204 2.194 12322.1 1/29/1976 BE106 BE 7X7 0.19204 2.194 12469.6 1/29/1976 BE107 BE 7X7 0.19204 2.194 17455.9 8/6/1977 BE108 BE 7X7 0.19204 2.194 17742.4 8/6/1977 BE109 BE 7X7 0.19204 2.194 18089.2 8/6/1977 BE110 BE 7X7 0.19204 2.194 17839.4 8/6/1977 BE111 BE 7X7 0.19204 2.194 17705.4 8/6/1977 BE112 BE 7X7 0.19204 2.194 6793 12/28/1973 BE113 BE 7X7 0.19204 2.194 18409.7 8/6/1977 BE114 BE 7X7 0.19204 2.194 17897.9 8/6/1977 BE115 BE 7X7 0.19204 2.194 18587.2 8/6/1977 BE116 BE 7X7 0.19204 2.194 17696.3 8/6/1977 BE117 BE 7X7 0.19204 2.194 17692.2 8/6/1977 BE118 BE 7X7 0.19204 2.194 18457.7 8/6/1977 BE119 BE 7X7 0.19204 2.194 18489.1 8/6/1977 BE120 BE 7X7 0.19204 2.194 6479.8 12/28/1973 BE121 BE 7X7 0.19204 2.194 17268 8/6/1977 BE122 BE 7X7 0.19204 2.194 17350 8/6/1977 BE123 BE 7X7 0.19204 2.194 18236.1 8/6/1977 BE124 BE 7X7 0.19204 2.194 17628.7 8/6/1977 BE125 BE 7X7 0.19204 2.194 17548.9 8/6/1977 BE126 BE 7X7 0.19204 2.194 11921.8 1/29/1976 BE127 BE 7X7 0.19204 2.194 17832.1 8/6/1977 BE128 BE 7X7 0.19204 2.194 17469.5 8/6/1977 BE129 BE 7X7 0.19204 2.194 18544.4 8/6/1977 BE130 BE 7X7 0.19204 2.194 14223.9 8/6/1977 BE131 BE 7X7 0.19204 2.194 17393.6 8/6/1977 BE132 BE 7X7 0.19204 2.194 17686.1 8/6/1977 BE133 BE 7X7 0.19204 2.194 17826.9 8/6/1977 BE134 BE 7X7 0.19204 2.194 17569 8/6/1977 BE135 BE 7X7 0.19204 2.194 18680 8/6/1977 BE136 BE 7X7 0.19204 2.194 17921.4 8/6/1977 BE137 BE 7X7 0.19204 2.194 17943.8 8/6/1977 BE138 BE 7X7 0.19204 2.194 12464.3 1/29/1976 BE139 BE 7X7 0.19204 2.194 17900 8/6/1977 BE140 BE 7X7 0.19204 2.194 6390.2 12/28/1973

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 4 of 76 BE141 BE 7X7 0.19204 2.194 6633.4 12/28/1973 BE142 BE 7X7 0.19204 2.194 12285.4 1/29/1976 BE143 BE 7X7 0.19204 2.194 18120 8/6/1977 BE144 BE 7X7 0.19204 2.194 12484.1 1/29/1976 BE145 BE 7X7 0.19204 2.194 18168.9 8/6/1977 BE146 BE 7X7 0.19204 2.194 18588 8/6/1977 BE147 BE 7X7 0.19204 2.194 12481.4 1/29/1976 BE148 BE 7X7 0.19204 2.194 6515.3 12/28/1973 BE149 BE 7X7 0.19204 2.194 15095.2 8/6/1977 BE150 BE 7X7 0.19204 2.194 17504 8/6/1977 BE151 BE 7X7 0.19204 2.194 14983.9 8/6/1977 BE152 BE 7X7 0.19204 2.194 17923.3 8/6/1977 BE153 BE 7X7 0.19204 2.194 18544.8 8/6/1977 BE154 BE 7X7 0.19204 2.194 11999.1 1/29/1976 BE155 BE 7X7 0.19204 2.194 17849.4 8/6/1977 BE156 BE 7X7 0.19204 2.194 17568.7 8/6/1977 BE157 BE 7X7 0.19204 2.194 18104.1 8/6/1977 BE158 BE 7X7 0.19204 2.194 16522.2 8/6/1977 BE159 BE 7X7 0.19204 2.194 11525.7 1/29/1976 BE160 BE 7X7 0.19204 2.194 11148.1 1/29/1976 BE161 BE 7X7 0.19204 2.194 17950.7 8/6/1977 BE162 BE 7X7 0.19204 2.194 14306.4 8/6/1977 BE163 BE 7X7 0.19204 2.194 15921.8 8/6/1977 BE164 BE 7X7 0.19204 2.194 5905.4 12/28/1973 BE165 BE 7X7 0.19204 2.194 5773.9 12/28/1973 BE166 BE 7X7 0.19204 2.194 16816.7 8/6/1977 BE167 BE 7X7 0.19204 2.194 11113.2 1/29/1976 BE168 BE 7X7 0.19204 2.194 14870.6 8/6/1977 BE169 BE 7X7 0.19204 2.194 18419.6 8/6/1977 BE170 BE 7X7 0.19204 2.194 18831.9 8/6/1977 BE171 BE 7X7 0.19204 2.194 17996 8/6/1977 BE172 BE 7X7 0.19204 2.194 11593.3 1/29/1976 BE173 BE 7X7 0.19204 2.194 11600.4 1/29/1976 BE174 BE 7X7 0.19204 2.194 11633.2 1/29/1976 BE175 BE 7X7 0.19204 2.194 11563.9 1/29/1976 BE176 BE 7X7 0.19204 2.194 17214.9 8/6/1977 BE177 BE 7X7 0.19204 2.194 16761 8/6/1977 BE178 BE 7X7 0.19204 2.194 17182.9 8/6/1977 BE179 BE 7X7 0.19204 2.194 16279.9 8/6/1977 BE180 BE 7X7 0.19204 2.194 5791.6 12/28/1973 BE181 BE 7X7 0.19204 2.194 15948.4 8/6/1977 BE182 BE 7X7 0.19204 2.194 16099.3 8/6/1977 BE183 BE 7X7 0.19204 2.194 17086 8/6/1977 BE184 BE 7X7 0.19204 2.194 16743.7 8/6/1977 BE185 BE 7X7 0.19204 2.194 16479.6 8/6/1977 BE186 BE 7X7 0.19204 2.194 17049.5 8/6/1977 BE187 BE 7X7 0.19204 2.194 17715.6 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 5 of 76 BE188 BE 7X7 0.19204 2.194 14799.9 8/6/1977 BE189 BE 7X7 0.19204 2.194 18331.7 8/6/1977 BE190 BE 7X7 0.19204 2.194 18652.8 8/6/1977 BE191 BE 7X7 0.19204 2.194 16683.1 8/6/1977 BE192 BE 7X7 0.19204 2.194 14585 8/6/1977 BE193 BE 7X7 0.19204 2.194 16894.4 8/6/1977 BE194 BE 7X7 0.19204 2.194 16444.3 8/6/1977 BE195 BE 7X7 0.19204 2.194 17478.9 8/6/1977 BE196 BE 7X7 0.19204 2.194 18298.4 8/6/1977 BE197 BE 7X7 0.19204 2.194 17852.5 8/6/1977 BE198 BE 7X7 0.19204 2.194 17223.7 8/6/1977 BE199 BE 7X7 0.19204 2.194 17517 8/6/1977 BE200 BE 7X7 0.19204 2.194 18122.2 8/6/1977 BE201 BE 7X7 0.19204 2.194 17197.8 8/6/1977 BE202 BE 7X7 0.19204 2.194 12314.8 1/29/1976 BE203 BE 7X7 0.19204 2.194 16605 8/6/1977 BE204 BE 7X7 0.19204 2.194 17265.8 8/6/1977 BE205 BE 7X7 0.19204 2.194 17322.9 8/6/1977 BE206 BE 7X7 0.19204 2.194 6482.1 12/28/1973 BE207 BE 7X7 0.19204 2.194 17031.1 8/6/1977 BE208 BE 7X7 0.19204 2.194 18278.5 8/6/1977 BE209 BE 7X7 0.19204 2.194 17769.3 8/6/1977 BE210 BE 7X7 0.19204 2.194 17394.8 8/6/1977 BE211 BE 7X7 0.19204 2.194 12250.1 1/29/1976 BE212 BE 7X7 0.19204 2.194 16879.3 8/6/1977 BE213 BE 7X7 0.19204 2.194 17917.1 8/6/1977 BE214 BE 7X7 0.19204 2.194 15546.8 8/6/1977 BE215 BE 7X7 0.19204 2.194 16785.1 8/6/1977 BE216 BE 7X7 0.19204 2.194 16201.6 8/6/1977 BE217 BE 7X7 0.19204 2.194 17238.5 8/6/1977 BE218 BE 7X7 0.19204 2.194 16553.6 8/6/1977 BE219 BE 7X7 0.19204 2.194 18209.3 8/6/1977 BE220 BE 7X7 0.19204 2.194 16471.5 8/6/1977 BE221 BE 7X7 0.19204 2.194 17599.3 8/6/1977 BE222 BE 7X7 0.19204 2.194 17612.2 8/6/1977 BE223 BE 7X7 0.19204 2.194 11688.7 1/29/1976 BE224 BE 7X7 0.19204 2.194 16568.7 8/6/1977 BE225 BE 7X7 0.19204 2.194 17135.5 8/6/1977 BE226 BE 7X7 0.19204 2.194 16181.1 8/6/1977 BE227 BE 7X7 0.19204 2.194 16333.2 8/6/1977 BE228 BE 7X7 0.19204 2.194 11996.3 1/29/1976 BE229 BE 7X7 0.19204 2.194 16669.3 8/6/1977 BE230 BE 7X7 0.19204 2.194 17496.8 8/6/1977 BE231 BE 7X7 0.19204 2.194 16538.6 8/6/1977 BE232 BE 7X7 0.19204 2.194 18723.9 8/6/1977 BE233 BE 7X7 0.19204 2.194 17842.4 8/6/1977 BE234 BE 7X7 0.19204 2.194 17063.8 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 6 of 76 BE235 BE 7X7 0.19204 2.194 6236.7 12/28/1973 BE236 BE 7X7 0.19204 2.194 19088.2 8/6/1977 BE237 BE 7X7 0.19204 2.194 17126.7 8/6/1977 BE238 BE 7X7 0.19204 2.194 17303.9 8/6/1977 BE239 BE 7X7 0.19204 2.194 16986.2 8/6/1977 BE240 BE 7X7 0.19204 2.194 18228.9 8/6/1977 BE241 BE 7X7 0.19204 2.194 17513.9 8/6/1977 BE242 BE 7X7 0.19204 2.194 17910.6 8/6/1977 BE243 BE 7X7 0.19204 2.194 17277.2 8/6/1977 BE244 BE 7X7 0.19204 2.194 11351.4 1/29/1976 BE245 BE 7X7 0.19204 2.194 18316.6 8/6/1977 BE246 BE 7X7 0.19204 2.194 11801.3 1/29/1976 BE247 BE 7X7 0.19204 2.194 11902.6 1/29/1976 BE248 BE 7X7 0.19204 2.194 17430.3 8/6/1977 BE249 BE 7X7 0.19204 2.194 11859.6 1/29/1976 BE250 BE 7X7 0.19204 2.194 11740.5 1/29/1976 BE251 BE 7X7 0.19204 2.194 17507.3 8/6/1977 BE252 BE 7X7 0.19204 2.194 17756.6 8/6/1977 BE253 BE 7X7 0.19204 2.194 18692.1 8/6/1977 BE254 BE 7X7 0.19204 2.194 17576.6 8/6/1977 BE255 BE 7X7 0.19204 2.194 17911.2 8/6/1977 BE256 BE 7X7 0.19204 2.194 17742.6 8/6/1977 BE257 BE 7X7 0.19204 2.194 17428.7 8/6/1977 BE258 BE 7X7 0.19204 2.194 11695.7 1/29/1976 BE259 BE 7X7 0.19204 2.194 17709.4 8/6/1977 BE260 BE 7X7 0.19204 2.194 16049.7 8/6/1977 BE261 BE 7X7 0.19204 2.194 18061.1 8/6/1977 BE262 BE 7X7 0.19204 2.194 17216.3 8/6/1977 BE263 BE 7X7 0.19204 2.194 18675.6 8/6/1977 BE264 BE 7X7 0.19204 2.194 17882.1 8/6/1977 BE265 BE 7X7 0.19204 2.194 17632.7 8/6/1977 BE266 BE 7X7 0.19204 2.194 17701.5 8/6/1977 BE267 BE 7X7 0.19204 2.194 18776.2 8/6/1977 BE268 BE 7X7 0.19204 2.194 17643.7 8/6/1977 BE269 BE 7X7 0.19204 2.194 16689 8/6/1977 BE270 BE 7X7 0.19204 2.194 17933.2 8/6/1977 BE271 BE 7X7 0.19204 2.194 19064.7 8/6/1977 BE272 BE 7X7 0.19204 2.194 17707.6 8/6/1977 BE273 BE 7X7 0.19204 2.194 15442.7 8/6/1977 BE274 BE 7X7 0.19204 2.194 17792.7 8/6/1977 BE275 BE 7X7 0.19204 2.194 18955.4 8/6/1977 BE276 BE 7X7 0.19204 2.194 14636.6 8/6/1977 BE277 BE 7X7 0.19204 2.194 11436.7 8/6/1977 BE278 BE 7X7 0.19204 2.194 12333.1 1/29/1976 BE279 BE 7X7 0.19204 2.194 19653.3 8/6/1977 BE280 BE 7X7 0.19204 2.194 18590.5 8/6/1977 BE281 BE 7X7 0.19204 2.194 17702.9 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 7 of 76 BE282 BE 7X7 0.19204 2.194 19549.2 8/6/1977 BE283 BE 7X7 0.19204 2.194 18940.1 8/6/1977 BE284 BE 7X7 0.19204 2.194 19069.7 8/6/1977 BE285 BE 7X7 0.19204 2.194 18376.7 8/6/1977 BE286 BE 7X7 0.19204 2.194 19340.3 8/6/1977 BE287 BE 7X7 0.19204 2.194 12531.9 1/29/1976 BE288 BE 7X7 0.19204 2.194 12659.7 1/29/1976 BE289 BE 7X7 0.19204 2.194 17941.8 8/6/1977 BE290 BE 7X7 0.19204 2.194 12329.3 1/29/1976 BE291 BE 7X7 0.19204 2.194 18116.5 8/6/1977 BE292 BE 7X7 0.19204 2.194 12974.5 1/29/1976 BE293 BE 7X7 0.19204 2.194 17908.2 8/6/1977 BE294 BE 7X7 0.19204 2.194 12362.5 1/29/1976 BE295 BE 7X7 0.19204 2.194 12209.9 1/29/1976 BE296 BE 7X7 0.19204 2.194 14371.7 8/6/1977 BE297 BE 7X7 0.19204 2.194 11674.8 1/29/1976 BE298 BE 7X7 0.19204 2.194 17646.1 8/6/1977 BE299 BE 7X7 0.19204 2.194 18509.5 8/6/1977 BE300 BE 7X7 0.19204 2.194 16483.6 8/6/1977 BE301 BE 7X7 0.19204 2.194 11682.1 1/29/1976 BE302 BE 7X7 0.19204 2.194 17684.2 8/6/1977 BE303 BE 7X7 0.19204 2.194 18629.9 8/6/1977 BE304 BE 7X7 0.19204 2.194 17491.8 8/6/1977 BE305 BE 7X7 0.19204 2.194 18206.3 8/6/1977 BE306 BE 7X7 0.19204 2.194 17469.1 8/6/1977 BE307 BE 7X7 0.19204 2.194 18391.8 8/6/1977 BE308 BE 7X7 0.19204 2.194 17816.4 8/6/1977 BE309 BE 7X7 0.19204 2.194 16789.7 8/6/1977 BE310 BE 7X7 0.19204 2.194 14699.5 8/6/1977 BE311 BE 7X7 0.19204 2.194 17126.1 8/6/1977 BE312 BE 7X7 0.19204 2.194 17180.7 8/6/1977 BE313 BE 7X7 0.19204 2.194 11045.6 1/29/1976 BE314 BE 7X7 0.19204 2.194 14352.8 8/6/1977 BE315 BE 7X7 0.19204 2.194 16761.9 8/6/1977 BE316 BE 7X7 0.19204 2.194 17377.1 8/6/1977 BE317 BE 7X7 0.19204 2.194 18297.3 8/6/1977 BE318 BE 7X7 0.19204 2.194 15557.6 8/6/1977 BE319 BE 7X7 0.19204 2.194 16732.6 8/6/1977 BE320 BE 7X7 0.19204 2.194 16822.4 8/6/1977 BE321 BE 7X7 0.19204 2.194 17054.1 8/6/1977 BE322 BE 7X7 0.19204 2.194 14005.6 8/6/1977 BE323 BE 7X7 0.19204 2.194 16940.9 8/6/1977 BE324 BE 7X7 0.19204 2.194 16847.9 8/6/1977 BE325 BE 7X7 0.19204 2.194 11903.2 8/6/1977 BE326 BE 7X7 0.19204 2.194 14453 8/6/1977 BE327 BE 7X7 0.19204 2.194 11398.4 8/6/1977 BE328 BE 7X7 0.19204 2.194 3966 12/28/1973

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 8 of 76 BE329 BE 7X7 0.19204 2.194 11734 8/6/1977 BE330 BE 7X7 0.19204 2.194 14573.2 8/6/1977 BE331 BE 7X7 0.19204 2.194 11071.4 8/6/1977 BE332 BE 7X7 0.19204 2.194 10921.4 8/6/1977 BE333 BE 7X7 0.19204 2.194 11461.8 8/6/1977 BE334 BE 7X7 0.19204 2.194 14539.2 8/6/1977 BE335 BE 7X7 0.19204 2.194 11351.2 8/6/1977 BE336 BE 7X7 0.19204 2.194 11326.5 8/6/1977 BE337 BE 7X7 0.19204 2.194 11780.3 8/6/1977 BE338 BE 7X7 0.19204 2.194 14617.1 8/6/1977 BE339 BE 7X7 0.19204 2.194 11229.1 8/6/1977 BE340 BE 7X7 0.19204 2.194 11133 8/6/1977 BE341 BE 7X7 0.19204 2.194 17057.4 8/6/1977 BE342 BE 7X7 0.19204 2.194 10750.4 1/29/1976 BE343 BE 7X7 0.19204 2.194 12187.8 1/29/1976 BE344 BE 7X7 0.19204 2.194 14144.6 8/6/1977 BE345 BE 7X7 0.19204 2.194 16022.2 8/6/1977 BE346 BE 7X7 0.19204 2.194 13373.9 8/6/1977 BE347 BE 7X7 0.19204 2.194 18823.9 8/6/1977 BE348 BE 7X7 0.19204 2.194 16047.7 8/6/1977 BE349 BE 7X7 0.19204 2.194 16719.5 8/6/1977 BE350 BE 7X7 0.19204 2.194 13681.8 8/6/1977 BE351 BE 7X7 0.19204 2.194 16761.4 8/6/1977 BE352 BE 7X7 0.19204 2.194 15946.1 8/6/1977 BE353 BE 7X7 0.19204 2.194 16810 8/6/1977 BE354 BE 7X7 0.19204 2.194 16509.6 8/6/1977 BE355 BE 7X7 0.19204 2.194 12186.7 1/29/1976 BE356 BE 7X7 0.19204 2.194 16232.9 8/6/1977 BE357 BE 7X7 0.19204 2.194 17269.1 8/6/1977 BE358 BE 7X7 0.19204 2.194 12315.9 1/29/1976 BE359 BE 7X7 0.19204 2.194 18513.9 8/6/1977 BE360 BE 7X7 0.19204 2.194 11101.5 1/29/1976 BE361 BE 7X7 0.19204 2.194 18404.2 8/6/1977 BE362 BE 7X7 0.19204 2.194 17968.3 8/6/1977 BE363 BE 7X7 0.19204 2.194 17802.9 8/6/1977 BE364 BE 7X7 0.19204 2.194 11009 1/29/1976 BE365 BE 7X7 0.19204 2.194 17480 8/6/1977 BE366 BE 7X7 0.19204 2.194 18942.7 8/6/1977 BE367 BE 7X7 0.19204 2.194 18743.9 8/6/1977 BE368 BE 7X7 0.19204 2.194 11081.2 1/29/1976 BE369 BE 7X7 0.19204 2.194 17862.7 8/6/1977 BE370 BE 7X7 0.19204 2.194 19133.9 8/6/1977 BE371 BE 7X7 0.19204 2.194 17851.7 8/6/1977 BE372 BE 7X7 0.19204 2.194 10989.7 1/29/1976 BE373 BE 7X7 0.19204 2.194 18309.1 8/6/1977 BE374 BE 7X7 0.19204 2.194 17949.1 8/6/1977 BE375 BE 7X7 0.19204 2.194 18152.3 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 9 of 76 BE376 BE 7X7 0.19204 2.194 17719.9 8/6/1977 BE377 BE 7X7 0.19204 2.194 18509.7 8/6/1977 BE378 BE 7X7 0.19204 2.194 10772.2 1/29/1976 BE379 BE 7X7 0.19204 2.194 12381.9 1/29/1976 BE380 BE 7X7 0.19204 2.194 11316.7 1/29/1976 BE381 BE 7X7 0.19204 2.194 18493.2 8/6/1977 BE382 BE 7X7 0.19204 2.194 17654.7 8/6/1977 BE383 BE 7X7 0.19204 2.194 12323.1 1/29/1976 BE384 BE 7X7 0.19204 2.194 18282.1 8/6/1977 BE385 BE 7X7 0.19204 2.194 12505 1/29/1976 BE386 BE 7X7 0.19204 2.194 17687.2 8/6/1977 BE387 BE 7X7 0.19204 2.194 17828.5 8/6/1977 BE388 BE 7X7 0.19204 2.194 17584.1 8/6/1977 BE389 BE 7X7 0.19204 2.194 17156.7 8/6/1977 BE390 BE 7X7 0.19204 2.194 17458.8 8/6/1977 BE391 BE 7X7 0.19204 2.194 6278.9 12/28/1973 BE392 BE 7X7 0.19204 2.194 11105 1/29/1976 BE393 BE 7X7 0.19204 2.194 12031.3 1/29/1976 BE394 BE 7X7 0.19204 2.194 11444.4 1/29/1976 BE395 BE 7X7 0.19204 2.194 17812.1 8/6/1977 BE396 BE 7X7 0.19204 2.194 11289.5 1/29/1976 BE397 BE 7X7 0.19204 2.194 17519.6 8/6/1977 BE398 BE 7X7 0.19204 2.194 11322.9 1/29/1976 BE399 BE 7X7 0.19204 2.194 17300.6 8/6/1977 BE400 BE 7X7 0.19204 2.194 17666.8 8/6/1977 BE401 BE 7X7 0.19204 2.194 11995.1 1/29/1976 BE402 BE 7X7 0.19204 2.194 17626.8 8/6/1977 BE403 BE 7X7 0.19204 2.194 17899.4 8/6/1977 BE404 BE 7X7 0.19204 2.194 11252.3 1/29/1976 BE405 BE 7X7 0.19204 2.194 12307.4 1/29/1976 BE406 BE 7X7 0.19204 2.194 17253.5 8/6/1977 BE407 BE 7X7 0.19204 2.194 17072.4 8/6/1977 BE408 BE 7X7 0.19204 2.194 16888.1 8/6/1977 BE409 BE 7X7 0.19204 2.194 17094.8 8/6/1977 BE410 BE 7X7 0.19204 2.194 11398.8 1/29/1976 BE411 BE 7X7 0.19204 2.194 12116.5 1/29/1976 BE412 BE 7X7 0.19204 2.194 13591.4 8/6/1977 BE413 BE 7X7 0.19204 2.194 18379.6 8/6/1977 BE414 BE 7X7 0.19204 2.194 17351.6 8/6/1977 BE415 BE 7X7 0.19204 2.194 12380.3 1/29/1976 BE416 BE 7X7 0.19204 2.194 17178.5 8/6/1977 BE417 BE 7X7 0.19204 2.194 12275.8 1/29/1976 BE418 BE 7X7 0.19204 2.194 16785.7 8/6/1977 BE419 BE 7X7 0.19204 2.194 11926.8 1/29/1976 BE420 BE 7X7 0.19204 2.194 17549.5 8/6/1977 BE421 BE 7X7 0.19204 2.194 17715.3 8/6/1977 BE422 BE 7X7 0.19204 2.194 17471.2 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 10 of 76 BE423 BE 7X7 0.19204 2.194 16811.1 8/6/1977 BE424 BE 7X7 0.19204 2.194 18607.6 8/6/1977 BE425 BE 7X7 0.19204 2.194 17491 8/6/1977 BE426 BE 7X7 0.19204 2.194 13714.2 8/6/1977 BE427 BE 7X7 0.19204 2.194 12330.9 1/29/1976 BE428 BE 7X7 0.19204 2.194 18834.7 8/6/1977 BE429 BE 7X7 0.19204 2.194 11734.2 1/29/1976 BE430 BE 7X7 0.19204 2.194 11114.2 1/29/1976 BE431 BE 7X7 0.19204 2.194 12172.1 1/29/1976 BE432 BE 7X7 0.19204 2.194 18134.9 8/6/1977 BE433 BE 7X7 0.19204 2.194 11780.9 1/29/1976 BE434 BE 7X7 0.19204 2.194 11065.8 1/29/1976 BE435 BE 7X7 0.19204 2.194 17890.3 8/6/1977 BE436 BE 7X7 0.19204 2.194 12116.2 1/29/1976 BE437 BE 7X7 0.19204 2.194 18719.1 8/6/1977 BE438 BE 7X7 0.19204 2.194 15544 8/6/1977 BE439 BE 7X7 0.19204 2.194 16700.3 8/6/1977 BE440 BE 7X7 0.19204 2.194 10853.6 1/29/1976 BE441 BE 7X7 0.19204 2.194 12136.4 1/29/1976 BE442 BE 7X7 0.19204 2.194 16221.3 8/6/1977 BE443 BE 7X7 0.19204 2.194 16783.4 8/6/1977 BE444 BE 7X7 0.19204 2.194 16353.4 8/6/1977 BE445 BE 7X7 0.19204 2.194 18272.5 8/6/1977 BE446 BE 7X7 0.19204 2.194 15917.8 8/6/1977 BE447 BE 7X7 0.19204 2.194 11226.1 1/29/1976 BE448 BE 7X7 0.19204 2.194 13738.9 8/6/1977 BE449 BE 7X7 0.19204 2.194 18337.7 8/6/1977 BE450 BE 7X7 0.19204 2.194 16289.6 8/6/1977 BE451 BE 7X7 0.19204 2.194 11350.9 1/29/1976 BE452 BE 7X7 0.19204 2.194 13337.2 8/6/1977 BE453 BE 7X7 0.19204 2.194 12093.1 8/6/1977 BE454 BE 7X7 0.19204 2.194 15937.1 8/6/1977 BE455 BE 7X7 0.19204 2.194 10826.3 8/6/1977 BE456 BE 7X7 0.19204 2.194 12172.5 8/6/1977 BE457 BE 7X7 0.19204 2.194 11843.9 8/6/1977 BE458 BE 7X7 0.19204 2.194 14895.1 8/6/1977 BE459 BE 7X7 0.19204 2.194 11040 8/6/1977 BE460 BE 7X7 0.19204 2.194 11036.2 8/6/1977 BE461 BE 7X7 0.19204 2.194 11982.5 8/6/1977 BE462 BE 7X7 0.19204 2.194 14727.8 8/6/1977 BE463 BE 7X7 0.19204 2.194 11360.1 8/6/1977 BE464 BE 7X7 0.19204 2.194 11249.8 8/6/1977 BE465 BE 7X7 0.19204 2.194 11987.3 8/6/1977 BE466 BE 7X7 0.19204 2.194 14590.9 8/6/1977 BE467 BE 7X7 0.19204 2.194 10895.4 8/6/1977 BE468 BE 7X7 0.19204 2.194 10989.2 8/6/1977 BE469 BE 7X7 0.19204 2.194 12214.1 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 11 of 76 BE470 BE 7X7 0.19204 2.194 10818.5 8/6/1977 BE471 BE 7X7 0.19204 2.194 11500.1 8/6/1977 BE472 BE 7X7 0.19204 2.194 14287.9 8/6/1977 BE473 BE 7X7 0.19204 2.194 12162.5 8/6/1977 BE474 BE 7X7 0.19204 2.194 10681.8 8/6/1977 BE475 BE 7X7 0.19204 2.194 11497.4 8/6/1977 BE476 BE 7X7 0.19204 2.194 11107 8/6/1977 BE477 BE 7X7 0.19204 2.194 11868.2 8/6/1977 BE478 BE 7X7 0.19204 2.194 10746.3 8/6/1977 BE479 BE 7X7 0.19204 2.194 11460.3 8/6/1977 BE480 BE 7X7 0.19204 2.194 11298.6 8/6/1977 BE481 BE 7X7 0.19204 2.194 12073.5 8/6/1977 BE482 BE 7X7 0.19204 2.194 10546.1 8/6/1977 BE483 BE 7X7 0.19204 2.194 11070.9 8/6/1977 BE484 BE 7X7 0.19204 2.194 11258 8/6/1977 BE485 BE 7X7 0.19204 2.194 11141.2 1/29/1976 BE486 BE 7X7 0.19204 2.194 9279.7 1/29/1976 BE487 BE 7X7 0.19204 2.194 14926.8 8/6/1977 BE488 BE 7X7 0.19204 2.194 16596.2 8/6/1977 BE489 BE 7X7 0.19204 2.194 11298.5 1/29/1976 BE490 BE 7X7 0.19204 2.194 9315.5 1/29/1976 BE491 BE 7X7 0.19204 2.194 15405.2 8/6/1977 BE492 BE 7X7 0.19204 2.194 14626.8 8/6/1977 BE493 BE 7X7 0.19204 2.194 11575.7 1/29/1976 BE494 BE 7X7 0.19204 2.194 9972.8 1/29/1976 BE495 BE 7X7 0.19204 2.194 16419.5 8/6/1977 BE496 BE 7X7 0.19204 2.194 9196.5 1/29/1976 BE497 BE 7X7 0.19204 2.194 11024.1 1/29/1976 BE498 BE 7X7 0.19204 2.194 9838 1/29/1976 BE499 BE 7X7 0.19204 2.194 16736.6 8/6/1977 BE500 BE 7X7 0.19204 2.194 9133 1/29/1976 BE501 BE 7X7 0.19204 2.194 16131.6 8/6/1977 BE502 BE 7X7 0.19204 2.194 16087.7 8/6/1977 BE503 BE 7X7 0.19204 2.194 11065.4 1/29/1976 BE504 BE 7X7 0.19204 2.194 9543.2 1/29/1976 BE505 BE 7X7 0.19204 2.194 15506.3 8/6/1977 BE506 BE 7X7 0.19204 2.194 16023.6 8/6/1977 BE507 BE 7X7 0.19204 2.194 11264.4 1/29/1976 BE508 BE 7X7 0.19204 2.194 9675.7 1/29/1976 BE509 BE 7X7 0.19204 2.194 15003.2 8/6/1977 BE510 BE 7X7 0.19204 2.194 9252.5 1/29/1976 BE511 BE 7X7 0.19204 2.194 11493.5 1/29/1976 BE512 BE 7X7 0.19204 2.194 15724.6 8/6/1977 BE513 BE 7X7 0.19204 2.194 15667.8 8/6/1977 BE514 BE 7X7 0.19204 2.194 12676.9 8/6/1977 BE515 BE 7X7 0.19204 2.194 11205.1 1/29/1976 BE516 BE 7X7 0.19204 2.194 15620.9 8/6/1977

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 12 of 76 BE517 BE 7X7 0.19204 2.194 15008.7 8/6/1977 BE518 BE 7X7 0.19204 2.194 9516.1 1/29/1976 BE519 BE 7X7 0.19204 2.194 14971.5 8/6/1977 BE520 BE 7X7 0.19204 2.194 10030.6 1/29/1976 BE521 BE 7X7 0.19204 2.194 15385.3 8/6/1977 BE522 BE 7X7 0.19204 2.194 15819.7 8/6/1977 BE523 BE 7X7 0.19204 2.194 15279.3 8/6/1977 BE524 BE 7X7 0.19204 2.194 9966.7 1/29/1976 BE525 BE 7X7 0.19204 2.194 15329.1 8/6/1977 BE526 BE 7X7 0.19204 2.194 9292.4 1/29/1976 BE527 BE 7X7 0.19204 2.194 14846 8/6/1977 BE528 BE 7X7 0.19204 2.194 9554.2 1/29/1976 BE529 BE 7X7 0.19204 2.194 15106.7 8/6/1977 BE530 BE 7X7 0.19204 2.194 16197.1 8/6/1977 BE531 BE 7X7 0.19204 2.194 9183.3 1/29/1976 BE532 BE 7X7 0.19204 2.194 9685.8 1/29/1976 BE533 BE 7X7 0.19204 2.194 15046.3 8/6/1977 BE534 BE 7X7 0.19204 2.194 15593.1 8/6/1977 BE535 BE 7X7 0.19204 2.194 9720.9 1/29/1976 BE536 BE 7X7 0.19204 2.194 15356.4 8/6/1977 BE537 BE 7X7 0.19204 2.194 11112.9 1/29/1976 BE538 BE 7X7 0.19204 2.194 9552.2 1/29/1976 BE539 BE 7X7 0.19204 2.194 15461.9 8/6/1977 BE540 BE 7X7 0.19204 2.194 9112 1/29/1976 BE541 BE 7X7 0.19204 2.194 11028.2 1/29/1976 BE542 BE 7X7 0.19204 2.194 15773.1 8/6/1977 BE543 BE 7X7 0.19204 2.194 15078.6 8/6/1977 BE544 BE 7X7 0.19204 2.194 9059.3 1/29/1976 BE545 BE 7X7 0.19204 2.194 11022.2 1/29/1976 BE546 BE 7X7 0.19204 2.194 9453.6 1/29/1976 BE547 BE 7X7 0.19204 2.194 15429.2 8/6/1977 BE548 BE 7X7 0.19204 2.194 12216.6 8/6/1977 BE549 BE 7X7 0.19204 2.194 5653.5 12/28/1973 BE550 BE 7X7 0.19204 2.194 9156.5 1/29/1976 BE551 BE 7X7 0.19204 2.194 11390.5 1/29/1976 BE552 BE 7X7 0.19204 2.194 9900.7 1/29/1976 BE553 BE 7X7 0.19204 2.194 16662.6 8/6/1977 BE554 BE 7X7 0.19204 2.194 9085.8 1/29/1976 BE555 BE 7X7 0.19204 2.194 11017.3 1/29/1976 BE556 BE 7X7 0.19204 2.194 10023.6 1/29/1976 BE557 BE 7X7 0.19204 2.194 17113.5 8/6/1977 BE558 BE 7X7 0.19204 2.194 9197.3 1/29/1976 BE559 BE 7X7 0.19204 2.194 11045.1 1/29/1976 BE560 BE 7X7 0.19204 2.194 16773.1 8/6/1977 BE561 BE 7X7 0.19204 2.194 16826.5 8/6/1977 BE562 BE 7X7 0.19204 2.194 9059.9 1/29/1976 BE563 BE 7X7 0.19204 2.194 11094 1/29/1976

