ML18025B054
| ML18025B054 | |
| Person / Time | |
|---|---|
| Site: | Browns Ferry |
| Issue date: | 08/27/1980 |
| From: | Mills L TENNESSEE VALLEY AUTHORITY |
| To: | |
| Shared Package | |
| ML18025B055 | List: |
| References | |
| TVA-BFNP-TS-148, NUDOCS 8009020406 | |
| Download: ML18025B054 (30) | |
Text
Y1003J01A03 Class I August 1980 SUPPLEMENTAL RELOAD LICENSING SUBMITTAL FOR BROWNS FERRY NUCLEAR POWER STATION UNIT 3 RELOAD NO.
3 Prepared:
C. L. Hilf Approved:
R.
E. Engel, Manager Reload Fuel Licensing NUCLEAR POWER SYSTEMS DIVISION~ GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA95125 GENERAL ELECTRIC DOQOZ, c) QC3$
Y1003JOlA03 IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT PLEASE READ CAREFULLY This report was prepared by General Electric solely for The Tennessee Valley Authority (TVA) for TVA's use with the 'U.S. Nuclear Regulatory Commission (USNRC) for amending TVA's operating license of the Browns Ferry Nuclear Unit 3.
The information contained in this report is believed by General Electric to be an accurate and true representation of the facts known, obtained or provided to General Electric at the time this report was prepared.
The only undertakings of the General Electric Company respecting information in this document are contained in the contract between The Tennessee Valley Authority and General Electric Company for nuclear fuel and related services for the nuclear system for Browns Ferry Nuclear Plant Unit 3, dated June 17,
- 1966, and nothing contained in this document shall be constructed as changing said contract.
The use of this information except as defined by said contract,,
or for any purposes, other than that for which it is intended, is not authorized; and with respect to any such unauthorized use, neither General Electric Company nor any of the contributors to this document makes any representation or warranty (express or implied) as to the completeness, accuracy or usefulness of the information contained in this document or that such use of such infor-mation may not infringe privately owned rights; nor do they assume any respon-sibility for liability or damage of any kind which may result from such use of such information.
Y1003JOlA03 1.
PLANT-UNI UE.ITEMS 1.0
- Items different from or not included in Reference 1:
7'ata for Section 4 provided by Tennessee Valley Authority (TVA}:
Fuel Loading Error LHGR:
Safety/Relief Valve Capacity:
Spring Safety Valve Capacity:
Rated Steam Flow:
GETAB Analysis Initial Conditions:
New Bundle Loading, Error Event Analysis Procedures:
Margin to Spring Safety Valves:
Appendix A Appendix B Appendix B
Appendix B Appendix B
Appendix B Reference 3
Appendix C
2.
RELOAD FUEL BUNDLES 1.0 3.3.1 and 4.0 F~uel T e
Initial Core 8DB219 Reload 1
8DRB265L Reload 2
P8DRB265L Number 288 208 144 Number Drilled 288 208 144 New P8DRB265L TOTAL 124 764 124 764 3 ~
REFERENCE CORE LOADING PATTERN 3.3.1 Nominal previous cycle core average exposure at end of cycle:
, Assumed reload cycle core average exposure at end of cycle:
Core loading pattern:
14,297 MWd/t 15,105 MWd/t Figure 1
- ( ) Refers to areas of discussion in Reference l.
Y1003J01A03 4.
CALCULATED CORE EFFECTIVE MULTIPLICATIONAND CORE SYSTEM WORTH NO VOIDS 20'C 3.'3.2.1.1 AND 3.3.2.1.2 See Appendix A for this data provided by. The Tennessee Valley Authority.
5.
STANDBY LI UID CONTROL SYSTEM SHUTDOWN CAPABILITY (3.3.2.1.3) 600 Shutdown Margin (Ak)
(20'C, Xenon Free) 0.04 6.
RELOAD-UNIQUE TRANSIENT ANALYSIS INPUTS (3.3.2.1.5 AND 5.2)
Void Coefficient N/A* (C/% Rg)
Void Fraction'(%)
Doppler Coefficient N/A (C/'F)
Average Fuel Temperature
('F)
Scram Worth N/A ($ )
Scram Reactivity vs Time
-6.97/-8.71
- 40. 29
-0.228/-0.217 1343
-37.67/-30.13 Figure 2
7.
