ML18141A518
| ML18141A518 | |
| Person / Time | |
|---|---|
| Site: | Surry, North Anna, 05000000 |
| Issue date: | 02/27/1984 |
| From: | Stewart W VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | Harold Denton, Eisenhut D Office of Nuclear Reactor Regulation |
| References | |
| 060, 60, NUDOCS 8403020195 | |
| Download: ML18141A518 (16) | |
Text
e VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 W. L. STEWAR'.£ VxcE PRESIDENT NUCLEAR OPERATIONS February 27, 1984 Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation Attn:
Mr. D. G. Eisenhut, Director Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C.
20555 Gentlemen:
VEPCO REACTOR SYSTEM TRANSIENT ANALYSES SUPPLEMENTAL INFORMATION Serial No. 060 PSE/NAS/cdk/0022N Docket Nos.
50-280 50-281 50-338 50-339 License Nos. DPR-32 DPR-37 NPF-4 NPF-7 In our letter to you of April 14, 1981, Serial No. 215, we transmitted our Topical Report VEP-FRD-41, 11Vepco Reactor System Transient Analyses Using The RETRAN Computer Code 11 The report, which was provided for review by your staff, describes the system transient analysis capability developed by Vepco for analysis of certain transients which are determined to require reanalysis as a result of core reloads or other operational or design changes at our nuclear units.
In November of 1982 Mr. James L. Carter of the Division of Systems Integration informally provided us with a request for additional information which would be required to complete the review.
The information requested fell into five general categories outlined in Attachment 1. provides a portion of the requested information.
Specifically, the information is intended to address the request of item (1) on Attachment 1.
We are currently assembling the additional information requested.
Our intent is to submit this additional data by mid-1984.
If you have any questions on this material or on our topical report, please contact us.
(~~8-40~3-0~20-1-95 840227 PDR ADOCK 05000280 P
PDR cc: Mr. J. L. Carter Division of Systems Integration Very truly yours, t/t~,~:t W. L. Stewart
Plant Models ATTACHMENT 1 ADDITIONAL INFORMATION REQUESTED TO COMPLETE VEPCO RETRAN TOPICAL REVIEW
- 1.
Volume and flow path network description, including heat slabs.
I
- 2.
Component models used; description of user modifications to default models.
- 3.
Discussion, description, and qualification of control system models.
- 4.
Discussion of RETRAN input options selected.
Model Qualification
- 5.
Provide additional comparison to actual plant data and/or other similar code calculations and supporting discussions.
cdk/0022N/3
e ATTACHMENT 2 TABLE OF CONTENTS Table Description Page 1-1 Single Loop Model Control Volume Description 1-2 Single Loop Model Junction 2
Description 1-3 Single Loop Model Heat 4
Conductor Description 1-4 Single Loop Model Trip 5
Description 2-1 Two-Loop Model 7
Con tro 1 Vo 1 ume Description 2-2 Two-Loop Model Junction 9
Description 2-3 Two-Loop Model Heat 12 Conductor Description 2-4 Two-Loop Model Trip 1 3 Description cdk/0022N/4
TABLE 1-1 SINGLE LOOP MODEL CONTROL VOLUME DESCRIPTION Volume ID 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 1 6 17 18 1 9 Mixture Description Type Vessel uppe:c plenum H
Reactor hot leg H
S/G inlet plenum H
S/G tube volume 1 H
S/G tube volume 2 H
S/G tube volume 3 H
S/G tube volume 4 H
Pump suction piping*
H Reactor coolant pump H
Reactor cold leg H
Downcomer H
Vessel lowe:r: plenum H
Core bypass H
Core section*1 H
Core section 2 H
Core section 3 H
Pressurizer N
Pressurizer surge line H
S/G secondary side T
Abbreviations:
S/G -
steam generator H -
