ML18078A485
| ML18078A485 | |
| Person / Time | |
|---|---|
| Site: | Salem |
| Issue date: | 11/30/1978 |
| From: | Public Service Enterprise Group |
| To: | |
| Shared Package | |
| ML18078A484 | List: |
| References | |
| NUDOCS 7812080115 | |
| Download: ML18078A485 (184) | |
Text
P78 143 56
SUMMARY
ASSESSMENT OF WEAKFISH IMPINGEMENT: SUMMER 1978 SALEM NUCLEAR GENERATING STATION UNIT NO. 1 Docket No. 50-272 Operating License No. DPR-70
~Afl~W~ ~~ ~~~1f~~ IT.ijttZtT f\\lES ~
50-~1~
Lt< dtd \\ \\-b-~
t-Bl Cl080 \\ \\ 3
~U\\W PUBLIC SERVICE ELECTRIC AND GAS COMPANY 8 0 Park Place Newark, New Jersey 07101 November 1978 781.2080 \\ \\ ~
I II III IV v
VI TABLE OF CONTENTS
SUMMARY
AND CONCLUSION JUVENILE (AGE 0+) WEAKFISH POPULATION A.
Population Estimates B.
Population Extrapolations C.
Spatial and Temporal Abundance and Distribution D.
Abundance per Unit Volume E.
Biomass WEAKFISH IMPINGEMENT A.
Narrative Summary B.
Comparison of 1977 and 1978 Weakfish Impingement
- c.
Recirculation D.
Latent Survival SALEM IMPACT:
POPULATION VS IMPINGEMENT ASPECTS OF THE LIFE HISTORY OF WEAKFISH, CYNOSCION REGALIS, WITH SPECIAL REFERENCE TO ITS OCCURRENCE IN THE DELAWARE BAY AND ESTUARY TEMPORAL DISTRIBUTION OF AGE 0+ WEAKFISH IN THE VICINITY OF SALEM DURING 1970-1977 VII CONCLUSION APPENDICES A - Design of Trawl 8 -
Unscaled Weakfish Population Estimates C - Design of Grid System D - Factor Used for Population Estimation E - Data Transformations and Tests of Assumptions P78 143 57 I-1 II-1 II-1 II-3 II-4 II-10 II-10 III-1 III-1 III-6 III-7 III-9 IV-1 V-1 VI-1 A-1 B-1 C-1 D-1 E-1
P78 143 56
SUMMARY
ASSESSMENT OF WEAKFISH IMPINGEMENT: SUMMER 1978'-
SALEM NUCLEAR GENERATING STATION UNIT NO. l Docket No. 50-272 Operating License No. DPR-70 PUBLIC SERVICE ELECTRIC AND GAS COMPANY 80 Park Place Newark, New Jersey 07101 November 197 8 781.2080 \\ \\ ~
.e I
II TABLE OF CONTENTS
SUMMARY
AND CONCLUSION JUVENILE (AGE 0+) WEAKFISH POPULATION A.
Population Estimates B.
Population Extrapolations C.
Spatial and Temporal Abundance and Distribution D.
Abundance per Unit Volume E.
Biomass III WEAKFISH IMPINGEMENT A.
Narrative Summary B.
Comparison of 1977 and 1978 Weakfish Impingement
- c.
Recirculation D.
Latent Survival IV SALEM IMPACT:
POPULATION VS IMPINGEMENT
.V ASPECTS OF THE LIFE HISTORY OF WEAKFISH, CYNOSCION REGALIS, WITH SPECIAL REFERENCE ITS OCCURRENCE IN THE DELAWARE BAY AND ESTUARY VI TEMPORAL DISTRIBUTION OF AGE 0+ WEAKFISH IN THE VICINITY OF SALEM DURING 1970-1977 VII CONCLUSION APPENDICES A - Design of Trawl B - Unscaled Weakfish Population Estimates C - Design of Grid System D - Factor Used for Population Estimation E - Data Transformations and Tests of Assumptions P78 143 57 TO I-l II-l II-l II-3 II-4 II-10 II-10 III-l III-l III-6 III-7.
III-9 IV-1 V-1 VI-1 A-1 B-1 C-1 D-1 E-1
~ TABLE OF CONTENTS (Continued)
APPENDICES (Continued)
F - Subdivision of Regions into Sub-Areas F-l G - Volumetric and Density Determination by Sub-A~ea of the Delaware River Estuary (RM 0-73)
G-l
.e H - Calculations for Weight Determination by Reg ion and Date I - Unscaled Weakfish Population Estimates J - Circulating Water System Intake and Fish Return System Description K - Materials and Methods L - Data Reduction REFERENCES TABLES FIGURES P78 143 58 H-1 I-l J-l K-1 L=l
ACKNOWLEDGEMENT This report was prepared by Public Service Electric and Gas Company, Newark, New Jersey, and Ichthyological Associates (IA), Middletown, Delaware.
Data were collected at the Salem Nuclear Generating Station and in the Delaware Estuary by the staff of IA under the direction of V. J. Schuler, Project Director.
Data analysis was performed by IA staff and re-viewed by M. D. London, Lead Biologist with PSE&G who also coordinated report preparation.
P78 145 29 e-
I.
SUMMARY
AND CONCLUSION This report presents and discusses data on the occur-rence and abundance of juvenile, age O+ (1978 year-class),
weakfish ( Cynosc ion regal is) in trawl samples taken in the pelaware estuary and in impingement samples from the circu-lating water system (CWS) intake screens at Salem Nuclear Generating Station Unit I.
It considers in an ecological perspective the extent and effect of impingement at Salem on the 1978 year-class of weakfish.
In 1978 weakfish specimens were first taken on the Salem screens on June 19 at a rate of o.o to 4 specimens per minute.
The total sample by June 28 was 7350 specimens, in contrast with the entire 1977 weakfish impingement sample which numbered 8000 specimens.
These and subsequently collected data suggested a population of age O+ weakfish several orders of magnitude larger than had been previously observed.
For example, the trawl catch on June 26, 1978 exceeded the annual catch in each of the previous 10 years and was close to the cumulative catch of the prevjous 3 years.
Still, the disproportionally large (relative to 1977) impingement totals raised questions about impact on the year class and on the species.
To address these, the ongoing ecological studies were expanded to include bay-wide (River Mile 0-73) weakfish population estimates which would provide the data necessary to quantify the event and its significance.
The three main study regions, North, Plant, and South, (Figure I-1) were divided into 17 sub..-areas.
Data from the weakfish population study were examined by sub-area for each and between successive estimates for indications of patterns in density and movement.
No significant patterns were determined.
The estimated bay wide population of age O+, juvenile weakfish of the size-range taken in sampling nets, which in-cludes the size-range of fish observed in impingement samples, ranged from 1,210,000,000 on June 21, 1978 to 168,000,000 on September 7-8, 1978, a decline of more than l,000,000,000 fish.
The length of these fish was consistently less then five inches.
In the same period an estimated total of 8,000,000 weakfish was impinged on the CWS traveling screens.
T~ese fish were also consistently less than five inches in length.
The majority of these fish were returned to the river via the fish return system.
Estimated mean survival from June 18-29 was 44%.
The sampling procedure was modified on June 29 to reduce the sample handling and processing mortality component and more realistically measure actual fish survival.
This resulted in an immediate increase in individual sample survival rates; estimated mean survival from June 29 through September 30 was 70%.
I-1 P78 145 30
I I
~
Consequently, PSE&G concludes that impingement mortality
~
comprised 0.3% of the observed weakfish population decrease.
~
Natural mortality and emigration from the system accounted for the remainder of the decrease.
The impact of weakfish impingement at Salem may also be
.put into perspective by estimating the number of spawning females responsible for producing the juveniles estimated to have been lost ori the intake screens and relating that number to the estimated sport fishing catch.
Sport fishing only takes adults.
Merriner (1976) reported that a female of 500 mm SL2 produces slightly over 2 million eggs and that fecundity increases about 128,000 eggs per 100 g of body weight.
As-suming a conservative fecundity of 1.5 x 106 eggs, esti-mates of the number of eggs hatched and surviving to the juvenile stage per female were calculated.
Survival un-doubtedly lies between the extremes of 5 and 0.1%.
The number of O+ weakfish lost to impingement (2.97 x 106) was divided by the estimated number of juveniles produced per female.
The n~mber of females required to produce the offspring impinged was estimated to range between 40 at 5% survival to the juvenile stage, and 2000 at 0.1%.
Even the highest of these estimates is miniscule when compared to the number of adult weakfish removed by sport fishing each season.
Miller (1978) estimated that during 1976 Delaware registered boaters, fishing about 59% of the time in Delaware River and Bay, caught approximately 100,000 weakfish and that all boaters in Delaware waters caught approximately 2,300,000 weakfish.
All available data suggest a 1:1 sex ratio for adult weakfish.
{S. c. Daiber, person. comm.), or that approximately one million potentially spawning female weakfish were caught by sport fishermen in 1976.
The relationship between impingement and commercial catch is of ~ven less magnitude.
In conclusion, all available data on population size and impingement number and survival indicate that impingement at Salem did not constitute a significant impact on the 1978 year-class of weakfish.
2SL-Standard lenth:
the hypural plate.
tail fin.
the distance from the nout to the end of The plate is located near the base of the I-2 P78 145 31
.e PENNSYLVANIA
-&1,
]#ll:iH!
Wilmini;ton l!:::::ii -
~
NORTH REGION
- tr SOUTH REGION NEW J E R S E Y Delaware B;:iy
~
N 130 Location of S.N.C.S. and H.C.C.S.
in southern portion of Artificial Island.
Atlantic Oce!ln Figure I The Delaware Estuary showing the location of Artificial Island, Salem County, New Jersey and the three
~
Weakfish study regionso I-3
e II.
JUVENILE (age O+) WEAKFISH POPULATION A.
Population Estimates Sampling to estimate the population of juvenile (age O+)
weakfish in the Delaware River Estuary (river mile* 0-73) was conducted on July 20-21, August 2-3, August 16-17, and September 7-8, 1978.
Estimates for each sampling period are the sums of sub-estimates of the three sampling regions (Figures II II-4):
South region -
river mile 0-40 Plant region -
riv~r mile 40-60 North region -
river mile 60-73 The weakfish population estimates for the four surveys were as follows:
Reg i£.!!.
Jul;t 20-21 Aus *. 2-3 Aus. 16-11
~t. 7-8 South 692,000,000 167,000,000 173,000,000 149,000,000 Plant 84,000,000 33,000,000 43,000,000 16,000,000 Nor.th 9,000,000 9,000,000 1,000,000 3,000,000 Total 785,000,000 209,000,000 217,000,000 168,000,000 (Appendix B lists the unscaled estimates and confidence intervals) *
-~
The sampling design was based on a simple random sample model and employed a 4.9 m semi-balloon otter trawl (for de-tailed trawl description and methodology see Appendix A).
This net has been demonstrated to efficiently capture juvenile weakfish of the length-frequency distribution* observed on the CWS screens, the size class of primary interest.
The popula-tion estimates described and discussed in this report refer primarily to fish of the size-class as they occurred in net samples.
Estimates do not include the larger ~r smaller spe-cimens not vulnerable to the gear but which make the popula-tion size larger than the estimate given.
Sampling was con-ducted during daylight and confined to two-day periods to maximize precision yet retain a static view of the population.
In order to randomly select samples, each of the three sampling regions was divided into numbered grids:
184 were established in the South region, 88 in the Plant region, and 20 in the North region (Figures II II-4; for methodology of grid system design see Appendix C).
The maximum number of grids which could be sampled was determined, and effort was allocated to obtain a similar. percentage of grids sampled (of possible grids) in each region.
Of the total 132 samples, 84 were to be taken in the South region, 39 in the Plant region,
~
- = Statute Mile II-l P78 145 01
and 9 in the No.rth reg ion.
Gr ids to be sampled were drawn e
randomly for each region.
The same grids were sampled during each sampling period.
However, weather conditions prevented the completion of effort in the South region during three of the four periods; the number of samples taken during those periods ranged from 75-82.
All specimens were enumerated.
A subsample of 30 specimens per collection was measured to the nearest mm (TL) during sampling periods July 20-21, August 2-3, and August 10-17.
On September 7-8, all specimens were measured in 5 mm intervals.
Representative samples were preserved.
The regional population estimates were calculated as follows:
where:
Population = X
- C. Eff
- Den X = the mean number of specimens per trawl haul by reg ion C = the number of possible trawl hauls iri that reg ion (For detailed definition and calculation of these terms see Appendix D).
9*
Ichthyofaunal population estimates, by nature, are con-servative since they are influenced by biases including gear efficiency, fish accessibility, and gear selectivity.
Scaling factors, Eff and Den, were included t.o compensate for two of these biases.
Eff = The probability of c~pturing a given species of a given size range is a function of the sampling gears selectivity.
The gear efficiency of a 4.9 m otter trawl for juvenile spot and Atlantic croaker has been reported as 6 and 25%, respectively (Loesh 1976).
Kjelson and Johnson (1978) reported a 14%
gear efficiency (6.1 m otter trawl) for spot.
It is assumed* that for weakfish a 25% gear efficiency is reasonable, resulting in a scaling factor of 4.
Den = The factor used to compensate for the coverage (depth) of the trawl within the water column.
Weakfish are semi-demersal and it was assumed that nearly all are concentrated in the bottom 2 m of the water column.
Since II-2 P78 145 02
.e the effective fishing height of the 4.9 m trawl is 0.61 m (pers. communi-cation, S.
Marinovich, trawl mfgr.), a scaling factor of 3 was used to account for fish accessibility.
The population estimates should be considered addi-tionally conservative in that the geometry of the gridding system precluded the inclusion of all potentially inhabitable waters of the estuary; 28.3% of the surface area in the North region was omitted from sampling and from the population estimates, as was 5.9% of the Plant region, and 0.3% of the South region.
Many of these areas were inaccessable due to boat draft limi-tations or underwater obstructions which could hamper trawling.
B.
Population Extrapolations Estuary-wide population estimates were also calculated for June 21 and July 5, 1978 by extrapolation from data collected in the routine trawl program within the Plant region.
Figure II-5 shows the monitoring program sampling area.
Justification of thes~ estimates is based on two assumptions:
where:
- 1.
the vulnerability of weakfish to the sampling gear on June 21 and July 5 was similar to that on subsequent sampling dates.
- 2.
the rela~ive proportion of the number of weak-fish in the Plant region to the entire estuary on June 21 and July 5, was no higher than that observed on July 20-21, i.e., 10.7%.
Thfs assumption considers that the earliest spawning and subsequent hatching of eggs occurs some 20-30 river miles down bay of the Plant region (for more detail see Section V).
The population extrapolations were calculated as follows:
Population Extrapolation = X
- c
- Eff
- Den
- Reg X, C, Eff, and Den are as defined previously Reg = a factor used to convert plant area population to bay-wide population.
Based on the assumption that the plant region contained no more than 10% of the total weakfish population in the estuary, a factor of 10 was used.
The population extrapolations for the two dates were as follows:
II-3 P78 145 03
Total June 21 1,210,000,000 July 5 513,000,000 C.
Spatial and Temporal Abundance and Distribution The unusually high abundance of weakfish (seen in trawl samples and concurrently high impingement levels prompted surveys to estimate the bay-wide population and place the impingement rates into ecological perspective.
Statistical tests, (see Appendix E) were applied to survey data to detect and locate significant temporal and spatial variation.
Length-frequency distribution by date and sub-area are presented in Tables II-1 II-23.
Data are summarized by date in the following discussion.
July 20-21, 1978-Juvenile (age O+) weakfish were taken throughout the estuary on July 20-21.
Growth data based on historical data collected in the monitoring program suggest that nearly all of these fish were spawned in May and were members of the first cohort, i.e., those resulting from the initial spawn.
A few specimens (<100) of the second cohort, those resulting* from the s.econd spawn appeared in the catch, principally in the horthern portion of the bay (Table II-1).
Although the abundance generally increased from north to south, analysis of variance indicated nd significant (P<0.05) difference in the relative abundance between North, Plant, and South regions (Table II-24).
However, within each region there was an area of higher concentration:
sub-area 2 in the South region, sub-areas 1 and 3 in the Plant region, and sub-area 1 in the North region (Figures II II-4, Table II-25).
The greatest weakfish abundance was in the relatively deep waters in sub-area 2, South region.
Abundance there was significantly (P<O. O 5) greater than in any other sub-area except sub-areas-! and 3, Plant Region and sµb-area 1, North region.
The abundance in sub-area 2, south region cannot be explained on the basis of its length-frequency distribution (Table I I-1)
- The second ranked locale of abundance was in the south-west portion (sub-areas 1 and 3) of the Pl an_t reg ion (Figure II-2).
This may be attributable in part to the soft mud bottom.
Hilderbrand and Cable (1934) reported that age O+
weakfish preferred a soft muddy bottom during their first summer.
The abundance was about half that in sub-area 2, South region.
The length frequency distribution of specimens
- in these sub-areas 1 and 3 was similar to those in adjacent sub-areas (Table II-1).
II-4 P78 145 04
- e.
ANOVA (analysis of variance) indicated that the abund-ance west of the shipping channel was significantly (P< 0.05) greater than east in the Plant region, but not in the South or North regions (Tables II II-28).
The lowest abundance of weakfish was recorded in sub-area 5, Plant region (Table II-25).
Abundance here was signi-ficantly (P<0.05) lower than in any other Plant sub-area.
This low abundance may be due to unfavorable habitat (bottom hard and scoured) and cropping by Salem (located in this sub-area).
The third ranked locale of abundance was sub-area 6, Plant region and sub-area 1, North region.
The abundance here was about half that of the sub-areas 1 and 3 Plant region.
August 2-3, 1978 The abundance of weakfish in the estuary on August 2-3 was significantly (P<0.05) less than that on July 20-21 (Table II-30); the population estimate decreased 73%.
This reduction reflected.a significant (P<0.05) decrease in the abundance in both the South and Plant regions (Tables II-31, II-32).
How the decrease* in these regions reflects emigration or mortality is not known.
The abundance in the North region had not significantly (P<0.05) changed since July 20-21 (Table II-33).
The first cohort continued as the principal component of the catch in all sub-areas.
However, specimens of the second cohort appeared, in low number, in the catch in all sub-areas except sub-area 2, South region (Table II-2).
A northward shift in the abundance of weakfish had oc-curred since July 20-21 as evidenced by the increase in the proportion of the total catch in the Plant and North regions.
The ANOVA indicated the abundance in the Plant and ~prth re-gions was significantly (P<0.05) greater than in th~ South region (Tables II-34).
Thomas (1971) reported that age O+
weakfish prefer low salinity waters and this shift may have been influenced by increasing salinities in the low bay.
There was no significant (P<0.05) difference in abund-ance among sub-areas in the South-region (Table II-35).
Those fish which had appeared in abundance in sub-area 2 on* July 20-21 had dispersed, possibly in response to high salinity in that area.
The concentrations of weakfish in sub-areas 1, 3, and 6, Plant region and in sub-area 1, North region evident on July 20-21 were not observed on August 2-3.
The abundance was similar throughout these regions; no significant (P<0.05) difference was detected (Table II-36).
Unlike during sampling period July 20~21, abundance in sub-area 5 was not signifi-cantly (P<0.05) different than in any other sub-area (Table II-35).
However, it remained lowest among sub-areas,of the Plant region.
II-5 P78 145 05
No significant (P<0.05) east-west difference was de-tected in any of the regions (Tables II II-39).
August 16-17, 1978 The abundance of weakfish in the estuary on August 16-17 did not change significantly (P<0.05) from August 2-3 (Table II-30).
The estimated population increased by 4%.
There was no significant (P<0.05) difference in abundance in plant region (Table II-32).- However, there was a significant (P<0.05) increase in abundance in the South region and a sig-nitican t (P<O. 0 5) decrease in abundance in the North reg ion during the two-week period (Tables II-31, II-33).
How the decrease in the North region reflects emigration or mortality is not known.
By this time, individuals of the second cohort had attained a length vulnerable to capture and were taken in abundance in all but the entire North region and sub-area 9,
- South re.gion.
The catch in most other sub-areas included both cohorts (Table II-3).
Recruitment of the second cohort into the Plant region may have contributed to the significantly (P<0.05) greater abundance in this region, as a whole,_ than was observed in the North or South regions (Table II-40).
The southern portion of the Plant region, as on July 20-21 was locale of high abun-dance (Table II-41).
Abundance in sub-areas 1 and 3, Plant region was significantly (P<0.05) greater than in sub-area 2, Plant region.
It was also significantly (P~0.05) greater than in sub-areas l~ 3, 4, 6, 7, and 9, South region and the two sub-areas, North region (Figures II II-4 and Table II-41).
As was the case on July 20-21 sub-area 2 was the area of greatest abundance in the South region (Table II-41).
How-ever, the abundan.ce was about half that in sub-areas 1 and 3, Plant region.
This abundance was significantly (P<0.05) greater than in sub-areas 1, 6, 7, and 9, South region and the two sub-areas, in the North region (Table II-41).
As on August 2-3 the abundance of weakfish in sub-area 5, Plant region was not significantly (P<0.05) different from any other sub-area (Table II-41).
It ranked fifth among the six sub-areas, in the Plant region.
Analysis of variance indicted that in the Plant and South regions abundance of weakfish on the west side of the shipping channel was significantly (P<0.05) greater than the east.
There was no significant (P<0.05) east-west difference in the North region (Tables II-42 = II-44).
II-6.
P78 145 06
September 7-8, 1978 The abundance of weakfish in the estuary on September 7-8 had not decreased significantly (P<0.05) since August 16-17 (Table II-45).
The populati.on estimate decreased some 23%.
Although the population in the North region apparently increased some 95% from August 16-17 results of the Kruskal-Wallis test (See Appendix E) indicated no significant (P<0.05) difference (Table II-46).
The increase in the estimate was due to single collection in sub-area 1, North region which took 75% of the catch.
There was no significant (P<0.05)
.change in abundance in the South region since August 16-17.
However, there was a significant (P<0.05) decrease in the Plant region (Tables II-47, II-48).-
Specimens of the second cohort were predominant in all the catches in all sub-areas, particularly in the Plant and North regions.
Nearly all members of the first cohort had emigrated from the North region and sub-areas 5 and 6, Plant region (Table II-4).
The first cohort was more common in the South region and sub-area 1, Plant region.
Although the greatest abundance was in sub-area l and 8, South region, abundance in the Plant region remained significantly (P<Oo05) greater than in the North or South regions (Tables II II-51).
Sub-areas 1 and 3, Plant region remained a locale of relatively high abundance (Table II-52)o As was the case on July 20-21 and August 16-17, sub-area 5 had the lowest abundance in the Plant region (Table II~52).
Unlike July 20-21 and August 16~17 the central por-tion (sub-areas 2, 3 and 6) of the South region was an area of relatively low abundance (Table ~I-52).
Abundance in the South region was greatest in the shallower waters of the nearshore sub-areas.
The Kruskal-Wallis tests indicated a significantly (P<0.05) greater abundance west of the shipping channel than east in-the South region (Table II-53); although abundarice was also greater in the west side in the Plant and North regions, the differences were not significant (P<0.05) (Tables II-54, II-55).
June 21 and July 5, 1978 (Extapolations)*
The extrapolated population estimate for weakfish was highest on June 21.
The catch per effort oh that date was of unprecedented magnitude.
It was comprised entirely of fish of the first cohort (Table II-5).
Life history aspects and his-torical catch data of the weakfish are detailed in sections V and VIo The abundance of weakfish in the Plant region on July 5 was significantly (P<0.05) lower than that on June 21.
The calculated population estimate decreased by 58%0 Specimens taken on this date were also part of the first cohort (Table II-6).
II-7 P78 145 07
SUMMARY
OF SPATIAL AND TEMPORAL ABUNDANCE DATA July 20-21, 1978
- 1.
Weakfish were taken throughout the estuary but abundance generally increased from north to south.
- 2.
Locales of high abundance were the south-central bay, south-west Plant region and southern part of the North region.
- 3.
The catch was almost entirely first cohort, the pro-duct of the initial spawn.
August 2-3, 1978
- 1.
Abundance in the estuary had decreased significantly since July 20-21, 197B.
- 2.
Abundance in the North and Plant regions was greater than in the South region, but within.regions, abundance was more evenly distributed.
- 3.
The first cohort continued as the principal com-ponent of catch and the second cohort appe~red more frequently than before.
August 16-17, 1978
- 1.
Abundance in the estuary had not changed signifi-cantly since August 2-3.
- 2.
Both the first and second cohorts were regularly taken.
- 3.
~bundance in the Plant region (southwest portion particularly) was greater than in North or South regions.
- 4.
Within the South region, the south-central portion was the center of abundance.
September 7-8, 1978
- 1.
Abundance in the estuary had not change significant-ly since August 16-17.
- 2.
Specimens of second cohort predominated the catch in the northern portion of the estuary while the first cohort re-mained common in the South.
II-8 P78 145 08
- e.
- 3.
Abundance in Plant region as a whole was greater than in the North or South regions.
- 4.
The greatest abundance occurred in the nearshore areas in the South region.
- 5.
Sub-area 5, Plant region was an area of low abund-ance, and had been throughout the surveys.
II=9 P78 145 09
D.
Abundance Per Unit Volume (w/100m3)
Calculations for density determination are described in Appendix G.
Data are presented in Table II-57.
II.
JUVENILE (Age 0+) WEAKFISH POPULATION E.
Biomass (Kilograms of fish)
Calculations for weight determination are described in Appendix H.
Data are presented in Table II-58.
II-10 P78 145 10 e*
III.
WEAKFISH IMPINGEMENT Impingement of organisms at the Salem CWS intake has been studied since April 1977.
The following is a narrative summary of weakfish impingement through the summer of 1978, a discussion of differences between 1977 and 1978, and an eval-ution of screen wash water recirculation and latent survival studies.
Detailed descriptions of the CWS intake, the fish return system, sampling procedures, and data reduction are provided in Appendices J, K and L.
A.
Narrative Summary Weakfish were first taken on the CWS traveling screens in 1978 on June 19.
They were collected in three of six sam-ples at a rate of 0.3-3.3 per minute (Table III-l)a Length range was 16-35 mm and survival was 64% (Table III-2).
During the first week of occurrence (June 19-24) total weekly esti-mated impingement (henceforth referred to as the weekly es-timate) was 41,800 specimens (Table III-3).
Estimated daily impingement (or, daily estimate) increased steadily (June 22 peak n<= 8000) although rate per sample (n/min) varied consid=
erably~ ranging from 0.0 to 20.7 (Table III-1).
Mean (weighted) survival was 48%; mean and modal lengths were 31 and 28 mm, respectively (Table III-4).
During June 25-July 1 the weekly estimate increased to 2,338,900 (Table III-3).
Daily estimates increased steadily through June 29.
On that date estimated weakfish impingement was 534,900 with 52% survival (Table III-2).
Of the actual number taken in samples (n = 6932) most (76%) were taken in one 3-min *. sample at 0000* hoursa Survival was 53%.
The high impingement rates on June 29 prompted an imme-diate analysis of weakfish data from the previous two weeks~
This showed that impingement was highest at the late ebb tide stage just before ebb slack, and that river-borne detritus load correlated directly with impingement rate and was highest just before ebb slack.
These factors indicated that fish and detrit~s, discharged through an outfall at the north end of the intake structure, were being recirculated and reimpinged during ebb tide.
The heavy loads of detritus, which were uriavoidably collected with impinged fishes, greatly hampered sample processing.
Some of the heaviest 3-minute samples required five men, six hours to process because of associated debris.
The mortality resulting directly from long periods in the fish counting pool and from recirculation was additive to the mo~tality due directly to impingement.
To reduce this bias, the sampling procedure during heavy detrital loading periods was chang~d from sampling 3 consecutive minutes of screen wash for both survival and abundance to sampling l III-1 P78 145 11
minute of flow for survival and abundance and a subsequent 2 minutes of flow for abundance only.
This modified procedure was implemented at 2200 on June 29; survival rate of weakfish was 75.2% at an impingement rate of 222 per minute and 75.2%
at a rate of 286 per minute (Table III-1).
Additionally, the station accelerated completion of the southern screen-wash discttarge which would permit screen wash flow to be discharged in the direction of both flood and ebb tidal flows.
During July 2-8 the weekly estimate.( n = 2, 382, 8 0 O) re-mained apptoximately at the level observed the previous week (Table III-3).
Daily estimates decreased by at least 100,000 from the level of June 29 but remained high on all days (Table III-2).
Rate per minute as estimated from samples varied from 12.3 to 1260.0 (Table III-1).
Mean survival was 66%; mean and modal lengths, were 54 and 53 mm, respectively (Table III-4).
The higher survival rate reflected the validity of the modified sampling procedure and a decreased vulnerability with growth of specimens.*
- During July 9-12 the weekly estimate decreased by about 800,000 from the previous week (Table III-3).
Daily estimates remained high, although on four of the six days sampled they were lower than estimates calculated in the previous week (Table III-2).
Rate per sample varied from 9.5 to 520.0
- e.
(Table III-1).
Mean survival. was 70%; mean and modal lengths A.
were 55 and 53 mm, respectively (Table III-4).
~
On July 11 the sampling schedule was changed to increase the number of sampling days per week from three to seven and increase the sampling frequeric~ within each day.
On three days per week the schedule became four 3-minute samples per day for survival and abundance taken at approximtely 6-hr.
intervals, plus as many additional 1-minute abundance samples as practicable.
On other days as many 1-minute abundance samples as practicable were taken.
On July 14 the south screen-wash discharge was put into operation.
Thereafter, screen wash water was discharged north on the flood tide and south on th~ ebb tide.
It was believed that this would minimize recirculation and thereby improve survival of impinged organisms and reduce detrital loading.
During July.16-22 the weekly estimate decreased markedly by about 1,190~000 specimens (Table III-3).
After July 17 daily estimates were below those observed the previous week (T~ble III-2).
Rate per minute per sample varied from O.O to 684.0 (Table III-1}.
Mean survival increased to 76% (Table III-3).
Mean length was 59 mm and modal length remained at 53 mm (Table III-4).
III-2 P78 145 12
.e
- e The weekly estimate during July 23-29 (n<= 382,100) changed little from that for the previous week-(Table III-3).
On five days the daily estimate was within the range observed during the previous week; on July 27 and 28 estimated impinge-ment was about 100,000 specimens lower (Table III-2).
Rate per sample varied from 0.0 to 270.0 (Table III-1).
Mean sur-vival decreased to 74%.
Mean and modal length increased to 60 and 58 mm, respectively (Table III-4).
During July 30-August 5 the weekly estimate decreased by about 185,000 specimens (Table III-3).
Daily estimates were generally within the range for the previous week (Table III-2).
Rate per sample varied from 0.0 to 131.0 (Table III-1).
Mean survival decreased to 70%; mean and modal length both increased to 63 mm (Table III-4)*
No reason for the reduction in survi-val was apparent.
During August 6-12 the weekly estimate decreased by about 72,000 specimens (Table III-3).
Daily estimates on August 7 and 8 (Table III-2) were at least 5000 specimens below those observed the previous week, but thereafter increased steadily.
Rate per sample varied from 0.0 to 117.0 (Table III-1).
Mean survival was 70%; mean and modal lengths were 65 and 68 mm, respectively.
The weekly estimate increased during August 13-19 by about 20,000 specimens (Tables III-2, III-3).
Daily estimates were generally within the range ob.served the previous week (Table III-1).
Rate per sample ranged from o.o to 144.0 (Table III-1).
Mean survival remained at 70%.
Mean and modal length incr.eased to 67 and 70 mm, respectively (Table III-4) e The minimum length decreased by 10 mm and the percentage of the total catch less than 50 mm increased from 1005% in *the previous week to 13.2%.
This indicated that members of the second spawn were now being impinged and partially explains the increase in total impingement.
During August 20-26 the weekly estimate decreased by about 41,000 specimens (Table III-3).
During the latter part of the week only 3-5 CWS pumps were in service due to op-erating conditions (Tabl~ III-1); this may be related to the reduction in impingement.
Daily estimates were within the range for the previous week on all days but one (Table III-2).
On August 24 che daily estimate decreased to 2300.
Rate per sample varied from 0.0 to 101.0 (Table III-1).
Mean survival increased to 81%.
Mean and modal length decreased to 63 and 58 mm, respectively, reflecting the increased involvement of specimens from the second spawn (Table III-4).
III-3 P78 145 13
The weekly estimate during August 27-September 2 de-
- e.
creased by about 8,000 specimens (Table III-3).
Circulator operation was quite variable during the first four days of the week and ranged from 2 to 6 pumps.
Daily estimates on August 28 and 29 were below those observed the previous week but cor-responded with reduced pump operation (Table III-1, III-2).
Rate per sample varied from 0.0 to 98.7 (Table III-1).
Mean survival increased to 84%.
Mean length increased slightly to 64 mm and modal length remained at 58 mm (Table III-4).
During September 3-9 the weekly estimate decreased by 24,000 specimens (Table III-3), although estimated daily im-pingement was within the range observed the previous week (Table II~-2).
The CWS was fully operational (5-6 circulators) throughout the week.
Rate per sample ranged from 0.0 to 96.0 (Table III-1).
Mean survival was 85% and mean and modal length increased to 73 and 63 mm, respectively (Table III-4).
During September 10-16 the weekly estimate decreased by about 29,000 specimens (Table III-3).
The daily estimate on September 15 was 1000 specimens below the lowest daily estimate in the previous week (Table III-2).
Rate per sample ranged from 0.0 to 65.0 (Table III-1).
Mean survival increased to 89%.
Mean and modal length were 80 and 78 mm, respectively (Table III-4).
The weekly estimate during September 17-23 decreased by A*
about 35,000 specimens (Table III-3).
Daily estimates showed
~
less variability than had been observed during the previous week (Table III-2).
Impingement rate generally decreased and catches of 0.0-3.0 per minute were frequent (Table III-1).
Mean survival decreased to 76% (Table III-3).
The frequent low catches did not provide enough specimens to accurately assess survival~
Mean length increased to 85 mm and modal length remained at 78 mm (Table III-4).
Based on the decreasing impingement rate and reduced variability in daily estimates sampling was reduced to seven days per week.
During September 24-30 the weekly estimated impingement decreased to 17,400 specimens, the lowest level observed dur-ing the period of occurrence (Table III-3).
Daily estimates were consistently below 4000 specimens (Table III-2).
Im-pingement rates of 0.0-3.0 per minute were common (Table III-1).
Mean survival was 87%; however, the low number of specimens in most samples should be considered when assessing survival.
Mean and modal lengths increased to 89.0 and 93.5 mm, respectively (Table III-4).
III-4 P78 145 14
In summary, during June 18-September 30 a total of 55,352 weakfish were taken in 1617 minutes of impingement sampling.
Estimated total impingement for this period was 7,994,000 (Table III-3).
Most of the estimated total was taken during the three-week period from June 25 through July
- 15.
During the first two weeks of occurrence mean survival measured in impingement samples was 44%.
After the revised weakfish survival sampling procedure was implemented, mean survival was 70%, and is believed to be more representative of actual survival levels over the entire period.
The data suggested that survival generally increased directly with mean and modal length.
Length frequency distributions for live, dead, and damaged specimens are shown in Tables III-5, III-6, III-7, respectively.
In all but two weeks mean length of live specimens was 1-7 mm greater than mean length of dead.
When mean length for all condition classes are combined (Table III-4), and mean weekly survival are traced through the summer, the relationship is direct during seven weeks and inverse in seven.
The relationship of length to impingement mortality has not been fully examined.
III-5 P78 145 15
B.
Compa~ison of 1977 and 1978 Weakfish Impingement During 1977 a total of 7,808 weakfish were taken in 1158 minutes of impingement sampling at the CWS intake (Table III-8).
Estimated total impingement from June through Novem-ber was 1,877,000 specimens.
Weakfish ranked third among species in total number impinged and fifth in total weight.
In 1977, weakfish were first taken on 16 June and were common through September.
Most (55.3%) of the total was impinged during July.
During all months of occurrence estimated impingement was lower during 1977 during 1978.
In 1977 annual survival was 57%; 38% were dead and 3%
damaged.
Percent l.ive ranged from 38 in June to 100 in November.
During months of abundance (June-September) percent live ranged from 38 to 76.
Survival generally increased from June through November.
- e.
Plots of d~ily estimated impingement during 1977, 1978, and 1977 vs 1978 are presented in Figures III-1, III-2 and III-3, respectively.
In 1977 daily estimat~s were calculated by scaling the mean daily impingement rate to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
In 1978, the procedure was modified to allow factoring of the time interval betw~en samples into the estimate (See Appendix L for computational details).
However, since the 1977 es-timates are based on four equally spaced samples per day they should be directly comparible with 1978 estimates.
4t*
. As can be clearly seen in Figure III-3, there were major differences in the timing and magnitude of peak impingement between the two years.
In 1978, weakfish impingement peaked during late June and remained high thtoughout the first half of July.
In 1977 impingement increased during late June and early July but did not pe~k until July 14.
Interestingly, peak impingement in 1977 coincided with a marked decrease during 1978.
Schuler and Maiden (1975), in a review of weakfish occurrence and abundance near Artificial Island, suggested that a strong year cl~ss may be indicated by large catches in late June and early July.
Based on river trawl data, in both 1970 (Schuler and Maiden 1975) and 1975 (Beck and Grieve 1977) high catches of weakfish during June and early July and strong year classes were evidenced by monthly and annual trawl data.
From mid-July through the beginning of August daily impingement in 1978 remained somewhat higher than in 1977.
From early August through the end of September little dif-ference in daily impingement was evident (Fig. III-3).
III-6 P78 145 16
.e
- c.
Recirculation An analysis of the relationship between tide and rate of weakfish and detritus impingement was conducted in an attempt to define the extent of recirculation of discharged material and to determine the effectiveness of alternating the direc-tion of the screen-wash discharge with the tide in reducing recirculation.
This analysis was done using stepwise multiple regression
.techniques (Barr et al 1976).
Tidal stage and elevation, which is measured relative to the station baseline datum, were combined to form a continuous variable by first assigning a negative value to all ebb tide elevations and a positive value to all flood tide elevations.
All positive elevations were th~n subtracted from 80 and all negative elevations were added to 96.
This transformation provided a convenient scale with the lowest elevations occuring near the center.