RELOAD-UNI UE GETAB TRANSIENT ANALYSIS INITIALCONDITION PARAMETERS (5')
Exposure Peaking factors (local,radial and axial)
'R-Factor Bundle Power (MWt)
Bundle Flow (10 lb/hr)
1.22 1.42 1.40 1.098 5.987 108.2 1.24 8x8R EOC 4
1.20 1.55 1.40 1.051 6.550 108.5 1.25 P8x8R EOC 4
1.20 1.55 1.40 1.051
'.526 109.2 1.25
- N = Nuclear Input Data A
Used in Transient Analysis
Y1003J01'A03 8.
SELECTED MARGIN IMPROVEMENT OPTIONS (5. 2. 2)
Recirculation. Pump Trip 9.
CORE-WIDE TRANSIENT ANALYSIS RESULTS (5.2.2)
Load Refection Without Bypass e Loss oE 100 F
Feedwater Heating
'Power e p e
Core Flow 4
Q/A el (2)
(2 NBR)
(. NBR)
(psig)
PV 4CPR (psig)
Sx8 8xSR 104.5 100 124 123 1013 1069 0.15 0.15 BOC4-EOC4 104.5 100 239 111 1226 1250 0.17 0.18 Plant PgxBR
Response
0.18 Figure 3
0.15.
Pigure 4
Feedwster Controller Failure BOC4-EOC4
.,104 '
100 164 112 1155 1189 0.12 0.12 0.12 Figure 5
10.
LOCAL ROD.WITHDRAWAL ERROR (WITH LIMITING INSTRUMENT FAILURE)
SUMMARY
(5.2.1)
Rod Block
~Readia Rod Position (Feet Withdrawn) b CPR~~
8x8R/
8x8 P8x8R XLRGR
- 8x8R/
8x8 '8xRR Limiting Rod Pattern 104 105 106*
r 107 108 109 110 3.5 4.0 4.5 4.5 5.5 6.57.5'.10 0.12 0.10 0.11 0.14
, 0.12 0.14 0.12 0.18 0.14 0.20 0.16 0.20 0.17 14.8 16.2'5.2 16.6 15,2 16.6
, 15.2 16.7'5.2 16.7 15.2 16.7 15.2 16.5 Figure 6
'igure 6
Figure 6
Figure 6
Figure 6
Figure 6
Figure 6
- Indicates setpoint selected.
This is discussed on pp. B-114 and B-115 of Reference l.
+*+A 2.2X peaking penalty for densification is included.
+Less than 25 psi margin to spring safety valves.
One safety/relief valve is assumed out of service.
See Appendices B and C.
Y1003J01A03 11.
OPERATING MCPR LIMIT (5.2),
BOC4 to EOC4 1.24
- 1. 25
- l. 25 8x8 Fuel 8x8R Fuel P8x8R Fuel 12.
OVERPRESSURIZATION ANALYSIS
SUMMARY
(5. 3)
Transient MSIV Closure (Flux Scram)
Power
(%)
104.5 Core Flow
(%)
100
'sl (psig) 1265 PV (psig) 1299 Plant
Response
Figure 7
13.
STABILITY ANALYSIS RESULTS (5.4)
Decay Ratio:
Figure 8
Reactor Core Stability:
Decay Ratio, *x /x (105% Rod Line - Natural Circulation Power)
Channel Hydrodynamic Performance 8x8R/P8x8R 8x8 0.85 Decay Ratio, x /x (105% Rod Line Natural Circulation Power) 0.29 0.36 14.
LOSS-OF-COOLANT ACCIDENT RESULTS (5.5.2)
Reference 2.
Y1003J01A03 15.
LOADING ERROR RESULTS (5.5.4)
Limiting Event:
Rotated Bundle PSDRB265L MCPR:
1.08" 16.
CONTROL'ROD'DROP ANALYSIS RESULTS (5.5.1)
Doppler Reactivity Coefficient:
Figure 9
Accident Reactivity Shape Functions:
Figures 10 and ll Scram Reactivity Functions:
Figures 12 and 13 Plant specific analysis results Parameter not bounded:
None
Y1003J01A03 REFERENCES 1.
