ML17346A441
ML17346A441 | |
Person / Time | |
---|---|
Site: | Turkey Point |
Issue date: | 07/31/1984 |
From: | FLORIDA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML17346A440 | List: |
References | |
PROC-840731-01, NUDOCS 8407310402 | |
Download: ML17346A441 (238) | |
Text
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENTS FROM THE TURKEY POINT PLANT UNITS 3 AND 0 Florida Power and Light Company t
3uly 1980 840731040p 840 j24 "
0 OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 1.0 Introduction 1 2.0 Liquid Effluent 2 2.1 Radioactivity Concentration In Liquid Waste 2 2.2 Radioactivity Concentration in Water at the Restricted Area Boundary 2.2.1 Aqueous Concentration 2 2.2.2 Batch Release 3' 2.2.3 Continuous Release 2.3 Cumulative Dose 2A Method of Establishing Alarm and Trip Setpoints 6 2.0.1 Setpoint for a Batch Release 7 2.0.2 Setpoint for a Continuous Release 7 2.5 Projected Dose 7 Figure 2.1 L'iquid Effluent Systems 9 3.0 Gaseous Effluent 10 3.1 Introduction 10 3.2 Radioactivity in Gaseous Effluent 10 3.3 Dose Rate Due to Gaseous Effluent . 11 3.3.1 Total Body Dose Rate 11 3.3.2 Skin Dose Rate 12 3.3.3 H-3, I-131, I-133, and Particulate Dose Rate 13 3.0 Dose - Noble Gases 10 3.0.1 Noble Gas Gamma Radiation Dose 15 3.0.2 Noble Gas Beta Radiation Dose 16 3.5 Dose Due to Iodine, Tritium, and Particulates in Gaseous Effluents 17 3.5.1 Determining the Quantity'of Iodine, Tritium, and Particulates 17 3.5.2 Calculating the Dose Due to Iodine, Tritium and Particulates 18 3.6 Effluent Noble Gas Monitor Alarm Setpoint 21 3.6.1 Setpoint Based on Dose Rate 22 3.6.2 Setpoint Based on Concentration 23 3.7 Projected Dose for Gaseous Effluents 29 Figure 3.1 Gaseous Effluent Systems 25 Figure 3.2 Locations at Which Doses Oue to Airborne Effluents from the 26 Turkey Point Plant are Calculated C6:1
~
)
0 h
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT LO Dose Commitment frorg Releases over Extended Time 27 0.1 Releases during 12 Months 27 0.2 Environmental Measurements 28 0.3 Dose to a Person from Noble Gases 28 0.3.1 Gamma Dose to Total Body 28 0.3.2 Dose to Skin 29 Appendix A Pathway-Dose Transf er Factors A-1 B Deleted C Deleted D Technical Bases for Aeff E Radiological Environmental Surveillances E-1 Turkey Point Plant Key to Sample Locations Table 3-1 Distribution of Radioactive Noble Gases in Gaseous Effluent from Turkey Point Units 3 and 0 3-2 Atmospheric Gaseous Release Points at the Turkey Point Units 3 and 0 Transfer Factors for Maximum Offsite Air Dose 3-0 Transfer Factors for Maximum Dose to a Person Offsite Due to Radioactive Noble Gases 3-5 Dose Conversion Factors for Deriving Radioactive Noble Gas Effluent Monitor Setpoints 3-6 Reference Meteorology: Annual Average Atmospheric Dispersion Factors 3-7 Reference Meteorology: Deposition Depleted Annual Average Atmospheric Dispersion Factors 3-8 Reference Meteorology: Annual Averaged Relative Deposition Rate C6:1
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT This Manual describes acceptable methods of calculating radioactivity concentrations in the environment and the potential resultant doses+ offsite"+ that are associated with liquid and gaseous ef fluents from the Turkey Point Nuclear Plant. The radioactivity concentrations and dose estimates are used to demonstrate compliance with Technical Specifications required by 10 CFR 50.36. The methodology stated in this Manual is acceptable for use in demonstrating operational compliance with 10 CFR 20.106, 10 CFR 50 Appendix I, and 00 CFR 190. Only the dose attributable to the Turkey Point Units 3 and 0 is considered in demonstrating compliance with 00 CFR 190 since no other nuclear facility exists within 50 miles of the Plant.
Monthly calculations are made to guide the management of station effluents and to verify that potential radioactivity concentrations and doses offsite satisfy the Technical Specifications. The receptor is described such that the exposure of any resident near the plant is unlikely to be underestimated. Even more conservative conditions (e.g. location and/or exposure pathways expected to yield higher computed doses) than appropriate for the maximally exposed person may be assumed when calculating the concentration or dose.
Monthly calculations made to assure that air dose and dose commitment specifications are not exceeded are based on atmospheric dispersion and deposition of gaseous effluents derived from reference meteorological conditions.+++ Calculations made to assess the radioactive noble gas dose to air are based on the location offsite that could be occupied by a person where the maximum air dose is expected.
Calculations of dose committed from radioactive releases over extended time (3 and 12 months) are also made for the purpose of verifying compliance with regulatory limits on offsite dose. For these calculations the receptor is selected on the basis of the combination of applicable exposure pathways identified in the land use census and the maximum ground level X/Q at a residence, or on the basis of more conservative conditions such that the dose to any resident near the Plant is unlikely to be undet estimated.
+ Dose is commonly used to mean personal dose equivalent commitment.
<<+ Offsite means outside the exclusion area.
+++ Reference meteorological conditions are annual averaged conditions during years 1976 and 1977.
C6:1
0 V
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 2.1 Radioactivi Concentration In Li id Waste The concentration of radionuclides in liquid waste is determined by sampling and analysis in accor dance with Table 3.9-1 of the Technical Specifications. When a radionuclide concentration is below the lower limit of detection (LLD) for the analysis, it is not reported as being present in the sample.
2.2 Radioactivi Concentration in Water at the Restricted Area Boundar Technical Specification 3.9.1.a requires that the concentration of radioactive material, other than noble gases, in liquid effluent released into an unrestricted area not exceed the concentration specified in 10CFR Part 20, Appendix B, Table 2, Column 2. A maximum concentration, 2 x 10 <pCi/ml, of noble gas in aqueous releases into an unrestricted area applies separately since the potential exposure route, immersion in water, differs from that upon which Part 20, Appendix B is based.
Radioactive material in liquid effluent is diluted by condenser cooling water from fossil units 1 and 2 and from nuclear units 3 and 0 in the condenser cooling water mixing basin. Water in the basin flows into a closed cooling canal system onsite. Liquid effluent does not actually leave the site in a surface discharge.
For the purpose of compliance with Technical Specification 3.9.1.a, the total condenser cooling water flow from operating condenser cooling water pumps at the four units is assumed for dilution and the restricted area boundary is assumed to be at the end of the condenser cooling water mixing basin where water enters the cooling canal system.
Some liquid effluents from both Units 3 and 0, discharge through a common liquid radwaste release point. To assure that the effluents are within allowable limits per reactor, the measured releases from the common release point are apportioned to each unit on a ratio equal to the ratio of specific isotopic concentrations in the primary coolant in the two reactors.
Sections 2.2.2 and 2.2.3 describe methods used to assess compliance with Technical Specification 3.9.1.a. Effluent monitor alarm/trip setpoints are computed on the same basis, as is .described in section 2.0. As long as an alarm/trip setpoint is not exceeded, aqueous effluents are deemed to comply with Technical Specification 3.9.1.a.
2.2.1 A ueous Concentration The diluted concentration of radionuclide i in the condenser co'oling water mixing basin outflow is estimated with the equation C6:I
V OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT where:
Czi = concentration of radionuclide i in the water in the
~ condenser cooling water mixing basin outflow (pCi/ml)
Ci = concentration of radionuclide i in liquid radwaste released (pCi/ml)
Fl/F2 = dilution Fl = flow in radioactive liquid discharge line (gal/min)+
F2 = total condenser cooling water flow (gal/min).+ Value not greater than the rated total condenser cooling water flow from operating condenser cooling water pumps at the four units.
2.2.2 Batch Release A sample of each batch of liquid radwaste is analyzed before release for I-131 and other principal gamma emitters, or for total gross 8-y activity concentration. With the activity concentration in a batch sample b based on the total isotopic activity or gross 9-y activity, the fraction of the unrestricted area MPC due to a batch release is estimated by Cb (2)
FMPCb 3 x 10-8 where:
F VlPCb = fraction of the unrestricted area MPC present in the condenser cooling water mixing basin outflow due to a batch release Cb = Czi (PCi/ml) 3 x 10-3 = unrestricted area MPC for unidentified radionuclides in water (pCi/ml)
'lternately, the fraction of the unrestricted area MPC can be derived using the ratio of the individual isotopic concentrations and their related MPCs. FMPCb is estimated with the equation
~zx ~ (3)
FMPCb = Eb MPCi X
+ Fl and F2 may have any suitable but identical units of flow (volume/time).
C6:1
OFFSITE DOSE, CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT where:
MPCI = activity concentration limit in water of radionuclide i according to 10 CFR 20, Appendix 1, Table 2, Column 2 (pCi/ml)
Quarterly average of the fraction of MPC in the batch tank due to I-131 and rinci al amma emitters Eb = Quarterly average of the fraction of MPC in the batch tank due to all radionuclides measured Eb is an adjustment to account for radionuclides not measured prior to release but measured in the monthly and quarterly sample per Technical Specification Table 3.9-1. The value of Eb has been determined based on past operating data and is Eb = 0.8 2.2.3 Continuous Release Continuous aqueous dischar'ges are sampled and analyzed according to the schedule in Technical Specifications Table 3.9-1. The fraction of the unrestricted area MPC present in a continuously discharged radioactive stream, F MPCc, is derived either from isotopic analyses or from gross 8-y analysis." With the activity concentration in a continuous radioactive release stream based on the total isotopic or gross activity alone, the fraction of the unrestricted area MPC due to a continuous release is estimated with Cc FMPCc 3 x 10-8 where:
FMPCc = fraction of the unrestricted area MPC present in the condenser cooling water mixing basin outflow due to a continuous release Cc = Czi (pCi/mD Alternately, the fraction of the. unrestricted area MPC can be derived using the ratio of the individual isotopic concentrations and their related MPCs. 'FMPCc is estimated with the equation FMPCc Cxi :
Hc MPCi I.
C6:1
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT where:
Quarterly average fraction of MPC due to I-131 and principal gamma emitters measured in weekly sam les of continuous releases durin the uarter Quarter y average fraction o M due to a radionuclides measured in samples of continuous releases Ec is an adjustment to account for radionuclides not measured in weekly samples of continuous releases but measured in the monthly and quarterly composite samples per Technical Specifications Table 3.9-1.
The value of Ec has been determined based on past operating data and is Ec = 0.9 2.3 Cumulative Dose Technical Specification 3.9.1.b requires that the dose or dose commitment per reactor to a member of the public due to radioactive material released in liquid effluent to an unrestricted area shall be limited, during any calendar quarter, to
<1.5 mrem to the total body and to <5 mrem to any organ, and, during any calendar year, to <3 mrem to the total body and <10 mrem to any organ.
Technical Specification 3.9.1.b.l requires the dose or dose commitment to a member of the public due to radioactive material released in liquid effluent to be calculated on a cumulative basis at least once per month. The condenser cooling water basin and closed canal system which receives aqueous effluent is entirely on FP and L property, without surface discharge offsite, and FP and L does not permit members of the public to use the water. As a result, potential exposure of a member of the public to radioactive material originating in aqueous effluent is limited to irradiation of campers by canal shor eline deposits.
Technical Specification 3.9.1.b.l is satisfied by calculating the cumulative total body dose to a person who may be irradiated by radionuclides deposited on the cooling canal shoreline from radioactive liquid effluent. Compliance with the organ dose limit is assured as long as the total body dose is below its limit.
The model that is used to evaluate doses due to radioactivity in liquid effluents is 0 23 ~ + +shore 1 inc Qk ~
e Flk I.
V ~i wher e:
0 = total body dose due to irradiation by radionuclides on the shoreline which originated in a liquid effluent release (mrem) 0.23 = units conversion constant = 1 Ci 60 min 3785 ml 106 pCi hr gal
OFFSITE DOSE CALCULATIONMANUAL-FOR GASEOUS AND LIQUID EFFLUENT Al = transfer factor relating a unit aqueous concentration of .
radionuclide i (1Ci) to dose commitment rate to the total body of an exposed person tabulated in, Appendix A (m rem/Ci min/gal)
~
Cik = the concentration of radionuclide 1 in the undiluted liquid waste to be discharged that is represented by sample k (pCi/ml) .
Flk = liquid waste discharge flow during release represented by sample k (gal/min)
V = cooling canal effective volume; approximately 3.75 x 109 gallons X. =
1 effective decay constant (minute-1) for nuclide' (Xl + F3/V) where: Xi = the radioactive decay constant F3 = canal-ground water interchange flow, approximately 2.25 x 105 gal/min
= period of time (hours) during which liquid waste represented by sample k is discharged Radionuclide concentrations (C;k) in effluent are measured.by the sampling and analysis program specified in Technical Specification Table 3.9-1. Typically, more than 90 percent of the potential irradiation from radionuclides deposited along the shoreline is due to Mn-51, Co-58, Co-60, Cs-130, and Cs-137. Of these radionuclides, Co-60 has the maximum dose transfer factor, Ai. Thus, for the purpose of assessing compliance with Technical Specification 3.9.1.b.l, the radioactive effluent source term may be either:
a) principal gamma emitters measured by the effluent sampling and analysis program, or b) Mn-50, Co-58, Co-60, Cs-130, and Cs-137 measured by the effluent sampling and analysis program and other identified gamma emitters assumed to be Co-60, or c) all gamma emitters measured by the effluent sampling 'and analysis program assumed to be Co-60.
2.0 Method'of Establishin Alarm and Tri Set ints Technical 'pecification 3.9.l.c requires the radioactive liquid effluent monitoring instrumentation channel to be operable with its alarm/trip setpoints set to ensure the limit of Specification 3.9.l.a is not exceeded.
The alarm/trip setpoint for each liquid effluent radiation'monitor is derived from the concentration limit provided in 10 CFR Part 20, Appendix 8, Table 2, Column 2 applied in the condenser cooling water mixing basin outflow.
Radiation monitoring and isolation points are located in the steam generator blowdown lines, R-3-19, R-0-19, and the liquid waste disposal system line, R-18, through which radioactive waste effluent is eventually discharged into the canal basin. See Figure 2-1;
~"
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT The alarm setpoint for each liquid effluent monitor is based upon the measurements of 'radioactivity in a batch of liquid to be released or in the continuous aqueous discharge. Sample measurements are performed according to Technical Specification Table 3.9-1.
2.0.1 Set int for a Batch Release The liquid radwaste effluent line radiation monitor alarm setpoint for a batch release is determined with the equation below or a method which gives a lower setpoint value.
where:
S= .g A
FMPCb
+Bkg (7)
S = radiation monitor alarm setpoint (cpm)
A = laboratory counting rate (cpm/ml) or activity concentration (pCi/mo of sample from batch tank FMPCb = fraction of unrestricted area MPC present in the condenser cooling water mixing basin outflow due to a batch release; determined in section 2.2.2.
g = ratio of effluent radiation monitor counting rate to laboratory counting rate or activity concentration in a given batch sample (cpm per cpm/ml or cpm per pCi/ml)
Bkg = background (cpm) 2.0.2 Set int for a Continuous Release The liquid effluent line radiation monitor alarm setpoint, for a continuous release, is determined with the equation below or by a method which gives a lower setpoint value.
A '
S +Bkg FMPCc where:
FMPCc = fraction of unrestricted area MPC present in the cooling water mixing basin outflow due to =
'ondenser a continuous release; determined in section 2.2.3.
Technical Specification 3.9.1.d requires that appropriate subsystems of the liquid radwaste treatment system shall be used to reduce the radioactive materials in liquid wastes prior to their discharge when the projected doses to unrestricted areas due to liquid effluents, when averaged monthly, would exceed 0.06 mrem to the total body or 0.2 mrem to any organ.
C6:1
0 OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT Technical Specification 3.9.1.d.l requires the doses, to unrestricted areas, due to radioactive material released in liquid effluent to be projected at least once per month unless the liquid radwaste treatment system is being used.
This requirement is satisfied by extrapolating the dose to date during the current month to include the entire month. The dose to date is calculated as described in section 2.3.
The dose is projected with the relation: ~
p 31 9 (9)
X where:
P = the projected total body dose during the month (mrem) 31 = number of days in a calendar month (days)
X = number of days in current month to date represented by available radioactive effluent sample (days)
D = dose to date during current month calculated according to section 2.3 (mrem)
Alternatively, the monthly dose may be projected by computing the doses to the total body and most exposed organ accumulated during the most recent month and assuming the result represents. the projected doses for the current month.
The dose during. the preceeding month will be computed as described in section 2.3.
0 0
Primary Pr imary Tuib ines Turbines oop Unit 3 Unit 4 Oop on ensers Steam Reactor Reactor Steam Generato Condensers Generator Blowdown CVCS 3 CVCS 4 B LOWDOWN Blowdown Makeup water Blowdown Vent to flash and chemicals flash Vent to Atmosphere tank tank Atmosphere Reactor Reactor Coolant Cool ant R-4-19 Drain Tank Drain Tank I
R-3-19 C Chemical Laboratory A
D Containment Sumps Spent Fuel Hol dup Boric Acid Waste Pits Tanks Holdup Floor Drains Tanks Laundry 6 Showers Laundry Boric Acid Evaporator Water Concent ra tes Deminerallzer Recovery Holding Tank System System Bottoms Intake intake Canal Canal Monitor Solid Waste Tanks Drumming Facility Shipment Off-site R-18 Waste Monitor Discharge Canal Tanks Discharqe Canal
I OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 3.1 Introduction Units 3 and 0 discharge gaseous effluent through the plant vent, Unit 3 Spent Fuel Pit vent and air ejector vents. These 'aseous ef fluent streams, radioactivity monitoring points, and effluent discharge points are illustrated schematically in Figure 3-1. When calculating atmospheric dispersion of gaseous effluent, gaseous discharges from Units 3 and 0 are treated as a mixed mode ground-level release from a single composite vent.
3.2 Radioactivi in Gaseous Effluent For the purpose of estimating offsite radionuclide concentrations and radiation doses, measured radionuclide concentrations in gaseous effluents from the Plant are relied upon. Table 3.9-3 in the Technical Specifications identifies specific radionuclides in gaseous discharges for which sampling and analysis is done.
In addition, the quantity of radioactive noble gas discharged during an interval of time and not accounted for by the above samples may be determined by integrating the release rate measurement of each effluent noble gas monitor identified in Figure 3-1. The total measured radioactivity discharged via a stack or vent during a counting interval is determined by the relation N- ~ P (10) go 3.53 x 10 5 '
where:
Qj = total measured gaseous radioactivity release via a stack or vent during counting interval j (pCi)
Nj = counts accumulated during counting interval j (counts)
F = discharge rate of gaseous effluent stream (ft3/min) 3.53 x 10"5 = conversion constant (ft3/cm3) h = effluent noble gas monitor calibration or counting rate response for noble gas gamma radiation,
~CITI pCi/cm3 The distribution of radioactive noble gases in a gaseous effluent stream is determined by gamma spectrum analysis of gas samples from that stream.
Results of previous analyses may be averaged to obtain a representative distribution.
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT In the event the radioactive noble gas distribution is not obtainable from sample(s) taken during the current period the distribution will be obtained from recently available data or from Table 3-1.
If fi represents the fraction of radionuclide i in a given effluent stream, based on the isotopic distribution of that stream, then the quantity of radionuclide i released in a given gaseous effluent stream during counting interval j is estimated by the relation Qx] = Qg where:
Qij = quantity of radionuclide i released in a given gaseous effluent stream during counting interval j (pCi) fi = the fraction of radionuclide i released in a given effluent stream Some gaseous effluents from both Units 3 and 0, whose sources are identified in Table 3-2, discharge in common through the Plant Vent. To assure that the effluents are within allowable limits per reactor, the measured release from the Plant Vent is apportioned to each unit on a ratio equal to the ratio of specific isotopic concentrations in the primary coolant in the two reactors. Iodine and
'particulate release contributions will also be adjusted to account for specific containment purge releases.
3.3 Dose Rate Due to Gaseous Effluent Technical Specification 3.9.2.a provides that the dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site boundary shall be limited to the following: <500 mrem/year to the total body and <3000 mrem/year to the skin due to noble gases and <1500 mrem/year to any organ due to I-131, I-133, tritium and for all radioactive materials in particulate form with half-lives greater than 8 days.
3.3.1 Total Bod Dose Rate The total body dose rate from radioactive noble gases may be calculated at any location off-site by assuming a person is immersed in and irradiated by a semi-infinite cloud of the noble gases. The dose rate may-be calculated with the equation (12) where:
l0 = Oose rate to total body from noble gases (mrem/year)
C6:1
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT X/Q =. atmospheric dispersion factor at the off-site location of interest (sec/m>)
t = Averaging time of release, i.e., increment of time during which Ql was released (year)
Qi = quantity of noble gas radionuclide i released during the averaging time (pCi)
Ppl = factor converting time integrated concentration of noble gas radionuclide i at ground-level, to total body dos ep mrem . See Reference Table 3-0 pCi sec/m3
~
Since dose rate limits for airborne effluents apply everywhere off-site, compliance is assessed and alarm setpoints determined at the site boundary where the minimum atmospheric dispersion from the plant (maximum X/Q) occurs. Ordinarily, that location is selected on the basis of reference meteorology data in Appendix A. According to those data, the minimum dispersion off-site occurs at the site boundary 1950 meters SSE of the plant where X/Q = 5.8 x 10"7 sec/m3. Alternatively, averaged meteorology data coincident with the period of release being evaluated may be used.
3.3.2 Skin Dose Rate The dose rate to skin from radioactive noble gases may be calculated at any location off-site by assuming a person is immersed in and irradiated by a semi-infinite cloud of the noble gases. The dose rate to skin may be calculated with the equation D = X Q
~-t 1
i 'Bi+0 Qi i 56 ~ Qi 'yi (13) where:
D = dose rate to skin from radioactive noble gases (mrem/year)
S81 = factor converting time integrated concentration of noble gas radionuclide i at ground-level, to skin dose from beta radiation',
mrem Reference Table 3-0 pCi sec/m3
~
0.56 = 1.11 ~
0.5 (mrern/mrad) where: 1.11 = ratio of tissue dose equivalent to air dose in a radiation field (mr em/mrad) 0.5 = factor for shielding by a building C6:1
0 OFFSITE DOSE CALCULATIONMANUAL.
FOR GASEOUS AND LIQUID EFFLUENT Ay~ = factor for converting time integrated concentration of noble gas radionuclide I in a semi-infinite cloud, to air dose from. its gamma radiation, mrad listed in Table 3-3 pCl ~ sec/m3 Compliance with the limits on dose rate from noble gases is demonstrated by establishing gaseous effluent monitor alarm setpoints such that an alarm will occur at or before a dose rate limit for noble gases is reached. If an alarm occurs when the monitor setpoint is at or below its limit, compliance may be assessed by comparing the monitor recor d with the setpoint (limit) calculated in accordance with section 3.6 or a more conservative method.
Since Xe-133 has comprised most of the effluent noble gas radioactivity historically, alarm setpoints may be derived on the basis of Xe-133, an
~
historical spectrum dominated by Xe-133, or on a measured spectrum.