homogeneous equilibrium N -
two-phase non-equilibrium T -
two-phase equilibrium
- Includes S/G outlet plenum Tempe:cature T:r:anspo:r:t Delay No Yes No No No No No Yes No Yes Yes No Yes No No No No Yes No PAGE 1
PAGE 2
TABLE 1-2 SINGLE LOOP MODEL JUNCTION DESCRIPTION Two-Phase Fanning vunction F:riction Valve ID Descr:iption Type Multiplier: IndeK H/V 1
Vessel outlet nozzle Nor:mal Bar:oczy No V
2 Hot leg outlet No:rmal Baroczy Yes H
3 S/G inlet plenum No:rmal Ba:roczy No H
4 S/G tubes No:rmal Ba:roczy No H
5 S/G tubes No:rmal Bar:oczy No V
6 S/G tubes No:rmal Ba:roczy No H
7 S/G-pump suction No:rmal Ba:roczy No H
8 Pump intake Normal Ba:roczy No H
9 Pump discharge Normal Baroczy No V
1 0 Vessel inlet nozzle No:rmal Bar:oczy No V
1 1 Downcome:r outlet Nor:mal Bar:oczy No H
12 Bypass inlet Normal Baz:oczy No H
13 Lower: plenum - cor:e Normal Baroczy No H
14 Core internal No:rmal Baroczy No H
15 Co:re internal No:rmal Ba:roczy No H
1 6 Core - uppe:r plenum Normal Ba:roczy No H
17 Bypass outlet No:rmal Ba:roczy Mo H
18 Cold leg spray intake Fill Ba:roczy No V
1 9 Przr. spray Sp1:ay Baroczy No H
20 Przr. - surge line Normal Ba:roczy No H
2 1 Surge line - hot leg No?:mal Ba:roczy No H
22 Feedwater fill Fill Baroczy No V
23 S/G outlet Fill Hornog.
Yes H
24 PORV 1 Fill Ba:roczy No H
25 PORV 2 Fill Ba1:oczy No H
PAGE 3
TABLE 1-2 (cont.)
SINGLE LOOP MODEL JUNCTION DESCRIPTION Two-Phase Fanning Junction F:ciction Valve ID Desc:ciption Type Multiplie:c Index H/V 26 S/G atm. steam ielief Fill Homog.
No H
27 P:cz:c. safety valve Fill Ba:coczy No H
28 Steamline s&fety valve 1 Fill Homog.
No H
29' Steamline safety valve 2 Fill Homog.
No V
Notes=
All junctions have single-st:ceam comp:cessible flow except junction 21 which is incomp:cessible flow.
Abb:ceviations:
PORV -
powe:c ope:cated :celief valve atm. -
atmosphe:cio S/G -
steam gene:cato:c P:cz:c. -
p:cessu:cize:c Homog. -
homogeneous V -
ve:ctically distributed junction a:cea H -
ho:cizontally dist:cibuted junction a:cea
PAGE 4
TABLE 1-3 SINGLE LOOP MODEL HEAT CONDUCTOR DESCRIPTION Conducto:c Left Right Heat Exchg.
ID Desc:ciption Volume Volume Geomet:cy No.
1 Bottom co:ce 0
14 Cylind.
2 Middle co:ce 0
15 Cylind.
3 Top co:ce 0
16 Cylind.
4 S/G tubes 1Cinlet) 4 1 9 Cylind.
1 5
S/G tubes 2 5
1 9 Cylind.
1 6
S/G tubes 3 6
1 9 Cylind.
1 7
S/G tubes 4Coutlet) 7 19 Cylind.
1
T:cip ID 1
2 3
4 5
6 7
8 9
1 0 11 12 13 14 15 16 17 18 1 9 20 2 1 22 23 24 25 PAGE 5 TABLE 1-4 SINGLE LOOP MODEL TRIP DESCRIPTION Cause of T:cip Activation End of t~ansient time High flux Cno:cmalized powe:c)
Overtemperatu:ce delta-T Overpowe:c delta-T High p:cessuriee:c p:cessure Low p:cessurize:c p:cessu:ce High p:cessurizer level Low coolant :flow User specified time*
Low backup heater setpoint High backup heater setpoint User specified time*
T:cansient time= 0 sec User specified time*
User specified time*
High pressurizer p:cessure Low pressurize:c pressu:ce High sp:cay setpoint Low spray setpoint High S/G p:cessu:ce Low S/G p:cessu:ce High S/G pressu:ce Low S/G p:cessu:ce High pressu:cize:c pressu:ce Low p:cessu:cize:c pressure Trip Action End calculation Scram Sc:cam Sc:cam Scram Sc:cam Sc:cam Scram Close loop isolation valves Tu:cn p:cessurize:c heate:cs on Tu:cn pressu:cize:c heate:cs off Shut off :ceactor c~olant pumps Trip initialization Uncontrolled rod withdrawal Sc:cam Open PORV t 1 Close PORV t 1
Open PORV i 2
Close PORV i 2
Open atm. steam relief valve Close atm. steam relief valve Open S/G safety valves Close S/G safety valves Open p:cessu:cize:c safety valves Close pressu:cizer safety valves
e TABLE 1-4 (cont.)