On this scale mean low water equals about 8 and mean high water about l2c Since the relationship between tidal elevation and impingement was not always expected to be linear, quadratic and cubic transformations of elevation were also examined in the analy-sis. Weakfish impingement rates were transformed by log (rate+ l) to stabilize the variance and reduce the vertical scale on the scatterplots.
Regressions were run for four dif-ferent time periods.
The first designated nPre in, was the period before the south discharge was operational (i.e., the period of recirculation).
The period after the south discharge was operational and divided into three sub-periods of generally high, moderate, and low weakfish impingement, and designated npost in, Post 2
111,
and nPost 3"', respectively.
Results of regression analy-sis for weakfish are given in Tables III~9, III-10, III-11, and III-12c Plots of density vs tidal elevation and the best fitting least-squares curve, if any, are shown in Figures III-4, III-5,III-6, and III-7c For all periods the three-variable model, which included the quadratic and cubic trans-formations of elevation provided the highest coefficient of determination (R2), indicating both linear and curvilinear components of the relationship.
However, only during the first period (Pre l) did the model significantly {P<0.05) fit the sample data {Table III-9).
The plot of the-least-squares line for this model {Figure III-4) shows impingement increasing through the early stages of the ebb tide, peaking during the second half of the ebb, decreasing during ebb slack and throughout the flood tide.
The model indicated that rate increased during flood slack.
III-7 P78 145 17
During the periods after the south discharge was op-erational no strong relationship between weakfish impingement and tide were evident from the analysis (Tables III-10, III-12; Figures III-5, III-6, III-7).
During period "Post 2,"
a least squares line was fit to the data which showed somewhat higher impingement during ebb tide (Fig. III-5), although the line did not fit the data well (R2 = 0.076) and the model was not significant (P~0.05).
Results of regression analyses for detritus are given in Tables III-13, III-14, III-15, and III-16.
Plots of density vs tidal elevation and the best fitting least-squares curve are shown in Figure III-8, III-9, III-10 and III-11.
In general, results were similar to those for weakfish.
- Again, the three-variable model provided the highest R2 value.
Only during the first period did the model significantly (P<0.05) fit the sample data (Tabl~ III-13).
The plot (Figure YrI-8) shows a relationship similar to that for weakfish.
Regression for periods after the south discharge was operational showed no consistent relationship between detrital impingement and tide.
Results of this analysis suggest that before the south discharge was operational recirculation was responsible for higher impingement during ebb tide.
The weakening of the relationship between tide and impingement after operation of the south discharge indicated reduction, if not elimination, of recirculation.
III-8 P78 145 18
D.
Latent Survival Latent survival studies were scheduled in the on-station program to determine the survival, after various holding periods, of fishes which had been impinged at the CWS.
Re-sults would reflect on the relevance of the survival rates observed after 5 minutes of holding and regularly reported.
In 1977, 42 mixed species groups were held in the one available fish counting pool for 2-or 3-hr. periods.
Samples were taken by diverting a 3-minutes of flow of screen wash water to the holding pool as soon as possible after a moni-toring program sample has been taken.
After a holding period of 2-or 3-hr the pool was drained and the sample processed according to the procedure followed by the monitoring program samples.
Latent survival rates were compared with survival rates determined in the immediately preceding monitoring program sample which was processed immediately and serves as control.,
Longer holding periods were pr~cluded by the schedule of abundance sampling which required the pool.
A few longer duration studies were done but these groups did not include weakfish.
Since 2-to 3-hr. tests could more readily be done in conjunction with scheduled sampling, these were emphasized to generate as many points as possible.
A total of 37 tests groups included weakfish, 18 for 3-hr. and 19 for 2-hr.
(Tables III-17 and III-18).
Most had too few specimens for rigorous scrutiny but do support semi-quantative review.
Also, vulnerability to impingement damage decreases with in-creasing specimen size, and this has not been separately factored.
However, there is a pattern evident in these data, i.e. in 26 of the 37 tests (65%) weakfish demonstrated higher survival after 2-, 3-hr.
holding than in the control (the closest scheduled monitoring sample); 30% demonstrated a decrease; 5% remained the same.
Within the 26 groups in which weakfish survival was higher after the holding period the increase over the control ranged from 4-70%.
The largest increase occurred from late August through early September.
It is note worthy that during many of these 2-, 3-hr holding periods weakfish were observed to feed, an indication of
- goodness" of condition.
In 1978 the intensive sampling demand on the North and the newly available (July) South pools precluded any holding for latent studies for more than 6 hr.
Therefore, latent study efforts were shifted to the Delaware Experimental Labo-ratory.
This facility has suitable holding facilities, III-9 P78 145 19
although testing at this site also required the additional specimen handling in capture and transfer by boat or truck tanks.
Test results were inconclusive due to availability and validity of control groups and mechanical difficulties.
Laboratory studies and perhaps additional on-site studies, will be expanded in the 316(b) study program.
~II-10 P78 145 20
IV.
SALEM IMPACT:
POPULATION VS. IMPINGEMENT The extent and probable impact of impingement losses on the 1978 year-class of weakfish can at present only be evalu-ated by comparing impingement and estimated population on each of the days a population survey was conducted and by comparing total population reduction and cumulative impingement through the end of the season.
Table IV-1 provides a historical sum-mary of the weakfish population estimates for the plant area and entire bay-wide (RM 0-73) and corresponding estimated im-pingement on each date.
By examining the percenta.ge of weakfish in the plant area impinged it can be seen that impingement cropped approxi-mately the same small fraction (0.03-0.07%) of the population present per day on each of the four days population estimates were based on complete sampling.
Regression of estimated impingement on the plant area population for these four surveys resulted in a highly significant direct relationship (R2 = 0.98; P~0.05).
Using the regression as a predictive model, the plant area population alone on July 5 would have been 1.19 x 109.
The extrapolated population estimate for July 5 was 5.13 x 107, and is 25 times lower than the predicted value. It is possible that the extrapolated population estimate, based primarily on trawl data from shallow zones underestimated the true magnitude of the population.
Thomas (1971) found that small young entered the Plant area through and were most abundant in, deeper waters in and adjacent to the channel.
Which of the estimates is more valid is not known.
The percentage-of the Plant area population impinged on June 21 (0.006%) was much lower than would have been predicted on the basis of the regression model.
Examination of length-frequency distributions (Tables II-18, II-19, II-20 and II-21) show that the lengths of almost all (99%) of the riverine population was below the effective minimum impingeable length (40 mm).
Impingement of specimens less than 40 mm is variable and probably dependent on involvement with detritus and angle of approach to the screens.
The overall impact of impingement may also be evaluated by comparing the reduction of population between the first and the last estimates and the cumulative estimate of impinge-ment for the period.
The reduction in the population of weak-fish in the Delaware River Estuary from June 21 to September IV-1 P78 145 21
7-8 was estimated to be 1.04 x 109.
Estimated impingement
- e.
over this period was 7.86 x 106, of which 2.97 x 106 (39%)1 were estimated to have been lost.
Impingement mortality, therefore, accounted for less than 0.3% of the observed popu-lation decrease.
Natural mortality and emigration from the system account for the remainder of the reduction.
All available data on population size and impingement number and survival indicate that impingement losses at S.N.G.S.
did not constitute a significant impact on the 1978 year-class of weakfish.
lThis 39% is the mean over th entire sampling period.
It does not distinguish the difference in mortality between survival rates observed before (44%) and after (70%) the improved survival sampling procedure, which was implemented on 27 June.
Figure IV -
l and IV-2 are scatter plots of impingement vs. number alive.
A 70% overall survival rate for.the entire period appears appropriate.
IV-2 P78 145 22
V.
ASPECTS OF THE LIFE HISTORY OF THE WEAKFISH, CYNOSCION REGALIS, WITH SPECIAL REFERENCE TO ITS OCCURRENCE IN THE DELAWARE BAY & ESTUARY The weakfish, Cynoscion regalis, is a schooling species which ranges from the east coast of Florida to Massachusetts Bay, with strays reported as far north as the Bay of Fundy (Bigelow and Schroeder 1953).
Nesbit (1954), Perlmutter et al. (1956), and Hannie (1958) reported a northern spawning population in New York and northern New Jersey, and a southern spawning population from New Jersey to North Carolina. Seguin (1960) suggested the existence of New York, Delaware-lower Chesapeake, and North Carolina groups based on morphometric and meristic variation.
Such divisions, however, have been disputed (Joseph 1972).
The weakfish is a warm season migrant along the middle Atlantic coast, arriving from April to May and departing from October to December (Welsh and Breder 1923) o Its migration is thought to be mainly north-south, but onshore-offshore movements may also occur.
During summer the weakfish generally remains inshore in bays, estuaries, and coastal waters.
Yearly abundance in some areas may fluctuate greatly.
Throughout most of its range the weakfish is an important sport and commercial species (Thomson et al. 1971).
The weakfish spawns in coastal waters and bays.
S.oon after hatching, the larvae become demersal and move into estuaries which they utilize as a nursery throughout the warm season (Harmic 1958; Chao and Musick 1977).
The young are euryhaline and have been reported in fresh water (Massman et al. 1958). Their growth is fairly rapid; young in the Delaware River averaged 120 and 155 mm FL by October in 2 separate years (Thomas 1971). Weakfish feed mainly on fishes and planktonic crustaceans. Males attain sexual maturity at 2-3 years and f~males at 3-4 years (Welsh and Breder 1923). Merriner (1976), however, reported V-1
that in North C.arolina sexual maturity was attained at 1 year by both sexes. Weakfish may live to 8 years and attain lengths exceeding 700 mm (Perlmutter et al. 1956).
The spawning season is protracted, extending from April to September, with most activity occurring in May and June (Welsh and Breder 1923; Merriner 1976).
Da.iber (1957) stated that the spawning season in Delaware Bay was from late May through August.
The spawning activity has been described to have two peaks in intensity apparently related to an age dependent differential response to conditions favorable for spawning.
Generally, the first peak occurs in June and the second in July.
The literature disagrees as to the exact timing of these peaks within a spawning season (Daiber 1957, Harmic 1958, and Thomas 1971), but this may be related to annual fluctuations in the occurrence of optimum physicochemical conditions which key spawning.
The principal location of spawning is in the lower portion of the bay.
The literature again disagrees as to the regions of principal activity. Welsh and Breder (1923) indicated that the east side of the bay between Maurice River Cove and Cape May was the primary area, while Harmic (1958) stated spawning occurred predominently in the southwest area.
Fertilized eggs have been collected at water temperatures of 16-27 C and salinities of 12-31 ppt.
The eggs are pelagic and highly buoyant; they hatch in about 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> at 20-21 C (Welsh and Breder 1923; Harmic 1958).
Egg production is high and related to both fish length and weight.
Merriner (1976) stated that a female of 500 mm SL produces slightly over 2 million eggs. and that fecundity increases about 128,000 eggs per 100 g of body weight.
Harmic (1958) stated that the egg production for this species in the Delaware Bay might easily reach 450 billion eggs per season.
V-2
Ichthyoplankton collections have been taken near S.N.G.S. by IA since 1971.
Viable weakfish eggs were first reported in collections in 1974 and have occurred annually through 1977.
However, their restricted temporal occurrence and relatively low densities suggest the marginal nature of this area for spawning.
In 1974 ichthyoplankton collections were taken in the vicinity of Ship John Shoal (RK 48.1-64.8).
These data indicated that
- 1.
the period of occurrence of weakfish eggs was a month longer,
- 2.
their peak in abundance was a week earlier,
- 3.
the magnitude of this peak was over six times greater than in the vicinity of S.N.G.S. (Maiden et al. 1976).
These data support the premise that the Delaware River in the vicinity of S.N.G.S. is not a critical area for weakfish spawning.
V-3
VI.
TEMPORAL DISTRIBUTION OF AGE O+ WEAKFISH IN THE VICINITY OF SALEM DURING 1970-1977 Age 0+ weakfish have been collected by IA near Artificial Island annually since the ecological studies began in 1968, and have been reported in the annual progress reports.
These data were collected as part of a monitoring program to establish norms in temporal and spatial distribution and are not amenable to extrapolation to population estimates.
The occurrence of age O+ weakfish in 1978 was of unprecendented magnitude.
The catch for the last two weeks of June 1978 was greater than the combined annual catches from 1973 through 1977.
Typically the weakfish's period of occurrence has been from June through November.
Weakfish have ranked annually second to fourth in total catch during summer (June-August) and third to seventh during fall (September~
November). Annually, from 70.5% to 97.5% of the total weakfish catch has occurred during June-August.
Based on river trawl data, the monthly mean catch per unit effort (n/T) was greatest in July in five of eight years (1970-1977), ranging from 9.4 to 69.9 (Table ).
In 1972 and 1973 monthly n/T was greatest in August (24.7 and 13.0, respectively).
These apparent shifts in the period of peak abundance were probably caused by the heavy run-off resulting from Hurricane Agnes in 1972 and unusually heavy spring rains in 1973.
In 1975 monthlyn/T was greatest in June (53. 7).
In the ecological studies conducted by IA in the Chesapeake and
.Delaware Canal near the proposed Summit Power Station, age 0+ weakfish have been collected annually from 1973 through 1977.
The period of occurrence has been similar to that recorded near Artificial Island, and VI-1
the month of maximum n/T typically has been July (n/T ranging from 10.3 to 125.S). Generally there has been an increasing gradient of abundance from west to east.
Thomas (1971) indicated salinity probably limited distribution of weakfish in the area east of Summit Bridge.
Therefore, young weakfish taken in the canal are probably from the Delaware stock.
VI-2
- e.
VII.
CONCLUSION All available data on population size and impingement number and survival indicate that impingement at Salem did not constitute a significant impact on the 1978 year-class of weakfish.
VII-1 P78 145 32
APPENDIX A DESCRIPTION OF TRAWL A description of the trawl used is as follows:
4.9 m semi-balloon otter trawl, 4.9 m headrope, 5.8 m footrope, net made of nylon netting of the following size mesh and thread: 3.8 cm stretch mesh No. 9 thread body, 3.2 cm stretch mesh No. 15 thread cod end.
Innerliner of 1.3 cm stretch mesh No. 63 thread k.notless nylon netting hogtied to cod end.
Head and footropes hung on 1.0 cm diameter Poly-Dae net rope with legs extended and wire rope thimbles spliced in at each end.
There are six 3
- 8 x 6
- 4 cm Ark floats on headro pe and 3
- 2 mm galvanized chain hung loop style on footrope.
Nets are treated in green copper net preservativ!'!*
Trawl doors used with the above net were 61.0 cm in length and 30.5 cm in width, made of 2.54 cm mahogany lumber, 2.5 x 0.6 cm steel straps and braces, 1.0 x 5.1 cm bottom shoe runner.
Doors were set with 2/0 galvanized chain and one 0.8 cm swivel at the head of each bridle.
A 15.2 m bridle was attached to the trawl doors.
TRAWLING METHOD The trawl was fished on the bottom, maintaining a ratio of towline to depth of at least 6:1.
Hauls were of 10 min duration at a standard speed and were made in the direction of the current. Fishing time commenced when* the trawl line became taunt.
If trawl line became twisted or a large inanimate object was taken the trawl was aborted and repeated.
APPENDIX B Unscaled weakfish population estimate*, 95% confidence interval, and percent sum by region of the Delaware Estuary for sampling periods 20-21 July through 7-8 September, 1978.
20-21 July Region Unscaled Estimates *and 95 % Confidence Interval
% of South 57,685,223 +/- 27,399,536 88.2 Plant 7,025,25 9.+/-
2,386,112 10.7 North 7l5,520 +
185,587 1.1 65,426,002 2-3 August Region Unscaled Estimates and 95 % Con,fidence Interval
% of South 13, 901,513.+/- 10,044,146
- 79. 7 Plant 2 '770,816 +
806,5 99
- 15. 9 North 761,760 +
615,610 4.4 17,434,089
- e 16-17 August Region Unscaled Estimates and 95 % Confidence Interval
% of South 14,400,632 + 5,383,048 79.5 Plant 3,588,154 +/-, 1,355,852 19.8 North 123,520 +
118,067 0.7 18,112,306 7-8 September Region Unscaled Estimates and 95 % Confidence Interval
- i. of South 12,410,061.+/- 4,082,606 88.7 Plant 1,345,286.+/-
3 98,520 9.6 North 240,880.+/-
406,040 1.7 13 '996,227
- ~ Numbers not rounded for demonstration purposes.
B-1
APPENDIX C DESIGN OF GRID SYSTEM In order to randomly select sample locations, each of the three sampling regions was divided into numbered grids based on a LORAN C overprint of the Delaware Bay (National Ocean Survey Chart #12304, 24th Ed.).
The use of LORAN C grids for sample grids facilitated reproducibility of sampling locations.
In the southern region (ca. river mile 0-40) four contiguous LORAN C quadrates were combined to form one numbered grid in order to obtain a sufficient number of grids to ensure well distributed and representative sampling within the region.
Reduced configuration of the estuary in the Plant and North regions necessitated the reduction of grid size in these regions (25% of the area of the grids in the South region).
Incomplete near-shore grids, those that had 60% or more of their surface area covered by water, were included to ensure that all habitats had probability of being sampled.
Some areas were not included in the sample grid selection because more than 40% of their surface area was land, they were inaccessible because of water depth or shoreline configuration, or they contained hazards to vessels and/or gear.
APPENDIX D FACTORS USED FOR POPULATION ESTIMATION Population estimates were calculated by multiplying the mean catch per haul in the region by the total number of possible hauls (area per region 7 area per trawl haul or 5062 m2) in that region.
The following describes the calculation procedure:
Population Estimate = X
- C where X =Total number of specimens taken/total number of hauls, and C =
area of sub-area/area of trawl haul.
The area of each regional sub-area and the area of a trawl haul were determined in deriving "C".
The area of each sub-area was determined with a Lietz Polar Planimeter, Model 3651-30.
The bottom area covered in a standard haul was determined by multiplying the distance traveled in a haul (predetermined to be 1,368 m) times the effective fishing width of 3e7 m (pers.
2 communication, S. Marinovich, trawl manufacturer), or 5,062m.
D-1
APPENDIX D (Continued) 2 Surface area (m ) and number of possib~e trawl hauls (C) by region and sub-area of the Delaware Estuary (RM 0-73) used in population estimates, 1978.
North region Sub-area 1 Sub-area 2 Total Plant region Sub-area 1 Sub-area 2 Sub-area 3 Sub-area 4 Sub-area 5 Sub-area 6 Total South region Sub-area 1 Sub-area 2 Sub-area 3 Sub-area 4 Sub-area 5 Sub-area 6 Sub-area 7 Sub-area 8 Sub-area 9 Total
- 1. 92 2.13 4.05 3.22 3.79 2.05 2.44
- 3. 73 3.15 18.38 17.30 22.90 20.30 9.10 14.70
- 25. 90 13.80 14.30 11.30 149.60 D-2 Number of Possible Trawl Hauls ( C) 3, 790 4,210 8,000 6,360 7,490 4,050 4, 820 7,370 6,220 36,310 34,077 45,160 40,162 17, 93 8 29,099 51,165 27,222 28,170 22,244 295,33 7
- e.
APPENDIX E DATA TRANSFORMATION AND TESTS OF ASSUMPTIONS Examination of historical data has shown that trawl catch data approximates the negative binomial distribution.
Therefore, the transformation Y = log (catch +l) was used in an attempt to normalize the data.
Subsequent to transformation, the Chi-square goodness of fit test and the F-max test were run on data from each date and selected groups of dates to test for normality and homogeneity of variances, respectively. Analysis of variance and Duncan's multiple range test (DMR) were used to analyze data which did not deviate significantly (P ~ 0.05) from the normal distribution or have heterogenous variances.
Data which deviated from normal, e.g., data from 7-8 September, or had heterogenous variances, were tested with the non-parametric Kruskall-Wallis test.
In some cases (date 6, regional comparison), when further definition of significance was required, multiple-paired testing was used.
E-1
APPENDIX E (Continued).
2
!~~~_!!!..__p_!_ chi square (X ) goodness of fit tests for normality and F-max tests for homogeneity of variances performed on log-transformed population survey data for selected,.dates, 1978.
Dates 21 June. 5 July 20-21 July_
2~3 August 16=17 August 7-8 September 20-21 July, 2-3 August 16-17 August, 7-8 September (all regions) 20-21 July, 2-3 August 16-17 August (all regions) 20-21 july, 2-3 August 16-17 August, 7-8 September (North region only) 20-21 July, 2-3 August 16-17 August, 7-8 September (Plant region only) 20-21 July, 2-3 August 16-17 August, 7-8 September (South region ?nly) 2 X
fo~ normality 2 Critical X.OS X
6.329 14.067 12.592 14.067 12.592 15.507 15.507 27.879...
6.239 4.145 6.462 20.88
- 17.122*
8,827 Data significantly (P-0.05) different from normal distribution
- Variances significantly (P-0.05) heterogenous E-2
- F-max for homogeneity of variances Critical F max. 05 value F-maA ratio
)51.4
)124
)124
)51.4
> 1.5 8.4
> 2.4
) 1.6 49.1 71.4 34.5 25.5 1.3 26.l**
2.3 1.5
APPENDIX F SUBDIVISION OF REGIONS INTO SUB-AREAS In order to detect differences in abundance within regions further division of North, Plant, and South regions was done.
The South region (RM 0-40) was divided longitudinally into 10-mile sections of river and was further divided latitudinally into areas of roughly similar depth readingse This scheme resulted in nine sub-areas.
The Plant region (RM 40-60) was divided into 5-mile sections of river and in the southern portion was further divided latitudinally by the shipping channel.
This resulted in six sub-areas.
The entire North region (RM 60-73) was divided only longitudinally into two 5-mile sections of river.
Each of the sampling quadrants was examined for continuity of depth at mean low water.
If no abrupt, pronounced increase or decrease in depth was noted a mean depth for the quadrant was calculated by summing the depth soundings within the quadrant and dividing by the number of soundings (reference: u. S. Coast and Geodetic Survey Charts #12304 and 12311). 'nlis mean depth was multiplied by the area of the quadrant to obtain a volume.
In quadrants where pronounced changes in depth were evident (i.e.,
shoals or channels) the quadrant was subdivided into areas of similar depth and the mean depth for each of the sul!->divisions was calculated and multiplied by the area of the subdivision (area determined using an acreage - area measurement grid) to give a volume per subdivision.
These partial volumes were summed to produce a volume per sampling quadrant.
All volumes per quadrants in a sub-area were summed to produce a total volume per sub-area.
Density was calculated by dividing the number of specimens (n) by 3
volmne (m ) (as calculated above) and divided by 100 to obtain a nmnber per 100 cubic meters (n/100m3 ).
G-1
- e APPENDIX. H CALCULATIONS FOR WEIGHT DETERMINATION BY REGION AND DATE A mean length per region by date was obtained by summing the individual length measurements and dividing by number of observations.
Tile log of the weight (gm) was regressed against the lengths (lllll) of some 900 specimens collected during the population surveys and resulted in the length-weight regression formula (R square=.92):
Log weight (gm)= (0.01780432) [length (nm)] - 0.84108681 Tilis weight per specimen was multiplied by the estimated number of specimens (n) in each region for each date to obtain a total weight per region per date.
The number of specimens (n), weight (kg), and weight (lb) in each region with the correlating impingement weights are presented. in Tables II-58 and II-59.
H-1
-\\
APPENDIX I Unscaled weakfish population estimate* and 95% confidence interval for the Plant region of the Delaware Estuary for sampling dates 21 June and 5 July, 1978.
21 June Unscaled Estimate and 95% Confidence Interval 10,044,072 + 6,460,106 5 July Unscaled Estimate and 95% Confidence Interval 4,273,324,_:t 4,450,471
- ~ Numbers not rounded for demonstration purposes.
I=l
APPENDIX J CIRCULATING WATER SYSTEM ( CWS)
INTAKE AND FISH RETURN SYSTEM DESCRIPTION Condenser cooling water is withdrawn from the Delaware River through a shoreline intake located at the south end of Artificial Island by six circulating water pumps per unit.
Each circulator is mounted in an individual pump well and is rated at 185,000 gpm (11,672 m3/s).
Prior to station start-up the intake was modified to maximize survival of impinged organisms and permit sampling to assess impingement magnitude and impact. Modifications are similar to those made by Virginia Electric Power Company at the Surry Power Station. Principal components are vertical traveling water screens fitted with fish buckets, a low pressure fish removal system, sluices to return impinged organisms to the river, and a counting pool for sampling purposes.
Each of the six traveling screens contains 62, 3/8-in-mesh (1-cm),
screen baskets 121 in wide by 21 in high (307 x 53 cm).
Normal operation is continous at a speed of 6.0 ft/min (3.0 cm/s) with alternate capabilities of 10.5, 15.5, and 20.0 ft/min (5.3, 7.9, and 10.2 cm/s) depending on debris load.
The base of each screen basket is fitted with a l 1/2-in deep by 2 1/2-in wide (3.9 x 5.1 cm) lip which creates a water filled bucket.
As the basket.is raised through and out of the water, impinged organisms drop off the screen face into the bucket.
The bucket provides a suitable environment for transport and prevents most organisms from falling back into the water and. becoming reimpinged.
As the basket travels over the head sprocket specimens slide onto the screen face and are spray washed into a 11-x 17-in (28-x 43-cm) sluice of running water by one outside (7 psi pressure) and two J-1
inside ( 15 psi) spray headers.
Heavier debris is spray washed into a lower sluice (24 x 33 in,* 60 x 84 cm) by two high pressure (90 psi) spray headers.
Prior to 14 July 1978 the combined flow of the upper fish sluice and the lower trash sluice were discharged through a common outfall located at the north end of the intake structure.
To reduce recirculation of discharged material during ebb tide a south discharge was put into operation. This permitted screen-wash flow to be discharged in the direction of tide.
For sampling, both sluices can be diverted to concrete cot.mting pools, located at the north and south ends of the intake, which have been designed to minimize collection stress. Prior to 14 July 1978 only the north counting pool was o*perational.
Thereafter both pools were used depending on the direction of screen wash discharge.
A filter bag with a 1 1/4-in stretched (3.2 cm) nylon mesh body and a 1/2-in stretched (1.3 cm) mesh innerliiler attached to a wooden frame can be inserted immediately upstream of the pool entrance.
The f>ag permits filtered water to be introduced into the pool and allows discrete samples to be taken.
Specimens enter the pools through steel.
slides whic.h reduce water velocity.
Overflow pipes limit water depth to about three feet (1 m).
The pools are drained through 12-in valves. Specimens are prevented from escaping during draining by two 3 /8-in (1 cm) steel mesh screens. If the detritus load is beavyeach screen can be alternately
- raised with an electric hoist and cleaned.
J-2
.e
Sampling Schedule APPENDIX K MATERIALS AND METHODS Prior to 29 June 1978, fishes and blue crab impinged on the CWS screens were sampled during three, 24-hr periods per week.
A minimum of four 3-min samples for survival and abundance were taken at approximately 6-hr intervals (1200, 1800, 0000, 0600).
On 29 June it was determined that during periods of heavy detrital loading long periods in the counting pool were negatively biasing survival estimates.
The procedure during periods of heavy detritus was modified to sample 1 min of flow for survival and abundance and a subsequent 2 min of flow for abundance only
- On 11 July, the sampling schedule was changed to increase the number of sampling days per week to seven and to increase the sampling frequency within eac~ day.
On three days per week the schedule became four 3-min samples per day for survival and abundance taken at approximately 6-hr intervals plus as many 1-min abundance samples as practicable ta.ken throughout the balance of the day.
On the remaining four days as many 1-min abundance samples as practicable were taken.
Sampling Procedure Survival Samples Before each survival sample was taken, a pool was filled to a depth of about 10 ~n (25cm) with filtered water.
Sampling was initiated by rapidly removing the filter bag.
After 1 or 3 min flow of total screen wash water had entered the pool, sampling was terminated by re-inserting the filter bag.
K-1
- e.
Organisms in the pool were allowed a 5-min acclimation period after which it was drained.
During draining impinged organisms were collected with dip nets and their condition determined according to the following criteria.
Live: Swimming vigorously, no apparent orientation problems, behavior normal.
Dead: No vital signs, no body or opercular movement, no response to gentle probing.
Damaged: Struggling or swimming on side, indication of abrasion or laceration.
Specimens were placed in water filled labeled buckets or pans and returned to the sample processing area.
All specimens in each condition category were sorted by species, e-and the total number and weight of each was determined.
All specimens or a representative subsample (at least 100 specimens) of each species, drawn equally from each condition category if pos"sible, were measured to the nearest 5 mm.
Length and weight range per species and per condition category was also determined.
Individuals and small numbers per species were weighed to the nearest O.l g with an Ohaus 1600 Series* triple beam balance.. Large numbers per species were mass weighed to the nearest gram with a Salter suspended scale.
Ab1llldance Samples Abundance samples were taken by diverting* a 1-min flow of screen
.wash water to a counting pool.
After sampling the pool was drained immediately, all organisms removed and sorted by species, and the total number of each was determined.
The largest and the smallest specimen of each species. was _measured to the nearest s* mm.
K-2
Miscellaneous General Procedures With all samples the number of pumps and screens in operation, screen speed, tidal stage and elevation, air temperature (C), sky condition, wind direction, and wave height at the time of each sample were recorded.
Measurements of water temperature (C) in the pool were tak~n with a mercury thermometer or a Yellow Springs Instrument Company Model 51A oxygen analyzer, and of salinity (ppt) with an American Optical Corporation salinity refractometer, Model 10419.
Detritus taken with the sample was weighed to the nearest 0.1 kg with a Dillon dynomometer or the Salter suspended scale. All data was recorded on a computer compatible field sheet.
K-3
.e APPENDIX L DATA REDUCTION An estimate of the total number of weakfish impinged per day was calculated by first multiplying the mean impingement rate per minute for each interval between two consecutive samples by the number of minutes in the interval and summing the interval estimates.
The sum of the interval estimates was then scaled to 24 hr by multiplying by the number of minutes in 24 hr divided by the sum of the time intervals between all samples.
The general computational formula is given by:
~(T* Rl; R2~
(1) 1440
"'IT where:
T = number of minutes in interval between consecutive samples Ri = rate/min at start of interval
~ = rate/min at end of interval If samples were taken over less than a 12-hr period the sum of the interval estimates was not scaled to 24 hr.
This method of estimation eliminates the bias inherent in computing a straight mean estimated number per 24 hr by taking into account non-uniform sampling intervals and the variability of impingement rate caused by the patchy appearance of fish schools and daily activity cycles.
An estimate of the number of weakfish returned to the river alive per day was calculated by the same method as total number except that rate of live fish per minute was entered into equation 1 instead_ of rate of all fish impinged per minuteo Estimates of the total number of weakfish impinged per week were calculated by several methods depending on the sampling frequency within L-1
a week.
If sampling was conducted during all days within a week the daily estimates were summed to give a weekly estimate. If the interval between consecutive sampling periods was 24 hr or less an estimate of the total impingement for the period of no sampling was calculated by multiplying the mean impingement rate per hour for the interval between the sampling days by the number of hours in the interval.
These estimates were added to the daily estimates to give a weekly estimate.
If the interval between consecutive sampling periods was greater than 24 hr the mean impingement rate per hour for the week was calculated and multiplied by the number of hours in a week.
L-2
- e.
9*
Literature Cited*
Barr, A. J., J. H. Goodnight, J.P. Sail, and J. T. Helwig.
A user's guide to SAS 76.
SAS Institute, Raleigh, N.C.
1976.
329 pp.
Bason, w. H., S. E. Allison, L. o. Horseman, W. H. Keirsey, and
- c. A. Shirey.
1975.
Fishes.
Volume I in Ecological studies in the vicinity of the proposed Summit Power-station.
Ann. Interpret.
Rept., Jan.-Dec. 1974.
Ichthyological Assoc., Inc.
327 pp.
Bason, W. H., s. E. Allison, L. O. Horseman, w. H. Keirsey, P. E. La.Civita, R. D. Sander, and C. A. Shirey. 1976.
Fishes.
Volume I in Ecological studies in the vicinity of the proposed Summit Power Station, January through December 1975.
Ichthyological Assoc., Inc. 392 pp.
Bason, W. H. and W. H. Keirsey.
1974.
Fishes.
Volume I, Part Al:!!,
An ecological study of the Chesapeake and Delaware Canal in the vicinity of the proposed Summit Power Station site, January-December 1975.
Ichthyological Assoc., Inc. 175 pp.
Beck, S. J., R.H. Grieve.
1977.
Abundance and distribution of fishes:
River in An ecological study of the Delaware River in the vicinity of Artificial Island.
Progress report for the period Jan.-
Dec. 1975.
Ichthyological Assoc., Inc.
21 pp.
Bigelow, H. B., and W. C. Schroeder.
1953.
Fishes o~ the Gulf of Maine. u. s. Fish. and Wildl. Serv., Fish Bull. 74. 577 pp.
Chao, Lo N., and J. A. Musick.
1977.
Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River estuary, Virginia. Fish. Bull. (75): 657-702.
Daiber, F. C.
1957.* The sea trout. Estuarine Bull. 2(5): 1-6.
Hamic, J. L.
1958.
Some aspects of the development and the ecology of the pelagic phase of the gray squeteague, Cynoscion regalis (Bloch and Schneider) in the Delaware estuary.
Ph.D. Thesis, Univ.
Delaware, Newark.
84 p. plus 80 p. append. (not seen, cited in Chao and Musick 1977).
Hildebrand, S. F., and L. *E. Cable.
1934.
Reproduction and develop-ment of whitings or kingfish, drum, spot, croakers, and weakfish or seatrout, family Sciaenidae, of the Atlantic Coast of United States.
U. s. Bur. Fish. Bull. 48(16):41-117.
Joseph, E. B.
1972.
Atlantic coast.
The status of the sciaenid stocks of the middle Chesapeake Sci. 13: 87-100.
Keirsey, W. H., c. A. Shirey, R. D. Sander, R. D. Domermuth, w. H.
Bason, P. E. La.Civita, K. E. Charles, and M. R. Headrick. 1977.
Fishes. Volume I in Ecological studies in the vicinity of the proposed Summit Power Station. Ann. Interpret. Rept. 11 Jan.-Dec.
1976.
Ichthyological Assoc., Inc. 463 pp.
.* - ** --...-....... "::.~..._.. -- -*. * -..:::....:-...->-. *-~**
Kjelson, M.A., and G. N. Johnson.
1978.
Catch efficiences of a 6.1 meter otter trawl for estuarine fish populations.
Trans. Am.
Fish.Soc. 107(2):246-254.
Loesch, H., J. Bishop, A. Crowe, R. Kuckyr, and P. Wagner.
1976.
Technique for estimating trawl efficiency in catching brown shrimp (Penaeus aztecus), Atlantic croaker (Micropogon undulatus), and spot (Leiostomus xanthurus).
Gulf Research Reports 5(2):29-33.
Massman, W. H., J. P. Whitcomb, and A. L. Pacheco.
1958.
Distribution and abundance of gray weakfish in the York River System, Virginia.
Trans. 23rd North Am. Wildl. Conf., p. 361-369.
Maiden, A. L., S. R. Goldman, and D. A. Randle.
1976.
A study of ichthyoplankton in the Delaware River in the Vicinity of Artificial Island in 1974.
Pages 304-482 in An Ecological Study of the Delaware River in the Vicinity of Artificial Island.
Progress Report for the Period January-December 1974.
Ichthyological Associates, Inc.
522 pp.
Merriner, J ** V.
1976.
Aspects of the reproductive biology of the weakfish, Cynoscion regalis (Sciaenidae), in North Carolina. Fish.
Bull. 74: 18-26.
Miller, R.W. 1978.
Marine recreational fishing in Delaware.
Paper presented at N.E. Fish and Wildlife Conference, 1978.
Nesbit, R. A.
1954.
Weakfish migration in relation to its conservation.
U. S. Fish. and Wildl. Serv. Spec. Sci. Rep. Fish.
115.
81 pp.
(not seen; cited in-Chao an.d Musick 1977).
Perlmutter, A., w. S. Miller, and J. c. Poole.
1956.
The weakfish (Cynoscion regalis) in New York waters.
N.Y. Fish and Game J. 3: 1-43.
Schuler, V. J., and A. L. Maiden.
1975.
The occurrence and distri-bution of eggs, larvae and young of the weakfish (Cynoscion regalis),in the Delaware River imineidately west and south of Artificial Island, New Jersey, 1970-1974.
Ichthyological Assoc.,
Inc. 35 pp.*
Seguin, R. T.
1960.
Variation in the middle Atlantic coast population of the gray squeteague, Cynoscion regalis (Bloch and Schneider) 1801. *Ph.D. Thesis, Univ. Delaware, Newark, 70 p. plus 9 p.
append. (not seen; cited in Chao and Musick 1977).
Shirey,.c. A., R. D. Sander, W. H. Keirsey, R. B. Domermuth, K. E.
Charles, R.R. Koons, W. H. Bason, and M. R. Headrick.
1978.
Fishes. Volume I in Ecological studies in. the vicinity of the proposed Summit Power Station. Ann. Interpret. Rept., Jan.-Dec.
1977.
Ichthyological Assoc., Inc.
87 pp.
Thomas, D.L.
1971.
The early life history and ecology of six species of drum (Sciaenidae) in the lower Delaware River, a brackish tidal estuary.
- Ichthyological Associates, Inc.
Bull. 3.
24 7 pp.
Thomson, K. s.,w. H. Weed, and A.G. Taruski.
1971.
Saltwater fishes of Connecticut. State Geological and Natural History Survey of Connecticut.
Bull. 105.
165 pp.
~.
e*-
LENGTH FREOUENCY OF Ce AEGALIS*
liEGIOll!
- NORTH TL (MM)
'SUBAREA 1
SUBARU 2
DATE JULJ 20,21 197d SU8AREA 1
SUBAREA 2
REGION "' IJLANT SUOAREA 3
SUBAREA 4
SUBARt;A 5
SUBAREA 6
--.,*-~---
--~---------~----------------------------------------~------------------------------------------------------
o-10 11-20 21-30 31-40 41-so 51-60 61-70 71-80 b1-90 91-100 101-110 111-1i!O 121-130 131-140 141-150 151-100 101-110 171-1!10 181-190 191-200 NO. MEAS.