As long as Xe-133 is the dominant radioactive gas in airborne effluent, the gamma dose rate to a person's body is expected to be a larger fraction of the limit, 500 mrem/year, than is the beta plus gamma dose rate to skin, 3000 mrem/yr. In that case, a gaseous effluent monitor setpoint may be derived on the basis of gamma dose rate to a person' body alone; such that an alarm occurs at or before the total body dose rate off-site exceeds 500 mrem/year as given in Specification 3.9.2.a.
Since dose rate limits for airborne effluents apply everywhere off-site, compliance is assessed and alarm setpoints determined at the site boundary where the minimum atmospheric dispersion from the plant (maximum X/Q) occurs. Ordinarily, that location is selected on the basis of reference meteorology data in Appendix A. According to those data, the minimum dispersion off-site occurs at the site boundary 1950 meters SSE of the plant where X/Q = 5.8 x 10 7 sec/m3. Alternatively, averaged meteorology data coincident with the period of release being evaluated may be used.
3.3.3 H-3 I-131 I-133 and Particulate Dose Rate The dose rate due to H-3, I-131, I-133, and radioactive material in particulate form with a half-life of more than 3 days is calculated with the equation Xg anp 3600.t- q L Qik Aanip (v) k i where:
Danp = dose equivalent rate to body organ n (most exposed organ) of a person in age group a (adult) exposed via pathway p (inhalation) to radionuclide i identified in analysis k of effluent air (mrem/year)
C6:1
II 0
P.
OFFSITE DOSE CALCULATIONMANUAL-FOR GASEOUS AND LIQUID EFFLUENT 3600 = conversion constant (sec/hr) r t = period of time over which the effluent releases are averaged (hr)
Xd/Q = atmospheric dispersion factor, adjusted for depletion by deposition (sec/m3). (Alternatively X/Q, unadjusted, may be used.)
Qik = quantity of radionuclide i released during time increment t based on analysis k (pCi).
TAanip a factor relating the airborne concentration time integral of radionuclide 1 to the dose equivalent to organ n of a person'in age group a (adult) exposed via pathway p (inhalation),
~mrem/ r; See Appendix A pCi/m3 When the dose rate due to H-3, I-131, I-133, -and radionuclides in particulate form is calculated for the purpose of assessing compliance with Specification 3.9.2.a, a hypothetical adult located at the site boundary where the minimum atmospheric dispersion from the plant occurs is assumed as the receptor.
Ordinarily, the dose rate calculation will be based on the maximum Xd/Q (minimum dispersion) according to reference meteorology data in Table 3.7. The maximum Xd/Q at or beyond the site boundary which will be used to calculate the dose rate is Xd/Q = 5.0 x 10 7 sec/m3. According to those data, the minimum dispersion off-site occurs at the Site Boundary 1950 meters SSE of the plant. That location is identified in Figure 3-2. Alternatively, averaged meteorological dispersion data coincident with the period of release may be used to evaluate the dose rate.
Assuming exposure of an adult by inhalation is appropriate, because it is also the basis of maximum permissible concentr ation (limits) for airborne radionuclides in unrestricted areas as given in 10 CFR Part 20, Apperidix B. These radionuclides in airborne effluents are measured according to the sample and analysis schedule in Technical Soecification Table 3.9-3.
The averaging time of the measured releases used to evaluate compliance will not exceed 98 days for Fe-55, Sr-89 and Sr-90 and will
. not exceed 35 days for the other radionuclides.
3.0 Dose - Noble Gases Technical Specification 3.9.2.b requires that the air dose per reactor at and beyond the site boundary due to noble gases released in gaseous effluents shall be limited, during any calendar quarter, to <5 mrad for gamma radiation and <10 mrad for beta radiation and, during any calendar year, to <10 mrad for gamma radiation.and <20 mrad for beta radiation.
C6:1 ~
0 OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 3.0.1 Noble Gas Gamma Radiation Dose Specification 3.9.2.b.l requires an evaluation be performed monthly to verify that the accumulated air dose due to gamma radiation does not exceed the limits as given in 3.0 above.
The gamma radiation dose to air offsite as a consequence of noble gas where:
g 0.8 1 ..
discharged from each unit can be calculated with the equation X
Q A~ff . Wq-j (1S)
D> = noble-gas gamma dose to air due to a mixed-mode release (mrad) 0.8 a conservatism factor which, in effect, increases the estimated dose to compensate for variability in radionuclide distribution X/Q atmospheric dispersion factor for a mixed-mode discharge (sec/m>)
jeff effective gamma air dose factor converting time-integrated, ground-level, total activity concentration of radioactive noble gas, to air dose due to gamma radiation. This factor has been derived from noble gas radionuclide distributions in routine operational releases. Ref er to Appendix D for a detailed explanation. The effective gamma air dose factor derived is:
A = 1.4 x 10 5 gi ~ sec/m>
Qj total measured gaseous radioactivity released via a stack or vent during counting interval j (ICi)
Specification 3.9.2.b.l is satisfied by calculating the noble gas gamma radiation dose to air at the location identified in Figure 3-2. At that location, 1950 meters SSE of the Plant, the reference atmospheric dispersion factor to be used is X/Q = 5.8 x 10 7 sec/m3.
Alternately, Specification 3.9.2.b.l may be satisfied by calculating the gamma dose to air with the equation where:
D ~ X Qj 'i ' (Ie) fl = the fraction of radionuclide i released in a given effluent stream C6:1
0 4
OFFSITE DOSE CALCULATIONMANUAL.
FOR GASEOUS AND LIQUID EFFLUENT A~ = factor converting time 'ntegrated, ground-level concentration of noble gas radionuclide i to air dose from gamma radiation, listed in Table 3-3; mrad pCi sec/m3
~
3.0.2 Noble Gas Beta Radiation Dose Technical Specification 3.9.2.b.l requires an evaluation be performed monthly to verify that the accumulated air dose due to beta radiation does not exceed the limits as given in 3.0 above.
The beta radiation dose to air offsite as a consequence of noble gas discharged from each unit can be calculated with the equation Dg = 1 0.8
. X ~ A jeff ~
Z Qj (17)
J where:
De = noble gas beta dose to air due to a mixed-mode release (mrad) 0.8 = a conservatism factor which, in effect, increases the estimated dose to compensate for variability in radionuclide distribution A8 effective beta air dose factor converting time-integrated, ground-level, total activity concentration of radioactive noble gas to air dose due to beta radiation. This factor has been derived from noble gas radionuclide distributions in routine operational releases. Ref er to Appendix D for a detailed explanation. The ef fective beta air dose factor derived is:
Aa = 3.4 x 10 gi 'ec/m3 Specification 3.9.2.b.l is satisfied by calculating the noble gas beta radiation dose to air at the location identified in Figure 3-2. At that location, 1950 meters SSE of the Plant, the reference atmospheric dispersion factor to be used is X/Q = 5.8 x 10-7 sec/m3.
Alternately, Specification 3.9.2.b.l may be satisfi'ed by calculating the beta radiation dose to air with the equation (18)
C6:1
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT where:
Ag1 = factor converting time-integrated, ground-level concentration of noble gas radionuclide 1 to air dose from beta radiation, listed in Table 3-3; mrad pCi sec/m3
~
3.5 Dose Due to Iodine Tritium and Particulates in Gaseous Effluents Technical Specification 3.9.2.c requires that the dose per reactor to a member of the public due to I-131, I-133, tritium, and particulates with half-lives greater than 3 days in airborne effluents released to areas at or beyond the site boundary shall not exceed 7.5 mrem to any organ during any calendar quarter and shall not exceed 15 mrem to any organ during any calendar year.
3.5.1 Determinin the uanti of Iodin Tritium and Particulates Radionuclides other than noble gases in gaseous effluents that are measured by the radioactive gaseous waste sampling and analysis program described in Technical Specification Table 3.9-3 are used as the release term in dose calculations. Airborne releases are discharged either via a stack above the top of the containment building or via other vents and are treated as a mixed mode release from a single location.
Releases of steam from the blowdown flash tank concurrent with primary to secondary leakage will also result in the release of activity to the atmosphere. Using a blowdown sample analysis, it is assumed that 5% of the I-131 and I-133 and 33% of the tritium in the blowdown stream become airborne with the remainder staying in the liquid phase.
For each of these release combinations, samples are analyzed weekly, monthly, quarterly, or for each batch release according to Table 3.9-3.
Each sample provides a measure of the concentration of specific radionuclides, C;, in gaseous effluent 'discharged at flow, F, during a time increment ht. Thus, each release is quantified according to the relation Qzk z Czk i Fj ~ 6t j (19) where:
Qik the quantity of radionuclide i released in a given effluent stream based on analysis k (pCi)
C.k = concentration of radionuclide i in gaseous effluent identified by analysis k (pCi/cc)
Fj = effluent stream discharge rate during time increment htj(cc/sec) btj = time increment j during which radionuclide i at concentration.C;k is being discharged (sec) 4 OFFSITB DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 3.5.2 Calculatln the Dose Due to Iodin Tritium and Particulates A person may be exposed directly to an airborne concentration of radioactive material discharged in an effluent gaseous stream and indirectly via pathways involving deposition of radioactive material onto the ground. Dose estimates should account for the exposure via the following pathways:
- 1) direct radiation from airborne radionuclides except noble gases
- 2) inhalation
- 3) direct radiation from ground plane deposition
- 0) fruits and vegetables
- 5) air-grass-cow-meat
- 6) air-grass-cow-milk Of all these pathways, the air-grass-cow-milk pathway is by far the controlling dose contributor. The radioiodines contribute essentially all of the dose, by this pathway, with I-131 typically contributing greater than 9596. The dose transfer factors for the radioiodines are much greater than for any of the other radionuclides. The critical organ is the infant's thyroid. For this reason, the potential critical organ dose via airborne effluents can be estimated by determining an effective dose transfer factor for the radioiodines based on the typical radioactive effluent distribution, the air-grass-cow-milk pathway, and the infant thyroid as the receptor. Then for conservatism the total cumulative release of all radioiodines and particulates can be used along with the effective dose transfer factor to determine a conservative estimate of the infant thyroid dose.
Technical Specification 3.9.2.c.l, requires an evaluation be performed monthly to verify that the accumulated total body or organ dose commitment does not exceed the limit. Dose commitment due to iodines and particulates may be calculated by using the following equation DH ~ 3.17 x 10 D TG1>1 ~ Qik (20) 0~8 Q
. where:
= the dose commitment to an infant's thyroid received from exposure via the air-grass-cow-milk pathway'nd attributable to iodines identified in analysis k of effluent air, (mrem) 3.17 x 10 8 = conversion constant (yr/sec) 0.8 = a conservatism factor which, in effect, increases the estimated dose to compensate for variability in the radionuclide distribution-C6:1
0 0
OFFSITE DOSE CALCULATIONMANUAL-FOR GASEOUS AND LIQUID EFFLUENT D/Q = relative deposition rate onto ground from a mixed mode atmospheric release (m 2)
TG131 =
'i~ ~ i>> .~/
factor converting ground deposition of radioiodines to the dose commitment to an infant's thyroid exposed i-pCi/(m2 - sec)
Qik = The quantity of radionuclide 1 released in a given effluent stream based on analysis k (pCi)
Specification 3.9.2.c.l is satisfied by calculating the dose to a person from iodine and particulates discharged as airborne effluents via the air-grass-cow-milk pathway and is evaluated by assuming a cow on pasture 0.5 miles west of the plant. (There are no milch or meat animals within 5 miles.) At that location the reference atmospheric deposition factor is D/Q = 5 x 10-10 m-2 When equation 20 is used to estimate the critical organ dose commitment, the effective dose transfer factor is:
TC,, = 6.5 10>>
gi/(m2 ~
sec)
The reference data from which TG131 was derived are summarized in Table D-2 of Appendix D.
Alternately, the requirement of Specification 3.9.2.c. 1, to perform monthly determinations of dose commitments due to radioiodine, tritium and radioactive particulates in effluent air may be made by using equations (21), (22), (23), and (20).
The dose commitment from exposure to airborne concentrations of radioactive material other than noble gas from a release, Q;k, via the inhalation and irradiation pathways is calculated with the equation Ds~ = 3.17 x 10 ~
Xg
~
gQig ~
TAa~ip (21) 1 P where:
Dank = the dose commitment to organ n of a person in age group a due to radionuclides identified in analysis k of an air effluent, (mrem) 3.17 x 10 g = conversion constant (yr/sec)
Xd/Q = atmospheric dispersion factor for a mixed mode release, adjusted for depletion by deposition (sec/m3)
Q;k = The quantity of radionuclide i released in a given effluent stream based on analysis k (pCi)
C6:1
r' 0
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT TAanip = a factor converting airborne concentr ation of radionuclide i to dose commitment to organ n of a person in age group a where exposure is directly to
~;
airborne material via pathway p (inhalation, or external exposure to the plume),
pCi/m3 See'Appendix A The dose to a person from iodine and particulates discharged as airborne effluents via the inhalation and irradiation pathways is evaluated at the nearest garden (with residence assumed) 3.6 miles west northwest of the plant. At that location, the reference atmospheric dispersion factor adjusted for depletion by deposition is Xd/Q = l x 10 7 sec/m3.
The dose commitment via exposure pathways involving radionuclide deposition from the atmosphere onto vegetation or the ground is calculated with the equation D
Da~ ~ 3~17 x lo qjg <0a~p (22) where:
0/Q = relative deposition rate onto ground from a mixed mode atmospheric release (m 2)
TGanip factor converting ground deoosition of radionuclide i to dose commitment to organ n of a person in age group a where exposure is due to radioactive material via pathway p (direct radiation from ground plane deposition, fruits and vegetables, air-grass-cow-meat, or air-grass-cow-milk),
mrem/ r ;s pCi/(m2 sec)
~
'he dose to a person from iodine and particulates discharged as airborne effluents via the air-grass-cow-milk pathway is evaluated by assuming a cow on pasture=0.5 miles west of the plant. (There are no milch or meat animals within 5 miles). At this location, the reference atmospheric deposition factor is D/Q = 5 x 10-l0 m 2.
The concentration of tritium in v'egetation is a function of the airborne concentration rather than the deposition. Thus the dose commitment from airborne tritium via vegetation (fruit and vegetables), air-grass-cow-milk, or air-grass-cow-meat pathways is calculated with the equation X
Dz~ ~ 3.17 x 10 ~ ~
Qzg ~
TQ~> (23)
C6:l
0 0
rq
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT where:
X/Q = atmospheric dispersion factor for a mixed mode release (sec/m3)
The dose to a person from tritium via the vegetation (fruit and vegetables), air-grass-cow-milk, or air-grass-cow-meat pathways is evaluated at the nearest garden (with residence assumed) 3.6 miles west northwest of the plant. At that location, the reference atmospheric dispersion factor is X/Q = I x 10-7 sec/m3.
The dose commitment via a given pathway as a result of measured discharges from a release point is accumulated with
~aa (24) where:
D~ = the dose commitment to organ n of a person in age group a k = the counting index; it may represent either p, analysis of a grab sample w, a weekly sample analysis m, a monthly composite analysis, or q, a quarterly composite analysis 3.6 Effluent Noble Gas Monitor Alarm Set int Technical Specification 3.9.2.d requires the radioactive gaseous effluent monitoring instrumentation channels to be operable with their alarm setpoints set to ensure the limits of Specification 3.9.2.a are not exceeded.
Each radioactive noble gas effluent monitor setpoint is derived either on the basis of total body dose equivalent rate or noble gas concentration, in the unrestricted area beyond the exclusion area boundary. The setpoint derivations assume that noble gas releases occur at ground-level.
For the purpose of deriving a setpoint, the distribution of radioactive noble gases in an effluent stream may be determined in one of the following ways:
I. Pref erably, the radionuclide distribution is obtained by gamma spectrum analysis of identifiable noble gases in effluent gas samples.
Results of analyses of one or more samples may be averaged to obtain a representative spectrum.
- 2. In the event a representative distr ibution is unobtainable from measurements by the radioactive gaseous waste sampling and analysis program, it may be based upon a historical spectrum appearing in Table 3-1.
- 3. Alternatively, the total activity concentration of radioactive noble gases may be assumed to be Xe-133.
e ~
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 3.6.1 Set int Based on Dose Rate A noble gas effluent monitor setpoint, based on dose rate, is calculated with the equation below or a method which gives a lower setpoint value.
Pc; (25) h + Bkg S 1 ~ 06 8' g Ci DFi where:
S = The alarm setpoint (cpm) 1.06 = 500 mrem/yr 60 sec/min 35.37 ft3/m3 1 m3/106cm3 h = monitor response to activity concentration of effluent,
~cm pCi/cm3 Ci = relative concentration of noble gas radionuclide i in effluent at the point of monitoring (pCi/cm3) f = flow of gaseous effluent stream, i.e., flow past the monitor (ft3/min)
X/Q = atmospheric dispersion from point of ground-level or split-wake release to the location of potential exposure (sec/m3)
DFI = factor converting ground-level or split-wake release of radionuclide i to the total body dose equivalent rate at the location of potential exposure, mrem yr pci/m3
~
Bkg = monitoring instrument background (cpm)
Each monitoring channel has a unique response, h, which is determined by the instrument calibration.
Atmospheric dispersion depends upon the local atmospheric conditions.
For the purpose of calculating a radioactive noble gas effluent monitor setpoint, the atmospheric dispersion factor, X/Q, will be based on prevailing meteorological conditions or on reference meteorological conditions. The minimum atmospheric dispersion off-site derived from ref erence meteorological conditions at the site boundary is 5.8 x 10 7 sec/m3 at a location 1950 meters south southeast of the Plant.
The applicable dose conversion factors, DFI, for deriving setpoints are in Table 3-5.
C6:1
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 3;6.2 Set int Based on Concentration A noble gas effluent monitor setpoint, based on concentration, is calculated with the equation below or a method which gives a lower setpoint value.
MPC h 47 ~
10 f X Q (Z6) where:
S = alarm setpoint (cpm)
MPC = unrestricted area maximum permissible concentration for the effluent noble gas mixture. The MPC for noble gas is calculated from the distribution of noble gases in the release with the equation 0x .
where:
Cl = relative concentration of noble gas radionuclide i in a gaseous release (pci/cm3)
MPCj 10 CFR Part 20'ppendix By Table 2y Column 1 value h = effluent noble gas monitor counting rate response or calibration for hoble gas, cpm pCi/cm3 4.7x 10" = conversion constant 1 m3 x 1 min 35.37 ft3 60 sec f = discharge rate of gaseous effluent (ft3/min)
X/Q = atmospheric dispersion from release point to unrestricted area (sec/m3)
Bkg = monitoring instrument background (cpm)
The value of atmospheric dispersion used to derive a setpoint based on concentration is the reference atmospheric dispersion value from the discharge point to the location of maximum potential exposure off-site.
The applicable value is 5.8 x 10 7 sec/m3 at a location 1950 meters south southeast of the Plant.
In the event the distribution of radioactiv'e noble gases is based on a computed distribution appearing in Table 3-1 or on Xe-133 alone, the MPC for the noble gas is 3 x 10-7 pCi/cm3.
C6:1
0 OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 3.7 Pro'ected Dose for Gaseous Effluents Technical Specification 3.9.2.e requires that the gas decay tank system shall be used to reduce radioactive materials in gaseous waste prior to their discharge if the projected gaseous effluent dose per reactor due to gaseous effluent releases to areas at and beyond the site boundary when averaged over a month exceeds 0.2 mrad for gamma radiation and 0.0 mrad for beta radiation, and the ventilation exhaust treatment system shall be used to reduce radioactive materials in gaseous waste prior to their discharge if the projected gaseous effluent dose per reactor due to gaseous effluent releases to areas at and beyond-the site boundary when averaged over, a month exceeds 0.3 mrem to any organ.
Technical Specification 3.9.2.e.l requires the doses, to areas at and beyond the site boundary, due to radioactive material released in gaseous effluent to be projected at least once per month.
This requirement is satisfied by extrapolating the dose to date during the current month to include the entire month. The dose to date is calculated as described in sections 3.0.1, 3.0.2, and 3.5.2.
The dose is projected with the relation:
where:
P = the projected dose during the month (mrem) 31 = number of days in a calendar month (days)
X = number of days in current month to date represented by available radioactive effluent sample (days)
D = dose to date during current month calculated according to sections 3.0.1, 3.0.2, and 3.5.2 (mrem)
Alternatively, the monthly dose may be projected by computing the dose accumulated during the most recent month and assuming the result represents the projected dose for the current, month. The dose during the preceeding month will be computed as described in sections 3.0.1, 3.1.2, and 3.5.2.
C6:1
Unit 3 Unit 4 Vent Tur nes Turbines Condenser Primary Primar Condenser Cool ant Coolan Exhaust Exhaust Exhaust Exhaust Slowdown S.J.A ~ E ~
- "- Blowdown S.J.A.E.
Flash and Gland Flash and Gland Tank Seal Exhaust Tank Seal Exhaus 35,000 cfm 35,000 cfm 35,000 Rou g hing
'nit Unit 4 cfm fi 1 ter 3
ontainment Containment rq~~hing 35-,000 cfm Roug ing To CVCS Holdup Tanks for reuse Laundry c4 200 cu t Area Gas Decay Tank (6) 11,200 CVCS* Waste gas cfm Inleakage Holdup compressors HEPA Filter Tanks 40,000 cfm 13,500 cfm Auxiliary Bldg.
Outside Air 13,500 cfm Ventilation System Prefilter 40,000 cfm Roughing HEPA Filter Filters HEPA Exhaust HEPA 1000 Unit Filter 1000 cfm filter 20.000 cfm 3 Unit 4 cfm Fuel Pit 0,000 Fuel Pit Area cfm Area 2000 Prefilter 200 fm Prefilter cfm 7500 cfm Inleakage New Rad Waste Inleakage Building 7500 cfm
- CVCS - Chemical and Volume Control System
- SJAE - Steam Jet Air Ejector
- Effluent Monitoring Instrumentation Figure 3-1 Gaseous Effluent Systems
~'
f '." '<<i ' ~
e O'VC 14 RI bs y+CS IlrlÃNIIR l' o
33%
'I(
))
TCRRIRÃrrt I
<o I DELI ~
pig C
I0
=ra h 5 III R~T 30$ -" <<rlr 5 l7 3
,LI TIrhrr .. QW C ">I I "
I e~
-'7'I 22~ 24 l9 20 4'RIVC' 5R CRrrl l
28 2'7 25 29 28 ~'tvRKcY 5<<rrv 5
T RKEY P OfiAT 33 35 3I I
PLANT I
URTI.R 55Rrv 1 5 4
5 2 SW 4 I 12
$), k.))
5 ORIIRCIllCCR 4 a.ORC'.'h.+
rrI 75 5 ~ 555 Q 550-59 5
t I
I 2I 22 /,I
~,C.RCV
~
J KCY
~8 C:CChXR 0 28 30 29 34 3I 32 //
Figure 3-2 Locations At Which Doses Due to Airborne Effluents From the Turkey Point Plant are Calculated 2.
Beta and Gamma Doses to AirI 1950 m SSE Maxi.mal ly Exposed PersonI 5800 m/tlNt1
- 3. Assumed Beef I and Milch Cow, 7250 m M I
t OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT 0.0 Dose Commitment from Releases over Extended Time 0.1 Releases durin 12 Months Technical Specification 3.9.2.h implements 00 CFR Part 190.102. It requires the annual (calendar year) dose or dose commitment to any member of the public from all uranium fuel cycle to be limited to less than or equal to 75 mrem to the thyroid and 25 mrem to the total body or any other organ.