SINGLE LOOP MODEL TRIP DESCRIPTION T:r ip.
ID Cause of T:i::ip Activation T:cip Action 26 Use:r specified time
- Tu:cbine t:cip 27 Low powe:r End calculation 28 Low-low steam gene:rator mass Sc:ram 29 Low-low steam generator mass Auxiliary feedwate:c 30 Sc:cam Tu:cbine t:cip Notes:
Not applicable fo:c most t:cansients.
Abbreviations:
PORV -
power ope:i::ated relief valve atm. - atmospheric S/G -
steam generator PAGE 6
on
e PAGE 7
TABLE 2-1 I
TWO LOOP MODEL CONTROL VOLUME DESCRIPTION Two-phase Tempez:atuz:e Fanning Volume Mixtuz:e Tz:anspoz:t Fz:iction ID Descz:iption Type Delay Multipliez:
ONE LOOP SIDE 1 0 1 Vessel uppez: plenum
.H No Baz:oczy 102 Reactoz: hot leg H
Yes Baz:oczy 103 S/G inlet plenum H
No Baz:oczy 104 S/G tube volume 1 H
No Baz:oczy 105 S/G tube volume 2 H
No Baz:oczy 106 S/G tube volume 3 H
No Baroczy 107 S/G tube volume 4 H
No Baz:oczy 108 Pump suction piping*
H Yes Baroczy 109 Reactoz: coolant pump H
No Baz:oczy 11 0 Reactoz: cold leg H
Yes 1 1 1 Downcomez:
H Yes Baroczy 11 2 Vessel lower plenum H
No Baz:oczy 11 3 Coz:e section 1 H
No Baz:oczy 114 Core section 2 H
No Baroczy 115 Core section 3 H
No Baroczy 11 6 Core section 4 H
No Baroczy 701 S/G Secondary side riserN No Baroczy 702 S/G Secondary side dome H No Homog.
- Includes S/G outlet plenum
TABLE 2-1 (cont.)
TWO LOOP MODEL CONTROL VOLUME DESCRIPTION Volume ID Description Mixture Type TWO LOOP SIDE 201 202 203 204 205 206 207 208 209 2 1 0 2 11 212 213 214 215 2 16 Vessel upper plenum Reactor hot leg S/G inlet plenum S/G tube volume 1 S/G tube volume 2 S/G tube volume 3 S/G tube volume 4 Pump suction piping*
Reactor coolant pump Reactor cold leg Downcomer Vessel lower plenum Coi::e section 1 Coi::e section 2 Coi::e section 3 Core section 4 H
H H
H H
H H
H H
H H
H H
H H
H 703 704 S/G Secondary side risei::N S/G Secondary side dome H 300 400 500 800 Coi::e bypass Upper head i::egion Pressurizer+ Surge Containment Sink Abbi::eviations:
S/G -
H lineN H
H -
homogeneous equilibrium N -
two-phase non-equilibrium T -
two-phase equilibrium HOMOG -
homogeneous
- Includes S/G outlet plenum Temperature Ti::ansport Delay No Yes No No No No No Yes No Yes Yes No No No No No No No Yes No No No PAGE 8
Two-phase Fanning Friction Multiplier Baroczy Bai::oczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Baroczy Homog.
Bai::oczy Baroczy Baroczy Ba,roczy
TABLE 2-2 TWO LOOP MODEL JUNCTION DESCRIPTION Junction ID Description 1 0 1 102 103 104 105 106 107 108 109 11 0 Vessel outlet nozzle Hot leg outlet S/G inlet plenum S/G tubes S/G tubes S/G tubes S/G-pump suction Pump intake Pump discharge Vessel inlet nozzle Type Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal 1 11 11 2 11 3 11 4 115 Downcomer outlet Normal 116 117 Bottom plenum -
core Normal V113 -
V114 -co:re internal Normal V114 -
V115 -core internal Normal V115 -
V116 -core internal Normal Core -
upper plenum Core -
upper plenum Normal Normal 701 Riser -
drum 801 Drum -
containment 802 9 0 1 Dr:um -
containment Feedwater fill Normal Nor:mal Normal Fill Valve IndeK H/V No No No No No No No No No No No No No Mo No No No No Yes Yes No V
H H
H H
H H
H V
V H
H H
H H
H H
H H
H H
PAGE 9
TABLE 2-2 (cont.)
