NG-17-0235, Duane Arnold Energy Center - Calc No. NEE-323-CALC-003, Documentation of the RU1 Emergency Action Levels

From kanterella
(Redirected from ML17363A075)
Jump to navigation Jump to search
Duane Arnold Energy Center - Calc No. NEE-323-CALC-003, Documentation of the RU1 Emergency Action Levels
ML17363A075
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 12/15/2017
From:
NextEra Energy Duane Arnold
To:
Office of Nuclear Reactor Regulation
Shared Package
ML17363A067 List:
References
NG-17-0235 Calc No. NEE-323-CALC-003
Download: ML17363A075 (43)


Text

{{#Wiki_filter:Development of EAL Threshold values from NEE-323-CALC-003 Calculated values are shown in Calc-003 as shown below. V a l ues for t he RU1 Gaseous EA Ls were determined and are s hown b elow. Ta bl e 1 -Ga s e ous E fflu e nt S e tpoints Locat i on Detecto r Offgas Stac k K aman 10 Turb i ne Building Vent Kaman 2 Reactor Bu il d i ng Vent Kaman4 Reacto r Bu il d i ng Vent K amanG Rea c tor Bu il ding Vent Kaman8 L.LRPSF Bu il d i ng V ent Kama n 12 RU1 Thresho l d (l,I C i/cc) 1.97E-01 7-74 E-04 6.00 E-04 9.60 E-04 9.60E-04 1.1 9E-03 Val ues fo r the liqu i d Effluent RU 1 EALs w ere de t ermined an d a r e shown be l ow. Ta ble 2 -Liquid E fflu e n t S e/po in ts Loca ti on Equ i pment RU 1 Unusua l I D E v ent Leve l C s GSW RE-4 767 1.53 E+03 RHRSW/ESW RE-1 997 8.42E+0 2 RHRSW D il ution L i ne .. RE-4268 1.06E+03 The values are rounded for ease of operator use and to provide a step-wise progression through the emergency classification levels. The resulting values used in the DAEC RU1 .1 EAL are shown in the NOUE column below: Table R-1-Effluent Monitor Classification Thresholds Monitor GE SAE Alert NOUE R eactor Bu i lding ve nti l at i on r a d monitor 1.0 E+O O u c i/c c 1.0 E-01 uc i/c c l.OE-02 uci/c c 1.0E-03 u ci/cc (Kaman 3/4 , 5/6 , 7 /8) Vl Turbin e Buildin g v e n ti la t i on r a d m o ni to r 1.0 E+O O u c i/cc 1.0E-01 uci/cc 1.0 E-02 uci/cc 1.0E-03 uci/cc ::i (Kaman 1/2) 0 QJ Vl Off ga s S t a c k r a d m o nito r rn 4.S E+0 3 u c i/cc 4.SE+02 u c i/c c 4.5E+Ol uc i/c c 2.0E-01 uci/cc (Kam a n 9/10) LLRP S F r a d monitor l.OE-0 1 uci/cc l.OE-02 uci/c c 1.0E-03 uci/cc (K aman 12) ---GSW rad m o nitor 2.0E+04 c p s 2.0E+03 cps (RIS-47 6 7) -------0 RHR S W & ESW ra d m o n ito r ::i l.O E+04 cp s 8.0E+02 cps C" (RM-1 9 97) ------:3 RHR S W & ESW Rupture Di s c rad monitor ------2.0E+04 cp s l.OE+03 cps (RM-4 2 68) CALC NO. NEE-323-CALC-003 ENERCON CALCULAT ION COVER SHEET REV. 00 E:rceflence -Every pr oject. Every doy. PAGE NO. 1 of 9 Documentation of the RU1 Emergency Action Client: Duane Arnold Energy Cente r T itle: Levels Project Identifier: NEE-323 I tem Cover Sheet Items Yes No 1 Does this c a l cu la t ion co nt ain any open a s sumptions , including preliminary D infor m ation , that require con fi rmation? (If YES , identify the assumpt io ns.) 2 Does th i s ca l culat i on serve as an " Alternate Calculation "? (If YES , id entify the design D verified calculation .) Design Verified Calculation No. --3 Does this calculation supersede an e x isting Calculation? (If YES , identify the design D verified calculation .) Superseded Calculation No. --Scope of Revision: I n itial Issue Revision Impact on Results: In itial Issue Study Calculation D Fina l Calculation cg] Safety-Related D Non-Safety-Related cg] (Print Name and Sign) O r iginator: Jay Bhatt Date: 12/12/17 Design Verifier 1 (Reviewer if NSR): Ryan Skaggs Date: 12/12/17 Approver: Aaron Holloway Date: 12/12/17 Note 1: For non-safety-related calculation , design verification can be substituted by review. I ENERCON CALCULATION CALC NO. N EE-323-CALC-003 I E,cellence-Every project Every day. REVISION STATUS SHEET REV. 00 CALCULATION REVISION STATUS REVISION DATE DESCRIPTION 00 12/12/17 Initial Issue PAGE REVISION STATUS PAGE NO. REVISION PAGE NO. REVISION All 00 APPENDIX/ATTACHMENT REVISION STATUS APP E NDIX NO. NO.OF REVISION ATTACHMENT NO.OF REVISION PAGES NO. NO. PAGES NO. 1 4 00 2 18 00 3 9 00 Page 2 of 9 r r ENERCON TABLE OF CONTENTS Excellence-Every profecr. Every dcy. Section 1.0 Purpose and Scope 2.0 Summary of Results and Conclusions 3.0 References 4.0 Assumptions 5.0 Design Inputs 6.0 Methodology 7.0 Calculations 8.0 Computer Software 9.0 Impact Assessment List of Attachments Attachment 1 -Calculation Preparation Checklist Attachment 2 -Gas Effluent Setpoints Attachment 3 -Liquid Effluent Setpoints Page 3 of 9 CALC NO. REV. NEE-323-CALC-003 00 Page No. 4 4 5 5 6 6 8 9 9 # of Pages 4 18 9 I ENERCON Excellence-Every project. Every day. 1.0 Purpose and Scope N EE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. Action Levels -t------------- -REV. 00 The Duane Arnold Energy Center site is implementing the guidance of Revision 6 to the Document NEI 99-01, " Development of Emergency Action Levels for Non-Passive Reactors," which is the industry-developed methodology for emergency classification for the current operating fleet. Changes to the definitions of the condit i on for entry into the Emergency Action Level (EAL) RU 1 result in the development of a new entry threshold value for this EAL. This calculation provides calculated threshold values for the following EALs (from NEI 99-01, Rev. 6). Note that NEI 99-01 designates abnormal radiological conditions as "AU," NEE has adopted the "RU" designation permitted under the guidance. (1) Reading on ANY effluent radiation monitor greater than 2 times the (site-specific effluent release controlling document) limits for 60 minutes or longer. (2) Reading on ANY effluent radiation monitor greater than 2 times the alarm setpoint established by a current radioactivity discharge permit for 60 minutes or longer. This calculation uses the latest radiation monitor setpoints to determine the resultant EAL thresholds. Page 4 of 9 I ENERCON N EE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. -f----------------l Excellence-Every project. Ev e ry d ay. Action Levels REV. 00 2.0 Summary of Results and Conclusions Values for the RU 1 Gaseous EALs we r e determined and are shown below. Tabl e 1 -Gas e ous Effluent Setpoints Location Detector Offgas Stack Kaman 10 Tu r bine Building Vent Kaman 2 Reactor Building Vent Kaman 4 Re ac tor Building Vent Kaman 6 Reactor Building Vent Kaman 8 LLRPSF Building Vent Kaman 12 RU1 Threshold (µCi/cc) 1.97E-01 7.74E-04 6.00E-04 9.60E-04 9.60E-04 1.19E-03 Values for the Liquid Effluent RU1 EALs were determined and are shown below. Table 2 -Liquid Effluent Setpo i nts Location GSW RHRSW/ESW RHRSW Dilution Line* *RE-4268 wa s previou s ly k nown as the RHRSW Rupture Di sk 3.0 References Equipment ID RE-4767 RE-1997 RE-4268 RU1 Unusual Event Level C S 1.53E+03 8.42E+02 1.06E+03 3.1 NEI 99-01 , Revision 6 , " Development of Emergency Action Levels for Passive Reactors." November 2012. 3.2 DAEC Offsite Dose Assessment Manual (ODAM), Rev. 37. 3.3 Plant Chemistry Procedure PCP 8.3 , Alarm Setpoints and Background Determination for KAMAN Normal Range Monitors. 3.4 Plant Chemistry Procedure PCP 8.7 , Alarm Setpoints For Liquid Rad Monitors. 3.5 Technical Specifications, Section 5.5.4 , Radioactive Effluent Controls Program. 3.6 DAEC Emergency Plan, Section 'I', Rev. 27 Page 5 of 9 ENERCON CALC Documentation of RU1 Emergenc NO. N EE-323-CALC -003 Excellence-Every project. Every d oy. Action Levels ---------------i REV. 00 4.0 Assumptions It is assumed that the current setpoint for the Kaman 4 monitor is 3.00E-0 4 µCi/cc. The latest setpoint determination received i s from 3/4/2016 which exceeds the 1 8 month frequency specified by PCP 8.3. 5.0 Design Inputs 5.1 The setpoint determinations from Attachment 2 and Attachment 3 , represent the latest responses at the associated gaseous and liquid effluent monitors. While the three most recent survei ll ances for each monitor are included for information, on l y the latest setpoint is used to determine the EAL threshold. It should be n oted t h at the " RM" equipment designations are equivalent to t he " RE" equ i pme n t I Ds. 5.2 The gaseous effluent equipment ID number, monitor common name and range are taken from DAEC Emergency Plan Section " I" and ODAM Figure 3-1, and are presented in Tab l e 3. Location Offgas Stack T ur bi n e Building Ven t Reactor Building Vent LLRPSF Bui l ding Vent Table 3 -Gaseous Effluent Design Inputs Monitor Equipment ID Common Name KAMAN 9/1 0 RE-4176, RE-4175 KAMAN 1/2 RE-5945 / RE-5946 KAMAN 3/4 RE-7645 , RE-7644 KAMAN 5/6 RE-7647 , RE-7646 KAMAN 7/8 RE-7649 , RE-7648 KAMAN 12 RE-8801 Monitor Range Ci/cc 1 E-0 7 -1 E+O S 1 E-07 -1 E+OS 1 E-07 -1 E+OS 1 E-07 -3E-01 5.3 The liquid efflue n t equipment ID number, and range are taken from O DA M Tab l e 1-2, and are presented i n Ta ble 4. Table 4 -Liquid Effluent Design Inputs Location Equipment Monitor Range I D (cps) GSW RE-4767 1 E-01 -1 E+06 RH RSW/E SW RE-1 997 1 E-0 1 -1 E+06 RHRSW Di luti o n Line RE-4268 1 E-01 -1 E+06 Page 6 of 9

r. ENERCON Excellence-Every project. fvery day. 6.0 Methodology N EE-323-CALC-003 CALC Documentation of RU1 Emergenc NO. *1---------------1 Action Levels REV. 00 The alarm setpoint of a radioactive noble gas effluent monitor is calculated on the basis of whole body dose equivalent rate offsite of 500 mrem/yr per the ODAM. The alarm setpoint for liquid radwaste effluent line provides automatic isolation when 10 times the water effluent concentration listed in 10 CFR 20 Appendix B, Table 2, is being exceeded in the unrestricted area per the ODAM. These setpoints are in accordance with Technical Specifications limits specified in 5.5.4b and 5.5.4g. This calculation considers historical setpoint determination for gaseous release (PCP 8.3) and liquid effluent (PCP 8.7). The latest three setpoints for each monitor were reviewed.