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 13 of 76 BE564 BE 7X7 0.19204 2.194 16569.8 8/6/1977 BE565 BE 7X7 0.19204 2.194 11741.7 8/6/1977 BE566 BE 7X7 0.19204 2.194 2625.2 12/28/1973 BE567 BE 7X7 0.19204 2.194 11583.3 8/6/1977 BE568 BE 7X7 0.19204 2.194 10730.3 8/6/1977 BE569 BE 7X7 0.19204 2.194 11814.4 8/6/1977 BE570 BE 7X7 0.19204 2.194 11263.9 8/6/1977 BE571 BE 7X7 0.19204 2.194 11939.5 8/6/1977 BE572 BE 7X7 0.19204 2.194 10721.5 8/6/1977 BE573 BE 7X7 0.19204 2.194 11689.8 8/6/1977 BE574 BE 7X7 0.19204 2.194 11347.7 8/6/1977 BE575 BE 7X7 0.19204 2.194 11883 8/6/1977 BE576 BE 7X7 0.19204 2.194 10673.6 8/6/1977 BE577 BE 7X7 0.19204 2.194 10847.7 8/6/1977 BE578 BE 7X7 0.19204 2.194 12425.6 1/29/1976 BE579 BE 7X7 0.19204 2.194 11902.1 8/6/1977 BE580 BE 7X7 0.19204 2.194 10703.6 8/6/1977 BEA001 8D262 0.18435 2.611 23211.9 1/5/1980 BEA002 8D262 0.18435 2.611 23712 9/26/1981 BEA003 8D262 0.18435 2.611 17336.9 1/5/1980 BEA004 8D262 0.18435 2.611 22789.4 1/5/1980 BEA005 8D262 0.18435 2.611 22980.4 1/5/1980 BEA006 8D262 0.18435 2.611 23414.9 1/5/1980 BEA007 8D262 0.18435 2.611 22524.8 1/5/1980 BEA008 8D262 0.18435 2.611 23444.7 9/26/1981 BEA009 8D262 0.18435 2.611 23293.4 9/26/1981 BEA010 8D262 0.18435 2.611 23986.4 1/5/1980 BEA011 8D262 0.18435 2.611 24238.3 1/5/1980 BEA012 8D262 0.18435 2.611 23286.8 1/5/1980 BEA013 8D262 0.18435 2.611 23734.6 9/26/1981 BEA014 8D262 0.18435 2.611 24055.3 9/26/1981 BEA015 8D262 0.18435 2.611 21966.3 9/26/1981 BEA016 8D262 0.18435 2.611 22316.2 9/26/1981 BEA017 8D262 0.18435 2.611 23813.7 9/26/1981 BEA018 8D262 0.18435 2.611 21721.2 9/26/1981 BEA019 8D262 0.18435 2.611 24257.6 9/26/1981 BEA020 8D262 0.18435 2.611 24004.4 9/26/1981 BEA021 8D262 0.18435 2.611 16645.6 1/5/1980 BEA022 8D262 0.18435 2.611 22130.5 9/26/1981 BEA023 8D262 0.18435 2.611 22425 9/26/1981 BEA024 8D262 0.18435 2.611 23878.4 9/26/1981 BEA025 8D262 0.18435 2.611 22045.6 9/26/1981 BEA026 8D262 0.18435 2.611 23089 1/5/1980 BEA027 8D262 0.18435 2.611 23173.3 1/5/1980 BEA028 8D262 0.18435 2.611 22688.3 1/5/1980 BEA029 8D262 0.18435 2.611 23147.9 1/5/1980 BEA030 8D262 0.18435 2.611 22242.9 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 14 of 76 BEA031 8D262 0.18435 2.611 17606.3 1/5/1980 BEA032 8D262 0.18435 2.611 23232.8 1/5/1980 BEA033 8D262 0.18435 2.611 23212.4 1/5/1980 BEA034 8D262 0.18435 2.611 24064.2 1/5/1980 BEA035 8D262 0.18435 2.611 24010.5 1/5/1980 BEA036 8D262 0.18435 2.611 22236.6 9/26/1981 BEA037 8D262 0.18435 2.611 24223.2 9/26/1981 BEA038 8D262 0.18435 2.611 22079.8 9/26/1981 BEA039 8D262 0.18435 2.611 23981.8 9/26/1981 BEA040 8D262 0.18435 2.611 23840.9 9/26/1981 BEA041 8D262 0.18435 2.611 21897 9/26/1981 BEA042 8D262 0.18435 2.611 22033.5 9/26/1981 BEA043 8D262 0.18435 2.611 24064.2 9/26/1981 BEA044 8D262 0.18435 2.611 21742.7 9/26/1981 BEA045 8D262 0.18435 2.611 23982.6 9/26/1981 BEA046 8D262 0.18435 2.611 23947.3 9/26/1981 BEA047 8D262 0.18435 2.611 21971.5 9/26/1981 BEA048 8D262 0.18435 2.611 22260 9/26/1981 BEA049 8D262 0.18435 2.611 24329.3 9/26/1981 BEA050 8D262 0.18435 2.611 21821.9 9/26/1981 BEA051 8D262 0.18435 2.611 24289 9/26/1981 BEA052 8D262 0.18435 2.611 21986.9 9/26/1981 BEA053 8D262 0.18435 2.611 24478.9 9/26/1981 BEA054 8D262 0.18435 2.611 16950.6 1/5/1980 BEA055 8D262 0.18435 2.611 22784.7 1/5/1980 BEA056 8D262 0.18435 2.611 23510 1/5/1980 BEA057 8D262 0.18435 2.611 24221.2 9/26/1981 BEA058 8D262 0.18435 2.611 23818.9 1/5/1980 BEA059 8D262 0.18435 2.611 23348 1/5/1980 BEA060 8D262 0.18435 2.611 24174.9 9/26/1981 JLG609 GE/14 10X10 0.17446 3.978 45971.1 4/17/2009 JLG610 GE/14 10X10 0.17455 3.974 45932.5 4/17/2009 JLG611 GE/14 10X10 0.17449 3.965 47054.7 4/17/2009 JLG612 GE/14 10X10 0.17468 3.952 47238.8 4/17/2009 JLG613 GE/14 10X10 0.17463 3.967 47936.5 4/17/2009 JLG614 GE/14 10X10 0.17463 3.972 47277.3 4/17/2009 JLG615 GE/14 10X10 0.17468 3.982 46751.5 4/17/2009 JLG616 GE/14 10X10 0.17466 3.973 47896.8 4/17/2009 JLG617 GE/14 10X10 0.17472 3.97 47570.1 4/17/2011 JLG618 GE/14 10X10 0.17471 3.972 49344.5 4/17/2011 JLG619 GE/14 10X10 0.17469 3.97 48156.9 4/17/2011 JLG620 GE/14 10X10 0.17464 3.947 47532 4/17/2009 JLG621 GE/14 10X10 0.17456 3.959 19991.2 4/18/2005 JLG622 GE/14 10X10 0.17459 3.966 48216 4/17/2011 JLG623 GE/14 10X10 0.17464 3.962 48551.7 4/17/2011 JLG624 GE/14 10X10 0.17475 3.962 47193.6 4/17/2009 JLG625 GE/14 10X10 0.17481 3.966 48694.4 4/17/2011

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 15 of 76 JLG626 GE/14 10X10 0.17474 3.971 48570.7 4/17/2011 JLG627 GE/14 10X10 0.17469 3.977 48575.6 4/17/2011 JLG628 GE/14 10X10 0.17454 3.981 45230.4 4/17/2009 JLG629 GE/14 10X10 0.17461 3.969 50083.2 4/17/2011 JLG630 GE/14 10X10 0.17474 3.966 47870.8 4/17/2011 JLG631 GE/14 10X10 0.17458 3.966 47672.2 4/17/2011 JLG632 GE/14 10X10 0.17459 3.958 47927.3 4/17/2011 JLG633 GE/14 10X10 0.1747 3.949 48163.6 4/17/2011 JLG634 GE/14 10X10 0.17474 3.951 48453.5 4/17/2011 JLG635 GE/14 10X10 0.17472 3.961 44737.7 4/17/2009 JLG636 GE/14 10X10 0.17471 3.969 47484.6 4/17/2009 JLG637 GE/14 10X10 0.1747 3.975 46608.2 4/17/2009 JLG638 GE/14 10X10 0.17476 3.965 48234.5 4/17/2011 JLG639 GE/14 10X10 0.17482 3.986 50057.6 4/17/2011 JLG640 GE/14 10X10 0.17481 3.988 46828.7 4/17/2009 JLG641 GE/14 10X10 0.1747 3.961 47181.4 4/17/2009 JLG642 GE/14 10X10 0.17471 3.968 49991 4/17/2011 JLG643 GE/14 10X10 0.17482 3.974 46065.9 4/17/2009 JLG644 GE/14 10X10 0.17488 3.988 45898.4 4/17/2009 JLG645 GE/14 10X10 0.17481 3.997 48203.3 4/17/2009 JLG646 GE/14 10X10 0.17477 3.991 47508.9 4/17/2011 JLG647 GE/14 10X10 0.1746 3.987 47905.6 4/17/2009 JLG648 GE/14 10X10 0.17459 3.994 48191.1 4/17/2009 JLG649 GE/14 10X10 0.17461 3.979 49369.6 4/17/2011 JLG650 GE/14 10X10 0.17458 3.984 49418.6 4/17/2011 JLG651 GE/14 10X10 0.17448 3.983 46175.6 4/17/2011 JLG652 GE/14 10X10 0.17453 3.976 51188.3 4/17/2011 JLG653 GE/14 10X10 0.17454 3.974 47366.1 4/17/2011 JLG654 GE/14 10X10 0.17451 3.968 46329.7 4/17/2011 JLG655 GE/14 10X10 0.17434 3.963 48569.2 4/17/2009 JLG656 GE/14 10X10 0.1744 3.971 48408.3 4/17/2009 JLG657 GE/14 10X10 0.17429 3.971 47367.7 4/17/2009 JLG658 GE/14 10X10 0.17442 3.97 47364.4 4/17/2009 JLG659 GE/14 10X10 0.17442 3.975 48015 4/17/2011 JLG660 GE/14 10X10 0.17441 3.986 47592.6 4/17/2009 JLG661 GE/14 10X10 0.17439 3.995 49038.9 4/17/2011 JLG662 GE/14 10X10 0.17429 3.982 48884.3 4/17/2011 JLG663 GE/14 10X10 0.17431 3.978 49966.7 4/17/2011 JLG664 GE/14 10X10 0.17432 3.982 47669.1 4/17/2011 JLG665 GE/14 10X10 0.17429 3.976 50903.8 4/17/2011 JLG666 GE/14 10X10 0.17442 3.974 47557.3 4/17/2009 JLG667 GE/14 10X10 0.17443 3.974 49056.6 4/17/2011 JLG668 GE/14 10X10 0.17448 3.985 49070.4 4/17/2011 JLG669 GE/14 10X10 0.1745 3.984 48111.8 4/17/2009 JLG670 GE/14 10X10 0.17455 3.982 50290.7 4/17/2011 JLG671 GE/14 10X10 0.1744 3.98 48233 4/17/2009 JLG672 GE/14 10X10 0.17451 3.988 47308.2 4/17/2009

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 16 of 76 JLG673 GE/14 10X10 0.17461 3.987 48834.9 4/17/2009 JLG674 GE/14 10X10 0.17472 3.992 48308 4/17/2009 JLG675 GE/14 10X10 0.17478 3.987 46455.7 4/17/2011 JLG676 GE/14 10X10 0.17464 3.985 51494.1 4/17/2011 JLG677 GE/14 10X10 0.17455 3.978 48666.1 4/17/2011 JLG678 GE/14 10X10 0.17464 3.982 46098.6 4/17/2011 JLG679 GE/14 10X10 0.17462 3.983 49523.9 4/17/2011 JLG680 GE/14 10X10 0.17449 3.979 49530.4 4/17/2011 JLG681 GE/14 10X10 0.17455 3.981 48190 4/17/2009 JLG682 GE/14 10X10 0.17454 3.974 47983.2 4/17/2011 JLG683 GE/14 10X10 0.17452 3.981 48182.4 4/17/2011 JLG684 GE/14 10X10 0.17456 3.979 47608 4/17/2009 JLG685 GE/14 10X10 0.17451 3.967 49004.6 4/17/2009 JLG686 GE/14 10X10 0.17452 3.975 49722 4/17/2011 JLG687 GE/14 10X10 0.17454 3.969 49590.5 4/17/2011 JLG688 GE/14 10X10 0.17442 3.963 49238.3 4/17/2009 JLG689 GE/14 10X10 0.17461 3.968 48942.9 4/17/2009 JLG690 GE/14 10X10 0.17466 3.966 49110.4 4/17/2009 JLG691 GE/14 10X10 0.17468 3.983 47694 4/17/2009 JLG692 GE/14 10X10 0.17471 3.997 49415.3 4/17/2011 JLG693 GE/14 10X10 0.1747 3.989 49307.3 4/17/2011 JLG694 GE/14 10X10 0.17445 3.958 48555.6 4/17/2011 JLG695 GE/14 10X10 0.17445 3.962 47883.6 4/17/2009 JLG696 GE/14 10X10 0.17442 3.974 49301.9 4/17/2011 JLG697 GE/14 10X10 0.17444 3.983 48353.5 4/17/2011 JLG698 GE/14 10X10 0.17456 3.986 48880.4 4/17/2011 JLG699 GE/14 10X10 0.17444 3.986 47766.8 4/17/2009 JLG700 GE/14 10X10 0.17446 3.977 46688.7 4/17/2011 JLG701 GE/14 10X10 0.17452 3.969 49464.8 4/17/2011 JLG702 GE/14 10X10 0.17451 3.968 47197.7 4/17/2011 JLG703 GE/14 10X10 0.17452 3.968 49279.8 4/17/2011 JLG704 GE/14 10X10 0.17466 3.971 48884.3 4/17/2011 JLG705 GE/14 10X10 0.1746 3.965 47230.8 4/17/2011 JLG706 GE/14 10X10 0.17459 3.956 47656.5 4/17/2011 JLG707 GE/14 10X10 0.17443 3.957 49255.5 4/17/2011 JLG708 GE/14 10X10 0.17445 3.96 49698.9 4/17/2011 JLG709 GE/14 10X10 0.17443 3.965 47485.7 4/17/2009 JLG710 GE/14 10X10 0.17442 3.978 47695.1 4/17/2009 JLG711 GE/14 10X10 0.17453 3.987 48861.3 4/17/2011 JLG712 GE/14 10X10 0.17446 3.988 49707.1 4/17/2011 JLG713 GE/14 10X10 0.17442 3.982 47654.8 4/17/2011 JLG714 GE/14 10X10 0.17448 3.982 49207.5 4/17/2011 JLG715 GE/14 10X10 0.17447 3.967 48794.3 4/17/2011 JLG716 GE/14 10X10 0.17443 3.973 47914.9 4/17/2011 JLG717 GE/14 10X10 0.17444 3.982 49572 4/17/2011 JLG718 GE/14 10X10 0.17431 3.971 48608.4 4/17/2011 JLG719 GE/14 10X10 0.17454 3.967 48534.3 4/17/2011

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 17 of 76 JLG720 GE/14 10X10 0.17459 3.969 49831.3 4/17/2011 JLG721 GE/14 10X10 0.17456 3.969 47719 4/17/2011 JLG722 GE/14 10X10 0.1744 3.983 48769.1 4/17/2011 JLG723 GE/14 10X10 0.17432 3.985 48589.1 4/17/2009 JLG724 GE/14 10X10 0.17433 3.979 47017.9 4/17/2011 JLG725 GE/14 10X10 0.1743 3.971 48137.1 4/17/2009 JLG726 GE/14 10X10 0.17444 3.967 48134.9 4/17/2009 JLG727 GE/14 10X10 0.17448 3.964 47126.9 4/17/2011 JLG728 GE/14 10X10 0.17456 3.968 48474.4 4/17/2009 JLG729 GE/14 10X10 0.17439 3.967 48672.8 4/17/2009 JLG730 GE/14 10X10 0.17443 3.981 47109.6 4/17/2011 JLG731 GE/14 10X10 0.17452 3.968 48330 4/17/2009 JLG732 GE/14 10X10 0.17438 3.954 48936.8 4/17/2011 JLG733 GE/14 10X10 0.17446 3.978 47702.5 4/17/2011 JLG734 GE/14 10X10 0.17448 3.968 48326.7 4/17/2009 JLG735 GE/14 10X10 0.17458 3.959 48664.1 4/17/2011 JLG736 GE/14 10X10 0.17467 3.974 47925.4 4/17/2011 JLG737 GE/14 10X10 0.17457 3.964 49825 4/17/2011 JLG738 GE/14 10X10 0.17465 3.984 48605.4 4/17/2011 JLG739 GE/14 10X10 0.1747 3.998 48690 4/17/2011 JLG740 GE/14 10X10 0.17469 3.994 49838.7 4/17/2011 JLG741 GE/14 10X10 0.17469 3.983 47642.3 4/17/2011 JLG742 GE/14 10X10 0.17461 3.981 48492.2 4/17/2011 JLG743 GE/14 10X10 0.17459 3.98 48809.5 4/17/2011 JLG744 GE/14 10X10 0.17457 3.963 49983.7 4/17/2011 JLG745 GE/14 10X10 0.17474 3.965 49244.9 4/17/2011 JLG746 GE/14 10X10 0.17454 3.976 47892.4 4/17/2011 JLG747 GE/14 10X10 0.1745 3.974 49278 4/17/2009 JLG748 GE/14 10X10 0.17457 3.982 47535.3 4/17/2009 JLG749 GE/14 10X10 0.17469 3.994 49138.4 4/17/2011 JLG750 GE/14 10X10 0.17458 3.988 48980.6 4/17/2011 JLG751 GE/14 10X10 0.17457 3.986 47205 4/17/2011 JLG752 GE/14 10X10 0.17453 3.984 47978.7 4/17/2011 JLG753 GE/14 10X10 0.17455 3.977 47899 4/17/2011 JLG754 GE/14 10X10 0.17459 3.979 49464.7 4/17/2011 JLG755 GE/14 10X10 0.1744 3.979 48412.7 4/17/2009 JLG756 GE/14 10X10 0.17445 3.976 49192 4/17/2011 JLG757 GE/14 10X10 0.17445 3.976 48387 4/17/2011 JLG758 GE/14 10X10 0.17436 3.979 49097.5 4/17/2011 JLG759 GE/14 10X10 0.17435 3.965 47562.8 4/17/2009 JLG760 GE/14 10X10 0.17441 3.978 49293.1 4/17/2011 JLG761 GE/14 10X10 0.17438 3.97 49373.9 4/17/2011 JLG762 GE/14 10X10 0.17447 3.959 47504.4 4/17/2009 JLG763 GE/14 10X10 0.17447 3.981 49340.6 4/17/2011 JLG764 GE/14 10X10 0.17446 3.976 49654.7 4/17/2011 JLG765 GE/14 10X10 0.1745 3.99 49826.9 4/17/2011 JLG766 GE/14 10X10 0.17455 3.991 47301.9 4/17/2011

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 18 of 76 JLG767 GE/14 10X10 0.1746 3.984 49041 4/17/2009 JLG768 GE/14 10X10 0.17443 3.995 46859.6 4/17/2009 JLG769 GE/14 10X10 0.1744 3.987 48755.5 4/17/2009 JLG770 GE/14 10X10 0.17448 3.99 50068.1 4/17/2011 JLG771 GE/14 10X10 0.17444 3.993 49097.7 4/17/2011 JLG772 GE/14 10X10 0.17448 3.986 48285.9 4/17/2009 JLR539 GE/14 10X10 0.17441 3.986 50434.7 4/14/2013 JLR540 GE/14 10X10 0.17446 3.994 49549.1 4/14/2013 JLR541 GE/14 10X10 0.17446 3.984 51268.1 4/14/2013 JLR542 GE/14 10X10 0.17443 3.994 50461.6 4/14/2013 JLR543 GE/14 10X10 0.17437 3.993 48572.3 4/14/2013 JLR544 GE/14 10X10 0.17433 3.981 46911.3 4/17/2011 JLR545 GE/14 10X10 0.17431 3.976 49704.2 4/14/2013 JLR546 GE/14 10X10 0.17431 3.978 50498.1 4/14/2013 JLR547 GE/14 10X10 0.17426 3.986 48800.2 4/17/2011 JLR548 GE/14 10X10 0.17428 3.989 48875 4/14/2013 JLR549 GE/14 10X10 0.17424 3.984 49622.4 4/14/2013 JLR550 GE/14 10X10 0.17424 3.973 49209.2 4/14/2013 JLR551 GE/14 10X10 0.17422 3.965 48692 4/17/2011 JLR552 GE/14 10X10 0.17433 3.979 48722.6 4/17/2011 JLR553 GE/14 10X10 0.17424 3.989 49804.4 4/14/2013 JLR554 GE/14 10X10 0.17431 3.999 48564.7 4/17/2011 JLR555 GE/14 10X10 0.17437 3.994 47795.7 4/14/2013 JLR556 GE/14 10X10 0.17429 3.998 49707.7 4/14/2013 JLR557 GE/14 10X10 0.17421 3.992 49488 4/17/2011 JLR558 GE/14 10X10 0.17413 3.998 49872.5 4/14/2013 JLR559 GE/14 10X10 0.17439 4.008 49705.7 4/14/2013 JLR560 GE/14 10X10 0.17415 3.998 49723.9 4/14/2013 JLR561 GE/14 10X10 0.17432 4.001 48519.2 4/17/2011 JLR562 GE/14 10X10 0.17444 4.005 49594.9 4/14/2013 JLR563 GE/14 10X10 0.17438 3.992 49455.3 4/17/2011 JLR564 GE/14 10X10 0.17437 3.988 49526.8 4/17/2011 JLR565 GE/14 10X10 0.17428 3.986 49649.6 4/17/2011 JLR566 GE/14 10X10 0.17411 3.982 49344.5 4/17/2011 JLR567 GE/14 10X10 0.17423 3.984 49382.4 4/17/2011 JLR568 GE/14 10X10 0.17424 3.987 49278.3 4/17/2011 JLR569 GE/14 10X10 0.17427 3.985 49787.4 4/14/2013 JLR570 GE/14 10X10 0.17428 3.982 49369.3 4/17/2011 JLR571 GE/14 10X10 0.17435 3.996 50149.8 4/14/2013 JLR572 GE/14 10X10 0.17426 3.992 47435 4/17/2011 JLR573 GE/14 10X10 0.1742 3.985 50405.6 4/14/2013 JLR574 GE/14 10X10 0.17429 3.988 50894.2 4/17/2011 JLR575 GE/14 10X10 0.17425 4.009 49409.3 4/14/2013 JLR576 GE/14 10X10 0.17414 4.007 51218.7 4/14/2013 JLR577 GE/14 10X10 0.17423 3.995 49911.5 4/14/2013 JLR578 GE/14 10X10 0.17419 3.999 50915.4 4/14/2013 JLR579 GE/14 10X10 0.17423 4.006 51154.8 4/14/2013

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 19 of 76 JLR580 GE/14 10X10 0.17429 4.006 48033.8 4/17/2011 JLR581 GE/14 10X10 0.1744 3.987 52002.5 4/14/2013 JLR582 GE/14 10X10 0.17438 3.987 52191.3 4/14/2013 JLR583 GE/14 10X10 0.17443 3.986 52004.3 4/14/2013 JLR584 GE/14 10X10 0.17446 4.004 51302.4 4/14/2013 JLR585 GE/14 10X10 0.1744 4.003 48991 4/17/2011 JLR586 GE/14 10X10 0.17441 4.007 52304.2 4/14/2013 JLR587 GE/14 10X10 0.17426 3.983 48484.4 4/14/2013 JLR588 GE/14 10X10 0.17429 3.978 51090.6 4/14/2013 JLR589 GE/14 10X10 0.1743 3.985 50345.7 4/14/2013 JLR590 GE/14 10X10 0.17427 3.996 51689 4/14/2013 JLR591 GE/14 10X10 0.17429 3.993 49545.4 4/14/2013 JLR592 GE/14 10X10 0.17429 3.995 50194.4 4/14/2013 JLR593 GE/14 10X10 0.17433 3.998 50597 4/17/2011 JLR594 GE/14 10X10 0.17431 3.996 49912.9 4/14/2013 JLR595 GE/14 10X10 0.17436 3.987 50054.8 4/17/2011 JLR596 GE/14 10X10 0.17434 3.99 50217.2 4/17/2011 JLR597 GE/14 10X10 0.17422 3.98 50147.5 4/17/2011 JLR598 GE/14 10X10 0.1744 3.984 49928.2 4/17/2011 JLR599 GE/14 10X10 0.17446 3.989 50376.4 4/14/2013 JLR600 GE/14 10X10 0.17445 3.986 49395.4 4/17/2011 JLR601 GE/14 10X10 0.17441 3.984 49731.7 4/14/2013 JLR602 GE/14 10X10 0.17429 3.978 51337 4/14/2013 JLR603 GE/14 10X10 0.17454 4.004 48266.9 4/14/2013 JLR604 GE/14 10X10 0.17439 4.01 49721.2 4/14/2013 JLR605 GE/14 10X10 0.17431 4.012 47346.9 4/14/2013 JLR606 GE/14 10X10 0.17429 3.999 49976.8 4/14/2013 JLR607 GE/14 10X10 0.17419 3.994 50306.5 4/14/2013 JLR608 GE/14 10X10 0.17418 3.984 47723.7 4/14/2013 JLR609 GE/14 10X10 0.17448 4.008 44684.2 4/17/2011 JLR610 GE/14 10X10 0.17462 4.009 47569.1 4/14/2013 JLR611 GE/14 10X10 0.17447 4.011 49502.3 4/14/2013 JLR612 GE/14 10X10 0.17439 4.017 49673.9 4/14/2013 JLR613 GE/14 10X10 0.1744 4.011 51802.6 4/14/2013 JLR614 GE/14 10X10 0.17437 4.008 50323.6 4/14/2013 JLR615 GE/14 10X10 0.17439 4.01 50680.8 4/14/2013 JLR616 GE/14 10X10 0.1744 4.011 51303.9 4/14/2013 JLR617 GE/14 10X10 0.1744 4.005 50660 4/14/2013 JLR618 GE/14 10X10 0.17417 4.003 51094.7 4/14/2013 JLR619 GE/14 10X10 0.17445 4.016 50972.1 4/17/2011 JLR620 GE/14 10X10 0.1744 4.012 51172.7 4/17/2011 JLR621 GE/14 10X10 0.17453 4.012 50854 4/17/2011 JLR622 GE/14 10X10 0.17431 4.006 50922.2 4/17/2011 JLR623 GE/14 10X10 0.17422 3.993 50786.6 4/17/2011 JLR624 GE/14 10X10 0.17436 4.002 50586.7 4/17/2011 JLR625 GE/14 10X10 0.17429 4.013 49361.9 4/14/2013 JLR626 GE/14 10X10 0.1743 4.01 50892.8 4/14/2013

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 20 of 76 JLR627 GE/14 10X10 0.17433 4.013 48873.6 4/14/2013 JLR628 GE/14 10X10 0.17441 4.012 49836.2 4/14/2013 JLR629 GE/14 10X10 0.1744 4.006 47787.2 4/17/2011 JLR630 GE/14 10X10 0.17429 4 48992.5 4/17/2011 JLR631 GE/14 10X10 0.17428 3.995 49014 4/17/2011 JLR632 GE/14 10X10 0.17439 3.99 48888 4/17/2011 JLR633 GE/14 10X10 0.17438 3.986 48120.5 4/17/2011 JLR634 GE/14 10X10 0.17413 3.985 49037.4 4/17/2011 JLR635 GE/14 10X10 0.17426 3.985 49608.7 4/14/2013 JLR636 GE/14 10X10 0.17425 3.984 48792.8 4/14/2013 JLR637 GE/14 10X10 0.17439 3.984 52178.2 4/14/2013 JLR638 GE/14 10X10 0.17446 3.974 50038.3 4/14/2013 JLR639 GE/14 10X10 0.17433 3.975 51989.8 4/14/2013 JLR640 GE/14 10X10 0.17424 3.993 49746.1 4/14/2013 JLR641 GE/14 10X10 0.17438 4.008 50001.7 4/14/2013 JLR642 GE/14 10X10 0.17441 3.999 51003 4/14/2013 JLR643 GE/14 10X10 0.17419 3.995 51024.8 4/14/2013 JLR644 GE/14 10X10 0.17419 3.997 51237.4 4/14/2013 JLR645 GE/14 10X10 0.17416 3.996 51154.6 4/14/2013 JLR646 GE/14 10X10 0.17427 3.992 50636.9 4/14/2013 JLR647 GE/14 10X10 0.17429 3.985 49241.1 4/14/2013 JLR648 GE/14 10X10 0.1742 3.98 49650 4/14/2013 JLR649 GE/14 10X10 0.17408 3.979 49509.7 4/14/2013 JLR650 GE/14 10X10 0.17407 3.975 49452 4/14/2013 JLR651 GE/14 10X10 0.17401 3.974 50144.8 4/14/2013 JLR652 GE/14 10X10 0.17405 3.965 50251.5 4/14/2013 JLR653 GE/14 10X10 0.1741 3.98 47234.9 4/14/2013 JLR654 GE/14 10X10 0.17415 3.978 47865.6 4/14/2013 JLR655 GE/14 10X10 0.17421 3.993 49603.5 4/14/2013 JLR656 GE/14 10X10 0.17417 4.003 49141.9 4/14/2013 JLR657 GE/14 10X10 0.17415 4 50187.2 4/14/2013 JLR658 GE/14 10X10 0.17414 3.991 49583.3 4/14/2013 JLR659 GE/14 10X10 0.1742 3.997 51337.3 4/14/2013 JLR660 GE/14 10X10 0.17416 3.994 47662.6 4/17/2011 JLR661 GE/14 10X10 0.17432 4.006 49793.3 4/14/2013 JLR662 GE/14 10X10 0.17433 4.006 47665.1 4/14/2013 JLR663 GE/14 10X10 0.1744 4.005 49304.5 4/14/2013 JLR664 GE/14 10X10 0.17424 4.004 49165.7 4/14/2013 JLR665 GE/14 10X10 0.17414 3.993 48478.2 4/14/2013 JLR666 GE/14 10X10 0.17411 3.991 48480.7 4/14/2013 JLR667 GE/14 10X10 0.1745 4.008 48757.7 4/17/2011 JLR668 GE/14 10X10 0.17446 3.998 48841.6 4/17/2011 JLR669 GE/14 10X10 0.17448 3.999 48472.4 4/17/2011 JLR670 GE/14 10X10 0.17433 4.001 48747 4/17/2011 JLR671 GE/14 10X10 0.17433 3.996 48892.5 4/17/2011 JLR672 GE/14 10X10 0.17443 3.989 48877.2 4/17/2011 JLR673 GE/14 10X10 0.17436 3.983 47780.7 4/17/2011

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 21 of 76 JLR674 GE/14 10X10 0.17428 3.972 48749 4/17/2011 JLR675 GE/14 10X10 0.17439 3.981 50772.3 4/14/2013 JLR676 GE/14 10X10 0.17446 3.99 48980 4/14/2013 JLR677 GE/14 10X10 0.17436 3.987 49467.8 4/14/2013 JLR678 GE/14 10X10 0.17435 3.978 48809.2 4/14/2013 JLR679 GE/14 10X10 0.17419 3.986 50491.3 4/14/2013 JLR680 GE/14 10X10 0.17419 3.985 50663.3 4/14/2013 JLR681 GE/14 10X10 0.17409 3.983 50248.6 4/14/2013 JLR682 GE/14 10X10 0.17416 3.986 46972.8 4/14/2013 JLR683 GE/14 10X10 0.17421 4.002 50894.8 4/14/2013 JLR684 GE/14 10X10 0.17436 3.993 48107.7 4/14/2013 JLR685 GE/14 10X10 0.17433 3.994 49756.3 4/14/2013 JLR686 GE/14 10X10 0.17418 3.999 49212.4 4/14/2013 JLR687 GE/14 10X10 0.17418 3.991 50763.9 4/14/2013 JLR688 GE/14 10X10 0.17425 3.986 49568.7 4/14/2013 JLR689 GE/14 10X10 0.17443 3.982 51135.1 4/14/2013 JLR690 GE/14 10X10 0.17444 3.998 46706.2 4/17/2011 JLR691 GE/14 10X10 0.17444 3.989 50744.7 4/14/2013 JLR692 GE/14 10X10 0.17441 3.986 48717.3 4/14/2013 JLR693 GE/14 10X10 0.1743 4.003 49406.7 4/14/2013 JLR694 GE/14 10X10 0.1743 3.997 48607.5 4/14/2013 JLR695 GE/14 10X10 0.17431 3.988 48709.4 4/14/2013 JLR696 GE/14 10X10 0.17434 3.997 50957.3 4/14/2013 JLR697 GE/14 10X10 0.17441 3.995 43482 4/17/2011 JLR698 GE/14 10X10 0.17432 4.004 51385.6 4/14/2013 JYA493 GE/14 10X10 0.17441 3.985 50264 4/19/2015 JYA494 GE/14 10X10 0.17445 3.989 50710.3 4/19/2015 JYA495 GE/14 10X10 0.17446 3.987 49577.2 4/14/2013 JYA496 GE/14 10X10 0.17449 3.981 48280.1 4/14/2013 JYA497 GE/14 10X10 0.17452 3.986 48431.8 4/19/2015 JYA498 GE/14 10X10 0.1745 3.995 49231.6 4/14/2013 JYA499 GE/14 10X10 0.17453 3.989 49401.3 4/14/2013 JYA500 GE/14 10X10 0.17459 3.993 50158.6 4/19/2015 JYA501 GE/14 10X10 0.17446 3.986 48904.7 4/14/2013 JYA502 GE/14 10X10 0.17452 3.991 48903.1 4/14/2013 JYA503 GE/14 10X10 0.17449 3.984 49090.1 4/14/2013 JYA504 GE/14 10X10 0.17454 3.983 48898.5 4/14/2013 JYA505 GE/14 10X10 0.17439 3.974 49286.3 4/14/2013 JYA506 GE/14 10X10 0.17435 3.97 49075.4 4/14/2013 JYA507 GE/14 10X10 0.17437 3.973 46466.9 4/19/2015 JYA508 GE/14 10X10 0.17438 3.977 49965.3 4/14/2013 JYA509 GE/14 10X10 0.17451 3.989 48315.7 4/19/2015 JYA510 GE/14 10X10 0.17444 3.98 50741.2 4/14/2013 JYA511 GE/14 10X10 0.17447 3.978 51405.7 4/19/2015 JYA512 GE/14 10X10 0.17449 3.985 48324.9 4/19/2015 JYA513 GE/14 10X10 0.17434 3.985 50090.4 4/19/2015 JYA514 GE/14 10X10 0.17425 3.991 51629.2 4/14/2013

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 22 of 76 JYA515 GE/14 10X10 0.17429 3.979 51678 4/14/2013 JYA516 GE/14 10X10 0.17434 3.98 51361.9 4/14/2013 JYA517 GE/14 10X10 0.17428 3.984 49785.4 4/19/2015 JYA518 GE/14 10X10 0.17436 3.983 48395.5 4/14/2013 JYA519 GE/14 10X10 0.17438 3.977 50388.9 4/19/2015 JYA520 GE/14 10X10 0.1744 3.983 49689.6 4/19/2015 JYA521 GE/14 10X10 0.1743 3.995 48882 4/14/2013 JYA522 GE/14 10X10 0.17431 3.992 50303.6 4/14/2013 JYA523 GE/14 10X10 0.17427 3.987 49955.5 4/19/2015 JYA524 GE/14 10X10 0.17421 3.984 49833.3 4/19/2015 JYA525 GE/14 10X10 0.17416 3.981 49415.7 4/19/2015 JYA526 GE/14 10X10 0.17417 3.975 49343.5 4/14/2013 JYA527 GE/14 10X10 0.17432 3.983 51040.2 4/19/2015 JYA528 GE/14 10X10 0.17435 3.982 50390.7 4/19/2015 JYA529 GE/14 10X10 0.17435 3.988 49597.9 4/19/2015 JYA530 GE/14 10X10 0.1744 3.988 49819.8 4/19/2015 JYA531 GE/14 10X10 0.17437 3.995 51070.7 4/19/2015 JYA532 GE/14 10X10 0.17436 3.988 49497 4/19/2015 JYA533 GE/14 10X10 0.17436 3.992 49794.7 4/19/2015 JYA534 GE/14 10X10 0.17428 3.989 49847.4 4/19/2015 JYA535 GE/14 10X10 0.17426 3.986 51309.1 4/19/2015 JYA536 GE/14 10X10 0.17428 3.986 51144.1 4/19/2015 JYA537 GE/14 10X10 0.17422 3.991 49217.1 4/19/2015 JYA538 GE/14 10X10 0.17424 3.988 50389.5 4/19/2015 JYA539 GE/14 10X10 0.17418 3.988 52245.3 4/19/2015 JYA540 GE/14 10X10 0.17423 3.986 50256.6 4/19/2015 JYA541 GE/14 10X10 0.17429 3.985 51118.6 4/19/2015 JYA542 GE/14 10X10 0.17425 3.984 51684.4 4/19/2015 JYA543 GE/14 10X10 0.17431 3.977 48369.8 4/14/2013 JYA544 GE/14 10X10 0.17432 3.981 49224.2 4/19/2015 JYA545 GE/14 10X10 0.17431 3.981 51904.6 4/19/2015 JYA546 GE/14 10X10 0.17436 3.976 50028.9 4/19/2015 JYA547 GE/14 10X10 0.17434 3.983 50791.2 4/19/2015 JYA548 GE/14 10X10 0.17424 3.985 50003.5 4/19/2015 JYA549 GE/14 10X10 0.17418 3.984 48643.8 4/14/2013 JYA550 GE/14 10X10 0.17425 3.989 49659 4/19/2015 JYA551 GE/14 10X10 0.17426 3.976 50201.6 4/19/2015 JYA552 GE/14 10X10 0.17428 3.975 49426.4 4/19/2015 JYA553 GE/14 10X10 0.17427 3.98 49267.4 4/19/2015 JYA554 GE/14 10X10 0.17426 3.972 48976.8 4/19/2015 JYA555 GE/14 10X10 0.17427 3.972 50735.8 4/19/2015 JYA556 GE/14 10X10 0.17427 3.974 49546.4 4/19/2015 JYA557 GE/14 10X10 0.17463 4.001 52136.3 4/19/2015 JYA558 GE/14 10X10 0.17459 4 50987.1 4/19/2015 JYA559 GE/14 10X10 0.1746 3.985 49577.6 4/19/2015 JYA560 GE/14 10X10 0.1746 3.989 52036 4/19/2015 JYA561 GE/14 10X10 0.1746 3.995 50786.7 4/19/2015