General Electric Boiling Water Generic Reload Fuel Application, NEDE-24011-P-A, August 1979.
2.
Loss-Of-Coolant Accident Analysis Report for Browns Ferry Nuclear Plant Unit 3, NED0-24194A, July 1979.
3.
Supplemental Reload Licensing Submittal for Browns Ferry Nuclear Plant Unit 3 Reload 1, NEDO-24128 (Appendix A), June 1978.
Y1003J01A03 60 PFQA P8 QA QAI I Ipe PAIQF 58 g KEI Do EJ Do EJ EJ lm Oo OB 56 Qe De pcIQO DH OH ph Qo DH,QHQQ QH QH po,pc OA,OG 08 54 ps OD pcpopE pe Qe Oo OEQG CGlOE Qo OG QG pE Qo Qc Qo OB 52 Qe OA OA Qo DAI K Oo DA QEIK IDA COIIQE DCIQA OoIOA DIOG 5o 08 K K po K pc po I Do po OE po CCI OE Qo K K 08
~
48 KEl KEl OG Os IJ K El QG DD KlRIIJKEl DGIDG KIDD DGIQG Qo Im QA 46 KK CCI Qo OE Pe Os K Po pe Qe PE CCI ps DG PE Os Pe Do DE Oe Qs 0+CI Pc+Oh K 44 Ph Dc EJ Q EI KI Ph OE DA EIKIEJIK EJIK DA [P EJ I Do [Q PAI 42 Po Col QE OE Oo Pc Pc K K Pc +Pc Do+DE CCI K+DO Po Z 40 Q8 Qo OH DG KJ EJ DG OG KI De Q Dc Oo Ds DG EJ g] [g DG Dc K QG QG Qo KI QG DH Im El 38PA'Pc 8 Csl Oo'OE ps De Pc QE Pe Cel OE Ps gs PE Oe Cel K CCI Os Os K Col Qe 8 Pc Kl 36DAIIQDDAIIKK KIDAEJEKIEIKKJEIDCEODOAEJtmZ 34Ipc Qo QE ~
QE pc Qo pc Qc po pc K
Qc QE Qo pc 32Z Po OH Oe OE Qo CGJ Ps DE Pe 06 OE PszOG OE OGIOG IK QGIOG OOIQE Cel 8 Do K 30 Oo QH Os KIIJ ps Os DE Qe Qe QE ps C<IEJ KI Qs Qs ElKIOe Qs Qo QE Oe OH po ph 28 ph pc QOIQE QE Dc Qo pc I
DCI IQo IQc IQE I QEIQO pC 26Z[I El KlEl OH E KEl EI KlKElIE El Z E El K IA I E EI IXIEI Kllm IAl 24 pC pH Qe Qo OE pG QG pC OE lm Qs K QGjpe IOE QG QG OE~
QG QG KIQO QejQH pc 22[g IJ QH g) E EI Im QG DE pe QG pc Qo IJ fg Qo
[g DG KlKlIJ QG Qo Q IJ OH Qo Im 20 QA+Qo Qo+K +
PE+
Pc+
Pc+K Dc+Pc Pc+
+Pc DE+Pc +Pc Do+DE +
PE+Do Po+
18PAPAEIEIKEIKIKKKKIKIEIDAKJKlEIOD CCIKZ 16 14 12 10 8
6 4
2 pA QA Qo OE pe Qs K Qo Qe Qs K Qs Qe QE Qe, Qe Qo, QE pe QEQO pcIKA Z EJ KIQo DG ps QD CEI OG pe po OEQG OGK DD QG OG KQD DG Csl Qo KIDD
08 Z KK po OE Dc Col OE Col Qo pc K Oo pc DE Oo QE K 08 pa+pA pA+pa p+pc pa+pa pA+pc pa+pa pc+p~
pa+pa pc+p~
pa+pA E+pa EIEIEIEIKOe Oe Col KIOG lEKEIE Oe EIEI El Q8 0808CAIDCQO880AOOQHOHOO880oCCIK0808 ggKIEJ EJ IJEJOOODEJ IIEJ II,EIKIBJ p+pA pa+CA] p+Z pA+Z pA+pA pA+pa pA+pF I
I I
I I
I I
I I
I I
I I
I
'1 3
5 7
S11 131517 1921 2325272S313335373941 4345474S5153555759 A R SDB219,IC' SDB219,IC C w SDRB265L,R1 D ~ PSDRB265L,R2 a IC ~ INITIALCORE, R I ~ RELOAD 1, R2 ~ RELOAD 2, etc.