Fuel cycle sources or nuclear power reactors other than the Turkey Point Plant itself do not measurably or significantly increase the radioactivity concentration in the vicinity of the Plant; therefore, only radiation and radioactivity in the environment attributable to the Plant itself are considered in the assessment of compliance with 00 CFR Part 190.102.
In the event a dose calculated for the purpose of assessing compliance with Specification 3.9.1.b, 3.9.2.b, or 3.9.2.c, exceeds 2 times the limit stated therein, then a calculation should be made to determine whether any limit in Specification 3.9.2.h has been exceeded. The calculation should be made on the basis of radioactive effluents during the year to date and reference meteorological data or averaged meteorological data during completed quarters of the year to date.
Separately, an evaluation of doses due to effluents during the year is performed 0 annually and reported in the Semiannual Radioactive Effluent Release Report
'submitted within 60 days after the end of the year. This evaluation uses annual averaged meteorological data concurrent with the annual gaseous releases to evaluate atmospheric dispersion, deposition,and plume gamma exposure.
To assess compliance with Technical Specification 3.9.2.h, evaluations of dose due to liquid and gaseous effluent are calculated as described by the equations for:
- 1. total body dose due to liquid effluent via irradiation by radionuclides deposited on cooling canal shoreline as in section 2.3
- 2. total body dose due to noble gas y as in section 3.0.1
- 3. skin dose due to noble gas B as in section 3.0.2 total body and maximally exposed organ doses due to gaseous effluents other than noble gases~ as in section 3.5.2.
The doses are calculated on the basis of'liquid and gaseous effluents from the Plant, sampled and analyzed in accord with Technical Specification Tables 3.9-1 .
and 3.9-3.
+ Radioactive I-131, 1-133, tritium, and radioactive material in particulate form having a half-life greater than 8.0 days.
C6:1
0 0
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT The receptor of the dose is described such that the dose to any resident near the Plant is not likely to be underestimated. The receptor is selected on the basis of the combination of applicable pathways of exposure to gaseous effluent identified in the annual land use census and maximum ground level X/Q at the residence. Conditions more conservative than appropriate for the maximally exposed person may be assumed in the dose assessment.
Environmental pathway-to-dose transfer factors used in the dose calculations appear in Appendix A.
0.2 Environmental Measurements When assessing compliance with 00 CFR 190 or 10 CFR Part 50 Appendix I dose limits, Radiological Environmental Monitoring Program results may be used to indicate actual radioactivity levels in the environment attributable to the Turkey Point Plant as an alternate to calculating the concentrations from radioactive effluent measurements. The measured environmental activity levels may thus be used to supplement the evaluation of doses to real persons for assessing compliance with 00 CFR Part 190 or 10 CFR Part 50 Appendix I.
0.3 Dose to a Person from Noble Gases Technical Specification 3.9.2.h requires the calculation of the annual (calendar year) dose or dose commitment to a person off-site exposed to radioactive liquid and gaseous effluents from the plant. One component of personal dose is total
'body irradiation by gamma rays from noble gases. Another is irradiation of skin by beta and gamma radiation from noble gases. The methods for calculating these doses are presented in sections 0.3.1 and 0.3.2.
The amount of radioactive noble gas discharges is determined in the manner described in section 3.2.
0.3.1 Gamma Dose to Total B The gamma radiation dose to the whole body of a member of the public as a consequence of noble gas released from the Plant is calculated with the equation:
Dg Qi'Pgi X
where:
D~ = noble gas gamma dose to total body (mrem)
Qi = quantity of radioactive noble gas i discharged in gaseous effluent (pCi)
X/Q = meteorological dispersion factor (sec/m3)
C6:1
OFFSITE DOSE CALCULATIONMANUAL FOR GASEOUS AND LIQUID EFFLUENT P~ = factor converting time integrated, ground level concentration of noble gas nuclide i to total body dose from gamma radiation listed in Table 3-0, mrem pCi ~ sec/m3 When the total body dose due to gamma radiation from noble gas required by Technical Specification 3.9.2.h is calculated, the most exposed receptor is located 3.6 miles west northwest of the plant where the reference meteorological dispersion factor, X/Q, is 1 x 10 sec/m3.
0.3.2 Dose to Skin The radiation dose to the skin of a member of the public due to noble gas released from the Plant may be calculated with the equation:
gQi 'gi+0.56 X
D Ai ' (29) where:
D = dose to skin due to noble gases (mrem)
S gI = factor converting time integrated ground-level concentration of noble gas to skin dose from beta radiation listed in Table 3-0, mrem pCi . sec/m3 0.56 = 1.11 0.5(mrem/mrad) where 1.11 = ratio of tissue dose equivalent to air dose in a radiation field (mrem/mrad) 0.5 = factor for shielding by a building A> = factor for converting time integrated, ground-level concentration of noble gas radionuclide i to air dose from its gamma radiation listed in Table 3-3, mrad pCi ~ sec/m3 When the skin beta dose due to noble gas required by Sp'ecification 3.9.2.h is calculated, the most exposed receptor is located 3.6 miles west northwest of the Plant where the reference meteorological dispersion factor, X/Q, is 1 x 10 sec/m3.
The total dose to the skin from noble gases is approximately equal to the beta radiation dose to the skin plus the gamma radiation dose to the total body.
C6:1
APPENDIX A PATli'MAY-DOSE TRANSFER FACTORS Environmental pathway transfer factors, usage factors, and dose commitment factors appropriate for each exposure pathways age> and organ are combined into integrated environmental concentration-to-dose factors for each radionuclide. This appendix includes tables of values of the transfer factors calculated in accord with equations and values 1
recommended in NUREG-0133 for individual environmental pathways. In the event a single, composite transfer factor is desired for a given organ and age group, it can be obtained by summing the factors for appropriate pathways. Appropriate transfer factors from Appendix A are used in performing dose assessment calculations prescribed in the ODCH.
1 J. Doetli, et ai., ada., 1978, ~Pre aration oE Raclioloiionl Hft'ioent Technical~S~ccif ication." for Nuclear 1'ower Plants, NUREG-0133, USNRC Office Nuclear Reactor Regulation.
0 01/18/79 PAlHHAY '- UISCHARbf ~ANAL SHOkLIN-" OFPUSIlg AGE GROUP AOU Ll NU~ LIOE 0 R G 4 N 0 0 S E HRcN)
BONE LIVER l'HYROIO KIONE Y LUNG GI-LLI SKIN )urAL OuOY H----S 0 ~ 0 ~ 0 ~ U ~ U~ 0 ~ ~ a.
P---S2 U ~ 0 ~ a. 0 ~ u ~ U'e U ~ 0 ~
CR--51 3 ~ 69f-ai 3 ~ 69k-D 1 3 '9c,-ol 3e 69f-Ol S ~ o9C-ul S.69E-ui Sof <<Di 3~ b9E-Ol HN--54 1.09E+ u2 u9E+02 1 o 09F +D2 1 ~ 09Et02 1 ~ 09ktU2 l. U9E+02 1 ~ 28it 02 1 ~ u9C t02 Fk--55 U ~ Q 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ D~
Ff--59 2 llf+01 2 ~ 1?kta 1 2 ~ 17E t 01 2~ 1?E+Dl 2 ~ 17 f tui 2 ~ 1?f to1 2.55k tui 2 1?f tul CO--55 3.DOE+Qi S UQEtal 3 Ouf toi 3. UQE+01 S ~ Quctui 3euGEtol 3.51f tol 3~ ubf+Ql CO--ba 1.69ftQ3 1 o 69f+03 1 ~ 69E+03 1 ~ 69c,+03 1.6~itus 1.69E+03 1 99f+US. 1 69c+03 ZN--65 5.866+01- 5 ~ 56E+01 5.86i+Qi 5 ~ BoE+Ul 5 Bof tol 5 ~ 56f+01 6.?4f tul 5~ Sof tUl RU--db SR--89 7
1
'1E"Gl lif-03 7
1
.7 e 11E-01 1~ lif-03 lo 11E-Ui 1~ 71f-03
~
1
~
?clif-ai 71F-u3 7 ~ 11E-Gl lel 1F US 8.12E-ui 1 ~ 9SE-U3 7~ lif-01 le? li-QS SR--90 4 '3k-ui '
4 ~ 23E-01 4 ~ 23E-01 4e 23E-Gl 4.23f-oi 4 ~ 23E" 01 4 ~ 99k-01 4 ~ 23c,-al Y---91 ~ 54f-02 8 '4E-02 8 ~ 54E-DZ 8~ 54E-D2 5 ~ 54k-UZ d ~ 54E-02 9 ~ 61E- U2 8. 546-02 ZR--95 3.96E+Ui 3 ~ 96E+01 3~ 96f+01 . 3e 9oE+01 S ~ 9of t01 S.96f tD1 4. 62E+ 01 3. 96E t01 ZR--97 4 ~ 3ZE-Ui 4 ~ 32f -01 4 ~ 32f -01 SZE-01 4 ~ SZE "ul so32f-01 5 ~ G4E" 01 4.32f -ul NB--95 1 ~ DBE+Qi i. O BE+01 1 ~ DOE+01 1 Obftal 66c,-ul 1.DBC+01 ooE-Ol le 08k to 4eb6k-01 i 1 ~ 276+01 f-01
~ 4 ~ 66E-0 1 4~ 4 ~ 3? 4~
RU-103 5 ~ 69E+00 8 69E+00 8.69E+UQ 8 ~ 69i+ 00 8- b9E+ua de69ftGU 1 oUik+01 8. 69k tuo RU-luo S ~ 3QE+01 3. 30E+01 3 3QEtol 3 ~ SO f+Ul 3 ~ SQEtoi S ~ SQE +01 3 ~ 97ctui 3 ~ SGE+01 AG11G M 2 ~ 82E+ 02 2 ~ 52E+02 ZeSZE+02 2e S2E+02 52itu2 2 ~ SZE tD2 3e29k+u2 2 ~ 52ctQZ SO-124 4.72E+Oi 4 ~ ?ZE t01 4 ~ 72k+01 4. 72k+Di 4 ~ lZE+0 1 4.72E+Ui 5 ~ 45EtUi 4. 72E+01 SB-125 1 ~ Bif+02 1 ~ 51E+U2 1 ~ 81E+02 1. Bik+ uZ ie Bifto2 1 ~ 81E t02 2 ea5C+02 le 51k tu2 l f125'C127H ie22E-Di 1 22E-ul 1 ~ 22f-01 1e 22E-01 1 ~ ZZE-01 1 ~ 22E-ui 1 ~ 68E-Ul io 22E-01 6 '4E-02 b ~ 94E-Q2 6 '4E-0? 6~ 94c.- u 2 o 94E-Qc 6.94E-QZ 7 ~ 6SE-uz 6. 94f -u2 lf129N S.04E+Go 3 '4E+00 3.04E+00 3. 04k+OQ S. Q4E+GU 3.04E+UD 3.5?ftOa 3 ~ u4i tuo 1 f 131H 8 41f-01 5 '1E-01 8 ~ 41E-01 8 ~ 41c- Ui 8 41E -ui 5 ~ 41E-.Q1 3eb5Etui 5 ~ 4LF -Ol lE-132 S.66E+00 S 66E+00 3eo6E+00 3 66E+GQ 3 ~ boctOG 3.66C+OG 4 ~ 3ict uQ S obf tUO I131
~
1.S6ftGO 1 ~ 36E+00 1.36E+UO i. 95i-o 36E+UQ 1-36ktDO 1.36ftuo io65ctuU 1 o SbE+UG I--1SS 1.95f-ai l ~ 95E-01 1.95f-ai 1o 1 1 ~ 95E-Ul o-5lktQZ 1 ~ 95E-Ql r o3dc-Ul 1 ~ 9>E-Q1 CS-134 $ .516+D2 5 ~ 51E+02 5 ~ 51E+ 02 5 ~ 51f+ 02 5e51Et02 os 43ftu2 5~ 5ic tQZ CS-13o 1 15ktui 1 18E+01 1 eiBE+01 1 ~ 18i+01 1 ~ 15k+01 1 ~ 18E tol 1 ~ 33E+ 01 lo 15- tU1 CS" 137 8.13Etu2 8 ~ 13E+0 2 8 '3ftUZ 8 1Sc+02 delsftGZ 5 ol3E+02 9 ~ 48c.+ 02 8 ~ 1SC+02 UA"140 le 326+Ui 1 ~ S2E+U 1 1 SZEtQ1 1 ~ 32c+ 0 1 lo32ctal 1 ~ 32kt01 1 ~ 5uc,tU1 1 ~ SZE+01 LA-14U lo52C+UD 1 ~ 52f+OQ 1.52k+00 1 52c,+Uu 52E+GO 1-52ftoo l ~ ?2ctUu 1 ~ 52c. + Qu Cf -141 l 05E+UQ 1- UBE+oa 1 UBE+00 le OBi tQQ 1 ~ 05fvuQ 1~ USktuo 1 22f+00 lo u5c t QO Cc-lsS io 52f-Ul 1 o 52E-0 1 1 ~ 82E "i) 1 1 ~ 526-01 1 ~ 52f -ul 1 ~ 82i"Dl 2 ~ ul f-ul lo dpi-01 Cc.-144 5 ~ 94E+00 8 ~ 94f taO ST 94ftQO 8. 94=+GO d. 9wktua d~ 94ituo l ~ GSr +01 o 9'tc tau ivP-ZS9 l S5c,-ul 1 ~ 35E" 0 1 1 ~ 35c-01 1 ~ 35 t,-U1 1 ~ SC-U1 l ~ S5c" U 1' 1 56C-Ql 1 ~ Soc-Ql
0 UUVC I'Al I JHG F Jil L LILULU UL sOHARGtS HAdtU U~ GL/YR RELEAUt UF f AGH Lsdtul'c 1N UL6UHAHGt FLUM UF 1 ul'H HLIH NJ adulllollAL iJLLUILUN PASHHAT - 6AL1 'HAI cII FLSH Alit uJUUP AUULI
~ iUSL IOt ORGAN U 0 S t. I HRcHI bONE LLTER THY RULO K IDNET vent.
LUNG G1-LL1 SKLN I 0 I AC VUUT II----S J ~ 1 ~ Zlftd 8 1.2lf td0 le Zlc.tUO 1 2lc.t Jd L.ZlEt00 0 ~ 1 ~ dlc. t JU P---Sd os o36+ul S ~ )Sc.tdo 0 ~ 0 ~ U~ o ~ S3Etub U ~ 2. 18c.tdo L" H--5L d ~ V~ b ~ 55E tUU 2. 42E+Ud 1 e +01 2 'bttOS 5 ~ 1 ~ LUC tdL O'I- 54 0 ~ 2 ~ o5Ltdv Oe le SSc+03 J ~ SelictU4 U ~ ) vottu3
~
Fc. --55 1 9bctb5 5 ~ 5SE. t05 0~ 0 ~ 1~ 82t.tdo 4)ft05 0 ~ d. 32E tv5 Fc.--59 1 ~ s5 Et V5 S.21Et05 U~ 0 ~ 5 ~ 92ttlJ4 1~ Jbc,t06 U ~ 1 cZc t 05
~
UU--)8 U ~ l 50ttdZ Ue 0~ 'J ~ 1~ 58E t04 U ~ 1 ~ l5c t JS UIJ--od 0 ~ 2 ~ dlttOS 0 ~ 0~ 0 ~ 4 '4ctu4 V~ 4 ~ JSc. td3 2H--o5 1 '2c.tu5 S.24Etd5 0 ~ 2e iii+05 U~ 2 84Et05 d ~ 1 ~ Vlc t U5 Hd--do U~ L.lSEtUS 0~ 0~ 0 ~ 3 ~ 51t.td2 U~ 8 ~ Sic. tud
)R--o9 Oe43ftuS U ~ 0~ 0~ Ve 1 'SEtU3 U ~ 1 ~ 54c td2 9U 1 'lctu5 0 ~ 0~ 0~ 5 ~ 29EtuS
'dft04 0 ~ S ~ 93< td4 Y--- JL S.USEtui u~ U~ 0 ~ 2 U ~ 'J dbc-01 28--Uz ledlttU2 4 ~ 14tt Ol Oe 5 ~ 30E t 01 0 ~ 1 ~ '9UttU5 G ~ 2 ~ clc. ttube UI.
ZH--9l S.JSEtu0 96E tdo 0 ~ 2e SSEt 00 U ~ 5.95Etd4 u ~ le 42c-JL IU J) 1 ~ 93c.tu3 1~ ultt 83 0~ le OlE.40$ d~ 6.52Et06 0~ 4 ~ ccr tu2 b,82C tui llJ vJ L.SSE- 2 S.55et02 Oe ST 06EtU2 2 'oc-U2 8 ~ 54ttd2 IJ ~
HU- 1 VS )el6tt UU 8 ~ 0~ 2 ~ 20c,t UL U~ o l2E t02 0 ~ c ~ '4ui.tu 8 HU-luo 5eb9ct 01 IJ 'e 0~ 1 ~ 6Stt02 Oe 5 oSttUS U ~ 1. LUc. tul AGLLUH 5 ~ 56F tu3 ).14f tdS 0~ 1~ Olf td4 J~ 2,iuc.tub d ~ st Ooc,tus bd-124 L.llttd3 2.elf tui S3EtUO U~ 9~ Lotl UZ ST 32ftd4 U ~ 4 ~ oSc tvd b0-125 9.42f t02 1~ 04E t01 05ft00 2~ Slf tuU Ue 5St tu4 8 ~ 31ctu3 J ~ 1 u9ctOZ Icl2)H 2 ~ 80ctd2 1 02E t02 8 '2E+Oi 1~ 14Et 03 0~ 1.12E tu 3 V ~ S. l4- tOL I c. I 2l H 7-20ctUZ 2 ~ )Ztt02 1 ~ 55EtU2 2 '2ttud J ~ 3 ~ 1SE tdS V~ S ~ 8lc t dl I c I 2'JH '9t.td3 4 4bf tdd 4.12ttd2 4 'lftuS 0 ~ 5e99t+83 u ~ 1 ~ 8 Jc.
Ic.131H 1
- i. SLLt uZ 8
~
'4ft01 1.29t,t04 5 'ift02 U~ vs ddftOS 6e59ttd3 0 ~ O~ 4SC t IJL tdc Ic.-i dc ZeiSEt VS 1~ Udt,t02 o.vSE tuS ie43c.t03 V~ 0 ~ 1 ~ 486 1--13I, 4 'SctUZ llE t82 1 ~ SBE td5 9eSSftOd J ~ 1 ~ 52C tue 0 ~ 3 'UE.tuc I--loS os d4t,tul ie 19E tu 2 2 '8Et04 2 'lEt02 8 ~ le 84E. t 02 J ~ 3 ~ bdc tOL I:3-L34 2 '2ctu4 o ~ 24ttd't U~ 2 ~ U3Et 04 o Ilt.tuS 1 ~ d9ftUS 0 ~ 5 ~ LOc t 0't Go-1 So 2eblct US 1 VSc.tuv 0 ~ 5. l2c t03 l ~ 85ctd2 1 ~ Lit. tuS V ~ le41C tg3 GS-LSl S.Slc,t04 4 ~ butt Jv 0 ~ 1.)lftu4 19c.tv3 u Slc.tOZ 0 ~ S ~ J2c,t Uv VA-LVJ 2 'Sct63 2.obf tuu 0 ~ d 68c 01 1 'oc,tvd Le22t tu4 U ~ 1 ~ S4= tu2 LA-LVJ 4 ~ obc-01 2e20C-dl u ~ U~ J ~ L.blf td4 d ~ ) dSC-ud
~
Uc.-141 Jeodc-uL oe)5t.-ul 0 ~ 3 '4c-UL J ~ 2e)ut > J3 U ~ le vcc JZ IC lv3 1 ~ 99C-ul l. /Sc, ttvl U ~ ) ~ 60c.-02 1 2lctdl V~ s ~ sdctJS 4 ~ c ~ SSC-d2 ce(octu)
Uc-144 5 15c.t u1 2~ a)t Ji J ~ u ~ Le l4c. tu4 J ~
IIV-c. S I J ~ )Uc.- J2 .Jev JC-JS d. 2 ~ due Jg 0~ LE dUCtuS d ~ o ~ Ldc US
0 uUSI. Fac I JKS F JK LL4JULU Oldl:IIAKGtS UASEU O'I 1 Gll fR REL=ASE OF EAOcl LSUIUPC LN ULSbHARLic FLOH Uf 1 GPH HLIH HU ALIJLLLJNAL ULLUI tuN PA1H44A I - bAL 7 rlA I eK SHEL I. f LSH alif LiKOUP - AUULI i4USL 1UC N 0 O S E MRCH) clONC I. Luck THfKULU KIONef LUIIG Gl-LLI SKIN IUIAL bQuf H----S 4 ~ LSE-QL S ~ LSE-OL S ~ 13C-01 3 ~ LSC U 1 S.LJC-QL u ~ 3. LSE-ul I'--->2 l. S9C t Ul Seb9etU5 Ll ~ 0~ Ll ~ 1 'bct06 U ~ 5 ~ SlttQo L.'R--51 U~ 4 ~ I duc tUO 2~ 88Et uo le IS et 4 1 Sod5Et03 0 ~ 1 ~ Suc. t ul 4444- -54 U ~ 4 ~ 5SLtLI3 0~ 1~ 36Et03 cl ~ 1 ~ 40E t44 U ~ 5 ~ 76t tQZ I c.--5o S LLc.tuo vQEtOo 0~ 0~ 1 ~ b2etdb 5 41F tu5 0 ~ SobOttUi Ft--59 2.15t tu5 5 ~ LUEt05 Oo 0~ L.vzetu5 lobsEt06 cl ~ l. 9ve t Ut LJ--bd 4 ~ 1 ~ SUEtOS 0 ~ U~ 4~ S~ lbf tU4 U ~ v.lc ctOS OV--bo 4 ~ 5 ~ 40r. tuS 0~ Uo 0 ~ 1 ~ Uif tu5 0 ~ 1 ~ LJt tov LN--bi b.usftu5 1 9SL.tu6 0~ 1~ 29ct06 0 ~ 22ct06 0 ~ 5 ~ ISctU3 Ku--oo U ~ 8 ob9C t0'2 0 ~ 0~ 4 ~ 1 ~ I let02 0 ~ 4 ~ US. tuz
-di 1 ~ bSt t U4 U ~ 0~ 0~ 0 ~ 2 ~ 45ct03 U ~ 4 ~ 39c tu2 SR--4u S 53ftu5 0 ~ 0~ Oo 0 ~ o.S6C tOct 0 ~ 9o Sot tuv f---9L 3 ~ 5UCt U2 u ~ 0~ 0 ~ 0 ~ 1 ~ 93C tu5 0 ~ 9 ~ saic tUU ZK 6 ~ 4SttQU 1 ~ 9betud 0 ~ 3 ~ Usf t 00 0 ~ 6.13ftd3 0 ~ lo SSc. tiu 2R--97 1~ S2t-41 2 ~ 69C-02 Oo 4 ~ U3E-02 4 ~ 7.9St,tu3 4 ~ L. 2ot,-uz 4IJ--9b 1 ~ 54EtuU 8.6Se-uL Oo S~ 45E-01 0~ b ~ 1IE t43 4 ~ 3~ Sot UL HU 99 2 'QC-uz 8.46etul Qe 1. 9SCt 02 S ~ Lldt U2 2 ~ SSC tuz 0 ~ 1 ~ bUc.t Jl
<U-LOS 4 ~ 5lct U2 Oo 0 ~ 1 ~ 15ctu3 4 ~ ) ~ ovft04 U ~ 1 ~ 91c tu2 kcl- Luo os 90etb3 Ll ~ 0~ 1~ S3Et04 0~ 4 ~ 47ct05 U ~ 8 ~ 7Sc t02 abLLuH 1 SZt,tu3 1~ 22et03 0~ 'I 2o 41et03 4~ 5.uuft05 0 ~ I. Zdc taZ bb-lzv 3 '9ctJL Oo58e-QL S.vse-dz 0~ 2~ ILCtul 9 57Et02 LI ~ 1 ~ SsctUL
'>u L25 2.97etJL 9 ~ lie-01 5 ~ SLE-01 I .53et Jd 2 'SCt43 2 54ctUZ 0 ~ 5~ doctui IEL25H boob- t U2 2 '2EtQZ 2 ~ LIQC tQZ 2~ lie t03 4 ~ 2obbetOS u~ 5~ 42t tUL itLZIH . 1 ~ llc;tuS b ~ UUCt02 49E tUZ 6 96ctu3 i ~ I ~ 45E tu3 U ~ C. 11= t JZ t Llz IEL29H 2 '4E.tu3 1 ~ ubf tOS J ~ 19Et02 1~ 1Sct04 0 ~ 1 ~ 43t,t44 4 ~ 4 ~ ooc I c.lS1rl 2 ~ I sc.t UZ 1 ~ blttU2 1 ~ 54e t04 1 '9=t03 0 ~ 1~ 19t,tU4 U ~ 1 ~ cbEt Ud I c.-Lo2 5 ~ lbf t US 3 'Uet02 I S4c tuS S~ SOEtOS 0~ 1.51e t04 ~ I~ 3 ~ alt t02 I-- lSL 4 'Uttu2 bo Uletuz 2 'bet05 le 1SE t03 U~ 1 +sic t02 u ~ 3 ~ 9Sc tu2 L--LSS do14ztUL 1 vietuZ 2 ~ 7Letd4 2 'oet02 4 ~ 1 ~ 24E t42 0 ~ vo oif t UL I ~-L>4 3 ~ uuctuS 9 29LtJS 0 ~ 3~ UietU3 45ct42 iebSEtd2 U~ I ~ buttock GS-L Jb S ~ dstt42 1 ~ bSt t JS 4~ ST 52t.t02 L. Lletu2, 1 elvf t02 U ~ 1 ~ 1Ut tUS I 3-LSI boulr.tUS be 85et JS 0~ 2 SSEt03 INCISE.t02 1 ~ 32e t42 LI ~ v ~ 'vent tUS UA-14J 4 ~ 53etUS 7 ~ llet00 do 2.07etud S ~ vdE.tbO sob)ttUV V~ 3 ~ 19c tu.