Due to the high variance for some of the monitors, the latest alarm setpoint is used to determine the EAL thresholds. Page 7 of 9 .. ENERCON Excellence-Every project. Every day. 7.0 Calculation N EE-323-CALC-003 CALC Documentation of RU1 Emergenc NO . Action Levels -,-----------------1 REV. 00 7.1 Gaseous Setpoints Plant Chemistry Procedure PCP 8.3 is used by Chemistry Technicians to calculate setpoints for building vent KAMAN monitors at least once every 18 months. The three latest setpoint determinations for each location are shown in Attachment 2 for information. It should be noted that where the original PCP 8.3 setpoint calculation sheet is unavailable , the value is taken from the associated monitor calibration procedure. Thresholds corresponding to the latest setpoints are calculated and presented here. For example the latest PCP 8.3 setpoint for Offgas stack is 9.84E-02 µCi/cc. This value is doubled to 1.97E-01 µCi/cc to correspond to the RU1 threshold. The remaining threshold values are shown in Table 5. Tabl e 5 -Gaseous Effluent Se t points and Thresholds Location Offgas Stack Turbine Building Vent Reactor Building Vent Reactor Building Vent Reactor Building Vent LLRPSF Building Vent 7.2 Liquid Setpoints Detector Kaman 10 Kaman 2 Kaman 4 Kaman 6 Kaman 8 Kaman 12 Latest PCP 8.3 Setpoint (µCi/cc) 9.84E-02 3.87E-04 3.00E-04 4.80E-04 4.80E-04 5.95E-04 RU1 Threshold (µCi/cc) 1.97E-01 7.74E-04 6.00E-04 9.60E-04 9.60E-04 1.19E-03 As a result of variability in the isotopic mix of reactor water, background radiation levels and detector efficiencies, the calculated liquid effluent setpoints will fluctuate over time. Chemistry Technicians perform effluent liquid radiation monitor setpoint calculations at least once per 18 months with guidance provided by Plant Page 8 of 9 ... ENERCON Excellence-Every pro j ect. Every d ay. CALC Documentation of RU 1 Emergenc NO . N EE-323-CALC-003 Action Levels ,___ ___________ __, REV. 00 Chemistry Procedure PCP 8.7. The three latest setpoint determinations for each location are shown in Attachment

3. It should be noted that where the original PCP 8.7 setpoint calculation sheet is unavailable, the value is taken from the associated monitor calibration procedure.

Thresholds corresponding to the latest setpoints are calculated and presented here. For example the latest PCP 8.7 setpoint for the RHRSW Dilution Line is 421 cps. This value is doubled to 842 cps to correspond to the RU1 threshold. The remaining threshold values are shown in Table 6. Table 6 -Liquid Effluent Setpoints and Thresholds Location GSW RHRSW/ESW RHRSW Dilution Line 8.0 Computer Software None. 9.0 Impact Assessment Latest PCP 8. 7 RU1 Threshold Setpoint (cps) (cps) 7.65E+02 1.53E+03 4.21 E+02 8.42E+02 5.30E+02 1.06E+03 This calculation is based on "realistic" conditions for the purpose* of declaring EALs, rather than typical conservative " bounding" type design basis analyses. The calculation documents the order of magnitude setpoints to assist Operations and Emergency Response personnel in determining an unusual event in accordance with NEI 99-01 Rev. 6. Page 9 of 9 tr ENERCON Excellence-Every project. £very da y. Attachment 1 CALCULATION PREPARATION CHECKLIST CHECKLIST ITEMS 1 CALC NO. REV. GENERAL REQUIREMENTS

1. If the calculation is being performed to a client procedure , is the procedure being used the latest revision?

The calcu lation is being prepared to ENERCON's procedures.

2. Are the proper forms being used and are they the latest revision?
3. Have the appropriate client review forms/checklists been completed?

The calculation is being prepared to ENERCON's procedures.

4. Are all pages properly identified with a calculation number, calculation revision and page number consistent with the requirements of the client's procedure?
5. Is all information legible and reproducible?
6. Is the calculation presented in a logical and orderly manner? 7. Is there an existing calculation that should be revised or voided? This is a new calculation to support implementing NEI 99-01 Rev. 6 8. Is it possible to alter an existing calculation instead of preparing a new calculation for this situation?
9. If an existing calculation is being used for design inputs , are the key design inputs , assumptions and engineering judgments used in that calculation valid and do they apply to the calculation revision being performed.
10. Is the format of the calculation consistent with applicable procedures and expectations?
11. Were design input/output documents properly updated to reference this calculation?
12. Can the calculation logic , methodology and presentation be properly understood without referring back to the originator for clarification?

OBJECTIVE AND SCOPE 13. Does the calculation provide a clear concise statement of the problem and objective of the calculation?

14. Does the calculation provide a clear statement of quality classification?
15. Is the reason for performing and the end use of the calculation understood?
16. Does the calculation provide the basis for information found in the plant's license basis? 17. If so , is this documented in the calculation?
18. Does the calculation provide the basis for information found in the plant's design basis documentation?

Page 1 of 4 N EE-323-CALC-003 00 YES NO N/A D D 1:81 1:81 D D D D 1:81 1:81 D D 1:81 D D 1:81 D D D 1:81 D D 1:81 D 1:81 D D 1:81 D D D D 1:81 1:81 D D 1:81 D D 1:81 D D 1:81 D D 1:81 D D D D 1:81 D 1:81 D 1 9. 20. 21. 22. ENERCON Excellence-Evtry project Every day. Attachment 1 CALCULAT I ON PREPARATION CHECKLIST CHECK LI ST ITEMS 1 If so, is this documented in the calcu l ation? CALC NO. REV. Does the calculation otherwise support information found in the plant's design basis documentation? If so , is this documented in the calculation? Has the appropriate design or license basis documentation been revised , or has the change notice or change request documents being prepared for submittal? DESIGN I NPUTS 23. Are design inputs clearly identified?

24. Are design inputs retrievable or have they been added as attachments?
25. If Attachments are used as design inputs or assumptions are the Attachments traceable and verifiable?
26. Are design inputs clearly distinguished from assumptions?
27. Does the calcu l ation rely on Attachments for design inputs or assumptions?

If yes , are the attachments properly referenced in the calculation?

28. Are input sources (including industry codes and standards) appropriately selected and are they consistent with the quality classification and objective of the calculation?
29. Are input sources (including industry codes and standards) consistent with the plant's design and l icense basis? 30. If applicable , do design inputs adequately address actual plant conditions?

3 1. Are i nput va l ues reasonab l e and correct ly applied? 32. Are design input sources approved?

33. Does the calculation reference the latest revis i on of the design input source? 34. Were all applicable plant operating modes considered?

A S SU MPT ION S 35. Are assumpti o ns reasona bl e/approp r iate to the objective?

36. I s a d equate justification/bas i s for all a s sumptions pro v ided? 37. Are any engineering judgments used? 38. Are engineering judgments clearly identified as such? 39. If engineering judgments are utilized as design inputs , are they reas o nable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, ph y sica l l aws or o ther appropr i ate criteria?

Page 2 of 4 N EE-323-CALC-003 00 YES NO N/A D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D [8J D D D D D ENERCON Excellence-Every project , Every day. Attachment 1 CALCULAT ION PREPARATION CHECKLIST CHECKLIST ITEMS 1 CALC NO. REV. METHODOLOGY

40. Is the methodology used in the calculation described or implied in the plant's licensing basis? 4 1. If the methodology used differs from that described in the p l ant's licensing basis , has the appropriate l icense document change notice been initiated?
42. Is the methodology used consistent with the stated objective?
43. I s the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULAT ION 44. Ar e equations us e d in the calculation consistent with recognized engineering practice and the plant's design and li cense basis? 45. Is ther e reasonable justification provided for the use of equations not in common use? 46. Are the mathematical operations performed properly and documented in a lo gical fashion? 47. Is the math performed correctly?
48. Have adjustment factors , uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideratio n been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?

5 1. Have the requirements of CSP 3.09 for use of computer codes or software languages , including verification of accuracy and applicability been met? 52. Are the codes properly identified a l ong with source vendor , organ iz ation, and revision l eve l? 53. Is the computer code app l icable fo r the analysis being performed?

54. If app l icable , does the computer mode l adequately consider actual plant conditions?
55. Are the inputs to the computer code clearly identified and consistent with the inputs and assumptions documented in the calculation?
56. Is the computer outpu t clearly identified?
57. Does the computer output clearly identify the appropriate units? Page 3 of 4 N EE-323-CALC-003 00 YES NO N/A D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D
58. 59. ENERCON Excellence-Every pro ject Every day. Attachment 1 CALCULATION PREPARAT I ON CHECKLIST CHECKLIST ITEMS 1 CALC NO. REV. Are the computer outputs reasonable when compared to the inputs and what was expected?

Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results? -RESULTS AND CONCLUSIONS

60. Is adequate acceptance criteria specified?
61. Are the stated acceptance criteria consistent with the purpose of the calcu l ation , and intended use? 62. Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?
63. Do the calculation results and conclusions meet the stated acceptance criteria?
64. Are the results represented in the proper units with an appropriate tolerance , if applicable?
65. Are the calculation results and conclusions reasonable when considered against the stated inputs and objectives?
66. Is sufficient conservatism app l ied to the outputs and conclusions?
67. Do the calculation results and conclusions affect any other ca l culations?
68. If so , have the affected calculations been revised? 69. Does the calcu l at i on contain any conceptual , unconfirmed or open assumptions req uir ing later confirmation?
70. If so, are they properly identified?