NO. TAKEN MEAN Ml:ASo AANGt
(.'l.'1) 1 1
12 76 46 H
1 151 47d 59 25-95 9
60 41 9
1 120 327 59 45* 85 1
3 6
69 133 39 11 20 8
2 292 3598 57 15-105 2
4 40 69 19 16 24 6
2 182 882 60 25-105 5
4 2
39 51 11 5
7 4
1 129 1219 54 15-105 2
7 42 65 30 20 13 4
183 885 58 25-95 26 32 11 4
l 76 20d 55 45-85 1
50 64 52 15 2
3 2
1 190 947 58 35-115 I
~
Table 11-1. - (Continued).
LENGTH FREQUENCY OF C. REGALIS DATE JUL~ 20121 1978 REGl.ON = SOIJJH tL (M'I) o-10 11-20 21-30 11-40 41-50 51-60 61-10 11-80 81-90 91*10;)
101-110 111-120 121*1.iO 131-140 1.41-15l>
151-1b0 161*110 111-1 ao 181*HO 191-201)
NO.
M~AS.
NO.
TAKE~
MEAN MEAS.
RAt..GE
<M~)
~------------------------------------------------------~-------------------------
SUB AREA 1
SUBAREA 2
SUBAAEA 3
SUBAREA 4
SUBAREA 5
SUBAREA 6
SUBAREA 7
SUBAREA 8
SUBAREA 9
1 2
13 1
5 4
1 19 10 5
1
.H 3
18 22 93 82 14 19 50 143 44 64 35 90 173 14 53 lS 10/
49 21 9
32 146 85 37 13 52 25 10 14 14 59 56 22 19 18 14 8
1 1
7 17 5
2 7
4 1
1 1
1 1
254 836 61 35-95 478 9704 68 25-95 2 51 1941i 73 45-95 138 292 70 45-105 119
.591 65 55-95 351 1690
.61 45-85 145 429' 66 25-105 145 240 57 25-125 83 96 56 25-85
- e.
Table II-2.
LENGTH FREQUENCY Of Ce REGAL!S REGION
- NORTH TL (M)t)
SU8AJIEA 1
SUBAREA 2
DATE AUG. 2,3 1918 REGION
- PLANT SUBARl:A 1
SUBAREA 2
SUBARf.A 3
SUBAREA 4
SUBAREA 5
SUBAREA 6
o-10
,,_ 20 21-.iO 31-40 41-50 51-6U 61-70 11-80 81.. 90 91-100 101-110 111-120 121-HO H1-'40 141-150 151-1(10 161-170 111-11rn 181*1ili) 191a2UO NO. MEAS.
NO. TAKlt!
HEAN MEAS.
RANGE 01~1) 2 1
3 1
5 4
5 1
3 17 11 1
10 21 2
1 11 4
3 4
5 5
H 19 2!1 14 18 2U 22 55 53 48 104 68 44 83 32 63 11 38 37 2Y 16 35 2
20 5
8 13 5
7 11 4
8 5
7 5
1l 13 4
1 9
3 10 3
2 1
l 8
3 5
1 2
1 2
1 1
2
~------~9*-----------8-------------------------------------------------------
115 348 63 25-125 HO 509 68 25-95 2.52 710 65 25-115 156 562 67 25-125 121 307 71 25-125 195 713 68 25-125 98 204 56 25-115 159 420 64 25-135
I I
I Table 11-2. - (Continued).
LE"GTH FREQUENCY OF C. AEGALIS DATE AUG. 2,3 197~
REGION : SOUTH TL (M!ol) o-10 11-20 21..: 50 31-40 41* so 51-60 61-70 71-80 81-90 91-100 101-110 111-120 121*1.JO 131-14'1 141*150 151-160 161-110 171-1!10 1ti1-190 191*2JO NO. Ml:AS.
NO.
TAKE~
14EAN lv.EAS.
RANGE (MM)
~--------------------------------------------------------------------~------------
SUBAREA 2
SUllAAEA l
SUllAREA 4
SUSA RH 5
SUSA REA b
SUBAAl:A 7
SUBAREA 8
SUl:IAREA 9
7 1
6 6
2 1
17 3
1 2
12 26 2
1 14 6
2 8
17 5
1 2
1 1
3 6
3 3
17 1
1 11 5
10 17 37 83 18 I 22 10 5.i 16 32 16 49 58 44 39 8
29 16 13 9
12 23 29 23 1
H 11 9
3 6
6 7
15 12 12 6
4 1
1 4
5 2
4 1
4 1
1 1
148 188 107 107 28 156 143 84 55 291 2499 272 134 29 273 172 131 59 71 80 86 84 69 74 68 78 73 25-115 65-115 35-115 35-105 25-95 25-125 25*145 25-125 25-105
Tabl!e II-3.
LENGTH FR~QUENCY OF C. REGALIS REGION
- NORTH TL HIM)
- ~-----------~----
SUBARU 1
SUBAAEA 2
DAJE AUG. 16.17 19ld SUBARl;A 1
SUl:UREA 2
REGION c PLANT SUBAREA j
SUBAAEA 4
SUBAREA 5
SUBAREA 6
- -****~****-******a***-**********************-***********************************-****************
o-10 11* 20 21*.JO 11-40 41-50 51* 6U 61~ 70 71-80 111-90 91-100 101-11u 111~120 1l1-13U 131e140 141-150 151-160 161-170 171-180 181-190 191*2UO NO. MEAS.*
NO. TAii.Ei\\!
MEAN MEASe RANGE 0'11'1) 4 3
2 30 21 8
68 84 67 35-85 2
8 17 6
7 1
41
- 55 78 55-125 5
38 7j 24 27 4/
20 8
5 9
3 6
265 1bd8 62 25-135 8
18 22 22 1.s 19 14 2
4 1
4 1
130 J76 61 25-135 2
16 8
23 46 1.5 3
2
~
2 1
2 123 790 H
35-145 1
13 34 28 15 44 44 16 8
1 1
205 603 69 25-135 7
10 12 11 29 29 8
3 1
1 1
112 155 63 25-145 5
17 1l 14 50 60 32 4
195 242 66 25-95 I
Table II-3. - (Continued).
LENGTH FREQUENCY OF C. REGALIS DATE AUG. 16,17 1978 Hl:GION c SOUfH TL (MIO u-10 11-20 21-.50 31-40 41-Sll 51-oO 61-70 71-80 81-90 91-100 101-110 111-120 121-HO 131.:..140 141-1511 151-160 161-110 171-180 181-190 191-200 NO.,..,l:AS.
NO. TAKEN MEAN Ml:AS.
RAflGE Pli1)
~-------------------------------------------------
SUBAREA 1
SU~OEA 2
SUBAREA 3
SUB AREA 4
SUBAREA 5
SUBAREA 6
SUBAllEA 7
SUBAREA 8
SUB AREA 9
~-----------------------------------------------------------------------------
4 7
8 6
6 5
l 8
1'>
18 11 15 7
18 ii!
18 ii!
21 11 10 19 ii!l 27 1
21 zu 25 13 15 37 14 17 10 60 35 3
11 28 7
17 7
37 9
3 19 1
19 2
4 25 7
11 2
8 l
6 92 14 1
15 8
10 2
14 120 21 5
4 14 6
13 22 72 15 2
4 4
8 13 1
14 25 8
4 1
7 13 6
1 1
2 2
2 11 1
1 1
1 5
6 135 210 82 25-145 455 1953 94 45-145 180 212 72 25-155 68 256 58 25-145 66 205 59 25-145 170 249 66 25-1:SS 95 226 74 25-145 176 275 79 25-165 11 11 75 35-115
. I
\\
Table II-4.
LENGTH fREQUENC. Of C. REGALlS RIEGIO~., NORJH TL* CM~>
o-10 11-zo ZI* 30 11-40 41-50 51-60 61-70 11-clO 111-90 91-100 101-110 111*1Zil 121-1 jo) 1..51-140 141-15.J 151-160 101-170 111-180 181-tY:l 191-200 SUB AA EA 1
1 2
8 9
25 101 86 18 4
4 1
SUBAllEA 2
1 6
3 1
DAJE SEPT 718 1978 SUBAREA 1
z 2.S 11 136 70 51 Z4 24 13 12 12 14 8
10 l
SUBAREA l
1Z Z7 50 l8 18 1l 9
6 4
5 5
j 6
2 REGION a PLANT SUBAREA l
4 11 40 41 51 47 12 5
2 1
3 2
1 1
SUB AREA 4
1 z 18 51 86 49 49 21 8
l 2
7 8
2 9
1 1
SUBAREA 5
1 1
10 9
Z6 12 2
2 SUB AREA 6
1 4
12 39 62 21 9
5 1
NOe fl,fAS.
NO. TAKEN lt.EAN MtASo RANGI: ( 'tli'I) 260 2t>O 88 H~1115 11 11 88 75-105 48'.>
19!1 486 199 90 91 45-1115' 55-195 2Z1 318 6:S 156 221 320 63 156 114 811 112 84 45-185 35-195 35-125 45-165
Table II-4. - (Continued).
LENGTH FREQUENCY Of C. REGALlS DATE SEPT 71H 197H n
(IOI) o-10 11-20 21-
.JO 31-40 41-50 51-60 61* 70 71-80 81-90 91-100 101-110 111-12a 121-1.rn H1*14U 141-150 151-160 161-170 171-180 181-190 191-20()
.NO. Hl:AS.
NO. TAKEN HEAN ME.AS.
RANGE PIM)
REGION 1: SOUTH SU8AAtA 1
SUBAREA 2
SUB AREA 3
SUIHREA 4
SU8AREA 5
SUBAHA 6
SUllAREA 7
SUllAREA 8
SUBAREA 9
1 1
2 2
4 1
5 2
16 3
7 6
2 69 1
2 31 2
15 8
254 22 27 93 14 7
91 60 317 98 H
74 42
.B 75 107 207 114 17 12 24 34 60 130 122 81 8
10 32 26 j2 96 79 43 11 3
20 15 14 74 41 40 6
2 11 7
18 41 25 18 7
3 8
3 22 1 7 22 15 9
3 4
8 19 17 H
22 13 10 10 3
19 7
31 10 10 11 7
4 20 5
16 11 3
11 5
3 19 2
9 5
8 3
5 11 3
1 2
1 1
6 2
1 1
1 1
1 1251 481 155 306 183 151 428 576 12 51 481 155 306 183 151 428 576 86 98 98 82 99 99 91 91 25-Hs5 55-195 35-195 25-185 55-195 35-195 45-195 15-185
Table II-5.
lENGTH FREQUENCY Of C. RfGALIS llEGIO~
- hOATH TL CM'4)
SUBARU 1
SUBARU 2
DATE JUNE 21 1978 AEGION
- PLANT
~--------------------------------------------------
SUDAR EA 1
SUBARU 2
SUB AREA l
SU8AREA 5
SUBARU 6
o-ill 11-20 21-.so 31-40 41* S()
51* 60 61-70 71-80 s1-
~o 91-1()0
- e*~--*******************************************************************-**********
1U1*11::l 111-120 1.!1-15l 131-140 141*1SO 151-160 101-110 171-111()
1!11*HJ 191*2UJ NO. tllAS.
NO. TH£'-!
!'([AP, lllAS.
llAt.GE (l1>U 7
45 4
1 9
44 6
1 42 147 21 1
69 13
- o***********-***************-****O****-*-**************-***************************************************
H 1Z98 24 15-45 60 920 24 15* 45 210 801 24 15-lS 8~
511 25 15-35
Table II-5. - (Continued).
LENGTN f PEQUENCY Of C. RfGALIS DATE JUNE l1 197d REGION "' SOUfH TL 001) o-10 11-2()
21-
)0 l1-40 1.1-so s1-oa 61-10 11-ao 81-90 91* IOa 101-1 lil 111-IZJ 121*1l0 131-HO hl*IS:l 1~1-100 lbl-17()
111-18()
11i1-I ~Q Hll*,JJ Nil.
~.fAS.
NO. lhlN 1-!EMI '"lAS.
llAl.GE l~~>
~--------------------------------------------------------------
SUBARU 1
SUBAAEA 2
SUllAHA 3
SUllAAEA 4
SUBAREA s
SUBARtA 6
sutiAREA 7
SUBAllEA 8
SUBARf A 9
Table II-6.
lENGJH f REQUENC~ Of C. REG~LJS AEGKON " NORJh u-10 11-20 21-jl)
- 11-40 i.1-so 51-
~J 61* lJ 71-110 81* ;10 91-100 101-110 1H*120 121-Ull H1*Hll Hl-150 H1*16iJ 161-11J 111-BO 1El1*1'1J 191-1'10 SUBARU 1
5UBAllU z
DATE JULY 5 1918 REGION
- PLANT
~----0----------~------------------------
SUBAHtA 1
SUllARER.
2 SUBARfA l
~ *'
8 i!5 11 11 4
SUllAREA 4
15 10 l
1
]
SUIUAEA 5
2 l9 89 l4 19 4
1 SUBAREA 6
11 l4 1l l
90*0*--------------------------------------------------------------~----------------------------------------
NO. HlAS.
NO.
JA~l~
i"EA"l ll~~S.
AAllC.l
(.~II) 57 794 51 l5-75
- rn 30 45 35-75 1811 513 47 25-85 60 19l 46 35-65
Table 11-6. - (Continued).
LENGJH FAEQUENC~ OF C. REGALlS UTE JULY 5 1978 n
(M'I) u-10 11-20 21-lO l1-40 41-50 51-Iii) 61-71>
11-ao 81-9;,j 91-100 101-11()
111-llJ 1n-11a IJl-141) 11.1-1so 151-UO 161-11()
111-1 ila 1111-1110 191*20i.I NO. MlAS.
NO. UH'I MEAr< MUS.
RANGE
(.~M)
REGION
- SOUJH SUBARU 1
SUllAREA l
- -**********-*****-********e*************-*-******************************************
SUBA~EA 2
SUBARU 4
SUDAN EA 5
SUBAREA 6
SUBAREA 7
SUDA II EA 8
SUllAAU 9
Table 11-7. - Length-frequency distributions of subsampled £. regalis by number (n), percent of catch(%), and catch per unit effort (n/T),
in sub-area 1 9 South region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Spec !mens (n) 1-FL (mm) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 20, 21 July 5
19 93 90 32 14 1
836 10 83.6 2, l Aug.
1 17 14 2
)
)7 49 12 6
1 291 10 29.1 16, 17 Aug.
4 8
18 21 10 7
4 6
14 22 14 6
1 270 10 27.0 1, 8 Sept..
1 4
16 69 254 317 207 122 79 41 25 22 37 31 16 9
1 1251 10 125.1 Percent of Catch (%)
FL (llD) 10 20 30 40 50 60 70 80 90 100 llO 120 130 140 150 160 170 180 190 200 20, 21 July 2.0 7.5 36.6 35.4 12.6 5.5 0.4 2 0 3 Aug.
4.7 11.s 9.S 1.4 2.0 25.0 33.1 8.1 4.0 0.7 16 0 17 Aug.
3.0 5.9 ll.3 15.6 7.4 5.2 3.0 4.4 10.4 16.3 10.4 4.4 0.1 1 0 8 Sept.
0.1 0.3 1.3 5.5 20.3 25.3 16.6 9.8 6.3 3.3 2.0 1.8 3.0 2.5 1.3 0.7 O.l Catch Per Unit Effort (n/T)
FL (am) 10 20 30 40 50 60 70 80.
90 100 110 120 130 140 150 160 170 180 190 200 20 9 21 July 1.7 6.3 30.6 29.6 10.5 4.6 0.3 2~ l Aug.
1.4 3.l 2.8 0.4 0.6 7.3 9.6 2.4 1.2 0.2 16, 17 Aug.
0.8 1.6 3.6 4.2 2.0 1.4 0.8
.1.2 2.8 4.4 2.8 1.2 0.2 1 9 8 Sept.
0.1 0.4 1.6 6.9 25.4 31.6 20.8 12.3 7.9 4.1 2.5 2.2 3.7 3.1 1.6 0.9 0.1
Table 11-8. - Length-frequency distrib~tions of subsampled.£. regalis by number (n), percent of c~tch (%), and catch per unit effort, (n/T),
in sub-area 2, South region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specimens (n)
- ~
1-FL (m:n) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 20, 21 July 1
10 82 173 146 59 7
9704 16 606.5 2, 3 Aug.
17 83 58 23 6
1 2499 18 138.8 16, 17 Aug.
2 20 60 37 25 92 120 72 25 1
1 1953 17 114.9 7, i.
Sept~
1
~2 98 114 80 43 40 18 15 22 10 11 5
1 480 18 26.7 Percent of Catch (%)
FL (r.:;o) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20, 21 July 0.2 2.1 17.* 2 36.2 30.5 12.3 1.5 3 Au~.
9.0 44.2 30.8 12.2 3.2 0.5
~.
16, 17 Aug.
0.4 4.4 13.2 8.1 5.5 20.2 26.4 15.8 5.5 0.2 0.2 7, 8 Sept, 0.2 4.6 20.4 23.8 16.7 9,0 8,3 3.8 3.1 4.6 2.1 2.3 1.0 0.2 Catch Per Unit Effort (n/T)
FL (:-:':!)
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20 I 21 July 1,2
- 12.1'104,3 219,6185.0 74,6 9.1 3.\\uf;.
12.5 61.3 42.8 16.9 4.4 0.7 lo, 17.>.u;;.
0.5 5.1 15.2 9.3 6.3 23.2 30,3 18.2 6.3 0.2 0.2 7, 8 Se;it.
0.1 1.2 5.4 6.4 4.5 2.4 2.2 1.0 o.8 1.2 o.6 o.6 0.3 0.1
e Tabl:e II-9. - Length-frequency distributions of subsampled £.regalia by nwnber (n), percent of catch (i.), and catch per unit effort (n/T),
ln sub-ares 3, South region, taken by trawl In populatlon estimates, 1978, Table lncludes total nwnber of specimens taken, total effort, and catch per unit effort.
Numbel' of Specimens ( n) 1-FL (11m) 10 20 10 40 50 60 70 BO 9J 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 20 0 21 July 5
14 74 85 56 17 1948 11 117.1
- .t 0 l Aug.
3 l
1 18 44 29 7
4 272 11 24.7 16
- 17 Aug.
7 15 23 25 15 9
1 14 21 15 8
l 212 9
2l.6 1 0 8 Sept.
1 3
2 27 35 17 8
11 6
7 9
13 10 3
2 l
155 11 14.1 Percent of Catch ( %)
FL (om) 10 20 30 40 50 60 70 BO C})
100 110 120 130 140 150 160 170 180 190 200 20 0 21 July 2.0 5.6 29.5 33.9 22.3 6,8 2e 3 Aug.
2.8 o.9 0.9 16.8 41.l 27.1 6.5 l.7 16
- 17 Aug.
3.9 B.l !2.8 ll. 9 19.4 5.0 l.9 7.8
- 11. 7 8.3 4.4 0.6 -
7, 8 Sept.
0.6 1.9 l.l 17.4 22.6 11.0 5.2 7.1
! 3.9 4.5 LB 8.4 6.4 1.9 -
l.l 0.6 Catch Per Unit Effort (n/T)
FL (111111) 10 20 30 40 50 60 70 80 C})
100 110 120 llO 140 150 160 170 180 lC})
200 20, 21 July l.5 10.0 52.2 60.0 39.5 12.0 2 0 l Aug, 0.7 0.2 0.2 4.1 10.l 6.7 1.6 0.9 16
- 17 Aug.
0.9 2.0 3.0 l.l 4.6 1.2 0.9* 1.8 2.8 2.0 1.0 0.1 -
7 0 8 Sept.
0.1 0.3 0.2 2.4 3.2 1.5 0.7 l.O 0.5 0.6 0.8 1.2 0.9 0.3 -
0.2 0.1
'able II-lC~ - Length-frequency distributions of subsampled.£* regalis by munber (n), percent of catch (%) 1 and catch per unit effort (n/T) 1 in sub-area 4, $outh region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specimens ( n) 1-FL (11111) 10 20 JO 40 50 60 70 BO 90 100 110 120 no 140 150 160 170 180 190 200 n
T ri/T 20, 21 July 1
19 53 37 22 5
l 292 5
58.4 2 1 J Aug.
1 6
1 22 39 23 15 134 5
26.8 16, 17 Aug.
8 18 11 13 3
1 5
2 4
2 1
256 4
64.0 7, 8 Sept.
2 5
7 31 93 74 32 10 3
2 3
3 10 11 11 8
1 306 5
61.2 Percent of Catch (%)
FL ~liln) 10 20 30 40 50 60 70 BO 90 100 110 120 130 140 150 160 170 180 190 200 20, 21 July 0.7 13.8 38.4 26.8 15.9 3.6 0.7 2, J Aug.
0.9 5.6 0.9 20.6 36.4 21.5 14.0 i6, 17 Aug.
- ll.8 26.5 16.2 19.~
4.4 1.5 7.4 2.9 5.9 2.9 1.5 7, 8 Sept~
0.6 1.6 2.3 10.1 30.4 24.2 10.5 3.3 1.0 0.6 1.0 1.0 3.3 3.6 3.6 2.6 0.3 -
Catch Per Unit Effort (n/T)
FL (mm) 10' 20 30 40 50 60 70 80 90 100 110 120 130 140 150: 160 170 180 190 200 20, 21 July 0.4 8.1 22.4 15.6 9.3 2.1 0.4 2 1 l Aug.
0.2 1.5 0.2 5.5 9.7 5.8 3.7 16, 17 Aug.
7.S 17.o 10.4 12.2 2.8 1.0 4.7 1.9 3.8 1.9 1.0 -
7, 8 Sept.
o.4 1.0 1.4 6.2 18.6 14.8 6.4 2.0 0.6
().4
().,,
0.6 2.0 2.2 2.2 1.6 0.2 -
(_.
I
\\._..-
I*
e Table II-11* - Length-frequency distributions of subsampled £. regalia by number (n), percent of catch(%), and catch per unit effort (n/T),
in sub-area 5, South region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specim~ns (n) 1-FL (DD) 10 20 30 40 50 60 70 fl)
~
100 110 120 no 140 150 160 170 100 190 200 n
T n/T 20 1 21 JulJ 50 35 13 19 2
391 6
65.2 2, 3 Aug.
1 2
2 3
1 10 8
1 29 4
7.2
- 16. 17 Aug.
6 11 10 15 11 3
4 4
1 1
205 4
51.2 10 8 Sept.
2 14 42 24 32 20 ll 8
4 10 7
5 3
1 183 6
30.5 Percent of Catch (%)
I FL(-)
10 20 30 40 so 60 70 00
~
100 110 120 130 140 150 160 170 180 190 200 20 0 :U. July 42.0 29.4 10.9 16.0 1.7 2, ] Aug.
3.6 1.1 7.l 10.7 3.6 35.7 28.6 3.6 16, 11 Aua.
9.1 16.7 l5.2. 22.7 16.7 4.6 6.1 6.1 1.5 1.5 -
1, 8 Sept.
' 1.1 7.6 23.0 ll.l 17.5 10.9 6.0 4.4 2.2 5.5 3.8 2.7 1.6 0.6 Catch Per Unit Effort (n/T)
I FL(-)
10 20 30 40 50 60 70 IK>
~
100 110 120 130 140 150 160 170 180 190 200 11
, I I:
20, 21 July 27.4 19.2 7.1 10.4 1.1 2 9 l Aug.
0.3 o.s o.s 0.8 0.3 2.6 2.0 0.3 16, 17 Aug.
4.7 8.5 7.8 11.6 8.5 2.3 3.1 3.1 0.8 7, 8 Sept.
O.J 2.J 7.0 4.0 5.3 3.3 1.8 l.J 0.7 1.7 1.2 o.8 0.5 -
0.2 i
I
rable 11 Length-frequency dlstributions of subsampled.£* regalis by number (n), percent of catch(%), and catch per unit effort (n/T),
in sub-area 6 1 South region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specimens (n) 1-FL (om) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 20, 21 July 31 143 107 52 18 1690 15 112.7 2, ] Aug.
6 12 8
17 53 29 13 12 5
1 273 17 16.1 16, 17 Aug.
6 15 19 37 28 19 11 15 14 4
2 249 16 15.6 7, B Sept.
1 7
33 34 26 15 7
3 8
3 4
3 5
1 1
151 17 8.9 Percent of Catch (%)
FL (mn) 10 20 30
- 40.
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20 9 21 July 8.8 40.7 30.5 14.8 5.1 2, 3 Aug.
3.8 7.7 5.1 10.9 34.0 18.6 8.3 7.7 3.2 0.6 16 1 17 Aug.
3.5 8.8 11.2 21.8 16.5 11.2 6.5 8.8 8.2 2.4 1.2 -
7, 8 Sept.
0.7 4.6 21.9 22.5 17.2 9.9 4.6 2.0 5.3 2.0 2.7 2.0 3.3 0.1 0.7 Catch Per Unit Effort (n/T)
FL (11111) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20, 21 July 9.9 45.9 34.4 16. 7
.,
- 7 2, 3 Aug.
0.6 1.2 0.8 1.7 5.5 3.0 1.3 1.2 0.5 0.1 16, 17 Aug.
o.s 1.4 1.7 3.4 2.6 1.7 1.0 1.4 1.3 0.4 0.2 -
7, 8 Sept.
0.1 0.4 1.9 2.0 1.5 0.9 0.4 0.2 0.5 0.2 0.2 0.2 0. ')
0.1 0.1
(*
. *~,
I
'.fable II-13-Length-frequency distributions of subsampled.f_. regalis by nwnber (n)
- percent of catch (%)
- and catch per unit effort (n/T),
in aub-arem 7. South region. taken by trawl in population estimates. 1978.
Table includes total nwnber of specimens taken, total effort. and catch per unit effort.
Number of Specimens (n) 1-FL (mm) 10 20 30 40 50 60 70 80 9J 100 110 120 130 140 150 160 170 180 190 200 n
T n/T
- 20. 21 July 2
3 44 49 25 14 7
l 429 7
61.3 I'
1*
2 8 3 Aug.
6 26 17 6
5 36 16 11 12 2
4 1
l 172 7
24.6 16 9 17 Aug.
5 7
23 14 7
l 2
8 6
8 7
2 5
226 7
32.3 7 0 S Sept.
6 15 91 75 60 32 14 18 22 19 19 20 19 11 6
1 428 7
61.l Percent of Catch (%)
IFL (mm) 10 20 30 40 50 60 70 80 9J 100 110 120 130 140 150 160 170 180 190 200 20 9 21 July l.4 2.1 30.3 33.8 17.2 9.7 4.8 0.7 2 0 J Aug.
4.2 18.2 11.9 4.2 3.5
- 25. 2 11.2 7.7 8.4 1.4 2.8 0.7 0.7 16
- 17 Aug.
5.3 7.4 24.2 14.7 7.4 l.0 2.1 8.4 6.3 8.4 7.4 2.1 5.3 -
7 0 8 Sept.
1.4 3.5 21.3 17.5 14.o 7.5 3.3 4.2 5.1 4.4 4.4 4.7 4.4 2.6 1.4 0.2 Catch Per Unit Effort (n/T)
FL (am) 10 20 30 40 50 60 70 80 9J 100 110 120 130 140 150 160 170 180 190 200 20 0 21 July 0.9 1.3 18.6 20.7 10.5
- 5. 9-2.9 0.4 2, 3 Aug.
1.0 4.5 2.9 1.0 0.9 6.2 2.7 1.9 2.1 0.3 0.1 0.2 0.2 -
16 P 17 Aug.
1.7 2.4 7.8 4.7 2.4 0.3 0.7 2.7 2.0 2.7 2.4 0.7 1.0 -
7 9 8 Sept.
0.8 2.1 13.o
- 10. 7 8.5 4.6 2.0
- 2.6
- 3. I 2.7 2.7 2.9 2.7 1.6 0.8 O.l
- . I Table II-L4-Lensth-frequency distributions of subsampled.£* regalis by number: (n), percent of catch (%), and catch per unit effort (n/T),
in aub-area 8, South region, taken by trawl in population estimates, 1978, Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specimens (n) 1-FL (11111) 10 20 30 40 50 60 70 BO 9J 100 110 120 130.
140 150 160 170 180 190 200 n
T n/T 20, 21 July 13
- 4.
18 64 21 10 8
4 l
l l
240 6
40.0 2, 3 Aug.
2 2
5 10 32 13 9
6 4
1 131 6
21.8 16, 17 Aug.
J 18 27 17 17 19 8
10 13 13 13 11 6
1 275 6
45.8 1, 8 Sept.
1 2
2 2
8 60 107 130 96 74 41 17 17 7
5 2
3 i
576 6
96,0 Percent of Catch (%)
FL (an) 10 20 30 40 50 60 70 BO 9J 100 110 120 130 140 150 160 170 180 190 200 20, 21 July 9,0 2.8 12.4 44.1 14.5 6.9 5.5 2.8
- o. 7 0.7 0.7 2, 3 Aug.
2.4 2.4 6.0 11.9 38.1 15.5 10. 7 7.1 4.8 i.2 16, 17 Aug, 1.7 10.2. 15.3 9.7 9.7 10.8 4.6 5.7 7.4 7.4 7.4 6.3 3.4 -
0.6 -
7, 8 Sept, 0.2 0,4 0.4 0.4 1.4 10.4 18.6 22.6 16.7 12. 9 7.1 3.0 3.0 1.2 0.9 0.4 0.5 0.4 -
Catch Per Unit Effort (n/T)
FL (11111) 10 20 30 40 50 60 70 BO 9J 100 110 120 130 140 150 160 170 180 190 200 20, 21 July 3.6 1.1 5.0 17.6 5.8 2.8 2.2 1.1 0.3 0.3 0.3 2, 3 Aug.
0,5 o.s 1.3 2.6 8,3 3.4 2.3 1.5 l.O 0.3
- 16. 17 Aug.
0,8 4.7 7.0 4.4 4.4 4.9 2.1 2.6 3.4 3.4 3.4 2.9 1.6 -
0.3 -
7, 8 Sept.
0.2 0.4 o.4 0.4 1.3 10.0
- 17. 9 21.7 16.0 12.4 6.H 2.9 2.9 1.1 0.9 0.4 0.5 0.4 -
(
(
.r
\\....'
\\..
'.')
e
~able 11-15-Length-frequency distributions of subsampled £. regalia by nwnber (n), percent of catch(%), and catch per unit effort (n/T).
in *uh-ares 9 0 South region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specimens ( n) 1-FL (mm) 10 20 30 40 50 60 70 80
'Xl 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 20, 21 July l
1 22 35 9
14 1
96 4
24.0 2 0 l.j\\ug.
l 1
l 3
l7 16 9
3 4
59 4
14.8 16 0 U Aug.
2 l
2 3
2 1
11 2
5.5 7, 8Sept.
NONE TAKEN Percent of Catch (%)
FL (11111) 10 20 30 40 50 60 70 80
'Xl 100 110 120 130 140 150 160 170 180 190 200 20, 21 July 1.2 1.2 26.5 42.2 10.8 16.9 1.2 2, l Aug.
1.8 1.8 1.8 5.5 30.9 29.l 16.4 5.5 7.3 16 0 17 Aug.
18.2 9.1 18.2 27.3 18.2 9.1 Catch Per Unit Effort (n/T)
FL (u111) 10 20 30 40 50 60 70 80
'Xl 100 llO
'120 130 140 150 160 170 180 190 200 20 0 21 July 0.3 0.3 6.3 10.1 2.6 4.1 0.3 2, 3 Aug.
0.3 0.3 0.3 0.8 4.6 4.3 2.4 0.8 1.1 16 9 17 Aug.
1.0 0.5 1.0 1.5 l.O 0.5
Table II-16. - Length:-frequency distributions of subsampled £* regalis by number (n), percent of catch (%), and catch per unit effort (n/T), in sub-ar~a 1, l'lant region, taken by t"rawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Nwuber of Specimens (n) 1-FL (m~)
10
~o 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n T n/T 20, 21 July -
1 3
6 69 133 39 11 20 8
2 3598 10 359.8 2, 3 Aug.
3 17 11 28 104 37 13 7
9 3
710 9 78.9 16, 17 Aug. -
4 38 73 24 27 47 20 8
5 9
3 6
1688 9 187.6 7, 8-Sept.
2 23 77 136 70 57 24 24 13 12 l2 14 8
10 3
486 9 54.0 Percent of Catch (%)
FL ( m:n) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20, 21 July -
0.3 l.O 2.0 23.6 45.6 13.4 3.8 6~8 2.7 0.7 2,. 3 Aufi.
l.3 7,3. 4.7 12.1 44.8 16,0 5.6 3,0 3,9 l.3 16, 17 Aug.
l.5 14.4 27.6 9.1 10.2 17.8 7.6 3.0 1,9 3.4 1.1 2,3 7, 8 Sep::,
0.4 4.7 15,9 28.0 14.4 11.8 5.0 5.0 2,7 2.5 2.5 2.9 1.6 2.1 0.6 Catch Per Unit Effort (n/T)
Fl. (i:-1::1) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 ZO, :!l July -
- l. l 3.6 7.2 84.9 164.l 48.2 13.7 24.5 9.7 2~5
~
3 A*!B*
1.0 5.8 3.7 9.5 35.3 12.6 4.4 2.4 3.1 1.0
~.
lbD 17.\\ug. -
2.8 27.0 51.8 17.1 19.1 33.4 14.3 5.6 3.6 6.4 2.1 4.3 7, S Se;it.
0.2 2.5 8.6 15.l 7.8 6.4 2.7 2.7 1.5 1.4 1.3 1.6 0.9 1.1 0.3
r e
e e
Table* 11-17 * - Length-frequency distributions of subsampled f* regalls by number (n), perc~nt of catch (%), and catch per unit effort (n/T) in 1ub-area 2 0 Plant region. taken by trawl in populatlon estimates, l'.17tt.
Table ln1* I 11des total number of specimens taken, total effort, and catch per.unit effort.
Number of Specimens ( n) 1-FL
~111111}
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T
- 20. 21 July 2
4 40 69 19 16 24 6
2 882 7 126.0 2 1 3 Aug.
7 11 4
14 68 29 5
5 3
8 2
562 7
80.3 16 9 17 Aug.
8 18 22 22 15 19 14 2
4 1
4 1
376 7
53.7 70 8 Sept.
12 27 50 38 18 13 9
6 4
5 199 7
28.4 Percent of Catch (%)
FL ~1111}
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20 1 21 July
- l.l 2.2 22.0 37.9 10.4 8.8 13.2 J.J 1.1 2 0 3 Aug.
4.5 1.0 2.6 9.0 43.6 18.6 3.2 3.2 1.9 5.1 1.3 16", 17 Aug, 6.2 ll.8 16.9 16.9 11.5 14.6 10,8 1.5 3.1 0.8 3.1 0.8 7 0 8 Sept.
6,6 14.8 27,5 20,9 9.9 7.1 5.0 3.3 2.2 2.8 Catch Per Unit Effort (n/T)
FL ~111111) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 ao. 21 July
- 1.4 2.8 27.7 47.8 13.l 11.l 16.6 4.2 1,4 2 0 3 Aug.
3.6 5,6 2.1 7.2 35.0 14,9 2.6 2.6 1.5 4.1 1.0 16 0 17 Aug.
3.3 7.4 9.1 9.1 6.2 7,8 5.8 0.8 1.7 0.4
- l. 7 0,4 70 8 Sept, 1.9 4.2 7.8 5.9 2.8 2.0 1.4 0.9 0.6 0.8
Table II-18. - Length-frequency distributlone of subeampled.£* regalls by number (n), 1w.-.:e11t of catch (%) and catch per unit effort (n/T), in
- uh-area J, Plant region, taken by trawl in population estimates, 19711.
Table lncl.ules total number of specimens taken, total effort,
- nd catch per.unit effort.
Number of Speclmene (n) 1-FL~mm}
10 20 JO 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 21 June 7
45 4
1 1298 2 649.0 5 July 8
23 11 11 4
794 2 397.0 20, 21 July 5
4 2
39 51 11 5
7 4
l 1219 4 304.8 2, 3 Aua.
5 1
l 18 44 16 7
13 10 3
1 307 4
76.8 16, 17 Aua.
2 16 8
23 46 13 3
2 5
2 l
2 790 4 197.5 7, 8 Sept~
4 11 40 41 51 47 12 5
2 1
l 2
l 1
221 4
55.2 Percent of Catch (%)
PL ~mm) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21 June
- 12.l 79.0 7.0 1.8 5 July
- 14.0 40.4 19.J 19.3 7.0 20, 21 July 3.9 l.l 1.6 J0.2 39.5 8.5 l.9 5.4 3.1 o.8 2,3 Aug.
- 4.1 o.a 2.5 14.9 36.4 13.2 5.8 10, 7 8.3 2.5 o.e 16, 17 Aug.
- 1.6 13.0 6.5 18.7 37.4 10.6 2.4. 1.6 4.1 1.6 0.8 1.6 7, 8 S~pt.
- 1.8 5.0 18.l 18.6 23.1 21.3 5.4 2.J 0.9 0.4 1.4 0.9 o.4 o.4 Catch Per Unit Effort (n/T)
FL lmm}
10 20 JO 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21 June
- 79.8 512.7 45.4 11.7 -
5 July
-55.6 160.4 76.6 76.6 27.8 -
20, 21 July - 11.9 9.4 4.9 92.0 120.4 25.9 11.9 16.5.9.4 2.4 2, l Aug.
3~1 0.6 1.9 11.4 28.0 10.1 4.5 8.2 6.4 1.9 0.6 16, 17 Aug.
- 3.2 25.7 12.8 36.9 73.9 20.9 "4.7 l.2 8.1 3.2 1.6 3.2 7, 8 Sept.
- 1.0 2.8 10.0 10.l 12.8 11.8 3.0 1.3 0.5 0.2 o.8 Q.S 0.2 0.2
e Table 11-19. - Length-frequency distributions of subsampled.£* regalis by numb1!r (n), percent of catch(%), and catch per unit effort (n/T) in sub-area 4. Plant region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and catch pe'r unit effort.
Number of Specimens (n) 1-PL ~-~
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 21 June 9
44 6
1 920 2 460.0 5 July 13 10 3
1 3
30 2
15.0 20, 21 July -
2 7
42 65 30 20 13 4
885 7 126.4 21 3 Aug.
4 10 4
20 83 35 17 13 3
5 1
773 7 110.4 16, 17 Aug. -
l 13 34 28 15 44 44 16 8
l l
603 7
86.1 71 8 Sept. -
l 2
18 51 86 49 49 21 8
3 2
7 8
2 9
l 1
320 7
45.7 Percent of Catch (%)
FL ~11111!
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21 June
- u.o 73.3 10.0 1.7 S July 43.3 33.3 10.0 3.3 10,0 20, 21 July -
1.1 3,8 23.0 35.5 16,4 10.9 7,J.