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 23 of 76 JYA562 GE/14 10X10 0.17464 3.989 50779.8 4/19/2015 JYA563 GE/14 10X10 0.17462 3.983 49863 4/19/2015 JYA564 GE/14 10X10 0.17465 4.006 50902.9 4/19/2015 JYA565 GE/14 10X10 0.17464 3.983 50047.1 4/19/2015 JYA566 GE/14 10X10 0.17466 3.975 48160.3 4/19/2015 JYA567 GE/14 10X10 0.17468 3.979 50135.7 4/19/2015 JYA568 GE/14 10X10 0.17462 3.987 50159.4 4/19/2015 JYA569 GE/14 10X10 0.17463 3.981 49909.5 4/19/2015 JYA570 GE/14 10X10 0.1746 3.986 49211.1 4/19/2015 JYA571 GE/14 10X10 0.17462 3.988 50039 4/19/2015 JYA572 GE/14 10X10 0.17473 3.991 49281.6 4/19/2015 JYA573 GE/14 10X10 0.17465 3.988 49892.8 4/19/2015 JYA574 GE/14 10X10 0.17466 3.999 49977.2 4/19/2015 JYA575 GE/14 10X10 0.17462 3.99 50293.2 4/19/2015 JYA576 GE/14 10X10 0.17462 3.985 49849.1 4/19/2015 JYA577 GE/14 10X10 0.17468 3.988 49754.5 4/19/2015 JYA578 GE/14 10X10 0.1748 3.984 48271.1 4/19/2015 JYA579 GE/14 10X10 0.17478 3.989 48583.3 4/19/2015 JYA580 GE/14 10X10 0.17476 3.994 50410.5 4/19/2015 JYA581 GE/14 10X10 0.17439 4.032 50741.3 4/19/2015 JYA582 GE/14 10X10 0.1744 4.038 50263.4 4/19/2015 JYA583 GE/14 10X10 0.17441 4.027 47104 4/14/2013 JYA584 GE/14 10X10 0.17435 4.027 50859.2 4/19/2015 JYA585 GE/14 10X10 0.17433 4.037 50436.6 4/19/2015 JYA586 GE/14 10X10 0.17436 4.035 51493.2 4/19/2015 JYA587 GE/14 10X10 0.17438 4.023 51119.4 4/19/2015 JYA588 GE/14 10X10 0.17428 4.036 49258.1 4/19/2015 JYA589 GE/14 10X10 0.17433 4.034 49525.5 4/19/2015 JYA590 GE/14 10X10 0.17434 4.036 50544.6 4/14/2013 JYA591 GE/14 10X10 0.17436 4.032 50793.4 4/19/2015 JYA592 GE/14 10X10 0.17433 4.037 49041.3 4/14/2013 JYA593 GE/14 10X10 0.17428 4.045 50240.5 4/14/2013 JYA594 GE/14 10X10 0.17431 4.041 49900.4 4/19/2015 JYA595 GE/14 10X10 0.17433 4.041 49995.9 4/19/2015 JYA596 GE/14 10X10 0.17438 4.034 47292.5 4/19/2015 JYA597 GE/14 10X10 0.17443 4.033 50427.9 4/19/2015 JYA598 GE/14 10X10 0.17444 4.04 49803.7 4/19/2015 JYA599 GE/14 10X10 0.17442 4.034 48307.4 4/14/2013 JYA600 GE/14 10X10 0.17439 4.037 47944.3 4/19/2015 JYA601 GE/14 10X10 0.17443 4.039 48612.8 4/14/2013 JYA602 GE/14 10X10 0.17441 4.025 49400.7 4/19/2015 JYA603 GE/14 10X10 0.17434 4.029 50093 4/19/2015 JYA604 GE/14 10X10 0.17434 4.032 49340.1 4/19/2015 JYA605 GE/14 10X10 0.17432 4.031 48284.6 4/19/2015 JYA606 GE/14 10X10 0.17438 4.019 50199.4 4/19/2015 JYA607 GE/14 10X10 0.17437 4.033 49819.8 4/19/2015 JYA608 GE/14 10X10 0.17436 4.04 49830.5 4/19/2015

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 24 of 76 JYA609 GE/14 10X10 0.17423 4.036 49433.4 4/19/2015 JYA610 GE/14 10X10 0.17414 4.021 49677 4/19/2015 JYA611 GE/14 10X10 0.17424 4.025 47432.8 4/19/2015 JYA612 GE/14 10X10 0.17425 4.029 48804 4/14/2013 JYA613 GE/14 10X10 0.17465 4.028 49316.6 4/19/2015 JYA614 GE/14 10X10 0.17462 4.03 50981.2 4/19/2015 JYA615 GE/14 10X10 0.17457 4.037 51037.8 4/19/2015 JYA616 GE/14 10X10 0.17456 4.042 50540.4 4/19/2015 JYA617 GE/14 10X10 0.17466 4.043 49363.3 4/19/2015 JYA618 GE/14 10X10 0.17462 4.047 49386.8 4/19/2015 JYA619 GE/14 10X10 0.17453 4.048 47973.6 4/19/2015 JYA620 GE/14 10X10 0.17453 4.037 49704 4/19/2015 JYA621 GE/14 10X10 0.17428 3.997 50212 4/19/2015 JYA622 GE/14 10X10 0.17432 3.995 49221.1 4/19/2015 JYA623 GE/14 10X10 0.1745 3.998 48470.3 4/14/2013 JYA624 GE/14 10X10 0.17455 4.002 50324.8 4/14/2013 JYA625 GE/14 10X10 0.1745 4.007 48227.5 4/14/2013 JYA626 GE/14 10X10 0.17443 3.993 49124.4 4/14/2013 JYA627 GE/14 10X10 0.17444 4.003 50341.8 4/19/2015 JYA628 GE/14 10X10 0.17441 4.001 50208.3 4/14/2013 JYA629 GE/14 10X10 0.17433 4.003 49825.9 4/14/2013 JYA630 GE/14 10X10 0.17441 4.004 50013.3 4/19/2015 JYA631 GE/14 10X10 0.17451 4.008 49554.7 4/19/2015 JYA632 GE/14 10X10 0.17434 3.999 49329.6 4/19/2015 JYA633 GE/14 10X10 0.17437 3.991 49900.2 4/19/2015 JYA634 GE/14 10X10 0.17439 4.003 50186.5 4/19/2015 JYA635 GE/14 10X10 0.17431 3.998 49907.2 4/19/2015 JYA636 GE/14 10X10 0.17441 3.994 50234 4/19/2015 JYA637 GE/14 10X10 0.17443 4.003 50587.8 4/19/2015 JYA638 GE/14 10X10 0.17454 4 50124 4/19/2015 JYA639 GE/14 10X10 0.17462 3.999 50574.2 4/19/2015 JYA640 GE/14 10X10 0.17461 4.005 49856.3 4/19/2015 JYA641 GE/14 10X10 0.17448 4.007 50326.6 4/19/2015 JYA642 GE/14 10X10 0.17436 4.007 49120.9 4/14/2013 JYA643 GE/14 10X10 0.17448 4 52627.2 4/19/2015 JYA644 GE/14 10X10 0.17453 3.999 50672.2 4/19/2015 JYA645 GE/14 10X10 0.17449 3.994 51671.7 4/19/2015 JYA646 GE/14 10X10 0.17429 3.985 42347.2 4/14/2013 JYA647 GE/14 10X10 0.17441 3.988 47695.7 4/14/2013 JYA648 GE/14 10X10 0.17428 3.986 51652.2 4/19/2015 JYA649 GE/14 10X10 0.17455 3.998 46247.7 4/14/2013 JYA650 GE/14 10X10 0.17454 4.001 47673 4/14/2013 JYA651 GE/14 10X10 0.17444 3.987 50051.9 4/14/2013 JYA652 GE/14 10X10 0.17439 3.988 50085.3 4/19/2015 JYH101 GNF2 10X10 0.18118 3.89 50349.7 4/9/2017 JYH102 GNF2 10X10 0.18118 3.891 50321.7 4/9/2017 JYH103 GNF2 10X10 0.18119 3.892 50332.9 4/9/2017

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 25 of 76 JYH104 GNF2 10X10 0.18114 3.9 50759.1 4/9/2017 JYH105 GNF2 10X10 0.18116 3.897 49851.2 4/9/2017 JYH106 GNF2 10X10 0.18114 3.895 47870.6 4/19/2015 JYH107 GNF2 10X10 0.1811 3.899 50228.8 4/9/2017 JYH108 GNF2 10X10 0.1811 3.899 47941.9 4/19/2015 JYH109 GNF2 10X10 0.1812 3.899 48344.4 4/9/2017 JYH110 GNF2 10X10 0.18109 3.9 48323 4/9/2017 JYH111 GNF2 10X10 0.18113 3.9 48802.3 4/9/2017 JYH112 GNF2 10X10 0.18115 3.9 48273.1 4/9/2017 JYH113 GNF2 10X10 0.18111 3.899 48882.9 4/9/2017 JYH114 GNF2 10X10 0.18106 3.896 48855.5 4/9/2017 JYH115 GNF2 10X10 0.18115 3.9 48193.1 4/9/2017 JYH116 GNF2 10X10 0.18105 3.899 50827.6 4/9/2017 JYH117 GNF2 10X10 0.18127 3.894 48862.8 4/9/2017 JYH118 GNF2 10X10 0.18131 3.895 50637.8 4/9/2017 JYH119 GNF2 10X10 0.18128 3.897 48842.7 4/9/2017 JYH120 GNF2 10X10 0.18119 3.898 46765 4/9/2017 JYH121 GNF2 10X10 0.18116 3.9 49610.4 4/9/2017 JYH122 GNF2 10X10 0.18121 3.896 49230.7 4/9/2017 JYH123 GNF2 10X10 0.18122 3.897 46830.3 4/9/2017 JYH124 GNF2 10X10 0.18119 3.896 50638.8 4/9/2017 JYH125 GNF2 10X10 0.18125 3.896 47614 4/19/2015 JYH126 GNF2 10X10 0.18128 3.897 47585.7 4/19/2015 JYH127 GNF2 10X10 0.18127 3.896 45263.9 4/19/2015 JYH128 GNF2 10X10 0.18114 3.903 50772.7 4/9/2017 JYH129 GNF2 10X10 0.18109 3.902 50835.6 4/9/2017 JYH130 GNF2 10X10 0.18109 3.902 49438.2 4/9/2017 JYH131 GNF2 10X10 0.18118 3.901 49743.7 4/9/2017 JYH132 GNF2 10X10 0.18115 3.899 49225.8 4/9/2017 JYH133 GNF2 10X10 0.18126 3.9 47572.6 4/9/2017 JYH134 GNF2 10X10 0.18123 3.901 49034.6 4/9/2017 JYH135 GNF2 10X10 0.18128 3.898 49847.4 4/9/2017 JYH136 GNF2 10X10 0.18123 3.899 49168.2 4/9/2017 JYH137 GNF2 10X10 0.18125 3.899 50574.6 4/9/2017 JYH138 GNF2 10X10 0.18125 3.9 50447.8 4/9/2017 JYH139 GNF2 10X10 0.18118 3.901 50551.9 4/9/2017 JYH140 GNF2 10X10 0.18119 3.895 48298.1 4/9/2017 JYH141 GNF2 10X10 0.1812 3.894 46454 4/9/2017 JYH142 GNF2 10X10 0.18119 3.897 48943.7 4/9/2017 JYH143 GNF2 10X10 0.18117 3.9 50364.4 4/9/2017 JYH144 GNF2 10X10 0.18112 3.899 49408.4 4/9/2017 JYH145 GNF2 10X10 0.18122 3.902 48871.9 4/9/2017 JYH146 GNF2 10X10 0.18123 3.899 48607.5 4/9/2017 JYH147 GNF2 10X10 0.18119 3.899 48930.8 4/9/2017 JYH148 GNF2 10X10 0.18121 3.898 49251.3 4/9/2017 JYH149 GNF2 10X10 0.18122 3.904 49121.7 4/9/2017 JYH150 GNF2 10X10 0.18124 3.903 49615.5 4/9/2017

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 26 of 76 JYH151 GNF2 10X10 0.18122 3.904 49261.5 4/9/2017 JYH152 GNF2 10X10 0.18125 3.9 48787.5 4/19/2015 JYH153 GNF2 10X10 0.18112 3.9 49251.3 4/9/2017 JYH154 GNF2 10X10 0.18116 3.901 48958.9 4/9/2017 JYH155 GNF2 10X10 0.1812 3.904 49599 4/9/2017 JYH156 GNF2 10X10 0.18117 3.898 48401.7 4/9/2017 JYH157 GNF2 10X10 0.18117 3.9 48859.1 4/9/2017 JYH158 GNF2 10X10 0.18119 3.896 47710.6 4/19/2015 JYH159 GNF2 10X10 0.18131 3.896 49375.5 4/9/2017 JYH160 GNF2 10X10 0.18128 3.894 49212.1 4/9/2017 JYH161 GNF2 10X10 0.18126 3.896 49039.5 4/9/2017 JYH162 GNF2 10X10 0.18118 3.899 48170.8 4/9/2017 JYH163 GNF2 10X10 0.18131 3.897 46469.3 4/19/2015 JYH164 GNF2 10X10 0.18128 3.899 49194.1 4/9/2017 JYH165 GNF2 10X10 0.18119 3.899 47651.2 4/19/2015 JYH166 GNF2 10X10 0.18116 3.897 49874.6 4/9/2017 JYH167 GNF2 10X10 0.18114 3.898 48507.5 4/9/2017 JYH168 GNF2 10X10 0.18117 3.898 50511 4/9/2017 JYH169 GNF2 10X10 0.18116 3.899 49616.9 4/9/2017 JYH170 GNF2 10X10 0.18122 3.9 47880.6 4/19/2015 JYH171 GNF2 10X10 0.18126 3.898 46708.5 4/9/2017 JYH172 GNF2 10X10 0.18126 3.898 49667.5 4/9/2017 JYH173 GNF2 10X10 0.18122 3.895 46675.1 4/19/2015 JYH174 GNF2 10X10 0.18122 3.896 49217.4 4/9/2017 JYH175 GNF2 10X10 0.1812 3.895 50597.6 4/9/2017 JYH176 GNF2 10X10 0.18127 3.896 48095.3 4/19/2015 JYH177 GNF2 10X10 0.18128 3.896 50548.8 4/9/2017 JYH178 GNF2 10X10 0.18128 3.895 46766.5 4/9/2017 JYH179 GNF2 10X10 0.18124 3.894 49555.3 4/9/2017 JYH180 GNF2 10X10 0.18131 3.893 50108.7 4/9/2017 JYH181 GNF2 10X10 0.1813 3.894 50117.2 4/9/2017 JYH182 GNF2 10X10 0.18132 3.897 48903.7 4/9/2017 JYH183 GNF2 10X10 0.18139 3.899 48828.9 4/9/2017 JYH184 GNF2 10X10 0.1813 3.897 50074.9 4/9/2017 JYH185 GNF2 10X10 0.18128 3.897 51505.1 4/9/2017 JYH186 GNF2 10X10 0.18116 3.898 50915.4 4/9/2017 JYH187 GNF2 10X10 0.18117 3.897 51349.6 4/9/2017 JYH188 GNF2 10X10 0.18125 3.897 50599.1 4/9/2017 JYH189 GNF2 10X10 0.1813 3.896 50489.1 4/9/2017 JYH190 GNF2 10X10 0.18129 3.9 49033.3 4/9/2017 JYH191 GNF2 10X10 0.18133 3.897 50286.2 4/9/2017 JYH192 GNF2 10X10 0.18135 3.901 49090.4 4/9/2017 JYH193 GNF2 10X10 0.18139 3.896 48930.2 4/9/2017 JYH194 GNF2 10X10 0.18136 3.896 49295.7 4/9/2017 JYH195 GNF2 10X10 0.18127 3.898 50064.1 4/9/2017 JYH196 GNF2 10X10 0.1812 3.898 49299.4 4/9/2017 JYH197 GNF2 10X10 0.18109 3.898 50777.9 4/9/2017

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 27 of 76 JYH198 GNF2 10X10 0.18111 3.896 50435.9 4/9/2017 JYH199 GNF2 10X10 0.18121 3.894 50309.1 4/9/2017 JYH200 GNF2 10X10 0.1812 3.898 50999 4/9/2017 JYH201 GNF2 10X10 0.18118 3.899 49713.3 4/9/2017 JYH202 GNF2 10X10 0.18106 3.897 50795.5 4/9/2017 JYH203 GNF2 10X10 0.18108 3.897 50486.5 4/9/2017 JYH204 GNF2 10X10 0.18103 3.9 48740.2 4/9/2017 JYH205 GNF2 10X10 0.18116 3.898 47996.5 4/19/2015 JYH206 GNF2 10X10 0.18118 3.9 50743.1 4/9/2017 JYH207 GNF2 10X10 0.18122 3.899 50620.5 4/9/2017 JYH208 GNF2 10X10 0.18124 3.897 50660.3 4/9/2017 JYH209 GNF2 10X10 0.18122 3.898 50684.8 4/9/2017 JYH210 GNF2 10X10 0.18126 3.899 50361.1 4/9/2017 JYH211 GNF2 10X10 0.18129 3.899 48296.2 4/19/2015 JYH212 GNF2 10X10 0.18119 3.898 48836.2 4/9/2017 JYH213 GNF2 10X10 0.18121 3.898 49428.3 4/9/2017 JYH214 GNF2 10X10 0.18119 3.9 50525.1 4/9/2017 JYH215 GNF2 10X10 0.18123 3.9 47602.3 4/9/2017 JYH216 GNF2 10X10 0.18122 3.897 50553.9 4/9/2017 JYH217 GNF2 10X10 0.1812 3.895 48905.7 4/9/2017 JYH218 GNF2 10X10 0.18119 3.894 48647.9 4/9/2017 JYH219 GNF2 10X10 0.18123 3.894 49537 4/9/2017 JYH220 GNF2 10X10 0.18121 3.893 49380.5 4/9/2017 JYH221 GNF2 10X10 0.18125 3.892 46134.9 4/19/2015 JYH222 GNF2 10X10 0.18123 3.893 49513.2 4/9/2017 JYH223 GNF2 10X10 0.18129 3.892 49041.7 4/9/2017 JYH224 GNF2 10X10 0.18126 3.891 48616.5 4/9/2017 JYH225 GNF2 10X10 0.18135 3.889 47762.5 4/9/2017 JYH226 GNF2 10X10 0.18123 3.894 49976.2 4/9/2017 JYH227 GNF2 10X10 0.18125 3.891 46056.6 4/19/2015 JYH228 GNF2 10X10 0.18124 3.892 47946.8 4/9/2017 JYH229 GNF2 10X10 0.18117 3.887 47141.7 4/9/2017 JYH230 GNF2 10X10 0.18115 3.887 47224.2 4/9/2017 JYH231 GNF2 10X10 0.18118 3.888 49430.5 4/9/2017 JYH232 GNF2 10X10 0.18121 3.888 47677.4 4/9/2017 JYH233 GNF2 10X10 0.18126 3.888 46913.2 4/19/2015 JYH234 GNF2 10X10 0.18121 3.893 51008.2 4/9/2017 JYH235 GNF2 10X10 0.18124 3.892 46887.9 4/19/2015 JYH236 GNF2 10X10 0.18128 3.89 46613 4/19/2015 JYH237 GNF2 10X10 0.18131 3.889 49062.5 4/9/2017 JYH238 GNF2 10X10 0.18136 3.887 46430.7 4/19/2015 JYH239 GNF2 10X10 0.18126 3.893 46659.4 4/19/2015 JYH240 GNF2 10X10 0.18128 3.89 47447.5 4/19/2015 JYH241 GNF2 10X10 0.18128 3.892 48828.9 4/9/2017 JYH242 GNF2 10X10 0.18129 3.892 48478.4 4/9/2017 JYH243 GNF2 10X10 0.18125 3.893 48711.5 4/9/2017 JYH244 GNF2 10X10 0.18131 3.895 48682.7 4/9/2017

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 28 of 76 JYH245 GNF2 10X10 0.18128 3.892 49931 4/9/2017 JYH246 GNF2 10X10 0.18135 3.892 48728.3 4/9/2017 JYH247 GNF2 10X10 0.18132 3.89 48731.6 4/9/2017 JYH248 GNF2 10X10 0.18126 3.889 48765.2 4/9/2017 JYH249 GNF2 10X10 0.18125 3.887 48881 4/9/2017 JYH250 GNF2 10X10 0.18124 3.891 48888.2 4/9/2017 JYH251 GNF2 10X10 0.18124 3.886 48770.5 4/9/2017 JYH252 GNF2 10X10 0.18132 3.884 49191.6 4/9/2017 JYH253 GNF2 10X10 0.1813 3.886 48745.6 4/19/2015 JYH254 GNF2 10X10 0.1813 3.889 50212.3 4/9/2017 JYH255 GNF2 10X10 0.18132 3.887 50123.7 4/9/2017 JYH256 GNF2 10X10 0.18134 3.89 48746.5 4/19/2015 JYP740 GNF2 10X10 0.18101 3.754 45921.7 4/9/2017 JYP742 GNF2 10X10 0.1811 3.752 45842.3 4/9/2017 JYP760 GNF2 10X10 0.18134 4.017 47055.5 4/9/2017 JYP761 GNF2 10X10 0.18137 4.017 47061 4/9/2017 JYP762 GNF2 10X10 0.18135 4.018 46998.1 4/9/2017 JYP763 GNF2 10X10 0.18131 4.018 47005.8 4/9/2017 JYP764 GNF2 10X10 0.18128 4.018 47236.2 4/9/2017 JYP765 GNF2 10X10 0.1813 4.015 47253 4/9/2017 JYP766 GNF2 10X10 0.18128 4.014 47287 4/9/2017 JYP767 GNF2 10X10 0.18125 4.014 47265 4/9/2017 JYP780 GNF2 10X10 0.1813 4.016 43126.3 4/9/2017 JYP781 GNF2 10X10 0.18133 4.015 43119.5 4/9/2017 JYP782 GNF2 10X10 0.18136 4.013 43167.4 4/9/2017 JYP783 GNF2 10X10 0.1812 4.015 43106.2 4/9/2017 JYP784 GNF2 10X10 0.18112 4.012 43307.2 4/9/2017 JYP785 GNF2 10X10 0.1811 4.013 43272.2 4/9/2017 JYP786 GNF2 10X10 0.18116 4.014 43340.9 4/9/2017 JYP787 GNF2 10X10 0.18106 4.013 43197.6 4/9/2017 JYP809 GNF2 10X10 0.18104 4.066 46294.7 4/9/2017 JYP811 GNF2 10X10 0.18109 4.07 46216.7 4/9/2017 JYP820 GNF2 10X10 0.18102 4.07 46468.6 4/9/2017 JYP821 GNF2 10X10 0.18113 4.07 46394.4 4/9/2017 JYP822 GNF2 10X10 0.18107 4.071 46386.7 4/9/2017 JYP823 GNF2 10X10 0.18106 4.069 46420.6 4/9/2017 JYP824 GNF2 10X10 0.18102 4.069 46919.2 4/9/2017 JYP825 GNF2 10X10 0.18104 4.069 46940.9 4/9/2017 JYP826 GNF2 10X10 0.18101 4.071 46952.8 4/9/2017 JYP827 GNF2 10X10 0.18109 4.07 46883.9 4/9/2017 JYP856 GNF2 10X10 0.18094 4.013 49135.8 4/9/2017 JYP857 GNF2 10X10 0.1809 4.012 49251.7 4/9/2017 JYP858 GNF2 10X10 0.18101 4.011 49134.1 4/9/2017 JYP859 GNF2 10X10 0.18096 4.012 49152.2 4/9/2017 JYP860 GNF2 10X10 0.18098 4.013 49231.5 4/9/2017 JYP861 GNF2 10X10 0.18111 4.009 49250.3 4/9/2017 JYP862 GNF2 10X10 0.18115 4.009 49178 4/9/2017

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 29 of 76 JYP863 GNF2 10X10 0.18102 4.01 49153.4 4/9/2017 LJ2458 8D262 0.18422 2.625 20465.2 1/5/1980 LJ2459 8D262 0.18422 2.625 21596.5 9/26/1981 LJ2460 8D262 0.18422 2.625 19087.9 1/5/1980 LJ2461 8D262 0.18422 2.625 19199.2 1/5/1980 LJ2462 8D262 0.18422 2.625 19993.9 1/5/1980 LJ2463 8D262 0.18422 2.625 24605.9 9/26/1981 LJ2464 8D262 0.18422 2.625 20627.2 1/5/1980 LJ2465 8D262 0.18422 2.625 19256.3 1/5/1980 LJ2466 8D262 0.18422 2.625 20031.2 1/5/1980 LJ2467 8D262 0.18422 2.625 19504 1/5/1980 LJ2468 8D262 0.18422 2.625 19165.3 1/5/1980 LJ2469 8D262 0.18422 2.625 20336.2 1/5/1980 LJ2470 8D262 0.18422 2.625 19773.5 1/5/1980 LJ2471 8D262 0.18422 2.625 20546.7 1/5/1980 LJ2472 8D262 0.18422 2.625 20624.2 1/5/1980 LJ2473 8D262 0.18422 2.625 19676.8 1/5/1980 LJ2474 8D262 0.18422 2.625 19793.1 1/5/1980 LJ2475 8D262 0.18422 2.625 19487.8 1/5/1980 LJ2476 8D262 0.18422 2.625 19662.5 1/5/1980 LJ2477 8D262 0.18422 2.625 19074.1 1/5/1980 LJ2478 8D262 0.18422 2.625 20421.6 1/5/1980 LJ2479 8D262 0.18422 2.625 20606.3 1/5/1980 LJ2480 8D262 0.18422 2.625 24447.5 9/26/1981 LJ2481 8D262 0.18422 2.625 23484.7 9/26/1981 LJ2482 8D262 0.18422 2.625 23496.5 9/26/1981 LJ2483 8D262 0.18422 2.625 24695.5 9/26/1981 LJ2484 8D262 0.18422 2.625 19286 1/5/1980 LJ2485 8D262 0.18422 2.625 22935.7 9/26/1981 LJ2486 8D262 0.18422 2.625 22623.5 9/26/1981 LJ2487 8D262 0.18422 2.625 18987.3 1/5/1980 LJ2488 8D262 0.18422 2.625 19057 1/5/1980 LJ2489 8D262 0.18422 2.625 24728.3 9/26/1981 LJ2490 8D262 0.18422 2.625 20333.2 1/5/1980 LJ2491 8D262 0.18422 2.625 24427.4 9/26/1981 LJ2492 8D262 0.18422 2.625 22893 9/26/1981 LJ2493 8D262 0.18422 2.625 18973.2 1/5/1980 LJ2494 8D262 0.18422 2.625 23075.7 9/26/1981 LJ2495 8D262 0.18422 2.625 19084.3 1/5/1980 LJ2496 8D262 0.18422 2.625 19496.6 1/5/1980 LJ2497 8D262 0.18422 2.625 20464.9 1/5/1980 LJ2498 8D262 0.18422 2.625 24202.8 9/26/1981 LJ2499 8D262 0.18422 2.625 19684.5 1/5/1980 LJ2500 8D262 0.18422 2.625 20778.2 1/5/1980 LJ2501 8D262 0.18422 2.625 20364.6 1/5/1980 LJ2502 8D262 0.18422 2.625 24390.8 9/26/1981 LJ2503 8D262 0.18422 2.625 24132.8 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 30 of 76 LJ2504 8D262 0.18422 2.625 18974.1 1/5/1980 LJ2505 8D262 0.18422 2.625 19153.8 1/5/1980 LJ2506 8D262 0.18422 2.625 19073.3 1/5/1980 LJ2507 8D262 0.18422 2.625 20074.4 1/5/1980 LJ2508 8D262 0.18422 2.625 20993.2 1/5/1980 LJ2509 8D262 0.18422 2.625 20570.8 1/5/1980 LJ2510 8D262 0.18422 2.625 20880 1/5/1980 LJ2511 8D262 0.18422 2.625 19957.3 1/5/1980 LJ2512 8D262 0.18422 2.625 23165.2 9/26/1981 LJ2513 8D262 0.18422 2.625 20218 1/5/1980 LJ2514 8D262 0.18422 2.625 19695 1/5/1980 LJ2515 8D262 0.18422 2.625 19635.5 1/5/1980 LJ2516 8D262 0.18422 2.625 20134.5 1/5/1980 LJ2517 8D262 0.18422 2.625 20434.1 1/5/1980 LJ2518 8D262 0.18422 2.625 20314.7 1/5/1980 LJ2519 8D262 0.18422 2.625 19861.7 1/5/1980 LJ2520 8D262 0.18422 2.625 20707.1 1/5/1980 LJ2521 8D262 0.18422 2.625 19763.9 1/5/1980 LJ2522 8D262 0.18422 2.625 22465.8 9/26/1981 LJ2523 8D262 0.18422 2.625 20387.8 1/5/1980 LJ2524 8D262 0.18422 2.625 20613.2 1/5/1980 LJ2525 8D262 0.18422 2.625 19006.1 1/5/1980 LJ2526 8D262 0.18422 2.625 20887.1 1/5/1980 LJ2527 8D262 0.18422 2.625 23603.9 9/26/1981 LJ2528 8D262 0.18422 2.625 23673.7 9/26/1981 LJ2529 8D262 0.18422 2.625 23324.5 9/26/1981 LJ2910 8D262 0.18422 2.625 19125.7 1/5/1980 LJ2911 8D262 0.18422 2.625 23685.8 9/26/1981 LJ2912 8D262 0.18422 2.625 21020.7 1/5/1980 LJ2913 8D262 0.18422 2.625 18883.7 1/5/1980 LJ2914 8D262 0.18422 2.625 21787.7 9/26/1981 LJ2915 8D262 0.18422 2.625 19079.4 1/5/1980 LJ2916 8D262 0.18422 2.625 20619.5 1/5/1980 LJ2917 8D262 0.18422 2.625 22641.6 9/26/1981 LJ2918 8D262 0.18422 2.625 18915.3 1/5/1980 LJ2919 8D262 0.18422 2.625 19618.9 1/5/1980 LJ2920 8D262 0.18422 2.625 20008.3 1/5/1980 LJ2921 8D262 0.18422 2.625 19532.1 1/5/1980 LJ2922 8D262 0.18422 2.625 20245.6 1/5/1980 LJ2923 8D262 0.18422 2.625 20021.3 1/5/1980 LJ2924 8D262 0.18422 2.625 22141.2 9/26/1981 LJ2925 8D262 0.18422 2.625 21006.2 1/5/1980 LJ2926 8D262 0.18422 2.625 19531 1/5/1980 LJ2927 8D262 0.18422 2.625 20269.3 1/5/1980 LJ2928 8D262 0.18422 2.625 19082.9 1/5/1980 LJ2929 8D262 0.18422 2.625 19388 1/5/1980 LJ4213 8D219 8X8 0.1838 2.192 16826.6 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 31 of 76 LJ4214 8D219 8X8 0.17718 2.192 22498.7 12/10/1983 LJ4215 8D219 8X8 0.1838 2.192 22593.1 12/10/1983 LJ4216 8D219 8X8 0.1838 2.192 20507.1 9/26/1981 LJ4217 8D219 8X8 0.1838 2.192 20269.5 4/12/1986 LJ4218 8D219 8X8 0.1838 2.192 22619.6 12/10/1983 LJ4219 8D219 8X8 0.1838 2.192 16932.6 9/26/1981 LJ4220 8D219 8X8 0.1838 2.192 18167.8 9/26/1981 LJ4221 8D219 8X8 0.1838 2.192 22370.3 12/10/1983 LJ4222 8D219 8X8 0.1838 2.192 22376 12/10/1983 LJ4223 8D219 8X8 0.1838 2.192 17579.5 9/26/1981 LJ4224 8D219 8X8 0.1838 2.192 20799.2 9/26/1981 LJ4225 8D219 8X8 0.1838 2.192 21272.6 9/26/1981 LJ4226 8D219 8X8 0.1838 2.192 20391.3 4/12/1986 LJ4227 8D219 8X8 0.1838 2.192 19811 12/10/1983 LJ4228 8D219 8X8 0.1838 2.192 22335 12/10/1983 LJ4229 8D219 8X8 0.1838 2.192 20523.4 4/12/1986 LJ4230 8D219 8X8 0.1838 2.192 21097.7 12/10/1983 LJ4231 8D219 8X8 0.1838 2.192 19892.9 9/26/1981 LJ4232 8D219 8X8 0.1838 2.192 19521.9 12/10/1983 LJ4233 8D219 8X8 0.1838 2.192 19088.7 4/12/1986 LJ4234 8D219 8X8 0.1838 2.192 20602.4 9/26/1981 LJ4235 8D219 8X8 0.1838 2.192 21546.8 12/10/1983 LJ4236 8D219 8X8 0.1838 2.192 22247.4 12/10/1983 LJ4237 8D219 8X8 0.1838 2.192 21931.5 12/10/1983 LJ4238 8D219 8X8 0.1838 2.192 20480.4 12/10/1983 LJ4239 8D219 8X8 0.1838 2.192 20523.6 4/12/1986 LJ4240 8D219 8X8 0.1838 2.192 21880.3 12/10/1983 LJ4241 8D219 8X8 0.1838 2.192 18100 12/10/1983 LJ4242 8D219 8X8 0.1838 2.192 16867.7 9/26/1981 LJ4243 8D219 8X8 0.1838 2.192 20589.7 9/26/1981 LJ4244 8D219 8X8 0.1838 2.192 20488.9 12/10/1983 LJ4245 8D219 8X8 0.1838 2.192 19566.2 9/26/1981 LJ4246 8D219 8X8 0.1838 2.192 18982.4 12/10/1983 LJ4247 8D219 8X8 0.1838 2.192 22018.3 12/10/1983 LJ4248 8D219 8X8 0.1838 2.192 20210.5 9/26/1981 LJ4249 8D219 8X8 0.1838 2.192 21774.7 12/10/1983 LJ4250 8D219 8X8 0.1838 2.192 21571.1 12/10/1983 LJ4251 8D219 8X8 0.1838 2.192 20046.6 4/12/1986 LJ4252 8D219 8X8 0.1838 2.192 22214.8 12/10/1983 LJ4253 8D219 8X8 0.1838 2.192 19808 12/10/1983 LJ4254 8D219 8X8 0.1838 2.192 20129 4/12/1986 LJ4255 8D219 8X8 0.1838 2.192 17121.4 9/26/1981 LJ4256 8D219 8X8 0.1838 2.192 19793.7 12/10/1983 LJ4257 8D219 8X8 0.1838 2.192 20040.2 12/10/1983 LJ4258 8D219 8X8 0.1838 2.192 21264.7 12/10/1983 LJ4259 8D219 8X8 0.1838 2.192 19776 12/10/1983 LJ4260 8D219 8X8 0.1838 2.192 20584.5 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 32 of 76 LJ4261 8D219 8X8 0.1838 2.192 21659.5 12/10/1983 LJ4262 8D219 8X8 0.1838 2.192 22427.8 12/10/1983 LJ4263 8D219 8X8 0.1838 2.192 23128.9 12/10/1983 LJ4264 8D219 8X8 0.1838 2.192 22972.3 12/10/1983 LJ4265 8D219 8X8 0.1838 2.192 22404.4 12/10/1983 LJ4266 8D219 8X8 0.1838 2.192 22489.9 12/10/1983 LJ4267 8D219 8X8 0.1838 2.192 20231.5 9/26/1981 LJ4268 8D219 8X8 0.1838 2.192 18330 12/10/1983 LJ4269 8D219 8X8 0.1838 2.192 20887.9 12/10/1983 LJ4270 8D219 8X8 0.1838 2.192 19976.6 4/12/1986 LJ4271 8D219 8X8 0.1838 2.192 18192.8 9/26/1981 LJ4272 8D219 8X8 0.1838 2.192 21775.8 12/10/1983 LJ4273 8D219 8X8 0.1838 2.192 21233.8 12/10/1983 LJ4274 8D219 8X8 0.1838 2.192 22434.7 12/10/1983 LJ4275 8D219 8X8 0.1838 2.192 20543.8 12/10/1983 LJ4276 8D219 8X8 0.1838 2.192 20272.8 4/12/1986 LJ4277 8D219 8X8 0.1838 2.192 19945.8 12/10/1983 LJ4278 8D219 8X8 0.1838 2.192 19011.2 12/10/1983 LJ4279 8D219 8X8 0.1838 2.192 20245.8 12/10/1983 LJ4280 8D219 8X8 0.1838 2.192 18341 9/26/1981 LJ4281 8D219 8X8 0.1838 2.192 17233.9 9/26/1981 LJ4282 8D219 8X8 0.1838 2.192 22810.1 12/10/1983 LJ4283 8D219 8X8 0.1838 2.192 20546.2 12/10/1983 LJ4284 8D219 8X8 0.1838 2.192 18270 9/26/1981 LJ4285 8D219 8X8 0.1838 2.192 20611.2 9/26/1981 LJ4286 8D219 8X8 0.1838 2.192 22599.2 12/10/1983 LJ4287 8D219 8X8 0.1838 2.192 21117.5 12/10/1983 LJ4288 8D219 8X8 0.1838 2.192 21928.8 12/10/1983 LJ4289 8D219 8X8 0.1838 2.192 21226.9 12/10/1983 LJ4290 8D219 8X8 0.1838 2.192 18939.4 12/10/1983 LJ4291 8D219 8X8 0.1838 2.192 20626.7 12/10/1983 LJ4292 8D219 8X8 0.1838 2.192 18476.1 9/26/1981 LJ4293 8D219 8X8 0.1838 2.192 20549.3 9/26/1981 LJ4294 8D219 8X8 0.1838 2.192 19940.8 12/10/1983 LJ4295 8D219 8X8 0.1838 2.192 22598.7 12/10/1983 LJ4296 8D219 8X8 0.1838 2.192 19361.6 4/12/1986 LJ4297 8D219 8X8 0.1838 2.192 21174.8 12/10/1983 LJ4298 8D219 8X8 0.1838 2.192 19303.4 4/12/1986 LJ4299 8D219 8X8 0.1838 2.192 20932 12/10/1983 LJ4300 8D219 8X8 0.1838 2.192 17151.1 9/26/1981 LJ4301 8D219 8X8 0.1838 2.192 18091.7 9/26/1981 LJ4302 8D219 8X8 0.1838 2.192 23264.8 12/10/1983 LJ4303 8D219 8X8 0.1838 2.192 21313.9 4/12/1986 LJ4304 8D219 8X8 0.1838 2.192 19957.3 12/10/1983 LJ4305 8D219 8X8 0.1838 2.192 21091 12/10/1983 LJ4306 8D219 8X8 0.1838 2.192 20689.5 12/10/1983 LJ4307 8D219 8X8 0.1838 2.192 21252.2 12/10/1983