DES I GN RE VI EW 71. Have alternate calculation methods been used to verify calculation results? No , a Design Review was performed. Note: N EE-323-CALC-003 00 YES NO N/A D D IZI D D IZI IZI D D IZI D D IZI D D IZI D D IZI D D IZI D D IZI D D D IZI D D D IZI D IZI D D D IZI D D IZI 1. Where required, provide clarification~ustification for answers to the questions in the space prov i ded below each quest i on. An exp l anation is required for any questions answered as "No' or "N/A". Origina t o r: Jay Bhatt 12/12/17 Print N ame and Si g n Date Page 4 of 4 NEE-323-C AL C-00 3 c o* Ye B 7_)lf7 B Attac h m en t 2 Pa ge 1 of 1 8 PL AN T CHEMISTRY PROCEDUR E S 3200 MANUAL PC P 8.3 ALARM S E TPOINTS AND BACKGROUND R e v. 3 3 D E TERMINATION FOR KAMAN NORMAL Page 14 of 14 R ANGE MONITORS ATTACHMENT 2 KAMAN OFFGAS STACK GAS E OUS DETECTOR HI HI SETPOINT 1. Sample I D. t< /O C ff1R. .11 A-,e 2 Sample N o __;_n...;._;-r.;....s::..-""'&,:..;: o:;__ __ --,.--,----

3. Sample Date 8-3e~n 4. sa,wii:PT,me

_ __,08...,,!iY'-'------

5. MWT -.LL..1.1..:..o

..:::~~--6. Count Dat e g-3 o n -4 1 7 CountTime 0'1/S: 4.-_i.,*t') 8 Mon i tor R eadi n g (p Ci/cc) ::r~ !: *'* 1, 7 7o e*., 9. Process Flow Rate (CFM) s; 17 ~:3 "'to, 0 0 F l ow meter ID # __ L_7_Z._1_,___ ____ _ 11 12 I so t ope p Ci/m l Dose Factor Stack k , . mrem sec yr -µC i X e 133 4.09 E-5 K r85m 1.81E-4 Kr 88 1.91E-3 Xe 135 2.84E-4 Kr87 6.97E-4 Xe 138 1.0 8E-3 Xe 1 35m 3.39E-4 Xe 133m 3.61E-5 Ar41 1.32E-3 N 13 l.'l/,..-"1 \ 1.08E-3" 1s. Lk, = L ki ( #I S 15b. = = L (ki

  • OFSi) I. X 16. Limit= L = -= F ) 1.0 6 ( ,..,q Limit= L = ------'-O ( 10 ,c<<) ) 10 Sample Volume (ml) 41.soe 'i:1 c Cal Due Date f O e,-1 t -----------

13 k 1 x DFS i /.)2..e*I O 14 . Bkg = instrument background . vr. Bkg = "2., IS-c:.: -.., µCl/cc These dose factors are from ODAM* s ta c k release at a dist a nce of 1260 meters NNW o f DA EC Arbitrarily se t equal to Xe-1 38 15a L* 1 k , * , , ) -'--"'*-=-5_2._;e;... -_10 _____ ,/'_ /. <.f I -7 Cf.Zf>e 2...'-"' = /.5'2.c-lO 1.0 6 (The L ess of #1 S b OR 3436) X #9 ) ) = 17. H i H i ALARM = A x ( #1 6 ) = (1 0) ( '7.h'1e .'Z-) = q

  • g lo{ e.. -"2..-p Ci/cc .,/ The rad ioac t i v e gas flow cor res ponding t o th e HI H i setpo i n t P e rformed by:. __ =6Z~,,,,.~:;;__

___________ Date: 8-3° -,7 Independ en t Verifi ca t io n by:. __ ()~i ,.a::, ,l, .... ~.u..,.....,.-"'....,~'--j..,__------- Date: 8 '""), \ 114 NEE-323-CAlC-00 3 Attachm e nt 2 Page 2 of 18 P LANT CHEMISTRY PROCEDURES 3200 MANUAL PC P 8.3 ALARM S E TPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL P age 14 of 14 RANG E MONITORS ATTACHMENT 2 KAMAN OFFGAS STACK GASEOUS DETECTOR HI HI SE T POIN T 1. Sam p lel.D. KIO Cha , fVl~r 3. Sample Date ')-J.f?-/ {p 4. Sample T i me 6. Count Date ;l -~(p -I l o 2. Sam p le N o. J l,-} 3>1 0 } S 2 0 5. fy1WT / 9// 7. Count Time i '5 '5 'E: 8. M onitor Read i ng (µC i/cc) ft, , (o I e -7 9. Pro ces s Fl o w R-a-te_(_C_,_FM-=-)...::.......:'----)- 0-.-0-0-0----10. Sam p le V olume (ml} '15 J ,200 m L F l ow meter ID #_=l---=-7_,,J'--q_.__ ____ _ Cal Du e Date /0 17 13 Isotope 1 1 µC i/ml k , 12 Dos e Fac to r S ta ck mrem s ec y r -µC i Xe 138 1.0B E-3

  • T hese dos e fact o rs are from ODAM: Xe 13 5 m 3.39E-4 stack release at a d i stan ce of 1260 Xe 133m 3.6 1E-5 met e r s NN W of D A EC ~A~r:....4~1

~-+-:::--,:,:c=---::~1~ .3~2-=E-~3------+- r;;-;;=::- -;-;rl "-LN~13~-~-l.!.J......~ e.....,-...s.!.!._1:.:.: .0~8~E-..:::3_** _____ LLL~~~ ** A rb i tr a ril y s et equal t o Xe-1 38 1 s. L k i = 1, f 3 e -7 . oFs.) i , 13 e -, o //J{)e_3 r, ki ( # I 5 ) = /, / 3 e -7 _ 15 b. r, (ki

  • DF S i) = ( #1 5 a ) fd 3e-/O -1.06 x L k. 1.06 16. Lim i t = l = F -L-(k.-. F-S_)_ = ( #9 Lim i t= l = i.06 c J ooo ) = x (The Less of #15b O R 3436) ) 1).-~~-lb
  • 01 I e-6r: /,oroe-1 c / otJ oc.? ) 17. H i Hi Al ARM = A x( #16) =(1.0)( L D 6 e-/ )= l.o<o e-1 µC i/cc The ra d i o act i ve g as flow corre s p o n d i ng to t he HI H i setpo i n t: ~/~D ate ,;/-;Ji:,-

/6: Performed by: . , b '?~ Date* :i--Uo-1~ Independent Ver i ficat i on by:

  • 75

.t. .. NEE-323-CALC-003 Attachm e nt 2 Pag e 3 of 18 DAEC SURVEILLANCE TEST PROCEDURE STP NS791013 TITLE: K10 CALIBRATION Page 10 of 68 DUANE ARNOLD ENERGY CENTER Prerequisites Performance Date: 'fi~ (><( (l, 2-D I '-' PREREQUISITES 6.0 6.1 Make a copy of the EMS database display. Rev. 17 6.2 From the Chemistry Supervisor or des i gnee, obta i n and record the following a larm setpoints. (Values will be used to confirm AS FOUND data.) 6.2.1 HI 8

  • bQ f:, µCi/cc 6.2.2 HIHI ;J , bl-\ le"' -l µCi/cc 6.3 F rom th e Chemistry Supervisor or design e e , obtain and record the desired New HI al arm setpoint. (Value will be us e d for the AS LEFT setpoint.)

6.3.1 Desired HI 5 , 60 f ...... 6 µCi/cc 6.4 Verify Sr-90 0.09 µCi source (UID #687) is available for use. 6.5 Verify the KAMAN/EMS

  • 1DTtime and the HPGe System Computer time are within +/- 30 seconds. NOTE When Kaman point sources are decay corrected , decay is to be from the date marked on the source to the test date. 6.6 Decay correct permissible range (8.5E4 -9.0E4 cpm) for UID #687 and record below. PERMISSIBLE DECAY CORRECTED RANGE: 1. 8 0 f\..( cpm to Y .11 f cpm , ' I INITIALS (CHEM) (CHEM) df:::::\ (CHEM) .J<:::::\ (CHEM) ..I~ (CHEM) x~ 'µ,t1 (CHEM) -¥0-. (CHEM) (IV)

LJ 04 7 clOC) C£ NEE-323-CALC-003 A ttachment 2 Page 4 of 18 PLANT CHEM I STRY PROCEDURES 3 2 00 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KA M AN NORMAL Page 13 of 14 RANGE MO NIT ORS ATT A CHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SE T POINT 1. Sample 1.0. K--.:)_ CL,-,,o.rv "'O..< 2. Sample No. J / -;2..~/L\ lf* 3. Sample Date s*

  • c:_;
  • l -, 4 Sample Time j.>'-(2..-

IL{( 0 5. MWT __._jq_,_,_I ...._\ __ _ 6. Count Date __ c~7---""S_-_._n--'--------

7. Count T i me __ 1'-y.._,l...,,.

1['--------- -8. Monitor Reading (µCi/cc) cX ,., o c;;_ ** 7 9. Process F l ow Rate (CFM) 4 ~O() () 11 Isotope k; -.i Ci/mL Xe 133 Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar4 1 N 13 '-L ll f -(, I 16.~k; = W ." l l 1:::--"\ I k , ( 1Gb. = I:(k , . DFV,) ( 1.06 17. Limit= L = (F)(X I Q) Limit= L = ( tlOQl.) 12 Dose Factor Vent DFV , mrem m 3 y r µC i 294 1.17E3 1.47E4 1.81 E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 1 6a. L (k; DF V 1l = I..\.\~ #16 ) Lj.11 ~--c1 10. Samp le Vol um e (ml) --£7 Cic 1) 13 I Product k; X DFV; '-I . I I, E"

  • X E*f 13 Flow Mete r ID#_L_-_7.=.....;c,_C(-+" ----Cal Due Date: { 0 -L)(, -{ ] 14. Bkg = ln~tr_ument_!?a:Jro u nd Bkg = /. 1~ I; -_µCi/cc 15. X/Q = 4.3 x 10.., sec/m J (atmospher i c d i spersion)
    • Arbitrarily set equal to Xe-138 E-~ = ... ,.1-6 e-< -#l 6a ) X I: ki 1.06 I: (ki
  • DFVi) #9 #15 x (The lesse r of #16b OR 1.81 E-4) = ( )( 1.06 ( \. i.J t -l..l ) = )( '{ i3 -~ ) 18. H1HiALARM

= Ax( #17 ) ::(1.0)( 3.~l t:-L\ )= J.~1] e*:{..iCi/cc "-._ The rad i oactive gas flow corresponding to the Hi Hi setpoint: Performed by: __ ...:;::.,___.,___ ___________ Date: OS-Q~-(] I n depe n dent V erification by: @._ Date: 5 J 7 76

  • --------------NEE-323-CALC-003 Attachment 2 Page 5 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. K9009V) 2 2 Sample No. __ .....,IG=----'3

........... ~._I..__.,,,.-___ _ 3. Samp l e Date '2. -2. I G 4. Samp le Time J l I} 5. MWT ---'-I G_.j..1.Jl!l-.- __ _ 6. Count Date 2--5 -I¥ 7. Count Time *. t"'1 -".""::""::-'-':-...:....,'---,-=--------

8. Mon it or Reading (µCi/cc) j. <,, S e -S 9. Process Flow Rate (CFM) *, '2.. co O 10. Sample Volume (ml) _ _,4=5.,-:.,cco