2.2 2, 3 Aug.
2.0 5.1 2.0 10.3 42.6 18.0 8.7 6.7 1.5 2.6 0.5 16, 17 Aug. -
0.5 6.3 16.6 13. 7 7.3 21.5 21.5 7.8 3.9 0.5 0.5 1, 8 Sept. -
O.l 0.6 5.7 16.0 27.0 15.4 15.4 6.6 2.5 0.9 0.6 2.2 2.5 0.6 2.8 0.3 0,3 Catch Per Unit Effort (n/T)
PL (mm}
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21 June 69.0 337.2 46.0 7.8 5 July 6.5 5.0 1.5 0.5 1.5 20 9 21 July -
1.4 4.8 29.l 44.9 20.7 13.8 9.0 2.8 2, 3 Aug.
2.2 5.6 2.2 11.4 47.0 19.9 9.6 7.1!
1.7 2.9 0.6 16 0 17 Aug. -
0.4 5.4 14.3 11.8 6.3 18.5 18,5 6.7 3.4 0.4 0.4 7 0 8 Sept. -
0.1 0.3 2.6 7.3 12.3 7.0 1.0 3.0 l.l 0.4 O.l 1.0 1.1 0.3 1.3 0.1 0.1
Table 11-20* - Length-frequency dhtrlbutions of subsampled.f.. regalis by number (n), percmlt of catch (%), and catch per unit effort (n/T),
in aub-area 5, Plant regi1>n, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort. and* catch per unit effort.
Number of Specimens (n)
~.
FL (am) 10 20 JO 40 50 60 70 80 90 100 110 120 no 140 150 i6o 170 180 190 200 n
T n/T 21 June 42 147 21 001 7 114.4 5 July 2
39 89 34 19 4
1 513 7
73.J
- 20. 21 July 26 32 11 4
J 208 5 41.6 2, J Aug.
5 21 5
22 32 2
4 4
2 1
204 5
40.8 16, 17 Aug.
7 10 12 11 29 29 8
3 1
1 l
155 5
ll.O 7, 8 Sept~
1 1
10 9
26 12 2
2 63 5
12.6 Percent of Catch (%)
FL (no) 10 20 30 40 50 60 70 00 90 100 110 120 130 140 150 160 170 180 190 200 21 June
- 20.0 70.0 10.0 5 July 1.1 20.7 47.3 18.1 10.1 2.1 0.5
- 20. 21 July 34.2 42.1 14,5 5.3 4~0 2, J Aug.
5.1 21.4 5.1 22,4 32.6 2.0 4.1 4,1 2.0 l.O -
16, 17 Aug.
6.2 8.9 10.7 9.8 25.9 25.9 7.1 2.7 -
0.9 -
0,9 0.9 -
1, 8 Sept.
1.6 -
1.6 15.9 14.J 41.J 19.0 J.2 -
3.2 -
Catch Per Unit Effort (n/T)
FL (om) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21 June 22.9 00.l 11.4 5 July o.8 15.2 34.7 13.3 7.4 1.5 0.4 20, 21 July 14.2 17.5 6.0 2.2 1.7 2, 3 Aug.
2.1 U.7 2.1 9,1 13.3 o.8 1,7 1.7 0.8 0.4 -
16, 17 Aug.
1.9 2.8 l.J 3.0 8.0 8~0 2.2 0.8 O.l -
0.3 O.l -
7, 8 Sept.
0.2 0.2 2.0 1.8 5.2 2.4 0.4 -
0,4 -
- I e
e e
e e
Table 11~21. -Length-frequency distributions of subsampled.£*
- regalis by number (n), percent of catch (%), and catch per unit effort ( n/T),
In sub-area 6 0 Plant region 0 taken by trawl ln populatlon estimates, 1978.
Table includes total number of specimens taken, total effort, and*catch per unit effort.
I Number of Specimens (n) fL (m1) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 21 June 7
69 lJ 511 3 192.l 5 July 11 34 11 2
191 3
64.3 20 0 21 July 1
50 64 52 15 2
3 2
1 947 7 135.3 2 0 l Aug.
1 2
5 55 63 20 8
l 2
2 420 7
60.0 16, 17 Aug.
s 17 ll 14 so 60 32 4
242 7
34.6 7, 8 Sept.
1 4
12 39 62 23 9
5 l
156 7
22.3 Percent of Catch (%)
FL (um) 10 20 30 40 50 60 70 80 90 100 110 120 110 140 150 160 170 180 190 200 21 June 7.9 77.5 14.6 S July 18.3 56.7 21.7 3.3 20 0 21 July 0.5 26.3 33.7 27.4 7.9 1.0 1.6 1.0 0.5 -
2, 3 Aug.
0.6 1.3 3.1 34.6 39.6 12.6 5.0 0.6 1.3 -
1.3 -
16, 17 Aug.
2.6 8.7 6.7 7.2 25.6 30.8 16.4 2.0 7 0 8 Sept.
0.6 2.6 7.7 25.0 39.7 14.7 5.8 3.2 -
0.6 -
Catch Per Unit Effort (n/T) fL (nm) 10 20 30 40 50 60 70 80 90 100 110 120 no 140 150 160 170 180 190 200 21 June 15.2 149.0 28.l 5 July 11.8 36.5
- 11. 9 2.1 20, 21 July 0.7 35.6 45.6 37.1 10.7 1.3 2.2 1.3 0.7 -
- 2. 3 Aug.
0.4 0.8 1.9 20.8 23.8 1.6 3.0 0.4 0,8 -
0.8 -
- 16. 17 Aug.
0.9 3.0 2.3 2.5 8.9 10.7 5.7 0.7 7
- 8 Sept.
0.1 0.6 1.7 5.6 8.8 3.3 1.3 0.7 -
0.1 -
I:
Table 11-22. - Length-frequency diatributione of subsampled £* regalie by number (n), percent of catr.h ( ~.), and catch per unit effort (n/T), in
- l!b-area 1, North region, taken by trawl in population.estimates, 197B.
Table includes total number of specimens taken, total effort, and catch per unit effort.
Number of Specimens (n) 1-FL !mm) lei 20 30 40 50 60 70 BO 90 100 110 120 130 140 lSO 160 170 lBO 190 200 n
T n/T 20,21.July l
l 12 76 46 14 l
479 5
9S.6 2~3 Au9.
2 3
33 SJ 17 5
1 l
34B 5
69.6 16 117 Aucj.
4 3
2 30 21 B
B4 5
16.8
.,,e Sept.
1 2
B 9
2S 101 B6 lB 4
4 l
1 260 5
52.0 Percent of Catch (,,
FL (lllDI) 10 20 30 40 so 60 70 BO 90 100 110 120 130 140 lSO 160 170 lBO 190 200 20.,21.July 0.;7.
0.1 B.o so.3 30.S 9.3 0.1 21 3Aug.
- 1.7 2.6 2B.7 46.l 14.8 4.4 0.9 0.9
.1611'1 AUCJo 5.9 4.4 2.9 44.l 30.9 11.B 0.4 o.e 3.1 J.S 9.6 JB.B 33.l 6.9 l.S l.S 0.4 0.4 7,8 Sept.
Catch Per Unit Effort (n/T)
FL (mm) 10 20 30 40 so 60 70 BO 90 100 110 120 130 140 lSO 160 170 lBO 190 200 201 21.July 0.1 0.1 7.6 4B.l 29.2 B.9 0.1 21 3 Aucjo 1.2 i.e 20.0 12.1 10.3 3.1 0.6 0.6 161 ll Au9.
l.O 0.1 o.s 7,4 s.2 2.0 s.o 20.2 11.2 3.6 o.B 0.8 0.2 0.2 718 Sept.
0.2 0.4 1.6 l.e
Table II-23 * - Length-frequency distributions of subsampled.£* regalis by number (n), percent of catch (\\), and catch per unit effort (n/Tl, in sub-araa 2, North region, taken by trawl in population estimates, 1978.
Table includes total number of specimens taken, total effort, and ciOtch par unit effort.
Number of Specimens (n) 1-FL (n'll) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 n
T n/T 20,21 July
!Ii 60 41 9
l 327 4
01.0 2 13 Aug, l
1 19 48 38 8
5 509 4 127.2 16,17 Aug.
2 B
17 6
7 l
55 4
13.8 7,S Sept.
l 6
3 l
11 4
2.a Percent of Catch (\\)
FL (r>-.".')
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 I
20,'.!l July 7.5 50.0 34.2 7.5 0.0 2,3
~.ug.
0.0 0.0 15.0 40.0 31.7 6.7 4.2 16 ;!':' !'.u9, 4.9 19.5 41.5 14.6 17.1 2.4 7,8 Sapt.
9.1 54.6 27.3 9.1 Catch Per Unit Effort (n/T)
FL (:-.":I) 10 20 30 40 so 60 70 80 90 100 llO 120 130 140 150 160 170 180 190 200 2:i,:u July 6.1 40.9 28.0 6.1 0.7
, ; *. l*! 0 l.O l.O 20.1 50.9 40.3 0.s 5.J
~. -
... 11 hugo 0.1 2.7 5.7 2.0 2.4 o.1 7.,. -.S:::pt..
0.3 LS o.e 0.3
Table 11-24. - Analysis of variance of log-tr~nsformed trawl data by region of weakfish, North vs. Plant vs. South regions, 20 - 21 July, 1978.
DEPENDENT VARIABLE: LDEN SOURCE OF SUM MODEL 2
ERROR 126 CORRECTED JOTAL 128 SOURCE Of ARU 2
i S T A T I S T 1 C A L A N A L Y S l S DA Tf.:l S Y S T E M 14:18 SUNDAY, OCTOBER 22, 1978 50 GENERAL LINEAR
~ODfLS PROCEDURE Of SQUARH MEAN
~QUARE f VALUE PA > f A-SQUARE c.v.
0.76416916 0.38208458 0.93 0.1971 0.014553 14.24.18
- 51. 74319061 0.41066501 STD DEV Ll>EN MEAN 52.50795979 0.6401Sl150 1.87137981 TYPE 111 SS f VALUE PR > F 0076416916 0.9l 0.3971
Table II-25. - Analysis of variance and Duncan 1 s multiple range test of log-transformed trawl data of weakfish by subarea for North, Plant and South regions 20 - 21 July, 1978.
DEPENOENf VARIABLE~ LOEN SOUl!CE Of MODEL 16 ER~OR 112 CORlHCTEO fOTAL 128 SUM OF SQUARES MEAN SQUARE F VALUE" PR > F R-SQUAllE 1.22870399 4.19 0.0001 0.374405 0.29329193 STD DEV 19.65926.581 32.84869596 52.50795979 c.v.
2 ii. 9.!9:5 LO~N ME A II 0.541564H 1.8i'157981 SOURCE Of ilfPE ll! SS f VALUE PR > F SUS AC 16 19.65926583 4.19 0.0001
Table 11-25. -.<continued}
DUNCAN'S MULTIPLE RANGE HST FOR VARIABLE LDEN MEANS WITH lHE SAME LETlER ARI: t.JOT SIGNIFICANTLY DIFFERENT.
ALPHA lEVEl =.05 Df:;112 MSs0.293292 GROUPING MEAN t.J SUBAREA A
2.549710 16 2 South A
B A
2.450570 4
3 Plant B
A a
A 2.404506 10 1 Plant B
A B
A c
1.971070 5
1 North B
c B
0 c
1.8951B 7
4 Plant B
D c:
B 0
c 1.8!15 H8 4
2 North El 0
c 8
0 c
1.8!13058 7
2 Plant B
D c
B D
c 1.869050.
7 6 Plant 8
0 c
B 0
c 1.116810/
11 3.South B
0 c
B 0
c 1.716SH 5
4.- South 0
c D
c 1.692555 10 1 South D
c D
c 1.654112 15 6 South D
c D
c 1.512100 6
8 South
~
c D
c 1.414526 7
7 South
" D c
D c
1.419479 6
5 South 0
c 0
c.
1.340613 4
9 Soubh D
D 1.159320 s
5 Plant
(
- .. ~*
Table II-26. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish, west vs. east, Plant regionD 20 - 21 July 1978.
D I: I' t ;, 0 ll* T V t. R Ito!! LI: g LOEN SOui<U Of SUN Of S<JUAIH.S MEAl'4 SQUAii!:
F 111\\LUI:
PR > F R-SQUARE c.v.
~10:1l:L 1.9.58781151 1.9.s878851 4.91 o.u:su 0.114519 31.7721 E RWOI<
311 14.99U98821 0 *.59449969 STD DEV LDH-1 MEAN (01h'H IE!> TOTAL 39 lb.92977671 0.62809210
- 1. 9"16869 31 S()U11(E OF TVPE I ii SS f
VALUE Pll > f TR 1.93dld851 4.91 0.0321 DU1'4CAN'S MULTIPLI: RAWGE TEST FOR llAlllABLE LOE~
NEANS w!JH IHE SA~f LETll:R ARE NOT S!GNIFICANTLY DIFFERENT.
i\\LPtiA Ll:VEL;;.05 MS"O.l945 C.llOUPll-IG MEAN
.N TR A
2.220264 18 west B
22 East
Table 11-27. - Analysis of variance of log-transformed trawl data of weakfish, west vs. east, South region, 20 -
21 July, 1978.
DEPENDENT VARI.AHLE.: LDEN SOURCE Df SUM Of SQUARES MEAN SQUAllE f VALUE PR > F R-SQUARE c.v.
HODEL 1.07017518 1.07017518 2.49 0.11118 0.030909 36.2018 ERROR 16 H.55288654 0.43016521 STD DEV LDEN HEAN CORRECTED TOTAL 79 34.62306112 0.65586981 1.81170451 SOURCE OF TYPE 111 SS F VALLll::
PR > f TA 1
1 ~07017518 2.49 0.11118
(
Table II-28. - Analysis of variance of log-transformed trawl data of weakfish, west vs. east, North region, 20 - 21 July, 1978.
II
!IEPENDENT VARIABLE~ LDEN SOURCE DF SUM OF Sl.IUAkES folfAlll SQUARE F VALUE PR > f A-SOUAAE c.v.
HODEL 1
0.0316.58J3 0.0376.SSH
- 1. n 0.231l 0.197109 7.6562 ERROR 7
0.153lH8i' 0.02190198 STD DEii LDEN HEAN COANECTED TOUL 8
0.19095220 0.14799318 1.93298470 SOURCE DF T'tPE 111 SS F l/Al.UI:
PN > F TR 1
0.0376311.n
- 1. 72 0.2313
Table 11-29. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data by subarea, Plant region, 20 - 21 July, 1978.
C ~ P Ef; DE :IT llAllJA9Ll:: LDEN Sl>ll" CE Df SUM OF SQUARt:S MEAN SUIJARE f
VO.LUE Pll > f ll*SQIJARE c.v.
"CDH 5
6.265H32B 1.253lJ6666 3.94 0.0066 O.l7H95 28.6874 HRGR H
10.5lJ506651 0.318HSH SID 01:11 LOEN. MEAN.
C~~HCT:D TOT AL 38
6.j.)6533328 3.94 0.0066 DUNCAN'S MULTIPLE llANGE JEST FOR llARIABLE LDEN MEANS WITH THE SA~E LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
4LPHA lEVEL:::.us Df:::33 MS=O. H 8335 GROUPING MEAN N
SUB AREA A
- 2. 451)5 (0 4
3 p A
A 2.408222 A
9 1 p A
1.8951'3 7
4 p A
A 1.88.Hl36 7
2 p A
A 1.869050 7
6 p a
1.139320 5
5 p
Table Il-30. - Analysis of variance and Duncan 1 s multiple range test of log-transformed trawl data of weakfish, 20 - 21 July vs. 2 - 3 August vs. 16 - 17 August~ 1978.
!ll: ~ t :*,i)t:.I< T 1t.i.'<PbU.: LOl:l-l Sl*IJ~.:~
Df su~: Of SQLIAh ls MEA11 SQUllllE f
\\IALUE Pll > f
":l"ili:L 2
21i.U1!14!!81ll 14.0f.107444 s
- rn.26 0.137681 tiii<0~
3,/9 1/'l.HR21i015 0.46273953 ST 0 Ol:V co;:id:c r~:l TOTAL H1 20 i. Hli/b90U 0.68024961 Df Jtl'I: l JI SS VALUE PR > f i) A TE.
2 2ii.00148b87 30.26 0.0001 DUNCAN'S MOLllPlE RA~GE JEST FOR VARIABLE LrEN MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
ALPHA 9..E\\/H=.I)~
0f=379 MS=0.46274 GllOLiPKNG Ml:AN N
1.tl/13!i0 129 20 21 July I) 1.HOh79 123 16 17 August (j
fi 1.~4'1'16/
130 2 -
3 August
- c. v.
45.H.59 LOE.N Ml:AN 1.49854759
Table 11-31. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish, South region, 20 -
21 July vs. 2 -
3 August vs. 16 - 17 August, 1978.
'..lf.Pf::,oud vaPBLE:: LDEN s~111~*c1:.
OF SUM ll F S f1UA il ES MEAN SQUARE F VALUE PR > f Ii-SQUARE c.v.
- oo 1:. L 2
27.63786594 13.81893297
.Hl.34 0.0001 0.205915 49,;8553 I:. r:" u~
2j4 1J!i.5i.s17/849 U.45547769 STD OEV LDEtJ ME A"l c~n~cHi> T::')(AL ZH 134.219b4443 0.67489087 1.35.S69cl07 SC'UliC I:
Of TYPE 11 l SS VALUE PR > f
!:It. TE 2
2/.6371:16594
.so. :S4 0.0001 DUNCAN'S
~ULTIPLE RANC,E TtST FOR VARIABLE: LDEN MfA~S ~ITH l~E SAME: LETTER ARE NOl SIGNIFICANTLY DlffERf.NT.
ALPtU u \\/El".05 DF.,234 MS=:0.455478
(,ROUP ING f>!EA*~
N DATE A.;
1.81170~
80 20 -
21 July a
1.247011J 75 16 17 August c
1.004455 82 2 -
3 August
(
Table II-32. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish, Plant region, 20 - 21 July vs. 2 - 3 August vs. 16 - 17 August, 1978
- OF 2
11.,
'(J*'-<ECTED Tv ;u 117 SOUHE DF 2
SIJM Of SllllAill:S 2.26556753 iv.4'i3B66!i5 41.7594:5438 ltPE III SS
- 2. 26556753
~1EAt1 Sl}UARE 1.t.i278H/
O. H.i42493 VALUE PR > f 3.30 0.0405 f
\\/ALUE PA > f 3.50 SlO DEii o.58602468 DUNCAN'S MULTIPLE RANGE TEST FOR l/ARi4Bl~ LOEN MEANS
~IT~ lHE SA~E LETTER ARE NOT SlG~RflCA~TLY DIFFl:RENT.
ALPHA U.Vl:L"'.05 Df=115 r~s=il *.!43425 GROlJPING MEA~
N DATE A
1.976~69 40 20 21 July A
El A
1.732544 39 16 17 August Ii Ii 1.652236 39 2* - 3 August c.v.
0.054253 32.7603 LDEN MEAN 1.78882356
Table 11-33. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish, North region, 20 - 21 July vs. 2 - 3 August vs~ 16 - 17 August, 1978.
Ci:.f'~..;')!::1H ','AQIA3Lt: LDEN
)0'JRCE Of SUM Of SGUA~E.S MEAN SQUAIH f VALUE PR > F R-SQUARE c.v.
Y(J'.li: L i!
b.'10018046 J.10009023 11.84 0.0003 0.496603 34.0842 ER1lOR 24 6.28500746 0.261875.H STO DEV LDEN MEAN OllRECTtD fvTAL lb 12.4d!>18791 0.51173754
- 1. 50139101 SOU~Ci:
Of TY Pf:
I I I s !.
F VALUE PR > F i:H TC 2
6.20018046 11.84 o.uuos OUNCA~'S ~ULTIPLt RANGE TEST FOR VARIABLE LDtN MEA~S ~ITH IHE SA~E LfTTER ARt NOT SlGNlflCANTLY DIFFERENT.
ALPHA LEVEL... 05 Of =24 MS=:l.261875 GROUPING ME AN N
DATE A
1.9:S2985 9
20 -
21 July A
A 1.7S!!U87 9
2 - 3 August B
- o. 8.Bl 01 9
16 - 17 August
(
- Table II-34. ~ N'lalysis of variance and Duncan's multiple range test of log-transformed trawl data by region, North, Plant, and South regions, 2 - 3 August, 1978.
i>lt'U1:>f~H \\1 A.. IA8LE: !.OH*
SGJ'~Cc Of SUM () f SOUA!llS MEAi~ SQUARE F VALUE PR > F R-SQUARE c.v.
- ~ltOfl 2
1S.J98767Y6 6.69Y38398 16.42 0.0001 0.205416 51.1238 t ~I.OW 127 51.d28S69Y:S U.40809898 STO 01:\\/
LOlH i1EAN COii1hCTED 1 (J JAL 129 1i5 *.!27.B789 0.63882625 1.24956669 S ll.J ~CE Cf TYPE 11 I SS F VALUE Pll > F
- .Rt:A 2
1.S *.S98767'il6 16.42 0.0001 OUNCAN 8 S MULllPLE RANbt JtST FUR VAklllBLE LOEN MEANS WIT~ THE SAME LETJEA ARE NOJ Slb~!FICANTLY DIFFEREN{.
ALPIU LEVH=.05 Of=127 MS=0.4lld099 GflOUPING MEAN N
AREll A
1.7.Sll087 9
N A
A 1.o~a.so H
p B
1.0044.SS 82 s
Table II-35. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish by subarea, North, Plant, and South regions, 2 - 3 August, 1978.
~:t.>f1,oc:1J V4Rl4ULE:
LO~N SUURCE Of SUM Of SQUARES MEAN SUUAl!E f llUUE PR
)
f R-SQUARE
~'l..!HL 1b 17.34969.Hl 1.084.i551l6 2.56 0.0021 0.265988 HH.Ji.
113
- .7.d776441S 0.42369597 STD DEV c.v.
52.0916 LDEN MEAN CO:tRLCH.D roTAL 129 65.22733789 0.65091932 1.24956669
!>Ju'ICE Of TYPE 111 SS f VALUE PR > f S1.J1..i.a 16 17 *.i4969371 2.56 0.0021
~able II-35e ~ (Continued)
OUNCAN 1 S ~UlilPLE AANbE TEST FOR VARIABLE LDEN MEANS WITH f HI: SAlv.l LETTER ARE N01 SIGNIFICANTLY DI FFEAENT.
ALPHA LE\\/l:L;;.05 Of::11J MS::0.423696 GROUPING MEAN N
SUBAREA A
1.9813/'8 4
2 North A
A 1.1194444 7
4 Plant A
B A
1.IH8408 4
3 Plant R
A B
A 1.67815.S 9
l Plant B
A B
A 1.6011481 7
2 Plant Es A
ll A
c 1.S~96o3 7
6 Plant 8
A c
ll 0
A c
1.543454 5
1 North B
0 A
c B
0
/).
c 1 *.i2184.i 7
7 South fl 0
A c
R 0
A c
1.276415 5
5 Plant ii 0
A c
B 0
A c
1.1vrn21 5
4 South d
0 A
c ff 0
A c
1.1.i06'JO 10 l South i!
0 A
c ll 0
A c
1.1 Hll54 6
8 South B
0 A
c R
0 A
c 1.044888 4
9 South ll D
c li 0
c 1.Ul4.i31S 18 2 South 0
c 0
c
- 0. IS:SS 794 11 3 South D
0
- 11. IL\\0129 17 6 South 0
0 U.804H1 4
5 South
Table II Analysis of variance of log-transformed trawl data of weakfish by subarea, Plant region, 2 -
3 August, 1978.
S t A T I S T I C A L A N A L Y S I S S Y S T E M
' 12:33 WEDNESDAY, OCTOBER 2::;, 1970 GENERAL LINEAR MODELS PROCEDURE DEF'ENDENT WiRIAI*LE: LDEN nmmcE *
[IF SUM DF SUl.IAl'i:Hi MEl'1N SfUIAI'((~
F VALUE Pr< > F R-SOUARE c.v.
113[*EL
- ~ *'
- 1. *100'.i'l 26()
0, :!IHi 1 n::*~)::!
().'J~.)
0.4631 o.12~i654 32,09::;0 ERROR 3:3
'J. 7*UJ()254'1
- 0. ~!*l~.i:59*l 71 STD DEV LflEN MEAN COl~RECTEr* TOTAL
- 3fl 11, 14U'J:iUO'i' 0,54350220 t.65223608 SOURCE DF*
TYPE III c**c..
,;),:J F Vf.1L.UE f"f( > F SUBl',t 5
- 1. 4009121.10 O,'J5 0.46:31 s T A T I s T I c A L
'A N A L y s I,..
s y s T E M 6
.....-=:ir--
I Table 11-37. - Analysis of variance of log-transformed trawl data of weakfish, west vs. east, North region, 2 - 3 August, 1978.
l.IEPIENDENT VAN!AEIU.g lOEN SOURCE Of HODEL 1
ERROR 7
tOllRf.ClEO roru 8
SOURCE Df TA 1
S l A l I S 1' ! C A L A N A l
'!' S X S DATE=4 AREA=I\\!
S '!' S T E lit 14:18 SUNDAY, OCTOBER 22, 1978 80 GENERAL LINEAR MODEL~ PROCEDURE SUH Of SUUAR!:S 0.57400071 1.90710811 2.48110683 HPE IU SS
- o. 57400071 MEAN SQUARE 0.57400071 0.27244402 f VALUE PR > f 2.11 0.1899 F VALUE PA > F R-S<WARE c.v.
2.11 0.1899 0.231348 30.0.508 ST!> DEV LDEN MEAN 0.52196170 1.738011686
Table 11-38. - Atialysis of variance of log-transformed trawl data of weakfish, west vs. east, Plant region, 2 - 3 August, 1978.
S T A f I S T I C A L A N A L Y S I S S Y S T E M 14:18 SUNDAY, OCTOBER 22, 1978
- 8l 0Affa4 AREA=P G£NEHAL LINl:AR MOO~LS PROCEDURE DEPENOENJ VARIABLE l LDEt~
SOURCE OF SUM Of SQUARl:S MEAN SQUARE f VALUE PA > f R*SQUARE c.v.
ll!ODEL
- 1.
0.00268565 0.00261i565 0.01 0.925l O.OUCJ241 H.2194 ERROR l1 11.14625244 O.l0125U07 STD DEV LDEtl MEAN CORRECTED TOTAL l8 11.14893809 0.548il6252 1.652H608 SOURCE Of TYPE 111 SS F VALUE PA > f TR 1
0 *. 00268565 0.01 0.9251
\\ -
Table II-39. - Analysis of variance of log-transformed trawl data of weakfish, west vs. east, South region, 2 - 3 August, 1978.
STATlSTllAL AN.ALYSlS S Y S T E M 14:18 SUNOAY1 OCTOBER 22, 1978 86 OAH=4 AHl:A=S GENERAL LINEAR MODELS PROCEDUWE DEPENOENJ llAAlABLIE g LOEN SOURCE DF SUM Of SQUAHl:S Mf:AN SQUARE F l/ALUE PR > F A-SQUARE c.v.
MOO EL 1
u.50612658 0.306726511 0.65 0.42$4 0.0011030 68.5182 ERROR 80 H.891/Y64j 0.47364146 STD DEV LOEN MEAN CORRECHD JO JAL 81 38.19852301 0.68822050 1.00443515 SOUMCE DF JYPE. II I SS f VALUE PR > f TA 1
ll. 306126511 0.65 0.4214
Table II-40. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish by region, North vs. Plant vs. South regions, 16 - 17 August, 1978.
D l:l-'!:l.pt.111 T VANlA:iLE: LDEN SOURCE Of SUM OF SQUAHES MEAN SQUARE f VALUE PR > f R-SOUARE
- c. v*.
l1*.>11EL 2
8.11)469022 4.4UHS11 10.69 0.0001 0.153613 46.5191 f:klh.IM 120 411.78829223 U.40656910 STD DEV LO~tl MEAN COrlHCHO TUT AL 1.?2 51.64298245 0.63762771 1.37067898 SIJIJ1HE Of TYPE ll l SS f VALUE Pll > F AR!:-'
2 8.85469022 10.89 0.0001 DUNCAN'S MULllPLE RAl'IGE TESr FUil VARIABLE LOEN
~EANS ~IJH THE SAME LETTER ARE NOl SlGNIFlCANTLY DIFFERENT.
ALPHA LE11H... us Of=120 MS=0.406569 GROUPING MEAN N
AHEA A
1./j.:!)44 39 p
e 1.247019 7S s
il li 0.8H101 9
N
Table II-41. - Analysis of variance and Duncan 9 s multiple range test of log-transformed trawl data of weakfish by subarea 9 North vs. Plant vs. South regionsP 16 - 17 August, 1978.
0 !;Pl: 'dDf IH VAHIA13Ug LOEN S !llJ.~ CE Of SUM lH !">QUAil ES MEAN SQUARE F VALUE PR > f II-SQUARE c.v.
~0..1~L 16 21.\\t>9U347 1.35557959
].90 0.0001 0.370718 42.670.S i;ldl ii ;i 106 H.27370898 0.34220480 STD DEii LOEN MEAN COt<dO::ltO TOTAL 122 Sl.64?.98245 0.58498274 1.37067898 SOcl;j( I:
Of r v i>1: I! I SS f
VALUE PR > F s u~ Al' 16 21.36927347 3.YO 0.0001
Table 11-41. - (Continued)
~..
OUNCAN'S MUl.TIPLE RANC:.E fl: ST FOR VAIHABLE LOEN
~1EANS WI JH JHE SAM: U JTER AH NOT SIGNIFICANJLY Olff~RENT.
ALPIU LE VH"'.05 (lf i:106 MS"'0.142205 GROUPING MEAN N
SUBAREA A
2.211730 4
3 Plant A
A 2.1.54445 9
1 Plant A
ll A
1.814950 7
4 Plant B
A H
A
- 1. 74'l.9H 1 7 2 South B
A ll A
c 1.523El95 1
6 Plant B
A
(
B 0
A c
1.421198 6
8 South B
0 A
c El 0
A c
- 1. 3926119 4
5 South a
0 A
c R
0 A
c 1 *.H1 249 5
5 Plant B
i>
c B
0 c
1.j2o302 J
2 Plant B
0 c
B 0
c 1.266058 4
4 South ll D
c B
0
(
1.22606/
9 3 South 0
c 0
c 1.096912 10 1 South 0
c 0
c 1.llll1119 7
7 South 0
c 0
c 0.951104 5
1 North 0
- i 0
U.846239 16 6 South 0
0 0.811625 2
9 South 0
0 0.683098 4
2 North
\\'
- Table II-420 - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish, east vs. west, Plant reglon 9 16 - 17 August, 1978.
ilft'l1.'U;f llAt\\l.\\t:iLl: l.OH1 Ml:AN SQlJAJiE f VALUE PR
)
F R-SQUAllE c.v.
s (JlJ ~? (. t OF SUl'I OF SUUAHS
- s. 2Cl49'li' 31 j.20495731 14.44 o.oous 0.280763 27.1889 MOOH U.2l1!1Yi'16 STD DEV LDEN Ml:AN I: II~ (J'l
.H H.21019474 0.47105961 1.73254359 C.Uf..lo'HJf;LI TOJH 38 11.41515205
~OU*H ~
Of l'rPE 111 SS f \\/ALUl:
PR > f r II 14.44 u.uoos OUNCA~'S ~ULTAPLE 114NGI:
Tl:~T FOii VARIABLE LDEN MEANS WITH IHI:
SA~I: LETll:R ARE NOT SIGNIFICANTLY DIFFERENT.
ALPHA LEVH=.05 Df=H MS:D.221897 GllOUPIM1 MEAN N
Tll A
20042180 18 West
,6
!.467141 21 East
Table II-43. - Analysis of variance and Duncan's multiple range test of log-transformed trawl data of weakfish, west vs. ~a~t, s'outh region, 16 -
17 August, 1978.
DEPE r101;11 T VARJAHlf: LDEN SOUi<CE Df SUI" OF StiUAHf:S
~ii; AN SUUARI; f
VALUE PR
)
f R*S1WARE c.v.
- CluEL i.41950012 3.41950012 8.23 0.0054 0.101288 51.6986 E 11?01(
75 30 *. i41l69363 U.41562594 STD DEV LOE~ 11EAN con1tcti:i:i rorn 74 H. 76019375 0.64469058 1.24701H68 SOUHf.
i> F JYPl 111 SS f
VALUE PR
)
f T Ii 1
J.41950012 8.23 0.0054 DIJN(Al<j*s MuL11PLE RAr.Gf As1 fllH vArtrA~*E Lof111 MEANS WITH THl SAME: LETTER ARI; r.oT SIGNIFICANlLY DIFFERENT.
ALPHA LEVEi "'.OS DF=73 MS:0.415626 C,kOUPINC>
TR A
1.441464 41 west 8
1.012540 East e
\\
-~
i !
--*:~*
Table II-44e - Analysis of variance of log-transformed trawl data of weakfish, east vse west, North region, 16 - 17 August 9 1978e S T A f I S T I C A L A N A L Y S I S S Y S T E M 14:18 SUNDAY, OCTOBER 22, 1978 89 DA U"'!i AREA=N GENERAL LINEAR MODELS PROCEDURE DEPENDU~J VARIAtlU. g lDEN SOURCE Df SIJM Of SUUAAES MEAt-1 SQUAH F VALUE PR > f A-SQUARE c.v.
MODEL 1
1.26124372 1.l6124H2 3m75 0.0919 0.349090 69.5736 ER ROH 1
2.35110271 O.H595753 STD DEV LDEN MEAN CORRECTED TOTAL 8
l.61294641 0.57961844 0.83310148 SOURCE DF HPE JU s_s f VALUE PH l>
f TR 1
1.26124312 3o?5 000939
I!
( '
Table. II-45. ~ Kruskall-Wallis test of log-transformed trawl data of weakfish, 16 - 17 August vs. 7-8 September, 1978.
LEVEL WILCOXON SCORES (RANK SUMS)
SUM OF SCORES EXPECTEI>
UNDER HO STD DEV UNDER HO 16 - 17 August 7 - 8 September 5 1 2.s 6 1 :52 17141.00 15499.00 15744.0U 16896.00 588.53 588.53 WILCOXON 2-SAMPLE:. TEST (NORMAL APPROXIMATION)
S=17141.00 Z= 2.3737 PROB >\\Z\\:0.0176 T-TEST APPROX. SIGNIFICANCE=0.0184
~RU~KAL-WALLIS TEST (CHI-SQUARE APPROXIMATION)
CHIS~=
5.63 OF=
1 PROB > CHISQ=0.0176 MEAN SCORE 139.36 117.42 Table II-46. - Kruskall-Wallis test of log-transformed trawl data of weakfish, North region, 16 - 17 August vs. 7 - 8 September, 1978.
LEVEL WILCOXON SCORES CRANK SUMS)
N SUM Of SCORE:.S EXPECTED UNDER HO STD DEV UNDER HO 16 - 17 August 7 - 8 September 5
6 9
9 88.00 83.UO 85.50 85.50 11.32 11.32 WILCOXON 2-SAMPLE TE:.ST <NORMAL APPROXIMATION)
S=
H8.00 Z= 0.2208 PkOB >\\Z\\=0.8253 T-JE:.ST APPROX.
SIGNlflCANCE:.=U.~279 KRUSKAL-WALLIS TEST <CHI-SQUARE APPROXIMATION)
CHISQ=
0.05 OF=
1.ROB > CHISQ=0.8253 MFAN SCORE 9.78 9.22
Table II-47.. - Kruskall-Wallis test of log-transformed trawl data of weakfish, South region, 16 - 17 August vs. 7 - 8 Septemberp 1978.
LEVEL WILCOXON SCORES (RANK SUMS)
N SUM OF SCORES EXPl:CTED UNDl:R HO StO DEV LINDER HO 16 - 17 August 5
75 7 - 8 September 6
84 6468.. 51) 6251.50 61HIO.. 00 6720.UO 289.8..S 289. 8..S WILCOXON 2-SAMPLE TEST (NORMAL APPROXIMATION)
S: 6468u~O Z= 1.6165 PROU >\\Z\\=0.1060 T*IESI APPROX. SIGNlflCANCt;0.1080 1'<1E AN SCORE 86.25 74.42 kRUSKAL-INAU.!S TEST (CHl-SCHIARE APPROXIMATION)
CHISQ=
2.. 61 DF=
1 PROB > CHISQ=0.1060 Table II-48. - Kruskall-Wallis test of log-transformed trawl data of weakfish, Plant region, 16 - 17 August vs. 7 - 8 September>> 1978.
wllCOXOI~ SCORES (R~t~K SUMS)
SUM OF EXPECTED STD DEV LEVl:L N
SCORES UNOl:R HO UNDER HO 16 - 17 August 5
39 1845.. UO 1540.50 100.07 7 - 8 September 6
..S9 1236.00 1540.50 100.07 WILCOXON l-SAMPLE lEST (NORMAL APPROXIMATION)
S= 1845.UO Z= 3.0430 PWOH >\\Z\\=0.0023 1-TEST APPROX. SIGNIFICANCE=0.0032 KRUSKAL-~ALLIS resr <CHI-SQUARE APPROXIMATION)
CHJSQ=
9.26 OF=
1 PPOB > CHISQ=0.0023 M~AN SCORE 47.. 31 31.69
I, Table 11-49. - kruskall-Wallis test of log-transformed trawl data of weakfish, North vs. Plant. region, 7 - 8 September, 1978.
LEVEL North Plant WILCOXON SCORES CRANK SUMS)
N 9
39 SUM Of SCORES 130.SO 1045.50 EXPECTED UNDER HO 220.50 9S5.50 STD DEV UNDER HO 37.86 37.86 WILCOXON 2-SAMPlE TEST (NO~MAL APP~OXIMATION) s=
130.50 z=-2.3773 PROB >\\Z\\=U.0174 I-TEST APPROX. SIGNIFICANCE=0.0216 KRUSKAL-WALLIS TESJ <CHI-SQUARE APPROXIMATION)
CHISQ:
5.65 OF=
1 PROB > CHISQ=0.0174 MEAN SCORE 14.50 26.81 Table 11-50. - Kruskall-Wallis test of log-transformed trawl data.of weakfish, Plant vs. South region, 7 - 8 September, 1978.