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 33 of 76 LJ4308 8D219 8X8 0.1838 2.192 19928.4 4/12/1986 LJ4309 8D219 8X8 0.1838 2.192 18052.2 9/26/1981 LJ4310 8D219 8X8 0.1838 2.192 21153.5 12/10/1983 LJ4311 8D219 8X8 0.1838 2.192 20754.3 4/12/1986 LJ4312 8D219 8X8 0.1838 2.192 18345.5 12/10/1983 LJ4313 8D219 8X8 0.1838 2.192 17973.9 9/26/1981 LJ4314 8D219 8X8 0.1838 2.192 16806 9/26/1981 LJ4315 8D219 8X8 0.1838 2.192 18461.5 12/10/1983 LJ4316 8D219 8X8 0.1838 2.192 21665.9 12/10/1983 LJ4317 8D219 8X8 0.1838 2.192 20609.9 12/10/1983 LJ4318 8D219 8X8 0.1838 2.192 20467.4 4/12/1986 LJ4319 8D219 8X8 0.1838 2.192 19591.6 9/26/1981 LJ4320 8D219 8X8 0.1838 2.192 20246.7 4/12/1986 LJ4321 8D219 8X8 0.1838 2.192 19936.4 9/26/1981 LJ4322 8D219 8X8 0.1838 2.192 23352.6 12/10/1983 LJ4323 8D219 8X8 0.1838 2.192 22304.1 12/10/1983 LJ4324 8D219 8X8 0.1838 2.192 21414.2 12/10/1983 LJ4325 8D219 8X8 0.1838 2.192 22029.1 12/10/1983 LJ4326 8D219 8X8 0.1838 2.192 21307.9 12/10/1983 LJ4327 8D219 8X8 0.1838 2.192 21018 4/12/1986 LJ4328 8D219 8X8 0.1838 2.192 22424.5 12/10/1983 LJ4329 8D219 8X8 0.1838 2.192 20616 9/26/1981 LJ4330 8D219 8X8 0.1838 2.192 21196.3 9/26/1981 LJ4331 8D219 8X8 0.1838 2.192 22314.6 12/10/1983 LJ4332 8D219 8X8 0.1838 2.192 20036.4 4/12/1986 LJ4333 8D219 8X8 0.1838 2.192 22020.8 12/10/1983 LJ4334 8D219 8X8 0.1838 2.192 22558.4 12/10/1983 LJ4335 8D219 8X8 0.1838 2.192 18088.4 9/26/1981 LJ4336 8D219 8X8 0.1838 2.192 20519.7 12/10/1983 LJ4337 8D219 8X8 0.1838 2.192 18166.3 9/26/1981 LJ4338 8D219 8X8 0.1838 2.192 19822.3 12/10/1983 LJ4339 8D219 8X8 0.1838 2.192 22398.6 12/10/1983 LJ4340 8D219 8X8 0.1838 2.192 19863.9 12/10/1983 LJ4341 8D219 8X8 0.1838 2.192 22432.8 12/10/1983 LJ4342 8D219 8X8 0.1838 2.192 20616 9/26/1981 LJ4343 8D219 8X8 0.1838 2.192 19676.3 12/10/1983 LJ4344 8D219 8X8 0.1838 2.192 20063.4 12/10/1983 LJ4345 8D219 8X8 0.1838 2.192 23234.1 12/10/1983 LJ4346 8D219 8X8 0.1838 2.192 16832 9/26/1981 LJ4347 8D219 8X8 0.1838 2.192 19896.4 12/10/1983 LJ4348 8D219 8X8 0.1838 2.192 21215.6 12/10/1983 LJ4349 8D219 8X8 0.1838 2.192 20237.3 9/26/1981 LJ4350 8D219 8X8 0.1838 2.192 22697.9 12/10/1983 LJ4351 8D219 8X8 0.1838 2.192 23356.3 12/10/1983 LJ4352 8D219 8X8 0.1838 2.192 22141.8 12/10/1983 LJ4353 8D219 8X8 0.1838 2.192 18384.4 12/10/1983 LJ4354 8D219 8X8 0.1838 2.192 22042.9 12/10/1983

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 34 of 76 LJ4355 8D219 8X8 0.1838 2.192 17553 9/26/1981 LJ4356 8D219 8X8 0.1838 2.192 18078.2 9/26/1981 LJ4357 8D219 8X8 0.1838 2.192 20284.7 9/26/1981 LJ4358 8D219 8X8 0.1838 2.192 16908.4 9/26/1981 LJ4359 8D219 8X8 0.1838 2.192 19793.3 12/10/1983 LJ4360 8D219 8X8 0.1838 2.192 22513.6 12/10/1983 LJ4361 8D219 8X8 0.1838 2.192 21112 12/10/1983 LJ4362 8D219 8X8 0.1838 2.192 18120.9 9/26/1981 LJ4363 8D219 8X8 0.1838 2.192 21113.6 12/10/1983 LJ4364 8D219 8X8 0.1838 2.192 19521.4 12/10/1983 LJ4365 8D219 8X8 0.1838 2.192 22707.2 12/10/1983 LJ4366 8D219 8X8 0.1838 2.192 21320.9 12/10/1983 LJ4367 8D219 8X8 0.1838 2.192 18392.3 9/26/1981 LJ4368 8D219 8X8 0.1838 2.192 20880 4/12/1986 LJ4369 8D219 8X8 0.1838 2.192 22538 12/10/1983 LJ4370 8D219 8X8 0.1838 2.192 18526.2 12/10/1983 LJ4371 8D219 8X8 0.1838 2.192 20527.8 12/10/1983 LJ4372 8D219 8X8 0.1838 2.192 21385.6 12/10/1983 LJ4373 8D219 8X8 0.1838 2.192 22353.4 12/10/1983 LJ4374 8D219 8X8 0.1838 2.192 21175 4/12/1986 LJ4375 8D219 8X8 0.1838 2.192 16877.9 9/26/1981 LJ4376 8D219 8X8 0.1838 2.192 19860 12/10/1983 LJ4377 8D219 8X8 0.1838 2.192 19879.1 12/10/1983 LJ4378 8D219 8X8 0.1838 2.192 21950.5 12/10/1983 LJ4379 8D219 8X8 0.1838 2.192 21142 12/10/1983 LJ4380 8D219 8X8 0.1838 2.192 20478.4 12/10/1983 LJ4381 8D219 8X8 0.1838 2.192 17784.9 9/26/1981 LJ4382 8D219 8X8 0.1838 2.192 20787 9/26/1981 LJ4383 8D219 8X8 0.1838 2.192 19128.1 9/26/1981 LJ4384 8D219 8X8 0.1838 2.192 18984.6 9/26/1981 LJ4385 8D219 8X8 0.1838 2.192 21970.7 12/10/1983 LJ4386 8D219 8X8 0.1838 2.192 18316.2 9/26/1981 LJ4387 8D219 8X8 0.1838 2.192 20929.8 12/10/1983 LJ4388 8D219 8X8 0.1838 2.192 20439 4/12/1986 LJ4389 8D219 8X8 0.1838 2.192 20717.4 12/10/1983 LJ4390 8D219 8X8 0.1838 2.192 22314.6 12/10/1983 LJ4391 8D219 8X8 0.1838 2.192 21197.4 12/10/1983 LJ4392 8D219 8X8 0.1838 2.192 22251.4 12/10/1983 LJ4393 8D219 8X8 0.1838 2.192 23152.6 12/10/1983 LJ4394 8D219 8X8 0.1838 2.192 21982.3 12/10/1983 LJ4395 8D219 8X8 0.1838 2.192 21934.5 12/10/1983 LJ4396 8D219 8X8 0.1838 2.192 21242.3 9/26/1981 LJ4397 8D219 8X8 0.1838 2.192 21233.5 12/10/1983 LJ4398 8D219 8X8 0.1838 2.192 18100.5 9/26/1981 LJ4399 8D219 8X8 0.1838 2.192 21192.7 12/10/1983 LJ4400 8D219 8X8 0.1838 2.192 21113.9 12/10/1983 LJ4401 8D219 8X8 0.1838 2.192 22337.4 12/10/1983

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 35 of 76 LJ4402 8D219 8X8 0.1838 2.192 19565.7 12/10/1983 LJ4403 8D219 8X8 0.1838 2.192 22436.1 12/10/1983 LJ4404 8D219 8X8 0.1838 2.192 22977.3 12/10/1983 LJ4405 8D219 8X8 0.1838 2.192 20576.8 12/10/1983 LJ4406 8D219 8X8 0.1838 2.192 18006.5 9/26/1981 LJ4407 8D219 8X8 0.1838 2.192 16860.2 9/26/1981 LJ4408 8D219 8X8 0.1838 2.192 19675.4 12/10/1983 LJ4409 8D219 8X8 0.1838 2.192 21056.3 12/10/1983 LJ4410 8D219 8X8 0.1838 2.192 17258.2 9/26/1981 LJ4411 8D219 8X8 0.1838 2.192 21182.5 9/26/1981 LJ4412 8D219 8X8 0.1838 2.192 19915.1 4/12/1986 LJ4413 8D219 8X8 0.1838 2.192 21335.2 12/10/1983 LJ4414 8D219 8X8 0.1838 2.192 21454.8 12/10/1983 LJ4415 8D219 8X8 0.1838 2.192 20531.6 12/10/1983 LJ4416 8D219 8X8 0.1838 2.192 19909.3 12/10/1983 LJ4417 8D219 8X8 0.1838 2.192 21325.8 12/10/1983 LJ4418 8D219 8X8 0.1838 2.192 20547.8 9/26/1981 LJ4419 8D219 8X8 0.1838 2.192 22093.3 12/10/1983 LJ4420 8D219 8X8 0.1838 2.192 22044 12/10/1983 LJ4421 8D219 8X8 0.1838 2.192 20553.7 12/10/1983 LJ4422 8D219 8X8 0.1838 2.192 20537.7 9/26/1981 LJ4423 8D219 8X8 0.1838 2.192 19815.1 12/10/1983 LJ4424 8D219 8X8 0.1838 2.192 22124.4 12/10/1983 LJ4425 8D219 8X8 0.1838 2.192 23080.9 12/10/1983 LJ4426 8D219 8X8 0.1838 2.192 18343.3 12/10/1983 LJ4427 8D219 8X8 0.1838 2.192 21176.7 12/10/1983 LJ4428 8D219 8X8 0.1838 2.192 22253.1 12/10/1983 LJ4429 8D219 8X8 0.1838 2.192 21209.8 12/10/1983 LJ4430 8D219 8X8 0.1838 2.192 18079 12/10/1983 LJ4431 8D219 8X8 0.1838 2.192 18546.4 9/26/1981 LJ4432 8D219 8X8 0.1838 2.192 18192.6 9/26/1981 LJ4433 8D219 8X8 0.1838 2.192 19121.3 9/26/1981 LJ4434 8D219 8X8 0.1838 2.192 22333.6 12/10/1983 LJ4435 8D219 8X8 0.1838 2.192 22524.8 12/10/1983 LJ4436 8D219 8X8 0.1838 2.192 18170.5 9/26/1981 LJ4437 8D219 8X8 0.1838 2.192 17784.7 9/26/1981 LJ4438 8D219 8X8 0.1838 2.192 22026.6 12/10/1983 LJ4439 8D219 8X8 0.1838 2.192 19013.8 9/26/1981 LJ4440 8D219 8X8 0.1838 2.192 21133.2 12/10/1983 LJ4441 8D2194G 0.1838 2.192 22817.8 12/10/1983 LJ4442 8D2194G 0.1838 2.192 20680.4 12/10/1983 LJ4443 8D2194G 0.1838 2.192 21248.9 9/26/1981 LJ4444 8D2194G 0.1838 2.192 20628.1 12/10/1983 LJ4445 8D2194G 0.1838 2.192 19442.2 9/26/1981 LJ4446 8D2194G 0.1838 2.192 19470.3 12/10/1983 LJ4447 8D2194G 0.1838 2.192 19258.2 9/26/1981 LJ4448 8D2194G 0.1838 2.192 20321.3 4/12/1986

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 36 of 76 LJ4449 8D2194G 0.1838 2.192 20493.8 4/12/1986 LJ4450 8D2194G 0.1838 2.192 21018 12/10/1983 LJ4451 8D2194G 0.1838 2.192 20245.8 9/26/1981 LJ4452 8D2194G 0.1838 2.192 22161.6 12/10/1983 LJ4453 8D2194G 0.1838 2.192 23397 12/10/1983 LJ4454 8D2194G 0.1838 2.192 19402.3 9/26/1981 LJ4455 8D2194G 0.1838 2.192 16685.2 9/26/1981 LJ4456 8D2194G 0.1838 2.192 19594.1 9/26/1981 LJ4457 8D2194G 0.1838 2.192 22092.5 12/10/1983 LJ4458 8D2194G 0.1838 2.192 16756.6 9/26/1981 LJ4459 8D2194G 0.1838 2.192 19216 9/26/1981 LJ4460 8D2194G 0.1838 2.192 19641 9/26/1981 LJ4461 8D2194G 0.1838 2.192 17855.9 9/26/1981 LJ4462 8D2194G 0.1838 2.192 16828 9/26/1981 LJ4463 8D2194G 0.1838 2.192 19275.8 9/26/1981 LJ4464 8D2194G 0.1838 2.192 22072.9 12/10/1983 LJ4465 8D2194G 0.1838 2.192 22842 12/10/1983 LJ4466 8D2194G 0.1838 2.192 21069.8 12/10/1983 LJ4467 8D2194G 0.1838 2.192 22079.3 12/10/1983 LJ4468 8D2194G 0.1838 2.192 22366.1 12/10/1983 LJ4469 8D2194G 0.1838 2.192 19715.6 9/26/1981 LJ4470 8D2194G 0.1838 2.192 19638.2 9/26/1981 LJ4471 8D2194G 0.1838 2.192 18780.1 9/26/1981 LJ4472 8D2194G 0.1838 2.192 19548.6 9/26/1981 LJ4473 8D2194G 0.1838 2.192 21090.5 12/10/1983 LJ4474 8D2194G 0.1838 2.192 19673.7 9/26/1981 LJ4475 8D2194G 0.1838 2.192 19483 9/26/1981 LJ4476 8D2194G 0.1838 2.192 16857.1 9/26/1981 LJ4477 8D2194G 0.1838 2.192 19842.7 9/26/1981 LJ4478 8D2194G 0.1838 2.192 21299.9 9/26/1981 LJ4479 8D2194G 0.1838 2.192 19113.2 9/26/1981 LJ4480 8D2194G 0.1838 2.192 23467.3 12/10/1983 LJ4481 8D2194G 0.1838 2.192 22243.2 12/10/1983 LJ4482 8D2194G 0.1838 2.192 19738.2 9/26/1981 LJ4483 8D2194G 0.1838 2.192 19270.1 9/26/1981 LJ4484 8D2194G 0.1838 2.192 19275.8 9/26/1981 LJ4485 8D2194G 0.1838 2.192 19286.6 9/26/1981 LJ4486 8D2194G 0.1838 2.192 19592.5 12/10/1983 LJ4487 8D2194G 0.1838 2.192 19589.2 9/26/1981 LJ4488 8D2194G 0.1838 2.192 19081.2 9/26/1981 LJ4489 8D2194G 0.1838 2.192 19267 9/26/1981 LJ4490 8D2194G 0.1838 2.192 19243.6 9/26/1981 LJ4491 8D2194G 0.1838 2.192 22828.5 12/10/1983 LJ4492 8D2194G 0.1838 2.192 19612 9/26/1981 LJ4493 8D2194G 0.1838 2.192 22326.9 12/10/1983 LJ4494 8D2194G 0.1838 2.192 20172 9/26/1981 LJ4495 8D2194G 0.1838 2.192 19612.5 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 37 of 76 LJ4496 8D2194G 0.1838 2.192 21365.2 9/26/1981 LJ4497 8D2194G 0.1838 2.192 19360.1 9/26/1981 LJ4498 8D2194G 0.1838 2.192 18910.9 9/26/1981 LJ4499 8D2194G 0.1838 2.192 19787.3 9/26/1981 LJ4500 8D2194G 0.1838 2.192 23485.4 12/10/1983 LJ4501 8D2194G 0.1838 2.192 23037.9 12/10/1983 LJ4502 8D2194G 0.1838 2.192 20455.2 4/12/1986 LJ4503 8D2194G 0.1838 2.192 20296.8 12/10/1983 LJ4504 8D2194G 0.1838 2.192 23089 12/10/1983 LJ4505 8D2194G 0.1838 2.192 19234.2 9/26/1981 LJ4506 8D2194G 0.1838 2.192 19142.4 9/26/1981 LJ4507 8D2194G 0.1838 2.192 17788.9 9/26/1981 LJ4508 8D2194G 0.1838 2.192 19362.7 9/26/1981 LJ4509 8D2194G 0.1838 2.192 17787.1 9/26/1981 LJ4510 8D2194G 0.1838 2.192 21365.5 9/26/1981 LJ4511 8D2194G 0.1838 2.192 20192.7 9/26/1981 LJ4512 8D2194G 0.1838 2.192 22819.7 12/10/1983 LJ4513 8D2194G 0.1838 2.192 19051.5 9/26/1981 LJ4514 8D2194G 0.1838 2.192 23286.5 12/10/1983 LJ4515 8D2194G 0.1838 2.192 21017.2 12/10/1983 LJ4516 8D2194G 0.1838 2.192 17199 9/26/1981 LJ4517 8D2194G 0.1838 2.192 19625.6 9/26/1981 LJ4518 8D2194G 0.1838 2.192 19142.4 9/26/1981 LJ4519 8D2194G 0.1838 2.192 20989.3 12/10/1983 LJ4520 8D2194G 0.1838 2.192 23398.4 12/10/1983 LJ4521 8D2194G 0.1838 2.192 20388.9 4/12/1986 LJ4522 8D2194G 0.1838 2.192 19416.3 9/26/1981 LJ4523 8D2194G 0.1838 2.192 22116.4 12/10/1983 LJ4524 8D2194G 0.1838 2.192 22290.6 12/10/1983 LJ4525 8D2194G 0.1838 2.192 19367.8 9/26/1981 LJ4526 8D2194G 0.1838 2.192 19232.3 9/26/1981 LJ4527 8D2194G 0.1838 2.192 19541.2 9/26/1981 LJ4528 8D2194G 0.1838 2.192 19389.3 9/26/1981 LJ4529 8D2194G 0.1838 2.192 22155.3 12/10/1983 LJ4530 8D2194G 0.1838 2.192 20226.3 12/10/1983 LJ4531 8D2194G 0.1838 2.192 21040 12/10/1983 LJ4532 8D2194G 0.1838 2.192 20307 9/26/1981 LJ4533 8D2194G 0.1838 2.192 19447.5 9/26/1981 LJ4534 8D2194G 0.1838 2.192 19504.9 9/26/1981 LJ4535 8D2194G 0.1838 2.192 19636 9/26/1981 LJ4536 8D2194G 0.1838 2.192 19702.9 9/26/1981 LJ4537 8D2194G 0.1838 2.192 19514.2 9/26/1981 LJ4538 8D2194G 0.1838 2.192 22373.6 12/10/1983 LJ4539 8D2194G 0.1838 2.192 22528.7 12/10/1983 LJ4540 8D2194G 0.1838 2.192 19510.6 9/26/1981 LJ4541 8D2194G 0.1838 2.192 21016.1 12/10/1983 LJ4542 8D2194G 0.1838 2.192 19268.4 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 38 of 76 LJ4543 8D2194G 0.1838 2.192 22288.4 12/10/1983 LJ4544 8D2194G 0.1838 2.192 18503.4 9/26/1981 LJ4545 8D2194G 0.1838 2.192 20415.6 4/12/1986 LJ4546 8D2194G 0.1838 2.192 19265.7 9/26/1981 LJ4547 8D2194G 0.1838 2.192 20244.7 12/10/1983 LJ4548 8D2194G 0.1838 2.192 19364.9 9/26/1981 LJ5868 8D2194G 0.1838 2.192 22999.1 12/10/1983 LJ5869 8D2194G 0.1838 2.192 20634.7 9/26/1981 LJ5870 8D2194G 0.1838 2.192 20703.8 9/26/1981 LJ5871 8D2194G 0.1838 2.192 19725 9/26/1981 LJ5872 8D2194G 0.1838 2.192 21789.4 12/10/1983 LJ5873 8D2194G 0.1838 2.192 19510.9 9/26/1981 LJ5874 8D2194G 0.1838 2.192 19696.6 9/26/1981 LJ5875 8D2194G 0.1838 2.192 23275.2 12/10/1983 LJ5876 8D2194G 0.1838 2.192 21669.2 12/10/1983 LJ5877 8D2194G 0.1838 2.192 21354.7 12/10/1983 LJ5878 8D2194G 0.1838 2.192 19535.9 9/26/1981 LJ5879 8D2194G 0.1838 2.192 22502.8 12/10/1983 LJ5880 8D2194G 0.1838 2.192 21075.1 9/26/1981 LJ5881 8D2194G 0.1838 2.192 17229.4 9/26/1981 LJ5882 8D2194G 0.1838 2.192 19570.4 9/26/1981 LJ5883 8D2194G 0.1838 2.192 18942.9 9/26/1981 LJ5884 8D2194G 0.1838 2.192 19536.8 9/26/1981 LJ5885 8D2194G 0.1838 2.192 17274 9/26/1981 LJ5886 8D2194G 0.1838 2.192 22669.8 12/10/1983 LJ5887 8D2194G 0.1838 2.192 20377.3 4/12/1986 LJ5888 8D2194G 0.1838 2.192 18896.4 9/26/1981 LJ5889 8D2194G 0.1838 2.192 18475 9/26/1981 LJ5890 8D2194G 0.1838 2.192 21746.9 12/10/1983 LJ5891 8D2194G 0.1838 2.192 22660.9 12/10/1983 LJ5892 8D2194G 0.1838 2.192 19607 9/26/1981 LJ5893 8D2194G 0.1838 2.192 21467.5 12/10/1983 LJ5894 8D2194G 0.1838 2.192 17355.2 9/26/1981 LJ5895 8D2194G 0.1838 2.192 23010.7 12/10/1983 LJ5896 8D2194G 0.1838 2.192 19518.6 9/26/1981 LJ5897 8D2194G 0.1838 2.192 19397.4 9/26/1981 LJ5898 8D2194G 0.1838 2.192 20845.8 9/26/1981 LJ5899 8D2194G 0.1838 2.192 19323.7 9/26/1981 LJ5900 8D2194G 0.1838 2.192 19766.9 9/26/1981 LJ5901 8D2194G 0.1838 2.192 19293.2 9/26/1981 LJ5902 8D2194G 0.1838 2.192 19626.9 9/26/1981 LJ5903 8D2194G 0.1838 2.192 19672.4 9/26/1981 LJ5904 8D2194G 0.1838 2.192 17214.5 9/26/1981 LJ5905 8D2194G 0.1838 2.192 19073.3 9/26/1981 LJ5906 8D2194G 0.1838 2.192 21083.9 12/10/1983 LJ5907 8D2194G 0.1838 2.192 21385 12/10/1983 LJ5908 8D2194G 0.1838 2.192 17142.6 9/26/1981

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 39 of 76 LJ5909 8D2194G 0.1838 2.192 22508.6 12/10/1983 LJ5910 8D2194G 0.1838 2.192 21638 12/10/1983 LJ5911 8D2194G 0.1838 2.192 20341.2 12/10/1983 LJ5912 8D2194G 0.1838 2.192 20825.9 9/26/1981 LJ5913 8D2194G 0.1838 2.192 19091.2 9/26/1981 LJ5914 8D2194G 0.1838 2.192 19808.8 9/26/1981 LJ5915 8D2194G 0.1838 2.192 21511.8 12/10/1983 LJ5916 8D2194G 0.1838 2.192 21028.2 9/26/1981 LJ5917 8D2194G 0.1838 2.192 19615.6 9/26/1981 LJ5918 8D2194G 0.1838 2.192 22363.6 12/10/1983 LJ5919 8D2194G 0.1838 2.192 19495.5 9/26/1981 LJ5920 8D2194G 0.1838 2.192 20730.3 9/26/1981 LJ5921 8D2194G 0.1838 2.192 23462.1 12/10/1983 LJ5922 8D2194G 0.1838 2.192 17789.9 9/26/1981 LJ5923 8D2194G 0.1838 2.192 23391.5 12/10/1983 LJ5924 8D2194G 0.1838 2.192 19591 9/26/1981 LJ5925 8D2194G 0.1838 2.192 17245.5 9/26/1981 LJ5926 8D2194G 0.1838 2.192 19246.9 9/26/1981 LJ5927 8D2194G 0.1838 2.192 20695.5 12/10/1983 LJ5928 8D2194G 0.1838 2.192 22511.9 12/10/1983 LJ5929 8D2194G 0.1838 2.192 19488.5 9/26/1981 LJ5930 8D2194G 0.1838 2.192 22256.9 12/10/1983 LJ5931 8D2194G 0.1838 2.192 19577.3 12/10/1983 LJ5932 8D2194G 0.1838 2.192 19507.6 12/10/1983 LJ5933 8D2194G 0.1838 2.192 20706.6 12/10/1983 LJ5934 8D2194G 0.1838 2.192 19512.2 9/26/1981 LJ5935 8D2194G 0.1838 2.192 20260.1 4/12/1986 LJ5936 8D2194G 0.1838 2.192 20549.5 9/26/1981 LJ5937 8D2194G 0.1838 2.192 23010.7 12/10/1983 LJ5938 8D2194G 0.1838 2.192 17384 9/26/1981 LJ5939 8D2194G 0.1838 2.192 23398.7 12/10/1983 LJ5940 8D2194G 0.1838 2.192 20196.2 4/12/1986 LJ5941 8D2194G 0.1838 2.192 23456.2 12/10/1983 LJ5942 8D2194G 0.1838 2.192 23112.1 12/10/1983 LJ5943 8D2194G 0.1838 2.192 19071.6 9/26/1981 LJ5944 8D219 8X8 0.1838 2.192 20107.5 4/12/1986 LJ5945 8D219 8X8 0.1838 2.192 21441.8 12/10/1983 LJ5946 8D219 8X8 0.1838 2.192 21227.2 12/10/1983 LJ5947 8D219 8X8 0.1838 2.192 18111.6 9/26/1981 LJ5948 8D219 8X8 0.1838 2.192 20332.7 12/10/1983 LJ5949 8D219 8X8 0.1838 2.192 22551.3 12/10/1983 LJ5950 8D219 8X8 0.1838 2.192 18947.9 12/10/1983 LJ5951 8D219 8X8 0.1838 2.192 22534.5 12/10/1983 LJ5952 8D219 8X8 0.1838 2.192 23200.3 12/10/1983 LJ5953 8D219 8X8 0.1838 2.192 18783.1 4/12/1986 LJ5954 8D219 8X8 0.1838 2.192 22633.7 12/10/1983 LJ5955 8D219 8X8 0.1838 2.192 21212.5 12/10/1983

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 40 of 76 LJ5956 8D219 8X8 0.1838 2.192 19530.8 12/10/1983 LJ5957 8D219 8X8 0.1838 2.192 20649.3 12/10/1983 LJ5958 8D219 8X8 0.1838 2.192 20613.4 12/10/1983 LJ5959 8D219 8X8 0.1838 2.192 20878.9 12/10/1983 LJL562 P8DRB265A 0.177 2.641 26630.1 4/12/1986 LJL563 P8DRB265A 0.177 2.641 26855.2 4/12/1986 LJL564 P8DRB265A 0.177 2.641 26970.9 4/12/1986 LJL565 P8DRB265A 0.177 2.641 26533.3 4/12/1986 LJL566 P8DRB265A 0.177 2.641 27824.6 4/12/1986 LJL567 P8DRB265A 0.177 2.641 23712.3 4/12/1986 LJL568 P8DRB265A 0.177 2.641 24050.2 4/12/1986 LJL569 P8DRB265A 0.177 2.641 24227.3 4/12/1986 LJL570 P8DRB265A 0.177 2.641 23384 4/12/1986 LJL571 P8DRB265A 0.177 2.641 27923.1 4/12/1986 LJL572 P8DRB265A 0.177 2.641 27987.5 4/12/1986 LJL573 P8DRB265A 0.177 2.641 25592.5 4/12/1986 LJL574 P8DRB265A 0.177 2.641 24605.2 4/12/1986 LJL575 P8DRB265A 0.177 2.641 24711.5 4/12/1986 LJL576 P8DRB265A 0.177 2.641 24741 4/12/1986 LJL577 P8DRB265A 0.177 2.641 24124.8 4/12/1986 LJL578 P8DRB265A 0.177 2.641 25209.2 4/12/1986 LJL579 P8DRB265A 0.177 2.641 28039 4/12/1986 LJL580 P8DRB265A 0.177 2.641 23306.3 4/12/1986 LJL581 P8DRB265A 0.177 2.641 24384.4 4/12/1986 LJL582 P8DRB265A 0.177 2.641 24005.5 4/12/1986 LJL583 P8DRB265A 0.177 2.641 23320.1 4/12/1986 LJL584 P8DRB265A 0.177 2.641 27942.9 4/12/1986 LJL585 P8DRB265A 0.177 2.641 24365.4 4/12/1986 LJL586 P8DRB265A 0.177 2.641 24510.9 4/12/1986 LJL587 P8DRB265A 0.177 2.641 28234.1 4/12/1986 LJL588 P8DRB265A 0.177 2.641 24687.3 4/12/1986 LJL589 P8DRB265A 0.177 2.641 25044.4 4/12/1986 LJL590 P8DRB265A 0.177 2.641 24811.5 4/12/1986 LJL591 P8DRB265A 0.177 2.641 24700 4/12/1986 LJL592 P8DRB265A 0.177 2.641 25077.5 4/12/1986 LJL593 P8DRB265A 0.177 2.641 24774.6 4/12/1986 LJL594 P8DRB265A 0.177 2.641 22990.9 4/12/1986 LJL595 P8DRB265A 0.177 2.641 24690.8 4/12/1986 LJL596 P8DRB265A 0.177 2.641 25573.2 4/12/1986 LJL597 P8DRB265A 0.177 2.641 22832.3 4/12/1986 LJL598 P8DRB265A 0.177 2.641 24181 4/12/1986 LJL599 P8DRB265A 0.177 2.641 24198.4 4/12/1986 LJL600 P8DRB265A 0.177 2.641 22671.7 4/12/1986 LJL601 P8DRB265A 0.177 2.641 25976.4 4/12/1986 LJL602 P8DRB265A 0.177 2.641 24818.5 4/12/1986 LJL603 P8DRB265A 0.177 2.641 24346.3 4/12/1986 LJL604 P8DRB265A 0.177 2.641 24124.6 4/12/1986

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 41 of 76 LJL605 P8DRB265A 0.177 2.641 24814.6 4/12/1986 LJL606 P8DRB265A 0.177 2.641 24670.2 4/12/1986 LJL607 P8DRB265A 0.177 2.641 25070.9 4/12/1986 LJL608 P8DRB265A 0.177 2.641 24342.5 4/12/1986 LJL609 P8DRB265A 0.177 2.641 24753.1 4/12/1986 LJL611 P8DRB265A 0.177 2.641 23835.2 4/12/1986 LJL612 P8DRB265A 0.177 2.641 25076.9 4/12/1986 LJL613 P8DRB265A 0.177 2.641 24652.2 4/12/1986 LJL614 P8DRB265A 0.177 2.641 28224 4/12/1986 LJL615 P8DRB265A 0.177 2.641 24476.2 4/12/1986 LJL616 P8DRB265A 0.177 2.641 25265.7 4/12/1986 LJL617 P8DRB265A 0.177 2.641 25102.8 4/12/1986 LJL618 P8DRB265A 0.177 2.641 24718.9 4/12/1986 LJL619 P8DRB265A 0.177 2.641 28118.9 4/12/1986 LJL620 P8DRB265A 0.177 2.641 28057.8 4/12/1986 LJL621 P8DRB265A 0.177 2.641 28054.2 4/12/1986 LJL622 P8DRB265A 0.177 2.641 27920 4/12/1986 LJL623 P8DRB265A 0.177 2.641 27901.2 4/12/1986 LJL624 P8DRB265A 0.177 2.641 28176 4/12/1986 LJL625 P8DRB265A 0.177 2.641 24628.3 4/12/1986 LJL626 P8DRB265A 0.177 2.641 25196.8 4/12/1986 LJL627 P8DRB265A 0.177 2.641 25174.7 4/12/1986 LJL628 P8DRB265A 0.177 2.641 24425.7 4/12/1986 LJL629 P8DRB265A 0.177 2.641 28056.7 4/12/1986 LJL630 P8DRB265A 0.177 2.641 24649.8 4/12/1986 LJL631 P8DRB265A 0.177 2.641 25173.4 4/12/1986 LJL632 P8DRB265A 0.177 2.641 23828.6 4/12/1986 LJL633 P8DRB265A 0.177 2.641 23367.5 4/12/1986 LJL634 P8DRB265A 0.177 2.641 24776.2 4/12/1986 LJL635 P8DRB265A 0.177 2.641 24286.8 4/12/1986 LJL636 P8DRB265A 0.177 2.641 25156.3 4/12/1986 LJL637 P8DRB265A 0.177 2.641 24646.2 4/12/1986 LJL638 P8DRB265A 0.177 2.641 24794.8 4/12/1986 LJL639 P8DRB265A 0.177 2.641 24246.6 4/12/1986 LJL640 P8DRB265A 0.177 2.641 24381.1 4/12/1986 LJL641 P8DRB265A 0.177 2.641 24826.7 4/12/1986 LJL642 P8DRB265A 0.177 2.641 25984.3 4/12/1986 LJL643 P8DRB265A 0.177 2.641 22700.9 4/12/1986 LJL644 P8DRB265A 0.177 2.641 24206.7 4/12/1986 LJL645 P8DRB265A 0.177 2.641 24182.1 4/12/1986 LJL646 P8DRB265A 0.177 2.641 22783.1 4/12/1986 LJL647 P8DRB265A 0.177 2.641 25671.3 4/12/1986 LJL648 P8DRB265A 0.177 2.641 24728.6 4/12/1986 LJL649 P8DRB265A 0.177 2.641 22847 4/12/1986 LJL650 P8DRB265A 0.177 2.641 24862.8 4/12/1986 LJL651 P8DRB265A 0.177 2.641 25006.6 4/12/1986 LJL652 P8DRB265A 0.177 2.641 24777.7 4/12/1986

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 42 of 76 LJL653 P8DRB265A 0.177 2.641 24748.1 4/12/1986 LJL654 P8DRB265A 0.177 2.641 22816.9 4/12/1986 LJL655 P8DRB265A 0.177 2.641 24674.3 4/12/1986 LJL656 P8DRB265A 0.177 2.641 28163.4 4/12/1986 LJL657 P8DRB265A 0.177 2.641 24592.9 4/12/1986 LJL658 P8DRB265A 0.177 2.641 24436.2 4/12/1986 LJL659 P8DRB265A 0.177 2.641 28049.5 4/12/1986 LJL660 P8DRB265A 0.177 2.641 23389.3 4/12/1986 LJL661 P8DRB265A 0.177 2.641 23977.1 4/12/1986 LJL662 P8DRB265A 0.177 2.641 24387.1 4/12/1986 LJL663 P8DRB265A 0.177 2.641 23299.5 4/12/1986 LJL664 P8DRB265A 0.177 2.641 27916.7 4/12/1986 LJL665 P8DRB265A 0.177 2.641 25171.4 4/12/1986 LJL666 P8DRB265A 0.177 2.641 24236.1 4/12/1986 LJL667 P8DRB265A 0.177 2.641 24639 4/12/1986 LJL668 P8DRB265A 0.177 2.641 24737.7 4/12/1986 LJL669 P8DRB265A 0.177 2.641 24615.3 4/12/1986 LJL670 P8DRB265A 0.177 2.641 25493.8 4/12/1986 LJL671 P8DRB265A 0.177 2.641 27983.4 4/12/1986 LJL672 P8DRB265A 0.177 2.641 27902.9 4/12/1986 LJL673 P8DRB265A 0.177 2.641 23516.3 4/12/1986 LJL674 P8DRB265A 0.177 2.641 24124.2 4/12/1986 LJL675 P8DRB265A 0.177 2.641 24082.9 4/12/1986 LJL676 P8DRB265A 0.177 2.641 23689.2 4/12/1986 LJL677 P8DRB265A 0.177 2.641 27796.5 4/12/1986 LJL678 P8DRB265A 0.177 2.641 26509 4/12/1986 LJL679 P8DRB265A 0.177 2.641 27053.9 4/12/1986 LJL680 P8DRB265A 0.177 2.641 26993.5 4/12/1986 LJL681 P8DRB265A 0.177 2.641 26616.5 4/12/1986 LJL682 P8DRB282A 0.17718 2.817 30778.2 4/29/1991 LJL683 P8DRB282A 0.17718 2.817 28321.2 4/29/1991 LJL684 P8DRB282A 0.17718 2.817 28493.2 4/29/1991 LJL685 P8DRB282A 0.17718 2.817 27558.4 4/12/1986 LJL686 P8DRB282A 0.17718 2.817 28381.8 4/12/1986 LJL687 P8DRB282A 0.17718 2.817 27233.2 4/29/1991 LJL688 P8DRB282A 0.17718 2.817 27407.4 4/29/1991 LJL689 P8DRB282A 0.17718 2.817 28399.5 4/12/1986 LJL690 P8DRB282A 0.17718 2.817 26406.3 4/12/1986 LJL691 P8DRB282A 0.17718 2.817 26454.5 4/12/1986 LJL692 P8DRB282A 0.17718 2.817 28977.6 4/12/1986 LJL693 P8DRB282A 0.17718 2.817 30728.6 4/29/1991 LJL694 P8DRB282A 0.17718 2.817 30692.2 4/29/1991 LJL695 P8DRB282A 0.17718 2.817 28764.1 4/12/1986 LJL696 P8DRB282A 0.17718 2.817 27447.4 4/12/1986 LJL697 P8DRB282A 0.17718 2.817 27753 4/12/1986 LJL698 P8DRB282A 0.17718 2.817 30388.3 4/12/1986 LJL699 P8DRB282A 0.17718 2.817 26448.4 4/12/1986