===------1 1 12 13 Isotope k , p Ci/mL Xe 133 /1C..~ iA, .* 1-.£,.....1 Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 -, N 13 "'l .OS" e -'j 16. k , = /.O'Jc -*i 16b. L k , 1:(k .* a=v.) 1.06 17. Limit= L = (F)(X I Q) Dose Factor Vent Product DFV , mrem m: k , x DFV; yr u Ci 294 \\t\.l" -_1 ,J. I 1.17E3 1.47E4 1.81 E3 5.92E3 8.83E3 3.12E3 2.51 E2 8.84E3 \., 8.83E3 ** (.i, .73 .. -5 16a. L (ki DFV,l = G..Be-5 Flow Meter ID# L 1*2 9 Cal Due Date: IO *-0 -11 1 4. Bkg = I n strument background 8kg = Cf,, 3 S e -1 µC i/cc 15. X/Q = 4.3 x 1 0-<> sec/m J (atmospheric d i spers i on) ** Arbitrarily set eq u al to Xe-138 #16 = 7.cc; t'- (.'--$ -4 \. \'? e #16u ) X L L (ki ki 1.06 ------* DFVi } ( #9 )( #15 x(Thel~~~:f~OR 1.8 1E-4} = 1.06 Lim i t = L = ----------T"-)( y,3 ;,c. j(J-') 3.'6] e-'-l ( ,z,oo.:. 1 8.HiH i A L ARM=Ax( #17 )=(1.0){ *3-'iSl~<-f )= 3.'87e-'t µCi/cc The radioactive gas flow correspond i ng to the H i H1 setpoint: Perlonned by 7Jjj fJ. --z1!J Date. __ 2_-_>_*-_/_,_ Independent Ve r i fication by: _________ (~~-,...c-,.-;...* -'-11:-.;._L_ -_.+--___ Date:. __ z._-_~_-_-_I ..:..C,._ 98 NEE-323-CALC-003 Attachment 2 Page 6 of 18 PLANT CHEMISTRY PROCEDUR E S 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND B A CKGROUND Rev.33 DETERMINATION FOR KA M AN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR H I HI SETPO IN T 1. Sample I.D. Kc..-.....,.

}.._ 2. Sample No. / lf .... ~'-7 &'-<.
__ 3. Sample Date -'-:SF---...a.¥=.~,--~~

...... ~-4-_-s_a_m-pl-e-Ti_m_e_ Ii: '31_ -13:03 5. MWT I 1o 7 6. Count Date 5

  • k' * ( 7. CountTime

/ '.) -z. '1 8. Monitor Reading (µCi/cc} .2 *./ {( e-* -Z 9. Process Flow Rate (CFM} 7~ o oo 10. Sample Volume (ml) 'i'i yo D 11 12 I sotope k; Dose Factor Vent µCi/ml DFV; !!l@!I! m3 yr µCi Xe 133 IVOAI_(! 294 Kr 85m 1.17E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.1 2E3 Xe 133m 2.51E2 Ar41 1\/oAlf. 8.84E3 N 1 3 ;, s'I ¢ *' 8.83E3 *" 16. i: k 1 "' '. \"'ic.-, 1 6a. L (k1 DFV;) "' 16b. I k 1 ( #16 ) l. ~"f <. .'\ = I:(ki

  • DFV,) ( #16a ) 'I 'I ?.C. *!° 1.06 X I ki 17. Limit= L = I (F)(X IQ) (ki
  • DFVi) ( 1 3 Product k 1 x DFV 1 .NOtvF.. I I I I J I .vo.,..,,6.

~.c;,,.1 ** G. .11.t.s Flow Meter 1D# __ L_7-=--!_5......_ __ Cal Due Date: __ 7~---2._2_- .... I_'-_ 14. Bkg = Instrument backaound Bkg = /. /0 ~"" µCi/cc 15. XJQ = 4.3 x 10,.; sedm~ (atmospheric d ispersion)

    • A rb i t rarily set equal to Xe-138 J,/'Se.*"'

1.06 #9 )( #15 ) x (The lesser of #16b OR 1.8) E-4) = I.06 ii~"' 3.\-1c.*""' Limi\=L= *( 1~000 )( '-{,')e*") ( , _,. ) = ,/ 3 (/'J .~(

  • 18. Hi Hi ALARM = Ax ( #17 ) = (1.0) ( 3. ~1t . ., ) = * * * µC t/cc The radioact i ve gas flow correspond i ng to the H i Hi setpoint:

Pe rf ormed by: ___ *1 \_L_\_\_"\ _________ Date: S .. &' ... I '1 ( I n d ependent V erification by: _ __..,___.j._,9vn."-"-"....__~--'---'---

  • _______ Date: 5 -~" N NEE-32 3-CALC-0 0 3 Attachment 2 Page 7 of 18 PLAN T CH E MI S TRY PROCEDURES 3200 MAN U AL PC P 8.3 A LA R M S ETPOINTS AND BACKGROUND R ev.33 D E T E RMINA T ION FOR KAMAN NORMAL Page13of14 R A NGE MONITORS ATTACHMENT 1 VENT M ON IT ORS GASEOUS DETECTOR HI HI SETPOINT 1. Samp l e I. D. 2. Sample No. _/..._(o.,__

---'--'I s_-_5__._l _____ ~---3. Sa m p l e Date 4. Samp le Time /} 1--/7 5. MWT / q I J 6. Count Date 7. Count Time __ 1,__1 5.........- Co"---,,,,~-


8. Mon i tor Read i ng (µC i/cc) 9. Process F l ow Rate (aM) q 00{) 10. Sample Volume (ml) _ _,.~._..5=,_0'-0___..._Q_ ___ _ 11 12 13 Isotope k 1 µC i/m l Xe 1 33 f\o'b ll,..11-ih,~

Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 ~,1q e-'l 16.I k i = (l'J, I Cfe.,-q Dose Factor Vent P r oduct DFV 1 ID.!.fil!l m 3 k 1 x DFV 1 y r µC i 294 1' D N t'. \ t=m :,, , 'l 1.17 E 3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51 E2 8.84E3

  • 1 / 8.83E3 ** J:i, '*f.T/ P-5 1 6a. L (ki DFV ,) = ") . " 7 P-i:{' F l ow Mete r ID# L '? 't Cal Due D a te: J V (r;,/ /7
  • t I gro u nd _.,,,,:c..u_L.:::::;.--4r..___

µ C i/cc 15. X/Q = 4.3 x 10-tj se c/m:i (atmo s phe ric d i spe r s i o n) ** A rbitra ril y set equa l to X e-1 38 L ki 16b.-----c #1 6 ) = t;,J q e-<'{ _ t. J 3e-i., ( #16 a ) S.~'7 e-s--L(k 1

  • DFV ,) l.0 6 x L ki 1.06 17. U mi t=L= x(Thel e sse r of#16bO R 1.8 1E-4) = (F)(XIQ) L (k i
  • DFV i) ( #9 )( #15 ) Lim i t=L =/-'f 1.0 6£./';, fo ~( J it;e_-lf)

= 3,00e-'j ~ODO )( , e-y 18. H i H i ALARM = A x( #17 ) =(1.0)( *3.eoe-t,,J )= -'5:>, 0 De-L/ µC i/c c The !Jl d i oact i ve gas fl ow corresponding t o t he Hi Hi setpoih t: Pertorrnedby k ' c~~te* 3-'-(-0 Independent Verificat i on by: /3 ~' Da te: '3,-Y-(p 1 4 NEE-323-CALC -003 Attachment 2 Page 8 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 .. ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT -~3/ 1. Samplel.D. /Alt(l,Jt.. 3. Sample Date /Z-f--1 4. Sample Time 7. Cou nt Time 6. Count Date /Z-f-1~ 8. Mon itor Reading (µCi/cc) '£4-& q 9. Process Flow Rate (CFM)

10. Sample Volume (ml) 11 12 I sotope k; Dose Factor Vent µCi/ml DFV 1 mrem m3 yr µCi Xe 133 -294 Kr85m ;:: 1.17E3 Kr88 ;s;;:' 1.47E4 Xe 135 ,~ 1.81 E3 Kr87 -5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m 2.51 E2 Ar 41 8.84E3 N 13 -'"-8.83E3 ** 16. I k 1 = " A)/ Ii-16a. L (I<, DFV;) = I ki 16b.-----L(k ,
  • DFV ,) 1.06 ( #16 ) = ( #l 6a ) X L ki 13 Product k 1 X DFV; !i.-' -"""-~* .u t, ~' 1.06 14. 8kg = lnstruwent back;?.und Bkg = '156-µCi/cc 15. X/Q = 4.3 x 10*t1 sec/m~ (atmospheric dispersion)

.. Arbitrarily set equal to Xe-138 x{Thelesserof#16bOR 1.81E-4) = I (ki

  • DFVi) ( #9 )( #15 ) 17. Limit= L = ----(F)(X IQ) Limit= L = 1.0 6 ( /. !;//;-f) = t/ £;<}c:3--f ( tf3 d()tJ )( tf'. "3 l-{, ) 18. Hi H i ALARM =.Ax ( #17 ) = (1.0) ( f. ~o &-'-f ) = 'f. &>E-~ci/cc The radioactive gas flow corresponding to the H i Hi setpoint:

Performed by: ~'5~ Date: Independent Verification by: ~9:Y:v\ /2~tf-!f Date: (]_ -1 J\ << NEE-323-CALC -003 Attachment 2 Page 9 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.31 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Samplel.D. k-'I i*5 ll5'1Nc c:.( 2. Sample No. / 3 .--167 3. Sample Date 3-/-1 .> 4. Sample Time !~Jo 5. MWT 7-.-C-o-u-nt-T-im_e _____ 13 3 8 1110 6. Count Date :J /3, 8. Monitor Reading (µCi/cc) /, 7G r--3 9. Process Flow Rate (CFM) 5....71'_.;..::,,~~-1-1> 93.oo-:> i /8 E. 4 10. Sample Volume (ml) 11 12 13 Isotope k; Dose Factor Vent Product µCi/ml DFV1 Flow Meter ID# L 71b 0 --------mrem m3 k, X DFV; yr µCi Cal Due Date: S-?-/'( Xe 133 f\JDNv:.. 294 1-)c.,,...:,{+/-_ Kr85m :i:.oe.*-'ciFt e.{) 1.17E3 J.:~,l<'-1 ~*" Kr 88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 " 16. L k; = 111/l'r I k, ( 16b. t(k ,

  • DFV,) ( 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 B.84E3 B.83E3 ** 16a. I: (k r DFV 1} = /1)/4 #16 ) /Y 1"'9-= .IV/~ #16a ) ' = 14. 8kg = Instrument background Bkg = s, k :z. t=-, µCi/cc 15. XIQ = 4.3 x 10.e sec/m 3 (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 A,'&r 1.06 X I ki 1.06 x (The lesser of#1Sb 08= 17. Limit " L = (F)(X IQ) I (ki
  • DFVi) ( #9 )( Limit = L = l.0 6 ( / 'g E. ( CJ 3£>00 )( '-i, ?,Ytv*'-) . I 18. Hi Hi ALARM = Ax ( #17 ) = (1.0) ( '-/. '/.[)f <-I The radioactive gas flow corresponding to the Hi Hi setpoint:
19. Q = 472 (A * #17)#9 .. 0=472 (1.0)( '-/. So~ ) ( q~oo~ ) \ #15 ) -4 ) = '-/. 'To rz: u_ o 0-;:: '-I ) = _ ... _, 0 __ ___ µCi/cc a = -.:.i,11~

t' µCi/sec z.. .11 E.'"' ..,.._c..;/su ... Performed by:-=~:=:....=:....:~'----~/'-41X~~'-=-----------*Date