tA-lVII 4 ~ 15EtuO 2 ~ 696 tu J U~ U~ 4 ~ 1.54ttu5 4 ~ 5 ~ bbc.-ul
-141 I 3dttul 9.Jott00 0 ~ vo 34= t ULI 0 ~ S >IctUv U~ 1 ~ Uoc tub
~t-LvS 2 vdctGU Llc.tuS 4 ~ b. 97E- Ul 0~ 4 o64E t44 4 ~ 1 ~ 67e -Jl UE-144 I-S6c,tQZ 4 o UIE.tu2 U ~ 1 ~ Szr. t U2 V~ 2ovst,tu5 U ~ o ~ Uvr. tiL rIP-2S9 v ~ dzg U2 o . ISc-uS 4 ~ 9o 53c-OS 4 ~ 4.49ftOZ Ll ~ 1 ~ drc US
01/25/79 EtIVIRONHENTAL PATHMAY-BOSE GONVcRSION FACTORS FOP GASEOUS OISCHARGES PA THEA Y - GROUtIO PLAIIC OE POSITION AG E GROUP A CUi. T HUG L I OE 0 R G A H 0 0 S E F A G T 0 R S ISO ~ 'HETER tIREII/YR PEP UCI/SEC I BONc L IVEP. THYROI0 KIOHE Y LUNG . GI LLI SKIN TOTAL BOOY H----3 Q ~ 0 ~ 0 ~ 0~ 0~ 0 ~ 0 ~ 0 ~
C---14 0~ 0 ~ 0 ~ 0~ 0~ 0 ~ 0 ~ 0~
c---32 0~ 0 ~ 0 ~ 0~ 0~ 0~ 0 ~ 0~
I'R 51 4 '5E~06 4 '8Ei06 4 ~ 6$ E 106 4 '8C >06 4 'SE+06 4 ~ 65E+ 06 5 '3E+06 4 ~ 65E < 06 vu--5>> 1~ 38E+ 09 1~ 386109 1 ~ '35E i 09 io35E>09 to 38E F09 1 35E~09 1 '2E+09 1 ~ 35E+ 09 f $9 2 ~ 75EI 05 2 '5E+08 2 ~ 75E~OS 2 '5E>05 2 '5EIOS 2 ~ 75E 1 08 3 '3E+08 2 ~ 75F ~08 co--5r 1 896i08 lo89c+OS 1 ~ 89E>08 1 '9E>08 1 ~ 89E ~05 1 ~ 89 E+ 08 2 ~ OSE ~05 1 ~ 89E+ OS CO--55 3~ Sdc<05 3 'OEt'08 3 ~ 80E t08 3 ~ SOE408 3 ~ SOEIOS 3 ~ SOE408 4 '56+08 3 '0E+OS CO--60 2~ 15Ei10 2 ~ 15C+10 2 '5E>10 Zo 15E+10 2 ~ 15E ~10 2 ~ 15C>10 2 '2E+10 Z~ 15E~10 NI -63 0~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0~
7'I - 65 le 43 +08 lo43E+08 7 '3E405 7o43E+OS 7 43E ~05' 7 ~ 43E+OS 8 ~ 54Et08 lo43EIQS PB--86 9~ Olii06 9 ~ Qii+06 9 ~ OIE <06 9 '1E+06 ~ 01E+06 9 ~ 01E4 06 1 ~ 03F +0 7 9 ~ 016+ 06 SR--8'9 2~ irc~04 ZoirE<04 Z ~ 17E > 04 2~ ilE 104 2 ~ irE+04 2~ ilE+04 2 '1E+04 2 ~ 17E t 04 SR -90 5 ~ 35E <06 5 '5E+06 5 '5E<06 5 '56>06 5o35E+06 5 '5Et06 6o33E+06 5 '5E+06 Y---91 ioQSE+06 ioOSE+06 ieOSE>06 1 ~ OSE+06 1~ OSE+06 1 ~ OSE < 06 1 ~ ZZE~06 1 ~ OSE<06 7%--95 5 ~ 01E+08 5 ~ 01E+08 5 '1E~OS 5 ~ 01E+08 5~ 01E+08 5 ~ Oii F05 5 ~ 86E+08 5 ~ 01E+ 08 tt I-" 95 fe36E+05 io36E+OS 1 o 35E <0 5 1 36E+08 1 ~ 36E+08 1 ~ 36E>05 1 e61E>05 1 ~ 36'E > OS PU 103 1 ~ 106~08 1 ~ 10E<08 1 ~ 105>08 le 10E+08 ioiOE+OS 1 ~ 10E<08 le286 +05 io 10E F08
> ~ 19c~ 08 4.19E+08 4 ~ 19E >05 4 ~ 19E 1 08 4 ~ 19E+08 4 ~ 19E 105 5 '3EIQS ~ 19E>08 AG1108 3 ~ 58E i 09 3 '86>09 3 '5EtC9 3 ~ 58E+C9 3 '8E+09 3 ~ 55E < 09 4 ~ ilE+09 3 '56<09 CO 115H 5~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0~
"h -; I C.'I I IICI/O!C RELEASE PATC OF EACH ISOTOPE IN ANO A. VALUE OF 1 FOR X/0 OEPLETEO X/0 ANO RELATIVE OEPOSITION
ot/zs/79 c<<VIROttNENTAL PATHMAT OOSE CONVEkSION FACTOPS FOR GASEOUS OISCHAIKGES PATNttav GROUNO PLANE OEPOSITIOtl AGE GPO?IP ACULT tlUCL106 0 R G A N 0 0 S E F A C T 0 R S tSO ~ HETER-tlREH/YR PER UCI/SECt BOwE L I V Et< THYROIO KIONEY LUNG Gl LLI SKIN TOTAL OOOY Sk-123 0~ 0 ~ D ~ 0 ~ 0 ~ 0 ~ 1 o37E<06 0 ~
cN-126 so 16Eiio so 16E+ 10 5 ~ 16E tip so 16E >io se 1 6E+i0 5 ~ i6E<to 5+76E>fo sil6Et 10 S9-124 5 ~ 98E<08 5 '8E>08 5.98Eoob 5 ~ 98E+08 5 '8E+08 5 '8E>08 6 ~ 90E+08 5 '8E~OS69-125 3PE>09 2 30E<04 2 '0E>09 2.30E i09 2 '0E ~ 09 2 '0E+09 2 +592+09 2+30E+09 T= 125H 1 ~ 55E>06 1.55e+06 1 ~ ssct06 to 55E+06 1 ~ 55E<06 tossE+06 2 '3E+06 1 ~ 5SE+06 T= 127H 8 ~ 79E~05 S ~ l9 E+ 05 s.r9Eios 8 '9E+05 ST 79E>05 8 ~ 79E<05 9 '4c+05 8 ~ 79E~05 TE 129N 3 'sE>cr 3.SSEtpr 3 ~ SSE40 3 '5e+Ol 3. SSEipr 3 ~ 85Eior 4 '2E>07 3ebsEior I--130 F 536>06 5 '3E<06 5 '3E<06 so53E>06 5 '3E>06 5 '3E+06 6 'tE006 5 '3E406 I -131 1 ~ 72E+07 1 72E+07 1 ~ 72E+07 ferZE>07 1 ~ 72E+07 1~ 72E+07 2.09e~or- ie72E+Ol I--13Z ie25Ei06 f ~ 25E>06 1 Zsc<06 ie25E106 1 ~ 25E~O& 1 25E >C6 1+47E i06 te25E+06 l--l 33 2 'dE<06 2 48E>06
~
2 '8E~06 2 '8Et06 2 ~ 4SE ~06
~
2 486+06 3 ~ 01E >06 2.48Ei06 I--t 34 4.50Etps 4~50E>05 4 '0E~05 4+5DE+05 4 'DE+05 4 ~ SOE+05 5 ~ 35E ~05 4.50Etos I--135 Z~ 56E>06 2 ~ 56E<06 Z ~ 56E>06 Z ~ 56E+06 2 '6E>06 2 '6E>06 Z ~ 99E>06 2 '6'E+06 CS -134 6 '9E<09 6.99Ei09 6 '9E~09 6o99E+09 6 '9E>09 6 '9e>09 8 ~ 15c+09 6 '9E<09 CS-136 to 49Eiob fe49E+Od 1 ~ 49E>OS 1 '9E>08 1 ~ 49E >08 1 ~ 49E+08 1 ~ 69E>08 1 ~ 49E~OS Cs -137 1 03cq 10 1 ~ 03E+10 io03Eito 1 ~ 03E+10 1 03E+10 1.03E~tp 1 ~ ZOE+10 1 03Etfo tta 1 <<0 1 ~ 686~08 to ESEiob 1 ~ 6SE+OS io68E408 1 ~ 68E<08 1~ 68E +08 1 ~ 90E+08 te6SEiod CE-141 1 ~ 37E4 Ol to 37E+Ol 1 ~ 37E 407 f o37E+Ol 1 ~ 37E~07 1 ~ 37E+ 07 1 ~ 54E+07 1~ 37E+07 Cc -144 to 136<08 1 ~ 13c< 08 1 ~ 13E Iod fe 13E+OS 1~ 13E+Od ioi3E>08 1 ~ 31E<pd tot3E+Od PR 143 0~ 0 ~ 0 ~ 0 ~ 0 ~ 0~ 0 ~ 0 ~
t! 0 147 8 'dE<06 S ~ 486+06 8 '8ct06 8 ~ 48E ~06 8 ~ 48E ~06 8 ~ 48E~06 1 ~ OZE ~07 Si48c~06 i.as,~ OH 1 uCI/S:C CELFASE Rate CF EACH ISOTOPE IN a<<O A VALUE OF 1. FOR X/0, OEPLETEO X/0 ANO RELATIVE OEPOSITION
01/25/'7'9 cttV IROHHEltTAL PATHMAY-OOSE CONVERSIOtl FACTORS FOR GASEOUS OISCHARGES PATHHAY INHALATION AGE GROUP - ACULT HUCL I Oi 0 R G A, tt 0 0 S E F A C T 0 R S (HREH/YR PEP UCI/CU+HETER)
GONE LIVEP. THYRCIO KIONEY LUttG ' GI-LLI SKIN TOTAL BODY H--- 3 0~ 1 '7E+03 1 ~ 07E t03 1 ~ 07 E+03 '7Ei03 1 ~ 07E+03 0 ~ io07Et03 r---1'- 1 ~ QZE+0< 3 '2E+03 3 ~ 42E 103 3 ~ 42E <03 Sic 2E+03 3 '2E+03 0 ~ 3+42Et03
-32 1', 32E+06 7.72E+oc 0 ~ 0 ~ 0 ~ 8~ 64E<04 0 ~ 5 ~ QZE>04 Cc --51 0 ~ 0~ 5 ~ 95E 4 01 2 ~ 28E<01 io44E+04 3 '2E403 0~ 1 ~ QQE+02
>tt 54 )~ 3 ~ '96 I+ 04 0~ 9 '4E+03 1~ 40E+06 7~ 74Ei04 0 ~ 6 '0E+03 C= 1 18E~04 Z~ 78E+07 0 ~ 0 ~ I ~ 0ZEi06 1 '8E~05 0~ 1)06E>04 CO--57 0 ~ 6.92E+02 0 ~ 0~ 3 '0E~05 3~ 14E+04 0 ~ 6@liE+ 02 C0--58 = 0~ 1 ~ 58E+03 0 ~ 0~ 9 '8E~05 1 ~ 06E+05 0 ~ 2 '7Et03 ro--:o 0 ~ 1~ 15 E+04 0 ~ 0~ 5 '8E+06 2 ~ 85E + 05 0 ~ 1 ~ 48E+04 lt I - 63 4 '22~05 3 1 4 Et 04 0 ~ 0~ . 1 ~ 78E+05 1 ~ 34E+04 0 ~ io 45E+04 7:t --65 3 '4i+04 1 '3E+05 0 ~ 6 '0E+04 8 ~ 72E+05 5 '46+04 0 ~ 4 '6E~04 R8--86 0~ 1 ~ 35E+ 05 0 ~ 0 ~ Qi .1 ~ 66E+04 0 ~ 5 '0f.+04 SR--89 3 049>05 0~ 0 ~ 0 ~ 1 ~ 40E >06 3 '0E+05 0 ~ 8 '2E+03
<<--90 9 926i07 Qo Q. 0~ 9 '0E+06 7~ 22cqo 0 ~ 6 ~ 10E+06 V---91 4 ~ 62E>05 Q ~ 0 ~ 0 ~ 1 ~ 70E ~06 3 85E+05 0 ~ 1 ~ Z4E+04 ZR--95 io 07E>05 3 '4Et04 0 ~ 5 ~ 42E+04 1 ~ 78E+06 1 o 50E i05 0 ~ 2 '3Et04 tt9--95 1. 4164 04 7 ~ QZ6+ 03 0~ 7 '4E+03 5 '6E>05 I ~ 04E>05 0 ~ 4 ~ 21E> 03 FU -1 03 1 ~ 53E >03 0~ 0 ~
' '3E+03 5 '6E~05 ioiQE<05 0 ~ 6 '8E<02 tU 106 6)91E+04 Qo 0 ~ 1 ~ 34E+05 9 '4E+06 9~ IZE4 05 0 ~ 8~ 72E>03 A4 11'3't 1 ~ 08E+C4 1~ 10E+ 04 0~ 1 ~ 97'E+04 4 '4E~06 3 ~ QZE<05 0 ~ 5 '4E+03 rO115<< 0. 1 ~ 97 E+ 05 0 ~ 1 58E+05 1 '1Et06 3 '4E+05 0 ~ 6 '6E>03
)'AS:0 Otl 1 UCI/5 C PELE ASE RATE OF EACH ISOTOPE IN ANO A VALUE OF 1 FOR X/0 ~ OEPLETEO X/0 ANO RELATIVE OEPOSITIOt(
l.VI .utitiitiTAL f ATHttAY COSE CUt(Vfhe Gtt FAI TOILS FOR GAScOUS GISCHAhGES P THt AY - lttHAt.ATION AGE GROUP - AGULT t.UC1 i Oc OtlGAtl OOS F A C T 0 R S ltlREH/YR Pfk UCI/CU+HcTEF.)
3Ct. E L IVcn. TIIYRCIO KIONiY LUttG GI LLI SKIN TOTAL OOOY S <-123 Zo425+05 5~ 33Et03 ve53ft03 0 ~ 2~ 30Etil6 ' 3.14E I O5 0 ~ 7 ~ Sef <03 1'6 1.26E+66 3~ 34& t 04 9.84c t03 0. '6ftoe 1.27Et05 0 ~ 4 ~ SDE+04 "0-12v 3.12= t 04 5. 89E t 02 7 '5itol 0 ~ Zo 4Sct 06 4 ~ oef t05 ~ 0 ~ 1~ 24E+ 04
-"l-l25 o.e lf+04 7.13ft02 5 ~ 87i to 1 0 ~ 2.20ft06 1 ~ 01E t05 0 ~ 1.33ft04 Tc l25tl 3 '2ito3 1 58ct03 1 ~ 05E t03 1~ 24E+04 3 '4ft05 7 '6Et04 0 ~ 4 '7ct02 I c 1 ziti 1.2ef to4 5 '2E+03 3 '9ct03 4 '8E+04 9 '0E +05 1 ~ 50ft05 0 ~ 1 ~ 57Et03 T: lidH 'l.le=to3 67c t03 3 '4it03 3 '6i+Ov 1 16E+06 3 ~ 83E ~05 0 ~ 1~ 5$ E t03 I--130 5)ft03
~ 1.34 it04 1 ~ 74ct06 2 '9E+04 0~ lo69i+03 oo 5 '9ft03 I- ll1 2 'Zito4 3.58it04 1 ~ 19ft07 e.14E+o4 0~ 6 '8E+03 0 ~ 2.05Eta4 1--1'32 1 16ct J3 3 26Et03 4.38Et05 5o 196+03 0 ~ 4 '6Et02 0 ~ 1 ~ 16ct03 I -- l33 8. 6>>it 03 1.49it04 2 '3E t06 2.60E +04 0 ~ 8 '2ft03 0 ~ 4 '4ft03 I--l 3>> be 45ct02 1.73ct03 2 '0ft05 2.75E+03 0. 1~ Oictoo 0 ~ e. lef t oz
'8ct03 1--1S5 2 '9ct03 6 '9c>03 9 '6c+05 1 ~ 11E+04 0 ~ 5. 25E +03 0 ~ 2 C 13v 3. 7sitC5 S ~ 4Sit05 0 ~ 2 AR OSE+05 9 '6Et04 1~ 04f+04 0 ~ 7 '9ft05 CS -136 3. 91E t 04 1.46ct05 0~ 8 '6c+04 1>>20it04 1 ~ 17f @04 0~ 1 11 f +05
~
CS -137 4 ~ l of+ 05 6 Zzfi05 0~ 2 ~ 22E +05 7 ~ 53Et04 ST 40ft03 0~ 4 '9ft05 OA-lao 3 '0ft04 4.90c+Oi 0~ 1.67E+oi 1~ 27ftoe 2 ~ 18E+05 0 ~ 2 '7E+03 Cc lvl 1 ~ 99ft04 1 35ct04 oo 6 26E+03 3 '2c+05 1~ Zilff05 0 ~ 1~ 53Et03 Cf lv4 3.4 3Et06 1.43c+06 0 ~ 8 '8E+05 7 ~ 78E t06 S ~ 16E405 0 ~ 1. 84Et05 P".- 1 3 9~ 36ct03 3 '5ct03 0 ~ Ze16E 103 Zeoif t05 2 'oit05 0 ~ 4 '3ftoz trO -147 5m 27it03 6.10it03 0 ~ 3 '6E+03 2.21ft05 1 '3Et05 0 ~ 3 ~ 65E t 02 Ctt 1 UCI/'S .O'cLcASE rcATc CF EACH ISOTOPE IH AHO A VALUc OF 1 ~ FOR X/0 ~ OEPLETEO X/0 ANO icELATIVE OEPOSITION
Mt 01/25/79 cNVIROtlHENTAL'PATHNAY"COSE CONVERSIOlf FACTORS FOR GASEOUS OISCHAPGES
- PATHMAY HEAT (CONTAtlINATEO FORAGE) AGE GROUP - AOULT NUCL I ac 0 R G A N 0 0 S.E F A C T 0 R S ISO ~ Hc TER HREH/YR PEF UCI/SEC)
BONE LIVER THY ROIO KIONEY LUNG G I- LLI SKItt TOTAL BOOY 3 .0 ~ 4o 13Et02 4 ~ 13E>02 4+i3E +02 4o13E ~02 13c 102 0 ~ 4o 13E+02 r.---14 3 ~ 3 3E ~05 6 67Ei04 6 ~ 67E t04 6e67Et04 6 '7Ei04 6 '7E+04 0~ eo 67Ei 04 F---32 4 '7E>09 2 ~ 93E 108 0 ~ 0~ 0 ~ 5 '56>08 0~ iobiEiab CR--51 0~ 0 4 ~ 23E>03 ioseE+03 9 ~ 3SE >03 ie7$ Etae 0 ~ 7 '7Et03 HN--54 0~ 9
~
ihciae 0 ~ 2+73E+06. 0 ~ 2 'iEtal 0~ 1~ 75E+06 FE--59 2~ 67Ei 08 6. 33c q 08 0 ~ 0~ 1 ~ 76Etab 2 '9E+09 0 ~ 2 ~ 41E ~08 CO--Sl 0~ 5.64Eiae a. 0~ 0 ~ 1 ~ 43E+Od 0. ~ 9 '8E>06 CO--cd 0~ I o 83E F07 0 ~ 0~ 0 ~ 3 '0E+0$ 0 ~ 4 '9E~07 co 6) 0~ 7 '5E407 0 ~ 0 ~ 0 ~ 1 o41E>09 0~ IeeeEiab tlI--63 1~ 89Ei09 I ~ 31E i 0$ 0 ~ 0~ 0~ 2 '3Et07 0 ~ 6 '3c+07 ztt--es 3 ~ seciab le 136+09 0 ~ 7 ~ 576>08 0~ 7+ 13E+0$ 0~ 5~ IZE+0$
FB--be C~ 4 '9E>08 0 ~ 0~ 0~ 9 '4Et07 0~ 2 ~ ZSE+Ob SR--$ 9 3 '3c~ab 0 ~ 0 ~ 0~ 0~ 4 '4E+07 0~ 8 '7E>06 c>--90 1 '5E~IO 0 ~ 0 ~ 0~ 0~ io45E+09 0~ 3 '5E+09 Y - '9 l Io 14Eiae 0~ 0 ~ 0~ 0~ 6 '6E+08 0~ 3 '5Et04 79--95 3 ~ 78E+06 1 ~ 6 7 6+ 06 0 ~ 2 ~ 01E >06 0~ be30E+09 0~ 8 '6E+05 t'0 ~5 2 '36>06 I,ZSE+06 0 ~ 1 ~ 27E +06 0~ 7 '5E+09 0~ so QZEtas FU 103 1.06Eias 0 ~ 0 ~ 4 '6E<0$ 0 ~ 1 ~ 24E<ia 0 ~ 4 '96+07 FU -1 ae 2 'SQE>09 0 ~ 0 ~ si41E+09 0 ~ I + bit<1 1 0~ 3 '4E+0$
AG llCH 6 '1E~06 6~ 2 IE<06 0 ~ I ~ ZZE +07 0~ 2 '3E+09 0~ 3 '9E>06 r 0115H 0~ I ~ 46E <06 0 ~ IoieE+06 0~ 6 ~ 15E<07 0~ 4 ~ 67E+04
~
AS 9 ru 1 UCI/ScC R LcASE RA c GF EACH ISCTOCE IN ANO A VALU. OF 1 FOR X/0 ~ OEPLETEO X/0 ANO RELATIVE OEPOSITIOt.