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 43 of 76 LJL700 P8DRB282A 0.17718 2.817 26426.1 4/12/1986 LJL701 P8DRB282A 0.17718 2.817 30509.3 4/12/1986 LJL702 P8DRB282A 0.17718 2.817 27692.4 4/12/1986 LJL703 P8DRB282A 0.17718 2.817 27143.4 4/12/1986 LJL704 P8DRB282A 0.17718 2.817 30192.9 4/29/1991 LJL705 P8DRB282A 0.17718 2.817 27180.9 4/12/1986 LJL706 P8DRB282A 0.17718 2.817 29359.6 4/29/1991 LJL707 P8DRB282A 0.17718 2.817 29325.4 4/29/1991 LJL708 P8DRB282A 0.17718 2.817 27025.8 4/12/1986 LJL709 P8DRB282A 0.17718 2.817 30093.7 4/29/1991 LJL710 P8DRB282A 0.17718 2.817 28772 4/29/1991 LJL711 P8DRB282A 0.17718 2.817 27448.2 4/12/1986 LJL712 P8DRB282A 0.17718 2.817 27398.6 4/12/1986 LJL713 P8DRB282A 0.17718 2.817 28475.5 4/29/1991 LJL714 P8DRB282A 0.17718 2.817 26398.8 4/29/1991 LJL715 P8DRB282A 0.17718 2.817 27478.3 4/12/1986 LJL716 P8DRB282A 0.17718 2.817 27405.8 4/12/1986 LJL717 P8DRB282A 0.17718 2.817 27573.9 4/29/1991 LJL718 P8DRB282A 0.17718 2.817 30136.7 4/29/1991 LJL719 P8DRB282A 0.17718 2.817 27063.5 4/12/1986 LJL720 P8DRB282A 0.17718 2.817 29316.6 4/29/1991 LJL721 P8DRB282A 0.17718 2.817 29317.7 4/29/1991 LJL722 P8DRB282A 0.17718 2.817 27064 4/12/1986 LJL723 P8DRB282A 0.17718 2.817 26257.2 4/12/1986 LJL724 P8DRB282A 0.17718 2.817 27161.6 4/12/1986 LJL725 P8DRB282A 0.17718 2.817 27696.8 4/12/1986 LJL726 P8DRB282A 0.17718 2.817 30461.6 4/12/1986 LJL727 P8DRB282A 0.17718 2.817 26416.8 4/12/1986 LJL728 P8DRB282A 0.17718 2.817 26470.5 4/12/1986 LJL729 P8DRB282A 0.17718 2.817 30391.6 4/12/1986 LJL730 P8DRB282A 0.17718 2.817 27815.6 4/12/1986 LJL731 P8DRB282A 0.17718 2.817 27373.6 4/12/1986 LJL732 P8DRB282A 0.17718 2.817 28852.3 4/12/1986 LJL733 P8DRB282A 0.17718 2.817 30778.2 4/29/1991 LJL734 P8DRB282A 0.17718 2.817 30740.7 4/29/1991 LJL735 P8DRB282A 0.17718 2.817 28933.3 4/12/1986 LJL736 P8DRB282A 0.17718 2.817 26459.2 4/12/1986 LJL737 P8DRB282A 0.17718 2.817 26418.7 4/12/1986 LJL738 P8DRB282A 0.17718 2.817 28494.3 4/12/1986 LJL739 P8DRB282A 0.17718 2.817 27518.7 4/29/1991 LJL740 P8DRB282A 0.17718 2.817 27290.6 4/29/1991 LJL741 P8DRB282A 0.17718 2.817 28416 4/12/1986 LJL742 P8DRB282A 0.17718 2.817 27603.1 4/12/1986 LJL743 P8DRB282A 0.17718 2.817 28488.8 4/29/1991 LJL744 P8DRB282A 0.17718 2.817 28420.4 4/29/1991 LJL745 P8DRB282A 0.17718 2.817 27409.1 4/12/1986 LJP271 P8DRB265B 0.17718 2.65 23404.4 4/12/1986

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 44 of 76 LJX696 P8DRB265B 0.17698 2.65 27272.9 4/3/1993 LJX697 P8DRB265B 0.17698 2.65 27374.3 4/3/1993 LJX698 P8DRB265B 0.17698 2.65 27259.7 4/3/1993 LJX699 P8DRB265B 0.17698 2.65 27371 4/3/1993 LJX700 P8DRB265B 0.17698 2.65 27605.8 4/29/1991 LJX701 P8DRB265B 0.17698 2.65 28972.7 4/3/1993 LJX702 P8DRB265B 0.17698 2.65 27563.9 4/29/1991 LJX703 P8DRB265B 0.17698 2.65 29089.5 4/3/1993 LJX704 P8DRB265B 0.17698 2.65 27523.1 4/29/1991 LJX705 P8DRB265B 0.17698 2.65 25760.6 4/29/1991 LJX706 P8DRB265B 0.17698 2.65 27535.3 4/29/1991 LJX707 P8DRB265B 0.17698 2.65 29033.3 4/3/1993 LJX708 P8DRB265B 0.17698 2.65 27349 4/29/1991 LJX709 P8DRB265B 0.17698 2.65 27431.7 4/29/1991 LJX710 P8DRB265B 0.17698 2.65 27480.2 4/29/1991 LJX711 P8DRB265B 0.17698 2.65 27436.1 4/29/1991 LJX712 P8DRB265B 0.17698 2.65 27332.5 4/29/1991 LJX713 P8DRB265B 0.17698 2.65 27556.2 4/29/1991 LJX714 P8DRB265B 0.17698 2.65 27494.5 4/29/1991 LJX715 P8DRB265B 0.17698 2.65 27403 4/29/1991 LJX716 P8DRB265B 0.17698 2.65 25003.3 4/29/1991 LJX717 P8DRB265B 0.17698 2.65 25725.3 4/29/1991 LJX718 P8DRB265B 0.17698 2.65 24973.5 4/29/1991 LJX719 P8DRB265B 0.17698 2.65 25696.6 4/29/1991 LJX720 P8DRB265B 0.17698 2.65 28812.8 4/3/1993 LJX721 P8DRB265B 0.17698 2.65 27087.7 4/29/1991 LJX722 P8DRB265B 0.17698 2.65 25864.2 4/29/1991 LJX723 P8DRB265B 0.17698 2.65 27040.3 4/3/1993 LJX724 P8DRB265B 0.17698 2.65 28883.4 4/3/1993 LJX725 P8DRB265B 0.17698 2.65 27052.5 4/29/1991 LJX726 P8DRB265B 0.17698 2.65 25885.1 4/29/1991 LJX727 P8DRB265B 0.17698 2.65 27024.9 4/3/1993 LJX728 P8DRB265B 0.17698 2.65 28788.6 4/3/1993 LJX729 P8DRB265B 0.17698 2.65 27019.4 4/29/1991 LJX730 P8DRB265B 0.17698 2.65 25867.5 4/29/1991 LJX731 P8DRB265B 0.17698 2.65 27098.8 4/3/1993 LJX732 P8DRB265B 0.17698 2.65 28826.1 4/3/1993 LJX733 P8DRB265B 0.17698 2.65 27160.5 4/29/1991 LJX734 P8DRB265B 0.17698 2.65 25890.7 4/29/1991 LJX735 P8DRB265B 0.17698 2.65 27056.9 4/3/1993 LJX736 P8DRB265B 0.17698 2.65 24995.6 4/29/1991 LJX737 P8DRB265B 0.17698 2.65 25628.3 4/29/1991 LJX738 P8DRB265B 0.17698 2.65 25124.6 4/29/1991 LJX739 P8DRB265B 0.17698 2.65 25600.7 4/29/1991 LJX740 P8DRB265B 0.17698 2.65 27364.4 4/29/1991 LJX741 P8DRB265B 0.17698 2.65 25648.1 4/29/1991 LJX742 P8DRB265B 0.17698 2.65 27382.1 4/29/1991

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 45 of 76 LJX743 P8DRB265B 0.17698 2.65 27820.8 4/29/1991 LJX744 P8DRB265B 0.17698 2.65 32759 4/3/1993 LJX745 P8DRB265B 0.17698 2.65 32820.8 4/3/1993 LJX746 P8DRB265B 0.17698 2.65 25443.1 4/29/1991 LJX747 P8DRB265B 0.17698 2.65 25500.4 4/29/1991 LJX748 P8DRB265B 0.17698 2.65 32795.4 4/3/1993 LJX749 P8DRB265B 0.17698 2.65 32817.5 4/3/1993 LJX750 P8DRB265B 0.17698 2.65 28775.4 4/3/1993 LJX751 P8DRB265B 0.17698 2.65 25605.2 4/29/1991 LJX752 P8DRB265B 0.17698 2.65 27423.9 4/29/1991 LJX753 P8DRB265B 0.17698 2.65 27781.1 4/29/1991 LJX754 P8DRB265B 0.17698 2.65 27383.2 4/29/1991 LJX755 P8DRB265B 0.17698 2.65 27800.9 4/29/1991 LJX756 P8DRB282B 0.1773 2.82 27791 4/29/1991 LJX757 P8DRB282B 0.1773 2.82 28009.3 4/29/1991 LJX758 P8DRB282B 0.1773 2.82 27878.1 4/29/1991 LJX759 P8DRB282B 0.1773 2.82 28006 4/29/1991 LJX760 P8DRB282B 0.1773 2.82 27792.1 4/29/1991 LJX761 P8DRB282B 0.1773 2.82 27789.9 4/29/1991 LJX762 P8DRB282B 0.1773 2.82 28138.2 4/29/1991 LJX763 P8DRB282B 0.1773 2.82 28025.8 4/29/1991 LJX764 P8DRB282B 0.1773 2.82 29172.2 4/29/1991 LJX765 P8DRB282B 0.1773 2.82 28184.5 4/29/1991 LJX766 P8DRB282B 0.1773 2.82 27600.3 4/29/1991 LJX767 P8DRB282B 0.1773 2.82 27834 4/29/1991 LJX768 P8DRB282B 0.1773 2.82 29020.1 4/29/1991 LJX769 P8DRB282B 0.1773 2.82 28234.1 4/29/1991 LJX770 P8DRB282B 0.1773 2.82 27717.2 4/29/1991 LJX771 P8DRB282B 0.1773 2.82 27940.9 4/29/1991 LJX772 P8DRB282B 0.1773 2.82 29155.6 4/29/1991 LJX773 P8DRB282B 0.1773 2.82 28283.7 4/29/1991 LJX774 P8DRB282B 0.1773 2.82 25388 4/29/1991 LJX775 P8DRB282B 0.1773 2.82 27922.2 4/29/1991 LJX776 P8DRB282B 0.1773 2.82 29038.8 4/29/1991 LJX777 P8DRB282B 0.1773 2.82 28216.5 4/29/1991 LJX778 P8DRB282B 0.1773 2.82 27615.7 4/29/1991 LJX779 P8DRB282B 0.1773 2.82 27764.6 4/29/1991 LJX780 P8DRB282B 0.1773 2.82 29161.2 4/29/1991 LJX781 P8DRB282B 0.1773 2.82 26709.7 4/29/1991 LJX782 P8DRB282B 0.1773 2.82 28076.5 4/3/1993 LJX783 P8DRB282B 0.1773 2.82 26458.3 4/29/1991 LJX784 P8DRB282B 0.1773 2.82 29241.6 4/29/1991 LJX785 P8DRB282B 0.1773 2.82 26713 4/29/1991 LJX786 P8DRB282B 0.1773 2.82 28163.6 4/3/1993 LJX787 P8DRB282B 0.1773 2.82 26517.9 4/29/1991 LJX788 P8DRB282B 0.1773 2.82 27811.9 4/29/1991 LJX789 P8DRB282B 0.1773 2.82 27743.6 4/29/1991

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 46 of 76 LJX790 P8DRB282B 0.1773 2.82 28580.2 4/29/1991 LJX791 P8DRB282B 0.1773 2.82 28425.9 4/29/1991 LJX792 P8DRB282B 0.1773 2.82 27811.9 4/29/1991 LJX793 P8DRB282B 0.1773 2.82 27936.5 4/29/1991 LJX794 P8DRB282B 0.1773 2.82 28504.2 4/29/1991 LJX795 P8DRB282B 0.1773 2.82 28473.3 4/29/1991 LJX796 P8DRB282B 0.1773 2.82 29251.5 4/29/1991 LJX797 P8DRB282B 0.1773 2.82 26685.4 4/29/1991 LJX798 P8DRB282B 0.1773 2.82 28057.8 4/3/1993 LJX799 P8DRB282B 0.1773 2.82 26467.2 4/29/1991 LJX800 P8DRB282B 0.1773 2.82 29318.8 4/29/1991 LJX801 P8DRB282B 0.1773 2.82 26762.6 4/29/1991 LJX802 P8DRB282B 0.1773 2.82 28094.1 4/3/1993 LJX803 P8DRB282B 0.1773 2.82 26434.1 4/29/1991 LJX804 P8DRB282B 0.1773 2.82 27349 4/3/1993 LJX805 P8DRB282B 0.1773 2.82 26909.2 4/29/1991 LJX806 P8DRB282B 0.1773 2.82 27732.6 4/29/1991 LJX807 P8DRB282B 0.1773 2.82 29803.8 4/29/1991 LJX808 P8DRB282B 0.1773 2.82 27278.4 4/3/1993 LJX809 P8DRB282B 0.1773 2.82 26887.1 4/29/1991 LJX810 P8DRB282B 0.1773 2.82 27649.9 4/29/1991 LJX811 P8DRB282B 0.1773 2.82 29855.6 4/29/1991 LJX812 P8DRB282B 0.1773 2.82 26488.1 4/29/1991 LJX813 P8DRB282B 0.1773 2.82 30047.4 4/29/1991 LJX814 P8DRB282B 0.1773 2.82 26958.8 4/29/1991 LJX815 P8DRB282B 0.1773 2.82 29802.7 4/29/1991 LJX816 P8DRB282B 0.1773 2.82 26556.4 4/29/1991 LJX817 P8DRB282B 0.1773 2.82 30082.7 4/29/1991 LJX818 P8DRB282B 0.1773 2.82 26958.8 4/29/1991 LJX819 P8DRB282B 0.1773 2.82 29692.5 4/29/1991 LJX820 P8DRB282B 0.1773 2.82 26482.6 4/29/1991 LJX821 P8DRB282B 0.1773 2.82 30223.8 4/29/1991 LJX822 P8DRB282B 0.1773 2.82 26968.7 4/29/1991 LJX823 P8DRB282B 0.1773 2.82 29648.4 4/29/1991 LJX824 P8DRB282B 0.1773 2.82 26501.3 4/29/1991 LJX825 P8DRB282B 0.1773 2.82 30063.9 4/29/1991 LJX826 P8DRB282B 0.1773 2.82 27053.6 4/29/1991 LJX827 P8DRB282B 0.1773 2.82 29832.5 4/29/1991 LJX828 P8DRB282B 0.1773 2.82 27349 4/3/1993 LJX829 P8DRB282B 0.1773 2.82 26889.3 4/29/1991 LJX830 P8DRB282B 0.1773 2.82 27616.8 4/29/1991 LJX831 P8DRB282B 0.1773 2.82 29872.1 4/29/1991 LJX832 P8DRB282B 0.1773 2.82 27463.6 4/3/1993 LJX833 P8DRB282B 0.1773 2.82 26741.6 4/29/1991 LJX834 P8DRB282B 0.1773 2.82 27620.1 4/29/1991 LJX835 P8DRB282B 0.1773 2.82 29830.2 4/29/1991 LJX836 P8DRB282B 0.1773 2.82 27527.6 4/29/1991

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 47 of 76 LJX837 P8DRB282B 0.1773 2.82 29872.1 4/29/1991 LJX838 P8DRB282B 0.1773 2.82 27470.2 4/29/1991 LJX839 P8DRB282B 0.1773 2.82 29789.5 4/29/1991 LJX840 P8DRB282B 0.1773 2.82 27917.8 4/29/1991 LJX841 P8DRB282B 0.1773 2.82 29752 4/29/1991 LJX842 P8DRB282B 0.1773 2.82 29513.9 4/29/1991 LJX843 P8DRB282B 0.1773 2.82 27322.5 4/29/1991 LJX844 P8DRB282B 0.1773 2.82 27912.3 4/29/1991 LJX845 P8DRB282B 0.1773 2.82 29706.8 4/29/1991 LJX846 P8DRB282B 0.1773 2.82 29393.7 4/29/1991 LJX847 P8DRB282B 0.1773 2.82 27239.9 4/29/1991 LJX848 P8DRB282B 0.1773 2.82 28344.4 4/29/1991 LJX849 P8DRB282B 0.1773 2.82 28196.6 4/29/1991 LJX850 P8DRB282B 0.1773 2.82 28030.2 4/29/1991 LJX851 P8DRB282B 0.1773 2.82 28044.5 4/29/1991 LJX852 P8DRB282B 0.1773 2.82 28268.3 4/29/1991 LJX853 P8DRB282B 0.1773 2.82 28371.9 4/29/1991 LJX854 P8DRB282B 0.1773 2.82 28126.1 4/29/1991 LJX855 P8DRB282B 0.1773 2.82 27993.8 4/29/1991 LJX856 P8DRB282B 0.1773 2.82 27886.9 4/29/1991 LJX857 P8DRB282B 0.1773 2.82 29826.9 4/29/1991 LJX858 P8DRB282B 0.1773 2.82 29416.9 4/29/1991 LJX859 P8DRB282B 0.1773 2.82 27229.9 4/29/1991 LJX860 P8DRB282B 0.1773 2.82 27949.7 4/29/1991 LJX861 P8DRB282B 0.1773 2.82 29741 4/29/1991 LJX862 P8DRB282B 0.1773 2.82 29386 4/29/1991 LJX863 P8DRB282B 0.1773 2.82 27234.3 4/29/1991 LJX864 P8DRB282B 0.1773 2.82 27418.4 4/29/1991 LJX865 P8DRB282B 0.1773 2.82 29784 4/29/1991 LJX866 P8DRB282B 0.1773 2.82 27493.4 4/29/1991 LJX867 P8DRB282B 0.1773 2.82 29741 4/29/1991 LY5295 P8DRB282B 0.17673 2.82 30866.4 3/24/1995 LY5296 P8DRB282B 0.17673 2.82 27684.1 3/24/1995 LY5297 P8DRB282B 0.17673 2.82 29477.5 3/24/1995 LY5298 P8DRB282B 0.17673 2.82 29340.8 3/24/1995 LY5299 P8DRB282B 0.17673 2.82 27792.1 3/24/1995 LY5300 P8DRB282B 0.17673 2.82 31037.3 3/24/1995 LY5301 P8DRB282B 0.17673 2.82 28227.5 4/3/1993 LY5302 P8DRB282B 0.17673 2.82 27915.6 3/24/1995 LY5303 P8DRB282B 0.17673 2.82 27298.3 3/24/1995 LY5304 P8DRB282B 0.17673 2.82 27185.8 3/24/1995 LY5305 P8DRB282B 0.17673 2.82 28051.1 3/24/1995 LY5306 P8DRB282B 0.17673 2.82 28389.6 4/3/1993 LY5307 P8DRB282B 0.17673 2.82 31646.8 3/24/1995 LY5308 P8DRB282B 0.17673 2.82 28304.7 3/24/1995 LY5309 P8DRB282B 0.17673 2.82 29141.3 3/24/1995 LY5310 P8DRB282B 0.17673 2.82 28994.7 4/3/1993

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 48 of 76 LY5311 P8DRB282B 0.17673 2.82 28990.3 4/3/1993 LY5312 P8DRB282B 0.17673 2.82 29171.1 3/24/1995 LY5313 P8DRB282B 0.17673 2.82 28431.4 3/24/1995 LY5314 P8DRB282B 0.17673 2.82 31643.5 3/24/1995 LY5315 P8DRB282B 0.17673 2.82 30313.1 3/24/1995 LY5316 P8DRB282B 0.17673 2.82 32110.9 4/3/1993 LY5317 P8DRB282B 0.17673 2.82 32120.8 4/3/1993 LY5318 P8DRB282B 0.17673 2.82 30293.2 3/24/1995 LY5319 P8DRB282B 0.17673 2.82 28723.5 3/24/1995 LY5320 P8DRB282B 0.17673 2.82 30374.8 3/24/1995 LY5321 P8DRB282B 0.17673 2.82 30302 3/24/1995 LY5322 P8DRB282B 0.17673 2.82 28697.1 3/24/1995 LY5323 P8DRB282B 0.17673 2.82 26733.9 4/3/1993 LY5324 P8DRB282B 0.17673 2.82 30179.7 4/3/1993 LY5325 P8DRB282B 0.17673 2.82 30094.8 4/3/1993 LY5326 P8DRB282B 0.17673 2.82 29869.9 3/24/1995 LY5327 P8DRB282B 0.17673 2.82 30272.3 3/24/1995 LY5328 P8DRB282B 0.17673 2.82 27684.1 4/3/1993 LY5329 P8DRB282B 0.17673 2.82 27584.9 4/3/1993 LY5330 P8DRB282B 0.17673 2.82 30281.1 3/24/1995 LY5331 P8DRB282B 0.17673 2.82 29830.2 3/24/1995 LY5332 P8DRB282B 0.17673 2.82 30158.7 4/3/1993 LY5333 P8DRB282B 0.17673 2.82 30308.6 4/3/1993 LY5334 P8DRB282B 0.17673 2.82 26840.8 4/3/1993 LY5335 P8DRB282B 0.17673 2.82 31636.9 3/24/1995 LY5336 P8DRB282B 0.17673 2.82 30263.4 3/24/1995 LY5337 P8DRB282B 0.17673 2.82 26068.1 4/3/1993 LY5338 P8DRB282B 0.17673 2.82 29872.1 4/3/1993 LY5339 P8DRB282B 0.17673 2.82 29969.1 3/24/1995 LY5340 P8DRB282B 0.17673 2.82 27267.4 4/3/1993 LY5341 P8DRB282B 0.17673 2.82 27260.8 4/3/1993 LY5342 P8DRB282B 0.17673 2.82 29939.4 3/24/1995 LY5343 P8DRB282B 0.17673 2.82 29857.8 4/3/1993 LY5344 P8DRB282B 0.17673 2.82 31646.8 4/3/1993 LY5345 P8DRB282B 0.17673 2.82 30294.3 3/24/1995 LY5346 P8DRB282B 0.17673 2.82 31715.2 3/24/1995 LY5347 P8DRB282B 0.17673 2.82 28672.8 3/24/1995 LY5348 P8DRB282B 0.17673 2.82 29151.2 4/3/1993 LY5349 P8DRB282B 0.17673 2.82 29139.1 4/3/1993 LY5350 P8DRB282B 0.17673 2.82 28741.2 3/24/1995 LY5351 P8DRB282B 0.17673 2.82 28334.4 4/3/1993 LY5352 P8DRB282B 0.17673 2.82 30920.4 3/24/1995 LY5353 P8DRB282B 0.17673 2.82 30806.9 3/24/1995 LY5354 P8DRB282B 0.17673 2.82 30723.1 3/24/1995 LY5355 P8DRB282B 0.17673 2.82 30871.9 3/24/1995 LY5356 P8DRB282B 0.17673 2.82 28376.3 4/3/1993 LY5357 P8DRB282B 0.17673 2.82 30609.6 4/3/1993

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 49 of 76 LY5358 P8DRB282B 0.17673 2.82 28418.2 4/3/1993 LY5359 P8DRB282B 0.17673 2.82 26606 4/3/1993 LY5360 P8DRB282B 0.17673 2.82 26660.1 4/3/1993 LY5361 P8DRB282B 0.17673 2.82 28405 4/3/1993 LY5362 P8DRB282B 0.17673 2.82 30633.8 4/3/1993 LY5363 P8DRB282B 0.17673 2.82 29073 4/3/1993 LY5364 P8DRB282B 0.17673 2.82 29133.6 4/3/1993 LY5365 P8DRB282B 0.17673 2.82 28696 4/3/1993 LY5366 P8DRB282B 0.17673 2.82 28303.6 4/3/1993 LY5367 P8DRB282B 0.17673 2.82 28301.4 4/3/1993 LY5368 P8DRB282B 0.17673 2.82 28699.3 4/3/1993 LY5369 P8DRB282B 0.17673 2.82 29250.4 4/3/1993 LY5370 P8DRB282B 0.17673 2.82 29081.8 4/3/1993 LY5371 P8DRB282B 0.17673 2.82 28106.3 4/3/1993 LY5372 P8DRB282B 0.17673 2.82 27883.6 3/24/1995 LY5373 P8DRB282B 0.17673 2.82 27838.4 3/24/1995 LY5374 P8DRB282B 0.17673 2.82 28133.8 4/3/1993 LY5375 P8DRB282B 0.17673 2.82 28235.2 4/3/1993 LY5376 P8DRB282B 0.17673 2.82 27831.8 3/24/1995 LY5377 P8DRB282B 0.17673 2.82 27912.3 3/24/1995 LY5378 P8DRB282B 0.17673 2.82 28262.8 4/3/1993 LY5379 P8DRB282B 0.17673 2.82 29218.5 4/3/1993 LY5380 P8DRB282B 0.17673 2.82 29308.9 4/3/1993 LY5381 P8DRB282B 0.17673 2.82 28675 4/3/1993 LY5382 P8DRB282B 0.17673 2.82 28351 4/3/1993 LY5383 P8DRB282B 0.17673 2.82 28251.8 4/3/1993 LY5384 P8DRB282B 0.17673 2.82 28777.6 4/3/1993 LY5385 P8DRB282B 0.17673 2.82 29253.7 4/3/1993 LY5386 P8DRB282B 0.17673 2.82 29239.4 4/3/1993 LY5387 P8DRB282B 0.17673 2.82 30534.6 4/3/1993 LY5388 P8DRB282B 0.17673 2.82 28349.9 4/3/1993 LY5389 P8DRB282B 0.17673 2.82 26588.4 4/3/1993 LY5390 P8DRB282B 0.17673 2.82 26621.5 4/3/1993 LY5391 P8DRB282B 0.17673 2.82 28394 4/3/1993 LY5392 P8DRB282B 0.17673 2.82 30553.4 4/3/1993 LY5393 P8DRB282B 0.17673 2.82 28234.1 4/3/1993 LY5394 P8DRB282B 0.17673 2.82 30809.1 3/24/1995 LY5395 P8DRB282B 0.17673 2.82 30724.2 3/24/1995 LY5396 P8DRB282B 0.17673 2.82 30716.5 3/24/1995 LY5397 P8DRB282B 0.17673 2.82 30835.5 3/24/1995 LY5398 P8DRB282B 0.17673 2.82 28294.8 4/3/1993 LY5399 P8DRB282B 0.17673 2.82 28614.4 3/24/1995 LY5400 P8DRB282B 0.17673 2.82 29143.5 4/3/1993 LY5401 P8DRB282B 0.17673 2.82 29139.1 4/3/1993 LY5402 P8DRB282B 0.17673 2.82 28636.5 3/24/1995 LY5403 P8DRB282B 0.17673 2.82 31620.4 3/24/1995 LY5404 P8DRB282B 0.17673 2.82 30208.3 3/24/1995

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 50 of 76 LY5405 P8DRB282B 0.17673 2.82 31639.1 4/3/1993 LY5406 P8DRB282B 0.17673 2.82 30001.1 4/3/1993 LY5407 P8DRB282B 0.17673 2.82 29937.2 3/24/1995 LY5408 P8DRB282B 0.17673 2.82 27361.1 4/3/1993 LY5409 P8DRB282B 0.17673 2.82 27274 4/3/1993 LY5410 P8DRB282B 0.17673 2.82 30033.1 3/24/1995 LY5411 P8DRB282B 0.17673 2.82 29864.4 4/3/1993 LY5412 P8DRB282B 0.17673 2.82 31655.6 4/3/1993 LY5413 P8DRB282B 0.17673 2.82 30174.2 3/24/1995 LY5414 P8DRB282B 0.17673 2.82 31616 3/24/1995 LY5415 P8DRB282B 0.17673 2.82 26883.8 4/3/1993 LY5416 P8DRB282B 0.17673 2.82 30368.2 4/3/1993 LY5417 P8DRB282B 0.17673 2.82 30203.9 4/3/1993 LY5418 P8DRB282B 0.17673 2.82 29796.1 3/24/1995 LY5419 P8DRB282B 0.17673 2.82 30245.8 3/24/1995 LY5420 P8DRB282B 0.17673 2.82 27591.5 4/3/1993 LY5421 P8DRB282B 0.17673 2.82 27633.4 4/3/1993 LY5422 P8DRB282B 0.17673 2.82 30233.7 3/24/1995 LY5423 P8DRB282B 0.17673 2.82 29829.1 3/24/1995 LY5424 P8DRB282B 0.17673 2.82 30072.8 4/3/1993 LY5425 P8DRB282B 0.17673 2.82 30265.7 4/3/1993 LY5426 P8DRB282B 0.17673 2.82 26773.6 4/3/1993 LY5427 P8DRB282B 0.17673 2.82 28628.7 3/24/1995 LY5428 P8DRB282B 0.17673 2.82 30319.7 3/24/1995 LY5429 P8DRB282B 0.17673 2.82 30341.7 3/24/1995 LY5430 P8DRB282B 0.17673 2.82 28659.6 3/24/1995 LY5431 P8DRB282B 0.17673 2.82 30291 3/24/1995 LY5432 P8DRB282B 0.17673 2.82 32072.3 4/3/1993 LY5433 P8DRB282B 0.17673 2.82 32136.2 4/3/1993 LY5434 P8DRB282B 0.17673 2.82 30242.5 3/24/1995 LY5435 P8DRB282B 0.17673 2.82 31652.3 3/24/1995 LY5436 P8DRB282B 0.17673 2.82 28335.5 3/24/1995 LY5437 P8DRB282B 0.17673 2.82 29078.5 3/24/1995 LY5438 P8DRB282B 0.17673 2.82 29010.1 4/3/1993 LY5439 P8DRB282B 0.17673 2.82 28956.1 4/3/1993 LY5440 P8DRB282B 0.17673 2.82 29164.5 3/24/1995 LY5441 P8DRB282B 0.17673 2.82 28368.6 3/24/1995 LY5442 P8DRB282B 0.17673 2.82 31559.7 3/24/1995 LY5443 P8DRB282B 0.17673 2.82 28269.4 4/3/1993 LY5444 P8DRB282B 0.17673 2.82 27862.7 3/24/1995 LY5445 P8DRB282B 0.17673 2.82 27258.6 3/24/1995 LY5446 P8DRB282B 0.17673 2.82 27136.2 3/24/1995 LY5447 P8DRB282B 0.17673 2.82 27981.7 3/24/1995 LY5448 P8DRB282B 0.17673 2.82 28308 4/3/1993 LY5449 P8DRB282B 0.17673 2.82 30938.1 3/24/1995 LY5450 P8DRB282B 0.17673 2.82 27656.5 3/24/1995 LY5451 P8DRB282B 0.17673 2.82 29450 3/24/1995

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 51 of 76 LY5452 P8DRB282B 0.17673 2.82 29297.8 3/24/1995 LY5453 P8DRB282B 0.17673 2.82 27720.5 3/24/1995 LY5454 P8DRB282B 0.17673 2.82 30962.3 3/24/1995 LY7610 P8DRB282B 0.17856 2.818 30615.1 4/3/1993 LY7611 P8DRB282B 0.17856 2.818 30584.2 4/3/1993 LY7612 P8DRB282B 0.17856 2.818 30843.3 4/3/1993 LY7613 P8DRB282B 0.17856 2.818 30810.2 4/3/1993 LY7614 P8DRB282B 0.17856 2.818 29724.4 4/3/1993 LY7615 P8DRB282B 0.17856 2.818 30154.3 4/3/1993 LY7616 P8DRB282B 0.17856 2.818 28338.8 4/3/1993 LY7617 P8DRB282B 0.17856 2.818 28289.2 4/3/1993 LY7618 P8DRB282B 0.17856 2.818 30318.6 4/3/1993 LY7619 P8DRB282B 0.17856 2.818 29659.4 4/3/1993 LY7620 P8DRB282B 0.17856 2.818 30973.3 4/3/1993 LY7621 P8DRB282B 0.17856 2.818 30005.5 4/3/1993 LY7622 P8DRB282B 0.17856 2.818 30033.1 4/3/1993 LY7623 P8DRB282B 0.17856 2.818 30993.2 4/3/1993 LY7624 P8DRB282B 0.17856 2.818 28898.8 4/3/1993 LY7625 P8DRB282B 0.17856 2.818 28895.5 4/3/1993 LY7626 P8DRB282B 0.17856 2.818 28912 4/3/1993 LY7627 P8DRB282B 0.17856 2.818 28944 4/3/1993 LY7628 P8DRB282B 0.17856 2.818 30986.6 4/3/1993 LY7629 P8DRB282B 0.17856 2.818 30125.7 4/3/1993 LY7630 P8DRB282B 0.17856 2.818 30019.8 4/3/1993 LY7631 P8DRB282B 0.17856 2.818 32096.6 4/3/1993 LY7632 P8DRB282B 0.17856 2.818 29659.4 4/3/1993 LY7633 P8DRB282B 0.17856 2.818 30181.9 4/3/1993 LY7634 P8DRB282B 0.17856 2.818 28313.5 4/3/1993 LY7635 P8DRB282B 0.17856 2.818 28317.9 4/3/1993 LY7636 P8DRB282B 0.17856 2.818 30175.3 4/3/1993 LY7637 P8DRB282B 0.17856 2.818 29651.7 4/3/1993 LY7638 P8DRB282B 0.17856 2.818 30816.8 4/3/1993 LY7639 P8DRB282B 0.17856 2.818 30824.5 4/3/1993 LY7640 P8DRB282B 0.17856 2.818 30593 4/3/1993 LY7641 P8DRB282B 0.17856 2.818 30670.2 4/3/1993 LYF005 GE/7B 8X8 0.17911 3.01 35446.4 2/15/1997 LYF006 GE/7B 8X8 0.17911 3.01 34035.5 2/15/1997 LYF007 GE/7B 8X8 0.17911 3.01 32416.2 3/24/1995 LYF008 GE/7B 8X8 0.17911 3.01 34813.7 2/15/1997 LYF009 GE/7B 8X8 0.17911 3.01 35504.9 2/15/1997 LYF010 GE/7B 8X8 0.17911 3.01 32440.5 3/24/1995 LYF011 GE/7B 8X8 0.17911 3.01 34337.5 2/15/1997 LYF012 GE/7B 8X8 0.17911 3.01 35504.9 2/15/1997 LYF013 GE/7B 8X8 0.17911 3.01 29073 2/15/1997 LYF014 GE/7B 8X8 0.17911 3.01 35176.4 2/15/1997 LYF015 GE/7B 8X8 0.17911 3.01 30120.1 2/15/1997 LYF016 GE/7B 8X8 0.17911 3.01 33380.7 2/15/1997

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 52 of 76 LYF017 GE/7B 8X8 0.17911 3.01 32117.5 2/15/1997 LYF018 GE/7B 8X8 0.17911 3.01 35792.5 2/15/1997 LYF019 GE/7B 8X8 0.17911 3.01 36024 2/15/1997 LYF020 GE/7B 8X8 0.17911 3.01 33649.7 2/15/1997 LYF021 GE/7B 8X8 0.17911 3.01 33574.7 2/15/1997 LYF022 GE/7B 8X8 0.17911 3.01 37239.9 2/15/1997 LYF023 GE/7B 8X8 0.17911 3.01 34341.9 2/15/1997 LYF024 GE/7B 8X8 0.17911 3.01 32880.3 2/15/1997 LYF025 GE/7B 8X8 0.17911 3.01 33326.7 2/15/1997 LYF026 GE/7B 8X8 0.17911 3.01 33503.1 2/15/1997 LYF027 GE/7B 8X8 0.17911 3.01 33043.4 2/15/1997 LYF028 GE/7B 8X8 0.17911 3.01 34531.5 2/15/1997 LYF029 GE/7B 8X8 0.17911 3.01 33346.6 2/15/1997 LYF030 GE/7B 8X8 0.17911 3.01 35490.5 2/15/1997 LYF031 GE/7B 8X8 0.17911 3.01 35661.4 2/15/1997 LYF032 GE/7B 8X8 0.17911 3.01 31964.3 3/24/1995 LYF033 GE/7B 8X8 0.17911 3.01 33845.9 3/24/1995 LYF034 GE/7B 8X8 0.17911 3.01 33159.2 3/24/1995 LYF035 GE/7B 8X8 0.17911 3.01 33187.8 3/24/1995 LYF036 GE/7B 8X8 0.17911 3.01 33848.1 3/24/1995 LYF037 GE/7B 8X8 0.17911 3.01 31955.5 3/24/1995 LYF038 GE/7B 8X8 0.17911 3.01 35547.8 2/15/1997 LYF039 GE/7B 8X8 0.17911 3.01 36301.8 2/15/1997 LYF040 GE/7B 8X8 0.17911 3.01 34766.3 2/15/1997 LYF041 GE/7B 8X8 0.17911 3.01 34066.4 2/15/1997 LYF042 GE/7B 8X8 0.17911 3.01 34888.7 2/15/1997 LYF043 GE/7B 8X8 0.17911 3.01 34720 2/15/1997 LYF044 GE/7B 8X8 0.17911 3.01 32444.9 2/15/1997 LYF045 GE/7B 8X8 0.17911 3.01 33022.5 2/15/1997 LYF046 GE/7B 8X8 0.17911 3.01 35157.6 2/15/1997 LYF047 GE/7B 8X8 0.17911 3.01 35575.4 2/15/1997 LYF048 GE/7B 8X8 0.17911 3.01 32430.6 2/15/1997 LYF049 GE/7B 8X8 0.17911 3.01 32897.9 2/15/1997 LYF050 GE/7B 8X8 0.17911 3.01 34468.7 2/15/1997 LYF051 GE/7B 8X8 0.17911 3.01 32657.6 2/15/1997 LYF052 GE/7B 8X8 0.17911 3.01 33624.3 2/15/1997 LYF053 GE/7B 8X8 0.17911 3.01 35481.7 2/15/1997 LYF054 GE/7B 8X8 0.17911 3.01 35380.3 2/15/1997 LYF055 GE/7B 8X8 0.17911 3.01 33778.7 2/15/1997 LYF056 GE/7B 8X8 0.17911 3.01 33097.4 2/15/1997 LYF057 GE/7B 8X8 0.17911 3.01 33332.2 2/15/1997 LYF058 GE/7B 8X8 0.17911 3.01 33564.8 2/15/1997 LYF059 GE/7B 8X8 0.17911 3.01 35403.4 2/15/1997 LYF060 GE/7B 8X8 0.17911 3.01 33435.8 2/15/1997 LYF061 GE/7B 8X8 0.17911 3.01 34120.4 2/15/1997 LYF062 GE/7B 8X8 0.17911 3.01 34026.7 3/24/1995 LYF063 GE/7B 8X8 0.17911 3.01 33973.8 3/24/1995