3--/-13 Independent Verification by: ____ &_"'----
  • ,4-t....:....;:....A----'--

_______ Date: NEE-323-CAlC-003 Attachment 2 Page 10 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page13of14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1 Samplel.D K-4-Cv"'-l" Y'"'".,.. 2. SampleNo. IIQ-~~ll l 3. Sample Date t I -"3 c

  • t le 4. Sample Time I cj I Y ----5-. -MWT---,q-,-,.----6. Count Date _1:....:.1_-_..*:3~0:._-...:...I "'""---------
7. Count Time _1._.*2 ..... "?>""-,'----,--------8. Monitor Reading (µCi/cc) _2 -'f£ 0* I 9. Process Flow Rate (CFM) _'1 ,_3~0_<.. "_(._) ____ _ 10. Sample Vol ume (ml) y.q;--000 11 Is otope k, ;.;Ci/ml Xe 133 ':'{1., ,v,_. +: Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 'Iii, 16. k; = MA* Lk 16b. = L(k ,
  • OFV;) ( 1.06 17. Limit = L = (F)(X I Q) 12 Dose Factor Vent DFV; mrem m 3 yr p CI 294 1.17E3 1.47E4 1.81 E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. 1: (k 1 DFV ,) = #16 ) = #16a ) X L ki L (ki
  • DFVi} 13 P ro duct k, x DFV, Flo w Meter ID# L**/~ 9. Cal Due Date. I D-L -I 1 I r{r.,, ........ ... -J: I!.* ' 'J'.l. A/) 14. Bkg = Instrument background Bkg = 1 , (.,-, 1 µC i/cc 15. X/Q = 4.3 x 10"° sec/m;i (atmospheric dispers io n) ** Arbitrarily set equal to Xe-138 = u(_A 1.06 #9 )( #15 x (The lesser of #16b OR ~ly = ) 1.06 Limit = l = ( / . CC t C ( 9 -~ o o c, )( 4, G. -&, ) ) = 18. HiH i AlARM: Ax( #17 ) :(1.0)( 4 .~Of:: l( )= 4-* ccoG. l( µCi/cc The radioactive gas flow corresponding to the H1 Hi setpoint:

Performed by: ______ ~)1;~"'--;(--=-______ Date: / f / -./ -II-3-v--/t.-1ndependent Verification by:_-=0----~ ______________ Date:. _____ _ 77 NEE-323-CALC -003 Atta c hm ent 2 Pa ge 11 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. NS !Or\~ .\<-lo 2. Samp l e No. l S -d.) ci S 3. Sample Date L.\-\\Q-\S

4. Sample Time lbqJ 5. MWT _,_IQ-'-'l:...i..l

__ _ 6. Count Date l\-l \o-\ S' 7. Count Time I lo I Y 8. Mon it or Readi n g (µC i/cc) l .l OE-1 9. Process Flow Ra-te-'-(...=cC_,_F_M,.._) -====Ci=* ~::-,....,,o:o:o:====== 11 12 Isotope k 1 Dose Factor Vent µCi/ml DFV; mrem m 3 yr µCi Xe 133 ~Trl-:~:294 Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81 E3 Kr87 5.92E3 Xe 138 8.83E3 Xe135m 3.12E3 Xe 13 3m 2.51E2 Ar41 8.84E3 N 13 ,1/ 8.83E3 ** 16.I k i = µJA 16a. I (k1 DFV;) = I k , ( #16 ) 16b. = L(k,

  • DFV ,) ( #16 a ) 1.06 X L ki 17. Limit= L = (F)(X IQ) L (ki
  • DFVi) ( 10. Sample Volume (ml) '-\,rj,S EL\ 13 Product k , x DFV 1 tvmu,~f'lh rift< \I/ N\A Flow Meter ID# _ __:.L_l_d-_°{__,_

__ Cal Due Date: ___ \ D_-_to_-_\_t_

14. Bkg = Instrument background Bkg = µC i/cc 15. X/Q = 4.3 X 10~ sec/mJ (atmospheric dispersion)
    • Arbitrarily set equal to Xe-138 = 0\4. 1.06 #9 )( #_I 5 ) x (The lesser of #16b 08 = Limit= L = O I.0 6 . ( U~\ E:.-~ ) i--\_~OE:.-Y C <\ '3S)0 )C '-\.3r; -lD ) 18. HiHiALARM

=Ax( #17 ) =(1.0)( L\,tgOE.-L\ )= l...\SsD-£-4 µCi/cc The radioactive gas flow corresponding to the Hi H i set~oint: Performed by: Date: L\-l Co-\ C Independent VedficaUOn by , ~r Date: f-/p-(§ NEE-323-CALC-0 0 3 Att achment 2 DAEC SURVEILLANCE TEST P R OCEDURE STP T I TLE: K6 C ALIBRATION Page OIJA H E ARNOLD ENERGY CEITTER Rev. Perfo r mance Date: 9-<o-l~ 7 .15.6 Record the following AS LEFT values: a. AS LEFT HI-HI ALARM SETPOINT (from Step 7.15.4): C\-1..-13 L( /60~4l '1-~o e ~f, µCi/cc b. AS LEFT HI ALARM SETPOINT (fr om Prerequisite 6.3.1): 3. S E.-4, µCi/cc c. AS LEFT BACKGROUND (from Step 7.13.50 or 7.14.49): 7 , )5""4 E:-7 µCi/cc 7.15.7 At the Kaman EMS I DT, ver i fy the following has been correctly entered into the EMS database: a. HI-HI alarm setpoint (from Step 7.15.6.a) b. HI a la rm setpoint (from Step 7.15.6.b) c. Background concentration (from Step 7.15.6.c) 7.15.8 7.15.9 Update database values on the status board{nd in Labstats.~ Attach completed setpoint ca l culation documentation (Step 7.15.4) to this STP. (PRINT/ SIGN) /_.c,_,-.,,....'tr 'J: SC>J,,,...t:-5, R,c.,'vtan:l p~ Performed by: Date: l~O~ 1)12-Time: Pa ge 12 of 18 NS791009 64 of 66 14 INITIALS ln it. lo I lp Attachment 2 Page 13 of 18 NEE-323-CALC-003 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample 1.0. Ki Char: O'IGfV 2. Sample N o. I J-2: 2~~ 3 Sample Date Y-13 -11 4. Sample Time ) l. ~q 5. MWT __,_I C:,.L.:c=o'-----6. Count Date --...L~..c...- .... n:..--..1...IJ......._ ______ 7. Count Time _--.:...:12..=S::::...;t.____,=--------

8. Mon i tor Reading (µCi/cc) 'B , 10 e -9 9. Process Flow Rate (CFM) _9_..3=0=..:::

0...:::: 0'-------11 12 Isotope k 1 Dose Factor V ent µCi/ml DFV 1 mrem m 3 yr µCi Xe 133 "u

  • J ..L L-...1 294 Kr85m 1.17E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83 E3 Xe 135m 3.12E3 Xe 133m 2.51E2 Ar41 8.84 E3 N 13 " 8.83E3 ** 16.~k. = 'f'J)A. 16a. I: Ck. DFV , l = 1sb. }: ki ( #16 ) ti/Pr = = L k ,. DFV ,) ( #1 6a ) 1.06 X L ki 17. Lim i t= L = (F)(X I Q) L (ki
  • DFVi) 1.06 Lim i t= L = ----------:--( 9 3 ,a oc Y ,3 ;it. 10-10 Sample Vo lume (ml) _....,_y_.7-=

s=o=c'-------13 Product k , x DFV , l st.11 , * ~->...:(*~A I I j, r-J/A-= Flow Meter ID# l--7 zc l Cal Due Date: f C--I 1 14. 8kg = Instrument background 8kg = Y 81 e --, µC i/cc 15. X/Q = 4.3 x 10""' sedm.; (atmospheric dispers i on) ** Arb itrarily set equal to Xe-138 1.06 ,------x(Thelesserof

  1. 16b OR 1.81 E-4) = ( #9 )( #1 5 1 531 e-"{ ) = 18 HiH i ALARM =Ax( #17 ) =(1.0)( l.-j.t oe*~\ )= u -Lt I< 'oO e µCi/cc The radioact i ve gas flow corresponding to th e Hi Hi setpoint:

Performed by.___:/JJ':~

.L.~all!o......:}-

-..1</3::::...;,_~~U""'"~..:,._;-""'J'-""'- ____ Date. Independent Verification by. ____ -L~-==-=--fl-~~:::..._--= =~-Date: Y -l ::> -/ I 80 NEE-323-CALC-003 Attachmen t 2 Page 14 of 18 . PLANT CHEMISTRY*PRO~EDURES .32QO MANUAL ALARM SETPOINTS AND BACKGROUND DETERMINAT ION FOR KAMAN NORMAL RANGE MON I TORS ATTACHMENT 1 PCP 8.3 Rev.33 Page 13 of 14 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. __ k'_a~*""~"'-1\ __ 1! ______ 2. Sample No. 3. Sample Date iD-f-/S 4. Sample Time I/ 3o 5. MWT 6. Count Date 10 ---$-I'> 7. Count Time // 39 8. Monitor Reading (µCi/cc) 7,S"7e--"1 9. Process Flow Ra-te-(C~F-M~) "---q.,...--,-,:3,--Qt:X>_,_ ,------11 12 Isotope k; Dose Factor Vent µCi/ml DFV; mrem m3 yr µCi Xe 133 {I/Mt 'Zl"1JYf', 294 Kr85m 1.17 E3 Kr88 1.47E4 Xe 135 1.81E3 Kr87 5.92E3 Xe 138 8.83E3 Xe 135m 3.12E3 Xe 133m . 2.51E2 Ar41 't / 8.84E3 N 13 'f,t,,z_e-r 8.83E3 ** 10. Sample Volume (ml) ~e '1' 13 Product k; x DFV 1 pt,Ae. ~-/J'flh ,,__. \' lf.6 i~ ~s Flow Meter ID# __ t..._7_z.c; ___ _ Cal Due Date: /0-6 / 7 14. 8kg = Instrument background Bkg = -,. :J 3 e. -7 µCi/cc 15. X/Q = 4.3 x 10-o sedm:s (atmospheric dispers ion) ** Arbitrarily set equal to Xe-138 16. L'. k1 = t./.1.,;e~"' 16a. L'. (k1 DFV 1) = '{.t>9, -s I: k; ( #16 ) 1Gb. = = L(k ,

  • DFV,) ( #16a ) 1.06 X L 17. Limit= L = L (F)(X IQ) (ki 1.06 ------x (The lesserof#16b OR 1.81E-4) = ( #9 )( #15 ) \~

ki

  • DFVi) -___ 1_.0_6_~_ c*S~e.-r : "'. ?,ooe-r Limit = L = ' ) = 7 ('t'3oc0 )('(,3~-v ) 18. Hi Hi ALARM = Ax ( #17 ) = (1.0) ( *7.t>Oe. -'1 The radioactive gas flow corresponding to the Hi Hi setpoint:

Performed by: ~-2..al.)A' .... $' ) = __ .,, __ .... ___ µCi/cc Date: Independent Verification by: ______ s=_-()L.-_* _1_*~-~ _______ Date: 10-b-lS 72 NEE-323-CAlC-003 Attachment 2 Page 15 of 18 PLANT CHEM I STRY PROCED UR E S 320 0 MA NUAL PCP 8.3 ' ALARM SETPOINTS AND B A CKGROUND Rev.33 DETERMINATION FOR KA M AN NORMAL Page 13 of 14 RANGE MONI TORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR H I HI SET P O I NT 1. Sample J.D. 3. Sample Date j--Z. <\ t'j 4. Sample Time _K_~_""_ll_~ __ 1 ______ 2. Sample No. __ J_1_0""""'3""------ 5.MVVT 6. Count Date 4 2 '1 14 8. Monitor Reading (µCi/cc) /. z z_ £-7 7. Count T i me _____ ..... I.J-l.,_I o;.__--..--=--:-c------

9. Process Flow Rate (CFM) q 3 ooo v:--10. Sample Volume (ml) 48(;,00 11 Isotope k; µCi/ml Xe 133 WL>rv E. K r 85m :i.?OeA 7,(-,"eJ Kr88 , Xe 135 K r 8 7 Xe 138 Xe 135m Xe 1 33m Ar 4 1 N 13 16.I:k; = ,v/4-12 Dose Factor Vent D FV 1 mrem m3 yr µCi 294 1.17E3 1.47E4 . 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.8 4E3 8.83E3 ** 1 6 a. (k1 DF V1) = 1 3 Product k; x DFV1 1-vt>.ve.

IT;o~_.,-;r,'i"JeJ ~/4-' Flow Meter ID# __ l.___:_7_6_0 ___ _ Ca l Due Date:. __ S"_-_7_-_,_4 __ _ 14. 8kg = Instrument backgro u nd 8kg = <<IA-µC i/cc 15. X/Q = 4.3 x 10*b sec/m s (atmospher i c d ispersion)

    • Arbitrarily set equal to Xe-138 °L k 1-( #16 ) /V/.4-. . /4-16 b. /V = = I:(ki
  • DFV1) ( #16a ) 17. Limit= L = 1.06 X I ki 1.06 (F)(X IQ) I (ki
  • DFVi) ( #9 )( #15 ) x(Thelesserof#16bOR 1.81E-4) = 1.06 -14 . Limit"' l "' ( 1~\e. ( q 30(.)0 )( 'f.3 r!'16 ) 18. Hi Hi ALAR M "' Ax ( #17 ) = (1.0) ( ¥. f3o e -'1 ) = -I{ ) = 'f.J,o e v-. -'f t-f.. &) e. µCi/cc ,/" T h e radioactive gas flow co rr esponding t o the Hi Hi setpoint:

/?~~~;_--P erformed by:._....::~=---==--"'- -_________ Date: Independent Ve r ification by: __ ..c,.~""'---'-. _;.::~,:;.&.1-'----------Date

Y* Zf-lfL ;

L\ 0 { J l. (: . NEE-323-CALC-00 3 Attachm e n t 2 Pag e 16 of 1 8 PLANT CH E MISTRY PROCEDURES 3200 MANUAL PCP 8.3 A L ARM SETPOINTS AND BACKGROUND Rev. 33 D E TERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MON I TORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D c,..,r 2. Sample No. I 7 -'J-. f..p 3. Sample Da t e -~-c.,-. -, 7---4-. -S-am-p-,e-T-im_e _ 13;2.. ?-----5-. _M_WT __ l_<:J_\_D,----

6. Count Date Y -?..o -1 7 7 Count Time --:-=-:::"--'1

>;;..Y .... 5.....:...._,,...------

8. Mon itor Reading (µCi/cc) ..l <.., t E. <is'" 9. Process Flow Rate (CFM) ~:T-'-""'?

__ o_c,=-----10. Sample Volume (ml) 4'6-. coo 11 Isotope k r µCi/ml Xe 133 V e,,,. "IA, ""-t-Kr85m Kr88 Xe 135 Kr87 Xe 138 Xe 135m Xe 133m Ar41 N 13 , , 16.~k; = N'/A :[k ( 1Gb. I k ,. DFV.) ( 1.06 17. Limit= L = F)(X I Q) 12 Dose Factor Vent DFV , m: mrem yr µC i 294 1.17E3 1.47E4 1.81E3 5.92E3 8.83E3 3.12E3 2.51E2 8.84E3 8.83E3 ** 16a. L (k , DFV 1) = #16 ) c£ffr = #J 6a ) X I k i I {ki

  • DFVi) ( 13 ' Product k t x DFV 1 N C,*Y..c -...J) ... ,+ '? NI-A Flow Meter ID# -*/ d-.. Cal Due Date. I b -le -I t 14. 8kg = Instrument background 8kg = 4 ,C? G. 7 µCi/cc 15. X/Q = 4.3 x 10""' se c/mJ (atmospheric d i spers i on) ** A rb i trarily set equal to Xe-138 = u/A: 1.06 x (The lesse r of #16b o@ = #9 )( #JS ) Limit= L = I.0 6 ( I .'~*\G .. ) = '5 * °i ':J -Y -, 500 c:::, )( Lj * :>E. -) 18 H I H i ALARM= Ax( #17 ) =(10)( '? G\'?6. ll )= 5'.Ll'S<S-L{ µCi/cc The rad io active gas flow corresponding t o t he Hi Hi setpoint:

Performed by:. _______ _.....~__...__---">,., _____ Date. l/_ ... (;;__ " 1 7 Independent Verification by:_,4_(f-,-~ ______________ Date: <-/-2,1)-1' 94 NEE-323-CALC-003 Attachment 2 Page 17 of 18 PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.3 ALARM SETPOINTS AND BACKGROUND Rev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE MONITORS ATTACHMENT 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPOINT 1. Sample I.D. J<,,.41'i/J /l-2. Sample N o. 3. Sam p le D ate IJ-/1-1> 4. Sa m p l e T i m e / 3:/ F 5. MWT /C//~ 6. Cou nt D ate _!.!_11_-..L1~9-'-/c.=.5:_--=----=:-----

7. C ount Time -~/'-->~ ....... '--, 2-_7-=-.,.......__,,-----
8. Monitor Readin g (µC i/cc) 5: e-7 9. P rocess F l o w R ate (C F M) ?sz,oi.> 11 1 2 I sotope k , D ose F acto r V ent µC i/m l DF V; mrem m 3 yr µCi Xe 133 , c. 294 Kr85m \'=Ir I 1.1 7E3 Kr88 ,-~ 1.47E4 X e 135 \ i.-, 1.8 1E3 Kr87 \.~ 5.92E 3 X e 13 8 '\.~A 8.8 3E3 X e 135m ,~-3.12E3 Xe 133m \~ 2.5 1 E2 A r 4 1 \. 8.84 E3 N 1 3 *f.'1'1-t-
  • .. 8.8 3E3 ** 1 6.1: k; = 5. 4'1e:_ -") 16a. 1: (k, DF V ,) = 1 6b. }: k , }:(k ,
  • DFV ,) ( #1 6 ) ----= ( #) 6a ) 4. j (>{-) 10. Sample V olume (ml) --=3,-, q~ZJ.-e::.,..., q..-r-----13 Product k; X D F V; ~""1 \~ \-~ \ ,.>. \~ \. '=>;I.,. \. '\-:-'\. "{ " L/, ibc:"*S it: i c,.., _,, = Flow Meter ID# __ l_7_1_~----Cal Due Date: __ t:f-_t_z_-_r_7 __ _ 14. 8 k g = I ns t rument b ackg r ound 8kg = $" , '1 q e -'7 µC i/cc 15. X/Q = 4.3 x 1 0"° sedm a (atmosphe ri c d i spers i o n) ** A rbitrarily set equa l to Xe-1 38 x }: ki 1.06 1.06 17. Lim i t=L= ----(F)(X I Q) }: (ki
  • DFVi ) ( #9 )( #t s ) x{T he l esse r of#16b OR 1.8 1E-4) = 1.06 ( /, /""le ... Y ) 3. 7 1 e.-I...( Limi t = L = :;;, . = (,SUC,C, )(4.3xro-b) '1 -"( 18. Hi H i AL AR M= A x( #17 ) =(1.0)( j.7/e )=_?_.,_,_e ___ µCi/cc The rad i oa cti ve gas flow correspond i ng to the Hi H i s etpo i nt: ~~--Performed by:--'~r.;..-i:::......

t.;;.__~ ___________ Da te: 11-1?--/.> Ind e pendent V erifi c at i o n by: ____ __J&r.,...,. "'--.;__k_,_,4--_______ Date: I I-A I S 16 2 NEE-323-CALC-0 0 3 A ttachment 2 Page 18 of 18 PLANT CHEM I STRY PROCEDURES 320 0 M ANUAL PCP 8.3 ALARM SETPOINTS AND B A CKGROUND R ev.33 DETERMINATION FOR KAMAN NORMAL Page 13 of 14 RANGE M ONI TORS ATTACHME N T 1 VENT MONITORS GASEOUS DETECTOR HI HI SETPO I NT 1. Sample I. D. -~c.J<CL~~=r....:.,,-....c..~-'r------

2. Sample No. \ "f -4 3 k" 3. Sample Date ...........

--4. Sample T i me --------5. MWf I 't Jl 6. Co u nt Date --'-"-' ....... 4-4.....-::c--:c------

7. Cou n t Time _....,.l.....,)..

.... ,'-'""2-=----------

8. Monitor Reading (µCi/cc) _..._J~,'i

..... ':i......-<r'--* 7-'----9. Process Flow Rate (CFM) __ 1---"-S.-,-0_6..,..0 ___ _ 11 12 Isotope k; Dose Factor Vent µCi/ml DFV1 !!l!fil!l m3 yr µCi Xe 133 tv/11--294 J .ii -Kr85m 1.17E3 Kr 88 1.47E4 Xe 135 1.81E3 Kr 8 7 5.92E3 Xe 1 3 8 8.83E3 ' Xe 135m 3.12E3 \ Xe 1 33m 2.51E2 \ Ar41 8.84E3 \ N 13 8.83E3 ** I 16.tk; = Iv 16a. L (k; DF V 1) :;; M 10. Sample Volume (ml) £1i:l:t?o 13 Product k 1 X DFV; /I ./ I A,-/\I A,,-Flow Meter ID# __ Ca l Due Date: __ / 0_-_~_-..:....t_c[+--

14. Bkg:;; lnstl}Jme n t background Bkg:;; 4, C.0 I i:..--/ µCi/cc 15. X/Q:;; 4.3 x 10-ti sedm~ (atmospheric d ispersion)
    • Arbitrarily set eq u al to Xe-1 38 16 b. L k 1 = C #16 ) = L(kJ. DFV,) ( #16a ) 1.06 x L ki 1.06 17. Limit=L= x(Thelesser o f#16bOR 1.81E-4) = (F)(X IQ) L (ki
  • DFVi) ( #9 )( #15 ) Limit:;; L = I.0 6 ( /1~/ 4. .'-( ) = -5, 'f5 s.~-l"C. S'. c;f f.-~ < ,sooo )C '{,"J .,.,o*"Y ,,. , _ ~, S-. ')S"t..-c..-/ 18. HiHiALARM

=AX( #17 ) :;;(1 0)( 5.G S<!..-~ )== -5 .. ryc::: **rcj}cc The radioactive gas flow corresponding to t he Hi H i setpoint: P e rf ormed by: f~/ . Date: .