LEVEL Plant South WILCOXON SCORES (RANK SIJMS)
SUM OF EXPECTED s ro DEV N
SCORES UNDER HO UNDER HO 39 2802.50 2418.0U 183.99 84 4H23.~0 5208.00 18.S.99 WILCOXON 2-SAMPLE TEST (NORMAL APPROXIMATION)
S= 2802.50 Z= 2.0898 PROB >\\Z\\=0.0366 I-TEST APPROX. SIGNlf ICANCE:=O.UJ87 KRUS~AL-WALLJS TEST (CHI-SQUARE APPROXIMATION)
CHISO=
4 *.S7 OF=
1 PROB > CHISQ=0.0366 ME AN SCORE 71.. 86 57.42
\\
Table II-51. - Kruskall-Wallis test of log-transformed trawl data of weakfish, North vs. South ~egions, 7 - 8
~P.;,ltemher. 1978.
U:llEL North south w!LCOXON SCORl:S (RANK SUMS)
I~
9 li4 SlJf'I 1H SCORI: S 36'.>.llO 4006.UO E Xf'l:C HD IJNDtR HO 42.s.oo j94d.il0 STD Olli UND[R HO 76.95
- 16. 9'.>
~ILCO~ON 2-SAMPLE TEST (NORMAL APPRO~IMATION)
S; 365.uU z;-u.7'.>31 P~OU >\\Z\\;Q.4'.>10 l-JESJ APPROX. SJGNlflCANCt:a0.4'.>.SU K~U~~AL-WALLJS T~ST (CHl-squARE APPROkJMATION)
CHISu:
U.57 Of:
1 P~OO > CHIS~z0.4'.>10 P-'E AN SCORIO 40.56 47.69
-~
Table 11-52, - Catch per unit effort (n/T) by date and subarea, of.£. regalis collected in population surveys, 20 1 21 JulI 2 1 3 Ausust 16 1 17 August 7 1 8 Seetember
.North region Subarea 1 95.6 69.6 16.8 52.0 2
81.8 127.2 13.8 2.8 Plant regton Subarea 1 359,8 78.9 187.6 54.0 2
126.0 80.3 53.7 28.4 3
304.8 76.8 197.5 55.2 4
126.4 110.4 86.1 45.7 5
41.6 40.8 31.0 12.6 6
135.3 60.0 34.6
- 22. 3 South region Subarea 1 83.6 29.1 27.0 125.l 2
606.5 138.8 114.9 26.7 3
177.l 24.7 23.6 14.l 4
58.4 26.8 64.o 61.2 5
65.2 7.2 51.2 30.5 6
112. 7 16.l 15.6 8.9 7
61.3 24.6 32.J 61.1 8
40.0 21.8 45.8 96.0 9
24.0':
14.8 5.5 o.o e
e
Table II-53. - Kruskall-Wallis test of log-transformed trawl data of weakfish, west vs. east, South region, 7 - 8 September, 1978.
LEVEL East west WILCOXON SCORES (RANK SUMS) 41 4~
SUM OF SCORf.S 1554.50 2215.SU EXPECHO UNDER HU 1742.50 1827.50 STD DEV UNDER HO 111.75 111.75 WILCO~ON 2-SA~PL~ lESl (NORMAL APPROXIMATION) s= 1354. s 0 Z=-3.4721 PROR >\\Z\\=0.0005 1-TESV APPROX. S!GNlf ICANCE=0.0008 KRUSKAL-WALlXS TES! (CHE-SQUARE APPROM!MATION)
CHISQ=
12.06 DF=
1 PROB > CHISQ=0.0005 MEAN SCORE H.04 51.52
(.
Table 11-54. ~ Kruskall-Wallis test of lqg-transformed trawl data of weakfish, west vs. east, North region, 7 - 8 September, 1978~
e I.
LEI/EL East west WILCOXON SCORES
(~ANK SUMS)
N 5
4 SUM Of SC OHS 21.50 23.~0 EXPECIED UNDER HO 2 5. 01) 20.00 STD DEV UNDER HO 4.08 4.08 wlLCOXON 2*SA~Pll TESJ lNORMAL APPROXJMATJON)
S=
23.50 Z= 0.8573 PROB >\\Z\\=0.3913 T*TEST APPROX. SJGNJfJCANCE=U.4162 KRUSKAL-WALLJS TEST lCHl-SUUARE APPROXIMATION)
CHJsu~
U.73 Of=
1 PROB > CHISQ=0.3913
/olEAN SCORE 4.30
- 5. 811
'\\
(.
Table II-559 - Kruskall-Wallis test of log-transformed trawl data of weakfish, west vs. east, Plant region, 7 - 8 September, 1978.
LEVEL East west WILCOXON SCORES <RANK SUMS)
N 21 18 SUM Of SCORES 35!J.OO 42,5.00 EXPECTED UNDH.HO 420.00
.s60.00 STO DEV UNDER HO H.50 35.50 WILCO~ON 2-SAMPLE TESI (NORMAL APPROXIMATION)
Sz 425.00 Z= 106312 PROB >\\Z\\=0.0671 J-TEST APPROX. SIGNIFICANCE=U.0749 KAUSKAL-WALLIS TEST (CHI-SQUARE APPROXIMATION)
CHiSQB 3.15 DF~
1 PROB > CHISQ~0.0671 MfAN SCORE 16.90 23.61
Table II-56.
Kruskall-Wallis test of log-transformed trawl data of we~kfish, 21 June vs. 5 July, 1978.
LEI/EL 21 June 5 July WILCOXON SCORES (RANK SUMS)
N 1
B 2
13 SUM OF SCORES 221.00 130. 00 EXPE:CTED UNDI: R HO 175.Sll 175.50 STD DEii UNDER HO 19.50
- 19. 50 WILCOXON 2*SAMPLE TEST (NORMAL APPROXIMATION) s=
221.00 Z= 2.53\\3 P~O~ >\\Z\\=0.0196 T*JEST APPROX. SJGNlflCANCE=O.U280° KRUS~AL-~ALLIS TEST ICHl*SQU~RE APPROXl~AllON)
CHl~O=
5.44 OF=
1 PROB > CHJSQ*U.0196 MEAN SCOllE 17.00 10.Ull
(
Table 3
II-57. - De_nsity (n/lOOm ) of _£. regaUs in Delaware River Estuary, 1978, by date and sub-area, within North, Plant 9 and South regions, based on population estimates.
8 3 Volwne (10 m )
21 June 5 July 20, 21 July 2, 3 Aug.
16, 17 Aug.
7, 8 Sept.
North region Sub-area l 0.86 5.06 3.68 0.89 2.75 ii Sub-area 2 Ll5 3.59 5.59 0.61 0.01 I'
Plant region Sub-area 1 2.05 13.40 2.98 6.98 2.01 Sub-area 2 2.02
~.61 3.57 2.38 1.26 Sub-area 3 1.21 26.10
- 15. 90 12.20 3.08
- 7. 93 2.22 Sub-area 4 0.88 30.20 9.86 8.31 7.26 5.66 3.00 Sub-area 5 1.95 5.20 3.32 1.89 1.85 1.41
- s. 71 Sub-area 6 1.82 7.89 2.64 5.59 2.46 1.42 9.14 South region Sub-area l" 7.BO 4.38 1.53 1.41 6.56 Sub-area 2 28.10 11.70 2.68 2.22 0.52 Sub-area 3 11.60 7.36 1.03 0.98 0.59 Sub-area 4 2.39 5.23 2.43
- 5. 73 S.48 Sub-:-area 5 5.32 4.29 0.47 3.36 2.01 Sub-area 6 17.so
- 3. 95 0.57 o.ss 0.31 Sub-area 7 2.87
- 6. 97 2.79 3.66
- 6. 93 Sub-area 8 6.77 1.99 1.09 2.29 4.80 Sub-area 9 4.77 l.34 0.82 0.31.
o.oo
Table i.1-58,.,. Number ( n) and weight. by region and date
- of£* regalis (age 0+) in Delaware Estuary, 1978 based on population estimates, Region North Plant South Total n
weight n
weight n
weight n
weight Date (108)
(k15 (lbs)
(108)
(kg)
(lbs)
(108)
Cks>
(lbs)
(108)
(kg)
(lbs) 21 June 1.210 47.au 105,423 12.10 478,110 1,054,233 S July U,513 52.183 115,064 5.13 521,8())
1,150,635 20, 21 July 0.086 14,046 30,971 0,843 12 9,685 285. 955 6.92 1,471,988 3,245,734 7,85 1.615,719 3.562,660 2, 3 August 0,091 19,894 43.866 0,333
- 72. 775 160,469 1.67 563,800 1,243.179 2.09 656,469 1,447,514
- 16. 17 August 0,015 4,057 8,946 0.431 92,114 203,111.
1.73 660,481 1,456,361 2.17 756,652 1,668,418 7, 8 September 0,029 15,625 34.453 0,161 86,581 190,911 1.49 918,658 2,025,641 1.68 1,020,864 2,251,005 Table 11-59. - Number (n) and weight of.£* resalis (age 0+) impinged at circulating water intakes at S,N,G.S, on dates of population surveys in Delaware
- Estuary, Date 21 June 5 July 20, 21 July 2.l August 16
- 17 August 7, 8 September n
7.1 x 103 4.3 x 105 3.3 x 104 1.6 x 104 2.2 x 104 1.1 x 104 Weight Cks>
Weight (lb) 18.7 8.5 699,9 1543.o 60.9 134.3 21.9 48.3 23.8 52.5 5,2 11.5 I
I
e e
TABLE 111-1.
- W~AJ,flSH IMPINGEMENT DAH FROM JUNE 19 TO JULY JQ, 1976 AT S.N.G.S.
RA TE SURVIVAL MIN.LEN MAX.LEN OETRlTUS.wT OHE TIMI:
(NO/MIN)
<X>
(MM> *
( i~M)
CIRC TIDE.STAGE (KG/MI"l)
&*~oei
*DC!ll'- ------- -------
061978 0923
.3 100 NA NA 5
FL. 2 99.9 1051
.o NA NA NA 4
EHB 2
.7 1203
.o NA NA NA 4
EIJB 2 47.0 1426 3.3 60 NA NA 4
EBIJ 2 99.9 1800 2.0 66 ti A NA 4
Fl. 1 99.9 2105
.o NA NA NA I,
FL. 2 3.1 062078 0000 1.3 50 NA NA 4
Fl. 2 99.9 0305
.o NA NA NA 5
E ue 2 2!>.0 0600 2.3 29 NA NA 5
EIJB 2 99.9 062178 0910
.o NA NA NA 5
FL. 1 6.8 1015
.3 0
NA NA 5
FL 1 99.9 1203
- 1. 0 100 NA NA 5
FL. 2 99.9 1242
.3 0
NA NA 5
fl. 2 99.9 1341
- 17. 7 57 NA NA 5
EBB 1 99.9 1808 2.1 18 NA NA 5
EBB 2 99.9 2123
.7 100 NA NA 6
FL. 1 99.9 062278 0000
.3 0
NA NA 6
Fl. 2 99.9 0300 2.7 38 NA NA 6
f:.BB 1 99.9 0600 11.7 74 NA NA 5
EBB 2 99.9 0940 2.7 0
NA NA 5
Fl. 1 99.9 1029 2.3 43 NA NA 5
fl. 1 99.9 1200 2.3 29 NA NA 5
FL. 2 99.9 1.BO 1.3 25 NA NA 5
fl. 2 99.9 1405 6.7 50 NA NA 6
f:BB 1 99.9 1805 11.3 29 NA NA 6
EBB 1 99.9 2125
- . 1 50 NA NA 6
EBll 2 99.9 062178 0000
.1 50 NA NA 6
fl. 1 99.9 030Q 8.7 t.6 NA NA 6
fl;: 2 99.9 0600 20.7 29 NA NA 6
EBIJ 1 99.9 062678 0909 749.3 30 21 55 6
EBB 2 15.0 1206 13.3 45 26 60 5
FL. 1
.9 1510 6.0 44 31 55 5
fl. 2
.3 1800 9.0 66 21 5'i 5
EBB 1
.8 2100 37.0 38 21 55 5
ma 2 16.7 062778 0000 43.0 t.8 21 60 6
FL. 1 7.5 0315 28.3 61 26 60 6
FL. ;!
3.3 0600 19.7 32 31 60 6
EBB 1 1.7 062878 0851 797.0 28 16 60 6
EBB 1 26.0 B54 82.0 44 31 65 6
He 1
.3 NOHI lf OkTAITUS WEIGHT
- 99.9, NO DATA ARE AVAILABLE
TABLE :CI:C*-*:I. <CONTlNUEfl>
- RAH SURVIVAL MlN.LE.N MAX.LEN OETlllTUS.wT DAH TIME (NO/MJN)
(%)
(MM) *
(MM)
CJAC TIDE.STAGE (KG/MIN) 062878 1804 27 -3 44 31 60 6
FL. 2
- 1. 3 2145 535.0 l7 21 65 6
ESB 1 11.0
~ t 062978 0000 1748. 3 51 21 75' 6
EBB 2 15.3 0600 75.0 56 31 70 6
FL. 2 2.3 1200 347. 7 32 21 2'i5 5
EBB 2 15.0 i 758
. 20.0 60 31 65 5
FL. 2
.3 2200 222.0 75 26 65 5
ESB 1 8.9 2240 68.5 NA 26 65 5
EBB 1 21.0 063078 0600 286.0 75 31 65 6
FL. 2 2.. 7 070478 10.H 38.0 11 36 70 6
FL. 2.
.3 1100 38.7 82 36 75 6
FL. 2
.1 1810 87.6 63 36 70 6
EBB 2 1.0 2200 200.0 83 36 70 5
FL.
~
2.0 2HO 147.5 NA 36 70 5
FL. 2 99.9 070578 0600 82:5.7 72 36 75 5
FL. 1 6.0 1130 26.7 53 31 70 5
FL. 2
- 1. 3 1204 21.3 61 36 75 5
FL. s
.8 lBlJO 473.0 63 36 75 6
ERB 2 3.8 16.SO 2b1.0 NA 36 75 6
ESB 2 2.3 2300 197 ~ 0 75 36 75 6
FL. 2
.3 2320 167.5 NA 36 75
- 6.
FL. 2
.6 070678 0500 714.0 66 41 75 6
EBB 2 8.6 0555 670.0 NA 41 75 6
E.BB 2 8.2 1200 2ll.7 32
.Sl 75 5
Fl. 2
- 1. 3 1231 12.3 43 31 80 5
FL. 2
.4 1750 147.0 63 31 70 5
fijl) 2 1.7 1855 148.0 NA 31 70 5
E tlB 2 1.7 2300 9:5.0 78 46 80 6
FL. 2
.9 2315 59.5 NA 46 110
- 6.
FL. 2
.3 070778 0500 1260.0 53 31 75 6
EOB 2 21.5 1140 26.0 63 36 75 5
FL. 2 1.0 071078 1046 134.0 73 36 110 5
FL. 1 3.0.
1110 47.0 NA 36 BO 5
FL. 1
.6 1.5U2 135. 5 78
.36 75 5
fl. 2
.7 1750 19.0 53
31 70 4
l:BB 1 2.6 1815 9.5 NA 36 70 4
EBB 1 2.6 2100 305.0 NA NA NA 5
EBB 2 21.l 07117.8 0000 85.7 71 36 85 6
FL. 1 7.0 NOTE l If DETRITUS WEIGHT
- 99.91 NO DATA ARE AVAILABLE e
e TABLE r:CI-*:I. <CONTINUED>.
RAH SUl~V!VA"l MIN.LEN MAX.lt:N Of:. TR I TUS.wT DATE TIME
<<NO/MIN>
U>
(MM)
(MM)
CIRC TIDE.STAGE (KG/MIN) 071418 2200 36.0 NA NA NA s
1:91:1 1 99.9 2500 193.0 NA NA NA 5
l:BB 2 99.9 071578 0000 100.0 NA NA NA 5
urn 2 99.9 0005 188.0 NA NA NA 5
El:IB 2 99.9 0010 188.0 NA NA NA 5
EBB 2 99.9 0200 64.0 NA NA NA 5
fl. 1 99.9 0205 66.0 NA NA NA 5
fl. 1 99.9 0210 36.0 NA NA NA 5
FL. 1 99.9 0400 53.0 NA NA NA 5
FL. 2 99.9 0410 54.0 NA NA NA 5
fl. 2 99.9 0430 61.0 NA NA NA 5
FL. 2 99.9 0600.
39.0 NA NA NA 5
fl. 2 99.9 0610 41.0 NA NA NA 5
Fl. 2 99.9 0700 39.0 NA NA NA 5
EBB 1 99.9 0820 H.O NA NA NA 5
EBl:I 1 99.9 0900
.B.O NA NA NA 5
El'B 1 99.9 1000 78.0 NA NA NA 5
EBB 1 99.9 1100 91.0 NA NA NA 5
ESl:I 2 99.9 1200 133.0 NA NA NA 5
i:BB 2 99.9 1500 329.0 NA NA NA 5
EBB 2 99.9 1415 370.0 NA NA NA 5
FL. 1
'i19.9 1418 370.0 NA NA l\\IA 5
fl. 1 99.9 1421 147.0 NA NA NA 5
fl. 1 99.9 1600 64.0 NA NA NA 6
fl. 2 99.9 1603 59.0 NA NA NA 6
FL. 2 99.9 16U4 64.0 l\\IA NA NA 6
H. 2 99.9 1801.1 39.0 NA NA NA 6
fl.. 2 99.9 180.S 10.0 NA NA NA 6
H~ 2 99.9 1806 33.0 NA.
NA NA 5
fl. 2 99.9 2000 B.O NA NA NA 5
FL. 2 99.9 2003 16.0 NA NA NA 5
FL. 2 99.9 2006 50.0 N.11 NA NA 5
fl. 2 v9.9
- 214 5 78.0 NA NA NA 5
HlB 1 99.9 2300
.56.0 NA NA NA 5
EBB 1 99.9 2515 44.0 NA NA NA 5
ma 1 99 *. 9 071678 0015 i!21.0 NA HA NA 5
!EBB 2 99.9 0155 193.0 NA NA NA 5
EBl:l 2 99.Y 0506 2.55.0 NA NA NA 5
fl. 1 9'i.9 Qj12 2B.O NA NA NA 5
FL. 1 99.9 0315 158.0 NA NA NA 5
fl. 1 99.9 060:S 53.0 NA NA NA 5
fl. 2 99.9 0608 11.0 NA NA NA 5
Fla 2 99.9 0611 42.0 NA NA NA 5
Fle 2 99.9 1000 42.0 NA NA NA 5
EBB 2 99.9 NOH~
IF DETRITUS WEIGHT
- 99.9-NO DATA ARE AVAILABLE
TABLE III--1 ( CntHINUED >.
Al TE
~'HVJ"VAL MIN.~EN MAX.LEN DURITUS.wT DATE TIME (NO/MIN) cu (MIO (MM)
Cl RC llOE.SJAGE Cii.G/MIN) 071678 1200 97.0 NA NA NA 5
EBB 2 99.9 1515 75.0 NA NA NA 6
fl. 1 99.9 1518 84.0 NA NA "4A
.6 FL. 1 99.9 1521 89.0 NA NA "4A 6
FL. 1 99.9 1835 50.0 NA NA NA 5
FL. 2 99.9 1838 30.0 NA NA NA 5
FL. 2 99.9 1841 42.0 NA NA NA 5
FL. 2 99.9 2000 55.0 NA NA NA 5
FL. 2 99.9 2200 64.0 NA NA NA 5
. EllB 1 99.9 2315 105.0 NA NA NA 6
EBB 1 99.9 071778 04i!O 329.0 NA NA NA 6
FL. 1 99.9 0426 684.0 NA NA NA 6
FL. 1 99.9 04.SO 193.0 NA NA NA 6
fl. 1 99.9 0728 50.0 NA NA NA 6
FL. 2 99.9 OlH 59.0 NA NA NA 6
FL. 2 99.9 07H 50.0 NA NA NA 6
FL. 2 99.9 0915 26.7 86 46 81 6
ESB 1 1.0 1.200 4.0 92 46 66 5
EBEi 1
'1 o.o 1520 42.0 81 41 90 5
E. 811 2 10.1 1800 41.7 82 41 90 5
FL. 2 3.2 2106 50.7 86 41 85 5
EB8 1
.8 071878 0000 67.3 85 31 90
.6
- EBB 1 4.0 lBOO 9h.O 12 41 90 6*
E6B 2
- 4. o OoUO
- 10. 7 86 41 65
- 6 FL
- 1 1.7 0900 4.6 71 46 81 3
FL. 2 3.0
. 1030 5.0 60 56 81 3
EBB 1 2.1 1200 2.0 83 41 76 3
EBB 1 5.3 1400 7.0 43 46 YO 3
EllB 2 16.l 1600
&.O 75 46 75 3
EBB 2 8.Z 2115
.o NA NA NA 2
fl. 2 1.8 2230 2.0 100 46 60 2
FL. 2
.5 071978 0000 8.6 71 46 81 2
E.BB 1 3.2 ozoo 1.0 100 56 56 2
EBB 2
.9
.0400 15.0 100 36 81 2
EBB 2 1.4 0.6il0 31.3 50 36 95 2
FL. 1
.9 (1900 4.0 100 46 75 3
fl. 2 4.1 1200 7.3 68 46 85 5
EBB 1 2.8 1345 10.0 50 46 95 4
EBB 1 12.s
- 1soo
. 30.0 73 46 85 s
l.:BB 2 15.0 1800 43.3 73 41 85 4
FL. 1 4.1 012078 0025 6.l 79 41 75 4
EBB 1
.1
. 0300 4.l 91 41 80 3
EBB 2 4.0 NOTE I
\\..
lf DETRITUS WEIGHT
- 99.9, NO OATA ARE AVAILABL~
e e
e TABLE
- C I I **- :l <CONTINUED>.
RA TE SUAlll'\\/Al MIN.LEN MAX.LEN DEJRITUS.WT DATE TIME (NO/MIN)
(l)
(MM)° (MIO UR(
T KDE.STAGE (KG/MIN) 072078 0600 56.0 64 41 90 3
urn 2 1.7 0900 2.0 50 46 NA 3
fl. 2 2.4 1030 18.0 60 46 85 4
FL. 2 3.5 1200 3.7 71"
~1 7U 5
HIB 1 5.1 1600 23.0 87 46 95 5
EBB 2 11.0 1800 30.l 66 41 85 5
t:BB 2 5.8 072178 0045 19.6 79 46 85 6
urn 1 4.0 0300 4 3. 0 86 41 85 6
EUR 2 5.0 0600 55.3 72 41
- 96 6
Elm 2 6.0 0930 16.0 56 46 75 5
FL. 2 12.5 1200 11.0 76 41 80 5
FL. 2 1 - 1 1420 40.0 83 41 90 5
EBB 1 6.0 1 '>30 18.0 56 46 80 4
EBB 1 7.8 1800 15.7 n
41 90 5
UIR 2 6.7 2130 17.0 71 46 70 5
FL. 1 2.5 072278 0000 19.0 72 41 80 5
FL. 2
.9 0245 10.0 100 46 90 4
EUU 1 1.0 0600 38.6 78 41 95 5
EBB 2 4.0 0950 18.0 NA 51 76 5
FL. 1 99.9 1100 12.0 NA 42 66 5
Fl. 2 99.9 1300 2.0 NA 62 68 5
FL. 2 99.9 1430 5.0 NA 48 85 5
EBB 1 99.9 1640 13.0 NA so 78 5
EBR 2 99.9 1d30 14.0 NA 56 71\\
5 EBB 2 99.9 1930 20.0 NA 47 74 5
EBB 2 99.9 2225 56.0 NA 30 82
~
5 flo 1 99.9 072378 0030 24.0 NA 46 103 5
f'lo 2 99.9 0308 161.0 NA 45 103 5
EBB 2 99.9 0700 178.0 NA 4.S 94 5
EBB 2
'J 9. 9 0915 140.0 l'lA 43 107 5
FL~ 1 99.9 1145 32.0 NA 48 SU 5
fl. 2 99.9 14110 12.0 NA 43 63 5
FL. 2 99.9 160U 24.0 NA 43 77 5
ma 1 99.9 1830 32.0 NA 53 87 5
EBB 2 99.9 2105 34.0 NA 50 87 5
EUB 2 99.9 2230 24.0 NA 52 84 5
IFL. 1 99.9 2330 17.o NA 50 63 5
fL. 1 99.9 072471J 0115 30.0 NA 48 80 5
FL. 2 IJY.9 0210 13.0 NA 50 76 5
fle 2 99.9 0400 72.0 NA 44 79 5
EBB 1 99.9 060; lb.O NA 47 90 5
EBB 2 99.9 0910 74.0 69 41 86 5
EBB 2 7.0 NOTE1 If DETRITUS WEIGHT s
99.9~ NO OATA ARE AVAILABLE
TABLE I I I*-:L <CONTINUED>.
RATE SURV(VAL MlN.J..EN MAX.LEN DETRITUS.WT DATE JJME (NO/MIN) cu (MM>
(MM)
Cl AC TlDE.STAGE (KG/MIN) 072478 1200 33.3 74 41 81 5
fl. 1 16.6 1500 11.0 82 51 61 5
fl. 2 1.0 1800 30.0 88 40 80 5
. Elid 2 4.0 2100 31.0 61 46 95 5
EllB 2 5.2 072578 0!>00 19.6 76 46 100 5
FL. 1 l.O o.ioo 60.0 84 48 100 5
FL. 2 l.3 0600 26.0 76 46 120 5
EBB 1 4.9.
0930 210.0 NA 45 102 5
EBU 2 19.5 1120 Y5.0 NA 50 87 5
FL. 1
- 99.9 1215 12b.O NA 43 75 5
fl. 1 99.9 llH 121.0 NA 42 90 5
FL. 2 99.Y 1520 41.0 NA 48 83 5
FL. 2 9Y.9 1800 101.0 NA 49 92 5
EBB 1 99.9 1900 120.0 NA 39 90 5
EBU 1 99.9 2045 13.0 NA 54 82 4
EBB 2 99.9 22115 45.0 NA 47 8l 4
EBB 2 99.9 0726711 0030 41.0 NA 48 82 4
FL. 1 99.9 J410 2&.0 NA 38 62 4
fl. 2 99.9 0600 91.0 NA 52 77 4
EBB 1 99.9 0900 8.0 63 51 95 4
EBB 2 l.4 1200 6.6 80 46 90 4
EBB S
.5 1BO 5.l 50 46 61 4
FL. 1 2.2 150()
14.0 76 41 75 4*
FL. 2 1.2 1SOO
.3 0
56 56 4
FL. s
.3 2103 11.0 55 46 80 4
FL. 1 1.4 072778 0000 41.3 63 46 100 5
FL. 1
.9 0300 2.3 70 51 85 5
FL. 2 1.1 06ll0 4.3 62 51 80 5
EB9 1
.4 0910 9.3 76 51 81 4
EBB 2 1.7 12ll0 21.3 84 41 85 5
EBli 2 2.3 1500 9.0 55 46 85 5
FL. 2
.6 1b00 5.0 80 46 66 5
FL. S
.2 2115 2.0 100 56 100 5
EBB 2 1.0 072878 0000 9.7 90 46 100 5
EBO 2 2.0 0320 3.3 46 40 90 5
fl. 1 2.2 06ll(J 5.0 60 51 Su 5
FL. 2 1.0 0855 3.0 NA 62 13 5
E il8 1 99.9 1020 11.0 NA 51!
66 5
EBB 2 99.9
.1145 16.0 NA 50 18 5
EBB 2 99.9 1325 23.0 NA 55 72 5
FL. 1 99.9 1445 4.0 NA 60 96 5
FL. 1 99.9 1605 2.0 NA 50 63 5
- fl. 2 99.9 nOTf:
IF DETRITUS WEIGHT
- 99.9, NO DATA ARE AVAILABLE e e
e e
e TABLE IIJ*-1 <CONTINUEil)t RAH SURI/II/AL MJN.l.EN MAX.LEN OUR ITUS.wT DUE TIME (NO/MIN)
U>
(MM)
(MM)
CJRC HOE.STAGE (KG/M!N) 072878 1900
.o NA NA NA 5
EBB 1 99.9 2110 21.0 NA 6l 82 s
EBB 1 99.9 2330 73.0 NA 47 64 5
EBB 2 99.9 072978 0130 82.0 NA 51 82 5
ma 2 99.9 OHO 21.0 NA 51 93 5
fl. 1 fJ9.9 0630 11.0 NA 49 77 5
fl. 2 99.9 0900 16.0 NA 50 6J s
EBB 1 9'1.9 0950 2.0 NA Sl 60 5
EBB 1 99.9 1050 6.0 NA 61 74 5
EBB 2 99.9 1225 12.0 NA 50 72 5
EbB 2
'19.9 1420 12.0 NA 53 99 5
fl. 1 99.9 1520 19.0 NA 50 71 5
FL. 1 99.9 1640 19.0 NA
.H 76 5
H. 2 99.9 1820 3.0 NA 67 75 5
FL. 2 99.9 2100 11.0 NA 52 65 5
EBB 1 99.9 2230
- n.o NA 49 65 5
EBB 1 99.9 013078 0100 116.0 NA 44 71 4
EBB 2 99.9 0300 131.0 NA 42 85 5
FL. 1 99.9 OHO 1.0 NA 64 64 5
fl. 2 99.9 0900
.o t-IA NA NA 5
EBli 1 99.9 0955
.o NA NA NA 5
EBB 1 99.9 1135 11.0 NA 49 85 5
i:bB 2 99.9
. 1250 31.0 NA 52 108 5
EBB 2 99.9 1510 24.0 NA 50 72 s
. FL. 1 99.9 1615 28.0 NA 49 69 5
fl. 1 99.9 1810 3.0 NA so 58 5
FL. 2 99.9 1900 3.0 NA 49 S7 5
fl. 2 99.9
.2100 34.0 NA 41 71 5
fl. s 99.9 2200 31.0 NA 4S 94 5
EHB 1 99.9 013118 0000 27.0 NA 47 95 5
EBB 1 99.9 0300
- 71. 0 NA 51 92 5
El:JB 2 99.9 060()
67.0 NA 58 78 5
FL. 1 99.9 093:1 8.6 77 51 85 5
EBB 1
.7 1200 7.6 96 31 tlO 5
EBB 1 5.0 1510 16.7 78 31 85 5
ma 2 7.1 1800 4.6 57 51 70 5
Fl. 2
.9 2200 15.0 80 51 71 5
HlB 1 7.5 080178 OilUO 25.0 48 46 86 4
EBB 1 4.5 o:rno 60.0 45 41 76 4
EBB 2 19.5 0600 2.0 50 46 66 4
flm 1 2.5 1000 5.0 NA 58 65 5
Fle 2 99.9 1100 53.0 NA 56 62 5
EBB 1 99.9
- -*m**e*m**m**-*************--**-*-***********
NOTEI XF DETRITUS WEIGHT
- 99.9, NO DATA ARE AVAILABL~
TABLE I I I*-* 1. <CDNTINUEII>.
RATE SURVIVAL
~lJN.LEN MAX.LEN DETRITUS.loll DATE TIME (NQ/;.!JN) co CMM)
( "iM)
ClRC TIDE.STAGE O.\\J/Mlt1)
~---
080178 HOO 3.0 NA 59 11 4
ESB 1 99.9 1430 7.0 NA 57 87 4
EBB 2 99.9 1630 38.0 NA 54 86 5
EBB 2
- .199.9 1800 24.0 NA 50 103 5
fl. 1 Y9.9 2100 29.0 NA 47 86 5
FL. 2 99.9 2230 8.0 NA 27 84 5
EBB 1 99.9 080278 0001) 4.0 NA 52 68 4
i:BB 1 99.9 0300 29.0 NA 58 91 4
EBB 2 99.9 0600 37.0 NA 51 83 6
fl. 1 99.9 0910 1.0 100 63 63 6
fl. 2 1.3 10l5
.o NA NA NA 6
FL. 2
.6 1200 5.7 82 46 90 6
EBB 1
.4 1345 2~0 100 61 80 6
EBB 1
.8 1520 9.0 89 51 80 6
EBB 2 22.1 llWO 2.0 100 56 80 6
FL. 1 3.2 2130 8.0 88 56 76 6
FL. 2 2.7 2230 11.0 54 51 81 5
fl. 2 3.0 080378 0000 17.t>
68 46 98 5
E6B 1 5.5 0300 19.0 63 51 80 5
EBB 2 11
- 5 0400 25.0 68 51 81 5
EBB 2 6.8 0600 28.7 77 46 76 5
EBB 2 8.2 0910
.o NA NA NA 6
. FL. 2
.8 1U20 1.0 0
46 46 5
FL. 2 1.2 1120 1.0 0
63 63 5
fl. 2 1.7 1200
.7 50 6d 68 5
EBB 1
.3 1301) 1.0 0
58 5 ll 5
EBB 1
.5 1420
.o tlA NA NA 4
EBl:I 1 3.4 1800 4.0 100 51 75 5
E613 s 1.3 2100 7.0 51 66 71 5
FL. 2
- 1. 0 2230 7.0 71 56 81 6
fl. 2 1.0 080478 0000 5.7 71 56 106 6
fl. s
.3 o.soo 9.0 78 56 86 6
EBB 2 5.0 0600 28.0 60 46 106 6
EBB 2 8.1 1000 1.0 NA 61 61 5
FL. 2 99.9 1130 1.0 NA 62 62 5
FL. 2 99.9 1345 2.0 NA 63 67 5
EBB 2 99.9 1440 1.0 NA 59 59 5
EBB 1 99.9 1640 s.o NA
.51 65 5
EBB 2 99.9 1i100 12.0 NA
51 85 5
E6B 2 99.9 1910 24.0 NA 5.1 95 5
EBB s 99.9 2115 16.0 NA 56 86 6
fl. 2 99.9 2240 13.0 NA 56 111 6
FL. 2 99.9.
NOTE I If OEJ~ITUS wEIGHT
- 99.9, NO DATA ARE AVAILABLE~
e
~*;
TABLE II I****:I. (CONTINUED>.
RA Tl:
SUA\\llVAL MU.I.LEN MAX.LEN DETRITUS.WT DATE THIE O.IO/MIN)
<U
( Ml"t)
(MIO CIAC TIDE.STAGE l KG/l'llN) 080578 0'100 4.0 NA 61 71 6
fl. s 99.9 0130 10.0 NA 46 71 6
EBB 1 99.9 OHO 24.0 NA 46 81 5
EF.IB 1 99.9 0530 27.0 NA 56 96 5
EBB 2 99.9 07j0 95.0 NA 36 90 5
ma 2 99.9 0915 23.0 t-IA 56 75 5
Flo 1 99.9 11H 4o0 NA 36 75 5
FL. 2 99.9 13H 2.0 NA 61 65 5
EBB 1 99.9 1445 12.0 NA
~1 70 4
E BEi 1 99.9 1630 9.0 NA 46 100 5
EBB 2 99.9 1835 18.0 NA 51 85 4
EBB 2 99.9 2100 3.0 NA 56 86 4
fl. 1 99.9 2230 3.0 NA 46 61 4
FL. 1 99.9 080678 0030 5.0 NA 36 76 4
fl. s 99.9 oz:so 6.0 NA 61 76 4
U3B 1 99.9 0450 8.0 NA 56 76 4
EBB 2 99.9 0735 12.0 NA 51 66 s
EaB 2 99.9 0925
.o NA NA NA s
Flo 1 99.9 1()30
.o NA NA NA s
Flo 1 99.9 1135 l.O NA 53 62 5
FL. 2 99.9 1335
.o NA NA NA s
Flo s 99.9 1510 2.0 NA 62 66 5
EBB 1 99.9 1630 2.0 NA 70 72 6
EBB 2 99.9 1810 11.0 NA 65 113
.6 me 2 99.9
. 191o0 24.0 NA 62 81 6
EtlB 2 99.9 2100 15.0 NA 51 81 5
Fl. 1 99.9 2330 20.0 NA 46 81 5
fl. 2 99.9 080778 0050 5.0 NA 61 66 5
Fl D 2
99.9 0200 4.0 NA 61 96 5
I: flB 1 99.9 OBO 13.0 NA 51 71 6
ma 1 99.9 O~lU o.O NA 1.6 66 5
E6B 2 99.9 0620 13.0 NA 56 86 5
EBB 2 99.9 0915 18.0 78 56 76 5
Fl. 1
.5 1050 2.0 100 56 70 5
FL. 1
.6 1100
.o NA NA NA 5
H. 2 3.6 1200
.6 50 56 115 5
fl. 2
.4 1HO 1.0 0
76 76 6
EBB 1 1.0 1500
.o NA NA NA 6
l:BB 1
.1 1800 2.3 100 61 85 6
~BU 2 1.2 2210 s.o 80 56 95 6
Flo 1
.s 080878 0000 33.0 60 56 86 6
fft..D 2
.5 0130 2.0 100 66 75 5
fl. 2
.s OlOO 1.0 100 86 86 5
EBB 1
.5
__ e ____________ G _________________________________ _
NOTE g U
DETRITUS WEIGHT '" 99.9, NO DUA ARE AVAllABLf
TABLE III<L (CCli\\!TINUED>*
AA IE SUR II.I II Al M)N *. LEN MA)(.LEN OEJRI TUS.WT DA JE TIME (NO/MIN)
(X)
( MrO (i\\IM)
CIRC JlDE.SlAGE (KG/MIN)
- *oa*oa78 0430 8.0 75 85 NA 6
EliB 1 1.0
- 06UO 5.3 69 36
/5 6
flj[j 2
.8 1045 4.0 NA 61 75 5
FL. 1
.7 1410
.a NA NA
~A 5
FL. 2
.5 1500 1.0 NA 68 68 6
FL. S
.2 1550 1.0 NA 71l 70 6
EBB 1
.j 1751 4.0 NA 61 96 5
EBB 2
.8 1850 1.0 NA 61 61 5
lBB 2
.9 2010 14.0 NA 51 76 5
EBtl 2 1.8 2115 18.0 NA 37 78 5
FL. 1 99.9 2230 6.0 NA 59 H
5 fl. 1 99.9 080978 0010 3.0 NA 56 61 6
FL. 2 99.9 0140 5.0 NA 49 77 6
fl. 2 99.9 0240 2.0 NA 68 80 6
E&B 1 99.9 0355 s.o NA 48 73 6
UIS 1 99.9 0)~5 12.0 NA 45 96 5
EB~ 2 99.9 07:JO 6.0 NA 59 95 5
E86 2 99.9 1000 47.0 62 46 85 6
E.liB 2 S.l 1100 2.0 so 66 85 5
fl. 1
.4 1201) 4.0 55 41 75 5
FL. 1 3.2 1330 4.0 50 61 85 5
FL. 2
.5 1430 2.0 0
41 50 5
FL. 2 1.0 1S15
.o NA NA NA 5
FL. S
.3 1 8 :l i)
- 7 so 46 65 5
EBB 1 5.7 2100 31.0 77 31 85 5
EBB 2 6.1 2230 76.0 66 51 101 6
FL. 1 3.6 081078 0000 11.0 64 46 110 6
FL. 1 1.0 01.SO 23.0 83 41 90 6
FL. 2 1.1 0300 8.0 63 51 90 6
FL. 2
.3 0600 7.7 69 30 90 6
ltHI 1 2.7 0915 2S.o 80 41 80 5
EBB 2 4.2 1200 4.0 67 41 114 s
FL. 1
.7 1305 2.0 50 46 70 s
FL. 2
.3 1400 2.0 100 61 80 6
FL. 2
.1 1500 1.0 0
71.