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 53 of 76 LYF064 GE/7B 8X8 0.17911 3.01 34056.4 3/24/1995 LYF065 GE/7B 8X8 0.17911 3.01 34044.3 3/24/1995 LYF066 GE/7B 8X8 0.17911 3.01 33828.3 2/15/1997 LYF067 GE/7B 8X8 0.17911 3.01 34123.7 2/15/1997 LYF068 GE/7B 8X8 0.17911 3.01 36167.3 2/15/1997 LYF069 GE/7B 8X8 0.17911 3.01 33640.9 2/15/1997 LYF070 GE/7B 8X8 0.17911 3.01 32203.5 2/15/1997 LYF071 GE/7B 8X8 0.17911 3.01 33744.5 3/24/1995 LYF072 GE/7B 8X8 0.17911 3.01 31802.2 3/24/1995 LYF073 GE/7B 8X8 0.17911 3.01 31769.2 3/24/1995 LYF074 GE/7B 8X8 0.17911 3.01 33719.1 3/24/1995 LYF075 GE/7B 8X8 0.17911 3.01 32457 2/15/1997 LYF076 GE/7B 8X8 0.17911 3.01 33025.8 2/15/1997 LYF077 GE/7B 8X8 0.17911 3.01 35719.8 2/15/1997 LYF078 GE/7B 8X8 0.17911 3.01 33660.7 3/24/1995 LYF079 GE/7B 8X8 0.17911 3.01 35350.5 2/15/1997 LYF080 GE/7B 8X8 0.17911 3.01 32455.9 3/24/1995 LYF081 GE/7B 8X8 0.17911 3.01 35720.9 2/15/1997 LYF082 GE/7B 8X8 0.17911 3.01 31783.5 3/24/1995 LYF083 GE/7B 8X8 0.17911 3.01 32476.9 3/24/1995 LYF084 GE/7B 8X8 0.17911 3.01 32487.9 3/24/1995 LYF085 GE/7B 8X8 0.17911 3.01 31776.9 3/24/1995 LYF086 GE/7B 8X8 0.17911 3.01 34993.4 2/15/1997 LYF087 GE/7B 8X8 0.17911 3.01 32479.1 3/24/1995 LYF088 GE/7B 8X8 0.17911 3.01 35589.7 2/15/1997 LYF089 GE/7B 8X8 0.17911 3.01 33635.4 3/24/1995 LYF090 GE/7B 8X8 0.17911 3.01 36390 2/15/1997 LYF091 GE/7B 8X8 0.17911 3.01 37939.8 2/15/1997 LYF092 GE/7B 8X8 0.17911 3.01 33390.7 3/24/1995 LYF093 GE/7B 8X8 0.17911 3.01 33388.4 3/24/1995 LYF094 GE/7B 8X8 0.17911 3.01 36891.5 2/15/1997 LYF095 GE/7B 8X8 0.17911 3.01 35767.2 2/15/1997 LYF096 GE/7B 8X8 0.17911 3.01 35760.6 2/15/1997 LYF097 GE/7B 8X8 0.17911 3.01 36268.7 2/15/1997 LYF098 GE/7B 8X8 0.17911 3.01 33422.6 3/24/1995 LYF099 GE/7B 8X8 0.17911 3.01 33370.8 3/24/1995 LYF100 GE/7B 8X8 0.17911 3.01 36353.6 2/15/1997 LYF101 GE/7B 8X8 0.17911 3.01 35545.6 2/15/1997 LYF102 GE/7B 8X8 0.17911 3.01 33628.7 3/24/1995 LYF103 GE/7B 8X8 0.17911 3.01 35897.3 2/15/1997 LYF104 GE/7B 8X8 0.17911 3.01 32453.7 3/24/1995 LYF105 GE/7B 8X8 0.17911 3.01 34722.2 2/15/1997 LYF106 GE/7B 8X8 0.17911 3.01 31778 3/24/1995 LYF107 GE/7B 8X8 0.17911 3.01 32516.5 3/24/1995 LYF108 GE/7B 8X8 0.17911 3.01 32484.6 3/24/1995 LYF109 GE/7B 8X8 0.17911 3.01 31819.9 3/24/1995 LYF110 GE/7B 8X8 0.17911 3.01 34744.3 2/15/1997

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 54 of 76 LYF111 GE/7B 8X8 0.17911 3.01 32469.1 3/24/1995 LYF112 GE/7B 8X8 0.17911 3.01 35394.6 2/15/1997 LYF113 GE/7B 8X8 0.17911 3.01 33628.7 3/24/1995 LYF114 GE/7B 8X8 0.17911 3.01 36312.8 2/15/1997 LYF115 GE/7B 8X8 0.17911 3.01 32776.7 2/15/1997 LYF116 GE/7B 8X8 0.17911 3.01 32771.2 2/15/1997 LYF117 GE/7B 8X8 0.17911 3.01 33721.3 3/24/1995 LYF118 GE/7B 8X8 0.17911 3.01 31768.1 3/24/1995 LYF119 GE/7B 8X8 0.17911 3.01 31764.8 3/24/1995 LYF120 GE/7B 8X8 0.17911 3.01 33677.2 3/24/1995 LYF121 GE/7B 8X8 0.17911 3.01 33460.1 2/15/1997 LYF122 GE/7B 8X8 0.17911 3.01 32780 2/15/1997 LYF123 GE/7B 8X8 0.17911 3.01 35531.3 2/15/1997 LYF124 GE/7B 8X8 0.17911 3.01 34174.4 2/15/1997 LYF125 GE/7B 8X8 0.17911 3.01 35481.7 2/15/1997 LYF126 GE/7B 8X8 0.17911 3.01 34044.3 3/24/1995 LYF127 GE/7B 8X8 0.17911 3.01 34020.1 3/24/1995 LYF128 GE/7B 8X8 0.17911 3.01 34027.8 3/24/1995 LYF129 GE/7B 8X8 0.17911 3.01 34073 3/24/1995 LYF130 GE/7B 8X8 0.17911 3.01 33958.3 2/15/1997 LYF131 GE/7B 8X8 0.17911 3.01 34584.4 2/15/1997 LYF132 GE/7B 8X8 0.17911 3.01 36876.1 2/15/1997 LYF133 GE/7B 8X8 0.17911 3.01 34221.8 2/15/1997 LYF134 GE/7B 8X8 0.17911 3.01 33263.9 2/15/1997 LYF135 GE/7B 8X8 0.17911 3.01 34458.8 2/15/1997 LYF136 GE/7B 8X8 0.17911 3.01 33662.9 2/15/1997 LYF137 GE/7B 8X8 0.17911 3.01 35929.2 2/15/1997 LYF138 GE/7B 8X8 0.17911 3.01 35164.2 2/15/1997 LYF139 GE/7B 8X8 0.17911 3.01 34075.2 2/15/1997 LYF140 GE/7B 8X8 0.17911 3.01 36024 2/15/1997 LYF141 GE/7B 8X8 0.17911 3.01 30109.1 2/15/1997 LYF142 GE/7B 8X8 0.17911 3.01 33675 2/15/1997 LYF143 GE/7B 8X8 0.17911 3.01 32699.5 2/15/1997 LYF144 GE/7B 8X8 0.17911 3.01 35261.2 2/15/1997 LYF145 GE/7B 8X8 0.17911 3.01 37408.5 2/15/1997 LYF146 GE/7B 8X8 0.17911 3.01 32215.6 2/15/1997 LYF147 GE/7B 8X8 0.17911 3.01 33400.6 2/15/1997 LYF148 GE/7B 8X8 0.17911 3.01 35982.1 2/15/1997 LYF149 GE/7B 8X8 0.17911 3.01 32353.4 2/15/1997 LYF150 GE/7B 8X8 0.17911 3.01 33552.7 2/15/1997 LYF151 GE/7B 8X8 0.17911 3.01 36845.2 2/15/1997 LYF152 GE/7B 8X8 0.17911 3.01 35728.6 2/15/1997 LYF153 GE/7B 8X8 0.17911 3.01 35739.6 2/15/1997 LYF154 GE/7B 8X8 0.17911 3.01 31985.2 3/24/1995 LYF155 GE/7B 8X8 0.17911 3.01 33836 3/24/1995 LYF156 GE/7B 8X8 0.17911 3.01 33159.2 3/24/1995 LYF157 GE/7B 8X8 0.17911 3.01 33157 3/24/1995

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 55 of 76 LYF158 GE/7B 8X8 0.17911 3.01 33827.2 3/24/1995 LYF159 GE/7B 8X8 0.17911 3.01 31946.6 3/24/1995 LYF160 GE/7B 8X8 0.17911 3.01 35341.7 2/15/1997 LYF161 GE/7B 8X8 0.17911 3.01 35579.8 2/15/1997 LYF162 GE/7B 8X8 0.17911 3.01 32837.3 2/15/1997 LYF163 GE/7B 8X8 0.17911 3.01 34734.3 2/15/1997 LYF164 GE/7B 8X8 0.17911 3.01 33629.9 2/15/1997 LYF165 GE/7B 8X8 0.17911 3.01 33496.5 2/15/1997 LYF166 GE/7B 8X8 0.17911 3.01 34399.3 2/15/1997 LYF167 GE/7B 8X8 0.17911 3.01 33558.2 2/15/1997 LYF168 GE/7B 8X8 0.17911 3.01 35108 2/15/1997 LYF169 GE/7B 8X8 0.17911 3.01 32948.6 2/15/1997 LYF170 GE/7B 8X8 0.17911 3.01 34025.6 2/15/1997 LYF171 GE/7B 8X8 0.17911 3.01 32958.6 2/15/1997 LYF172 GE/7B 8X8 0.17911 3.01 36367.9 2/15/1997 LYF173 GE/7B 8X8 0.17911 3.01 35927 2/15/1997 LYF174 GE/7B 8X8 0.17911 3.01 33623.2 2/15/1997 LYF175 GE/7B 8X8 0.17911 3.01 34265.9 2/15/1997 LYF176 GE/7B 8X8 0.17911 3.01 32482.4 2/15/1997 LYF177 GE/7B 8X8 0.17911 3.01 34683.6 2/15/1997 LYF178 GE/7B 8X8 0.17911 3.01 35647 2/15/1997 LYF179 GE/7B 8X8 0.17911 3.01 36953.3 2/15/1997 LYF180 GE/7B 8X8 0.17911 3.01 34918.4 2/15/1997 LYF181 GE/7B 8X8 0.17911 3.01 32388.7 3/24/1995 LYF182 GE/7B 8X8 0.17911 3.01 35987.7 2/15/1997 LYF183 GE/7B 8X8 0.17911 3.01 12081.1 4/29/1991 LYF184 GE/7B 8X8 0.17911 3.01 32451.5 3/24/1995 LYF185 GE/7B 8X8 0.17911 3.01 35262.3 2/15/1997 LYF186 GE/7B 8X8 0.17911 3.01 36028.4 2/15/1997 LYF187 GE/7B 8X8 0.17911 3.01 34199.7 2/15/1997 LYF188 GE/7B 8X8 0.17911 3.01 34724.4 2/15/1997 LYF189 GE/7B 8X8 0.17911 3.01 30560 2/15/1997 LYF190 GE/7B 8X8 0.17911 3.01 35009.9 2/15/1997 LYF191 GE/7B 8X8 0.17911 3.01 34358.5 2/15/1997 LYF192 GE/7B 8X8 0.17911 3.01 34308.9 2/15/1997 LYF193 GE/7B 8X8 0.17911 3.01 33553.8 3/24/1995 LYF194 GE/7B 8X8 0.17911 3.01 33563.7 3/24/1995 LYF195 GE/7B 8X8 0.17911 3.01 33601.2 3/24/1995 LYF196 GE/7B 8X8 0.17911 3.01 33572.5 3/24/1995 LYZ001 GE/8 8X8 0.17218 3.22 35912.7 5/8/1999 LYZ002 GE/8 8X8 0.17218 3.22 35962.3 5/8/1999 LYZ003 GE/8 8X8 0.17218 3.22 35971.1 5/8/1999 LYZ004 GE/8 8X8 0.17218 3.22 35328.5 5/8/1999 LYZ005 GE/8 8X8 0.17218 3.22 38399.5 5/8/1999 LYZ006 GE/8 8X8 0.17218 3.22 38394 5/8/1999 LYZ007 GE/8 8X8 0.17218 3.22 38435.8 5/8/1999 LYZ008 GE/8 8X8 0.17218 3.22 38191.1 5/8/1999

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 56 of 76 LYZ009 GE/8 8X8 0.17218 3.22 37667.5 5/8/1999 LYZ010 GE/8 8X8 0.17218 3.22 42274 5/8/1999 LYZ011 GE/8 8X8 0.17218 3.22 39989 5/8/1999 LYZ012 GE/8 8X8 0.17218 3.22 42103.2 5/8/1999 LYZ013 GE/8 8X8 0.17218 3.22 36727.3 5/8/1999 LYZ014 GE/8 8X8 0.17218 3.22 35848.8 5/8/1999 LYZ015 GE/8 8X8 0.17218 3.22 36791.2 5/8/1999 LYZ016 GE/8 8X8 0.17218 3.22 36558.6 5/8/1999 LYZ017 GE/8 8X8 0.17218 3.22 36034 2/15/1997 LYZ018 GE/8 8X8 0.17218 3.22 37405.2 2/15/1997 LYZ019 GE/8 8X8 0.17218 3.22 36280.9 2/15/1997 LYZ020 GE/8 8X8 0.17218 3.22 36025.1 2/15/1997 LYZ021 GE/8 8X8 0.17218 3.22 42672 5/8/1999 LYZ022 GE/8 8X8 0.17218 3.22 38321.2 5/8/1999 LYZ023 GE/8 8X8 0.17218 3.22 42755.7 5/8/1999 LYZ024 GE/8 8X8 0.17218 3.22 42576.1 5/8/1999 LYZ025 GE/8 8X8 0.17218 3.22 37910.1 5/8/1999 LYZ026 GE/8 8X8 0.17218 3.22 37934.3 5/8/1999 LYZ027 GE/8 8X8 0.17218 3.22 37846.1 5/8/1999 LYZ028 GE/8 8X8 0.17218 3.22 37810.8 5/8/1999 LYZ029 GE/8 8X8 0.17218 3.22 34448.9 2/15/1997 LYZ030 GE/8 8X8 0.17218 3.22 35903.9 2/15/1997 LYZ031 GE/8 8X8 0.17218 3.22 34581.1 2/15/1997 LYZ032 GE/8 8X8 0.17218 3.22 34647.3 2/15/1997 LYZ033 GE/8 8X8 0.17218 3.22 36666.7 5/8/1999 LYZ034 GE/8 8X8 0.17218 3.22 37726 5/8/1999 LYZ035 GE/8 8X8 0.17218 3.22 37740.3 5/8/1999 LYZ036 GE/8 8X8 0.17218 3.22 36598.3 5/8/1999 LYZ037 GE/8 8X8 0.17218 3.22 38930.8 2/15/1997 LYZ038 GE/8 8X8 0.17218 3.22 32400.8 2/15/1997 LYZ039 GE/8 8X8 0.17218 3.22 37942 2/15/1997 LYZ040 GE/8 8X8 0.17218 3.22 38724.6 2/15/1997 LYZ041 GE/8 8X8 0.17218 3.22 36392.2 2/15/1997 LYZ042 GE/8 8X8 0.17218 3.22 37885.8 2/15/1997 LYZ043 GE/8 8X8 0.17218 3.22 36550.9 2/15/1997 LYZ044 GE/8 8X8 0.17218 3.22 36310.6 2/15/1997 LYZ045 GE/8 8X8 0.17218 3.22 37798.7 5/8/1999 LYZ046 GE/8 8X8 0.17218 3.22 37637.8 5/8/1999 LYZ047 GE/8 8X8 0.17218 3.22 37696.2 5/8/1999 LYZ048 GE/8 8X8 0.17218 3.22 37647.7 5/8/1999 LYZ049 GE/8 8X8 0.17218 3.22 36521.2 5/8/1999 LYZ050 GE/8 8X8 0.17218 3.22 38514.1 5/8/1999 LYZ051 GE/8 8X8 0.17218 3.22 38457.9 5/8/1999 LYZ052 GE/8 8X8 0.17218 3.22 35359.3 5/8/1999 LYZ053 GE/8 8X8 0.17218 3.22 34601 5/8/1999 LYZ054 GE/8 8X8 0.17218 3.22 34926.1 5/8/1999 LYZ055 GE/8 8X8 0.17218 3.22 34868.8 5/8/1999

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 57 of 76 LYZ056 GE/8 8X8 0.17218 3.22 34156.7 5/8/1999 LYZ057 GE/8 8X8 0.17218 3.22 39116 5/8/1999 LYZ058 GE/8 8X8 0.17218 3.22 36838.6 5/8/1999 LYZ059 GE/8 8X8 0.17218 3.22 36856.3 5/8/1999 LYZ060 GE/8 8X8 0.17218 3.22 36782.4 5/8/1999 LYZ061 GE/8 8X8 0.17218 3.22 40261.2 2/15/1997 LYZ062 GE/8 8X8 0.17218 3.22 30475.1 2/15/1997 LYZ063 GE/8 8X8 0.17218 3.22 39237.2 2/15/1997 LYZ064 GE/8 8X8 0.17218 3.22 39142.4 2/15/1997 LYZ065 GE/8 8X8 0.17218 3.22 35351.6 2/15/1997 LYZ066 GE/8 8X8 0.17218 3.22 36485.9 2/15/1997 LYZ067 GE/8 8X8 0.17218 3.22 35432.1 2/15/1997 LYZ068 GE/8 8X8 0.17218 3.22 35383.6 2/15/1997 LYZ069 GE/8 8X8 0.17218 3.22 37256.4 5/8/1999 LYZ070 GE/8 8X8 0.17218 3.22 34120.4 5/8/1999 LYZ071 GE/8 8X8 0.17218 3.22 34131.4 5/8/1999 LYZ072 GE/8 8X8 0.17218 3.22 37281.7 5/8/1999 LYZ073 GE/8 8X8 0.17218 3.22 39433.4 5/8/1999 LYZ074 GE/8 8X8 0.17218 3.22 39391.5 5/8/1999 LYZ075 GE/8 8X8 0.17218 3.22 39397 5/8/1999 LYZ076 GE/8 8X8 0.17218 3.22 39368.4 5/8/1999 LYZ077 GE/8 8X8 0.17218 3.22 37186.9 2/15/1997 LYZ078 GE/8 8X8 0.17218 3.22 34759.7 2/15/1997 LYZ079 GE/8 8X8 0.17218 3.22 35378.1 2/15/1997 LYZ080 GE/8 8X8 0.17218 3.22 34393.7 2/15/1997 LYZ081 GE/8 8X8 0.17218 3.22 36697.5 5/8/1999 LYZ082 GE/8 8X8 0.17218 3.22 37720.5 5/8/1999 LYZ083 GE/8 8X8 0.17218 3.22 37112 5/8/1999 LYZ084 GE/8 8X8 0.17218 3.22 36787.9 5/8/1999 LYZ085 GE/8 8X8 0.17218 3.22 35725.3 2/15/1997 LYZ086 GE/8 8X8 0.17218 3.22 36371.3 2/15/1997 LYZ087 GE/8 8X8 0.17218 3.22 36595 2/15/1997 LYZ088 GE/8 8X8 0.17218 3.22 37487.9 2/15/1997 LYZ089 GE/8 8X8 0.17218 3.22 38505.3 5/8/1999 LYZ090 GE/8 8X8 0.17218 3.22 38979.3 5/8/1999 LYZ091 GE/8 8X8 0.17218 3.22 39009 5/8/1999 LYZ092 GE/8 8X8 0.17218 3.22 38452.4 5/8/1999 LYZ093 GE/8 8X8 0.17218 3.22 28187.8 2/15/1997 LYZ094 GE/8 8X8 0.17218 3.22 38958.3 2/15/1997 LYZ095 GE/8 8X8 0.17218 3.22 38762.1 2/15/1997 LYZ096 GE/8 8X8 0.17218 3.22 38082 2/15/1997 LYZ097 GE/8 8X8 0.17218 3.22 35902.8 2/15/1997 LYZ098 GE/8 8X8 0.17218 3.22 38968.3 2/15/1997 LYZ099 GE/8 8X8 0.17218 3.22 36315 2/15/1997 LYZ100 GE/8 8X8 0.17218 3.22 38172.4 2/15/1997 LYZ101 GE/8 8X8 0.17218 3.22 34990.1 5/8/1999 LYZ102 GE/8 8X8 0.17218 3.22 34904.1 5/8/1999

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 58 of 76 LYZ103 GE/8 8X8 0.17218 3.22 34985.7 5/8/1999 LYZ104 GE/8 8X8 0.17218 3.22 35071.6 5/8/1999 LYZ105 GE/8 8X8 0.17218 3.22 37959.7 5/8/1999 LYZ106 GE/8 8X8 0.17218 3.22 38195.5 5/8/1999 LYZ107 GE/8 8X8 0.17218 3.22 38177.9 5/8/1999 LYZ108 GE/8 8X8 0.17218 3.22 36789 5/8/1999 LYZ109 GE/8 8X8 0.17218 3.22 39677 2/15/1997 LYZ110 GE/8 8X8 0.17218 3.22 38999.1 2/15/1997 LYZ111 GE/8 8X8 0.17218 3.22 38662.9 2/15/1997 LYZ112 GE/8 8X8 0.17218 3.22 38629.9 2/15/1997 LYZ113 GE/8 8X8 0.17218 3.22 36375.7 5/8/1999 LYZ114 GE/8 8X8 0.17218 3.22 34997.8 5/8/1999 LYZ115 GE/8 8X8 0.17218 3.22 36776.9 5/8/1999 LYZ116 GE/8 8X8 0.17218 3.22 36524.5 5/8/1999 LYZ117 GE/8 8X8 0.17218 3.22 35751.8 2/15/1997 LYZ118 GE/8 8X8 0.17218 3.22 35832.2 2/15/1997 LYZ119 GE/8 8X8 0.17218 3.22 35737.4 2/15/1997 LYZ120 GE/8 8X8 0.17218 3.22 36941.1 2/15/1997 LYZ121 GE/8 8X8 0.17218 3.22 38701.5 2/15/1997 LYZ122 GE/8 8X8 0.17218 3.22 36720.7 2/15/1997 LYZ123 GE/8 8X8 0.17218 3.22 29183.2 2/15/1997 LYZ124 GE/8 8X8 0.17218 3.22 38773.1 2/15/1997 LYZ125 GE/8 8X8 0.17218 3.22 37397.5 5/8/1999 LYZ126 GE/8 8X8 0.17218 3.22 41022.9 5/8/1999 LYZ127 GE/8 8X8 0.17218 3.22 36409.8 5/8/1999 LYZ128 GE/8 8X8 0.17218 3.22 37425 5/8/1999 LYZ129 GE/8 8X8 0.17218 3.22 35857.6 5/8/1999 LYZ130 GE/8 8X8 0.17218 3.22 35851 5/8/1999 LYZ131 GE/8 8X8 0.17218 3.22 34878.7 5/8/1999 LYZ132 GE/8 8X8 0.17218 3.22 35973.3 5/8/1999 LYZ133 GE/8 8X8 0.17218 3.22 35003.3 2/15/1997 LYZ134 GE/8 8X8 0.17218 3.22 35951.3 2/15/1997 LYZ135 GE/8 8X8 0.17218 3.22 37786.6 2/15/1997 LYZ136 GE/8 8X8 0.17218 3.22 36604.9 2/15/1997 LYZ137 GE/8 8X8 0.17218 3.22 37498.9 2/15/1997 LYZ138 GE/8 8X8 0.17218 3.22 38041.2 2/15/1997 LYZ139 GE/8 8X8 0.17218 3.22 38964.9 2/15/1997 LYZ140 GE/8 8X8 0.17218 3.22 37743.6 2/15/1997 LYZ141 GE/8 8X8 0.17218 3.22 35380.3 5/8/1999 LYZ142 GE/8 8X8 0.17218 3.22 35253.5 5/8/1999 LYZ143 GE/8 8X8 0.17218 3.22 35239.2 5/8/1999 LYZ144 GE/8 8X8 0.17218 3.22 35348.3 5/8/1999 LYZ145 GE/8 8X8 0.17218 3.22 39036.6 2/15/1997 LYZ146 GE/8 8X8 0.17218 3.22 29099.4 2/15/1997 LYZ147 GE/8 8X8 0.17218 3.22 40172 2/15/1997 LYZ148 GE/8 8X8 0.17218 3.22 40239.2 2/15/1997 LYZ149 GE/8 8X8 0.17218 3.22 36805.6 2/15/1997

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 59 of 76 LYZ150 GE/8 8X8 0.17218 3.22 39163.4 2/15/1997 LYZ151 GE/8 8X8 0.17218 3.22 37975.1 2/15/1997 LYZ152 GE/8 8X8 0.17218 3.22 36772.5 2/15/1997 LYZ153 GE/8 8X8 0.17218 3.22 37785.5 5/8/1999 LYZ154 GE/8 8X8 0.17218 3.22 37748 5/8/1999 LYZ155 GE/8 8X8 0.17218 3.22 37733.7 5/8/1999 LYZ156 GE/8 8X8 0.17218 3.22 37771.2 5/8/1999 LYZ157 GE/8 8X8 0.17218 3.22 35779.3 5/8/1999 LYZ158 GE/8 8X8 0.17218 3.22 35934.7 5/8/1999 LYZ159 GE/8 8X8 0.17218 3.22 36642.4 5/8/1999 LYZ160 GE/8 8X8 0.17218 3.22 35815.7 5/8/1999 LYZ161 GE/8 8X8 0.17218 3.22 36558.6 2/15/1997 LYZ162 GE/8 8X8 0.17218 3.22 36663.4 2/15/1997 LYZ163 GE/8 8X8 0.17218 3.22 36787.9 2/15/1997 LYZ164 GE/8 8X8 0.17218 3.22 35978.8 2/15/1997 LYZ165 GE/8 8X8 0.17218 3.22 36942.2 5/8/1999 LYZ166 GE/8 8X8 0.17218 3.22 38710.3 5/8/1999 LYZ167 GE/8 8X8 0.17218 3.22 37092.2 5/8/1999 LYZ168 GE/8 8X8 0.17218 3.22 36905.9 5/8/1999 YJ0793 GE/7B 8X8 0.17911 3.01 34841.3 2/15/1997 YJ4950 GE/10 8X8 0.17155 3.53 42030.4 5/8/1999 YJ4951 GE/10 8X8 0.17161 3.529 41111.1 4/21/2001 YJ4952 GE/10 8X8 0.17158 3.531 44935 4/21/2001 YJ4953 GE/10 8X8 0.17158 3.529 41503.5 5/8/1999 YJ4954 GE/10 8X8 0.17162 3.528 41607.1 5/8/1999 YJ4955 GE/10 8X8 0.17159 3.53 45086 4/21/2001 YJ4956 GE/10 8X8 0.17164 3.53 41248.9 4/21/2001 YJ4957 GE/10 8X8 0.17162 3.529 41773.6 5/8/1999 YJ4958 GE/10 8X8 0.17159 3.534 38402.8 4/21/2001 YJ4959 GE/10 8X8 0.17156 3.534 41279.8 5/8/1999 YJ4960 GE/10 8X8 0.17155 3.535 42955.2 5/8/1999 YJ4961 GE/10 8X8 0.17714 3.537 38421.5 4/21/2001 YJ4962 GE/10 8X8 0.17161 3.541 41306.2 4/21/2001 YJ4963 GE/10 8X8 0.17158 3.542 42633.4 5/8/1999 YJ4964 GE/10 8X8 0.17147 3.536 42653.2 5/8/1999 YJ4965 GE/10 8X8 0.17163 3.537 40755.1 4/21/2001 YJ4966 GE/10 8X8 0.17156 3.534 36985.2 4/21/2001 YJ4967 GE/10 8X8 0.17155 3.535 42152.8 5/8/1999 YJ4968 GE/10 8X8 0.17161 3.534 41843 5/8/1999 YJ4969 GE/10 8X8 0.17162 3.537 41479.3 4/21/2001 YJ4970 GE/10 8X8 0.17168 3.534 41584 4/21/2001 YJ4971 GE/10 8X8 0.17157 3.539 42109.8 5/8/1999 YJ4972 GE/10 8X8 0.17165 3.536 42388.7 5/8/1999 YJ4973 GE/10 8X8 0.17164 3.535 38844.8 4/21/2001 YJ4974 GE/10 8X8 0.17164 3.534 42373.2 5/8/1999 YJ4975 GE/10 8X8 0.17169 3.529 40165.3 4/21/2001 YJ4976 GE/10 8X8 0.1717 3.529 43381.8 4/21/2001

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 60 of 76 YJ4977 GE/10 8X8 0.17171 3.529 44201.9 4/21/2001 YJ4978 GE/10 8X8 0.17175 3.531 41952.2 5/8/1999 YJ4979 GE/10 8X8 0.17166 3.53 42186.9 5/8/1999 YJ4980 GE/10 8X8 0.17172 3.532 44248.2 4/21/2001 YJ4981 GE/10 8X8 0.17172 3.53 41732.8 4/21/2001 YJ4982 GE/10 8X8 0.17168 3.533 41103.4 5/8/1999 YJ4983 GE/10 8X8 0.17161 3.536 42394.2 5/8/1999 YJ4984 GE/10 8X8 0.17164 3.535 43171.3 4/21/2001 YJ4985 GE/10 8X8 0.17164 3.531 42761.2 4/21/2001 YJ4986 GE/10 8X8 0.17165 3.53 42328 5/8/1999 YJ4987 GE/10 8X8 0.17164 3.534 42281.7 5/8/1999 YJ4988 GE/10 8X8 0.17177 3.534 43485.4 4/21/2001 YJ4989 GE/10 8X8 0.17165 3.533 39147.9 4/21/2001 YJ4990 GE/10 8X8 0.17165 3.532 42205.7 5/8/1999 YJ4991 GE/10 8X8 0.17166 3.53 42081.1 5/8/1999 YJ4992 GE/10 8X8 0.17166 3.531 42107.6 5/8/1999 YJ4993 GE/10 8X8 0.17164 3.532 42225.5 5/8/1999 YJ4994 GE/10 8X8 0.17164 3.53 44911.8 4/21/2001 YJ4995 GE/10 8X8 0.17169 3.532 42635.6 4/21/2001 YJ4996 GE/10 8X8 0.17164 3.529 42970.7 4/21/2001 YJ4997 GE/10 8X8 0.17173 3.529 42083.3 4/21/2001 YJ4998 GE/10 8X8 0.17187 3.532 41855.2 5/8/1999 YJ4999 GE/10 8X8 0.1719 3.531 45102.5 4/21/2001 YJ5000 GE/10 8X8 0.17178 3.532 44430.1 4/21/2001 YJ5001 GE/10 8X8 0.17118 3.533 42637.8 5/8/1999 YJ5002 GE/10 8X8 0.17188 3.535 43076.5 4/21/2001 YJ5003 GE/10 8X8 0.1718 3.533 44973.5 4/21/2001 YJ5004 GE/10 8X8 0.17173 3.533 42160.5 5/8/1999 YJ5005 GE/10 8X8 0.17172 3.532 42339.1 5/8/1999 YJ5006 GE/10 8X8 0.17172 3.531 41621.5 5/8/1999 YJ5007 GE/10 8X8 0.17174 3.531 44986.8 4/21/2001 YJ5008 GE/10 8X8 0.17166 3.534 40517 4/21/2001 YJ5009 GE/10 8X8 0.17172 3.529 42726 5/8/1999 YJ5010 GE/10 8X8 0.1717 3.533 42064.6 5/8/1999 YJ5011 GE/10 8X8 0.17159 3.529 42662 4/21/2001 YJ5012 GE/10 8X8 0.17161 3.532 41953.3 4/21/2001 YJ5013 GE/10 8X8 0.17177 3.531 44941.6 4/21/2001 YJ5014 GE/10 8X8 0.17158 3.53 42832.9 4/21/2001 YJ5015 GE/10 8X8 0.17157 3.531 41573 5/8/1999 YJ5016 GE/10 8X8 0.17155 3.529 42375.4 5/8/1999 YJ5017 GE/10 8X8 0.17156 3.528 41525.6 4/21/2001 YJ5018 GE/10 8X8 0.1714 3.528 42129.6 5/8/1999 YJ5019 GE/10 8X8 0.17162 3.529 42950.8 4/21/2001 YJ5020 GE/10 8X8 0.17156 3.529 43435.8 4/21/2001 YJ5021 GE/10 8X8 0.17167 3.54 41659 5/8/1999 YJ5022 GE/10 8X8 0.17154 3.54 42489 5/8/1999 YJ5023 GE/10 8X8 0.17157 3.545 41448.4 4/21/2001

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 61 of 76 YJ5024 GE/10 8X8 0.17162 3.544 42140.7 5/8/1999 YJ5025 GE/10 8X8 0.17161 3.541 43655.2 4/21/2001 YJ5026 GE/10 8X8 0.1716 3.541 44893.1 4/21/2001 YJ5027 GE/10 8X8 0.01716 3.541 42432.8 5/8/1999 YJ5028 GE/10 8X8 0.17167 3.54 41661.2 5/8/1999 YJ5029 GE/10 8X8 0.17167 3.539 44894.2 4/21/2001 YJ5030 GE/10 8X8 0.17163 3.537 41229.1 4/21/2001 YJ5031 GE/10 8X8 0.17165 3.535 42738.1 5/8/1999 YJ5032 GE/10 8X8 0.17162 3.539 42093.3 5/8/1999 YJ5033 GE/10 8X8 0.17161 3.535 42458.1 4/21/2001 YJ5034 GE/10 8X8 0.17167 3.536 44243.8 4/21/2001 YJ5035 GE/10 8X8 0.17165 3.536 44917.3 4/21/2001 YJ5036 GE/10 8X8 0.17169 3.536 45008.8 4/21/2001 YJ5037 GE/10 8X8 0.17143 3.529 42722.7 4/21/2001 YJ5038 GE/10 8X8 0.17141 3.533 43057.8 4/21/2001 YJ5039 GE/10 8X8 0.17144 3.531 42172.6 4/21/2001 YJ5040 GE/10 8X8 0.17142 3.533 45054 4/21/2001 YJ5041 GE/10 8X8 0.17143 3.532 41933.4 5/8/1999 YJ5042 GE/10 8X8 0.17146 3.529 44488.5 4/21/2001 YJ5043 GE/10 8X8 0.17135 3.53 42802 5/8/1999 YJ5044 GE/10 8X8 0.17137 3.531 43188.9 4/21/2001 YJ5045 GE/10 8X8 0.17153 3.533 45066.1 4/21/2001 YJ5046 GE/10 8X8 0.17149 3.531 42221.1 5/8/1999 YJ5047 GE/10 8X8 0.17157 3.531 41902.6 5/8/1999 YJ5048 GE/10 8X8 0.17155 3.532 42099.9 5/8/1999 YJ5049 GE/10 8X8 0.17156 3.535 42201.3 5/8/1999 YJ5050 GE/10 8X8 0.17157 3.534 43181.2 4/21/2001 YJ5051 GE/10 8X8 0.17161 3.533 44701.3 4/21/2001 YJ5052 GE/10 8X8 0.17159 3.532 42218.9 5/8/1999 YJ5053 GE/10 8X8 0.17145 3.534 42248.7 5/8/1999 YJ5054 GE/10 8X8 0.17151 3.535 43514.1 4/21/2001 YJ5055 GE/10 8X8 0.17151 3.534 43650.8 4/21/2001 YJ5056 GE/10 8X8 0.1716 3.537 42332.5 5/8/1999 YJ5057 GE/10 8X8 0.1716 3.537 40131.2 4/21/2001 YJ5058 GE/10 8X8 0.17142 3.535 41750.4 4/21/2001 YJ5059 GE/10 8X8 0.17151 3.526 44305.6 4/21/2001 YJ5060 GE/10 8X8 0.17167 3.528 41311.7 5/8/1999 YJ5061 GE/10 8X8 0.17152 3.522 42116.4 5/8/1999 YJ5062 GE/10 8X8 0.17152 3.527 44295.6 4/21/2001 YJ5063 GE/10 8X8 0.17139 3.527 42851.6 4/21/2001 YJ5064 GE/10 8X8 0.17159 3.527 41553.1 4/21/2001 YJ5065 GE/10 8X8 0.17152 3.525 42417.3 5/8/1999 YJ5066 GE/10 8X8 0.17151 3.526 36829.8 4/21/2001 YJ5067 GE/10 8X8 0.17157 3.534 42135.1 5/8/1999 YJ5068 GE/10 8X8 0.17137 3.53 42035.9 5/8/1999 YJ5069 GE/10 8X8 0.17138 3.528 40168.7 4/21/2001 YJ5070 GE/10 8X8 0.17146 3.53 41653.4 4/21/2001