HOT E Thf IfttITS Fac r,- 14 ANO H 3 AFE (HRF'3/YR PER UCI/CU ~ HETER)
ct VIr Gr'HEIITAL FAT)It AY-COSE COIIVE~S . FACTOSS FOR GASEOUS OISCtraRGiS Pa I trha Y I'.cAT I CONTl tlItta TEO FORAGc) aGC GROUP - aOULT t:UC1 lOi 0 R G A tt O 0 S E F A C T 0 R S ISO ~ ltiTER HREH/Ytr Pc& UCI/SEC) dGtei LIVcf: THYRCIO KID IIE Y LUNG GI LLI SKIN TOTAL BOOY C
pe '0 ~
N-)23 r) ~ 0~ 0 ~ 0~ 0~ 0 ~
Srr-) 26 1. S6i t 1 0 3 '9ctOS 1+OSEt05 0~ e.4eE toe ee19Etu9 0 ~ 5 '3Et08 EB-) Zv 99ct Ol 5 '5E t05 4.50Etov 0~ 1 ~ 54Etp? 5 'ZitoS 0 ~ 7 ~ 85E t06 cO )t5 1~
6 '5itol
'9Et08 1.58cto?
1 ~ 30itoS 1 ~ 29ctol toS 1.74itoS 1 ~ 46c+09 2 '9Et09 3 ~ SOE+05
- l. 43i t09 0 ~
4 1 ~ 05E t 07 Sic t07 T= IZSH 1= 12?H
.3 1 ~ 1 36 ~ ij9 3 936+0$
1 ~
2 OSE
'6Et08 4.56ct09 4.79Et09 0
0~
~
5 o llit09
'6Et09 0 ~
0 ~ 1
~
~ 39ctoS 82Et08 T= )29rt 1, ivct39 4 ~ 29Et08 3.95Etpb 0~ 5 0 ~ . 1 ~
I--l 30 2.38i-pe ?o05E-06 8 ~ 96E-04
'6it09 1.1OE-O5 0~ 6 ~ OvE 06 0 ~ 2 ~ 7?E-06
'5Et06 I-- 31 ).08ctp? 1.55EtO? 5 2~ 65c +07 0~ 4 '?E+06 0. 8 I--)I IZ Oo 0 ~ 0 ~ 0 ~ 0~ 0 ~
lh 0 ~ 0 ~
1--133 4 ~ 4)i 01 7~ 63c-01 1 4?ED 02 lo 33itpp 0~ 6~? 01 0 ~ 2~ 33E-01 I--I )v 0 ~ 0 ~ 0 ~ 0 ~ 0~ 0 ~ 0 ~ 0~
I--l 35 S.eOc-02 7.94i-02 0 ~ 3 ~ 01E 02 5 'SEt0$
9 '4E-03 1 ~ 86E 03 2.74Etpl 0 ~ 3~ 53E-02 28c+09 CS -13>> 6~ 58EtoS 1.5?Et09 .0 ~ 1~ 6SE+0$ 0 ~ 1 ~
C= -1'36 18C'tpl 6?E+07 0 ~ 2 '0Et07 3 '6E+06 5 ~ 31E+06 0 ~ 3 '6Etol CS -137 8~ 73Ft08 1 19Et09 0 ~ 4 '6E tOS 1~ 35E+08 2 ~ 3PE+07 0 ~ 7~ 82CtOS ea-)40 2~ 88ctol 3. 63E+ 04 0 ~ 1 23it04 Zop?Et04 6 ~ S?E+07 0 ~ 1 ~ 90Et06 C 141 1~ v)Et 04 9.52E+03 0 ~ 4 ~ 41E t03 0 ~ 3 '3C+07 0 ~ 1 ~ OSEt03 Cc 1<<4 1 ~ <<6Et 06 6~ loct05 0 ~ 3 ~ 62C t05 0 ~ 4 '3Et05 0 ~ 7. S3E+04 PR-l<<3 2~ 13it04 8 ~ 5?Et03 0 ~ 4 ~ 94E+03 0~ 9 '4Etol 0 ~ 1 ~ 06ct03 trO-1v7 1 o ?Zi t 0rr 9.29E+03 0 ~ 6 ~ 64E t03 0~ 4 ~ 13E+07 0 ~ Si?ect02 Ga:O ON 1 UCI/ScC R=LEASE RATE CF EACH ISOTOPE IN ANO A VALUE OF 1 FOR X/O ~ OcPLETCO X/0 ANO RCLATIVE OEPOSITION rtCI - ftrc UNITS FOI'---14 aNO H----3 ARE (HFcH/YR PER UCI/CU.HETER)
1 0}/25/79 CHVIRONHENtAL PATHHAY OOSE CollVERSION FACTORS FOR GASEOUS DISCHARGES PATHWAY CQHS HILK tCONTAHINATEO FOPAGEl AGE GROUP ADULT NUCL IOE 0 R G A N 0 0 S E F A C T 0 R S (SO ~ HETERaHREH/YR PER UCI/SEC) a'e a aa aaaaaa\a a aa'a aaaaaaaa a aa aa aaa a a
- 3CNE L I VEP. THYROIO KIDNEY LUNG GI LLI SKIN TOTAL BOGY H--- 0~ 9e73E+D2 9 '3Et02 9 ~ T3Etoz' 9 ~ 73ctoz 9el3Et 02 0 ~ 9~ l3E+02 C- -14 3 ~ 63coO5 le28cto'4 7 ~ ZSEtOto ~ ZSEt04 7 ~ ZSE t0'4 7 ~ ZSEt04 0 ~ 7 ~ ZSE+04 P---32 1 ~ T}Eo10 1 DTE+09 0 ~ 0 ~ 0 ~ 1e92E+09 0 ~ 6 '2ct08 CC,--5t 0~ 0~ 1~ 71Et04 6 '2Et03 3 ~ SDE+04 le20E+06 0 ~ 2 6E+04 HN c4 0~ 8 ~ 4}Et06 0 ~ 2e50Et06 ~ 0 ~ 2 '8EtDT 0 ~ 1 ~ 61E t 06 FE a-59 ~ 93coor 7 ~ 06Et07 0 ~ 0~ 1~ 96E t07 Z~ 33E+08 0 ~ Z.69Etor CO a57 0~ 1 ~ ZSE+06 0 ~ 0~ 0~ 3 '5Etol 0 ~ 2 '3Et06 CO-a58 0~ 4 '2E+06 0 ~ 0 ~ 0~ 9 '6EtDT 0 ~ 1~ 06E+Dl Co--bo 0~ 1 ~ 65Et07 0 ~ 0~ 0~ 3~ OSEtob 0 ~ ~
, 3 62Etbl NI--63 6 '3E+09 4 '7Et08 0 ~ Q~ 0~ 9 '3Et07 0 ~ 2e 26Etbb TN -65 1~ 37Eo09 4 '6Et09 0 ~ Ze92E+09 0~ Z~ 75Et09 0 ~ 1~ 9SE+09 FQ -86 0 ~ Ze60E+09 0 ~ Qe 0~ 5 'ZEtbb 0 ~ }~ 21E t09 SR--S9 ie46Eo09 0 ~ 0 ~ 0~ 0 ~ 2 '3Etob 0 ~ 4e ilE+07 Si--olo 4 ~ TDEt10 0~ 0 ~ 0~ 0~ 6 ~ 37E toh D ~ 1 ~ 15Et }0 Y- 91 8 ~ EDE+03 0~ 0 ~ 0 ~ 0~ 4 ~ 73E t06 0~ 2~ 3}Et02 ZR--95 .3 'SEt04 } 75Et04 0~ 1 ~ 75E t04 D~ ie05Etob 0 ~ 6 '5E+03 HO 95 8 'AEo04 4 ~ 59Et04 De 4 '5Et04 0 ~ 2 '9Etob 0~ 1 ~ SQE+04 RU-103 ie02E+03 D~ 0 ~ 3 ~ 9}E t03 0 ~ 1 ~ 19E+05 0 ~ 4 'tE+DZ FU-}06 2 '4Eo04 0 ~ 0 ~ 3 '5E+04 '0 ~ 1 ~ 32Et06 0 ~ Z~ 58Et03 AG1}DH 5 '4Eo07 5 '0E+07 0 ~ ie06E+08 0~ 2 ~ 20Et }0 0 ~ 3 2}E+Dr EO}15H 0 ~ ie25E+06 0 ~ 9 '9Et05 0 ~ 5 '4E+07 0 ~ ~ 98cto cAS=O OH 1 UCI/S:C RELEASE RATE OF EACH ISOTOPE IN ANO A VALUE OF 1 ~ FOR X/0 ~ OFPLETEO X/0 AHO RELATIVE OEPQSITIQN HCT:- - THE UNITS FCR C-aa14 AIIO H-aaa3 AFE (HPE'i/YR PER UCI/CU ~ HETER)
0 0 ).A-.t<<tAY cLV I GttttcW f AL FA TtlNY C<)Sc Cdt<VCASI
- C)N @ILK tCOttTAt:It)ATcO FORAGE)
ACTORS FOA GASEOUS OISCHARGcS AGE GROUP - ACULT t:UCL fi)6 0 R G A H 0 0 S E
'0 F A C I 0 R S (SQ<t)cTER-'3&EH/Yf. PER UCI/SEC) 60hc LIVE< Tt)YRCIO KIOttc Y LUNG GI-LLI SKIt< TOTAL BOOT rit 0 ~ 0 ~ 0 ~ a. 0 ~ 0 ~ 0 ~ 0 ~
12o f +65= t09 3~ 27Et<)7 9i56c tae 0 ~ 4 '7E+06 f>>096t u9 0 ~ 4. 94E i 07 SO-1?4 2 ~ 5<)Eral vo Slrta5 6 2>>c tav
~ 0 ~ 2 ~ OOEtal 7 ~ 31E iab 0 ~ 1 ~ OZEt07 SS 125 2 646<07 6-06Et05 2 '9Et05 3 ~ 72C t06 2 '62>09 2 ~ 29Eeab 0 ~ 5 '3ct06 I"- 12' 1 ~ b3i<07 5 ~ 91 Et06 4.91 E tae 6 63E<07 0 ~ 6+50E+07 0 ~ Zo ibEtae T.- 127H 4 ~ 636t 37 1.63:i;7 1.21Etal 1 SSE+Cb 0 ~ 2 ~ 116+ ub 0 ~ 5 '2ct06 T= l29tl 6 ~ GEE< Ol 2>>2lE t Dl 2 '9ct07 2 '3Etab 0 ~ 3 '46+08 0 ~ 9 '1Et06 I -130 4.27ct05 1 ~ 26E>06 f.elEtab 1 96Et06 a. 1 ~ GSE+06 0 ~ 4 '7Et05 I -131 2.96Etab 25c~ab fo39Etfi 7 ~ 27C +08 0 ~ 1 ~ fZE>08 D ~ ,,2 '3ctab 3--132 1 ~ 676-01 4li Gi 5 ~ bbctaf 7 12E-Oi 0 ~ 8 ~ 396 02 0 ~ 1~ 59E-Oi
-1 33 4~
r aac ~ 06 e.94c iae 1 ~ 33E<09 1~ 21Et07 D~ 6 ~ f DE~06 0 ~ Zo 1Zc i 06 I -13>> u~ 0~ 9'98E-10 0 ~ 0 ~ 0 ~ 0 ~ 0~
I--135 1 ~ 40E~04 3 ~ 70E<04 4 ~ 84Etae 5 '8E+04 7 ~ 58E-OZ 4of4E404 0 ~ 1.36E+04 CS -134 5 ~ 66E<<)9 f.356tia 0~ v 4 ~ 36C tC9 1 '5ct09 2 ~ 36E iDS 0 ~ 1 ~ iDct fa CS 136 2 ~ elE tab
- 1.03Et09 0 ~" 5 '4E+OS 7 ~ 87ct07 1 ~ 17EtaS 7 '3Etab CS -137 7 '9ct09 1 01E+10 Oo 3 ~ 44E>09 f o 14E+09 ii95ctab 0 ~ 6 '2ct09 BA-)>>0 2 '9c<07 38Et04 0~ 1~ 15E>04 io93E F04 5 '0r.+07 0~ f< 78Etae Cc 1>>1 2.91E<uv 1 ~ 976+04 0 ~ 9o 13E t03 0~ 7 '26+07 0 ~ 2 23Et03 Cc-144 2 15c>06 <).97Eia5 0 ~ 5 '2Er05 D~ 7 ~ 26E tDS 0 ~ 1.15Et05 PQ 143 1 ~ 59E< 02 6.39Eial 0 ~ 3 'Sc+Oi 0 ~ 6+96E+05 0 ~ 7 '96+00 t'0- 1 >> l 1 16Et02 1 '2Et02 0 ~ 6 77c<af <3< 5.28E ia5 0 ~ 7. 34E+00 A'. ) OH 1 UCI/SEC RCLcASc PATE OF EACH ISOTOPE IH ANO A VALUE OF 1 FOR )t/0 DEPLETED X/0 ANC RELATIVE OEPOSITIOH
.t<:I: - Tnc UHITS FOR C-"-lv At)0 H----3 ARE (HRCH/YR PCR UCI/CU.HETER)
oi/25/79 El'IVIROtt4EttTAL FATHtrAY-BOSE COtlV'EPSIOtl FACTORS FOR GASEOUS DISCHARGES PATHHAY - FRESH ANO STOREO FRUITS ANO VEGETABLES AGE GROUP - ADULT trUCL10'. 0 R G A N 0 0 S E' A C T 0 R S (SO ~ HcTER HREH/YR PER UCI/SECt 80ttE LIVER THYR GIB KIDNEY LUNG GI LLI SKIN TOTAL OOOY H 3 Q ~ Z~ deE+03 2.866+03 2 '6E>03 Z~ 86E+03 Z~ 86E403 0 ~ 2 '6E<03 c 8 ~ 9TE>>05 t.soEt05 i>>SDE+05 1 ~ SDC >05 f >>SDE i05 f>>SOE405 D ~ 1 ~ SQE~05 P---32 1,416>09 S.81E+Or 0 ~ 0 ~ 0 ~ 1 '8E+08 0 ~ 5 '4E+07 CR--51 0 ~ 0 ~ 2 '8E+04 f ~ 03E+04 6>>19E+04 i>> ilE >07 0 ~ 4 '6E+04 Ptl 54 0>> 3>>13E+Oh 0 ~ 9 'iE<07 0 ~ 9 '8E408 Q ~ 5 '7E'07 Fc 59 te ZTEtod 3 ~ 01E+08 0 ~ Q ~ 8 '7E+07 9>>95E<08 0 ~ 1 ~ 15E > 08 CO--57 0 ~ t>>irE>07 0 ~ 0 ~ 0~ 2 '7C~DS 0 ~ t>>95E+07 C0--58 0 ~ 3eQSE407 0 ~ 0 ~ 0~ 6 '4E>08 0 ~ 6e90Eior CD--EO 0 ~ 1.68E+08 0 ~ 0 ~ 0~ 3 ~ 14E+09 Oe 3 '8E~OS NI--63 f>>04E>to 7 '2E+QS 0~ 0 ~ 0~ i>> 50E+08 0 ~ 3 '9E<08 TN--65 3e iSE<08 ~ i>>01E>09 0 ~ 6 '5E<08 0~ 6 '5E+08 0 ~ 4 '6E<08 F9--Se 0~ 2>> 20E+08 0 ~ 0 ~ 0~ 4 '4E<07 0~ t>>03E<08 Si? --89 "1 ~ DQE >10 0>> 0. 0 ~ 0~ 1~ 60E+09 0~ 2~ 86Eiob SR--90 Y---91 6>>DTE>tt 5>> 14E toe 0~ De 0 ~ 0~ 1e 61E+10 83E>09 0 ~ 1 ~ 49E ~ it 0~ 0 ~ 0 ~ 0~ Z~ 0~ 1 ~ 38E<05 Lo--95 1.40Ei06 5>>DZE+05 0 ~ 7 '1E+05 0~ f 9Zc<09 0 ~ 3 '6E~05 t'9 95 1.42E>05 7 '0E+04 0 ~ r.83E+04 0~ 4 '9E<08 0~ 3>>tQE<04 cU 103 4.84Ei06 0 ~ 0 ~ 1>>86E+Q7 0~ 5 '66<08 0 ~ Z>>09E<06 AU -156 1.93EiOS 0 ~ 0 ~ 3 'ZE+DS 0~ ie 25E<to 0 ~ 2 '3E+Dl Aof fDH i>>06E>07 9>> fE>06 0 ~ ie93E+07 0~ 4 ~ 01E 109 0 ~ 5 '4E<06 00115 I 0 ~ 5>> ilE>07 0 ~ 4>>tDE>DT 0~ 2 ~ 17E >09 0 ~ 1 '5E+06 nAS-:0 CN 1 UCI/SEC R LEASE RATE GF EACH ISOTOPE IN ANO A VALUE OF 1 FOR X/0 ~ OcPLETCO X/0 Allo RELA'TIVE OEPOSITIOtl rrOTE - Ttr= UNITS Foc 0 f4 Atl0 H----3 ARE lHCEH/'YR PER UCI/CU HETER)
ct.V1'Ot(NEt'L FATHttAY-OOSE COltVEF SIOtt FAI TORS FOR GASEOUS ilISCNA(AGES PATHttAY - f -.6 H ANO STOREO FRUl I'S AtlG VCGETABLES AGE Gi'OUP A CULT t UCLIO. 0 R G A N 0 0 S F A C T G R S tSQ ~ Hc TcF ltkEH/rf PER UCI/SEC)
<<30NE- LIVER THYRGI0 KIOttEY LUNG GI LLI SKItl TGTAL OOOY
!!t-12 5 1 ~ Obc 05 l<<66c-07 1 ~ 41E 07 0 ~ 5 ~ 2 '>>E-05 0 ~ 2 ~ 45E 07
<<-52o 6 ~ 56ct09 1. 37 c+08 3<<99Et07 0~ 5<<16E >07 8 '4Et09 0 ~ 2 '3ct08 c0-1 2'<< <<t43 <<08 ~ 97ct06 2 515>05 0~ 8 '6E<07 2 '4Et09 4.10c+Ol wQ TE t)5 12=tl 1 ~
l<<9<<<<ct08 3.65Et07 1
1.06Et07 3<<51=~ Gl 7
2
'9Etbo
~ 91c Jul 9~
3 ll E+Ol 93c+Ob 1~
0 ~
lSEt10 1 ~
3 59E+ 09
'5E+0$
0 0
0
~
~
~
3 ~ '73E 1~
t Ol 29E>07 T= tbltt 3 '0=+0<<5 1 ~ 22ct08 9 ~ 1SE 407 1 ~ 42c+09 0~ 1 ~ 59Et09 0 ~ 4 '1it07 Tc 579H 2 '5c<<08 9.546107 8 ~ 79E F07 1~ 06E +09 0~ 1 ~ 28E+09 0 ~ 4 '5E+07 1--1 30 3 ~ 93ct05 1.16ii06 1 ~ 48E >0$ 1 ~ S1E f06 0~ 9 98E+05 0 ~ 4~ 5Sct05 1--131 $ <<33Et07 i<<16EiJS 3.79EvlQ 1.98E PCS 0~ 3 '5E+Ol 0 ~ f.e 63E t Ol I 152 5 5lc+01 l.c9Ei02 1 ~ 96c<04 2 '8Et02 0~ 2 ~ SOE+01 0 ~ 5 '9E+01 1--1 33 2<<13ci06 3 69Et06 7 ~ 10E t08 6.44 E +06 0~ 3 24E+06 0 ~ 1 ~ 13E>06 i--t '4 1 ~ 03c-04 2 '9E-04 3 ~ 63E 02 4 '5E"04 0~ 2 '3c 07 0 ~ 9 '9E-05 1--135 4.-04 c i 64 1 ~ 07E+05 1 ~ 4JEtG7 1 ~ 706 f05 6 '7E-OZ 1~ 19E+05 0 ~ 3 ~ 91E4 04 CS-1 3>> >>~olid 09 1 ~ 11Ei10 0 ~ 3 ~ 61E 409 1~ 19ci09 1 ~ 94E>0$ 0 ~ 9 '9ct09 CS -13o 4 '0ct07 1<<66E+08 0 ~ 9 '3Et07 1.27E F07 1 ~ 89Et07 0 ~ 1 ~ 19ct 08 CS -137 6 '7Et09 S ~ 70Et09 0 ~ 2 '6Et09 9vS1C+OS 1 ~ 6lE+0 8 0 ~ 5 ~ 71Eg09 I<<>>-140 1 ~ 29ct08 1~ 70EIG5 0 ~ 5 ~ 50E 104 9 '5Et04 8 '4c+0$ 0 ~ ST 48E~06 Cc-1<< 1 f<<9$ cv<<35 1 ~ 34E>05 0 ~ 6.19E t04 0~ 5 ~ 09EIOS 0 ~ 1~ 51E+04 CE 1>>>> 3 '0Et07 1 ~ 38ct07 0 ~ 8 ~ 166 <06 0~ 1 ilC+10 0 ~ 1 ~ 7l E > 06 Pi. 14 3 6 '5Et04 2.55Ei04 0 ~ 1.47E+04 0~ 2 ~ 78E+0$ 0 ~ 3 ~ 15E4 03 tiO-1>> 7 9.68Etd4 4.50it04 0 ~ 3 '0it04 0~ 1 ~ 95E ~0$ 0 ~ 4 '3ct03 0-'5=) GN 1 UCI/ScC R "LcASE RATE OF EACH IS01'OPE IN ANO A VALUE OF 1 ~ FOR X/O ~ OEPLcTEO X/0 ANO RELATIVE OcPOSITION ttt<<T.- - Tltc Ult1TS FOR C---14 ANO H----3 Af E tNRc<<5/Yk PER UCI/CU ~ NETERt
01/25/79 EhV IRO)IHENT AL PAT IIHAY-DOSE COtiVcFSIOII FACTORS FOR GASEOUS OISCNAPGES
>AYNMAY - GQOUIIO PLAHE OEFOSITION AGE GROUP - TEENAGFP l UCL IOE 0 R G A N 0 0 S E F A C T 0 R S (SQ ~ NETER-HPEH/VR PER UCI/SECI Ont 6 LIVER THYROID KIDNEY LUHG GI-LLI SKItl TOTAL BOP Y N----3 0 ~ 0 ~ 0 ~ 0~ 0 ~ 0 ~ 0~ 0 ~
C---14 n. 0 ~ 0 ~ 0 ~ 0 ~ D ~ Oe D~
P--- 32 0~ 0 ~ 0 ~ 0 ~ 0~ 0 ~ 0 ~ 0 ~
CR -51 ~ ~ 6'IE< 06 4 '5Et06 4 '5E~06 4 '5E >06 4 ~ 6SE >06 4 '8E>06 5 '36>06 4 '5E>46 CV 1 ~ 3hf <09 te3SE<09 1 ~ 38E >49 le3SE F09 38Et09 1 ~ 35E+09 1 ~ 62E +09 1 ~ 38E+09 r c--59 2 75EtOS Z~ 75E>08 2e 75Ei08 Zel5E F08 2 ~ 75EIDS 2 '5E+08 3e23E F08 2 '5E~OS CO 57 1.59Ee45 1 89Etdd te59E>08 1 89&+08 1 89E+08 1 ~ 89E>08 2 ~ OSE ~05 ie59E+08 Cg--55 3e30E~08 3 ~ h0 >08 3 ~ SDE>05 3ebOE >08 3 ~ SOit08 3 ~ SOE+08 4 '5Et08 3e SOE+05 CO--60. Z.t5Eeto Z. 15Ei10 2 '5E+iD Zei5E<10 ZeiSEt10 Ze 15E+ 10 2 '2c<10 2 '5C>10 HI --63 0~ De 0 ~ 0 ~ 0~ 0 ~ 0 ~ 0~