FUEL TYPE.'
~ PSDRB265L,R3 F w SDB219 IC G ~ BDB219,IC H ~ SDRB265L,R1 Figure 1.
Reference Core Loading Pattern
Y1003J01A03
.100 90 C-679 CRD IN PERCENT I-NOHINRL SCRRH CURVE IN (-0) 2-SCRRN CURVE USEO IN RNRLl'SIS 40 80 35
'0 30 60 Q
50 (A
o 40 25 20 30 15 20 10 10 0
0 2;
3 TIME (SECQNDS) 0 Figure 2.
Scram Reactivity and Control Rod Drive Specifications
150.
1 NEUTRON 2 AVE SURF 3 CORE INL LUX CE HEAT FLUX T F OH 1
VESSEL 2 SAFETT V 3 RE EF V 8 BTPRSS V
5 6
ES RISE IPSI)
LVE FLOW LVE FLOW LV LOH o
100.
I I
100.
0.0.
8.
12.
TINE (SEC) 16.
0.0.
8.
12.
TINE (SEC) 16; I LEVEL(1 2 VESSEL 5 3 ~TUR8INE H-REF-SEP-SKIRT EAHFLOH TEANFLOH I VOIO AE 3 SCRAN RE TIVITT CTIVITT 100.
0.
-100.
0 8.
12.
TINE (SEC) 16.
0.
O.Q 0.8 TINE ISEC) 1.2 1.6.
Figure 3.
Plant Response to Generator Load Rejection Mithout Bypass
150.
I HEUTROH
" VC~hr 3 CORE IMl
'l CURE IHL 5
LUX GE-HEAT-R.UX I FLOH I SUB 125.
I VESSEL P 2 RELIEF V 3 BTPASS Vl ES RISE (PSI)
LVE FLOH V
F o
100.
4J I
h I
Ps 50.
0.0.
QO.
80.
120.
TIME (SEC) 160.
-25.0 QO.
80.
120.
TIME (SEC) 160.
150.
I LEVEL(I H-REF"SEP-SKIRT 2 VESSEL S EAMFLOH 3 TURBINE TEAHFLOH I VOID REA 2 OOPPLER 3 SCRAH AE TIVITY EACTIVITT CTIVITT CTIVITV 100.
th Vl I
W 0
LJ 0.
-1.
I 0.0.
80.
120.
TIME (SEC) 160.
0
)(0.
80.
120.
TINE (SEC) 160.
Figure 4.
Plant -Response to Loss of 100 Deg F Feedwater Heating
150.
I NEUTRON 2 AVE SURF 3 CO 9 CORE INL 5
LUX CE HEAT fLUX I FLOW I SUB 125.
1 VESSEL P 2 SAFETT V 3REI FV 0 BTPRSS V
5 6
ES RISE IPSI)
LVE FL%
V FOH LV LON o
100.
UJ I
I Pu 50.
g 0.0.
10.
20 0 30.
TINE (SEC) 40.
10.
20.
30.
TINE (SEC)
QO.
150.
I LEVEL(I
-REF-SEP-SKIRT 2 VESSEL S EAHFLOK 3 TURBINE TEAHFLOW 1 VOIO RE 2
OPPLER CRAH RE TIVIT ERG ITT CT ITT 100.
0.0.
10.
20.
30.
TINE ISEC) 40.
0 12.
TIRE (SEC) 18.
Figure 5.
Plant Response to Feedwater Controller Failure, Maximum Demand
Y1003J01A03 1
NOTES: lo ROD PATTERN IS 1/4 CORE MIRROR SYMMETRIC (FULL CORE SHOWN) 2.
NO.
INDICATES NUMBER OF NOTCHES WITHDRAWN OUT OF. 48.
BLANK IS A WITHDRAWN ROD 3.