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 62 of 76 YJ5071 GE/10 8X8 0.17143 3.53 42137.3 5/8/1999 YJ5072 GE/10 8X8 0.17145 3.526 42421.7 5/8/1999 YJ5073 GE/10 8X8 0.17142 3.529 39001.3 4/21/2001 YJ5074 GE/10 8X8 0.17145 3.53 40754 4/21/2001 YJ5075 GE/10 8X8 0.17162 3.535 42552.9 5/8/1999 YJ5076 GE/10 8X8 0.17167 3.532 42533.1 5/8/1999 YJ5077 GE/10 8X8 0.17164 3.537 41604.9 5/8/1999 YJ5078 GE/10 8X8 0.17165 3.532 38876.8 4/21/2001 YJ5079 GE/10 8X8 0.17155 3.533 41391.1 5/8/1999 YJ5080 GE/10 8X8 0.17163 3.53 45147.7 4/21/2001 YJ5081 GE/10 8X8 0.17164 3.526 38940.7 4/21/2001 YJ5082 GE/10 8X8 0.17155 3.535 42157.2 5/8/1999 YJ5083 GE/10 8X8 0.17148 3.557 43491 4/21/2001 YJ5084 GE/10 8X8 0.17147 3.559 45048.5 4/21/2001 YJ5085 GE/10 8X8 0.17145 3.558 41519 5/8/1999 YJ5086 GE/10 8X8 0.17156 3.563 41618.2 5/8/1999 YJ5087 GE/10 8X8 0.17154 3.56 45099.2 4/21/2001 YJ5088 GE/10 8X8 0.17145 3.561 41279.8 4/21/2001 YJ5089 GE/10 8X8 0.17143 3.558 41743.8 5/8/1999 YJA645 GE/11 9X9 0.16382 3.782 46514.6 4/21/2001 YJA646 GE/11 9X9 0.16375 3.779 46824.3 4/21/2001 YJA647 GE/11 9X9 0.16372 3.778 45554.5 4/21/2001 YJA648 GE/11 9X9 0.16372 3.779 46582.9 4/21/2001 YJA649 GE/11 9X9 0.16369 3.776 43821.6 4/21/2001 YJA650 GE/11 9X9 0.16378 3.78 43866.8 4/21/2001 YJA651 GE/11 9X9 0.16381 3.776 46650.1 4/21/2001 YJA652 GE/11 9X9 0.16367 3.775 45614 4/21/2001 YJA653 GE/11 9X9 0.16371 3.777 46902.6 4/21/2001 YJA654 GE/11 9X9 0.16367 3.778 46730.6 4/21/2001 YJA655 GE/11 9X9 0.16373 3.777 43714.7 4/19/2003 YJA656 GE/11 9X9 0.16365 3.773 43920.9 4/19/2003 YJA657 GE/11 9X9 0.16363 3.774 45960.1 4/19/2003 YJA658 GE/11 9X9 0.16369 3.775 46536.6 4/19/2003 YJA659 GE/11 9X9 0.16361 3.776 46627 4/19/2003 YJA660 GE/11 9X9 0.16366 3.782 46004.2 4/19/2003 YJA661 GE/11 9X9 0.16361 3.78 44092.8 4/21/2001 YJA662 GE/11 9X9 0.16371 3.781 47877 4/19/2003 YJA663 GE/11 9X9 0.16367 3.779 47961.9 4/19/2003 YJA664 GE/11 9X9 0.16364 3.775 46122.1 4/19/2003 YJA665 GE/11 9X9 0.16355 3.774 43765.4 4/19/2003 YJA666 GE/11 9X9 0.16362 3.781 46576.3 4/21/2001 YJA667 GE/11 9X9 0.1636 3.776 44162.3 4/21/2001 YJA668 GE/11 9X9 0.16355 3.778 47563.9 4/19/2003 YJA669 GE/11 9X9 0.16364 3.783 46328.3 4/19/2003 YJA670 GE/11 9X9 0.1636 3.771 47265.2 4/19/2003 YJA671 GE/11 9X9 0.16367 3.768 48089.7 4/19/2003 YJA672 GE/11 9X9 0.16351 3.772 45306.4 4/19/2003

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 63 of 76 YJA673 GE/11 9X9 0.16372 3.767 46828.7 4/21/2001 YJA674 GE/11 9X9 0.1638 3.771 43832.7 4/19/2003 YJA675 GE/11 9X9 0.16375 3.767 46479.3 4/21/2001 YJA676 GE/11 9X9 0.16364 3.764 46913.6 4/19/2003 YJA677 GE/11 9X9 0.1638 3.769 48140.4 4/21/2001 YJA678 GE/11 9X9 0.16367 3.768 48248.5 4/21/2001 YJA679 GE/11 9X9 0.16379 3.772 48414.9 4/19/2003 YJA680 GE/11 9X9 0.1637 3.771 46794.5 4/21/2001 YJA681 GE/11 9X9 0.16389 3.782 46371.3 4/19/2003 YJA682 GE/11 9X9 0.1638 3.78 48009.3 4/21/2001 YJA683 GE/11 9X9 0.1638 3.78 45051.8 4/19/2003 YJA684 GE/11 9X9 0.16386 3.778 44430.1 4/21/2001 YJA685 GE/11 9X9 0.16375 3.78 46732.8 4/19/2003 YJA686 GE/11 9X9 0.16379 3.779 46865.1 4/21/2001 YJA687 GE/11 9X9 0.16365 3.778 43625.4 4/21/2001 YJA688 GE/11 9X9 0.16371 3.773 47557.3 4/21/2001 YJA689 GE/11 9X9 0.16375 3.773 43416 4/21/2001 YJA690 GE/11 9X9 0.16378 3.773 44172.2 4/21/2001 YJA691 GE/11 9X9 0.16369 3.773 47748 4/21/2001 YJA692 GE/11 9X9 0.16369 3.773 47845 4/21/2001 YJA693 GE/11 9X9 0.16365 3.77 44530.4 4/21/2001 YJA694 GE/11 9X9 0.16369 3.774 46419.8 4/19/2003 YJA695 GE/11 9X9 0.1639 3.77 46076.9 4/19/2003 YJA696 GE/11 9X9 0.16376 3.769 43949.5 4/21/2001 YJA697 GE/11 9X9 0.16386 3.769 43680.6 4/19/2003 YJA698 GE/11 9X9 0.16384 3.774 44256 4/21/2001 YJA699 GE/11 9X9 0.16382 3.77 45989.9 4/19/2003 YJA700 GE/11 9X9 0.16388 3.774 46994 4/19/2003 YJA701 GE/11 9X9 0.16377 3.767 47765.7 4/21/2001 YJA702 GE/11 9X9 0.16388 3.77 47800.9 4/21/2001 YJA703 GE/11 9X9 0.16384 3.768 46576.3 4/19/2003 YJA704 GE/11 9X9 0.16378 3.767 48315.7 4/21/2001 YJA705 GE/11 9X9 0.16391 3.773 46157.4 4/19/2003 YJA706 GE/11 9X9 0.1639 3.772 45458.6 4/21/2001 YJA707 GE/11 9X9 0.16382 3.774 44843.5 4/19/2003 YJA708 GE/11 9X9 0.16383 3.774 45164.2 4/19/2003 YJA709 GE/11 9X9 0.1639 3.771 48133.8 4/19/2003 YJA710 GE/11 9X9 0.16389 3.771 48570.3 4/19/2003 YJA711 GE/11 9X9 0.16396 3.772 46564.2 4/19/2003 YJA712 GE/11 9X9 0.16386 3.775 46903.7 4/19/2003 YJA713 GE/11 9X9 0.16381 3.783 44759.7 4/19/2003 YJA714 GE/11 9X9 0.16377 3.779 44533.7 4/19/2003 YJA715 GE/11 9X9 0.1638 3.777 48128.3 4/19/2003 YJA716 GE/11 9X9 0.16389 3.778 48369.7 4/19/2003 YJA717 GE/11 9X9 0.16384 3.777 46737.2 4/19/2003 YJA718 GE/11 9X9 0.16388 3.782 46884.9 4/19/2003 YJA719 GE/11 9X9 0.16393 3.781 46126.5 4/19/2003

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 64 of 76 YJA720 GE/11 9X9 0.16387 3.777 44120.4 4/21/2001 YJA721 GE/11 9X9 0.16384 3.783 47331.3 4/21/2001 YJA722 GE/11 9X9 0.16388 3.784 46947.8 4/19/2003 YJA723 GE/11 9X9 0.16387 3.785 47859.3 4/21/2001 YJA724 GE/11 9X9 0.16391 3.782 47772.3 4/21/2001 YJA725 GE/11 9X9 0.16383 3.787 46627 4/19/2003 YJA726 GE/11 9X9 0.16378 3.784 48335.5 4/21/2001 YJA727 GE/11 9X9 0.16383 3.792 46222.4 4/19/2003 YJA728 GE/11 9X9 0.1638 3.79 45519.2 4/21/2001 YJA729 GE/11 9X9 0.16382 3.789 43584.7 4/21/2001 YJA730 GE/11 9X9 0.16385 3.783 48287 4/19/2003 YJA731 GE/11 9X9 0.16383 3.778 44398.1 4/21/2001 YJA732 GE/11 9X9 0.16382 3.778 44281.3 4/21/2001 YJA733 GE/11 9X9 0.16384 3.779 48308 4/19/2003 YJA734 GE/11 9X9 0.1638 3.777 47893.5 4/21/2001 YJA735 GE/11 9X9 0.16385 3.776 45702.2 4/21/2001 YJA736 GE/11 9X9 0.16387 3.782 46328.3 4/19/2003 YJA737 GE/11 9X9 0.1639 3.781 46037.3 4/19/2003 YJA738 GE/11 9X9 0.16393 3.782 45217.2 4/21/2001 YJA739 GE/11 9X9 0.16402 3.784 45734.1 4/19/2003 YJA740 GE/11 9X9 0.16366 3.783 47944.2 4/21/2001 YJA741 GE/11 9X9 0.16359 3.781 44561.3 4/21/2001 YJA742 GE/11 9X9 0.1637 3.784 44456.6 4/21/2001 YJA743 GE/11 9X9 0.16369 3.781 46752.6 4/19/2003 YJA744 GE/11 9X9 0.16373 3.784 47061.3 4/21/2001 YJA745 GE/11 9X9 0.16372 3.784 46696.4 4/21/2001 YJA746 GE/11 9X9 0.16378 3.781 46880.5 4/19/2003 YJA747 GE/11 9X9 0.16379 3.785 48273.8 4/21/2001 YJA748 GE/11 9X9 0.16384 3.781 48282.6 4/21/2001 YJA749 GE/11 9X9 0.16377 3.781 48400.6 4/19/2003 YJA750 GE/11 9X9 0.1638 3.781 46779.1 4/21/2001 YJA751 GE/11 9X9 0.16383 3.784 43683.9 4/19/2003 YJA752 GE/11 9X9 0.16385 3.789 46705.2 4/21/2001 YJA753 GE/11 9X9 0.16381 3.788 44932.8 4/19/2003 YJA754 GE/11 9X9 0.16387 3.786 47551.8 4/19/2003 YJA755 GE/11 9X9 0.16376 3.788 46627 4/19/2003 YJA756 GE/11 9X9 0.16377 3.785 46525.6 4/19/2003 YJA757 GE/11 9X9 0.16384 3.788 47626.8 4/19/2003 YJA758 GE/11 9X9 0.16389 3.787 45200.6 4/19/2003 YJA759 GE/11 9X9 0.16384 3.788 46786.8 4/21/2001 YJA760 GE/11 9X9 0.16388 3.781 46682.1 4/21/2001 YJA761 GE/11 9X9 0.16395 3.783 46908.1 4/19/2003 YJA762 GE/11 9X9 0.16381 3.783 47729.3 4/19/2003 YJA763 GE/11 9X9 0.1638 3.781 47527.6 4/19/2003 YJA764 GE/11 9X9 0.1637 3.781 46095.7 4/19/2003 YJA765 GE/11 9X9 0.16386 3.784 45823.4 4/19/2003 YJA766 GE/11 9X9 0.16392 3.784 44338.6 4/21/2001

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 65 of 76 YJA767 GE/11 9X9 0.16383 3.781 46700.8 4/19/2003 YJA768 GE/11 9X9 0.1639 3.783 45970 4/19/2003 YJA769 GE/11 9X9 0.16393 3.782 43710.3 4/19/2003 YJA770 GE/11 9X9 0.16378 3.788 43872.4 4/19/2003 YJA771 GE/11 9X9 0.16392 3.783 46547.6 4/21/2001 YJA772 GE/11 9X9 0.16398 3.787 46776.9 4/21/2001 YJA773 GE/11 9X9 0.16364 3.78 45600.7 4/21/2001 YJA774 GE/11 9X9 0.16372 3.776 46785.7 4/21/2001 YJA775 GE/11 9X9 0.16374 3.779 43848.1 4/21/2001 YJA776 GE/11 9X9 0.16374 3.776 43854.7 4/21/2001 YJA777 GE/11 9X9 0.16361 3.774 46698.6 4/21/2001 YJA778 GE/11 9X9 0.16377 3.777 45587.5 4/21/2001 YJA779 GE/11 9X9 0.16371 3.776 46888.2 4/21/2001 YJA780 GE/11 9X9 0.16385 3.777 46744.9 4/21/2001 YJH737 GE/11 9X9 0.1648 4.081 45412.3 4/18/2005 YJH738 GE/11 9X9 0.16471 4.071 45464.1 4/18/2005 YJH739 GE/11 9X9 0.16483 4.075 47336.9 4/18/2005 YJH740 GE/11 9X9 0.16465 4.081 45608.5 4/19/2003 YJH741 GE/11 9X9 0.16464 4.078 48715.8 4/18/2005 YJH742 GE/11 9X9 0.16453 4.085 48692.7 4/18/2005 YJH743 GE/11 9X9 0.16474 4.073 45591.9 4/19/2003 YJH744 GE/11 9X9 0.16459 4.063 47341.3 4/18/2005 YJH745 GE/11 9X9 0.16448 4.071 48052.2 4/18/2005 YJH746 GE/11 9X9 0.16471 4.076 46994 4/19/2003 YJH747 GE/11 9X9 0.16481 4.06 47011.7 4/19/2003 YJH748 GE/11 9X9 0.16475 4.069 47954.1 4/18/2005 YJH749 GE/11 9X9 0.16451 4.078 46682.1 4/18/2005 YJH750 GE/11 9X9 0.16481 4.068 44781.7 4/19/2003 YJH751 GE/11 9X9 0.16469 4.074 44744.3 4/19/2003 YJH752 GE/11 9X9 0.16467 4.091 46715.2 4/18/2005 YJH753 GE/11 9X9 0.16475 4.069 46558.6 4/18/2005 YJH754 GE/11 9X9 0.16468 4.073 46585.1 4/18/2005 YJH755 GE/11 9X9 0.16459 4.085 45799.2 4/18/2005 YJH756 GE/11 9X9 0.16459 4.083 46145.3 4/18/2005 YJH757 GE/11 9X9 0.16466 4.076 50190.7 4/18/2005 YJH758 GE/11 9X9 0.16455 4.076 50086 4/18/2005 YJH759 GE/11 9X9 0.16459 4.068 45998.7 4/18/2005 YJH760 GE/11 9X9 0.16447 4.064 45697.8 4/18/2005 YJH761 GE/11 9X9 0.16453 4.07 43718 4/18/2005 YJH762 GE/11 9X9 0.16458 4.075 47326.9 4/19/2003 YJH763 GE/11 9X9 0.16476 4.088 47282.8 4/19/2003 YJH764 GE/11 9X9 0.1647 4.091 43658.5 4/18/2005 YJH765 GE/11 9X9 0.16466 4.096 45698.9 4/19/2003 YJH766 GE/11 9X9 0.16455 4.084 45725.3 4/19/2003 YJH767 GE/11 9X9 0.16453 4.084 50477.3 4/19/2003 YJH768 GE/11 9X9 0.16458 4.079 50651.5 4/19/2003 YJH769 GE/11 9X9 0.16444 4.093 49951.5 4/19/2003

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 66 of 76 YJH770 GE/11 9X9 0.16446 4.08 50647 4/19/2003 YJH771 GE/11 9X9 0.16448 4.086 45346.1 4/19/2003 YJH772 GE/11 9X9 0.1646 4.085 45627.2 4/19/2003 YJH773 GE/11 9X9 0.16474 4.083 43423.7 4/18/2005 YJH774 GE/11 9X9 0.16463 4.086 47218.9 4/19/2003 YJH775 GE/11 9X9 0.16458 4.08 47295 4/19/2003 YJH776 GE/11 9X9 0.16463 4.081 43622.1 4/18/2005 YJH777 GE/11 9X9 0.16468 4.083 45722 4/18/2005 YJH778 GE/11 9X9 0.16474 4.084 46017.4 4/18/2005 YJH779 GE/11 9X9 0.16458 4.097 50134.5 4/18/2005 YJH780 GE/11 9X9 0.16466 4.089 50073.9 4/18/2005 YJH781 GE/11 9X9 0.16472 4.085 46031.7 4/18/2005 YJH782 GE/11 9X9 0.16474 4.083 45708.8 4/18/2005 YJH783 GE/11 9X9 0.1647 4.08 46888.2 4/18/2005 YJH784 GE/11 9X9 0.16483 4.083 46794.5 4/18/2005 YJH785 GE/11 9X9 0.1647 4.063 46903.7 4/18/2005 YJH786 GE/11 9X9 0.16461 4.065 44834.7 4/19/2003 YJH787 GE/11 9X9 0.1645 4.07 44822.5 4/19/2003 YJH788 GE/11 9X9 0.16483 4.066 46783.5 4/18/2005 YJH789 GE/11 9X9 0.16465 4.07 47938.7 4/18/2005 YJH790 GE/11 9X9 0.16449 4.089 47199.1 4/19/2003 YJH791 GE/11 9X9 0.1646 4.081 47007.3 4/19/2003 YJH792 GE/11 9X9 0.16442 4.078 48024.7 4/18/2005 YJH793 GE/11 9X9 0.16451 4.064 47464.7 4/18/2005 YJH794 GE/11 9X9 0.16468 4.077 45683.4 4/19/2003 YJH795 GE/11 9X9 0.1647 4.072 48787.5 4/18/2005 YJH796 GE/11 9X9 0.16458 4.082 48816.1 4/18/2005 YJH797 GE/11 9X9 0.1644 4.091 45679 4/19/2003 YJH798 GE/11 9X9 0.16444 4.085 47481.3 4/18/2005 YJH799 GE/11 9X9 0.16456 4.065 45574.3 4/18/2005 YJH800 GE/11 9X9 0.16453 4.073 45471.8 4/18/2005 YJH801 GE/11 9X9 0.16375 4.078 46638 4/19/2003 YJH802 GE/11 9X9 0.16383 4.08 51792.3 4/18/2005 YJH803 GE/11 9X9 0.16386 4.079 47670.9 4/19/2003 YJH804 GE/11 9X9 0.16369 4.072 46531.1 4/19/2003 YJH805 GE/11 9X9 0.16377 4.076 46545.4 4/19/2003 YJH806 GE/11 9X9 0.16378 4.075 48008.2 4/19/2003 YJH807 GE/11 9X9 0.16367 4.065 43628.7 4/19/2003 YJH808 GE/11 9X9 0.16363 4.069 46692 4/19/2003 YJH809 GE/11 9X9 0.16363 4.073 50955.7 4/19/2003 YJH810 GE/11 9X9 0.16376 4.078 50920.4 4/19/2003 YJH811 GE/11 9X9 0.16371 4.072 50976.6 4/19/2003 YJH812 GE/11 9X9 0.16379 4.072 52234.3 4/19/2003 YJH813 GE/11 9X9 0.16364 4.07 46871.7 4/18/2005 YJH814 GE/11 9X9 0.16374 4.067 47066.8 4/18/2005 YJH815 GE/11 9X9 0.16391 4.067 52141.8 4/19/2003 YJH816 GE/11 9X9 0.16396 4.063 51129.9 4/19/2003

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 67 of 76 YJH817 GE/11 9X9 0.16396 4.06 45898.4 4/18/2005 YJH818 GE/11 9X9 0.16391 4.058 47062.4 4/19/2003 YJH819 GE/11 9X9 0.16379 4.067 47484.6 4/19/2003 YJH820 GE/11 9X9 0.16393 4.068 46472.7 4/18/2005 YJH821 GE/11 9X9 0.16381 4.071 46546.5 4/18/2005 YJH822 GE/11 9X9 0.16393 4.07 47461.4 4/19/2003 YJH823 GE/11 9X9 0.16391 4.067 46992.9 4/19/2003 YJH824 GE/11 9X9 0.1637 4.085 46162.9 4/18/2005 YJH825 GE/11 9X9 0.16379 4.089 47782.2 4/18/2005 YJH826 GE/11 9X9 0.16378 4.09 47095.5 4/19/2003 YJH827 GE/11 9X9 0.16387 4.083 46296.3 4/18/2005 YJH828 GE/11 9X9 0.16385 4.078 47470.2 4/18/2005 YJH829 GE/11 9X9 0.164 4.078 46470.5 4/19/2003 YJH830 GE/11 9X9 0.16402 4.079 46490.3 4/19/2003 YJH831 GE/11 9X9 0.16413 4.075 47417.3 4/18/2005 YJH832 GE/11 9X9 0.16418 4.07 46361.3 4/18/2005 YJH833 GE/11 9X9 0.16377 4.073 46994 4/19/2003 YJH834 GE/11 9X9 0.16406 4.068 47665.3 4/18/2005 YJH835 GE/11 9X9 0.16388 4.083 47438.3 4/18/2005 YJH836 GE/11 9X9 0.16395 4.079 51620.4 4/19/2003 YJH837 GE/11 9X9 0.164 4.076 51582.9 4/19/2003 YJH838 GE/11 9X9 0.16406 4.083 47516.5 4/18/2005 YJH839 GE/11 9X9 0.16407 4.089 44903 4/19/2003 YJH840 GE/11 9X9 0.16403 4.08 50235.9 4/19/2003 YJH841 GE/11 9X9 0.16413 4.083 51176.1 4/19/2003 YJH842 GE/11 9X9 0.16414 4.079 52081.1 4/19/2003 YJH843 GE/11 9X9 0.16413 4.08 50167.5 4/19/2003 YJH844 GE/11 9X9 0.16402 4.088 44930.6 4/19/2003 YJH845 GE/11 9X9 0.16388 4.083 46414.2 4/19/2003 YJH846 GE/11 9X9 0.16385 4.073 50865.3 4/19/2003 YJH847 GE/11 9X9 0.1639 4.077 48018.1 4/18/2005 YJH848 GE/11 9X9 0.16388 4.07 47734.8 4/18/2005 YJH849 GE/11 9X9 0.16392 4.075 50518.1 4/18/2005 YJH850 GE/11 9X9 0.16404 4.074 50447.5 4/18/2005 YJH851 GE/11 9X9 0.16397 4.074 48552.7 4/18/2005 YJH852 GE/11 9X9 0.16405 4.073 47921.1 4/18/2005 YJH853 GE/11 9X9 0.16385 4.084 51043.9 4/19/2003 YJH854 GE/11 9X9 0.16389 4.081 46543.2 4/19/2003 YJH855 GE/11 9X9 0.16378 4.077 49215.2 4/18/2005 YJH856 GE/11 9X9 0.16387 4.073 47924.4 4/18/2005 YJH857 GE/11 9X9 0.16412 4.071 46531.1 4/18/2005 YJH858 GE/11 9X9 0.16397 4.074 46670 4/18/2005 YJH859 GE/11 9X9 0.16394 4.07 51228 4/19/2003 YJH860 GE/11 9X9 0.16375 4.065 47743.6 4/18/2005 YJH861 GE/11 9X9 0.16397 4.081 47985 4/18/2005 YJH862 GE/11 9X9 0.16395 4.083 51135.4 4/19/2003 YJH863 GE/11 9X9 0.16395 4.081 46587.3 4/18/2005

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 68 of 76 YJH864 GE/11 9X9 0.16392 4.076 46494.7 4/18/2005 YJH865 GE/11 9X9 0.16402 4.073 47992.7 4/18/2005 YJH866 GE/11 9X9 0.164 4.071 49667.1 4/18/2005 YJH867 GE/11 9X9 0.16399 4.071 48496.5 4/18/2005 YJH868 GE/11 9X9 0.16388 4.072 48299.2 4/18/2005 YJH869 GE/11 9X9 0.16385 4.066 48002.6 4/18/2005 YJH870 GE/11 9X9 0.16404 4.087 48185.6 4/18/2005 YJH871 GE/11 9X9 0.16399 4.089 48229.7 4/18/2005 YJH872 GE/11 9X9 0.16394 4.087 48866.8 4/18/2005 YJH873 GE/11 9X9 0.1641 4.088 48607.8 4/18/2005 YJH874 GE/11 9X9 0.16398 4.088 48215.4 4/18/2005 YJH875 GE/11 9X9 0.16386 4.089 48251.8 4/18/2005 YJH876 GE/11 9X9 0.16395 4.084 48176.8 4/18/2005 YJH877 GE/11 9X9 0.16407 4.082 48170.2 4/18/2005 YJH878 GE/11 9X9 0.16395 4.082 48851.4 4/18/2005 YJH879 GE/11 9X9 0.16396 4.081 49379.4 4/18/2005 YJH880 GE/11 9X9 0.1639 4.079 47872.6 4/18/2005 YJH881 GE/11 9X9 0.16393 4.075 46559.7 4/18/2005 YJH882 GE/11 9X9 0.16393 4.08 46611.6 4/18/2005 YJH883 GE/11 9X9 0.16389 4.081 51205.9 4/19/2003 YJH884 GE/11 9X9 0.16385 4.087 48162.5 4/18/2005 YJH885 GE/11 9X9 0.16392 4.084 48028 4/18/2005 YJH886 GE/11 9X9 0.16368 4.084 51187.2 4/19/2003 YJH887 GE/11 9X9 0.16367 4.083 46649 4/18/2005 YJH888 GE/11 9X9 0.16376 4.084 46619.3 4/18/2005 YJH889 GE/11 9X9 0.16386 4.088 48110.7 4/18/2005 YJH890 GE/11 9X9 0.16391 4.087 49674.8 4/18/2005 YJH891 GE/11 9X9 0.16391 4.087 46180.6 4/19/2003 YJH892 GE/11 9X9 0.16399 4.087 51010.8 4/19/2003 YJH893 GE/11 9X9 0.16386 4.083 47942 4/18/2005 YJH894 GE/11 9X9 0.16357 4.095 48759.9 4/18/2005 YJH895 GE/11 9X9 0.16372 4.083 50518.1 4/18/2005 YJH896 GE/11 9X9 0.16377 4.079 50482.8 4/18/2005 YJH897 GE/11 9X9 0.16378 4.082 48624.3 4/18/2005 YJH898 GE/11 9X9 0.1638 4.084 47968.5 4/18/2005 YJH899 GE/11 9X9 0.16369 4.083 51092.4 4/19/2003 YJH900 GE/11 9X9 0.1637 4.087 46510.1 4/19/2003 YJH901 GE/11 9X9 0.16371 4.082 44766.3 4/19/2003 YJH902 GE/11 9X9 0.16373 4.086 50338.4 4/19/2003 YJH903 GE/11 9X9 0.16374 4.076 52171.5 4/19/2003 YJH904 GE/11 9X9 0.16377 4.071 52043.7 4/19/2003 YJH905 GE/11 9X9 0.16368 4.089 50304.2 4/19/2003 YJH906 GE/11 9X9 0.16367 4.089 44983.5 4/19/2003 YJH907 GE/11 9X9 0.16362 4.084 47709.4 4/18/2005 YJH908 GE/11 9X9 0.16366 4.081 51609.3 4/19/2003 YJH909 GE/11 9X9 0.16364 4.078 51645.7 4/19/2003 YJH910 GE/11 9X9 0.16361 4.073 47667.5 4/18/2005

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 69 of 76 YJH911 GE/11 9X9 0.16351 4.08 47881.4 4/18/2005 YJH912 GE/11 9X9 0.16345 4.076 47213.4 4/19/2003 YJH913 GE/11 9X9 0.16362 4.082 46571.9 4/18/2005 YJH914 GE/11 9X9 0.16365 4.078 47509.9 4/18/2005 YJH915 GE/11 9X9 0.16363 4.078 46570.8 4/19/2003 YJH916 GE/11 9X9 0.16345 4.087 46647.9 4/19/2003 YJH917 GE/11 9X9 0.16344 4.093 47595.9 4/18/2005 YJH918 GE/11 9X9 0.16375 4.081 46530 4/18/2005 YJH919 GE/11 9X9 0.16388 4.082 46983 4/19/2003 YJH920 GE/11 9X9 0.16385 4.09 47739.2 4/18/2005 YJH921 GE/11 9X9 0.16374 4.082 46285.3 4/18/2005 YJH922 GE/11 9X9 0.16386 4.072 47118.6 4/19/2003 YJH923 GE/11 9X9 0.16371 4.08 47520.9 4/19/2003 YJH924 GE/11 9X9 0.16386 4.082 46482.6 4/18/2005 YJH925 GE/11 9X9 0.16376 4.09 46543.2 4/18/2005 YJH926 GE/11 9X9 0.16361 4.085 47575 4/19/2003 YJH927 GE/11 9X9 0.16391 4.081 46994 4/19/2003 YJH928 GE/11 9X9 0.16381 4.073 46165.1 4/18/2005 YJH929 GE/11 9X9 0.16373 4.079 51344.8 4/19/2003 YJH930 GE/11 9X9 0.16376 4.078 52304.9 4/19/2003 YJH931 GE/11 9X9 0.1638 4.081 47201.3 4/18/2005 YJH932 GE/11 9X9 0.16368 4.074 47128.5 4/18/2005 YJH933 GE/11 9X9 0.16376 4.085 52238.8 4/19/2003 YJH934 GE/11 9X9 0.16383 4.089 51225.7 4/19/2003 YJH935 GE/11 9X9 0.16404 4.086 50792.5 4/19/2003 YJH936 GE/11 9X9 0.16385 4.09 50880.7 4/19/2003 YJH937 GE/11 9X9 0.16355 4.091 46816.6 4/19/2003 YJH938 GE/11 9X9 0.16378 4.088 43714.7 4/19/2003 YJH939 GE/11 9X9 0.16363 4.087 48111.8 4/19/2003 YJH940 GE/11 9X9 0.16372 4.076 46535.5 4/19/2003 YJH941 GE/11 9X9 0.16375 4.078 46558.6 4/19/2003 YJH942 GE/11 9X9 0.16383 4.083 48006 4/19/2003 YJH943 GE/11 9X9 0.16394 4.096 43658.5 4/19/2003 YJH944 GE/11 9X9 0.16388 4.085 46660.1 4/19/2003 YJS261 GE/11 9X9 0.164 4.049 49384.9 4/6/2007 YJS262 GE/11 9X9 0.16405 4.053 48300.3 4/18/2005 YJS263 GE/11 9X9 0.1642 4.055 51422 4/6/2007 YJS264 GE/11 9X9 0.1641 4.048 51574.1 4/6/2007 YJS265 GE/11 9X9 0.16419 4.046 47220 4/18/2005 YJS266 GE/11 9X9 0.1642 4.045 49691.4 4/6/2007 YJS267 GE/11 9X9 0.164 4.051 51046.1 4/6/2007 YJS268 GE/11 9X9 0.1643 4.06 51036.2 4/6/2007 YJS269 GE/11 9X9 0.1641 4.041 50859.8 4/6/2007 YJS270 GE/11 9X9 0.1641 4.041 51986.3 4/6/2007 YJS271 GE/11 9X9 0.1644 4.042 51913.6 4/6/2007 YJS272 GE/11 9X9 0.1643 4.046 50864.2 4/6/2007 YJS273 GE/11 9X9 0.16426 4.04 48638.7 4/18/2005

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 70 of 76 YJS274 GE/11 9X9 0.1642 4.04 51349.2 4/6/2007 YJS275 GE/11 9X9 0.1642 4.045 51199.3 4/6/2007 YJS276 GE/11 9X9 0.1641 4.047 51320.5 4/6/2007 YJS277 GE/11 9X9 0.1641 4.048 51823.2 4/6/2007 YJS278 GE/11 9X9 0.16398 4.057 48790.8 4/18/2005 YJS279 GE/11 9X9 0.1639 4.064 50627.2 4/6/2007 YJS280 GE/11 9X9 0.16393 4.052 50374.8 4/18/2005 YJS281 GE/11 9X9 0.16399 4.057 36968.7 4/19/2003 YJS282 GE/11 9X9 0.1639 4.064 51611.6 4/6/2007 YJS283 GE/11 9X9 0.16393 4.06 49560.2 4/18/2005 YJS284 GE/11 9X9 0.16401 4.064 49725.5 4/18/2005 YJS285 GE/11 9X9 0.1639 4.078 51925.7 4/6/2007 YJS286 GE/11 9X9 0.164 4.08 51376.8 4/6/2007 YJS287 GE/11 9X9 0.16399 4.063 50385.8 4/18/2005 YJS288 GE/11 9X9 0.164 4.075 50826.7 4/6/2007 YJS289 GE/11 9X9 0.164 4.076 49435.6 4/6/2007 YJS290 GE/11 9X9 0.164 4.069 51074.7 4/6/2007 YJS291 GE/11 9X9 0.16395 4.072 50695.5 4/18/2005 YJS292 GE/11 9X9 0.16397 4.081 51062.6 4/18/2005 YJS293 GE/11 9X9 0.1639 4.072 46297.4 4/6/2007 YJS294 GE/11 9X9 0.164 4.066 49350.7 4/6/2007 YJS295 GE/11 9X9 0.1641 4.068 50763.9 4/6/2007 YJS296 GE/11 9X9 0.1641 4.069 50738.5 4/6/2007 YJS297 GE/11 9X9 0.1641 4.054 51705.2 4/6/2007 YJS298 GE/11 9X9 0.1639 4.078 50765 4/6/2007 YJS299 GE/11 9X9 0.1639 4.076 51587.3 4/6/2007 YJS300 GE/11 9X9 0.1639 4.06 51054.9 4/6/2007 YJS301 GE/11 9X9 0.164 4.071 51433 4/6/2007 YJS302 GE/11 9X9 0.16395 4.057 49443.3 4/18/2005 YJS303 GE/11 9X9 0.164 4.053 51153 4/6/2007 YJS304 GE/11 9X9 0.1639 4.064 51204.8 4/6/2007 YJS305 GE/11 9X9 0.16394 4.061 48323.4 4/18/2005 YJS306 GE/11 9X9 0.1639 4.058 51817.7 4/6/2007 YJS307 GE/11 9X9 0.164 4.058 51347 4/6/2007 YJS308 GE/11 9X9 0.164 4.068 52093.3 4/6/2007 YJS309 GE/11 9X9 0.164 4.071 51181.7 4/6/2007 YJS310 GE/11 9X9 0.1639 4.059 51566.4 4/6/2007 YJS311 GE/11 9X9 0.16393 4.05 48541.7 4/18/2005 YJS312 GE/11 9X9 0.16384 4.05 48690.5 4/18/2005 YJS313 GE/11 9X9 0.1639 4.053 51541 4/6/2007 YJS314 GE/11 9X9 0.164 4.058 51333.8 4/6/2007 YJS315 GE/11 9X9 0.164 4.072 50914.9 4/6/2007 YJS316 GE/11 9X9 0.164 4.063 50878.5 4/6/2007 YJS317 GE/11 9X9 0.164 4.055 50719.8 4/6/2007 YJS318 GE/11 9X9 0.164 4.052 50674.6 4/6/2007 YJS319 GE/11 9X9 0.1639 4.052 50846.6 4/6/2007 YJS320 GE/11 9X9 0.164 4.053 51085.8 4/6/2007