7H--65 7 ~ 4 31i48 7 ~ 4354 05 7 '3E<GS 7 '3E+08 7 ~ 43Ei05 7 ~ 43E'4 Gb 5 e54E+08 7 ~ 43E < Db co 56 9 ~ OIE+D6 9~ Oil>06 9 ~ 01E >06 9 ~ 01E +06 9 ~ OIE<06 9~ 01Et06 1 ~ 03E+07 9e 01Ei06 co p) 2~ I7E>04 Zet7E+04 2 ~ 17E >04 Zeilc404 2 ~ 17Ei04 2 '7E>04 2 '1E404 2~ ilc f 44 SR--9D 5 '5Ein6 5.35E+06 5 35Ei06 5 '5E+06 5 ~ 35E >06 5 '5E >06 6 '3E>06 5 ~ 35E+ 06 Y---91 1 jhE>G6 teDSE>06 t ~ OSE+46 ieOSE+06 1 ~ OSE >06 1~ OSEt06 1~ ZZE<06 t. DSE+06 lc--95 5.0tceah 5eOIE+08 5eDtEi05 5 '1E+08 5 ~ OIE~OS 5 ~ DIE<DS 5 '6E<05 5 ~ OiE +45 H9 'l5 1 36=<08 ie 36Et08 le366+08 ie36E +08 1 ~ 36Et08 1. 36E+05 1.6IE+48 ie 36E+48 4U-303 i.lnbeOS t DE~OS 10cq08 ie iOE+08 1~ iOE+08 t. 10E+08 t ~ ZSE+05 1~ tOE>08 4U-146 19Ee05 4~ 19Et05 4 ~ 19E ~08 4ei9E+08 4 ~ 19E +05 4 ~ 19E<08 5 '35+05 4. 19EiOS AG liOH 3 ~ 53bctO 3 ~ 586+09 3 '5E>49 3 '8E+09 3 55Et09 3 '5E>09 4 ~ 1 75 >09 3 '8E~09 C0115H 0 ~ 4 ~ 0 ~ a. 0~ 0 ~ 0 ~ 0~
~a-co 0;I 1 UCI/S:C RELEASE RATF. CF EACH ISOTOPE IN Atlo A VALUE OF 1. FOR X/0, OcPLETEO X/0 AND RELATIVE OEPOSIYIott
ft I.V I <<ultticttTAL PA TI3MAY ilOS 'OtiVtRSIOh FACTORS FOF GASEOUS OISCttAl GES PA lHHAY GCO?Hte PLANE 0-POSI TIOH AGC GROUP.; TEcHAGER t;tt 03..'OE 0 R G A tl 0 0 S " F A C T 0 R S lSO ~ t1ETCP 'll;ctt/YF PcR UCI/SECI 90tiE L IV ER TttrRCIO KIOtlEY l.utlG Gl LLI SKIt TOTAL BOGY SH-12$ 'J ~ 0 ~ 0 ~ 0 ~ 0 ~ 31 ~ 1 '7ct06 0 ~
c IJ-126 9~ lect 10 5 16t 110 5 ~ lee 410 5. 16c+10 5.le E+10 5.16 Ei10 .5 76Et10 5.16Etio c 33 5 ~ 9$ 2t08 5.9$ ce 0$ 5 '8E<0$ 5 '86 +08 5 ~ 98c+08 5 'SEtOS 6 '0E+0$ 5 '8E+OS 0 125 2~ 332>09 2 30it09 2 '06~09 2 '0C+09 2.30E+09 2 '0E+09 2e59Et09 2 '0E+09 1= 12511 1 ~ 556tu6 1 ~ 55itue 1 '5itCo 1 ~ 55Et06 1 ~ 55c >06 1 ~ 55f. +06 2 ~ 13E+06 1~ 556t06 lc l27H 8 ~ 79i 105 Se79it05 $ .79Et05 Se79Et05 5 ~ 79Ei05 8 79ct 05 ~ 9.74 E t05 8.79E 05i T= 12~tt 3 ~ 55~07 3 315ct07 3 '5it07 3. 85E 107 3 '5Et07 3 ~ 85E+Ol 4 ~ 52i f07 3 ~ 85it07 1--1 30 7 ~ 53ce06 5 '3ct06 5 '3Et06 5e53E <06 5 '3Et06 5 '3E+06 6 ~ liE+06 5 '3Et06 l--131 1 ~ 72=t<<7 1~ 72Et Ol 1 72ct07 1 ~ 72E >C7 1 72ce07
~ . 1~ 72c+07 2 ~ 09c t Ol 1~ 72E+07 1--132 1 ~ 25ct06 1.25f i Oe 1 '5ct06 1 ~ 25E+06 1 '5Et06 1 ~ 25E+06 1 ehlE >06 ie25E+06 1--133 2 ~ <<Bct06 2.teSEt06 2 ~ t SEt06 2 '38ct06 2 '3$ Eg06 2 '38E+06 3 'ic+06 2 '3$ E+06 1- -1 S>> 4 ~ 50c<05 4.50ct05 S.5OEt05 0 ~ 50Et05 t3 ~ 50E+05 t ~ 50E+05 5 '5E+05 1,.50i+05 I 135 2 ~ 56E+06 2 '6Et36 2 '6Et06 2 '6E+06 2 '6c+06 2 '6Et06 2 '9c+06 2,56Et06
.CS-13>> 6 ~ 99ct09 6 ~ 99Et09 6 '9Et09 6 '9E109 6 '9E>09 6 '9Et09 S.15c t09 6 '9Et09 rs -136 1 ~ <9ct08 1 ~ te9Et0$ 1.3 9Et08 1 ~ te9 6+08 1 ~ te9 i+08 1 ~ te96+0$ ' ~ 69E+08 1~ 09c+0$
C'1 Sl 23Et10 '3ctiO 1 03E+10 1 ~ 03E+10 1 ~ 03E>10 1 ~ 03E +10 1 ~ 20i t10 1~ 03E+10 t?A 143 1
1
~
~ 682+08 1
1 'bet08 1.6$ E ~0$ 1~ 6$ E+OS 1~ 6$ E>0$
'7E>07 1 '$ E+OS
'7C>07 1 ~ 90E40$
1.5t E~07 1~ ebc+0$
Ci-141 1 ~ 17Et07 1 ~ 37Et07 1 ~ 37E407 1.37C t07 1 1 1~ 37E+07 C= -13e<< 1 ~ 13EAOS 1 ~ 13E>08 1 ~ 13E 408 iei3Ei08 1 ~ 13c+0$ 1 ~ 13E+0$ 1 ~ 31E+OS 1~ 13EtOS Vr.-14.3 0 ~ 0 ~ 0 ~ 0 ~ 0. 0 ~ 0 ~ 0 ~
110 -147 8 ~ sbetbe S.tebtt06 ~ 3ebi 106 8 ~ 33$ E 106 bekbct06 betebE<06 1 ~ 02E+07 bet3$ E >06 0 CH l UCI/ScC cLcASC'ATE OF CACH ISGT'OPE IH AHO A VALUE OF 1 ~ FOR X/0 OEPLCTEO X/0 AllO RELATIVC OEPOSITIOtl
~"
01/25/79 ENVIRGNHENTAL PATHHAY-OOSE CONVERSION FACTORS FOR GASEOUS OISCHARGES PATHWAY - INHALATION AGE GPOUP - TEENAGER I.UCL IOE 0 R G A N 0 0 S E F A C T 0 R S (HREH/YR PEP. UCI/CU.HETER)
GNE LIVER THYROIO KIONEY LUNG GI LLI SKIN TOTAL OOOY H Oo 8 '8E+02 S ~ 4$ E +02 1 '7E+03 8 'SE>02 ST 4SE>02 0 ~ So48fio2 r,---14 4 '3f<03 4o53E+03 4 '3E+03 3 '2E+03 4 '3E+03 1 53E+03
~ 0 ~ 4 '3E~03 r---32 ioBZEi06 7 'ZE+04 0 ~ 0~ 0 ~ So64E404 0 ~ 5oOZE+04 iooofi02 CR--51 0~ 0 ~ 5 ~ 95E+01 Z~ Zdf+01 1 ~ 44E+04 3 '2E+03 0 ~
NN 54 0~ 3 '6E+04 0 ~ 9 '4E+03 to40E+06 7o74E>04 0 ~ 6 '0E+03 I'-59 1 ~ 1SE<04 2 'SE+07 0 ~ 0~ ioOZE~06 70E+05 1 CA SSE+05 3o 14E > 04 0~ 1 6o
~ 06E~04 liE+02 C0--57 0~ 6 '2E+OZ 0 ~ 0~ 3~ 0 ~
CO--cS 0~ io76E+02 0 ~ 0~ io37E i06 9 '2ft04 0~ 2 '4E+02 Co"-60 0 ~ io24E+03 0 ~ 0 ~ 8 '6E+06 2 '5ft05 0 ~ 1 '5E+03 NI 4o3ZE+05 3 ~ 14 f104 0 ~ Q ~ ioldf+05 1~ 34E<04 0~ io 45E+04 lN"-65 3 '4fq04 1.03E<05 0 ~ 6 '0E+04 So l2E >05 5 '4E<04 0 ~ 4 '6ft04
'5E+05 0 0. io66f>04 0 ~ 5 '0E+04 86 PO 0 ~ 1 0 ~ ~
SW 89 3 ~ Slf<04 0~ Oo 0 ~ Z ~ 50E+06 3 '4E>05 0~ 1 '16+03 90 1 ~ 18=>07 0~ 0 ~ 0 ~ io66E >07 7 ~ 24E<05 0 ~ 7 ~ 23E>05 Y- -91 5o3dfiG4 0~ 0. 0~ 2 '6Et06 3 ~ 74E i05 0 ~ 1 '4E+03
--95 1 ~ 09f <04 3 '35103 0 ~ 5 '2E+04 Z~ 566>06 io33E<05 0 ~ 2 '4ft03 95 1,366+03 8 '4E+02 0 ~ 7 '4E+03 lo 17E <05 Sodof<04 0 ~ 4 '2E+OZ NS f U 103. 1 63E ~ OZ 0 ~ 0. 5 '3E+03 7o5if i05 9 '4ft04 0 ~ 7 '2E+01 Fu-106 houofoG3 0 ~ 0 ~ io34E+05 1~ 64E+Ol 9 ~ Zdf>05 0 ~ 1~ 066~03 AG110H i.odfi04 1 Qoi+04 0 ~ io97E>04 4 ~ 64E 106 3 'ZEt05 0 ~ 5 '4E>03 C0115H 0~ 1 ~ 97E+05 0 ~ 1~ 582<05 1.41E+o6 3 '4E405 0 ~ 6 '6E~03
~ASfn ON 1 Uri/"EC ~ELEASc RATE OF EACH ISOTOPE IH ANO A VALUE OF 1 ~ FOR X/0 ~ OEPLETEO X/0 ANO RELATIVE OEPOSITION
01/25/79 cNVIRCIIHENTAL FATHIIAY-DOSE COtIVERSIOtl FACTORS FOF GAScOUS OISCHAFGES PATHHAY IHHALATIOH AGE GROUP TEEIIAGER-NUCLIDE 0 R G A H 0 0 S E F A C T 0 R S (HREH/YR PEP. UCI/CU>>HETERt 8 0 IIE LIVER THYRO!0 KIDNEY LUNG>> GI-LLI SKIN TOTAL QOOY EH- 1Z.3 Z~ 79E>04 6 ~ 14 E+02 4 ~ 92E >02 0~ 3 ~ 91E+06 3>>13E<05 0 ~ 9 ~ ZQE~OZ SII-126 1 ~ 266~06 3~ 34E>04 9>>84E F03 0 ~ 9 36E<06 1 ~ ZTE105 0 ~ 4 ~ SOE<04 SD<<124 3 ~ 12E <04 5 '9E>02 7 ~ 55E iai 0 ~ Z~ 48E+06 4 '6E~05 0 ~ 1~ 24E>04 0-175 6>> 61E 04 i 7>>13E+02 5 ~ STE>ai 0 ~ 2 '0E+06 1~ 01E >05 0 ~ 1 33E<04 Tf l25'I 4 ~ OTE>02 1 ~ 86E+02 1>> ilE+OZ i>>24f +04 5>>36Et05 l ~ 08'E+04 0 ~
~
5>> 53E>01 T= IZTH 1>> 26E>04 5 ~ 62f >03 3 '9E >03 4 ~ 5SE+04 9 'DE+05 1 ~ 50E i05 0>> 1>> 57E>03 Tc 179H 1 ~ 19fq03 5 '4E>02 9oE+oz 3 '6E+04 2 '3Et06 3 '4E+05 0 ~ 1~ 92c+02 I -- 1 30 4 '8E+03 1 ~ 34f > 04 1 >>74E i06 2.09f i04 0~ 7>>69f >03 0 ~ 5 '9E<03 I"-131 3 '7ft04 4 'ZEtQ4 1 ~ 39c gal 6.14E+O4 0 5 '6E+03 0~ 2 ~ SZE >04 I--13Z I--l33 1~ 166 i 03 23E i04 3 '6E<03 4 '$ E<05 3 '3E>06 5 ~ 19E>03 0
~
~ 4 ~ 06ft02 0~ 1>> 16E+03 1 ~ Z>>06fi04 2 ~ 6DE tD4 0 ~ 1 ~ OOE+04 0 ~ 6 '4E>03 I- -134 6 '5E>02 73E+Q3 Z 30E~05 2 '5E t03 0~ 1 ~ 01E+00 0~ 6>> 16E+02
<<1
-134
'%5 2>> 69E>>03
'36+05 1 ~
6>>99E+03 i>>iafioe
~
9 '6E>05 1>> iif +04
'8E+05 0 ~
'4E>05 5 '5E+03
'6E+03 0~
a.
2~ 5SE >03 CS 4 0~ 2 1 8 5 ~ 44E+05 CS 136 CS-137 3 '1E+04 6 '2E<05 1 46E~05
~
8 '4f>05 0~
0~
S>>56E+04 2 ~ 22E ID5 1~ 20E 104 1>>18E>05 1>> ilf<04 7 ~ 68E+03 0
0
~
~
1>> 11,'E+ 05 3 '3E+05 pA>>140 5 '05>03 4 '5E+00 0 ~ i>>67 6 +01 2~ DZEI 06 2.1ZE+04 0 ~ 3 '2E~QZ C 141 2 ZTE~03 1 5 2E t 03 0 ~ 6 '6E+03 5 ~ 83ft05 1>> i4E i05 0~ 1 ~ 74E>02 Cc-1~a 4 19E~05 1 ~ 74E~05 0 ~ ST 48E+05 1~ 38E>07 8 '0E>05 0~ 2 '4E+04 Pc-lo3 9
~
'6f<03 3 ~ 75E103 0 ~ 2 ~ 16E 103 2~8 if>05 2 ~ OOEI05 0 ~ 4 '3E~OZ tiO<<147 5 27fi03 6~ 1 af >03 0 ~ 3 '6EP03 2 ~ 21E 105 i>>73E+05 a. 3 '5E<02 IIAS 0 0:I 1 UCI/SEC REL=ASE raTE OF EACH ISOTOPE IN AHO A VALUE OF 1 FOR X/0, DEPLETED X/0 AHO REI.ATIVE O.POSITION
at/25/7~
=ttV IRCttHEHTAL FATHttAY-OOSE COHVERSIOH FACTORS FOR GASEOUS OISCHARGES PA Y HMA Y HE 4T l CONT ABIttATEO FORAGE l AGE GPOUP TEEHAGEP.
ttuCLIOE O R G A N 0 0 S E F A C T.O R S tSOoHETER-NREH/YR PEP. UCI/SEC) c30HE LIVER THYROIO KIOttEY LUNG GI LLI SKIN TOTAL OOOY H 0 ~ 1 93E<<02 1 ~ 93E+OZ 2 '4E+02 1~ 93E <<02 1 ~ 93E+02 0 ~ 1 ~ 93'E <<02 C --14 5 '3E+94 5 '3E+04 5 '3E <<04 3 '4E+04 5 '3E<<04 5 '3E+04 0 ~ 5~ 23=<<04 C -32 7 ~ 76E<<09 to736<<9$ 0 ~ 0 ~ 0 ~ 3 ~ 10E+08 0 ~ 1~ OlE<<08 IVER
- 51 0~ 0~ 2 '0E<<03 9 'ZE+02 5 '5E<<03 1.05E<<06 0 ~ 4 ~ 1SE<<03 Nu 54 9~ 5 ~ 42E<<06 0~ 1 ~ 61E+06 0~ 1 ~ 66E+Ol 0 ~ 1 ~ 04E<<06 Fc-.-59 1~ 5$ c<<0$ 3 '4E<<0$ 0 ~ 0~ io04E<<08 t ~ 24E+09 0~ 1~ 42E+08 CJ--57 9 ~ 3 '3E<<06 0 ~ 0~ 0~ S ~ 45E+Ol 0 ~ 5, 54E<<06 ca--58 0~ io44E<<07 0 ~ 0 ~ 0~ 1 ~ 94E <<08 0 ~ 3 ~ ZlE <<Ol CO--60 0~ 5 ~ 73E+Ol 0 ~ 0 ~ 0~ 6 '7E+as 0 ~ 1 ~ 31E<<08 ttl--63 i. 12E<<09 7~ 74E<<07 0 ~ 0~ 0~ 1 ~ 6tE<<07 0 ~ 3 ~ 74E <<07 7H--65 2 '16<<08 6 '9E<<08 0~ 4 '7E+OS 0~ 4 ~ 21E <<08 0 ~ 3 ~ 03&<<08 PO--Se 9~ 2 '9E+08 0 ~ 0~ 0~ 5 '9E>07 0 ~ 1~ 35E<<OS c%--$ 9 Zo66E<<0$ a. 0~ 0~ 0~ 2 '9E<<07 0 ~ lo64E<<06 SR--90 toalE+10 0 ~ 0~ 0~ 2 '9E<<08 1 ~ 02E<<09 0 ~ 2 '9E<<09 Y---91 9 '4E+05 0 ~ 0 ~ a. 0 ~ 3 '9E<<08 0 ~ 2 '9E<<04 7(--95 2 '75<<06 1~ Z4F+ 06 0~ 1~ 1SE+06 0~ 4 ~ ZOE<<09 0 ~ 7 o 61E+ 05 tt9- 95 io5SE<<06 9 StE+05 0 ~ 7 ~ 48c+05 0~ 3 'SE<<09 0 ~ 5 '7E<<05 PU 103 8 '5'E<<07 0 ~ Oo Z ~ 40E+OS 0~ 6 '8E<<09 0 ~ 3 ~ 60E<<07 cU -106 2.40E<<09 0 ~ 0 ~ 3 '0E<<09 0~ 1~ 09E<<11 0 ~ 3 ~ 02E+08 A G 1 l 0't 3 '7'E<<06 3 '7E+06 9 ~ loZIE+06 0~ 1 ~ 50E<<09 Oo 2 ~ 1$ E <<06 C0115u o~ 8 '4E+05 0 ~ 6~ 85E <<05 0~ 3 '3E<<07 0 ~ 2 '6E+04
-:AS=a Ou 1 UrI/SEC QELEASE PATE VF EACH ISOTOPE IN AHO A VALUE OF 1 ~ FOR X/Oo OEPLETEO X/0 ANO RELATIVE OEPOSITIOH ttoi - THE UttITS Fac r.---l4 AHO H----3 AFT (NREN/YR PER UCI/CU ~ NETERt
0 1/25/79 cNVIRarrHENTAL PATHHAY-OOSE CONVERSION FACTORS FOR GASEOUS OISCHA};GES
+ATHrrAY HFAT tcONTAHINATEO FCRAGEl AGE GROUP TEENAGEP.
HUG L 10' R G A N 0 0 S E F A C T 0 R S lSO ~ HETER }tREH/YR PER UCI/SEC)
AONE L IvER THYROIO KIONEY LuNr. GI LLI SKIN T0TAL 'rooY SN-123 Q~ 0~ 0 ~ a. 0 ~ 0 ~ 0 ~ 0 ~
SN-l26 totaftta Zo ibf+08 6 ~ 38E ~07 .0 ~ 3 ~ SZE+06 3 '6E~09 0 ~ 3} 14E+08 SB-124 i}tlficl 2~ Ztf <05 2 ~ 84E 404 0 ~ 9} i if +06 3 '2E>08 0 ~ 4 '4E+06 9 125 5 ~ 0 if 07
'3E~OS
~ io 3if tal t.asf+08 1 ~ OZE~07
'5E+07 io03E+08 8 '3E+08 to47E i09 0
2 '5E<08 8 '76>08 0
0
~
~
7m 4
60E+06
'2c~07 TE t25rt llf <08 8 ~
3 2 '46>OS '9E+09 3 '5E409 8 ~ Zbfial 6 '8E>08 1 ~ 2 0~ 0 ~
TE 127H I i 129'l 9 '8f<08 3 '3E+ 08 3 '3E+08 2 '3E>09 0 ~ 3 'tf+09 0~ 1 '3itab I--130 1 41E-06 4 ~ 16E 06 5 '0E-04 6 ~ 47E-06 0~ 3 '7E-06 0 ~ 1~ 64E 06 I--131 8 '4E+06 toZtf+07 ~ 3 '8E >09 1 ~ 56E <07 0~ 2.28fiae 0 ~ 7~ i9E~06 I--13Z 0~ 0 ~ = 0 ~ 0 ~ 0~ 0 ~ 0~ 0~
I--133 3 ~ 69E-01 6 ~ 26E Oi 1 14f F02 7 ~ Sbf~ai 0~ 4 ~ 55E 01 0 ~, 1~ 93E 01 I--t'34 0. 0 ~ go a. 0~ 0 ~ 0 ~ 0 ~
I 135 5 ~ OSE-02 4~ 69E-02 '0 ~ iolSE 02 5 '4E-03 1 ~ iaf 03 0 ~ 2~ OSE-02 CS 134 5 03E<08 1.2tf>09 0~ 3}Oaf+08 ie47Eiab 1 '0E+07 ~ 0 ~ 5 ~ 66f +08 CS -116 6 '9E406 2 ~ 76E+ Ql 0~ to 54E >07 2 ~ 11E ~06 3}14E+06 0~ 1 ~ 99E+ Ol
-137 6 'ZE 08 9 ~ btf+08 0 ~ 2 ~ 40E tab 1 '4E>08 ,1 ~ 24f 107 0 ~ 3 '7E>08 t ~ 53E i 06 F
CS RA-t~a 2 '7E+07 2 '3c+04 0 ~ 7 ~ 28 6+03 1 ~ 95E+04 9} 19E+06 0 ~
CE-141 totZE}04 7e51E+03 0~ 2~ 6if +03 0~ Z~ 03E+07 0 ~ So6tf +02 Cc 1 ~ ?86<06 *5 '3E+05 0 ~ 2 t4E+05 0~ 3 ~ OOE+Od 0~ 6} 76E + 04 P~ 143 t F 266}04 5 0 ~ 2 '2E+03 0 ~ 5 '2E+07 0 ~ 6 ~ 26E+ OZ NO-1'-7 t-at'}04 '7E+03'}496+03 0 ~ 3 '2E<03 0 ~ Z~ 44E+07 0 ~ 5. td'+02 cAS=O O.r 1 uCI/S'C RELEA.E RATE CF EACH ISGTOPE IN ANO A VALUE OF i. FOR X/O. OElLETEO X/O Arre RELATIVE OEPOSITIOH
'rat - TH.. UNITS Fac C - 14 ANO H-- 3 AKf lHPErr/YR PER UCI/CU HETERt
P oi/25/79.