ERROR ROD IS (26 ~ 35) 59 55 51 47 43 6
39 35 4
31 27 4
23 19 6
15ll v
7 3
10 36 0
36 10 36 2
6 10 14 18 22 26 6
4 36 36 6
6 2
36 36 36 6
14 36 36 36 2,
14 0
36 40 2
14 36 36 6
36 36 6
6 2
36 36 40 36 0
40 14 36 2.
36 14 36 10 36 36 4
36 36 36 36 30 34 38 42 46 4
6 36 36 36 2
~ 6 36 36 36 14 10 40 36 36 14 50 54 58 6
36 6
6 36 2
4 36 2
4 36 6
6 36 6
Figure 6.
Limiting RWE Rod Pattern 12
150.
1 NEUTRON 2 AVE SURF 3 CORE INL LUX CE HEAT FLUX T F OW 1
VESSEL P 2 SAFETT V 3 RELIEF V
0 BTPASS V
5 6
LVE FLON LVE FLON LV ON r) 100.
I Pu 50.
100.
0.0 8.
12.
TIHE (SEC) 16.
0.0.
8.
12.
TIHE (SEC) 16.
I LEVEL(I H-REF-SEP-SKIRT 2 VESSEL S ERHFLON 3 TURBINE TEAHFLON 1 VOIO RER TIVIT 2 OGPPLER VITT 3 SCR CTIVITY 100.
0.
-100.
0 8.
12.
TINE (SEC) 16.
0.
0.6 1.2 1.8 TIHE (SEC)
- 2. (I Figure 7.
Plant Response to MSIV Closure
Y1003J01A03 1.2 1.0 ULTIMATESTABILITYLIMIT O
0,8 X
OI-K 0.6 NATURAL CIRCULATION 105% ROD LINE 0,4 0.2 0
0 40 60 PERCENT POWER 80 Figure 8.
Decay Ratio 14
Y1003J01A03 A CALCULATEDVALUE@OLD B
CALCULATEDVALUEWSB C
BOUNDINGVALUEFOR 280 eel/g, COLD D BOUNDINGVALUEFOR 280 eel/g, HSB xI-z0 e
zIII O
IL IL UI00L III 00
-10
-16
-20
-26
-30 0
1000
1600 2000
, FUEL TEMPERATURE tdeg C)
Figure 9.
Doppler Reactivity Coefficient Comparison for RDA
Y1003J01A03 A ACCIDENT FUNCTION B
BOUNDINGVALUEFOR 280 eel/II 15 10 0
0 10 ROD POSITION, feet OUT 15 20 Figure 10.
Accident Reactivity Shape Function at 20 C
Y1003JOlA03 20 A ACCIDENT FUNCTION B
BOUNDINGVALUEFOR &0csl/g, Z
I0Z 0XI-Y 10 0
b K
0 0
10 ROD POSITION, fest OUT 15 Figure 11.. Accident Reactivity Shape Function at 286'C 17
Y1003J01A03 60 A SCRAM FUNCTION B
BOUNDINGVALUE FOR 280 ceI/O 40 x
O D0 Ix 30 5C 0
E3 z
20 I-I-
O K
10 0
0 ELAPSED TIME,seconds Figurerl2.
Scram Reactivity Function at 20'C
Y1003J01A03 75 A SCRAM FUNCTION B
BOUNDING VALUEFOR 280 eel/g 50 25 0
0 3
4 ELAPSED TIME,seconds Figure 13.
Scram Reactivity Function at 286'C 19/20
I C
Y1003J01A03 APPENDIX A SHUTDOWN MARGIN DETERMINATION A.l BASES The reference loading pattern, documented in item 3 of this supplemental reload submittal, is the basis for, all reload licensing and operational planning and is comprised of the fuel bundles designated in item 2 of this supplemental submittal.
It in'urn is based on the best possible prediction of the core condition at the end of the present cycle and on the desired c'ore energy capability for the reload cycle.
It is designed with the intent k
that it will represent, as clos'ely as possible, the actual core loading pattern.
A.2 CORE CHARACTERISTICS The reference. core is analyzed in detail to ensure that adequate cold shutdown margin exists.
This section discusses the results of core calculations for shutdown margin.