  • _Q.c./t1A--

/-Z.Z-1 4-lndep e nd ent V er i fication b y: _________ O __ { _____ Date: _____ _ '(, ~(JO s T &.., l l :5 '1 S ro P 1 7'~5" \ ._g-1) 'L~fV\

1. 3. 4. 5. 6. 7. 8. 9. 10. 11. NEE-323-CALC

-003 Attachment 3 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 PCP 8.7 Rev. 17 Page 9 of 11 Page 1 of 9 Page 1 of 3 UQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. /7...-5'C./qC, 2. Sample Date & Time f-z.,i~/7 /oo?~ Stream/Monitor Descrlptlon R. 111 -4 7 6 7 Effluent Monrtor Reading (cps)-=-~=-:::/~D'--------


E fftuent Flow (gpm) CJ&, Ot>

  • Average effluent flow du r ing time rep rese nt ed by sam ple, F 1 (gpm)_----<.c:-'c.-l;......-1--

_____ _ Average dilution (discharge canal) flow during time regresented by sample, F 2 (gpm) ,,)/A--Monitor calibration factor, g, (cps/µCi/ml) __ :::::2-::;--.-:;/-:Cf~e-v, ___________ _ _ Previous alarm value setpoi nt (cps) ___ ~7-";...C,,_..:;5 _____________ _ Fraction to apply as a safety margin, A = 0.5 Setpoint ::::l ox[ 'i, K, xgx F 2 xA]+Bkg = 'z:.1 (K 1 + WEC 1) F; Setpoint = sx[(l 5)(S)(7)] + ( 4) (16)(6) ..,?,,. (, Setp oi nt=l 0 x[(lS)(8)(?) x(l 0)]+(4) (16)(6) . [C /. o(pe.., )( '1. .l Cf e )( ,....,M-) ] Setpomt = 5x -'------"-'-------=-..:..-----'-) + ( ( t 9 )( vV/r /0 ) Setpoint = Fractional Change= New va lu e -Previous Value= ( 11 ) -( 9) = ( 'SL/ D ) -( 7 ) Previous Value ( 9 ) ( --,G,S-) 12. Fractional Change = .... 0, "2-'1 'I v' 13. 14. If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint Monitor Hl Alarm= 71., < / Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ) = _u_i_w __ cps ../ 65 NEE-323-CALC-003 Attachment 3 Page 2 of 9 ' 1. " 3. "-4. " 5. "'6. '-7. "' 8. ~9. "'-.. 10. ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. \ S -']19:6 / 2. Sample Date & Time 17--1-lS /u ~o3 / ~tream/Monitor Description GS'uJ fqsl!'YlP!1\t'o~ '5'!'.Yl-YJCe1 v ' Effluent Monitor Reading (cps) __ to __ i[_ __ ~*-~-,.<~-------------Effluent Flow (gpm) CO , *

  • Average effluent flow during time represented by sample , F 1 (gpm) N ./ Average dilution (discharge canal) flow during t}J}lyepresented by sample, F 2 (gpm) NJs Monitor calibration factor , g, (cps/µCi/ml)

~-* '2,1~ e 4 v

  • Previous alarm value setpoint ( cps) __ J~<o~$'.___, c 9 ff-'-S~V:::-----,---------

-Fraction to apply as a safety margin , A= 0.5 Setpoint = sx[(lS)(S)(7)]+(4) (16)(6) Setpoint = s x[< 9 .Y,3 -> )( :2

  • I"\ e" )( "~ ( 11 7 . 5 t.\ )( lJYZ_ Setpoint=l o x[ (1 S)(S)(?) x (l O)] +( 4) (16)(6) ; J + ( )C. ) 11. Setpoint = _9~9_'2 _____ / Fractional Change = New value -Previous Value = ( 11 ) -( 9 ) = ( 5~ 2 ) -( ,ros: ) Previous Value ( 9 ) ( -, Gs-) ""'* 12. Fractional Change = *-.. '22~ /' U!)ractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint 13. Monitor Hi Alarm= '7(;, '5 cf S / 14. Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ) = N/A cps/ 2 4 s-,l-tL\ NEE-323-CALC-003

/k>W ~+r-h'c1~:ncg. Page3c6,/

1. 3. 6. 7. @ 9. 10. ALARM SETPOINTS FOR , LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. ____ Jlf_-_l,_, _~_? ______ v 2. Sample Date & Time 3-~'Z"-l4

/oo30.,,. Stream/Monitor Description._-""'G""S:..-v-l"..a...;:;.,. __ 4-....;,.....:le""'";-r..;.....__v _____________ _ Effluent Monitor Reading (cps) v Effluent Flow (gpm) °'. <.oo D v Average effluentflow during time represented by sample, F 1 (gpm}~r.r/_A~-----,-------v Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm)_....,w(A"+-'-"- __ .,,,,_ Monitor calibration factor, g, (cps/µCi/mL} __ .:;)._,.....,.1_q'"""*=-4>----_,/_,_. ---------"-,,.... Previous alarm value setpoint (cps) ~s 4 v Fraction to apply as a safety margin, A = 0.5 ,.,..---[ I:.K * * .* ,: F l Setpoint = }Ox '. 1 >_<._g-~ -2 xA +Bkg = "E,(K 1 ..,.. WEC,) .

  • F; , Setpoint=l ox[ (1 S)(S)(?) x(l O)]+( 4) (16)(6) . Setpoint = sx[(lS)(S)(7>]+(4) * (16)(6) . * . . * [ ( 7 . (i/K--3)( . 1 9 E...(o )( J'V'fA: ) J Setpomt = Sx -) + ( ( I I I . 1 )( rvYA. ) 11. Setpoint = __ 7_(e_S ___ /" Fractional Change= New value -Previous Value= ( 11 ) -{ 9} = ( 7lo '5 ) -( ~.). S~ } Previous Value ( 9 } . ( ~'5tt ) 12. Fractional Change= -0 , lol.P 13. If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = .Setpoint Monitor Hi Alarm = 7 &> f5 .. *~ 14. RadwasteMonitorHiAlarm=.16

, (11) = .16(rvjtl) = <</~ cps/

  • NEE-323-CALC-003 Attachment 3 Pa e 4 of 9 DAEC SURVEILLANCE TEST PROCEDURE TITLE: RHRSW RADIATION MONITOR CALIBRATION

!RM-1997 I STP NS790305 Page 6 of 18 DUANE ARNOLD ENERGY CENTER Rev. 14 Prerequisites 6.0 PREREQUISITES 6.1 6.2 From the Chemistry Supervisor , obtain the current UPSCALE HI alarm setpoint. Record below and in the trip column of the step indicated. Step 7.1.10 lQ i-\. cps From the Chemistry Supervisor , obtain the current high voltage setting. Record below and in the step indicated . INITIALS ..-------st-ep_7_.1 __ 25_f __ 5_D __ v_D_c _________ __, >kJ 1 NOTE Original Transfer Calibration Count Rate is the count rate of the 8 µCi source taken from the last time that the mockup was used to determine the detector efficiency. This can be found in the Effluent Monitor Alarm Setpoint book. It is then decay corrected to the date that this STP is being performed. 6.3 6.4 6.5 From the Chemistry Supervisor , obtain the following source information and record below: 6.3.1 Original Trans Cal Count Rate

  • 9. t:'.. cps 6.3.2 6.3.3 6.3.4 6.3.5 Source Number LA \ [)-:{:t:: (e t{ / LS -l 37 c;;:--~Lt -l C. Original Date of Cal Count Rate __ o_____ ..I Geometry ___ P __ o_: _"'"\_+ ______ _ Old Efficiency lo , le~ e -/ µCi/cc/cps Decay correct the Original Transfer Calibration Count Rate. Record and transfer the value to the step indicated below: Y Decay Corrected Transfer Count Rate
  • d ( E cps (Transfer to Step 7.1.37.) As directed by PCP 8.7 , analyze a sample of unfiltered reactor water and calculate the UPSCALE HI setpoint.

Record below and in the trip column of the table listed. Step 7.1.28 ~d\ l cps 10 NEE-323-CALC -003 Attachment 3 1. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. wlo l/ o 3 2 z7;2 c; Page 5 of 9 ALARM SETPOINTS FOR LIQUID RAD MONITORS Rev. 17 Page 9 of 11 ATTACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. IS--if~ 0 2. Sample Date & Tir.pe g-zq -rs-/ e:,,oz. 7 Stream/Monitor Description Jfm-/91) C/2/HU"tt.// &s w J Effluent Monitor Reading (cps)~...,,.::?_,_..,,D,:;.___ ________________ _ Effluent Flow (gpm)

  • 9~@
  • Average effluen t flow dur in g time represented by sample , F 1 (gpm)_./~V.~'./_A

____ _,...-,---Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm) IV/A Monitor calibration factor, g, (cps/µCi/ml)--r-~'-/ ,_5~/~e~~---


Previous ala r m value setpoint (cps) ___ zi_,q _______________ _ Fraction to apply as a safety margin, A = 0.5 Setpoint = sx[(1S)(B)(7)] + (4) (16)(6) Setpoint=1 o x[(l S)(8)(?) x (l O)]+( 4) (16)(6) -'2-/.(C>~ [( -~ /Sle" )( v/4 )] .30 ) Set])oint

== 5 x ( ) + ( ~d )( ,v/JI. 15'3* "6' St . t 5b1,SS-Ga~ ,.,.. e po1n = f; , ., , 1 i!-zP--h Fractional Change = New value -Previous Value= ( 11 ) -( 9} = ( *~) -( t,lt./ ) Previous Value ( 9 ) ( (_p / lf ) Fractional Change = -0 , o, If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint l-J iJ Monitor Hi Alarm= ---"LV=----_,-, __ Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ) = --'--;t,'i_VA __ cps 3 3



NEE-32 3-CALC-003 Attachment 3 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 6 of 9 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT 1. Sample No. /4..-f::{64--2_ Sample Date & Time 2-14 -lG.. / O-V2-( 3. Stream/Monitor Description t\~ S~J j ~-<;*.,.S--!.