El)VIRONHENTAL PATHNAY-OOSE GottVEFSION FACTORS FOR GASEOUS OISCHARGES PATH)tA Y CONS HILK (CONTAHINATcO FOPAGE) AGE GPOUP - TEEt)AGEP.
t'UCL IOE 0 R G A N ') 0 S E F A C T 0 R S tSO ~ HETER-tiREH/YR PER UGT/SEC)
DONE LIVER THYROIO KIONEY LUNG GI LLI SKItt TOTAL OOOY H>>>> 0 ~ 9 ~ 93E+02 93E~DZ t>>26E+03 9 ~ 93E <02 9 ~ 93E 402 0 ~ 9 '3Etoz C---) 4 t>>25Ei05 t >>25E 05i t>>ZSEi05 9>>39E +04 t>>25E ~05 1 ~ 25E >05 0 ~ 1 ~ 25E~05 P" 2.21E+)O te38E+09 0 ~ Oe 0 ~ Z ~ <<SEt09 0 ~ 8+5<<E+08 CQ- 51 0~ 0 ~ 2 ~ ZtE~D<< 8 ~ 15E 403 4 ~ 90E 104 9 '9E>06 0 ~ 3 '9E~04 ru--54 0~ t>>09E+07 0 ~ 3>> Z3E 406 0>> 3 '3E<07 . D ~ 2.07Eioe f c9 3 '<<Etor 9112 6+07 0~ 0 ~ 2 '3E+07 3 'tE>06 0 3~ 47E107 cv 57 E ~
0~ ti65E+06 0 ~ 0~ 0 ~ 4~ 19E~or 0 ~ 2 ~ 75E >06 CO--55 0~ Se 10E+06 0~ 0~ oe 1 'oE+0$ 0 ~ to $ 5E>07 CO--60 0~ Z ~ 73E+ 07 0~ 0~ 0~ 3 '7Etob 0 ~ 6.23Ei07 ttI--E3 8 ~ 666+09 6 ~ DZE+0$ 0 ~ 0~ 0~ 1>>26Etob 0 ~ 2 ~ 9tE+06 7N--65 1>>lrE+09 5 '3E+09 0~ 3>> llE <09 0 ~ 3 '5E+09 0 ~ Z ~ 55E~09 PB 86 Qo 3%35E+09 0 ~ 0~ 0~ 6 ~ 6f E <oh 0 ~ t+56E+09 cP g9 2 'ocq09 0>> 0~ 0 ~ 0~ 3 '3E>06 0 ~ 6 '3E+07 SR--90 296+10 0 ~ O. 0 ~ 3 ~ 38E >06 1~ 76E >09 0 ~ 2 ~ 05E+1 0 Y---9t 1 5<<E>04 0~ 0~ 0 ~ 0~ 5 '3Et06 0 ~ 4>> tzE+02 rg 95 4 ~ 78E+04 Z~ b<<E+04 0 ~ 2 '5E<04 0~ 1>> 15E <08 0 ~ 1 ~ 60E104 HO 95 1 2<<E>05 7 ~ 46E+ 04 0~ 5 ~ 87Eto<< 0~ 3 '5E<0$ D ~ 4~ ZiE+04 FI)-103 t>>69Ei03 0~ 0 ~ 5 '<<E+03 0~ 1 ~ 32Et05 0 ~ l>>565+02
)U 106 .3 '3E>0<< 0~ O. 5.09E+0<< . 0~ 1 ~ 73E+06 0 ~ 4>> btE+03 AG110u l>>53E+07 6 ~ 97E 107 0 ~ 1 ~ 37c >OS 0 ~ 2 ~ 64E <10 0 ~ 4 ~ 1<<E >07 CO115H 0~ t ~ 6t E <06 0 ~ 1 ~ 28E >06 0 ~ 6>>77Et ol 0>> 5 '<<E>04 AA 1 C t f UCI/SEC RFLEASi:RATC CF EACH ISOTOPE Itt ANO A VALUE OF 1 ~ FOR X/O DEPLETEO X/0 Atto RELATIVE O'EPOSITIOtt ttCF TIIE Ut)ITS FOR C---1 4 ANO H- - 3 ARE tHRCH/YR' R UCI/GU ~ HETER)
P
it.VI~Ct;ttENTAL FATHHA Y-0035 CotlVERSION FACTORS FOR GASEOUS OISCHAFGr t>A THltAY CONE tlILK (CCttTAHINATio FORAGE l AroE GF CUP - TEENAGER ~
t~uCL Toi 0 F G A N 0 0 S c F A C T 0 R S (St) HETcR-HkEH/YR PER UCI/SEC) r ICtti LIVER THY ROIO KIONE Y LUtlG GI-LLI SKIN TOTAL BOOY
'l-$ ?3 0~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~
+N 12o 2 ~ 126i09 4~ 2ic+07 1 ~ 2vc P07 D. 6 '3E+66 1 ~ 4(c+09 0 ~ 6~ 37E+Ol S0-12>> 3 ~ 3 $ c>07 6o29Et05 8 ~ 05C tO>> 0~ 2 '9ct07 9 '3Et08 0 ~ 1~ 32E+ Ol 50-125 3 ~ >>5 t07 9 '8ct05 5 '5E t05 SOE tOo 3 '3Et09 2 95EtOS 0 ~ 6.82Et06 T= 125H 09ct07 1~0 Oct Ol S ~ 4l c ~06 8 '5E+07 0 ~ 8 '9E+07 0 ~ 3 '8E>06 Ti 1?7H o ~ 622t07 2o (ii+07 1.59E+07 2.43c+08 0 ~ 3.02EtOS 0 ~ 7.45Et06 Tc )291 13EiOS 4.(SEt07 F 6(it07 3 ~ 27E +08 0. 3 '3Et08 Oo 1 78Et07 I--l 3Q 1 ~
5 ~ 5(Et05 1 ~ 63Et06 2 '7E+08 2 '3it06 0~ 1 ~ 40E>06 io37E+08 0 ~ 6 ~ 4(Et05 31Etbb 3--1 $ 1 5 ~ 12 <08 lo 24 cobb 2 ~ 09E ~11 9 '8E~OS 0~ 0 ~ 4~
I--1.$ 2 2 ~ 16E-01 5o76i 01 7 ~ 59E >61 9 ~ 19c 01 0~ 1 ~ OSE 01 0 ~ 2~ 05c 01 I--l 33 lo 33Et 06 1.24Et07 2 '6ct09 1 ~ 56C 107 0~ 9 '2Et06 0 ~ 3 '3Et06 I--13v 0~ 0 ~ io29E-09 0 ~ 0~ 0 ~ 0 ~ 0 ~
I- 135 1~ Slit04 4 '76104 6 '4E<06 7.5SEt04 9 '9E 02 5 '4Et04 0 ~ 1 ~ 756+04 CS 134 9 ~ 442i09 2 '8ct10 0 ~ 5 '3E tu9 2 '6E+09 2 '3EtOS 0 ~ 1 ~ 06E410 cs -136 3 ~ 37Et08 1 ~ .'33 Et 09 0 ~ 7.4li tOS ( ~ 02EtOS 1 ~ 51E>08 0 ~ 9 'SE>08 CS 137 io 28Ect(0 lo72Et10 0 ~ 4 ~ 43E <09 2 '8E>09 2 ~ 29Et08 0~ 6.04E>09 BA-l>>0 4 ~ S4Et07 5 '5E+04 0 ~ 1 ~ 4SEt04 3 '8E+04 9 ~ 16Et06 0~ 3 ~ 11E >06 Cc-lvl 5 ~ 05it64 3 '9E+04 0 ~ 1 ~ 1SE+04 0~ 9 ~ 18E t 07 0~ 3~ 89ci03 CE-1>>4 4 ~ 10it06 1 ~ 68ct06 0 ~ 6 87E+05 0~ 9 ~ 65EtOS 0 ~ 2~ llE4 05 PK-lv3 2~ 05c+02 8.25cial 0. 4 '5ct01 0~ ST 98Et05 0 ~ 1~ 02Etol tlo 1 vl lo v9ct02 1 ~ 44E1 02 0~ ST 74E+Oi 0~ 6 '2E405 0~ 9 ~ 4SE+00
-"0'co ON 1 UCI/SCC RrLEASE RATC OF EACH ISOTOPE IN ANO A VALUE OF 1 ~ FOR X/a, OEPLETEO X/a ANO RELATIVE OEPOSITION a
NGT= - 'THc utl ITS Foll C---14 ANO H----3 AISLE (HRctl/YK PER UCI/CU ~ HETER)
~ ~
Oi/25/79 ENVIROtlHENTAL PA THttAY-DOSE CONVEP SION FACTORS FOR GASEOUS DISCHARGES PaTHMav - FRES~ aMO STORED FRUITS ANO VEGETABLES AGE GROUP TEEtlAGER ttUCL IOE 0 R G A N 0 0 S E F A C T 0 R S lSO ~ H" TER-HPEtt/YR PER UCI/SEC)
LIVER THYROID KIDNEY LUNG GI LLI SKIM TOTAL BODY H - 3 0~ Z 57Ei03 Z ~ 57E+03 3 ~ Z4E+03 2 ~ 57E <03 2 '7Et03 0 ~ 2~ 57E>03 C Z~ rtEt05 Z ~ 7 tE~05 2 'tE+05 2 '3E+05 2 ~ 71E 105 2 ~ riE~05 0 ~ 2~ rlE>>05 P---32 27c+08 0 4 ~ 36E +07 1 13 5 > 0't 7 ~ 06E>07 0 ~ 0~ 0~ 1~ ~
4 '8E+04
~
CR--51 0 ~ 0~ 2 74E >04 1~ DtE>04 6.OSE+O4 1>> 15E+Ol 0 ~
Htl 5>> 0~ 3 '2E+08 Q ~ 1 ~ 05E+OS 0 ~ 1 ~ OSE~09 0~ 6. 72Eior F. --59 i>>34E<08 3 'sE>08 0 ~ 0~ S.saE+or 1~ 05E+09 0 ~ 1~ 21E +Ps CQ--57 a~ 1'>>31E+07 0 ~ 0~ 0~ 3 '4E+08 0~ 2~ t9Eior CO"-58 4 '5E407 0 ~ 0~ 0 ~ 6 ~ OZE>08 0~ 1>> 02E +08 0~
lo--eo 0 Z~ 44E+OS Q ~ 0~ 0~ 2 '3E+09 0 ~ 5.57E+08 3 '6E+08
~
tlI- 63 ,1 ~ 18E i 10 S>>tsE+08 0~ 0~ 0~ 1 ~ TtE+08 0 ~
Tll--65 3 '7E+08 '.14E+09 0 ~ 7 ~ 57E +08 0~ 7>> 13E+ 08 0~ 5 ~ tZE>08 n--se Q ~ i>>94ctos a- 0~ a. 3 ~ S3E+07 0~ 9.06Eior S>--89 58E>to 0~ 0 ~ 0~ 0~ 1 ~ 72E+09 0 ~ 4 '5E+OS 1
-90 9 '0E 11 C0115l'GME 5<.
Y 7,69c+06 0~
0~
0 0
~
~
0~
0~ 0~ 2 '5E+09 0~ 2 ~ 06E < 05 79--95 1 ~ STE>06 7 '3E+05 0 ~ 7 '0E+05 0~ 1 ~ 86E+09 0~ 4 '6Et05 tlB -95 1. 69E~05 1>>azE+05 0 ~ 8>>DOE+04 0~ 4 ~ 15E+ OS 0 ~ 5 '3E>04 t U-103 6 '6E+06 0 ~ 0 ~ 1 ~ 93E +07 0~ 5>> 04E ios 0 ~ 2 '9E~06 f;U-l ve 3. 15c~os 0 4 '0E >08 0~ 1 ~ 43E+10 0 ~ 3 '6E>07 no>> 1 t DH 1 195<07 0 ~
t>>toE>07 0 a.
~
~ 2 ~ ilE+Ol
'9E+07 0~
0 ~-
4 '0E+09 2 ~ ZSE+09 0 ~ 6>>56E>06 73Etoe 0 ~ 5 41E<ar 4 0 ~ 1 ~
i~aSc'3 Otl 1 UCI/S=C CELEASE I=.ATE GF EACH ISGTOPE IN AllO A VALUE OF 1 ~ FOR X/0 ~ DEPLETED X/0 AtlO RELATIVE DEPOSITION
- ter= - THL UNITS FGR C---14 aMO H----3 AFE tHPEt/YR PcR UCI/CU.HETERt A
01/z5/r 9 ctl V IPOttHENT AL PATH){AY "BOSE CONVERSION FACTORS FOR GASEOUS OISCHARGES PATHWAY FRESH AllO STOREO FRUITS ANO VEGETABLES AGE GROUP - TEFNAGER t:UCL IOE {) P. G A tt 0 0 S E F A C -T 0 R S {Sn ~ HETER HREH/YR Pc@ UCI/SEC) nct)E LIVER THYROIO KIDNEY LUNG GI-LLI SKIN TOTAL BODY Stl-123 9 25i-06 1 ~ 53E 07 1.22E-Dr 0~ 0~ 1 ~ 33 F--05 0 ~ 2~ ZDE-07 c't-126 7 ~ 7'9E+ 09 54E+ 08 4 ~ 53E+Dl 0~ 6 ~ 01E+Ol 1 ~ DZE >10 0~ 2 ~ 54E>08 SB")zq 59-125 izfqbh
'3cq08 1~
Zo iif>06 io 66E+Dl 2e liE+05 1 e16E >07 0~
ie 15E+08 8 ~ 69febl 2 ~ 01E+10 3e ilf >09 82E409 0~ 4 ~ 42E <07 4 ~ 40E 107 2 1 ~ 0~
TE125H 1~ 486+08 5 ~ 30E4 Dl ~ 4 ~ 18E+Dl 4 ~ Zzftbb 0~ 4 ~ 14E+08 0 ~ 1 ~ 97E+ Dl TE }27H 3.88Et08 36E+08 1 ~ 03E>08 1. 56E+09 0 ~ 1 ~ 95E >09 0~ '4 bif >07 TE 129H 3o74E<08 ie39E+08 1 ~ 20E+08 1~ Dbft09 0 ~ ie 31E <09 0 ~ 5 '0E>07 I--130 2.58fi05 7o64E+05 9 ~ 72E+Dl ie19E<06 0. 6 '5E405 " 0 ~ 3 'OE~05 I- 131 re33EI07 1 ~ 03ftbb Z ~ 99E<10 1.34E F08 0 ~ 1 '6E<07 ~ 0 ~ 6e irft07 I--13Z 3 65f F01 9 ~ rrf>01 1 ~ 29E <04 ie 56E+02 0~ ie 84E401 0 ~ 3 '7E+Di I--133 ie9))fi06 3o36E+06 6.1OE+08 4 ~ 23E <06 0 ~ 2 '4E+06 De 1 '4Et06 I- 134 6e 758-D5 1 ~ 83E 04 2 '8E-02 2 '2E-04 0 1~ 60E-07 0 6~ 566 05 iif F05
~ ~
I - 135 2 ~ 65E+ 04 le DOE+04 9ei5E+06 1~ le izE-02 7 ~ 84E+04 0 ~ 2~ 5lE+ 04 CS 1')4 6.84E+09 1 ~ 65E>10 0 ~ 4 'bft09 ZeDDE+09 1 ~ 90E+08 0 ~ 7 ~ 69E+09
, {S-)36 3.25E+07 1 ~ zbf>08 0~ lei3E+Dl 9~ lbf ~06 1 ~ 46E+07 0. 9e23fi07
's-137 9 '8E+09 1 31E010 0~ 3 '5E+69 1~ 73E+09 1 ~ 74E+08 0 ~ 4 '7E+09 nA )>>0 1 ~ 3) +Dh 1 ~ 78E+05 0 ~ 4 'zft04 1 ~ 13E t05 4 '4E+08 0 ~ bob6E>06 C= 14) 2 'hf>05 1 '9E+D5 0 ~ 6 '5ft04 0~ 4 ~ brf+08 0 ~ Z ~ 07E+04 CE-144 5 '7E+07 2.25E+07 0 ~ 9~ 1lf >06 ' 0~ 1e 29E+ 10 0 ~ Zo 91E+06 FR>>143 5 00c+04 2 ~ 0'2f 104 0 ~ ~ 16E 104 0~ Ze 19E+Db 0 ~ 2 '9Et03 MP )47 9. 80E+04 3e'55E < 04 0 ~ 2 97E404 0 ~ 1 ~ 45E+08 0 ~ 4~ 50E+03
- A::e) 0:t 1 UCI/5 "C RELEASc RAT c OF EACH ISOTOPE IN ANO A VALUE OF 1 FOR X/{)~ OcPLETEO X/n a!)0 RELATIVE OEPOSI TION NOT= - THE Ut)ITS <OR I: -14 Attn H -- 3 AFE {t{REH/YR PER UCI/CU HETcP)
0 0 01/25/79 EttVIRONHENTAL FATHNAY OOSE CONVERSIOtt FACTORS FOR GASEOUS OISCHARGES PATH<<AY - GlotlNO PLAttE 0" POSITION AGE GROUP CHILO tluCL toe 0 R G A N 0 0 S E F A C T 0 R S (SoeHETER-HREH/YP. PER UCI/SEC)
PCNE LIVER THYROIa KIONEY LuNr, GI LLI SKIN TOTAL OOOY H 0~ Q~ 0 ~ Oo Qo 0 ~ 0 ~ 0 ~
C---14 0~ 0~ 0 ~ 0~ 0~ 0 ~ 0 ~ 0 ~
P- 3Z 0~ 0~ 0 0~
CR--51 O'I -54 Ge 4
1
'8E+06
'3E>09 4.6$ Eiae 1 ~ 3$ E<09 0~
4 1
'SE>06
'55<09 4
- 1
'8E+06
~ 386>09 0
4 1
~
'8E+06
~ 386+09 4
1
~
'SE>06
~ 3$ Et09 0
5
~
'3E+06 i)62E+09 4 '$ E+06 ie3$ E>09 Fc 59 2 '5E+Ds 2 '5c+08 2 756+08 2e 756<08 2o 75E t Ds 2 '5E+08 3 '3E+08 Ze75E>0$
r.o--57 1 $ 9E>ah 1)$ 9Eias 1 '9Etas 1 ~ 89E>0$ i&59EOOS 1~ 89E+08 2 ~ OSE~OS 1)89E F 08 C0--58 3 ~ 30E+08 3 ~ SOE+08 3 ~ SOE+0$ 3 ~ SOE40$ 3 ~ SOEtas 3 ~ SOE<08 4.45E+as 3oSOEiab C0--60 2e15=+10' Z)15E+10 2 ~ 15E+10 2 ~ 15E +ia Zo 15E>ia 2 ~ 15E+10 2 '2E+ia Zo 15E>10 ttI --63 ~ 0~ 0 ~ 0~ 0 ~ 0 ~ 0 ~ 0~
ZN lE)5 re43CtaS 7 ~ 43E+0$ 7 43E+08 7 ~ 43E+OS 7 '3E>0$ 7 ~ 43E+08 8 ~ 54E<0$ l.t 3Eiab Ro--he 9 ~ 0 IE >06 9 '1E<06 9oaiE ~ 06 9 'IE+06 9 '1Et06 9 '1E+06 1 ~ 03E+Ol 9o 01E+06 SR--89 Ze 17Ei04 Z.17Eiac 2~ ilE 104 2~ ilE+04 2o ilE 404 Ze ilE+04 2.51E,ac 2 ~ 17E ~04 cR--90 5 '5E~06 5 '56~06 5 '5E+06 5 '5E+06 5o35E+06 5 ~ 35E+06 6 '3E<06 5 '5Et06 Y---91 1)OSEtae ioasEiae ieahE+06 1 ~ OSE+ae ioasEiae 1 ~ OSE+06 1 ~ Z2E +06 1e OSEiae Z ~--95 5 '1E>08 5 '1E+08 5 '1E+OS 5 ~ 01E+08 5 '1E~QS 5~ 01Etas 5 ~ 86E+Oh 5 '1E>08 tto--95 1 ~ ,36EtaS 1 ~ 36E+ OS 1 ~ 36Etas 1 ~ 36E+08 io36Eias io36E+05 ie61E+08 1 36E+08 pu -133 ieiacias 1~ 10E+0$ 1 ~ 19E+Gs 1 ~ iaE+08 io10E ~08 1~ 10E+08 1 ~ ZSEtas ie iOE>0$
Fu-tae 19E> 4)19E+08 4 '9E+as 4oi9E<0$ 4e19Eiah 4 ~ 195+08 5 '3E+08 4o 19E+OS AG11DH C0115H 4
0~
~
3.5hei09 OS 3
0
'$ E~09
~
3 0
'Sc+09
~
3 '8E+09 0 ~
3 '8E+09 0~
3 0
'SE+09
~
4 0
~
~
ilE+09 3 0
'8E~09
~
"A =.." e<< t UCI/SEC PELcASE RATE OF EACH ISOTOPE IN ANO A VALUE OF 1. FOR X/0, OEPLETEO X/0 Atio RELATIVE OEPOSITION
01/25/7'9
-HV IPO))HEHTAL FA THHAY OOS: CONVEP SION FACTORS 'OR GASEOUS OISCHAPGES PA<HMAY - GROUNO PLANE O.POSITIO ) AGE GPOUP - CHILD NUCLIOc 0 R G A N 0 0 S
\'0 i AA F A C T 0 R S
% % % W lSO ~ HETER-HREH/YR PER UCI/SEC)
'0 &%\ %'\ %W