A.2.1 Core Effective Multiplication and'Control Rod Worth Core effective multiplication and.control rod worths were calculated using the TVA BWR simulator. code (References A-l, A-3) in conjunction with the TVA lattice physics data generation code (References A-2, A-3) to determine the core reactivity with all rods withdrawn and with all rods inserted.
A tabulation of the results is provided in Table A.l.
These three eigenvalues (effective multi-plication of the core; uncontrolled, fully controlled, and with the strongest rod out) were calculated at the beginning-of-cycle 4 core average exposure corresponding to the minimum expected end-of-cycle 3 core average exposure.
The core was assumed to be in a xenon-free condition.
Y1003J01A03 Cold k ff was calculated with the strongest control rod out at various eff exposures through the cycle.
The value R is the difference between the strongest rod out k ff at BOC and the maximum calculated strongest rod out eff k ff at any exposure point.
The strongest rod out k ff at any exposure eff eff point is equal to or less than:
k
= (Fully controlled k
)
BOC + (Strongest Rod Worth)
BOC + R SRO eff eff A.2.2 Reactor Shutdown Margin Technical Specifications require that the refueled core must be capable of being made subcritical with 0.38 percent Ak margin in the most reactive condition throughout the subsequent operating cycle with the most reactive control rod in its full out position and all other rods fully inserted.
The shutdown margin is determined by using the BWR simulator code to calcu-late the core multiplication at selected'exposure points with the strongest rod fully withdrawn.
The shutdown margin for the reloaded core is obtained by subtracting the k given in Table A.l from the critical k of 1.0, SRO eff eff resulting in a calculated cold shutdown margin of 1.1 percent Ak.
A-2
Y1003JOlA03 Table A.'1 CALCULATED CORE EFFECTIVE MULTIPLICATIONAND CONTROL ROD WORTHS NO VOIDS, NO XENON, 20 C
Uncontrolled, K ff UNC eff Fully Controlled, KCON eff Strongest Control Rod Out, K ff SRO eff 1.120 0.955-0.989 R,
Maximum Increase in Cold Core Reactivity With Exposure Into Cycle, Ak 0.000 A-3
Y1003J01A03 REFERENCES A-l.
A-2.
A-3.
S. L. Forkner, G. H; Meriwether, and T. D. Beu, "Three-Dimensional LWR Core Simulation Methods," TVA-TR78-03A, 1978 B. L. Darnell, T. D. Beu, and G.
W. Perry, "Methods for the Lattice Physics Analysis of LWR's," TVA-TR78-02A, 1978 "Verification of TVA Steady-State BWR Physics Methods," TVA-TR79-01A, 1979 A-4
Y1003J01A03 APPENDIX B Fuel Loading Error LHGR :
Rotated Bundle, 16.9 kW/ft; Misplaced Bundle, 18.1 kW/ft Safety/Relief Valve Capacity at Setpoint (No./%):
10/63.6**
Spring Safety Valve Capacity at Setpoint (No./%):
2/14.2 Rated Steam Flow:
14.09 x 10 lb/hr 6
GETAB Analysis Initial Conditions Reactor Pressure:
1035 psia Inlet Enthalpy:
521.5 Btu/lb king penalty for densification is included.
one safety/relief vlave out of service.
B-1/B-2
N I
'E I
C 4 ~
I r
l
Y1003JOlA03 APPENDIX C MARGIN TO SPRING SAFETY VALVES The rationale for changing the basis for providing pressure margin to the
'pring safety valves is presented in Reference C-1.
This change has been h
accepted by the NRC (Reference C-2).
On this basis the plant can operate at full power throughout the cycle.
Y1003J01A03 REFERENCES C-l.
C-2.
J. F. Quirk (GE) letter to Olan D. Parr (NRC), "General Electric Licensing Topical Report NEDE-24011-P-A,
'Generic Reload Fuel Application,'ppendix D, Second Submittal," dated February 28, 1979.
Letter, T. A. Ippolito (NRC) to D. L. Peoples (Commonwealth Edison Co.)
enclosing a Safety Evaluation supporting Amendment No. 42 to Facility Operating License No. DPR-25.Dresden Nuclear Power Station Unit 3, dated April 16, 1980.
C-2