TWO LOOP MODEL JUNCTION DESCRIPTION Junction ID Description 201 202 203 204 205 206 207 208 209 210 Vessel outlet nozzle Hot leg outlet S/G inlet plenum S/G tubes S/G tubes S/G tubes S/G-pump suction Pump intake Pump discharge Vessel inlet nozzle Type Noz:mal Normal Normal Normal Normal Normal Normal Normal Normal Normal 2 1 1 212 213 214 215 Downcomer outlet Normal Bottom plenum -
core Normal V213 -
V214 -core internal Normal V214 -
V215 -core internal Normal V215 -
V216 -core internal Normal 216 Core -
upper plenum 217 Core -
upper,plenum 702 Riser -
drum 803 Drum -
containment 804 Drum -
containment 902 Feedwater fill 903 Safety Injection fill Normal Normal Normal Normal Normal Fill Fill Valve Index H/V Mo No No No No No No No No No No No No No No No No No No No Yes Yes V
H H
H V
H H
H V
V H
H H
H H
H H
H H
H V
H PAGE 10
e e
TABLE 2-2 (cont.)
TWO LOOP MODEL JUNCTION DESCRIPTION Junction ID Description Type 301 Bypass -
upper plenumC11)
Normal 302 Bypass -
uppe% plenumC21)
Mo:cmal 303 Bottom plenum -
bypassC11) Mormal 30 lJ Bottom plenum -
bypassC21) Hormal
!JO 2 Upper plenum -
Head Normal
!JO 3 Vl10-V211 Normal lJ O lJ V210-Vlll Normal 500 Pressurizer -
Hot Leg Normal Abbreviations:
PORV -
power operated relief valve Atm. -
atmospheric S/G -
steam generator Prz:c. -
pressurizer Homog. -
homogeneous V - vertically distributed junction area Valve Index Mo Mo No Ho Yes Ho Ho Ho H - horizontally distributed junction area 11 -
one loop 21 -
two loop H/V H
H H
H H
H H
H PAGE 11
PAGE 12 TABLE 2-3 TWO LOOP MODEL HEAT CONDUCTOR DESCRIPTION Conductor Left Right Heat Exchg.
ID Descriptio:1 Volume Volume Geometry No.
Single Loop Side 101 Bottom core 0
11 3 Cylind.
102 Middle core 1 0
111.J Cylind.
103 Middle core 2 0
115 Cylind.
101.J Top core 0
11 6 Cylind.
105 S/G tubes 1Cinlet) 1 0 I.J 701 Cylind.
1 106 S/G tubes 2 105 701 Cylind.
1 107 S/G tubes 3 106 701 Cylind.
1 108 S/G tubes I.JCoutlet)108 701 Cylind.
1 Double Loop Side 201 Bottom core 0
213 Cylind.
202.
Middle core 1 0
211.J Cylind.
203 Middle core 2 0
215 Cylind.
204 Top core 0
216 Cylind.
205 S/G tubes 1Cinlet) 201.J 703 Cylind.
2 206 S/G tubes 2 205 703 Cylind.
2 207 S/G tubes 3 206 703 Cylind.
2 208 S/G tubes 4Coutlet)208 703 Cylind.
2
4, Trip ID 1
2 3
4 5
6 7
8 9
1 0 1 1 1 2 13 14 15 1 6 17 PAGE 13 TABLE 2-4 TWO LOOP MODEL TRIP DESCRIPTION Cause of Trip Activation End of transient time Transient time= 0 sec Low pressurizer pressure Blank Steamline high delta -
P High steam flow Low Tavg Low steam pressure Coincidence trips 6 and Coincidence trips 6 and Coincidence trips 6 and Coincidence trips 6 and Low pressurizer pressure 7
8 7
8 High pressurizer pressure User specified time User specified time Transient time = 0 second Trip Action End calculation Tr~p Initialf~ation Safety Injection actuation For future use No. credit taken Safety Injection actuation Safety Injection actuation Isolate steamlines Isolate steamlines Heaters on Heaters off Pumps off Isolate feedline Steamline break initiation