'2..J*I'\... (.c1 ,;..) 7 ' 4. Effluent Monitor Reading (cps). _ __,...._'.-,e.-~------+-=------e---------

5. Effluent Flow (gpm) 12. l-\:,'l. s.-J "A-' = -~, t'::;.O:Jc1

_._ (t-12_.$ ... J ~.p._,/ :::.. 48 ' 6. Average effluent flow during time represented by sample , , (gpm) f*...: A--7. Average dilution (discharge canal) flow during time represented by sample , F 2 (gpm) ,v 14::: 8. Monitor calibration factor. g, (cps/µCi/ml) _ __:_:t ,_s_*"'-1'"""~-1 _'--0 ____________ _ 9. Previous alarm value setpoint (cps} ____ <o_( _ti._-_____________ _ 10. Fraction to apply as a safety margin , A= 0.5 . [ "i. K, . * .: P 2 * ] Setpo1nt = 1 O x '. .>:-g x -x A + Bkg = "i:.1 (K 1.,.. WEC,) F; Setpoint = sx[(1S)(S)(?)J+(4) (16)(6) Setpoint=l ox[(lS)(S)(?) x(l o)]+( 4) (16)(6) Setpomt = S x ----. ~--~-~--1,..,~--+ ( *2.. S . [C7,1o7£-7>)( l,Sl~~ )( lo.. >] ( l \ l ,. ~(,o )( I"-' /k** ) ,. ) 11. Setpoint = S L / Fractional Change= New value -Previous Value= ( 11 ) -( 9) = ( S ~.3, ) -( 0 <41-} Previous Value ( 9 ) ( b t L!~ ) 12. Fractional Change= *-D~.1'2--v If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm= Setpoint *==1:> OL-~ S.~, ""( fCh'°'\, / 13. Monitor Hi Alarm = 14. Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ,..\A--) = /i.J lt>r-cps NEE-323-CALC-003 Attachment 3 Page 7 of 9 *1. 3. 4. d) 8. 9. 10, ALARM SETPOlNTS FOR LIQUtD RAO MONITORS ATIACHMENT1 Rev. 17 Page 9 of 11 Page 1 of 3 UQU1D EFFLUENT RADIOACTIVITY MONITOR SETPOINT Sample No. / '7.,. 3 I G . 2. Sample Date & Time /-µ,-/7 / c>ol C, Stream/Monitor Description g/J-J -~¥7 1<,;#-7'4"/£~u..1 .Z,/ 4t/76h 1 L,he. l ~/'71if~) Effluent Monitor Reading (cps) __ ___.,==-'0:---


Effluent Flow (gpm) <Jt,.c7-o Average effluent flow during time represented by sample, F 1 (gpm) __ ,4,..._¥":-'1'.:~a:..._ ___ ~-Average dilution {discharge canal) flow during time represented by sample, F 2 (gpm) e/4 Monitor calibration factor, g , ( cps/µCi/ml).-=-~~//~/-Z_e"--<i7-----


Previous alarm value setpoint (cps) S-_3-'--0 _______________

_ Fraction to apply as a safety margin, . A = 0.5 Setpoint =10x[ r.,K, xgx F 2 xA]+Bkg = , * 'f.1 (K, + WEC 1) Fj Setpoint=lOx[(lS)(S)(?) x(l O)J+( 4) (16)(6)

  • Setpolnt = sx[<15)(8)(7)]+(4) . . (16)(6) .. ' ; J + ( //J ) 11. Setpofnt = __ 5'_ff_5~,~~--

Fractional Change = New value -Previous Value= ( 11 ) -( 9) = ( 5~S:S" ) -( 5Pf:? ) Previous Value ( 9 ) ( G ?,c> ) 12. Fractional Change = ti, IO S' If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. Continuous Monitor Hi Alarm = Setpoint 13. Monitor Hi Alarm= &,?t? 14. Radwaste Monitor Hi Alarm= .16 (11) = .16 ( ) = 4!lft cps 24 .. NEE-323-CALC-003 Attachment 3 Page 8 of 9 .. --: .PLANT CHEMISTRY PROCEDURES 3200 MANUAL PCP 8.7 . . . . .. ..... :**:**** .* . . *, .. . ' ALARM SETPOINTS FOR LIQUID RAD Rev. 17 MONITORS Page 9 of 11 ATTACHMENT 1 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT 1. SampleNo. 1'5'-lelJi:_5 _ 2. SampleDate&Time lo-1q .. ,c:;/0019

3. Stream/Monitor Description R. H R.5w /<ss*vv R,...,..,.. ,.,_,,..e..

I< M -4 Al.£-i' 4. Effluent Monitor Reading ( cps)._-::-"--.,.;J,,...::..:::u'---:----- ~-:::--:-:---:--;.,----,-c-::;-;--=:---------

5. Effluent Flow (gpm) ~K.~s w A
  • L\'60(.) WM, R. H.RS'-"'1 6 4~0 frP""' 6. Average effluent flow during time represented by sample, F 1 (gpm) rvid: . 7. Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm) rv(.ft:.. 8. Monitor calibration factor. g, (cps/µCi/ml)

__ ,;l._._;).._q_~_-_4' ___________ _ 9. Previous alarm value setpo i nt (cps) __ ...alo:-3=-----------


10. Fract i on to apply as a safety margin, A= 0.5 -Setpoint=l O x[ (l S)(S)(7lx(1 O)] +( 4) (] 6)(6) 11. Setpoint = sx[(lS)(S)(?)]

+ (4) (16)(6) * [ ( _'\.c....:../_1D_E,;._

    • _~...;_)(.:._~_-_?.:

_ct_E._4>_;,)_.:....( _rv/,__:_A. _* _....:...)) ] L (' """\ 0 Sctpomt = Sx r o<s. ( I ,4 . q 7 )( tv{A Setpoint = ___ 4~(.p-~ ___ / ) Fractional Change= New value -Previous Value= ( 11 ) -( 9) = ( ti; lo<?: ) -( ~<o ) Previous Value ( 9 ) ( 1)"4,:, ) 12. Fractional Change= -0, ~.;i..(Q ./ If fractional change is greater than +/-0.3, adopt a new monitor alarm setting. --. Continuous Monitor Hi Alarm = Setpoint 13. Monitor Hi Alarm = <g"(,:, :> ./ 14. Radwaste Monitor Hi Alarm= .16 (11) === .16 ( 28 N~E-323-CALC-003 Attachment 3 ALARM SETPOINTS FOR LIQUID RAD MONITORS ATTACHMENT 1 Rev. 17 Page 9 of 11 Page 9 of 9 Page 1 of 3 LIQUID EFFLUENT RADIOACTIVITY MONITOR SETPOINT 1. Sample No. 14--~o 4-2. Sample Date & Time 2.-\4-\4-- / oo "2.... J 3. Stream/Monitor Description 12-~C2..Sw I f-5wV Rv...~T" lZ-L Rv,,\, 4 L b'o

  • 4. Effluent Monitor Reading (cps)
  • o . 5. Effluent Flow (gpm) l2\_\1z...-S~

'A'~ -4z..xx::>'1C='= 1 '~-4*x:>vr.~

  • 6. Average effluent flow during time represented by sample, f 1 (gpm} N /A--F. \) 7. Average dilution (discharge canal) flow during time represented by sample, F 2 (gpm) ,J jk-8. Monitor calibration factor, g, ( cps/µCi/ml)

_ __,'-=~ .... Z:.G..9'-'f..;;;;.._.~_~v---'-, ----------

9. Previous alarm value setpoint (cps) ____ e_<,.:,=* ..;c;;~ __ __.....:;v

___________ _ 10. Fraction to apply as a safety margin, A= 0.5 Setpoint=1 ox[ (l 5)(S)(?) x(l O)] +( 4) (16)(6) Setpoint = sx[<1 S)(S)(?)] + ( 4) (16)(6) c:.. ;7, <:i7 i-7;, 2 .* z."1 )( Setpoint = sx[( )( ( ; I I * '5 <.o )( ~0> v 11. Setpoint= ______ _ ,-J /.4-) ] ) + ( IV If'> ) Fractional Change= New value -Previous Value= ( 11 ) -( 9) = ( ~0'7) -( f:;,\o*;, ) Previous Value ( 9 ) ( 'o tv*7 ) 12. Fractional Change= *-O, 0*7 / If fractional change is greater than +/-0.3, adopt a new monitor alarm setting., Continuous Monitor Hi Alarm = Setpoint *::boU::, s~-r (}...., ""'f v" 13. Monitor Hi Alarm= 14. Radwaste Monitor Hi Alarm = .16 (11) = .16 ( **-'l,ll-) = ,J /p.,-cps Spent Fuel Storage Pool Water Level 3.7.8 3.7 PLANT SYSTEMS 3. 7 .8 Spent Fuel Storage Pool Water Level LCO 3.7.8 The spent fuel storage pool water leve l shall be~ 36 ft. APPLICABILITY

During movement of irradiated fuel assemblies in the spent fuel storage pool. ACTIONS A. CONDITION Spent fuel storage pool water level not within limit. REQUIRED ACTION A.1 -----------NOTE--------LCO 3.0.3 is not applicable. I COMPLETION TIME Suspend movement of Immediately irradiated fuel assemblies in the spent fuel storage pool. SURVEILLANCE REQUIREMENTS SR 3.7.8.1 DAEC SURVEILLANCE Verify the spent fuel storage poo l wate r level is 36 ft. 3.7-18 FREQUENCY In accordance with the Surveillance Frequency Control Program Amendment 280 I AOP 981 FUEL HANDLING EVENT PROBABLE ANNUNCIATORS 1C03A A1 FUEL POOL EXHAUST HIGH-HIGH RADIATION B1 FUEL POOL EXHAUST HIGH RADIATION 1C04B B6 NEW FUEL STORAGE AREA ARM HI RAD 1C04B C6 SPENT FUEL STORAGE AREA ARM HI RAD 1C05B CB PCIS GROUP " 3" ISOLATION INITIATED 1C09A A2 NW DRYWELL RADIATION LEVEL HI-HI B2 NW DRYWELL RADIATION LEVEL HI 1C09B A2 SOUTH DRYWELL RADIATION LEVEL HI-HI B2 SOUTH DRYWELL RADIATION LEVEL HI 1C35A A1 REFUELING FLOOR NORTH END HI RADIATION A2 REFUELING FLOOR SOUTH END HI RADIATION PROBABLE INDICATIONS
1. Lowering cavity and/or Spent Fuel Pool level on the 5th floor. Visual 2. Lowering cavity level Flood up Range on level indicator , Ll-4541 (at 1 C04). 3. Lowering Skimmer Surge Tank level on level indicator , Ll-3412 (at 1C04). not used in EAL 4. Lowering Fuel Pool level on level ind i cator , Ll-3413 (at 1C04). 5. Rising radiation levels on any of the following ARMs: Spent Fuel Pool Area , Rl-9178 North Refuel Floor , Rl-9163 New Fuel Vault Area , Rl-9153 South Refuel Floor , Rl-9164 6. R i sing Drywell radiation levels on either of the following (at 1 C09): NW Drywell Area Hi Range Rad Monitor , RIM-9184A South Drywell Area Hi Range Rad Monitor , RIM-9184B I AOP 981 Page 6 of 8 Rev. 6}}