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 71 of 76 YJS321 GE/11 9X9 0.1639 4.047 46554.2 4/6/2007 YJS322 GE/11 9X9 0.164 4.051 50923.7 4/6/2007 YJS323 GE/11 9X9 0.164 4.052 52789.9 4/6/2007 YJS324 GE/11 9X9 0.164 4.05 49927.2 4/6/2007 YJS325 GE/11 9X9 0.164 4.05 50763.9 4/6/2007 YJS326 GE/11 9X9 0.164 4.054 50636 4/6/2007 YJS327 GE/11 9X9 0.164 4.061 50855.4 4/6/2007 YJS328 GE/11 9X9 0.164 4.057 51433 4/6/2007 YJS329 GE/11 9X9 0.16408 4.052 48547.2 4/18/2005 YJS330 GE/11 9X9 0.16405 4.052 48584.7 4/18/2005 YJS331 GE/11 9X9 0.1641 4.058 51381.2 4/6/2007 YJS332 GE/11 9X9 0.164 4.047 50932.5 4/6/2007 YJS333 GE/11 9X9 0.1641 4.052 52670.9 4/6/2007 YJS334 GE/11 9X9 0.1642 4.047 51253.3 4/6/2007 YJS335 GE/11 9X9 0.1641 4.05 51984.1 4/6/2007 YJS336 GE/11 9X9 0.16407 4.043 50124.6 4/18/2005 YJS337 GE/11 9X9 0.1641 4.033 51607.1 4/6/2007 YJS338 GE/11 9X9 0.1639 4.037 51112.2 4/6/2007 YJS339 GE/11 9X9 0.16405 4.046 50102.5 4/18/2005 YJS340 GE/11 9X9 0.164 4.04 51720.7 4/6/2007 YJS341 GE/11 9X9 0.164 4.039 51276.5 4/6/2007 YJS342 GE/11 9X9 0.1641 4.044 50881.8 4/6/2007 YJS343 GE/11 9X9 0.1639 4.039 52148.4 4/6/2007 YJS344 GE/11 9X9 0.164 4.031 50927 4/6/2007 YJS345 GE/11 9X9 0.1639 4.027 50587.5 4/6/2007 YJS346 GE/11 9X9 0.1639 4.044 50671.3 4/6/2007 YJS347 GE/11 9X9 0.164 4.045 49766.3 4/6/2007 YJS348 GE/11 9X9 0.16395 4.044 46623.7 4/18/2005 YJS349 GE/11 9X9 0.16388 4.05 50863.1 4/18/2005 YJS350 GE/11 9X9 0.16381 4.044 50922.6 4/18/2005 YJS351 GE/11 9X9 0.16382 4.05 46561.9 4/18/2005 YJS352 GE/11 9X9 0.1638 4.04 49429 4/6/2007 YJS353 GE/11 9X9 0.1638 4.05 50534.6 4/6/2007 YJS354 GE/11 9X9 0.16388 4.061 50724.2 4/18/2005 YJS355 GE/11 9X9 0.164 4.06 51191.6 4/6/2007 YJS356 GE/11 9X9 0.164 4.065 51764.8 4/6/2007 YJS357 GE/11 9X9 0.16414 4.062 49659.4 4/18/2005 YJS358 GE/11 9X9 0.16402 4.059 49713.4 4/18/2005 YJS359 GE/11 9X9 0.1641 4.069 51455 4/6/2007 YJS360 GE/11 9X9 0.1642 4.069 50936.9 4/6/2007 YJS361 GE/11 9X9 0.16421 4.059 50577.6 4/18/2005 YJS362 GE/11 9X9 0.1642 4.068 50186.3 4/6/2007 YJS363 GE/11 9X9 0.16413 4.056 48787.5 4/18/2005 YJS364 GE/11 9X9 0.1642 4.059 51927.9 4/6/2007 YJS365 GE/11 9X9 0.1643 4.061 49949.3 4/6/2007 YJS366 GE/11 9X9 0.1641 4.065 51228 4/6/2007 YJS367 GE/11 9X9 0.1642 4.071 51668.9 4/6/2007

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 72 of 76 YJS368 GE/11 9X9 0.16407 4.057 48671.7 4/18/2005 YJS369 GE/11 9X9 0.1641 4.062 48529.5 4/6/2007 YJS370 GE/11 9X9 0.164 4.067 53737.9 4/6/2007 YJS371 GE/11 9X9 0.1641 4.059 51740.5 4/6/2007 YJS372 GE/11 9X9 0.1641 4.064 50705.5 4/6/2007 YJS373 GE/11 9X9 0.1641 4.065 51026.2 4/6/2007 YJS374 GE/11 9X9 0.1641 4.063 50716.5 4/6/2007 YJS375 GE/11 9X9 0.1642 4.053 49306.7 4/6/2007 YJS376 GE/11 9X9 0.16409 4.053 48485.4 4/18/2005 YJS377 GE/11 9X9 0.1642 4.052 51608.2 4/6/2007 YJS378 GE/11 9X9 0.1641 4.059 51590.6 4/6/2007 YJS379 GE/11 9X9 0.16424 4.062 48499.8 4/18/2005 YJS380 GE/11 9X9 0.1642 4.061 49159 4/6/2007 YJS381 GE/11 9X9 0.16458 4.06 49230.6 4/18/2005 YJS382 GE/11 9X9 0.16473 4.063 49136.9 4/18/2005 YJS383 GE/11 9X9 0.16473 4.068 49221.8 4/18/2005 YJS384 GE/11 9X9 0.16473 4.071 49069.7 4/18/2005 YJS385 GE/11 9X9 0.1648 4.071 50736.3 4/6/2007 YJS386 GE/11 9X9 0.1647 4.077 50687.8 4/6/2007 YJS387 GE/11 9X9 0.1647 4.075 49125.9 4/6/2007 YJS388 GE/11 9X9 0.1647 4.071 50378.1 4/6/2007 YJS389 GE/11 9X9 0.1643 4.053 50639.3 4/6/2007 YJS390 GE/11 9X9 0.1645 4.058 49478.6 4/6/2007 YJS391 GE/11 9X9 0.1645 4.054 50704.4 4/6/2007 YJS392 GE/11 9X9 0.1646 4.063 50731.9 4/6/2007 YJS393 GE/11 9X9 0.1646 4.059 50248 4/6/2007 YJS394 GE/11 9X9 0.1646 4.062 50761.7 4/6/2007 YJS395 GE/11 9X9 0.16465 4.061 49207.5 4/18/2005 YJS396 GE/11 9X9 0.1647 4.061 51860.7 4/6/2007 YJS397 GE/11 9X9 0.1647 4.065 50352.7 4/18/2005 YJS398 GE/11 9X9 0.1646 4.059 49780.6 4/18/2005 YJS399 GE/11 9X9 0.1647 4.06 50961.2 4/6/2007 YJS400 GE/11 9X9 0.16464 4.054 49545.9 4/18/2005 YJS401 GE/11 9X9 0.16466 4.044 49296.7 4/18/2005 YJS402 GE/11 9X9 0.1647 4.052 50871.9 4/6/2007 YJS403 GE/11 9X9 0.16472 4.052 50618.4 4/18/2005 YJS404 GE/11 9X9 0.16468 4.055 50508.2 4/18/2005 YJS405 GE/11 9X9 0.1646 4.053 51515.7 4/6/2007 YJS406 GE/11 9X9 0.16466 4.052 49258.2 4/18/2005 YJS407 GE/11 9X9 0.1646 4.066 50443.1 4/6/2007 YJS408 GE/11 9X9 0.1646 4.07 50101.4 4/6/2007 YJS409 GE/11 9X9 0.1647 4.057 50618.4 4/6/2007 YJS410 GE/11 9X9 0.1646 4.05 50315.3 4/6/2007 YJS411 GE/11 9X9 0.1646 4.042 53122.8 4/6/2007 YJS412 GE/11 9X9 0.1647 4.054 50712.1 4/6/2007 YJS413 GE/11 9X9 0.1648 4.05 50180.8 4/6/2007 YJS414 GE/11 9X9 0.1648 4.051 49168.9 4/6/2007

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 73 of 76 YJS415 GE/11 9X9 0.1647 4.054 50691.1 4/6/2007 YJS416 GE/11 9X9 0.1646 4.045 50595.2 4/6/2007 YJS417 GE/11 9X9 0.16459 4.052 49056.4 4/18/2005 YJS418 GE/11 9X9 0.16437 4.059 49254.9 4/18/2005 YJS419 GE/11 9X9 0.16452 4.063 49291.2 4/18/2005 YJS420 GE/11 9X9 0.16475 4.064 49109.3 4/18/2005 YJY001 GE/14 10X10 0.17429 4.114 51522.3 4/17/2009 YJY002 GE/14 10X10 0.17427 4.117 50571 4/17/2009 YJY003 GE/14 10X10 0.17419 4.108 51471.6 4/17/2009 YJY004 GE/14 10X10 0.17406 4.107 51119.9 4/17/2009 YJY005 GE/14 10X10 0.17408 4.104 51319.4 4/17/2009 YJY006 GE/14 10X10 0.17445 4.109 49377.2 4/17/2009 YJY007 GE/14 10X10 0.17448 4.11 51064.8 4/17/2009 YJY008 GE/14 10X10 0.17446 4.117 50715.4 4/17/2009 YJY009 GE/14 10X10 0.17436 4.099 49797.2 4/17/2009 YJY010 GE/14 10X10 0.17436 4.102 50500.4 4/17/2009 YJY011 GE/14 10X10 0.17429 4.109 50659.2 4/17/2009 YJY012 GE/14 10X10 0.17439 4.118 49168.9 4/17/2009 YJY013 GE/14 10X10 0.17446 4.12 49160.1 4/6/2007 YJY014 GE/14 10X10 0.17442 4.116 49230.6 4/17/2009 YJY015 GE/14 10X10 0.17441 4.123 49147.9 4/17/2009 YJY016 GE/14 10X10 0.17441 4.12 49130.3 4/6/2007 YJY017 GE/14 10X10 0.17444 4.114 48246.3 4/17/2009 YJY018 GE/14 10X10 0.17439 4.12 49421.3 4/17/2009 YJY019 GE/14 10X10 0.1744 4.117 50946.9 4/17/2009 YJY020 GE/14 10X10 0.17434 4.121 48293.7 4/17/2009 YJY021 GE/14 10X10 0.17445 4.126 48316.8 4/17/2009 YJY022 GE/14 10X10 0.17451 4.118 51158.5 4/17/2009 YJY023 GE/14 10X10 0.1745 4.123 48292.5 4/17/2009 YJY024 GE/14 10X10 0.17442 4.122 47247.6 4/17/2009 YJY025 GE/14 10X10 0.17447 4.103 49567.9 4/17/2009 YJY026 GE/14 10X10 0.17434 4.11 49728.8 4/17/2009 YJY027 GE/14 10X10 0.17438 4.107 49056.4 4/17/2009 YJY028 GE/14 10X10 0.17455 4.113 50758.4 4/6/2007 YJY029 GE/14 10X10 0.17452 4.118 49491.8 4/6/2007 YJY030 GE/14 10X10 0.17439 4.118 49171.1 4/6/2007 YJY031 GE/14 10X10 0.17443 4.117 51384.5 4/6/2007 YJY032 GE/14 10X10 0.17436 4.115 50863.1 4/17/2009 YJY033 GE/14 10X10 0.17436 4.122 49419.1 4/17/2009 YJY034 GE/14 10X10 0.17443 4.12 49447.8 4/17/2009 YJY035 GE/14 10X10 0.17437 4.122 50455.2 4/6/2007 YJY036 GE/14 10X10 0.17446 4.114 49575.6 4/6/2007 YJY037 GE/14 10X10 0.17443 4.117 50315.3 4/17/2009 YJY038 GE/14 10X10 0.17438 4.124 51214.7 4/17/2009 YJY039 GE/14 10X10 0.17446 4.125 49455.5 4/6/2007 YJY040 GE/14 10X10 0.17445 4.123 50185.2 4/6/2007 YJY041 GE/14 10X10 0.17445 4.12 48500.9 4/17/2009

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 74 of 76 YJY042 GE/14 10X10 0.17439 4.121 49562.4 4/6/2007 YJY043 GE/14 10X10 0.17428 4.117 49912.9 4/6/2007 YJY044 GE/14 10X10 0.17453 4.112 49701.3 4/6/2007 YJY045 GE/14 10X10 0.17437 4.117 51019.6 4/17/2009 YJY046 GE/14 10X10 0.17441 4.115 48642 4/17/2009 YJY047 GE/14 10X10 0.17437 4.108 51730.6 4/17/2009 YJY048 GE/14 10X10 0.17445 4.113 50578.7 4/17/2009 YJY049 GE/14 10X10 0.17436 4.113 49542.5 4/6/2007 YJY050 GE/14 10X10 0.17438 4.111 48514.1 4/17/2009 YJY051 GE/14 10X10 0.17431 4.111 51170.6 4/17/2009 YJY052 GE/14 10X10 0.17442 4.12 50104.7 4/17/2009 YJY053 GE/14 10X10 0.17441 4.118 50671.3 4/17/2009 YJY054 GE/14 10X10 0.17436 4.114 50219.4 4/17/2009 YJY055 GE/14 10X10 0.17434 4.122 50752.9 4/17/2009 YJY056 GE/14 10X10 0.17447 4.118 50058.4 4/17/2009 YJY057 GE/14 10X10 0.17447 4.119 49469.8 4/17/2009 YJY058 GE/14 10X10 0.17451 4.123 50587.5 4/17/2009 YJY059 GE/14 10X10 0.17454 4.121 51031.7 4/17/2009 YJY060 GE/14 10X10 0.17455 4.116 50469.6 4/17/2009 YJY061 GE/14 10X10 0.17447 4.117 49613.1 4/6/2007 YJY062 GE/14 10X10 0.17453 4.12 49048.7 4/6/2007 YJY063 GE/14 10X10 0.17457 4.121 49571.2 4/6/2007 YJY064 GE/14 10X10 0.1746 4.117 50560 4/17/2009 YJY065 GE/14 10X10 0.17453 4.116 49725.5 4/17/2009 YJY066 GE/14 10X10 0.17437 4.12 51446.2 4/17/2009 YJY067 GE/14 10X10 0.17451 4.117 50696.6 4/17/2009 YJY068 GE/14 10X10 0.17452 4.12 49192 4/6/2007 YJY069 GE/14 10X10 0.17454 4.12 49662.7 4/6/2007 YJY070 GE/14 10X10 0.1746 4.124 49012.3 4/6/2007 YJY071 GE/14 10X10 0.17457 4.12 49104.9 4/6/2007 YJY072 GE/14 10X10 0.17453 4.114 51278.7 4/17/2009 YJY073 GE/14 10X10 0.17445 4.119 49903 4/17/2009 YJY074 GE/14 10X10 0.17438 4.121 48592.4 4/6/2007 YJY075 GE/14 10X10 0.17448 4.12 49960.3 4/6/2007 YJY076 GE/14 10X10 0.17447 4.119 50404.5 4/6/2007 YJY077 GE/14 10X10 0.17449 4.121 48385.1 4/6/2007 YJY078 GE/14 10X10 0.17454 4.116 49877.6 4/17/2009 YJY079 GE/14 10X10 0.17447 4.121 50317.5 4/17/2009 YJY080 GE/14 10X10 0.17465 4.117 50658.1 4/17/2009 YJY081 GE/14 10X10 0.17436 4.117 49752 4/17/2009 YJY082 GE/14 10X10 0.17433 4.117 50628.3 4/17/2009 YJY083 GE/14 10X10 0.17439 4.114 49871 4/6/2007 YJY084 GE/14 10X10 0.17434 4.115 50030.9 4/6/2007 YJY085 GE/14 10X10 0.17424 4.126 50367.1 4/17/2009 YJY086 GE/14 10X10 0.17422 4.132 50486.1 4/17/2009 YJY087 GE/14 10X10 0.17421 4.128 51393.3 4/17/2009 YJY088 GE/14 10X10 0.17431 4.124 46482.6 4/6/2007

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 75 of 76 YJY089 GE/14 10X10 0.17446 4.127 50356 4/17/2009 YJY090 GE/14 10X10 0.17437 4.12 50479.5 4/17/2009 YJY091 GE/14 10X10 0.17441 4.121 48775.4 4/6/2007 YJY092 GE/14 10X10 0.17448 4.113 47411.8 4/6/2007 YJY093 GE/14 10X10 0.1745 4.125 50480.6 4/6/2007 YJY094 GE/14 10X10 0.17445 4.119 51405.4 4/6/2007 YJY095 GE/14 10X10 0.17441 4.117 47284 4/6/2007 YJY096 GE/14 10X10 0.17429 4.119 48184.5 4/6/2007 YJY097 GE/14 10X10 0.17436 4.121 49368.4 4/17/2009 YJY098 GE/14 10X10 0.17441 4.123 49782.8 4/17/2009 YJY099 GE/14 10X10 0.17429 4.123 49940.5 4/17/2009 YJY100 GE/14 10X10 0.17423 4.124 49660.5 4/6/2007 YJY101 GE/14 10X10 0.17432 4.126 49930.6 4/6/2007 YJY102 GE/14 10X10 0.17436 4.127 49781.7 4/6/2007 YJY103 GE/14 10X10 0.17436 4.118 49395.9 4/6/2007 YJY104 GE/14 10X10 0.17442 4.119 48028 4/17/2009 YJY105 GE/14 10X10 0.17452 4.123 50158.7 4/6/2007 YJY106 GE/14 10X10 0.17451 4.133 49757.5 4/6/2007 YJY107 GE/14 10X10 0.17447 4.125 50939.2 4/17/2009 YJY108 GE/14 10X10 0.17443 4.114 50420 4/17/2009 YJY109 GE/14 10X10 0.17441 4.117 49442.2 4/6/2007 YJY110 GE/14 10X10 0.17447 4.116 50240.3 4/6/2007 YJY111 GE/14 10X10 0.17453 4.124 51527.8 4/17/2009 YJY112 GE/14 10X10 0.17454 4.111 50230.4 4/17/2009 YJY113 GE/14 10X10 0.1746 4.132 49253.7 4/17/2009 YJY114 GE/14 10X10 0.17456 4.132 51232.4 4/17/2009 YJY115 GE/14 10X10 0.17458 4.125 49354.1 4/6/2007 YJY116 GE/14 10X10 0.17467 4.117 50189.6 4/6/2007 YJY117 GE/14 10X10 0.1747 4.12 50296.5 4/17/2009 YJY118 GE/14 10X10 0.17465 4.124 50901.7 4/17/2009 YJY119 GE/14 10X10 0.17456 4.123 48624.3 4/17/2009 YJY120 GE/14 10X10 0.17453 4.106 50269 4/17/2009 YJY121 GE/14 10X10 0.17457 4.115 48163.6 4/17/2009 YJY122 GE/14 10X10 0.17453 4.119 49556.9 4/17/2009 YJY123 GE/14 10X10 0.17464 4.124 49603.2 4/17/2009 YJY124 GE/14 10X10 0.17476 4.122 53399.5 4/17/2009 YJY125 GE/14 10X10 0.17457 4.113 48605.6 4/17/2009 YJY126 GE/14 10X10 0.17457 4.113 47660.9 4/17/2009 YJY127 GE/14 10X10 0.17461 4.118 50813.5 4/17/2009 YJY128 GE/14 10X10 0.17455 4.123 47848.3 4/17/2009 YJY129 GE/14 10X10 0.17459 4.128 48908.7 4/6/2007 YJY130 GE/14 10X10 0.1745 4.135 49368.4 4/17/2009 YJY131 GE/14 10X10 0.17452 4.128 49259.3 4/17/2009 YJY132 GE/14 10X10 0.17449 4.125 49106 4/6/2007 YJY133 GE/14 10X10 0.17441 4.13 50011 4/17/2009 YJY134 GE/14 10X10 0.17461 4.13 50338.4 4/17/2009 YJY135 GE/14 10X10 0.17473 4.127 51429.7 4/17/2009

M1417 Rev. 0 Attachment 5: Discharged Fuel Page 76 of 76 YJY136 GE/14 10X10 0.1747 4.133 49269.2 4/17/2009 YJY137 GE/14 10X10 0.17454 4.138 48051.1 4/6/2007 YJY138 GE/14 10X10 0.1746 4.135 49241.6 4/17/2009 YJY139 GE/14 10X10 0.17457 4.119 51360.2 4/17/2009 YJY140 GE/14 10X10 0.17455 4.121 50724.2 4/17/2009 YJY141 GE/14 10X10 0.17451 4.123 50744 4/17/2009 YJY142 GE/14 10X10 0.17466 4.127 50326.3 4/17/2009 YJY143 GE/14 10X10 0.17458 4.128 52347.9 4/17/2009 YJY144 GE/14 10X10 0.17446 4.127 50431 4/17/2009

M1417 Rev. 0 Attachment 6 Page 1 of 11 Brian Froese From: David Daigle Sent: Monday, July 17, 2017 7:40 AM To: Dwayne Blaylock

Subject:

Fwd: <EXTERNAL> Design Inputs for upcoming analysis Attachments: image001.jpg; ATT00001.htm; image002.jpg; ATT00002.htm; image003.png; ATT00003.htm; image004.jpg; ATT00004.htm; RE: More Due Diligence Requests; ATT00005.htm Sent from my iPhone Begin forwarded message:

From: "Mogolesko, Fred" <fmogole@entergy.com>

Date: July 17, 2017 at 7:37:44 AM EDT To: David Daigle <ddaigle@enercon.com>

Cc: "Mogolesko, Fred" <fmogole@entergy.com>, "Ohrenberger, John" <johrenb@entergy.com>, "Tucker, John" <jtucke3@entergy.com>

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis The final from the list of requested information. See below and open the attachment.

Fred From: Long, David G Sent: Wednesday, July 12, 2017 1:12 PM To: Mogolesko, Fred

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis From: Szwarc, Kornelia Sent: Wednesday, July 12, 2017 11:32 AM To: Long, David G Cc: Loehr, Philip; Paranjape, Shivaram; Driscoll, Melissa

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis 1

M1417 Rev. 0 Attachment 6 Page 2 of 11

Dave, This information (for current EOC22 burnups) was already provided on 5/9/2017 to Gary James and Fred Mogolesko, see attachment along with spreadsheet attached.

Values for EOC22 bundle average burnup provided back in May are conservative and bounding due to a delay in the actual BOC22 startup.

Based on the todays 3DM case (FMLD1170712100051, from startup on 5/22/2017 to up to date current thermal generation capacity is 95.26% ),

if EOC22 final burnup reaches:

12,100 MWD/ST, then is equivalent to corresponds to ~93% thermal generation CF for the rest of the cycle; 12,765.5 MWD/ST (current C22 CMR EOC22 assumption) corresponds to ~98.4% thermal generation CF for the rest of the cycle while the official ENTERGY operating schedule expects 96% CF; Even if Pilgrim operated at 100% of thermal capacity from now on, the EOC22 maximum CMR burnup of 13117 MWD/ST will not be reached. Currently predicted maximum of 12,946 MWD/ST is equivalent to thermal generation at 100% CF going forward to EOC.

Let me know if you need anything else.

Nela Kornelia Szwarc Tel. # (914) 2547687 From: Long, David G Sent: Wednesday, July 12, 2017 10:10 AM To: Szwarc, Kornelia

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Nela, I was referred to you via Gary James at PNP. I am working for John Ohrenberger at Pilgrim for Decommissioning. Can you provide the information required for #2 below? We have a nondisclosure agreement in place with Enercon for proprietary info regarding Nuclear Fuel.

David Long PNPS Decommissioning 5088308435 dlong@entergy.com From: James, Gary Sent: Wednesday, July 12, 2017 9:56 AM 2

M1417 Rev. 0 Attachment 6 Page 3 of 11 To: Long, David G Cc: Paranjape, Shivaram

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis Dave Raja did not design the current core. Nela Szwarc, Fuels, did the design and she should provide the requested information for formal transmittal to others Gary From: Long, David G Sent: Wednesday, July 12, 2017 9:39 AM To: James, Gary

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis I have the fuels group gathering the input for #3. I am looking for #2 from Raj From: James, Gary Sent: Wednesday, July 12, 2017 9:29 AM To: Long, David G Cc: Paranjape, Shivaram

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis Dave Most of item 3 has been provided previously. Final core design info should come from Fuels.

Gary From: Long, David G Sent: Wednesday, July 12, 2017 9:24 AM To: James, Gary

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Gary, is Raj the right person to provide this input for Enercon? We currently have a nondisclosure agreement in place with Enercon.

From: Long, David G Sent: Tuesday, July 11, 2017 12:32 PM 3

M1417 Rev. 0 Attachment 6 Page 4 of 11 To: Paranjape, Shivaram

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Raj Can you help us with items 2 and 3 below? This is to support Decommissioning David Long PNPS Decommissioning 5088308435 dlong@entergy.com From: Mogolesko, Fred Sent: Tuesday, July 11, 2017 11:08 AM To: Long, David G

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Dave Please obtain the information for items 2 and 3 below. It is now a high priority. Raja is back in the office after his medical leave.

Fred From: David Daigle [1]

Sent: Wednesday, May 03, 2017 2:47 PM To: Cardine, Andrew J; Hazelhoff, Amy C; Mogolesko, Fred Cc: GUSTAFSON, OTTO W; Ohrenberger, John; Couture III, Philip; Guy Spikes; Dwayne Blaylock; Joanne Morris; Michael Cymbor

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis

Andy, The following list contains the design inputs needed for the decommissioning analyses at Palisades and Pilgrim. Please let me know if you have any questions.
1. Fuel element (assembly) geometry and mass details for the final core including to include:

Array size 4

M1417 Rev. 0 Attachment 6 Page 5 of 11 Fuel assembly height Fuel assembly width Length of fuel rods Length from seating surface in fuel rack to the bottom of the fuel rods Length of upper plenum Hardware mass of upper and lower plenums Number of fuel rods per assembly Fuel rod pitch Fuel rod outer diameter Clad thickness Active fuel length Pellet diameter Diametric gap

2. Final core design details to include:

Initial assembly enrichment Assembly burnup and MTU Date of shutdown

3. For fuel assemblies in the spent fuel pool:

Type of element Date of discharge Initial enrichment Burnup and MTU David David L. Daigle Project Manager / Emergency Preparedness Specialist 12906 Tampa Oaks Boulevard Suite 131 Temple Terrace, Florida 33637 Office Phone: 813.962.1800 x. 602 / Cell: 813.368.7520 / Fax: 813.962.1881 Email: ddaigle@enercon.com 5

M1417 Rev. 0 Attachment 6 Page 6 of 11 Brian Froese From: Szwarc, Kornelia <KSzwarc@entergy.com>

Sent: Tuesday, May 09, 2017 6:10 PM To: James, Gary; Mogolesko, Fred Cc: Driscoll, Melissa; Paranjape, Shivaram

Subject:

RE: More Due Diligence Requests Attachments: EOC22_CMR-Edits.SummarySheet.Values-only.xlsx Gary and Fred, Attached is EOC22 summary of each fuel burnup, type, max. lattice enrichment, av. enrichments, etc. I provided range of EOC22 exposures for Cycle 22 operation starting on 5/12/2017 at 11 pm, ending on 5/31/2019 midnight. Assumed Cycle 22 final burnup of 12,100 MWD/ST corresponds to ~92% thermal generation CF; final burnup of 12,765.5 MWD/ST (current C22 CMR assumption)corresponds to ~97% thermal generation CF; finally EOC22 burnup of 13117 MWD/ST is equivalent to thermal generation at 99.8% CF.

The attached spreadsheet presents final values only. Documented sources and spreadsheet data can be found in the following folder.

\\wpoet513\group1\reacteng\PILGRIM\C22\CMR\DecomissioningEdits GNF uncertainties on enrichment and burnup will be provided after NDA from GNF fuel fabrication contract is signed between Entergy and ADP.

Please, let me know if you have any questions.

Nela Kornelia Szwarc Tel. # (914) 2723427 From: James, Gary Sent: Thursday, May 04, 2017 2:49 PM To: Driscoll, Melissa Cc: Szwarc, Kornelia

Subject:

FW: More Due Diligence Requests Melissa Is Nela able to respond to the data below data request from out potential new owners? The fuel data requested is :

1

M1417 Rev. 0 Attachment 6 Page 7 of 11 Max Lat Enr Avg Enr Burnup Bundle Design (%) (%) (MWD/MTU)* Discharge Date MTU Gary From: Mogolesko, Fred Sent: Thursday, May 04, 2017 12:49 PM To: James, Gary Cc: Mogolesko, Fred; Long, David G

Subject:

More Due Diligence Requests Gary I know you are busy, but please see if you can address the two following questions:

58 Fuel assembly details for the final core at "final" discharge 59 Uncertainty data on burnup / enrichment and MTU loading Thanks Fred 2

M1417 Rev. 0 Attachment 6 Page 8 of 11 Brian Froese From: David Daigle Sent: Monday, July 17, 2017 7:40 AM To: Dwayne Blaylock

Subject:

Fwd: <EXTERNAL> Design Inputs for upcoming analysis Attachments: image001.jpg; ATT00001.htm; image002.jpg; ATT00002.htm; image003.png; ATT00003.htm; image004.jpg; ATT00004.htm; PNPS_Summer2017

_Discharged_Fuel_Data.xlsx; ATT00005.htm Sent from my iPhone Begin forwarded message:

From: "Mogolesko, Fred" <fmogole@entergy.com>

Date: July 17, 2017 at 7:38:03 AM EDT To: David Daigle <ddaigle@enercon.com>

Cc: "Mogolesko, Fred" <fmogole@entergy.com>, "Ohrenberger, John" <johrenb@entergy.com>, "Tucker, John" <jtucke3@entergy.com>, "Long, David G" <dlong@entergy.com>

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Another piece of the original request.

From: Long, David G Sent: Wednesday, July 12, 2017 1:13 PM To: Mogolesko, Fred

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis From: Loehr, Philip Sent: Wednesday, July 12, 2017 9:48 AM To: Long, David G Cc: Paranjape, Shivaram

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis 1

M1417 Rev. 0 Attachment 6 Page 9 of 11 Good morning -

Attached is the data for Pilgrim #3 below. Please note this is just me pulling data from the RACKLIFE package, this spreadsheet hasnt been reviewed, etc.

Phil From: Long, David G Sent: Wednesday, July 12, 2017 8:01 AM To: Loehr, Philip

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis I was referred to you via Raj Paranjape at Pilgrim. I am working for John Ohrenberger at PNP Decommissioning. We are gathering information as part of due diligence for eventual PNP License Transfer. Raj informed me that you maintain the RackLife Data base for inventory in the PNP Spent Fuel Pool. Can you provide us the data to support item #3 below?

David Long PNPS Decommissioning 5088308435 dlong@entergy.com From: Long, David G Sent: Tuesday, July 11, 2017 12:32 PM To: Paranjape, Shivaram

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Raj Can you help us with items 2 and 3 below? This is to support Decommissioning David Long PNPS Decommissioning 5088308435 dlong@entergy.com 2

M1417 Rev. 0 Attachment 6 Page 10 of 11 From: Mogolesko, Fred Sent: Tuesday, July 11, 2017 11:08 AM To: Long, David G

Subject:

FW: <EXTERNAL> Design Inputs for upcoming analysis Dave Please obtain the information for items 2 and 3 below. It is now a high priority. Raja is back in the office after his medical leave.

Fred From: David Daigle [2]

Sent: Wednesday, May 03, 2017 2:47 PM To: Cardine, Andrew J; Hazelhoff, Amy C; Mogolesko, Fred Cc: GUSTAFSON, OTTO W; Ohrenberger, John; Couture III, Philip; Guy Spikes; Dwayne Blaylock; Joanne Morris; Michael Cymbor

Subject:

RE: <EXTERNAL> Design Inputs for upcoming analysis

Andy, The following list contains the design inputs needed for the decommissioning analyses at Palisades and Pilgrim. Please let me know if you have any questions.
1. Fuel element (assembly) geometry and mass details for the final core including to include:

Array size Fuel assembly height Fuel assembly width Length of fuel rods Length from seating surface in fuel rack to the bottom of the fuel rods Length of upper plenum Hardware mass of upper and lower plenums Number of fuel rods per assembly Fuel rod pitch Fuel rod outer diameter Clad thickness Active fuel length Pellet diameter Diametric gap 3

M1417 Rev. 0 Attachment 6 Page 11 of 11

2. Final core design details to include:

Initial assembly enrichment Assembly burnup and MTU Date of shutdown

3. For fuel assemblies in the spent fuel pool:

Type of element Date of discharge Initial enrichment Burnup and MTU David David L. Daigle Project Manager / Emergency Preparedness Specialist 12906 Tampa Oaks Boulevard Suite 131 Temple Terrace, Florida 33637 Office Phone: 813.962.1800 x. 602 / Cell: 813.368.7520 / Fax: 813.962.1881 Email: ddaigle@enercon.com 4

M1417 Rev. 0 Attachment 7 Page 1 of 3 Decay Heat Source Terms The purpose of this attachment is to calculate the decay heat source terms in the SFP as a function of time. These can be used in cladding temperature analyses to support the EP exemption request.

ORIGEN-ARP has the capability of calculating the total watts for the decayed sources developed. This function was used for each of the 0Y, 2Y, 4Y, 6Y, 10Y, and 20Y group sources. The total watts are per basis, which is in this case are per MTU. The decay heats are presented in Table A7-1.

Table A7-1 Decay Heat Source Terms from ORIGEN-ARP 0 Year 0.75 Year 0.83 Year 0.92 Year 1 Year Decay Decay Decay Decay Decay Decay Time (W/MTU) (W/MTU) (W/MTU) (W/MTU) (W/MTU) 0 Years 1.20E+06 8.84E+03 8.21E+03 7.60E+03 7.14E+03 2 Years 5.19E+03 3.92E+03 3.82E+03 3.72E+03 3.63E+03 4 Years 2.91E+03 2.55E+03 2.52E+03 2.48E+03 2.46E+03 6 Years 2.17E+03 2.03E+03 2.02E+03 2.01E+03 1.99E+03 10 Years 1.66E+03 1.61E+03 1.61E+03 1.60E+03 1.60E+03 20 Years 6.14E+02 6.05E+02 6.04E+02 6.03E+02 6.03E+02 Table A7-1 (contd) Decay Heat Source Terms from ORIGEN-ARP 1.25 Year 1.5 Year 2 Year 3 Year 5 Year Decay Decay Decay Decay Decay Decay Time (W/MTU) (W/MTU) (W/MTU) (W/MTU) (W/MTU) 0 Years 5.99E+03 5.15E+03 3.98E+03 2.67E+03 1.69E+03 2 Years 3.38E+03 3.17E+03 2.84E+03 2.40E+03 1.97E+03 4 Years 2.38E+03 2.31E+03 2.19E+03 2.01E+03 1.80E+03 6 Years 1.96E+03 1.93E+03 1.87E+03 1.78E+03 1.65E+03 10 Years 1.59E+03 1.57E+03 1.55E+03 1.51E+03 1.43E+03 20 Years 6.00E+02 5.97E+02 5.92E+02 5.81E+02 5.61E+02 For the limiting fuel element, the Cycle 22 maximum burnup (50,434 MWd/MTU), minimum enrichment (3.716%), and maximum MTU (0.1814 MWD/assy) were used, as presented in Table A7-2.

The ORIGEN input files for these sensitivities are included in Attachment 1.

Table A7-2 Bounding Decay Heat Source Terms from ORIGEN-ARP 0 Year 0.75 Year 0.83 Year 0.92 Year 1 Year Decay Time Decay Decay Decay Decay Decay (W/MTU) (W/MTU) (W/MTU) (W/MTU) (W/MTU)

Cycle 22, max.

burnup, min.

1.18E+06 1.11E+04 1.04E+04 9.71E+03 9.18E+03 enrichment, max. MTU

M1417 Rev. 0 Attachment 7 Page 2 of 3 Table A7-2 (contd) Bounding Decay Heat Source Terms from ORIGEN-ARP 1.25 Year 1.5 Year 2 Year 3 Year 5 Year Decay Time Decay Decay Decay Decay Decay (W/MTU) (W/MTU) (W/MTU) (W/MTU) (W/MTU)

Cycle 22, max.

burnup, min.

7.85E+03 6.85E+03 5.43E+03 3.81E+03 2.53E+03 enrichment, max. MTU The worst-case (hottest) bundle is one that was discharged at the end of Cycle 22 and has been cooling for nine months (0.75 years). From Table A7-2, its heat load after one year is 1.11E+04 W/MTU. The maximum 0.1814 MTU/assembly value was derived above from Cycle 22 data. The worst-case heat per assembly is calculated as follows:

1.11 + 04 0.1814

= x = 2014 The total heat generation rate in the SFP is calculated by multiplying each source by the MTU per assembly and the number of assemblies in that group. An example of the 1-year decayed sources are shown below. The number of assemblies and MTU values for each group are consistent with Section 6.2.

()

7.14 + 03

= 580 1x 7 1 x0.1804 6 2 3.63 + 03

+ 168 2x 7 1 x0.1812 6 2 2.46 + 03

+ 144 3x 7 1 x0.1756 6 2 1.99 + 03

+ 304 4x 7 1 x0.1744 6 2 1.60 + 03

+ 784 5x 7 1 x0.1675 6 2 6.03 + 02

+ 2133 7x 7 1 x0.1826 6 2 = 1.47 + 06 The total heat generation rate for the SFP as a function of decay time is presented in Table A7-3.

M1417 Rev. 0 Attachment 7 Page 3 of 3 Table A7-3 Total Decay Heat Source Terms Decay 0 Year 0.75 Year 0.83 Year 0.92 Year 1 Year Time Decay (W) Decay (W) Decay (W) Decay (W) Decay (W)

Heat (W) 1.26E+08 1.66E+06 1.59E+06 1.52E+06 1.47E+06 Table A7-3 (contd) Total Decay Heat Source Terms Decay 1.25 Year 1.5 Year 2 Year 3 Year 5 Year Time Decay (W) Decay (W) Decay (W) Decay (W) Decay (W)

Heat (W) 1.34E+06 1.24E+06 1.09E+06 9.22E+05 7.76E+05

M1417 Rev. 0 Page 1 of 3

M1417 Rev. 0 Page 2 of 3

M1417 Rev. 0 Page 3 of 3

M1417 Rev. 0 Attachment 9 Page 1 of 1 Reference II.11, Table 7.1

Attachment 4 CNRO-2018-00031 List of Regulatory Commitments (1 page follows)

CNRO-2018-00031 ATTACHMENT Regulatory Commitments This table identifies actions discussed in this letter for which ENO commits to perform. Any other actions discussed in this submittal are described for the NRCs information and are not commitments.

TYPE (Check one) SCHEDULED ONE- COMPLETION DATE CONTINUING COMMITMENT TIME (If Required)

COMPLIANCE ACTION Revise the UFSAR to include a description X Complete in of how the PNPS Spent Fuel Pool design accordance with next and operational characteristics meets or scheduled FSAR compares with the NUREG-1738 Industry update following Decommissioning Commitments (IDCs) exemption approval.

and Staff Decommissioning Assumptions (SDAs).

Page 1 of 1