/1 6
FL. 2
.2 16\\)1 2.0 100 06 75 6
FL. 2
.1 11100 1.0 0
66 66 5
E.BB 1 5.* 7 2100 51.0 88 36 95 5
EBU 2 s.s 22$0 5.3.0 64 41 86 5
EBB 2 l.2 081178 0000 47.7 57 51 110 5
FL. 1
.9 0130 11.0 46 46 70 5
FL. 1
.s 0300 26.0 85 4o 81 5
FL. 2
.l 0430 14.0 57 36 80 5
fl. 2
.2 NOTE:
e if DETRITUS WEIGHT
- 99.9, NO DATA ARE AllAILABLE
. e e
e e
e TABLE
- C I I -<L <CClNTlNUED>.
AA TE SURVIVAL MIN.LEN MAX.LEN DETRITUS.WT DA?E TIME (NO/MIN)
{X)
(l~M)
(MM)
Cl RC UDE.STAGE (KG/MIN)
~---
_____..,,09 ___
081178 0600 6.0 67 36 85 5
l:BB 1 2.1 0930 68.0 NA H
102 6
EilB 2 1.0 1045 2.2 NA 36 142 6
EBB 2 1.5 1215 7.0 NA 61 85 6
FL. 1 1.1 1210 29.0 NA 46 96 6
fl. 1 1.0 1 HO 11.0 NA 41 70 6
fl. 2
.6 1430 16.0 NA 41 78 6
FL. 2
.8 1530 1.0 NA 59 59 6
fl. 2
.6 1630 4.0 NA 61 69 6
FL. 2
- 1. 3 1800 13.0 NA 46 90 6
EBIJ 1
.5 1930 20.0 NA 51 89 6
EBB 1 2.6 210U 5.0 NA 36 120 6
l:BB 2 99.9 2215 13.0 NA 46 80 6
EBB 2 99.9 081278 0000 117.0 NA 46 95 6
FL. 1 99.9 0045 88.0 NA 51 100 6
FL. 1 9Y.9 02.SO 11.0 NA 41 105 6
fl. 2 99.9 OHO
- 12. a NA 56 85 6
FL. 2 99.9 OSSO 4.0 NA 41 76 6
EBB 1 99.9 0715 3.0 NA 61 75 6
EBB 1 99.9 0915 16.0 NA 36 80 5
EUB 2 1.2 1015 23.0 NA 41 75 5
EBB 2 1.8 1130 64.0 NA 41 86 5
El3B 2 3.3 1245 23.0 NA 42 85 5
FL. 1 1.2 1400 16.0 NA 42 16 5
FL. 1 1.6 1515 14.0 NA 42 94 s
FL. 2 1.1 1630 2.0 NA 51 61 6
fl. 2
.4 1154 1.0 NA 84 84 6
E.i3 El 1
.7 11124 3.0 NA 51 94 6
EBB 1.
.4 2050 13.0 NA 46 85 6
EBil 1 99.9 2200 11.0 NA 46 100 6
EBB 2 99.9 2j20 92.0 NA 41 120 6
EbB 2 99.9 081378 0115 137.0 NA 41 105 6
fl. 1 99.9 0215 23.0 NA 56 100 6
FL. 1 99.9 0400 20.0 NA 41 75 6
FL. 2 99.9 0510 9.0 NA 46 ti l) 6 FL. 2 99.9 i) 7 4 5 10.a NA 46 80 6
EBB 1 99.~
O~OJ 4.0 NA 58 9b 6
EBB 2 91.J.9 103\\l 11.0 NA 56 78 6
EBB 2 99.9 1200 u.o NA 41 84 6
me 2 99.9 1330 14.0 NA 51 85 6
EBB 2 99.9 1500 3.0 NA 41 68 6
FL. 2 99.9 1600 s.o NA 61 74 6
FL. 2 99.9 1800
.o NA NA NA 6
fl. 2 99.9 1915 1.0 NA 42 42 6
FL. S 99.9 NOTEI lf DETRITUS WEIGHT
- 99.9, NO DATA ARE AVAILABLE
Tt":\\BLE I I I*-:L <CONTINUED>.
RAH SURV*IVAL MlN.Lrn MAX.LH1 DETRITUS.WT DATE TlME (NOiMJN) cu (MM")
H1N)
CJRC TIDE.STAGE (KG/MIN) 081378 2050 4.0 NA 51 75 6
HIB 1 99.9 21 50 4.0 NA 46 85 6
EBB 1 99.9 2335 13.0 NA 46 100 6
EBB 2 99.9 081478 0055 55.0 NA 46 115 6
EBB 2 99.9 0245 15.0 NA 46 80 6
FL. 1 99.9 0525 11.0 NA 46 70 6
FL. 2 99.9 0625 11.0 NA 41 90 !
6 FL. 2 99.9 0900 10.0 70 56 76 5
l:BU 1 9.5 1030 2.0 50 61 65 5
EBB 2 2.3 1200 4.7 79 46 85 5
EBB 2 9.0 14ll0 17.0 55 46 71 6
EBB 2 15.o 1600 15.0 5.5 36 80 6
FL. 1 11.2 1d00 99.9 NA 85 NA 1
FL. 2 3.0 2040 2.0 100 46 70 6
FL. S
.1 2222 28.0 86 66 79 6
EBB 1 1.0 081578 0000 2.6 88 21 100 6
EBB 2 4.8 0110 66.0 85 41 90 6
EBB 2 4.1 0430 9.0 44 31 95 6
Fl. 1 1.0 0600 4.0 67 46 95 6
FL. 2 1.4 0900
.o NA NA NA 6
FL. 2 99.9 1030 1.0 l~A 71 71 6
E613 1 99.9 1200 6.0 NA 36 70 5
EBB 2 99.9 1330 6.0 NA 31 75 5
El:l B 2 99.9 1500 7.0 NA 36 70 5
EBB 2 99.9 16.iO 1.0 NA 48 48 4
FL. 1 99.9 1800 4.0 NA 56 75 5
FL. 2 99.9 1900 l.O NA 56 7'.J 5
Fl. 2 99.9 2020 3.0 NA 56 95 5
Fl. 2 99.9 2145 3.0 NA 46 65 5
EBB 1 99.9 2305 2.0 NA 51 80 6
ma 1 99.9 081678 0130 5.0 NA 36 75 6
EBB 2 99.9 0330
- 14. 0 NA 36 105 6
l:.BB 2 99.9 OS.SO 4.0 NA 66 80 6
FL. 1 99.9 0630
.o NA NA NA 6
FL. 1 99.9 0900 1.0 NA 61 61 5
fl. 2
.5 10UU 2.0 NA 51 75 5
FL. 2
.o 1100 4.0 NA 52 71 5
EBB 1 1.0 1200 3.0 44 56 81 5
EBB 1 21.4 1330 2.0 100 71 80 5
EBB 2 2.5 1400 1.0 100 91 91 5
EBB 2 2.0 1445 9.0 56 45 75 5
EBB 2 5.5 1545 12.0 83 41 90 5
EBB 2 3.0 1800 2.0 80 56 89 5
fl. 1 17.5 NOTE:
e lf DETRITUS WEIGHT
- 99.9, NO DATA ARI: AVAILABLE e e
e e
TABLE III--:L <CONTINUED>.
RAH:
SURV*IVAL HIN.LEN MAX~.LE.N DE TR! TUs.wr
!>A rE TIME
( NO/lr:I N)
<X>
(1'110 (MM)
CIRC rIDE..STAGE (KG/MIN)
~---
~----------
081678 2100 11.0 NA 41 100 5
FL. 2
.j 2242 8.0 NA 36 70 5
EBB 1
.5 081778 0000 98.0 90 36 95 6
EBB 1
.13.0 0130 4.0 NA 51 95 6
EBB 2 4.0 0300 33.0 NA 46 90 6
EBB 2 3.8 0430 31.0 NA 46 135 6
EBB 2 2.1 0600 144.0 53 46 100 6
Fl. 1 4.0 0900 1.0 NA 56 90 5
fl. 2
.5 1000 2.0 NI\\
61 71 4
FL. 2
.5 1100
.o to.A NA NA 4
fl. s
.5 1200 3.7 7l 26 85 4
EllB 1 10.3 1415 1.0 NA 51 51 5
rna 2
.5 1600 1.0 NA 71 71 5
EBB 2 5.6 1800 8.1 42 41 100 5
FL. 1
.9 2100 4.0 75 51 80 5
Fl. *2
.5 2215 2.0 100 61 15 6
fl. 2
.5 081878 0000 3.6 90 46 95 6
EBB 1 1.0 0205 9.0 78 51 95 6
EBB 1 5.2 0400 11.o 65 41 80 6
EBB 2 3.0 Ll600 5.6 82 41 100 6
EBB 2 2.5 0900 3.0 NA 46 70 5
fl. 2 9'1.9 10.rn 5.0 NA 51 75 6
Fl. 2 99.9 1200 5.0 NA 46 100 6
EBB 1 y(J. 9 1330 40.0 NA 31 95 6
EBB 1 99.9 1500 61.0 NA 36 95 5
EBB 2 9'1.9 1630 27.0 NA 46 80 6
El3B 2 99.9 1800 15.0 NA 46 80 6
EBB 2 99.9 1915 4.0 NA 46 70 6
FL. 1 99.9 2100 17.0 NA 41 100 6
. fl. 2 9Y.9 2230 13.0 NA 46 96 6
Flo 2 99.9 081978 0010 6.0 NA 51 80 6
FL. 2 99.9 0200 15.0 NA 46 96 6
mu 1 99.9 0401.)
35.0 NA 46 105 6
l:BB 2 Yv.9 0600 29.0 NA 51 100 6
EBB 2 YY.9 0900 1.0 NA 36 75 6
Fl. 2 99.9 1030 12.o t.U 46 80 6
Fl. 2 99.9 1200 7.0 NA 46 85 6
H. 2 99.9 1BO 26.0 NA 41 85 5
EflB 1
'19.9 1500.
9.0 NA
.56 80 5
EBB 1 99.9 16.50 1~.o NA 36
. 85 6
EBB 2 9'1.9 1800 25.0 NA 4b
&5 6
HIB 2 99.9 1900 32.0 NA 41 100 6
EBB 2 99.9 2110 6.0 NA 66 94 6
FL.. 2 99.9 NOTE g 1f OHRI rus WEICiHT
- 99.9, NO DATA ARE AVAILABLE
TABLE I I I*-*:l (CONTINUED).
RA 11:
SUllV*IVAL NIN.LEN MAX.LE.N DETlllTUS.WT DATE TIME
<NOHIJN)
U>
(MMJ (MM)
08197d 2240 14.0 NA 41 90 6
fl. 2 99.9 082078 0010 10.0 NA 41 75 6
FL. 2
'*' 99.9 0140 7.0 NA 46 75 6
EBB 1 99.9 0430 18.0 NA 46 90 4
fBlj 1 99.9 06i0 4.0 NA 41 74 6
l:IJB 2 99.9 0900 4.0 NA 41 85 6
fl. 1 99.9 1030
.o NA NA NA 6
Fl. 2 99.9 1200 14.0 NI\\
46 80 6
fl. 2 99.9 1345 9.0 NA 51 80 6
EIJB 1 99.9 1500 18.0 NA 46 90 6
EBB 1 99.9 16.SU 12.0 NA 46 85 6
EBIJ 2 99.9 18(J0 3.0 NA 26 65 6
EBd 2 99.9 1915 1o.o NA 41 100 6
EBB 2 99.9 2100 8.0 NA 41 70 6
Fl. 1 99.9 2230 3.0 NA 51 75 6
fl. 2 99.9 082178 0005 8.0 NI\\
46 85 6
FL. 2 99.9 0.!00 12.0 NA 46 100 6
EBB 1 99.9 0400 9.0 NA 41 85 6
EBB 1 99.9 ObOO 18.0 NA 41 95 6
ESB 2 119.9 0920 10.0 NA 41 dl 6
fl. 1 2.0 1000 Z1.o NA 36 81 6
FL. 1 12.0 1100 20.0 NA 36 91 6
Fl. 2 15.0 1200 17.6 66 41 90 6
FL. 2 5.3 1400 25.0 NA 41 80 6
FL. S 1
- o 1600 34.0 NA 36 85 6
EfJB 1 18.o 1800 4.3 69 31 90 4
HIB 2 19.3 2105 17.0 H2 46 95 5
EBB 2 3.5 2230
. 14.0 64 46 90 s
FL. 1 5.2 082278 0000 10.6 69 46 100 5
FL. 2 2.8 0200 25.0 80 46 85 s
FL. 2 2.7 0600
- 14. 3 90 46 110 5
~bB 2 a.5 0900 10.0 NA 41 71 5
Elitl 2 v9.9 1100
- 23. i)
NA 41 101 5
fl. 1 99.9 1245 31.0 NA 46 111 5
Fl. 2 99.9 1500 9.0 NA 41 66 5
FL. 2 99.9 16H 9.0 NA 51 76 5
EBB 1 99.9 1745 13.0 NA 46 86 5
EBB 1 99.9 2100 7.0 NA
.; s1 115 5
EBB 2 99.9 2330 3.0 NA 4o 90 s
fl. 1 99.9 082378 0100 7.0 NA 51 75 5
FL. 2 99.9 0300 14.0 NA 46 75 5
Fl. 2 99.9 0500 17.0 NA 46 90 5
EBB 1 99.9
- a-*-******************************************-**.
NOTE:
e IF DETRITUS WEIGHT* 99.9, NO DATA ARE AVAILABLE~
e
TABLE I I I *<L
< CD;'H :C NUEII >"
- e e
RAH SURV'X\\IAL MIN.LEN MAK.LEN OEJRlfUS.wT DUE JIME lNO/MJN) cu
( l'IM)
(MM)
CJRC 11DEoSTAGE (K(,/MIN) a.---
~------- -------- ------- ------- ---- ----------
082.378 0630 9.0 NA 46 95 5
Etrn 1 99.9 0915 2.0 NA 46 56 5
EBB 2 10.3 1030 6.0 NA 56 81 5
EBB S
.5 1200 1.3 so 46
!16 5
FL. 1 s.o 1400 5.0 NA 51 61 4
FL. 2 2.0 1600
.o NA NA NA 4
EBB 1
.5 1800 7.3 86 36 80 5
EliB 1 2.0 2100 4.0 50 46 80 5
EliB 2 4.5 2230 6.0 50 66 125 5
EBl:I 2 3.0 082478 0000 5.0 60 46 65 5
FL. 1 2.0 0200 2.0 100 41 55 5
FL. 2 3.2 0410
.o NA t~A NA 4
FL. 2 1.1 0600
.3 100 58 NA 4
EBB 1 2.4 1315 2o3 43 51 56 5
fl. 2
.s 1500 1.0 100 56 NA s
Flo 2
.a 1600
.o NA NA NA 4
fl. 2
.3 1800 1.0 0
56 NA 5
t:Bu 1
.3 2130 4.0 50 51 95 5
EEIS 2 2.2 2230 4.0 100 51 60 5
EBB 2 2.2 082578 0000 1.7 100 46 85 5
EBB 2 1.8 0300 2.0 100 46 60 5
FL. 2 1.0 0600
.o NA t.!A NA 5
EBB 1 5.6 09JO 13.0 85 lob 80 4
EBB 2 99.9 1130 20.0 50 41 b5 4
FL. 1 99.9 1"00 25.0 76 36 95 3
FL. 2 99.9 1600 3.0 100 76 110 4
fl. 2 99.9 1800
.o NA NA NA 3
EBB 1 9CJ.9 1900 2.0 100 51 55 3
EBB 1 99.9 2100 18.0 100 41 76
.3 mu 2 99.9 2300 74.0 84 36 90 3
EllB 2 99.9 082678 0130 1.0 100
'IS NA 4
Fl. 1 99.9 0.300 40.0 85 41
.100 fl. 2 99.9 osou 12.0 dl 46 60 4
FL. 2 99.9 0700 6.0 83 46 10 4
EBB 1 99.9 0900 6.0 100
~6 65 5
EBB 1 99.9 1030 101.0 b8 41 100 s
EBB 2 99.9 1210 70.0 89 46 90 5
EB~ 2 99.9 1400 6.0 17 56 80 5
f L.. 1 99.9 1600 1.0 100 57 NA 5
FL. 2 9~.9 1900
.o hA NA NA 4
EBB 1 99.9 2100
.o NA NA NA 4
EBB 1 99.9 2300 34.0 82 41 95 4
E88 2 99.9 NOTE:
If DETRITUS WEIGHT
- 99.9, NO DATA ARE AVAILABLE
TABLE IIJ**-l ( CCJNT I NI.JED>
CIRC llDE.STAGE
( KG/111N) 082778 0130 s.o 80 41 95 4
EBB 2 99.9 0300 4.0 0
51 95 4
FL. 1 99.9*
0500
.o NA NA NA 4
FL. 2 99.9 0700
.o NA NA NA 5
FL. 2 99.9 0930 3.0 100 61 80 5
I:. BB 1 99.9 1145 25.0 72 51 lilO 4
HlB 2 99.9 1HO 24.0 63 41
.90 4
l:.BB 2 9Y.9 1430 3.0 100 46 70 3
FL. 1 99.9 1615
.o NA NA NA 2
FL. 2 99.9 1900
.o NA NA NA 3
FL. 2 99.9 2100
.o NA NA Nti 2
EBB 1 99.9 2:500 4.0 100 46 65 2
EBB 1 99.9 082878 0330 1.0 100 61 NA 2
fl. 1 99.9 0500 1.0 100 71 NA 2
FL. 1 99.9 0630 3.0 100 51 85 2
FL. 2 99.9 09UO
.o NA NA NA 6
l:.l:lEl 1
.2 1200 1.0 66 46 100 6
1.'BU 2
.4 1500
.o NA NA NA 6
FL. 1
.6 1600
.o NA NA NA 6
FL. 2
- 7 1700
.o NA NA NA 6
fl. 2 3.0 lbOO
.o NA NA NA 6
FL. 2
.3 2100
.o NA NA NA 2
EBB 1
.1 2230
.o NA NA NA 2
EBB 1
.3 082978 ouoo 1.7 60 41 60 2
EBU 2
- .i 0200 7.0 100 51 80 2
urn 2
.8 0430 1.0 100 t:i7 NA 2
FL. 1
.5 0600
.o NA NA NA 2
FL. 1
.6 0900
.o NA NA NA 5
FL. 2 99.9 1020
.o NA NA NA 5
EBB 1 99.9 1115 1.0 100 63 NA 5
EBl:I 1 99.9 1200
.o NA NA NA 5
£:BB 2 99.9 13.iO
.o NA NA NA 5
EBB 2 99.9 1445 1.0 100 68 NA 5
EBB 2 99.9 1535
.o NA NA NA 5
FL. 1 99.9 1800
.0 NA NA NA 6
FL. 2 99.9 2100
.o NA NA NA 6
FL. 2 99.9 2230 7.0 100 51 80 6
EBB 1 99.9 2.559 2.0 100 51 75 5
El:lB 1 99.9 083078 0130 3.0 67 56 75 5
EBB 2 99.9 0330 50.0 84 41 100 5
EBB 2 99.9 0530 13.0 46 46 60 5
Et!U S 99.9 1100 16.0 81 51 ao 6
EBB 1 1.5 1200 1.0 100 71 NA 6
EBB 1 1.6 NOTE:
lf DETRITUS WEIGHT
- 99.9, NO DATA ARE AVAILABLE e e
e e
I TABLE III-1 <CONTINUED)&
\\..
~
RATE SURVIVAL MIN.LEN MAX.LEN DErRITUS.WT DATE JlME (NO/MIN)
U>
(MM)
(MM)
CIRC TIDE.STAGE (KG/PllN) alt***
OU078 1330 9.0 78 41 85 6
EBB 2*
3.2 1500 41.0 6.S 41 95 5
EIHI 2 3.0 1800 14.3 H
46 95 5
fl. 1 29.0 1900 9.0 66 46 80 5
fl. 2
.5 2100 8.0 63 41 95 5
FL. 2 2.6 2245 8.0 118 51 90 5
l:BB 1 1.0 083178 0000 20.3 79 36 115 4
urn 1 7.1 0300 24.0 88 41 95 4
EBB 2 11.0 0430 18.0 100 46 85 4
Elm s 10.0 0600 4.7 50 41 95 5
fl. 1 1.9 0906
.3 100 81 NA 6
fl. 2 14.7 1205 13.0 7~
41 85 6
EBB 1 3.5 1242
- 1. 7 80 56 90 6
UHi 1 1.3 1 :525 6.7 95 46 95 6
E6B 1 7.3 1345 13.l 95 46 100 6
E:BB 2 14.7 1454 15.7 83 41 95 6
El:!B 2 2.4 1525 10.l 87 41 120 6
urn 2 2.5 1800 27.7 69 41 100 6
FL. 1
.6 2100 6.0 84 51 95 6
Fl. 2
.9 2250 4.0.
100 56 65 6
fl. s
.3 090118 0000 25.3 91 36 115 6
EBB 1
.4 u200 5.0*
60 56 80 6
EtlB 2 6.5 041J0 13.0 89 36 100 5
EEIB 2 8.1 06il0 98.7 83 46 120 5
fl. 1 1.7 0950 4.0 NA 51 60 6
fl. 2 99.9 1030 7.0 NA 56 80 6
FL. 2 99.9 1130 79.0 NA 46 95 6
EBB 1 99.9 1330 8.0 NA 51 90 6
EBB 1 99.9 lHO
.7 NA 56 95 6
Fl. 1 9'1.9 19~0
.o NA NA NA 6
fl. 2 99.9 2100 22.0 7j 41 80 6
Fl. 2 99.9 2230 7.0 28 36 95 6
Flo 2 99.9 2559 2.0 100 61 80 6
EEIB 1 99.9 090278 0130 4.0 75 61 80 6
EBB 1 99.9 OHO 10.0 10 46 100 6
EBB 2 99.9 0500 26.0 100 46 100 6
Elltl 2 99.9 0650 51.0 86 41 100 6
fle 1 99.9 01.rn 3.0 100 51 100 6
FL. 1 99.9 0930 4.0 NA 61 115 6
fl. 2 99.9 1ll30 2.0 NA 46 90 6
fl. 2 99.9 1130 5.0 NA 51 70 6
FL. 2 99.9 1330 11.0 NA 56 95 6
EBB 1 99.9 1500 2.0 NA 71 90 6
E:BB 1 99.9 I
NOTE:
lf ~ETRITUS WEIGHT
- 99.?1 NO DATA ARE AVAILABLE
TABLE :CI I *-:l <CONTINUED>.
RATE SURV'IVAL MIN.*LEN MAX.LEN OE f PITUS.WT DATE TIMt:
0100: 1 N>
(MM)
Cl RC TIDE.STAGE (Kt./MlN) 090278 1630 4.0 NA 41 75 6
EBl:I 2 99.9 1845 13.0 NA 51 80 6
FL. 1 99.9 2030
.o NA NA
~A 6
FL. 1 99.9 2200 3.0 3l 56 66 6
FL. 2 99.9 2HO 7.0 86 41 10 6
FL. 2 99.9 090178 0100 6.0 100 51
- 85.
6 EBB 1 99.9 o:soo
~-0 80 51 85 6
E.BU 1 99.9 0430 l.O 100 61 80 6
El:IU 2 99.9 L)6l0 12.0 92 56 90 6
lBU 2 99.9 0830 3.0 100 56 85 6
FL. 1 99.9 0935 3.0 100 56 65 6
FL. 2 99.9 1101
.o NA NA NA 6
fl. 2 99.9 1216
.o NA NA NA 6
E6B 1 99.9 1318 2.0 100 61 70 6
l:.1:18 1 99.9 150.S 2.0 100 51 85 6
Elm 2 99.9 1630 5.0 1ll0 41 95 6
EBB 2 99.9 1800 10.0 100 51 85 6
EBB 2 99.9 2030 12.0 92 61 115 6
FL. 1 99.9 2200 8.0 88 51 95 6
FL. 1 9Y.9 2BO 6.0 83 56 85 6
fl. 2 99.9 090478 0100 5.0 80 61 85 6
FL. 2 99.9 0330 5.0 80 56 100 6
l:.l:HI 1 99.9 05UU 16.0 94 51 1ll0 6
E.llB 2 Y'l.9 0'630 14.0 86 56 80 6
EBB 2 99.9 0920 1.0 100 56 56 6
fl. 1 9Y.9 1050 5.0 100 46 90 6
FL. 2 99.9 1230
.o NA NA NA 6
FL. 2 99.9 1400 3.0 100 61 100 6
EfH:l 1 99.9 15 lil 19.0 79 41 au 6
E:Bl:I 2 99.9 1715 3.0 67 71 9ll 6
EBB 2 99.9 1915 5.0 40 51 90 6
EBB 2 99.9 2100
&.o 75 51 100 6
FL. 1 99.9 2245 2&.o 79 56 100 6
FL. 1 99.9 090578 0100 25.0 68 46 105 6
fl. 2 99.9 0230 96.0 90 46 110 6
EBU 1 9~.9 0515 13.0 54 56 90 6
EBB 2 99.9 0930 10.0 30 41 101 5
FL. 1 3.7 1100 3.0 H
61 66 5
FL. 2 l.4 1200 1.3 25 56 100 4
FL. 2 13.7 lSOO 6.0 83 61 85 4
EBB 1 2.5 1815 13.7 88 46 100 4
EBB 2 2.4 1900 15.0 80 51 115 4
EBB 2 1.5 2050 11.0 91 51 100 s
fl. 1
.8 NOTE a lf DETRITUS WEIGHT
- 99.9~ NO DATA ARE AVAILABLE e
e TABLE III-1 CCONTINUED>b e
e RA TE SURVIVAL MIN.LEN MAK.LEN OEfRITUS *.,T DATE llME (NO/MIN) cu (MMi (MM)
Cl RC TIOE..STAGE (KG/l'llN) 090978 07.SO 3.0 H
51 85 6
EIJB 2 99.9 0845 4.0 100 61 100 5
UlO 2 99.9 1045 16.0 81 51 105 6
EBB 2 99.9 1Z45 21.0 90 46 140 6
FL. 1 99.9 1445 3.0 100 61 85 6
FL. 2 99.9 161.5 1.0 0
61 61 6
EBB 1 99.9 181.5 4.0 50 41 125 6
ma 1 99.9 20.50 5.0 20 71 105 6
!:BB 2 99.9 2230 24.0 75 56 110 6
EBB 2 99.9 091078 0115 10.0 90 56 115 6
fl. 1 99.9 OHO 6.0 100 61 100 6
fl. 2 99.9 0500
, 2.o 100 61 110 6
FL. 2 9'1.9 0645 65.0 91 Sb' 95 6
EEll:I 1 99.9 0845 19.0 63 61 90 6
i:l:IB 2 99.9 1030 6.0 100 81 115 5
EBB 2 99.9 1230 4.0 75 71 100 6
fl. 1 99.9 1430 3.0 67 66 85 6
fl. 2 99.9 1630
.o NA NA NA 6
FL. 2 99.9 1!I jl) 2.0 100 6b 85 6
EBB 1 99.9 2100 3.0 100 71 100 6
EBB 1 99.9 2315 8.0 63 56 100 6
fl. 1 99.9 091178 0145 3.0 67 51 80 6
FL. 2 99.9 0400 23.0 96 71 120 6
FL. 2 99.9 0600 2.0 100 61 95 6
FL. 2 99.9 09.SO
.o NA NA NA 4
EBB 2 3.1 1030
.o NA NA t-.IA 4
EBB 2 2.9 12lJO 1.0 100 71 101 5
EBB 2 2.7 1400
.o NA NA NA 5
FL. 1
- 5, 1600
.o NA NA NA 5
fl. 2 1.0 1801)
.o NA NA NA 4
FL. 2 1.0 2100
.o NA NA NA 4
EBB 1
.9 2230
.o NA NA NA 5
EBB 1 8.5 091278 0000 9.0 88 51 100 5
EBB 2 5.5 0201) 10.0 90 56 100 5
EBB 2 1.2 0400
.o NA NA NA 5
fl. 2 1.2 0600
.3 100 85 85 5
FL. 2
.2 0930
.o NA NA NA 5
1:88 1 99.9 lU.SO
.o NA NA NA 5
EBB 2 99.9 11.SO
.o NA NA NA 4
EBB 2 99.9 HOO 2.0 50 53 82 4
EBB 2 99.9 1430 3.0 100 61 75 4
EBl:I 2 99.9 15.SO
.o NA NA N4 4
fl. 1 99.9 1700
.o N4 NA NA 6
fl.. 1 99.\\)
--~-----------------------------------------------
NOTEZ lf DETRITUS WEIGHT
- 90.96 NO DATA ARE AVAILABLE
TABLE I 11--1 <CONTINUED>.
RATE SURl#IVAL MIN.LEN MA IC.LEN DtTRlTUS.1H DATE JIME (f.10/MlN)
<U (MM)
( 1'\\M)
- C 1 RC TIDE.STAGE lKG/IHN)
~---
090518 2105 2.0 100 61 90 5
fl. 1
.4 2130 2.0 80 66 100 6
FL. 1
.s 2200 3.0 75 4o 95 6
fl. 1
~ *'
.9 090678 0000.
3.0 88 46 90 6
FL. 2
.5 0200 4.0 100 66 Ii 5 6
FL. 2 1.0 0400 6.U
. 100 56 85 b
EtlB 1
.S.6 (J600 1.0 91 4o 100 6
EHB 1 3.0 0945 3.0 33 61 105 5
EBB 1
.9 1200 s *.s 100 56 101 5
fl. 2 3.2 1500
.o NA NA NA 5
EBB 1 2 *.S 1940 It.6 64 61 100 5
EBB 2 6.3 211p 2.6 100 51 1.!5 5
UIU 2 3.3 2130 7.o 91 51 100 5
FL. 1
.5 2200 1.3 100 51 100 b
FL. 1
.1 090778 0000 1.6 100 66 95 6
FL. 1 1.6 0200 2.0 100 61 80 6
FL. 2
.2 0400 2.6 100 51 95 6
ESB 1 2.1 06ll0 2.6 88 61 116 6
EBB 1 s.1 0930 1.0 57 56 75 5
me 2 1
- 1 1201)
- 7 100 66 80 s
fl. 1 2.9 1500
.o NA NA NA s
EBB 1
.4 1.800
- 7 100 71 90 4
ERl:I 2 6.3 1825
.3 0
91 91 4
EBB 2 1.5 2040 1.7 100 71 90 6
EBEi 2
.3 2100 2.0 67 61 105 6
Et:IB 2
.3 2120 3.3 100 51 100 6
EBB 2
.5 2140 3.7 91 51 100 6
EBB 2
.7 090878 O:JOll 1.3 50 56 75 6
FL. 1
.1 0200 4.0 100 Sb 71 6
fl. 2
.2 0400 3.0 100 56 80 6
EBB 1
.8 0600 13.3 83 56 100 6
E tlB 1 1.7 0930 34.0 74 56 110 6
EBB 2 99.9 1110 28.0 82 Sb 105 5
FL. 1 99.9 1300 13.0 85 56
- 91) 5 FL. 2 99.9 1500 2.0 50 66 70 5
FL. 2 99.9 11uu 3.0 100 56 70 5
EBB 1 99.9 1915 14.0 19 56 105 6
EBB 1 99.9 2200 15.0 40
. 56 105 6
fl. 1 99.9 2HO 2.0 50
., 56 70 6
Fl. 2 99.9 090978 0130 1.0 100 61 61 5
FL. 2 99.9 OHO 1.0 0
56 56 6
FL. 2 99.9
' 0545 6.0 100 56 90 6
EBB 1 99.9
~-------------------------
NOTES e
IF DETRIJU5 WEIGHT
- 99.91 NO DATA ARE AVAILABl~
e
c I.
e TABLE III*-i <CONTINUED>.
RATE SUAlliVAL MlN.* 1.EN MAX.LEN DETRITUS.WT DA TE JlHE (NO/MIN)
CU 0110 (MM)
CIRC UDE.STAGE (KG/MIN>
091278 1830
.o NA NA NA 6
fl. 2 Y9.Y 2100 3.0 100 66 110 6
EBB 1 99.9 2300 1.0 100 71 71 6
E.liB 1 9Y.9 091378 0031 3.0 66 76 90 6
EBB 2 99.9 0230 5.0 100 61 95 6
EBB 2 99.9 0400 9.Q 66 61 90 6
FL. 1 99.9 0630 7.0 57 51 81 6
fl. 2 99.9 0905 6.0 83 61 96 6
FL. 2 1.0 1100 59.0 80 31 106 5
Et!B 1 2.3 1200 14.3 93 31 115 6
EBd 2 3.3 1400 4.0 100 26 86 6
ffj£1 2 3.8 1600
. 9.0 89 66 91 6
FL. 1 1.2 1800 11.1 66 41 140 6
fl. 2 4.5 2100 7.0 97 66 110 5
fl. 2 1.0 2230 29.0 69 56 110 4
E.89 1 2.5 091478 OLIOO 16.0 70 61 110
- 5 EBB 1 7.2 0330 10.0 80 66 105 6
EBB 2 4.5 0600 8.6 84 61 115 5
fl. 2 4.2 09J7 6.0 100 61 100 6
FL. 2 4.0 1200 7.0 71 56 125 5
EBB 1 7.1 1500 8.0 75 71 121 4
EBB 2 5.4 1800 3.0 67 56 96 4
FL. 1
.7 2100 s.o 40 71 165 5
FL. 2 3.4 091578 0000 4.3 100 71 115 6
EBB 1 22.0 030()
.o NA NA NA 5
EBB 2 15.8 0600 1.7 80 41 100 6
fl. 1
.5 0930 1.0 100 71 71 6
FL. 2 99.9 1000 2.0 50 71 96 6
fBB 1 99.9" 110()
2.0 100 61 96 6
EBB 1 99.9 1200 2.0 100 76 96 6
EBB 1 99.9 1.BO 2.0 50 76 104 6
EUB 2 9'J.9 1500 3.0 75 66 8Y 6
E6U 2 9v.9 16 50 2.0 100 91 96 6
fl. 1 99.9 1800 2.0 100 66 86 6
FL. 1 9'J.9 1930
.o NA NA NA 6
FL. 2 99.9 2100
.o NA NA NA 6
FL. 2 99.9 2230
- o NA NA NA 6
FL
- 2 99.9 091678 0001 3.0 0
51 75 6
EBB 1 99.9 0200 4.0 0
66 100 6
EBB 1 99.9 0400 3.0 0
51 70 6
EBB 2 99.9 0600 2.0 0
51 75 6
FL. 1 99.9 0900 2.0 NA 10.4 110 6
fl., 2 99.9 NOTE!
IF OETAitus WEIGHT
- 99.91 NO DATA ARE AVAILABLE
TABLE III*-:l CCCJNTINUED>.
RATE SURV I.VAL HIN.LEN MU.LEN OEfAlfUS.WT DATE Tl"'E (NO/MIN) cu (MM)*
(MM)
CIRC *TIDE.STAGE (KG/MJN) 091678 1000
.o NA NA NA 6
FL. 2 99.9 1101) 2.0 50 76 141 6
fl. 2 9'1.9 1200
.o NA NA NA 6
EB0 1 99.9 1300 8.0 tl8 66 96 b
l;l'IB 1 99.9 1430 2.0 50 81
.96 6
EBB l 99.9 1600
. 1. 0 100 115 115 6
EBB 2 99.9 1745
.o NA N4 NA 6
urn 2 99.9 1915 1.0 0
115 115 b
FL. 1 99.9 2140 2.0 NA 91 130 6
FL. 2 99.9 2245 1.0 0
98 98 6
FL. 2 99.9 091718 0001 1.0 o
92 92 6
EBB 1 99.9 0200 4.0 0
81 110 6
EBB 1 99.9 0400 2.0 o
71 95 6
EBB 2 99.9 0600 1.0 o
111 111 6
l:.BB S 99.9 091878 1000
.o NA NA NA 6
FL. 2
.5 1200
.o NA NA NA 6
FL. 2 2.7 1400 3.0 100 56 100 6
l:.l:HI 1 1.8 1600
.o NA NA NA 6
EBB 1 2.0 181)0 6.0 100 71 100 6
EBB 2
- 1. 7 2100 1.0 0
96 96 6
FL. 1
- 1. 2 2240 1.0 100 101 106 6
FL. 2 2.2 091978 0000
.3 100 76 80 6
FL. 2 5.2 0.500 1.0 0
81 81 6
EtlB 1 3.7 0600
.a NA NA
~IA 6
EBB 2
~-0 OBO 3.0 100 76 105 5
fl. 1 99.9 1200
.o NA NA NA 5
FL. 2 99.9 1400
.o NA NA NII 6
FL. 2 99.9 1601) a.a 88 36 105 6
EIJR 1 99.9 1800
.o NA NA NA 6
EBB 2 99.9 19.50 3.0 100 81 100 6
EIHI 2 99.9 2100
.o NA NA HA 6
fl. 1 99.9 2230 5.0 100 8b 105 6
fl. 2 99_9*
092078 OOH
.o NA NA NA 6
FL. 2 99.9 0.500 7.0 57 56 120 6
EBB 1 99.9 0630 10.0 60 66 115 6
EBB 2 99.9 0950
.o NII NA NA 5
FL. 1
.2 10')0
.o NA NA NA 5
FL. 1
.5 1200
.3 100 91 91 5
FL. 2
.7 1400 1.0 100 111 111 5
FL. 2
.6 1600 1.0 100 76 76 5
EBB 1 1.1 1800
.3 100 96 9~
5 EBB 2 3.0 2100 1.0 o
96 96 6
EBB 2 3.7
~~----~------------------------------
.NOTEI
~ If DETAIJUS WEIGHT
- 99.9, NO OATA ARE AVAILABLE 4lt e
TABLE I I I--:t. <CDNTINUEII).
RATE SUll\\ll\\/AL Ml~.LEN MAX.Ll:N Dl:TWITUS.loll DAU TIME (NO/MIN)
( X>
(MM)
C MM)
CIRC TIDE.STAGE CKG/MJN) 092078 22.50 1.0 100 116 86 6
fl. 1 1.7 092178 0000 2.3 71 51 120 6
FL. 2 1.9 0200
.o NA NA
!\\IA 6
H. 2 1.s 0600
.3 1*00 91 91 6
EBB 1 3.0 1002 4.0 100 76 91 5
EBB s
.2 1200
.o NA NA NA 5
Fl
- 1
.2 1400
- o NA NA.
NA 5
Fl
- 2
.3 1600
- o NA NA NA s
EBB 1
.2 11300 1.0 100 76 76 5
!:BB 1 2.0 2110 1.0 0
96 96 6
EBB 2 1.8 092278 0000
.o NA NA NA 6
FL. 1 1.0 0200
.o NA NA NA 6
FL. 2 99.9 0400 1.0 100 71 71 6
ma 1 1.1 0600
.o NA NA NA 6
EBB 1 1.6 0900 1.0 101) 106 106 5
EBB 2 99.9 1100
.o NA NA NA 5
Fl. 1 99.9 1330
.o NA NA NA 5
Fl. 2 99.9 1530
.o NA NA NA 5
EE:iB 1 99.9 1800
.o NA NA NA 5
EBB 1 99.9 1930 1.0 100 96 96 5
EBB 2 99.9 2100 15.0 NA 76 120 6
EBB 2 99.9 HOO 34.0 NA 56 120 6
fl. 1 99.9 092378 0100 7.0 NA 71 115 6
FL. 2 99.9 0300 3.0 NA 66 95 3
fl. 2 99.9 0500
.o NA NA NA 3
EBB 1 99.9 0700 LO NA 86 86 3
!:BB 1 99.9 0900 1.0 100 86 86 3
EBB 2 99.9 1130 l.O 67 81 98 3
H. 1 99.9 1BO 7.0 57 11 108 3
FL
- 1 99.9 1530
- o NA NA NA 3
Fl. 2 99.9 1Su0 3.0 100 51 115 4
EBB 1 99.9 2100 1 * (J NA 77 77 3
EBB 1 99.9 2300 8.0 NA 81 120 3
EBB 2 99.9 092478 0100 2.0 NA 86 105 3
FL. 1 99.9 0300 6.0 NA 76 11 o 3
fl. 2 99.9 0500 1.0 NA 101 101 4
Flo 2 99_9 0700 3.0 NA 81 95 4
ma 1 99.9 092578 0930
.o NA NA NA l
EBB 2 2.5 1045
.o NA NA NA 3
EBB 2 2.7 1200
.3 100 106 110 3
EBB 2 l.O 1425
.o NA NA NA 3
fl. 1 2.0 NOTE I If DETRITUS
~EIGHT
- 99e91 NO DATA ARE AVAILABLE
Ta!\\BLE III-:l <CONTINUED>.
RATE SURVIVAL MIN, LEN MAX.LEN DETRITUS.WT DATE flME (NO/MIN)
U>
(MM)
(MiO Cl RC TlDE.SJAGE (kG/MlN) 092578 1600 1.0 100
- 55.
5'i 4
FL. 2 2.5 1800
.o NA ti A Id 5
urn 1 1.0 2100
.0 NA NA NA 3
EBB 1 l;. 5 2230
.o NA NA NA 3
EBB 2 1.5 092678 0000 20.3 85 46 115 4
EBll 2 2.8 03ll0
.o NA NA NA 4
FL. 1 1.6 06()0 1.0 67 91.
NA 5
fl. 2
.4 09iJO
.o NA NA NA 5
El:l ll 1 99.9 10.rn 1.0 0
63 63 4
EBB 2 99.9 1200 2.0 100 46 66 4
EBB 2 99.9 1400 1.0 100 67 67 4
FL. l 99.9 1600
.1.0 100 93 93 5
FL. 2 99.9 1830
.o NA NA NA 5
FL. 2 99.9 2100
.o NA NA NA 5
EdB 1 99.9 2230 4.0 75 51 120 5
EBB 1 99.9 092778 0000 11.0 13 76 100 5
EBB 2 99.9 0400 5.0 40 51 110 6
FL. 1 99.9 0)30 5.0 80 91 110 4
FL. 2 99.9 06:SO 3.0 100 51 110 3
FL. 2 99.9 0915 1.0 0
86 86 3
Fl. S
.5 1030 1.0 100 106 110 3
EBB 1 1.0 1200 1.7 40 56 125 3
E BIJ 1 1
- 1 1400
.o NA NA NA 4
l:llB 2 4.U 10;10 1.0 100 101 105 4
FL. 1 1.4 l!WO
.o NA NA NA 4
FL. 2 1.8 2100
.o NA NA NA 5
EBB 1 1.0 2230
.o NA NA NA 5
EBB 1
.6 092878 0000
.o NI\\
NA NA 5
EBB 2
.4 0300 3.0 67 51 90 5
EBE! 2 2.5 ObOO
.6 100 101 121 5
FL. 2 1.0 0900
.o NA NA NA 5
FL. 2
.4 1200
- 3 100 86 90 5
EBB 1 2.0 1400 1.0 0
101 101 4
EBB 2 3.8 1600 3.0 100 61 100 4
EBB 2 1.9 1800 2 *.3 86 66 105 4
FL. 1
.8 2130 2.0 50 51 61 4
HIB 1
.7 230()
4.0 75 56 100 6
EBB 1 9.5 092978 0000 9.0 100 51 110 6
EBB 2 7.5 0300 3.0 67 91 105 6
FL. 1 18.5 0600 3.0 78 91 121 6
FL. 2 6.6 0905 1.0 100 102 102 4
FL. 2 99.9 1115
.o NA NA NA 5
EBB 1 99.9 NOTE&
e lF DETRITUS lolEIGHT
- 99.9, NO DATA ARE AVAILABLE -
e
e TABLE IlI*-l. <CONT I NlJED >
- e e
~
RATE SURVIVAL - MIN.LEN MAii.LEN DETRITUS.WT DATE TIME (NO/MIN)
<U (MIO (MM)
CIRC TIDEeSTAGE (kG/M!N)
c.-------
092978 1300
.o NA NA NA 4
EBB 1 99.9 15UO 3.0 100 3b 105 4
EBB 2 99.9 11130 2a0 100 71 100 s
FL. 1 99.9 2100 eO NA NA NA s
FL. 2 99.9 2210 9.0 67 81 115 6
Fl. S 99.9 093018 0050
.o NA NA NA 6
EBB I 99.9 OBO 3.0 67 86 100 6
EIHI 2 99.9 0600 4.0 75 S1 100 6
FL. 1 99.9 0855 1.0 100 92 92 6
fl. 2 99.9 1100
.o NA NA NA 6
EBB 1 99.9 1300
.o NA NA NA 6
EBB 1 99.9 1500 2.0 100 91 100 5
E:BB 2 99.9 1830 1e0 100 102 102 lo Fl. 1 99.9 2100
.o NA NA NA 5
fl. 2 99.9 2230 2.0 100 106 115 5
FL. 2 99.9 NOTEZ IF DETRITUS WEIGHT a 99.9, NO DATA ARE AVAILABLE
Table III-2. Estimated total impingement, weighted survival and minimum and maximum survival, by sampling period, of weakfish impinged at the circulating water intake, S.N.G.S., during 19 June through 30 September 1978.
ESTIHATED NUMBER PF. 11 I CD OF WEIGHTED Mlll.. OflSEWYED MAX*O!JSERVED DATE PER PU !OD
- EST!l'.ATE (HR)
SLJQVl\\IALC:Zl SU~\\' I VAL c:o SUllVIV~L c:o
~ ------------- -----------
061978 2100 24 61, 60 100 062078 3UO 6
36 29 50 062178 7100 24 54 0
100 062278 8000 24 44 0
74 062.Htl 3400 6
34 29
)0 0626/!S 1 51 jlJO 24 31 30 66 Oc.277!1 1 U\\l(JO 6
48 32 61 062~7!!
31:l!l~[;0 24 32 28 44 06297!!
5ji.YUO 24 52 32 75 CJ704i'8 135\\IUO 24 77 63 83 07U5711 427300 24 69 53 15 0706ld 302100 24 65 32 78 07077S 257~UO 7
53 53 63 071071:!
6U'tUO 10 74 53 71!
Ol11ld 3i0.s... 0il 24 66
)3 92 07127!!
4174UO 24 70 56 71 071378.
1<'t1~uo 2.4 62 51 87 07147tl
!!S.SuO 24 76 77 77 071578 126~()0 24 lfA NA
- fjll, 0710711 125:JUO 24 NA NA NA 0711711 11Slll0 24 83
&1 "12 07115 711 31500 24 76 43 100 071971:1 234UO 24 70 50 100 07207d 27il00 24 69 50 91 Oi'21 711 3'il~OO 24 75 56 86
. 072278 2d0(J0 24 79 72 100 07237!!
1111UO 24 NA ru llA 072478 5S200 24 72 61 88 072571:1 12!!.J;JO 24 80 76 84 0726,'tl 33oUO 24 65 0
!10 07277d 14!!00 24 70 55 100 072 ll'ld 16100 24 73 46 90 ons-111 23100 24 NA NA NA 073078 4il6U::l 24 llA NA N.&
073178 40(00 24 79 57 96 01101 71!
33o::JO 24 45 45 so 08u27o 173UO 24 79 54 100 OaU.:i78 13700 24 67 0
100 01!04 lb 15400 24 65 60 78 0&057&
26200 24 NA NA NA O!i0ci71!
11cUO 24 llA NA NA 08(J77tl 8400 24 78 0
100 0801171:1 8000 24 65 60 100 Oci097&
1il4UO 24 65 0
77 081078 21300 24 74 0
100
- ESTIMATED *ovER DESIGNATED PtRIOD
Table III-2. - (Continued)
ESTIMATED NUM~ER PERIOD OF WEIGHTED Mll~*OHSt~VEO MAX*OBSERVED DATE PER P~k!OD
- ESTIMATE (HR l SU~VIVALCXJ SURVIVAL c:o SU~VlVAL (X)
------------- ----------- *a*--------- ------------
081178 261100 24 63 46 85 081278
.S1 ~!JO 24 llA NA NA Od1.s78 1 74ll0 24 NA NA NA 08147b 32.3il0 24 70 50 100 081Ha 14400 24 79 44 88 0!11678 8U00 24 72 44 100 081 778
.Sc.ODO 24 67 42 100 081871!
22800 24 73 65 90 0111978 25600 24 NA Nil NA 011207!1 12700 24 l<A NA 0821 lll 2HOO 24 70 64 82 0112218 21300 2t.
80 69 90 082 37!1 9400 24 64 50 86 0824/d 2.SOO 24 67 0
100 08257!1 1c.c.uo 21o 81 so 100 01126711 30000 24 85 17 100 0112770 7.SOO 21o 69 0
1UO
- Od2d78 900 24 94 66 100 0!12978 2000 24 96 60 100 083078 254(J0 24 69 35 100 083170 11:!2~0 24 83 50 100 090178 39";00
.21o 82 28 100 090278 1.5700 24 86 33 1UO e
090371.1 8100 24 93 80 100 0904 7!1 112'10 24 1.11 40 100 09(157!1 26200 24 79 25 100 0911678 5600 24 87 33 100 090778 3100 24 83 0
10*0 090878 181UO 24 75 40 100 09097ci 10200 24 "fb 0
100 0910711 1;000 24 85 63 100 091178 4100 24 93 67 100 091271:!
2t!UO 24 89 50 100 09137~
18100 2lo 78 57 1011 091478 11100 24 74 40 100 091571.1 2100 24 85 50 100 091678 3100 24 37 0
100 091178 800 6
0 D
0 091878 2700 24 90 0
100 09H7d Z500 24 90 0
100 0920711 4100 24 b2 0
100 0921 711 i.suo 24 80 0
100 OY2U8 4100 24 99 100 100 092.S71l 3700 24 71 57 100 0924 i'!!
1100 6
NA NA NA 092'>78
- soo 24 100 100 100 0926 711 2900 24 82 0
100 092771:1 3600 24 68 0
100 092878 2100 Zlo 73 0
100 092978 3500 24 84 67 100 093071:1 2100 21o 84 67 100 e ESTlnATED OVEN DESIGNATED PEHlOD
~
Table III-3. -
We_ekly number of weakfish taken in samples, estimated number impinged, and estimated number lost at the circulating water intake, S.N.G.S., during 18 June through 30 September 1978.
No. Taken Estimated No.
Estimated No. of 24-hr Week in SamEles lmEinged
% Live No. Lost Periods Sameled 18-24 June 351 41,800 48 21, 700 3
25 June-1 July 13,716 2,338, 900 44 1,309,800 3
2-8 July 9,338 2,382, 800 66 810,200 3
9-15 July 13,679 1,580,100 70 474,000 6
16-22 July 3,281 389,500 76 93,500 7
23-29 July 3,807 382,100 74 99,300 7
30 July-5 August 1,638 197,000 70 59,100 7
6-12 August 2,125 125,300 70 37,600 7
13,...19 August 1,814 156,500 70 47,000 7
20-26 August 1,178 115,600 81 22,000 7
27 August-2 September 1,712 10 7,000 84 17,100 7
3-9 September 1,182 82,500 85 12,400 7
10-16 September 955 56,300 89 6,200 7
17-23 September 278 21,200 76 5,100 6
24-30 September 298 17,400 87 2,300 6
Total 55,352 7,994,000 3,017,300
(
I i
- Table III-4. - Weekly length-frequency.of all conditions of weakfish impinged at the circulating water intake.
S.N.G.S. 8 during 13 June through *30 September.1978
- CUJU 0*1V11 OtlHI h~J
)~IS
~v:.ti
~'
H u
O~U11 OH.iii CoJJlli
- a
- l c.~;,
lloJJ UIOL 11 1~]1 Ill UlClll 1\\40 0111JU 1~*6 10 U71Hi ZOOJ Olio II OoJS 10 DUHi lllS OIZJll UUJll n
072911 ZIOO OfJ011 0\\CO 10 02iH71 22111 oeo675 OCJO 10 1181210 ll20 oau11 DUS 10 U81911 22411 OS2~10 oou 10.
OIZHI lJO:l DU171 C9tl11 091~11 CvHIS
- 12*1&
OlJO Ul~Q QIU c~:,1 c* --...
1;;
u 10 T)
- ~
OVuHO o-:na 0'1*11 OH!11 c*1:1i1 2HO 2ll0 u.s l];J 22)J
~~.-...... --------------------------------------**------------------------*-------------------~-----------------------------..... ---------------------------------
h* IJ II* u h* u
$1* u h* 4l n-i.!
... Sl i:- u
~r-
.~
- ~- *S
&>* 1)
Ii* a
- &- t)
IS
... il
- - i5
- -1
- 'l 1::-*~'
t~:*llJ 1~\\-1:!
- :;.-1 :;
,. :-::s U:*1:l 11:-: ii llc*Hl 1' l*Hj 1*o*IU Ul-IH
,,c-~:l 1t~*,:S
,... : 1l t ;:-:IS 11:-*:.;
hl*li)
'i :- ~ ;.,:
hl*l*S 1*~-;;J 1~1-::s a:c-~:)
u:-zu i: ;-?* J Ji 1-n s
- -ell
- 11-i:S 2.:-:.1 l*:*iD 6 i: -: 5'!
IZ I
u 1U u
H 1H II H
2H
~..
u ll*
H1 2
.S?J l~l 2J:
l>~
11 l~O IS 219 t
n 29 J
1
- 1 l
1 J
h 6
l J
2H H
19 6
'0*
lU Ml 28 410 SH zu Y7 h~
171
.u~
159 21S 2f.l 1SS 1~6 111 51 124 11iJ 1119
'5 u
6C 19 JI
~~.
25 29 1
19 1V 10 2
ZS 0
9
. t 4
0 l
J 1
l 1
t J
I t
s I
J IS H
s
]~
u u
]J J
44 67 111 0
4 2
46 71 UI 119 l~
10 1
9 104 u
151 2N 1'1 11 J
10 U7 119 127 215 1)9
- a 20 a
Ul au 106 111 1H 11 j
l t2' Z19 u
1CD 9~
u 21 u
UI 17 u
8' 1C*
1l 4
H 1S 52 6l 10 19
&9 11 21 25 l1 17
'l H
l!
s 11 JS 19
.~
JS ll 6
11 I
16 a
~l 3J 2*
l 4
I 2
18 1l
- 2.
t 2
5 12 H
t 2
J 9
7 6
2 2
1 l
s 1
I 2
.J
.J
- 1 2
J 1
i
--*********--------------*--****--***********-******~****-******--*********-*****a*****-*****************e~***~*--a**-*****--***********~~--*-*********-----*-***---*--*-*----.
a.:. *CIS.
JU Ut9 1)0 19Y6 2UJ1 IDU 711 an 1l06 991 117' 911 6lJ JU Hl e.;. l.U,(M"'
JU Ulh UJll 11619 l211 J~C1
'6JI 2125 1114 1111 1112 11U vu l7i iHI 51 u
IU u
16 1U1 101 H
121 Ul 1U 121 10 111 9l 19 Ol[AM l'i.&S.
ll 6'
u u
Sii
,0 u
'5
'1 0
64 1J IU u
19 8Uol l~O U-24J u-in U*2U JJ*lU n-H u-11*
JJ*IU. n-1u U*HJ u-1u u-111 U*UA u-10 11-111 Sl*UJ
- r.
- r.
~ :"
.... * "' t
~
I*
I.. **..
C>
0 I.....
.. r r
- I I
t
.. c C>
'° 0
0
~ :. !:
C> '°..
~
c u
.... c
~.,
f......................... -.. -...... --.. --...*......*......
- I f
- t**t.. 1110 ****I 11 ** <l*t:--........,_ ~,...... ** 1.-1**..,.,,,, -
n r1*1._t......... _
.. f"' Iii!-.... ***~...............
I *,* ~ *: *: -:' *; *: ~ *; *:.... : *; *; *; *; -: ~ ; ~ 7 ': *,* ': *: ~ a; ~ 7 ~ *,* *;.7.~ *; *; i 'I ; '; ~ ~ *: ~ *** ~ :
I 1 *' 1 "*' 1 ****,,,1.. 1110.. *' ******-**** ** **.....,.,, _
I I
I I
t... 1,.fo P. **'I *,lo ooooou**.. 'ol* *' 1*011° I
'"*'**Pt**-***f.111 C,.,...... ~.. -. ft>l#I_,..,._,_,....,.*
1**---*-*-*-------*-*-*-*-*---*-*-----------*-**
I I
I
-~~N I
................ poi I
I I
~....
...... _._,, CIO-_.
.... c,,c.... '-"""'"'o"""
_,,.V.l*'ft. C-DH
- ""'*.lf'tl*O-cc o.-
...... P'... ~P -ClliCflilC Cl
..NN... M N""r-Vl!O'.C>**""".c.n"'°
.........,._.,..c.ci.ev..--
...N.t
......,.&...... **l.ofO,..
........... S-hPCC...,._,_V'
....... <'- '°""
~ "~~.,..~-o~-~~N-~
...... 0-oC)ft'""---
M..
..0,.~N~~p~~-~-
..,...,..,°',.....,""'""-'
- ~0-~~-o-,_~~N,.._N_
N
~~~c~--~~o~~N-
.. NW,__.~""""'""°...,,..N N-N~~~~U~~~POOMN
............,.......... ft...........,.... -
...,.....-..ucou.... rv.-.. **,.....,.....
.........,..... f",_~...........
......... C~*.. **uww*-......,.
.... N.. C\\GNraOllit*-
.aN
~ -~~W~~ON~-~O*M
- I *
- 1 I i I I
I
- I I i I
I i l j I
I
- I I n
n ft* -*
l'*-c*r*w C>
0 no*
n*o
....... -c.-
c*-oN'llft g..,..
o e
...C.,.C"C;
- -10.......
o-0 c..,_._o_
o~o... u
~...
0 09""
- ~"""'-~-*
,.,..,.or-:o-
~..,
C>
c
... ~ 0..,
_...,.,.c_
c; -o o.....
o....
c;:...,
0 NfD 0...,
-""coo o-D...,
C>
fl.IUI ODt
... --co hlNO """'O-D...,
g..,
n N* OD
,_~o-..,
c.., "'...
0 C>
""'°" a*
6,.-N*C>hl L"~o-o u....
g-.,,
0 N~ Oi:>>
Wtv011,)..,
°""'
g..,
C>
c N **
O**
Cl
""'CIC...U"""
u....
0...,
0
""°,.. ell
,..,. "... n N~ C'lG
--*~***.1**
1.. **(I I.I....
u...,
n o
N<I)
OCI
...,,.,,~... -
U9<1
~*...,
I I
I.
I 1-i Ill C"
ID Q.. H CH
., H I
- J VI O'Q I-' I
'-.I
~
C:... ID C ID
- J Ill....
rt
- 1'....
11 ID 0
- J c
- O'Q DO rt
- r ::1' I
l.,.J~
0.,
Ill c.n..c Ill c:
"O Ill rt ;:J Ill r>
a'<
C" Ill 0
., ~
I.Cl......
....i <
ex> ID
~
Ill
~
~
tll :r
...... a "O
- J DO Ill Q..
Ill rt rt
- 1' Ill
(')
(')
c:....
Ill rt
- J OQ
~
l"t Ill.,
Cf.I z
C')
Cf.I
(
Table III-6. ~Weekly length-frequency of dead weakfish impinged at the circulating water intake, S.N.G.S.,
during* 13 June through 30 September 1978.
**O*O*G*e*O****----------------------------------------------------------------------------------*--------~~--------------------------~~----------------------
Oo1J71 1oi:J ID 061$78 Ol~a 0610,.
O~ZJ J~
Dol.J11 o;.;a OoZ.11 u~.a
'~
OUJll O~J:I C7a*71 1CH 1~
010711 1h0 011011
- 10*11 10 011511 200!
Ulhll lhllH ID 111'21' 2HS 01lJ11 OGJO JO 1111911 2:00 OIJJIB OIUO 10 UEOHI 2230 08Uo11 0010 10 Ua\\211 U20 oauu 01\\S TO OU9711 22'0 oa2011 uaia 10 Ot26'S 2))3 082110 01JO.
ID OOCZ71 2.1111 U9JHI G9~C78 0*1111 0*2<71 01~3 ll~ IS t~~'
Cl:)
10*
10
'~
'~
09U911 Ov1671 092171 o~;;,11 22JO HO 2Ja0 Hl3
~~~..... ~~~-----.-----**--------------~-----------------------------------------------------------------------------*-----------------------------*---*-------
,.. 20 a1-a 4~.. !:
)1* Ji H* *l U* *II
,,_ :J s;- H h- *>
.,. u
- - fl 11* IS h* il Ii* U
!a;- *l
~1- *i 9~-~:J 1J1-~;s.
1:>-\\ll 1:1*\\ll 11>-::3 111-:a 11e*tJJ:
1Jl*IH 1.!J.. 1
- l H1*1.fl 1;, :*I!)
'!l*\\;S 1::-!:J 1.1-::s 1 c-e-t :J
-; 11-1 ;s I:.*\\' l 151-~il
, !:*1.; J
- 1. ~.. ~; s
'; ::-* '~~
- =~-i~*~
- -l\\J
,,~_,,,
-~-*~*J 2&~-2;s.
H:*lll
& 1! *.: iS u
l*
lll
- 4 25 u
1 n;.
2l 1U h
14' n
n 10~
u 1:"
60 21 l
1 I
1 JS 11U JS s
1a 16 19 s
10 109 Sl 19 H
so u
J1 St u
20
]0 ll lS 10 u
Z2 14 4
2:)
u 1
a
]
1 l
a a
J 1
I J
6 s
z 1
s 5
H u
l z
6 20 l\\
6 2
Z2 11 n
41 Zl J
26 u
11 u
Z1 1
21 26 9
H 16 10 u
19 I
1J 10 4
0 1
a 1
11 1
z s
z 1
s Z.
2 J
ill 1
1 z
2 s
4 2
J 1
s z
z l
2 1
2 1
1
- .:~-:.. J
- ... !:~=~~~--~~---~~-----------*****--------~------------------------*--------------*-----****--*----~------*~---------~------------~::*---~-~~---~-~::*~--~~~~
l9l us
- llU
- 99 SU
!i:O. *l*S*
'i 1oa.
tA*li~
us JIU 1004 1164 J92 S*,.P. "Ill Sl 11 11!
u u
107 M(Alo llfll.
ll
&J u
u
- u.
IA°':.l C*UO 11-u aJc iU U*2**
U* U U* ill U5 1ZO us llS UI 129 1111 98 HJ u
- 6' u
u-1u
... u u-UJ ns 108 129 1a9 122 1U u
60 aa-10J u-u
.1n U*
1U u
Ji* H 141 111 1J u-101 90 u-10J
i Table 111-7. - Weekly length-frequency of damaged weakfish impinged at the circulating water intake, S.N.G.S., during 13 June throug~ 30 September 1978.
- ~~~---....... *-----........ *----------------------~-----------------------~--------------------------------------------------------------------------------------
UU~I
- u 111 C&hPJ 01:'7&
01\\Cl~
orun ornu 013071 os:.ni 0Cll11 0~2:.u Co?1U Oi:.HS CIDIS
,.: H c; *7S 1:::
CHl
- v:t 1Cl1
\\:144 C60S ClllO o~~:i.
OHO 01\\$
C~l:I 01::1
':::i
- 1~~
.. 1
- ::i 1:
i~
- ~
1G to I~
io
- o to 10 TO
?J TJ D
=
- ai$11 C:*U11 CUl11 01:111 1111$11 D1ll1&
07?97&
oa:sra 11a121a 0&1911 ouua*
09:211 C:ICUI "1'7S
,.2 u c:; ::>>&
- J:;
G6lJ
\\HO 2C~l 2US 2100 2230 232:1 2240 2ll:I 2Jlll 2l:lQ 2205 2l :l 2 l:
U* n 11* u 2;- Jl 1:- n*
Ji* *l
- ~- -s
- !l St-U C\\* u
- 1:1 11-a
- *. ll U* U
... ;)
H* H i:*:::
i;\\*I.!
1::-:*)
1::-::i
~~:-:::
,,;i-~:1 1.ia*;*l)
IJ\\-:U 1s.-1.)
u:-:.!
,...., ))
': 1: -~ ! '
\\!1-::~
h"*!:S t;:**.~l
- -:a 11':-~:~
1:.a-*::
1'-~*~ *!
H:-::l 2:,*:a
- ~~-c:s
- -.lll
- .i ~... ; s
- =-**li 21 ** ;.:
J.:-** s
- .;. a*: S:
- ~
- .. ;:!I
& a
- u.
n lS u
~I u
I l
1 l
2J 21 u
0 u
6$
~Q u
l:I ZS u
2~
a u
2
.l 4
I 1S 2
a 29 10 14 2
l2 20 za 5
2l a
20 11 9
9 II 2
l 7
9 I
2 1
J 2
1 2
1 1
1 I
2 J
4 1
2 10 l
6 10 4
J s
5
\\0 1
l 1
l u
1 I.
1 6
J 1
0 2
s l
1 1
2 12 9
2*
a 2
l 5
7 2
l 2
1
,~
l 1
1 2
1 I
1 1
*-----------------~-----------.___.---------------**-----****-------------------~------------
- U* *l~C.
au.;' ciuu SJ' n
ll U* lA 2*1
- JD*
UJ
- u.
11-2n U4 2U 44 S4 ll-l1.
22' 1'1 SS 91
~u.
141 u
9Z u
\\OJ' 107 91 u
.n 41 411 ll* II n-ea
- u-n 41* 9l e
40 u
20 60 Sii
'0 I
2:
u 2'
£0 1.5 as u
H6 1U Ul 121 IU 111
- i 0
61 u
41 J'a as ii u
n-101 u-9J u,. n 4&- u u-111 u-u::
t:-1:;1 Sl*11&
e
Table III-8. - Percent survival, actual and estimated number, and length range, by month, of weakfish impinged at the circulating water intake, S.N.G.S.,
June through November 1977.
No. of 3-min.
Actual Estimated Length (mm)
Month SamEles CF
% Live No.
No.
Min.
Max.
June 63 30 38 859 23 7,245 23 78 July 59 59 54 4,321 1,118,232 28 133 August 74 72 66 1,992 407, 950 33 168 September 88 34 76 634 114,062 33 148 October 8
1 100 1-60 123 123 November 94 1
100 1
146 93 93 Total 386 197 57 7,808 l ll876,695 CF= Catch frequency (number of samples in which the species appeared).
- e
-1~
Table III-9. - Results of the stepwise multiple regression analysis of tide height and weakfish impingement rate (n/min) during period Pre l (26 June - 14 July 1978).
no 1 VllflAlf Nf1,WIJ lNIEAIO I CQll&lf
- n.177UH9 Of
'"" o* 50111Df' MF.&"'1 SOU&Df PllnR>J ur.uu10N 1
4.H009LAO 4.V009UO 15.71 n.noo>
11;ina 11
>n.9261'>21 n.2RU6111 rn1
74 2\\.4UHU1 A \\Ill Ill no fAAOA T>Pf II "
PDnR>f INlfOCfPf
-~~~~~;~:::
Nfl,Wl\\
n.ononnu 4.\\1009460 u.n o.onn>
,.,.15'~Vi UfP >
no>
'IAP l MtH,fl 1' '"'
AlH, VIAIULf MnOFl fnUNO.
vuru;u HflG~T fNTUU a IOlllAli.
n.109111H OF lillll Of t;;QllllHfi.
llfU SOUIA(
AHAi UION
~- \\21HA91
>.6606]9U fUOO n
>o.1Ho110 n.U9S1497 TOl&L 1'
U.4'6\\~A81 II VII llF lTD.fQAQA TYPF II "
1._TilCIPT 1.799AllL9£.
Mf I r... T n.oAnAMl 0.0~1\\4116 O.R011R411 O.f I~-._, 1
.,.:i.onn4111u o.ono11oav
'-11910S94 Nfl,NI) AfPllCfD a* HllCNIJ a CQllUI
- D~>411lH7 Df
,.... 01 l\\QIUlilES*
Mflll SQUAAE Dff... "ION 1
6.1\\\\0961' 1.0A190&11
na 1>
19.110 \\A040 n.>681004S 101 Joi 14 H.4'6lSAB\\
A V.Ullf uo (AAOA TY Pf II "
lhll AC(Pf 1.000\\\\R~
n.1>A9llH~
n.onA1tL1 1.96714110 hl1C:.i4J'
-o~oun1n111 0.11040\\H
\\.OOH2H7 Ui8ll&Lf MOOfL JnuND.
MlllKlllt l*SQU.181 IHPAOVIMfNT 108 Oi*i"NDFNJ VIPIARll LO'N I 'Qtt&AE
- O.J974014\\
11r.uu1011 f1~na 10111*
OF 1
71 74 R U'U Uf l~liDCf~f
-~.91A~AAl~
"IM OJ 'Qll&llf' tn.t114'40\\
H.Hl91'7A H.4'6\\\\AR\\
,,0 F.8801 MfAN 'OUllili J.HOAIU&
n.21so1000 TWPF II "
Pane>1 9.5J o.nnn>
PR08>J a.n o.o;*~
8.15 o.nr.~~
PlilOB>J 11.44 n.oont Pililii)J 7.H o.nr.*4 11.54 0.0011 PROB>J 1S.6t o.nor.t P80R>I 1.\\11\\o~no n.uso10114
\\.1n2ooao 14.69 o.nr.~1
- u:..r2
-n.1'HOl1' n.ll\\J4\\9Gl 4.191t6HJ n.u 11.nJr.1
___________________ ::~==~~---~--------~;~~~~~~~~----------~:~~~~:=~~------~---~:~~!::!~!------~--~~:~~-----~:~:~~
Twl *AOU'I NQOIL 1Mf A,,,
WA81AILI AOD*L rnuND.
i
(
Table III-10. - Results of the stepwise multiple regression analysis of tide height and weakfish impingement rate (n/min) during period Post l (15 - 26 July 1978~.
no 1 Qf<... '510M fD~O:ll
.ICUI llUIMllll e.:.sauuli IMPDQVf~FU roe DliP,MOFNJ vUUBL& LOIN 8 IQllAil
- 0.0\\,11AVR DF 51111 Of 'QllAQH llUM SOllUE O.H\\l\\HO n.2HUUO 1
n.2u1uu 7\\
H.H2H1'1 H
u.n4HOH9 A
~Al Uf no uoao HPF II u PAnR>J 1.11 n.2vo PDnll>F JNTFOUPT
,,,Ao\\unA o nnnnou n:n1une 1.11 n.u10 1e11 r... t1
-n.onnnL.t.17
,.. ~ A.._.)V' MA Oil 1£ '"'
~FU I WUIAil~ 11noFL JCIUNO.
no>
V.&.RIAIH Ii Nf IC.wt '~HUD A 'Qll.. Q&
IS n.n\\AOVCl\\
SUM OJ 'QllUHS MUN $QUAA(
Plln9)S n.\\0202111 Cl.1D6UR6J 1.111 n.H7A llf'.t;iilllF,,ION 1
n.2\\462197 1raen1
- 1) n.*HnH>
l01AL H
16.RLHOHO A Vll llF STO f llCIOQ JV Pf II SS p11na)I Klfl> 1
"'IGNt1 OfPIAC(O BY Hfl,MT2 I UllARI" n:n4AH016 Df SUM OJ S.QU6Qf g MUN sau**5 Piilln&>I n.74nSn9n n:HHZH~
,_74 11.1796 Gf(.Qf,,lON 1
H.10RLS169 0.212416SO f :ll'-O:il 1'
TOT JI 74 16.04570HV A VAi Ill-no FAAOR TWPlf Ii "
Pll0R)6 l-'fOCFPl
\\.1R0,6U' 0.0S1Llt.R1 O.SA8106H 2.67 II.Ir...
""~*"'
-~,~~~~~~:~
n.nn,*OHR n.691H69\\
... l.26 n.n1H
- m*****************:~~=:~~-------~~---~:*-*********-****-*********************-*******--*-******-****************
1uit"llM 8*,QIU1Ali IHPliO\\lfHf'NT JOA Di*iNDf'.NT V61ii1JAllL&
LD(lr~
Q *QllASf
- n:nA29S147 Df Ullt OJ (QIUGfti
.. F 6.. SQUAO(
PiOi)J
-'f>'\\ION 1.n1n10A.R\\
- n. B0121A 1.59 0.10RO filGOR 11 H.DH\\nS96 n.2111ut.v 10f II 14 U.04S10H9 A \\111 lll
&TO FPAOR TVP~ !! H PanA>I
- l><iPT
.1.n~an~~~n o.1u17'9A n.sRnvuu 2 74 n.10n
- :~=~2
-~:~,~!1.,1 n.017DRIRA n.&H2HSA 1:01 o.....
- 11 r.*J\\
n.onrunno n.onnt.\\094 n.2uvun
'-24 n.1***
~---------------------------~------------------------*-----------------------------
'"' 4k0Wi ~nOJL., 1~9 "
J VAllA8l~ NADIL 1nuN~~
Table 111-11. - Results of the stepwise multiple regression analysis of tide height and
- weakfish impingement rate (n/min) during period Post 2 (27 July - 10 September 1978).
nn t Ill r-*f ll:!i. IOt.I f a;;na tnr" l._lf"CfPI tof I,...,,,
IUIU*llM l*SOllAll l"'Plln~fMFNT HUii biPFNOfNT VUlllARI J 161F.M I '011&af
- n~n1AAAR 11114 nF lQUlUF' MIF&N SOllUtF 1
'~09"1Ul,)lA
,:Mo~nA
~10 iH~RAAIH17 n:nvnn on 10.9A7HAS1 II: VAi lllF
f 18~111 n.n:in1 Plln8)f 1A.}A
.. n.. nno1
~----~-----------~----------------------------------------
,.. '"'.l"'
9'00Ft " *** AE Ii. T 1 VA&IUlf MOOFI Jnuwo.
,,,. ~
V&GlllALf.. fJl;lf,f llrrlTflillFO
- '011All.
n~nA7VAOOQ
'llM 01 'Qll&ll f' MF&,. l.QU&AF P~O~>I 8ff.oif',EJOW A~ 1 \\;>OR'i1'i 4~07A*010 11.Ao n.nnn*
f 11 ;;;nu
~IR 111.AH>711A n.?ISAHA1 TOI.U
~~n 119.oHHAH A VAi iii:
~10 J1111n11 IVPF JI "
pgn;1>f fa;;rfilCfPT 0~4\\4HGH
'~n~41n1ao WI l(
- .i1 n,n.,a111G n.nHnou 1R.7A n.nnn*
loof "*""
-~.nnl)\\Ol~o n~nnnM47n A~AH\\1141
,n.a1 n.n:in1
'1*;i >
MFl;.W.Tl 8FPI &(&0 AY MHl<MU
- 'QllUilf. n:nnH\\11 DI
"'.. 01 1;011&9f IO NF 1i., S.OUlllF PUnJt>J Qf(.OlfS.,ION 8~77.. 97AOA 4; \\R70'194A 70.H n.nnn1 f "'nu
\\U 111r191 ))')'~A n.71'AHo~
1n1" vn 119.U7'\\AH A
V&I llF
... Fll.908 TYPF II **
PRnfOf t1.1;.:o:::fPT n>i\\01AA"A
~f I f.wT ll~ l )LOQ'H10 o:n2,;.1on1
\\~707A01
1A.~o n.. nnr.1 hf 1 r... 1,
-n.nn100\\o\\
n:nn1 HH*
1.nnnsn
. u.on n.r.nn1 J... J Aillhtl '(O:il I' fhf Af(T V&llJAil' lllOOFI fnuwo.
llfi&rJMllN a-,QllUal lMPllO\\lfMFNJ f('IR Dfl>FNDFNT V&AIUU I I.Di..
W68f.t.;t,l I Wf1f.WI\\ JNflllO Sii.. Of 'Qll&lli' Mf.t... 5QU4DF panFi)F iff.H*\\lrtUI 9:1A\\\\,1\\0 l~Ol.110910 14.79 n.nc;n1 f"" na
- 11 11nr 7Al9i'kOL n.nuanA 101 Al on 11G.9A7HA\\\\
A v*111F CT* IAAOQ TVPF II..
P*nR>I U,UDCfPJ 0~ \\C.A*l711
..,1,...,
R.. 11A\\.. OC.\\
o.nnn4on 1 :Q71AHA1
- t. i I~... r ;>>
-n~n1111,..11 n.nnoA\\AAo 1.0lOlOJ4 MF I r... 1 'I n.nnn~"a>
Q.OOOSHH n.,n11un o.1n o~nr11\\
4.R1 n.nna 1.9')
n.'"""
e
(
Table III-120 - Results of the stepwise multiple regression analysis weakfish impingement rate (n/min) during period Post 3 (11 ~ 1 30 SU> 1 VUl&ilL( NI 16MtJ (NTi8lD
! IQllU5 m o.nnnuv DJ SUK Of 'QllADH llEA~ 50UA8£ HGOfUION 1
- o. 5\\1 n4o n.n111u1 l.45 lPilOa U.1401'00 O.UUH61 lOT&L 146
>a.870\\S*90 II VALUF sro uuaa TYPli I! U i~HOC(Pl n.H&a\\707 tciilYkT\\
-n.onnn491.4 o.nnon1i.n 11.H11H91 l.U of tide height and September, 1978).
PDOBH o.n654 PUB>~
0.06S4 TWi ilAQVi,.G!)IL 16 TM&' Ri'T 1 VABURL!i "091L 5nUHD.
no>
VUIULl NU6*T l~TUiD I UUU& m O.OJ470171 Df SUM Of EQllAlilfC Mi&N SQUIAE PliilOB>I
- IG*(HIOll z
n.79\\9V9n O.J969764S Z.59 n.n7ffh oar.a tL&
n.r.RS40401 0.1Hl7086 tnu.,
146 12.8791\\690 8 \\11.lUf no uuou lVPf II u POl:>D>I l*H*C(PJ
- n. ""
\\9A9 lool H*"'
n.O?U?\\91 0.D2l09\\J7
'0.262Al799 1.11 O. \\92A M(IGMr1
-n.nnnHALA 0.0000R019 n.US86814 3.LS n.nA**
--0-----------0***-----------------------------------------------------------------------------------------------
&HP;>
~ithNTJ l!~L&ClO er HU~HU
- 'QllU(.
n.o19A7&Jn Of
'1111 QI
!i.OU&AE:C.
MUN 50UUf pana>J illf(.HS~JO,.
2 0.907A1\\9A n.4~190699 2.97 n.nH>
f *;1:.a 1L4 71.97H4791 0.1 S258014 101 &L 146 72.b19Hh91l A VAi UF no (QAQ.Q TY Pi II if PIR8>6 I "'1 f. c E.?l n.,.RH7U
.. i.,..,
n.n*H9A79 O.Olh~HR1 n.462*H9~
].OJ n.r,a'"
""I'°"" r 2
-~.. ~:1',.)UL1L o.nn1n~'19
- n. 6!972924 4.19 o.r.~,.
--********************-*****************-**********-*-*-**************-*****************c**o*********************
NU!""" ~-nu*U !llPAOVIHl*f fOA O(PfNOfNT VIA!ABLI lDfN
&11~
UUll&ILI kfJ&Mf) fNfO&D
~ S.DllAl!ll oo 0.0046607
- i gUM Of i.Qll&Uf' M5; Ai..!
SQUIUIE Prt08)f 6o I f,;,f ION l
1.11l~87?H n.16962418 2.4]
o.n.u I JI iitll IL!
- 11. 77048*18 0.1 S224115 10 I 4L HA U.879H690 ft VAi llf
~ID f lilROA HPE BB "
Pana>J R:*TfRCiPT n.n\\H017R Ml I C.i-11 n.17HHR1
- 0. 10ShAOQR n.'29905U z.~2 n.n9\\1 hf I Gil r 1
-n.n:>or1.ti1~\\
0.01J9~110 n.l1L9196l 2.07 O.HH
~Fl**Tl
~.onn*l41n o.onou\\01 n.2010uss 1.H n.Ha
~----------------------------------~-----------------------------------------------------------------------
Ta~le 111-13. - Results of the stepwise multiple regression analysis of tide height and detritus impingement rate {kg/min) during -period Pre 1 (26 June - 14 July 1978).
- IJ 08StlVATIONS DlLlTED DUI TO "ISllNG VALUES.
no 1 VAilAILl HEIGHTZ lNTEtlD 1 sau*Al
- O.UHUSI Of suit 01 sauuu llUN SQUUI PICU>f IEGRlUIDll I
601.61OOH19 601.611QZU9 (001 60 U7Z.J6J910U J2.11ZU184 u.u 0.0001 10l*l 61 UU.9819JS*&
B VALUl S1D EAMOA TYPi ll SS PA03>f lhlfOClPI v.snnou
- El,*12
-~.O*JU2'U 0.01U0014Z 601.UOOZUV 10.40 0.0001
~------------------------------------------------------
Ttll AIOVl llODlL IS l*E BUI 1 VUIUU llODlL fOUND.
STlP 2 VUllllLl HEIG*T lHTlAU 1 uuAU
- O.ZH6H8' Of SUit Of SQUARES lltAN SOUUE PAO&>f AHAl$UON z
054.H)Z5671 3Z7. I 176ZOJS 10.0Z o.oo~z st 192S.6Z661b18 JZ.6J7HOJZ TCl*L 61 ZS79.98195548 II VALUE no UAOI TVPE II U raosH lllTUCIPJ 4.761Z9SZU HllG*T 1.191260\\9 0.995*86JS u.nrnuz 1.u O.ZJ6Z
- UG*IZ
-~.ICl5Z0Z96 0.05290778 IZ9.04J1ZZ1S J.vs 0.0514 i.. l lQll'Wl "~~lL IS 1Hf Ul51 Z VUlAULE MOHL fOUND.
SHP J VUlOLE Hf"Hll ENl(llO 8 SQIJUl
- o.HU2U4 Of SUK Of souuu MUN SUUUl PIOB>f 8l6AfUION
]
971.lSIVOOJO 525.15596671 11.79 0.0001 l*Pu~
sa 1602.624Ul~U Z7.6S1440H 10Jll 61 2S7V.9Bi9JS'8 d vALUl
$TD EUDR TYPE 11 SS PiOB>f l~H*CEPT
-11.'41HOSO
.., Jc...,
11.8716118S l.Z5SH841
]67. 41901824 U.JO o.o~o~
- I IG*TZ
-1.5HOllSl o.*11SJ1l9 561.$U60SJO IJ.]1 0.0006
- ll~*TI O.OS411'2Z 0.01600291 JU.00264160 11.69 o.~:l12 fNl A~Ovl "OOiL II lt<l ifll J VAllAUll MOOlL f0UN0o e
.e I
I
Table III-14 * - Results of the stepwise multiple regression analysis of tide height and detritus impingement rate (kg/min) during period Post l (15 - 26 July 1978).
UIP 1
"'gl"U" 1*5QUll! '"'IOVl"lNT ro* DIPINDiHT VAllllLI DITllTUS
'0 0@5EIVITION5 DllliiO DUi !O "ISSING VALUlS.
V£1110L! "EIGHTJ lNTE8ED I SOUAR!., O.DU601U Dr BUH or $QUAIU "UN SGUUI llGAUSIOll 1
J1.J7110S06 J1.S7110S06 lDAOi u
U1.610J2JS2 22.1.7182799 TOIAL l~
169.041'201
& VALUE SID UROR TYPE II U
!NllAClPT 6.Jl11 U99 HEl'*ll
- 0.00104189 o.uuoeo101 J1. J1 /10506 PAOB>f 1.69 o.zon P*Oli>f 1.69 o.zon
0--------------------------------------------------------------------------------------------------------
THE liOV( MOHL U 1Wl BEST 1 Vll!AllL( HODEL fOUNDo
&Tta> l VU Ubl I Hl1'*T l*HUlD I IQUOE
- O.Z4828165 Df 5UH or SOUAAfS HfU SQUlH PAOa>f ilG*EHIOll z
190.9449/861 9S.41l489l1 5.Z8 O.C104 lAAOa u
518.10Z44V96 U.06HOIS6
!OIAL 14 769.0414l8S1
!I VALUE 510 lNROR HPl II U PAOBH INltOC[PI 1.009HOJJ Hl!GH I 1.z12nv1s 0.4H~9UZ 15J.56781lS6 1.50 0.0064
~l1'HTJ
- 0.00569181 0.0011Hl9 190.11HU01 IO.S6 C.CC27 Ul* a
- E!6Hf J *tPL*CEO ur HEIGHTi 8 UUlAI
- Q.26UZ94~4 Of IUH 01 'QUAAU llEA~ SQUARE PAD6>f AHAIUIOH z
Z00.1188SOOB 100.0896l504 5.U 0.0080 l**o*
J2 hl.HUS/049 11.11114108 lDllL J4 169.04142851 B VUUl 51D EkAOA TYPE II U PAOD>f l*lf*ClPT
- U.'421&405 H(l~NI Z.1SHOJH 0.66816481 18l.99l14l2$
10.]5 0.0010
- H.:<,1Hl
- 0.1.1940511 0.0'156106 Z00.0~698441 11.25 O.OCZI
- a****************************-*e-***************a*o************************************************************
W*d A30~l ~OOH U l*l BIS I Z VUllDU IOODlL f OUNDo 510 J VAllliLi Hll~HIJ (NIUU I
5UUU~
- O.l619JS6Z DI IU" Of 5QUAU5 MfU 'QUUl P*OBH
~H*IUION l
Z01.U091ZU 67.14691084 l.61 0.0221 lPOICA
}1 561.60651604 18.JC*UbUI 10 PL J4 l69.0* 1428H e Y*LUI UD lAAO*
IY'I! II ii
,108>1 R~Hitl'l
- 1.11419J19
"(l,kT
~.61817661 1.90)40169 h.6'AUZ96 1.ae D.11U NEl,*IZ
- O.l1212l42 0.28016954 10.,9S9lJU 0.57 0.4S47
""'"11 o.00101an 0.0111H1l 1.262062'5 Q.07 0.79U T*l **O*l AODlL II T*l 115T J VAllAILI ~09IL fOUNDe.
I '
Table 111-15.
Results of the stepwise multiple regression analysis of tide height and detritus impingement rate (kg/min) during period Post 2 (27 July - 10 September 1978).
"***"u" *-SQUAii l"PIOVIHlltT fOI DIPCNDl*T v*llAlll OITllTUI
- l~l*G1 Z95 OISllVAllONS DILITID DUE JO "ISSING viLUIS.
SUP 1 VAllAiLl MllGMTJ l*TlllD I IQUUI
- D.0'455046 Of SUI! Of SGU&US Ill&~ IQU.. I PIOB>f UGDlSSION 1
1'Z.OOJJ1S14 11Z.OOH1S14 10.u 0.0014 I a;;o;a U4 UU.861SU7U 16.lU1J11J TOUL us JUO.UUUOI I VALUl 110 UIU JYPI II II PROB>f INllDCEPI J.&H11Z61
- llG*IJ
-o.oon&t6U o.ooozuu 17Z.OOHIS14 10.u D.D01' l*i &80~1 ~ODEL IS 1*1 BUT 1 VUUULE llODlL fOUND.
UIP Z URIAiLl 1tt1'*r 1.. 1uu I IQu&U
- O.OS1161JD Df SUit Of SDUUU "IA~ SOUUI PIOB>f AIG*USION z
1n.nuo1n1 98.17SOOh8 6.01 0.0029 lUOR 22S U6S.Jt4B0404 16.4214Z065 IOl&L 225 JU0.~6482101 u VALUI UD ERNOR TYPI II U PR~S>J lllH*CEPI 2.60959610
- ll~*r O.Z46U0.49 D.197UU6 2S.Sl670JU t.56 D.ZU1
- llG*U
-0.0016181' D.OOOIJS11 8S.'51Ul91 5.ZO O.OlJS SllP z HllG1t1J AlPL&CfD BY HllGHIZ I IQUUI
- 0.05J11150 Of SUN Of SQUARES N[&N SGUAU PAOS>f llG*l SSION 2
ZDS.llS6JOJ19 102.52515159 6.Z5 0.002J H*CA UJ J6S5.b0dSIU2 16.J9J160U IOt:L ZH JUO.U*dllUI II VALUI SID lUOR TYPI II u
,AOB>f IHllOCEPT 1.93667"47 tll I~..,
n.HB91595 O.JZ459969
- 52. US899JO J.ta o.ona M!, J G,t<1f 2
-J.OH8*l6' 0.018411'6 92.06416719 5.61 D.Ctbl T*l &io,~l HODiL 15 INl BUI 2 VAAU8U MODIL f OUND.
'"" ll
~Ul&ILI *llG*U (NJUIO 1 uuau
- 0.0,.29991 Of SU" Of &DUARU Ml AN SDUARI PROB>f ll'"USION J
Z09.64U5999 69.UUSJU 4.ZS 0.006l l**oa uz J651.ZZ016JUZ 16.H69J161 IOIAL us JUO.UUlJOI
- VALUI SID iRMOR TYPE II U PAOB>f INTl*tlPI I.O*J~7144 hlJGMI 1.06Jl02Ji 0.91l71UO 19.6'9086&6 1.19 O.Z1S6 "I"'" I Z
-0.111J620B 0.1 J102B51 U.0946410Z 0.7l O. JUI
- llG*IJ 0.00216Zb' ll.OOS2lUd9 4.SdBl5660 o.za O.H19 IHI AiO*I ~O~IL II TMI BISI J VAAIABLI HODIL fOUND.
e e
Table III-16. - Results of the stepwise multiple regression analysis of tide height and detritus impingement rate (kg/min) during period Post 3 (11 - 30 September 1978) nu 1 "All~U" !-SOUAll l~PODVf"ENT fOt DEPENDENT YAllABLI DfTt1TU5 11 DRSltYllJOHS DlLllfD DUE JO ~llSING VALUES.
Yllllbll H(!GHTZ fHT(OfD I 5GUll(
- 0.0618U1'0 Df IUH Of SQUAIU HllN UUUl lfGOfSUOll 1
H.7ZT86l61
- 74. 7l796261 l ** ~q 0
1DZ6.1Jll4186 15*1866]4'9 TQTIL 66 11DO.U910441 8 VALUE STD UAOA TYPE II SS IHHRC!PT 4.4l9JS2H tt(l~MJ2
-O.DIH799J 0.00628763
- 74. 7l786Z61 Po09>f
&.7l o.onz Pi09>J
,.7)
D.OllZ 1*1! n'OYl l'OHL U l*E BUT 1 v~t!A8U llODfl
~OUND.
Uff l 011.. ll ~l !6*TJ l~TfREO A UUARE
- 0.06917691 Df 5U" Of SOU1Rl5 "lAN UUAAt Pt09>f IHAlSUON z
7o.9Z*6)210 l8.'6Zl2605 Z.40 O.OVH IP'IOA 64 10Z.S.9J4452J8 15.99497SDZ VQllL 66 1100.8)910448 B V~LUl HO U"OA 1YPl Ii u PA08H
!~ll*tfPI 4.16549296 M(J6Hl2
-3.0JOuZOJ 0.04S12918 7.0992)609 o.u
- o.,011
- !JGHl}
3.00100400 0.002VS2J)
Z.19618949 0.1' 0.11Zl 1*E AaO*~ MC~IL U 1~( BlSf l VAR!AOll P100EL IFOUNO.,.
ITlP J YUIAUll kllG*T ENTERED II 50UARl " 0.11921907 to iiUH Of UUAAES HU~ SQUAil PROBH OlG*t HION J
1l1.24H9671 4).74779090 Z.54
. 0.04'1 ao*or.
6S 969.61S70171 15.l907Z55Z tOT*L 66 1100.859104'8 B VALUt
$10 fAAQA TYPE II H PDOB>f l'TlPtfPt
-J.10529999 rtE: c;.. I 5.H70*871 1.8981lZ24 H.51874461
].51 0.0649 Hllu~Tl
-J.466So10U 0.2J~441S2 59.914)18$1 l.89 o.csza HlJG"IJ O.OIU16J8 o.oo&oasva SS.51'6019'
].61 0.06Z1 JHl *IOVI '-ODIL IS THI Ul$1
] VARIABLI HOO(L fOUHDo
Table III-17. - Two hour latent mortality samples of impinged weakfish taken in the fish holding pool at S.N.G.S. from 7 July to 5 September 1977.
CONTROL LATENT No.
No.
- i.
No.
No.
- i.
Change in Date Time Taken Live Live Taken Live Live
% Live 7 July 0045 58 41
- 70 94 85 90 20 8 July 0037 141 8()
57 0 55 46 84 27 11 July 1231 8
6 75 13 9
69
- 6 12 July 0035 14 6
43 34 29 85 42 13 July 1241 28 14 50 1
1 100 so 14 July 0045 172 89 59 9S 83 87 28 14 July 1245 74 42 57 181 91 50
- 7 15 July 0030 187 157 84 223 203 91 7
18 July 1227 21 19 90 4
2 so 40 ZO July 1230 8
7 88 17 12 71
-17 21 July 123S 34 22 65 22 19 86 21 28 July 1245 74 43 58 20 13 65 7
28 July 0100 118 7
6 145 52 36 30 29 July 0100 75 15 20 28 5
18
- 2 4 August 0025 4
3 75 7
7 100 25 8 August
. 1240 60 35 58 36 31 86 28 10 August 1235 95 73 71 245 230 94 17 ZS August 1241 12 9
15 26 19 72
- 3 5 September 1224 14 12 86 4
2 so
-36 e
e
Table.III-18 * - Three hour latent mortality samples of impinged weakfish taken in the fish holding pool at S.N.G.S
- from 25*July to 9 September 1977.
CONTROL LATENT No.
No.
No.
No.
Change in Date
- Time Taken Live Live Taken Live Live
% Live 25 July 1230 15 15 100 12 10 83
-17 26 July 0045 5
l 20 20 12 60 40 5 August 0027 9
9 100 11 11 100 0
9 August 0053 130 65 50 156 87 56 6
11 August 0055 74 52 71 233 186 80 9
15 August 1240 4
1 25 29 23 79 54 18 August 0035 3
3 100 6
6 100 0
18 August 1232 4
3 75 3
3 100 25 19 August 0040 48 39 81 80 47 59
-22 23.August 0035 24 19 79 18 8
44
-35 24 August 1250 7
7 100 14 12 86
-14 25 August 0035 9
2 22 12 11 92 70 26 August 0040 28 13 46 41 34 83 37 31 August 1900 14 8
S7 38 30 79 22 1 September 0640 20 11 SS lS 11 73 18 7 September 1240 42 33 79 18 15 83 4
8 September 0050 182 136 7S 293 2S8 88 13 9 September 0035 4
4 100 29 27 94
- 6
Table IV-1. - Estimated number of impinged weakfish on dates where there are plant area and bay wide population estimates.
Daily Estd.
Plant (study)
Bay Wide
% Weakfish in Plant
% Weakfish In Date No. Impd.
Area Pop. Est.
Pop. Est.
(study) Area Impd.
Bay Area Impd.
21 June*
7.1 x 10 3 1.21 x 108 1.21 x 109 0.006 0.0006 s
5.13 x 107 S.13 x 108 0.00 S July~
4.3 x 10 0.08 20-21 July 3.3 x 10 4 7
8 0 43 x 10 7.85 x io8 0.03 0.004 2-3 August 1.6 x 10 4 3.33 x 107
. 2.09 x 108 o.os 0.008 4
7 2.17 x 108 16-17 August 2.2 x 10 4.31 x 10 o.os
. 0.01 7-8 September 1.1 x 10 4 1.61 x 10 7 1.68 x io8 0.07 0.001 E~trapolated estimate
e Table VI-1. - Monthly abundance1of age o+ weakfish taken by trawl in representative river trawl zones in the vicinity of S.N.G.S. during June through November 1970-1977.
June July Aug.
Sept.
Oct.
Nov.
1970 17.1 69.9 8.9 4.1 2.3 o.o 1971 19.3 64.S 29.4 5.6 5.5 1.2 1972 0.2 5.9 24.7
- 15. 9 2.6 0.1 1973 1.1 a.a 12.0 4.0 2.2 0.2 1974 0.3 9.4 5o2 3.2 2.0 0.2 1975
- 53. 7 38.8 15.2 13.3 4.3 0.2 1976 o.o 15.4 9.8 4.6 1.3 o.o 1977 1.3 47.4 13.8 8.8 1.3 0.o
.1Abundance - catch per unit effort (n/T)
................. 9MW.,.....
9fn' a*al
- U.Uw.a**
bKLAWARll BAY
"'" -**~,.,.... \\O**~.,....,._.
~.. - Chart of the Delaware Bay ahowing sampling grid system r
establiahed for 1978 weakfish population atudies. Letters and numbers along shore indicate region and grid number (read west to east). Darkened lines delineate sub-areas South 1-9.
S
- South 01234S 10 e
Figure II 1
- -------*----*-------------------------.. ----~-----**--*---*-**-**~*-**~-*---------
39*
'Ji1 i
U'..l I
e I
I Q
1 Statute HUH I
I 2
3 4
e
- -------..-.--..... -..... --~--,..__
...,,_..,.~--r*.,._.. __
- ~*--*-"""'
Figure II 2
11 Chart of the upper Delaware Bay ehowtna samplina arid system established for 1978 weakfish population atudie1. Letters and nU111ber1 alona shore indicate region
- and arid number (read west to east).
Darkened line1 delineate sub-areas Plant 1-4.
e i
i I
1 r
'(
i
--.;..~/ l-----
~~**-*----
Statute Hile1 0
2 3
4
.L Chart of the lower Delaware River showing sampling grid eystem established for 1978 weakfish population studies. Letteru and numbers along shore indicate region and grid number (reas west to east).
Darkened linee delineate sub-areeo Plant 5 and 6.
"'"? *
~
~ *.
P
- Plant Figure ri9 3
,~**------------
'~---------- ----~..,.~
Figure lI..;.. 4
.,....-~-..~r.X.1r:...-
.. ~ ~-r,c_::.,-'-~ ~~=-=~~-~~~i::..:-**-...:._ *- ~--~;~~~] ":
0
- Chart of the lower Delaware River, ahowing sampling grid ayatem eetabliahed for 1978 weakfish population etudiea. Letters and n number* along ahore indicate region and grid number (read weat to eaat). Darkened linea delineate 1ub-areaa North 1 and 2 0 H
- North P
- Plant 1
VH1na ttATD - un co&n NEW J*:HSKY AND llELAWARB 2
UIVER RlVF.Jl TO WILMIN(lTON loOOMDUIOA DI nn
.AT lll&Alll &.eW W*l'*a
~:... ::::-
~- ::.
r-==-~*~..... =--=-- :.=
l
I I
f
- l. l ! --
..... ~..... - -. -
it''.....
J
~-*~
.. -....... ~-...........
Figure II -
.5.,
- i
-* v.,.....,....*
-~ '*
Figure 111-1. - Weakfish impingement estimates plotted against date (16 June - 17 September 1977).
\\
100000 +
\\
\\
\\
90000 +
\\
\\
\\
80000 +
u 11 7000J a
60000 E
R I
5000:>
- r.
p' I
\\
\\
\\
+
\\
\\
\\
+
\\
\\
\\
+
\\
\\
\\
N G
E D
40000 +
\\
\\
\\
300(JJ +
\\
\\
\\
20000 +
\\
\\
\\
1000:) +
\\
\\
\\
0 t
\\
A A
A
,.,./\\
A A
\\
A A
\\/-\\/
A
//\\_A A
A A-A A-A A
'-A-A-A
+---------------+-------------+----------------+-------------+----------------*-------------+--------------+-----
JUNE 15 JULY 15 SEPT 15 AUGUST 1 AUGUST 15 SEPT 1 SEPT 30 JULY 1 7'
Figure III-2. - Weakfish impingement estimates plotted against date (19 June -
30 September 1978).
\\
\\
\\
\\
\\
60000\\l +
\\
\\
550000 +
\\
500000 +
\\
\\
45LluOO +
\\
N
\\
u 400UO:J +
'i
\\
3
\\
E 35Uuu\\l +
R
\\
\\
I 300000 +
M
\\
p
\\
1 '250000 t
~
\\
G
\\
- f.
200000 +
0
\\
\\
15000::1 +
\\
\\
1GOOOJ +
\\
\\
50000 t
\\
\\
0 +
\\ -*-*t**---**********+--**-****-****----e**********-+*************+**-**--******-**+************-+--------------+--*-*
JUt.iE 15 JULY 11 JULY 15 AUGUST 1 AUGUST 15 SEPT 1 SEPT 15 SEPT 30
600000 550000 500000 4'5000J N u M
400000 a
E I!
35()000 1
M 3000Ui) p J
~
2SOOOJ G
E I>
lOUuO:l 15000J 10ilOO:J 50000 0
Figure 111'."'"3* - Weakfish impingement estimates plotted against dates in 1977 and 1978. *
\\
\\
\\
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
\\
+
\\
I I
I I
,1 i I \\.
I
~ I I
I I
I I
I I I
I I I 1
I I
- I
- I II I
I 11 I
I 11 I
I l \\
t I
I I
I I
t I
I I
I Q
II 11 II II II I
I I
I I
I I
I I
I
\\
\\,
I
\\
I I
I I
I I
a I
I I
U I
I I
I 1 I
i l
I I
\\ ~
\\,:\\
t I
I 1.1
\\
II l : \\:
~ ! t f
- r.
,:i
-, I '
I I
/f
- ~
t I
\\.* *
\\
I
\\
i ii ~ : I
' \\A
~
t : I
~
I 1'
l I
11 J I I I f # 1
- 11 fl I I 11 II I
I II ~
I I,..
I I
,. *' I
'I 1978 1977 I
I I
I I I f*ilt I*
I I I
- I I I I I
I I I
A I
I
~ *' I I
- ~ :
\\
~ ~
I l
~ : I t
I\\
V'
\\i
\\
I I I
\\
I I
~
I '
'\\
- A I I
~. * \\I I I
I.,..
/'
A*A-A-.\\-A A !
\\ I f
I I
I
- I I *' I 1
~
I
\\
I\\
. \\
\\I 1 I 1
I I
I I
"I kA.11-.
A*:.*J'A--A*
A/A
- -A' A
'A"A-A/A/*, l*............ *
\\J t
I w Yf
~ I
\\
A A
A......_
- A-+-J,
.-A' "\\
- -******.,***-... /'****...
'A' -.......A_,
'./ 'A-A,........
A--A-4-A--A 'I
'I/
- °
~-~*---------------+-------------+----------------+-------------+----------------+-------------+--------------+-----
JUNE 1S JULY 1 JULY 15 AUGUST 1 AUGUST 15 SEPT 1 SEPT 15 SEPT 30 i
i
I
!l 0
n E
I T
'{
l Figure III-4 0 Weakfish impingement rate (log [density + 1) ) plotted against tide height for period Pre l (26 June - 14 July 1978).
The best fitting least-squares line based on the
. regression analysis in Table III-9 is also plotted.
'~~ +
\\
A A
l.il ~
A
\\
A A
A A
\\
A
\\
A A
A A
A A
A
.. :'i *
"*********A AA A
\\
tJ*6 A*'IJ*6
\\
A A
A A
\\
a A
AA **
B
\\
A*tr*
A A
,:o
~
tr"
\\
A A
A ball
'b r;.
- e.
AA 11 A
A**
A A
II A
,:~
- A A A A A
".II c
- A II 1.0 t A
\\
A A
A
!'l:l *
-i:n (t
+-----+-----+-----~-----*-----+-----+-----+-----~-----*-----+-----+-----+-----*-----------------------
0.~
1.4
}.A
'*R
'i.O A.}
7.4 R.A 9.R 11.0 17., 1,.4 14.6 1~.R Hf.IGHT
l 0
G 1
0
~
E
- ll I
T y
Figure 111-5 ** - Weakfish impingement rate (log [density+ l] ) plotted against tide height for period Post 1 (15 - 26 July 1978).
'-5 *
\\
\\
\\
\\
'~no *
\\
\\
\\
\\
1.7'i *
\\
\\
\\
\\
1~'i0 +
\\
\\
\\
\\
,_,'§ *
\\
\\
\\
1.:10 +
\\
\\
\\
\\
n.7'i..
\\
\\
\\
A A
a a
A A
A A
A A
A a
A A
A
& A A A A A
A A
A A
8 ' '
A AA A
A A
Afl&A A
A A
8 A
A A
A A
A BA BA A
A A
AA A
A A
A A
C A AR A '
A A A
A u
QA A
A A
A a A
A D
AA a
A A A A
A C
A A
A A
A A
A A
A f.A A A
A B
A U
A AA A A
R A
& a AA
~
A e &a A
AA A
AR R
a A
A A a A a AA A A &
A A I A
& A AA A A a
AA A
AAA * **' ** A*A ** ***A** *** ** **A A
A A '*'***
- A AA*A** ***
A a
B a A A
A A* *A A
A AA A A '
A A
A a **
A A A
- A**
A* **
A a
A A R Al'.
A&
~&
R El aa c AA a
A A
A a A e A A
R A
B AA A B
A B
A A A A
A AB A A A
AAA&
a a
e 88 &A CR.....
A CA R&CA&
A
' A n... n +
A..
II A A 8
A AAAAAA A
A A AA..
&AAA AAA AB A
B Fr.
A I A A **
O.H +
\\
\\
n.r10 +
&a A AAA U
A A A
e A A
I C A AA A
A A AA A
A
& A e
A R
A A
A A A&
U.
AA &
C l>RR a
CB CAl<R& && A A
*------*------*------*------+------+------*------+------*----~-*------+------*------+------*------*------*------*-----
0 1
2
\\
4
'i I.
1 8
9 10 11 12 1l 14 H
16 HEJGHJ
l 0
1 0
b r
I y
)
Figure III-6. - Weakfish impingement rate (log [density + 1) ) plotted against tide height for period Post 2 (27 July - 10 September 1978).
- Th~ best fitting least-squares line
- (non-significant) based on the regression analys~s in Table III-11 is also plotted.
\\
l~A *
\\
\\
\\
\\
'~" *
\\
\\
\\
\\
- 1. IL
~
\\
- l~L ~
A
\\
a A
~
a a
a
\\
A A
A A
A A
A A
\\
A ' a
&A A
A '
A '
\\
a
\\
a A
A
\\
4 A
a u
8 1 -"
~
A A
A A
\\
!I u
\\
A AB a
n.IL *
\\
A
\\
A O~L
- n~n +
--~----------*----------*----------*-------m*Gt*---------*----------~----------*----------+----------*----------*----------*-
0 1
- 1.
a 10 p
- 11.
16 18 10 n
HFIGHT
l 0
n E..
~
I y
)"
1.A 1-~
1.0 O.A 0.A O.L n.;11 Figure III-7. - Weakfish impingement rate (log [density+ 1] ) plotted against tide height for period Post 3 (11 - JO September 1978).
\\
A
\\
\\
\\
+
\\
\\
A
\\
A
+
A A
\\
\\
\\
A A
A A A
A II A
A
\\
\\
A A
A A
A A
+
\\
A A
A
\\
A
\\
A Al A A
A l
\\
& Al A ABB A
A
\\
\\
A l
l l
AU A
A A
A AA l
\\
\\
l l l l l
e c R
l l
AAA BA
\\
l
\\
A A A l
\\
\\
n.n
- AC&C A
AARA A c l& l l
l A
A R &RAii AARB&ACA A
*-----*-----*-----*-----+-----*-----+-----+-----*-----+-----+----.
+
0.2 1.4 2.6 l.8
~.O 6.2 7.4 8.6 9.R 11.0 12.2 1i.~--;~.~--;~_;-----------------------
HFIGHT
- )
l T
~
K t
IJ s
Figure III~a. - Detritus impingement rate (kg/min) plotted against tide height for period Pre 1 (26 June - 14 July 1978).
The best fitting least-squares line based on the regression analysis in Table III-13 is also plotted.
30
- 2!>> t
\\
\\
\\
A
- rn *
\\
\\
\\
\\
\\
H
~
.. "* HI lloA.o..
1J +
\\
\\
A A
A A
A A
A A
\\
\\
- A s
- A
\\
\\
A A
A
\\
\\
ll A
A A
A A
A A
BA A
c A
A A
AA A
AA A II a
- J
- A A
- CA
~
\\
~
A A
A
~------*------*------~------*------*------+------*------*------+------+------*------*------*------*------*------*------
0 2
l 4
S 6
1 ti
- 9 10 11 12 H
14 15 lei Ht!GHT
- i
Figure III-9. - Detritus impingement rate (kg/min) plotted against tide height for period Post 1 (15 - 26 July 1978).
The beat fitting least-squares line (non-significant) based on the regression analysis in Table III-14 is also plotted.
0 l
A l~ *
\\
\\
\\
\\
\\
\\
2S *
\\
\\
\\
\\
\\
\\
20 t
\\
\\
\\
\\
\\
I
- 1) +
\\
tJ
\\
s
\\
\\
\\
\\
1U +
\\
\\
\\
\\
\\
A * **
A
- Ir AA A
- *A A
A A A A
A A
A A
A A
A A
A A
A A
A A
A A**
A A
- A ll *
\\
*------*------*------*------*------*------+------*------*------+------*------*------*------*------*------*------*------
i.I 1
2 J
4 S
6 7
Ii
- 9 10 11 12 1.S 14 H
10 HElGHT
~
E T
Ii x
T u s Figure III-10. - Detritus impingement rate (kg/min) plotted against tide height for period
. Post 2 (27 July - 10 September 1978).
The best fitting least-squares line (non-significant) based on the regression analysis in Table 111-15 is also plotted.
lU +
\\
\\
\\
\\
\\
\\
H +
\\
\\
\\
\\
A
\\
A 20..
\\
\\
\\
\\
1'i..
\\
A 1:i +
\\
A A
A A
\\
A A '
\\
A A.
\\
A A
~
A A
A
~
A 8 A 4
\\
A ll
\\
- 1'6 ".. me.... ** * **.,.,. *" ".......... *A *AA
\\
A
~
8 A 4 A
\\
6
- A "
A "
4A A ll A
lo.
A A DA4~'i All A
8 A
c 8 A c u +
A A
A A
A
\\
A A
A A A A
A A
A A
~.... ** **
A Id,/\\
A*
ll 'IA ll All A
A A
AB A
A... """
A CABCCA 8
A A
A A
AA A
Al u A
A A
A A
- "" ** *** ti A
A ;!
4 At* *A **
AAA 8
C31l 3 (Ob,,, A ** *"
A ill.
a cc lid A 4
*-*t**--c-+--~---T-***-*t------+*-**-*+*-**--*------+--***-t------+******+*-***-+******~*-****+-****-t**--**t**----*------
1.)
2 j
4 5
6 7
8 9
10 11 12 u
14 15 16 HEIGHT
,----------------~--........ ------- -------- -
~
E r
'I 1
r J s Figure Ill-11. - Detritus impingement rate (kg/ruin) plotted against tide height for period Post 3 (11 - 30 September 1978).
The best fitting least-squares line (non-significant)
- based on the regression analysis in Table III-16 is also plotted.
\\
\\
JO *
\\
\\
\\
\\
\\
2S *
\\
\\
\\
\\
2i> *
\\
\\
\\
\\
\\
.1 s +
\\
\\
\\
10 +
\\
\\
\\
\\
\\
\\
~ +
\\
u *
\\
A 4 A A
A A
A A
A u
A A
A A A
A AA'I A
A A
A A
A A
A A
A A
A A
A
- *A* *It *** ** ***
- AA A
A
- n*,.. *A
.\\
A A
A U
A A
A AA B A 1
A A
A A
A A*
*------+------*---~--*------*------*------*------*------*------+------+------*------*------*------+------*------*------
. 0 1
l j
4 s
6 1
6
. 9 10 11 12 13 14 1~
16 HtIGHT
I
- l 0
- ~
N IJ M
[I E
R A
L I
v E
1000 9~'i0
~J () ()
U:'.iO noo 750 "700 6~l0 1100
~;::;o
~.oo 4~i0 400
- ~~;jO 300 250 200 15'j 100
~;o 0
NOTE:
f.OF:
+
+
+
+
- I*
- I-
+
+
+
- I-
+
+
+
I*
+
+
I*
+
- I*
+
F19uri. IV-1 NlJMBEI'~ OF WEAl\\FHiH ;~L.TVE,i.
PUJl OF i'\\I.. IVE* TOTAL L.Fi*iFND: t-:
TOTAL NUMBER IMPINGED 14:4B MONDAYr CJCTC:1Bfl( 2Jr.78 1 OBSr B
- 2 OBSr ETC, 100%
75%.
50%
+-----t-----+-----t-----+-----+-----+-----+-----+-----i-----+~----+-----+-----+-----+-----t-*----+-----+-----t-----+---
0 1 ()()
- mo 4 ()i)
~.'iOO 1100
- 700
. noo 900 J()()O t.:LOO 1.::.!0()
l.JOO HO<l 1::;1)()
t.'100 llilO
!IMO 1'700 NUMl'IFF; I MF' f i~ilF D
..-.r..
-.':I........ _
fJF:
FCm IHl"INGEMENT RATE::; BELflW :l()() F rnn PEJ~ MIN UTE 14:48 HONDAYr OCTOBER 23r 197B F'I.. ffl' OF AL JVE*TflT1:!jl..
L EGl':.tln: (\\
1 nns, 8 ~ 2 ODSr ETC.
100%
100...
90 +
ao* +
70...
N ll M
60 +
n F
R 50 +
A L
I v 40 +
E 30 t 25%
20 +
10 t 0
I*
~-t-----------+-~---------+-----------t-----------t-----------t-----------t-----------t-----------t-----------t-----------+-
0 1 ()
30 40 70 BO
'J()
1 ()0 tlUMDF.i~ IMP JNCiED i *m'iiFi l
'*