')ONE L IVEP. THYROIO KIDNEY LUNG GI-LLI SKIN TOTAL BOOY SN 123 0~ 0 ~ 0 ~ 0 ~ 0~ 0 ~ ie37E>06 Oo 176 5 ~ 166~10 5 }6E>}0 5 ~ }6EI}0 5~ }6E +}0 5.}SE i}o 5 '6c+10 5 '6c<}0 5s}6E+}0 SO 124 5 ~ 9hcsyod 5.98Eiab 5 ~ 98Eyob 5 ~ 9SE+08 5 '8E+08 5 ~ 98E I 08 6 '0} >08 5 'SEiob Sa-}ZS 2. 3e=ia9 2 'QEt09 2 '0E<09 2 '0Et09 2 '0E+09 Z~ 30E+09 2 '9E~09 2 '0Et09 TE 125H l. 55Ei06 1 ~ 55 E>06 }.55Eias 1 ~ 55E+06 1 55E+06 }e 55EP06 Ze}3E>06 1 ~ 55E>06 T= )27H hi79E>05 8 '9c+05 ST 79C 05 be79E+05 S ~ l9E+ 05 ST 79E>05 9 '4Etos 8,79E+05 Tc 129H 3 '5E~QT 3 '5E>07 3ebsEiDT 3ed5E+07 3 ~ 85E IOT 3 '5E~Ol 4 '26~07 3 '5E+07 5~ 53c<06 5 53E+06 5 '3E>06 5 ~ 53E+06 5 ~ 53Eias 5 '3E<06 6 ~ 71E >06 5o53E+06 I 31 1 ~ TZE>07 1 TZEIDT 1 ~ 72EIDT 1~ 72E +07 }+TZEi07 }eTZEi07 2 ~ 09E <07 }.TZEio7 I --1 32 1 ~ 25c<06 }.25Ei06 }e25E>06 }I25E+06 1~ 25E+06 1 ~ 25E+06 }.47Eias 1 ~ 25E+06 I--133 Z 48Eias 2 '8E<06 Z ~ 48E tos 2 '8E+06 2 '8C.+06 2 '8E<06 3 ~ 0}E <06 Zo4dE+D6 I--},34 4osaE>05 4 '0E+05 4.5OE ios 4 5DE~D5 4 '0E+05 4 '0E+05 5 '5Etos 4 '0E+05 T--}35 2 '6c+06 2 '6E>06 2 '6Etos Z ~ 56E~06 2.56E+06 2 '6E+06 2 '9E+06 2~ 56E+06 CS 134 6 99E+09 6 '9E<09 6 '9E>09 se99E+09 6 '9E+09 6 '9E+09 $ .15cia9 so 99E+09 CS -1 36 1 ~ 49E< OS 1 '9E+08 1 ~ 49C>08 1 49E~OS }e49E tod ie49E>ob 1 '9E+0$ le 49Eiob CS -137 1. ". 3c + 10 }e03E<}0 }e03Et}0 }o03E>}0 }a03E~}0 1 ~ 03E>to 1 ~ 20E+10 }o03Et}0 PA-}40 1 ~ Sdc>08 1 ~ ESE>OS }osSE408 iosdE+08 }osdEiod 1 ~ 68E+08 }"o90E+0$ 1 ~ 68E~OS rE-}-} 1. 37Ei 07 io37E<07 io37E>07 1 37E107 le 37E >07 1 ~ 37E>07 1 ~ 54E~DT 1 ~ 37E<07 CE -}44 }e }3Eiod 1 }3Etob }e}3E<08 }o}3E+Ob }e}3E>08 }o 13E+08 1 ~ 3}E >08 1. 13E i 08 PR-143 0~ 0~ 0~ 0~ 0~ 0 ~ 0 ~ 0 ~
H0 147 l.sdEtos 8 '8E+06 ST 48E>06 $ .48Ei06 8 ~ 48E+O6 8 '8E<06 1 ~ OZE >07 8 48E~os c3 0') 1 UCI/SEC RELEASE RATE CF EACH ISOTOPE IN ANO A VALUE OF 1, FOR X/0 ~ OcPLE'TEO K/0 ANO RELATIVE OEPOSITION
OirZS/7R ENVIRONHENTAt. FATHHAY-OOSE GONVERSIOtt FACTORS FOR GASEOUS OISGHAFGES PATHWAY INHALATIOtt AGE GROUP - CtlILO ttUCL IOE 0 R G A N 0 0 S E F A C T 0 R 5 1HRiH/YR PER UGI/CUoHETEPl DONE L IVEP. THYROIO KIOttEY LUNG GI LLI SKIN TOTAL tlOOY H 0 ~ lo51E+OZ 7~ sif >02 4 '6E+02 7 5 if F02 7~ stf +02 0 ~ le 51E+02 14 6.252~03 6 ~ Zsf+03 6 ~ ZSE <03 1 ~ 5SE+03 6 ~ Zsf F03 6 '5E~03 0 ~ 6 ~ 25Eo03 P--- TZ 6 iii>05 3.57fi04 0 ~ 0 ~ 0~ .4 ~ OOE+04 0 ~ 2 '2E+04 CR--51 0~ 0. 2.75E F01 1~ 06E +01 6 '6E+03 io54E+03 0 ~ 4 '3c<01 ru--54 ~ O. 1 '36>04 0 ~ 4 ~ ssf 103 6o4dfios 3 'di+04 0 ~ Zo91c+03 Fi"-59 5~ 44E<03 io2SEtol 0 ~ 0 4 ~ 70E+05 ST 70E+04 0 ~ 4~ dbf+03 I ~ 7 ifi 05
~
C0--57 0~ 3 ~ Zof<02 0 ~ 0 ~ 1 ~ 45E+04 0 ~ 3e 10E+02 C0--58 0 ~ 1 ~ 52E~OZ 0 ~ 0 ~ 1~ 13E+06 3 '2E+04 0 ~ 2~ 6dc+02 CO--6Q C~ 1~ 07E>03 0~ 0~ 6 '2i+06 9 '6E+04 0. io SSEi03 HI -63 2~ Oocio5 1 ~ 45E+04 0 ~ 0 ~ ST 25E+04 6~ idf+ 03 0 ~ 6 ~ 70E +03 ZN--6'S 1~ Soc>04 4.77E+04 Qo 3~ 19E+04 4 '3E >05 2 ~ 47 f + 04 0 ~ 2 '5E+04 co--dd 0~ 6o25E+04 0 ~ 0~ 0 ~ 7 '0E+03 0~ 2~ 73E+04 Sc 89 so37E)04 0 ~ 0~ 0~ 2 '4E+06 1 '9E+05 Oo 1 '4E+03 cR--90 1 ~ 64E) Cl 0 ~ 0~ 0~ I ~ 4SE t 07 3 '5E+05 0~ 9o99E+05 Y- "91 - 7 ~ 44E>04 0 ~ 0 ~ 0~ Z~ ssft06 I ~ 7SE ios 0 ~ 1 ~ 9SE~03 7R--o5 1 ~ 41c<04 3~ Zdf<03 0 ~ 2~ sif +04 2~ 12E<06 S.74E+o4 0 ~ 2 'SE<03 N9 Rs 1 '0E+0% 7 ~ 25EIOZ 0 ~ 3 'SE+03 5 ~ dsf~os 3 '2E404 0 ~ 5 ~ 33E +02 RU -103 2 '6foOZ 0 ~ 0 ~ 2 ~ lof +03 6 '3E>05 4 ~ ZZE >04 0 ~ S ~ 73E ~oi PU-106 1 lsf <04 0 ~ 0 ~ 6o idf 104 1 '5f<07 4 ~ 37E >05 0 ~ 1 ~ 44E +03 AG110H 5 Qof)03 4 '3c<03 0 ~ 9 ~ 10E+03 2~ 15E+06 1 ~ 40f+05 0 ~ 2 '5E+03 C0115H
~
0
~
~ 9o 10E+ 04 0 ~ 7 ~ 33E i04 6~5 if<05 1~ lbE+05 0 ~ 2 '4E~03 a: -0 c'tt 1.UGIrsfc HcLiasf cATE oF EAGH IsolopE IN Alto a vALUE oF 1. F0% x/0, 0EpLETE0 x/0 ANo RELaTIvE 0EposITIOt;
ot/25/79 cltVI ROtlNENTAL FATHHAY-OOSc CONVEhSIOtt FACTORS FOR GASEOUS DISCHAPGES PATH@AY - INHALATIOH AGE GROUP CHILD tiUCL IOE 0 R G A N 0 0 S E F A C T 0 R S (HPEH/YR PER UCI/CU ~ HETEc) o& & %%% W& oo&% % o o 'oo BONE LIVER THYROID KIOttEY LUNG GI-LLI SKIH TOTAL BODY cV-123 3 ~ $ 5E~ 04 6e44E t 02 6 '1E<02 0 ~ 3 '0E+06 te49E405 0 ~ to 27E>03 Stl 1 26 5 '5E+05 1 ~ 55E+04 4 '5E~03 0~ 4 '3E+06 5 ~ SSE+04 0 ~ 2 ZZE~04 59-124 1~ 44E> 04 Z ~ 72E+02 3 ~ 49E >01 0 ~ le15E+06 1.88Ei05 0 ~ 5 '4E<03 SO-125 3 '6c~04 3 '0E+02 z ~ rzE+01 0~ to02E+06 4 '6E+04 0 ~ E~ 14E ~ 03 TE 125H 5 '2c~02 lo94E+02 to61EIOZ 5 ~ 74E+'0 3 4-StE+o5 3 '8E+04 0 ~ 7~ 62E~ot T= 127H 5 '5E<03 Z ~ 60Ei03 1 ~ 5ZE i03 ZoiZE+04 4 '4E>05 6 '2E+04 0 ~ ro 25E>02 TE 1?9H 1 ~ 64E<03 5 85E+02 5 '0E ~02 to 69E+04 1~ SOEi06 1 SZEt05 0 ~ 2 ~ 60E ~OZ T--130 2 '26~03 6 'ZE+03 8 '7E405 9 ~ 66E <03 0~ 3 ~ 56Et 03 0 ~ Ze45E>03 I--t 31 4 '5E+04 4 '3E+04 1~ 54E >07 2o 8'4E+04 0~ 2 '5E>03 0 ~ 3 '0E~04 I--132 5 '7c~QZ 1~ 51E+03 2 '3E>05 2 ~ 40 E <03 a. 1 ~ SSE~OZ 0 ~ 5e 37E+OZ I--133, 1.68Ei04 2 '5E+04 5 '3E~06 1~ 20E+04 Q. 5 '5E+03 0 ~ 8.03Ei03 I- 134 2 RE~02 lo99E+02 ie06E+05 to27E+03 0~ 4 '6E Ot 0 ~ Z~ 85Et 02 I--135 1.24Ei03 3 '3E403 4 '3E+05 5 '4E>03 0 ~ 2 '3Et03 0 ~ 1 ~ 19ci03 CS -1.34 6~ 22it05 9 '5E405 0 ~ io33E+05 to 19E t05 3 'lE~03 0 ~ 2 '3E<05 CS 136 t.otEi04 6 7lc+04 0 ~. 3 '6E<04 5 '5E+03 5 '0E+03 0 ~ 5 14E~04 CS-137 8 '6E>05 l4.66E400
~ 99E i 05 0 ~ io03E+05 ieQDE+05 3 ~ 41E+ 03 0~ 1~ 25Eo05
~A-140 ro 14E103 0 ~ lo73E+00 iel4Ei06 9 '2c>03 0~ 4~ ZZE+02 C:-141 3ot3E>03 1 ~ 57E003 Q ~ 2 '0E+03 5o 14E i05 5 '4E>04 0~ 2 '3E+02 Cc 14v 5 ~ 81E<05 ioSZEt05 0 ~ 3 '2E+05 le23E+07 4 ~ OOE+05 0 ~ 3~ tQEi04 PR-1~3 4 ~ 3$ Et03 1 '4Et03 0 ~ 9 '9E+02 te30Ei05 9 '5E+0'4 0~ 2~ 14E>02 NO-1 r 2 '4E%03 2.82Ei03 0 ~ 1 '5E+03 1 ~ OZE +05 le 99E+04 0~ io 69E >02
- A'.: ~ t UN 1 UCI/SiC cELcASE RATc CF EACH ISOTOPE IN ANO A VALUE OF 1 FOR X/0 ~ DEPLETED X/0 ANO RELATIVE DEPOSITIOtt
0 1/25/79 EtlVI RONNE))TAL FAT HHAY-DOSE CONVERSIOtl FACTORS FOR GASEOUS OISCHAPGES PA)'HMAY - t)EAT (COt)TAHIt)ATED FORAGE) AGE GROUP - CHILD NUCL IOE 0 R G A N 0 0 S E F A C T 0 R S (SO ~ HETEP. H&EH/YR PER UCI/SEC) a a a a a%a a \ a &a% '0& % % a POtlE LIVER THYROID KIDNEY LUNG GI LLI SKI)t TOTAL BODY H 3 0 ~ Zo33E+02 2 '3E+G2 1. 54E+02 Ze 33E+OZ Z ~ 33E+OZ 0. 2. 33Ei02 C---14 87E+ 04 9 i dle+04 9 ~ 87E >04 2 '9Et04 9o87Et04 9 ~ 87E+04 0 ~ 9. 87E i 04.
3Z ).74EiOy io09E+08 0 ~ 0 ~ 0 ~ 1 ~ 96E+08 0~ 6e73E+07 Cga ci 0~ 0~ . 1 ~ i 58E 03 5 'ZE +02 3 '0E>03 6'o63E+05 Oo 2 '4iq03 rtt--54 3~ 3 'ZE>06 0 ~ 1 ~ OZE <06 0 ~ 1 '5E+07 0~ 6+54E+05 FE--59 9 ~ 95i 107 Z~ 36Ei08 0 ~ 0~ 6o55E<07 7 79EIQS 0~ do98E+07 CO -cl 0~ Zo 10E+06 0 ~ 0~ 0~ 5 '3C+07 0 ~ 3 '0E>06 CO--c8 0~ 69E+Ol 0~ 0~ 0~ ioOOE+08 0 ~ 5 ~ 10E>07 C0--60 0~ 6 77E+07 0~ 0~ 0~ 3 '5E~OS 0 ~ 2 '3E+08 NI"-63 7~ 04E+OS 4 ~ SSE+Ol 0 ~ 0~ 0 ~ 1~ OZE+07 0 ~ 2 ~ 36E > 07 7tt -65 1.33E>08 4iZZE>08 0~ 2 ~ SZE>08 0~ 2 '6E>08 0 ~ 1 91EiOS re--86 0 ~ 1 'ZEi08 0 ~ 0 ~ 0~ 3 ~ 59E 107 0 ~ 8 ~ 5OE +07 cRe 5 '4E<08 0 ~ 0 ' 0 ~ 0~ 1~ 8dE >Ol 0 ~ 1 ~ 44E+Ol cR--90 1 ~ G5E~10 Q ~ 0 ~ 0~ 0~ 7 ~ OZE+08 0. Zo 6lE+09
>---91 ) ~ 76i>06 0 ~ 0 ~ 0~ 0~ 2 '3Et08 0 ~ 4 '9E+04 2>> 95 4 '22406 1 ~ 51Et 06 0 ~ 7 '7E+05 0~ 2 '2E+09 0 ~ ioZOEi06 t'B~-95 Z ~ 68E+G6 1 ~ 15Ei06 0 ~ 4 '2E+05 0~ 1 '8E>09 0 ~ 8~ 41E+05 FU 103 1 '5E~OS 0 ~ 0 ~ 1 ~ 51E +08 0~ 3 ~ 81E>09 0 ~ 5+87E+07 RU 106 4 ~ 51E<09 0~ 0. Z.02E+09 0~ 7 ~ 01E+10 0 ~ 5i 61E +08 AG 110H 2 '0i<06 2+31Ei06 0 ~ 4 '5E +06 0 ~ 9 '4E408 Q ~ 1~ 38Ei06 C0115H 0~ 5~ 45E405 0 ~ 4 '2E+05 0~ 2~ 29E+Ol 0 ~ 1~ 74E> 04 tASEO CN 1 UCI/SEC ?ELEASE FATE CF EACH I CTOFE IN AND A VALUE OF 1~ FOR X/0 ~ DEPLETED X/0 AND kELATIVE DEPOSITION tlUTE - TH: UtlITS FGF C- -14 AtlO H- --3 ARE (HREH/YR PER UCI/CU ~ NiTER)
01/25/79 ittVIROtlHENTAL PATHHAY"OOSE CONVERSION FACTORS FOR GASEOUS OISCHARGES l?ATHuAY - HEAY (COttTAHIttATEO FORAGEl AGE GROUP, - CHILO NUCL IOc 0 R G A N 0 0 S 5 F A C T 0 R S tSQ ~ HiTER-HREH/YR PcR UCI/SEC)
!30t!E LIVER THY ROIO KIONEY LUNG GI-LLI SKIH TOTAL BOOY SN-123 0 ~ 0 ~ 0 ~ 0~ 0 ~ 0 ~ 0 ~ 0 ~
SN-1Z6 6 ~ 9ZE+09 1 37E<08 4 'ZEtOT 0~ 2 ~ 41E+Oe 2 '1E+09 0 ~ 1 '8E+08 Stt-124 le 4QE+06 1 40Eo05 1 ~ 79E ~04 0~ 5 '4E+06 Z ~ 10E+08 0 ~ 2 '3E+06 50-125 7 ~ FEE>07 fo84Ei07 1 ~ 90E t07 6 ~ 47E 107 9 '6E+08 1 ~ 44E t 08 0 ~ 1 AR OSE+07 TE 125tt 5 '9E+OS 1~ 54 E<08 1 ~ Ebc+Od 5 '4E >08 0~ 5 '9E+OS 0 ~ To 59E+07 TE !27!S 4 '0EtOS 1 51Et08 1 ~ Z4E >Od 1 ~ TOE>09 0~ 2 '4E+09 0 ~ 5. 61Ei 07 Tc !Z9H ioh4E+09 5 ~ 12E+08 5 ~ STE>08 1 ~ TSE+09 0~ 2 21E <09 0 ~ 2 ~ S4'E+ 08 I--130 8 ~ STE-07 2 '3E-06 3 '4E 04 4 ~ OSE-06 0~ 2 ~ 25E 06 0~ 1~ 03E-06 I--131 1 ~ 58c~07 1~ 62E>07 5 25E t09 9 '6E>06 0~ I ~ 38E>06 0~ 1~ 22E+07 I--13Z 0~ 0~ 0~ 0 ~ 0~ 0~ 0~ 0~
I--1.33 6 ~ 86E 01 ST 47c-01 Z~ 04E+02 4 ~ 97E-01 0~ 3 '3E-01 0~ 3 '3E-01 I --134 0~ 0~ 0~ 0~ 0 ~ 0 ~ 0 ~ 0 ~
I--135 3 'ic-OZ 2 ~ 96E-02 0 ~ 1~ 12E OZ 3 ~ 37E 03 6 ~ 92E 04 0 ~ 1~ 3ZE 02 CS -134 8 ~ 83E,+08 1 '9E<09 0~ 1 ~ S9E+08 1 ~ 65E+OS 8 '4E+06 0 ~ 3 ~ 16E+08 CS -136 4 ~ 41E+06 I ~ 74Ei07 0~ 9 '9E+06 1 '3E+06 1 '8E>06 0~ 1 25E+07 '
CS -1.'37 275+09 1 '3E>09 0~ 1 ~ 51E +OS 1 ~ 44E>08 7 '0Et06 0 ~ ~ S4E+OS AA-140 ~ ~ 37E+07 3~ S4E>04 0~ 4o59E+03 Z ~ Z9E<04 6 '3E+06 Oo 2~ 57Etoe Ci-141 2~ 10E+04 1 ~ 05E+04 0 ~ io65E+03 0~ 1, ~ 32i+07 0 ~ 1~ 57E+03 CE--1 4 ~ 3qcy06 7 46Ei05 0 ~ 1 ~ 35E +05 0~ 1 ~ 94E+08 0~ foZTE~05 PR-1~3 7 '6Eo03 3~ ZOE+03 0 ~ 1 ~ S4E+03 ~
0~ 3 'SE+07 0 ~ 3 '5E>02 t"9 t~l 6 '0Et03 3 '7Lt03 0 ~ 2 ~ 4SE >03 0~ 1. ~ 53E F07 0 ~ 3 '7E+OZ cASc9 0!t 1 UCI/SEC RELFASE FAYE CF EACH ISOTOPE IN ANO A VALUE OF 1 ~ FOR X/0 OEPLETEO X/0, AtlO RELATIVE OEPOSITION
!:Utf - THE Ut! ITS .FOR C--"14 AtlO H-- 3 ARE (HRE!l/YR FER UCI/CU ~ NETERl
0 01/25/79
- NVIROtltlENTAL FATHMAY-DOSE GottVfr SION FACTORS FOR GASEOUS DISCHARGES PATHHAY CONS HILK (GONTAt'INATED FORAGE) AGE GROUP - CHILD t!UCLIDF 0 R G A tl 0 0 S E F A C T 0 R S (SQ ~ HETER-NPEtl/YR PER UCI/SEC!
9G!!f LIVER THYROIO KIDNEY LUNG G I-LLI SKIH TOTAL 800Y 57E+03 t ~ 57c<03 '4ft03 t. 57ct03 1. 57E i 03 H
C---14 P
0~
3 '8'5 BZE>tO 1
3 ~ 08 Et 05 tot4E>09 3 ~ Obf<05 1
7 '5E>04 1 ~
3~
57E<03 08Ei05 3 ~ Obf F05 i
0 0
~
~ 3~ Obf F05 0 ~ Oo 0 ~ 2 ~ 05C 09 0 ~ lo 05Et 08 CR--51 0~ 0 ~ tobZEt04 6 '2E+03 4 '4E<04 7 '6c>06 0 ~ 3 '5E<04 t'.N 54 0~ bo96fi06 0~ 2.67E+06 0~ 2 '4ct07 0 ~ toltft06 Ff--c9 5 ~ tlE+07 lo52E+07 0~ 0~ Zo09E+07 Z~ 48E>08 0 ~ 2 '6ft07 C0--57 rO--58 0~ 1 '6E+06 0 ~ 0~ 0~ 3 '6ft07 0~ 2 '7E<06 ro--40 0~ 1~ ZSE>Cl 0 ~ 0~ 0~ 7 'tf>07 bo 3 ~ 76E+07 0~ 4~ ZZE407 0 ~ 0 ~ 0 ~ 2 '3E<08 0 ~ 1 ~ 27E+08 t:I--63 .7 ~ 16c+09 4 '7E<08 0 ~ 0 ~ 0 ~ 1~ 04f +08 0 ~ 2 '0E+08 7'l "-65 1 '6c>09 4.65ft09 Oo 3 ~ 1 1E 109 0 ~ 2 '3E>09 0 ~ 2 ~ 10E+09 FO--86 SR -89 0~
'ZE+09 2 ~ 77C > 09 0~ 0 ~ 0 ~ 5 '5ii08 0 ~ 1~ 29E+ 09 6 0~ 0 ~ 0 ~ 0~ 2 'bf<08 0 ~ 1 ~ 98f >08 SR -'90 to 13fot 1 0~ 0 ~ 0 ~ 0~ 1 ~ 5ZE+09 0 ~ 2oblf t 10 Y---91 3obOE+04 0~ 0 ~ 0 ~ 0 ~ 5 '5E+06 0 Otf 103 ll--95 1 ~ 06E F05 4 '7E+04 I~ 1~ 86E+04 0 ~ 7 ~ 68ft07 0
~
~
1~
3 29E>04 ND 95 2 '5ct05 1 ~ 18E+05 0 ~ 4 '4E<04 0 ~ 2 ~ 03ft08 0 ~ 8 '3Et04 RU-103 3 '9f+03 0 ~ 0 ~ 4o 16E i03 0 ~ 1 '5E+05 0 ~ 1~ 61E + 03 FU-106 AG 110'l 9 '96>04 6 'tft07 0 5
~
~ 756+07 0~
0~
4 ~ ZOE F04 1o13E >08
'0 ~
0~
1 ~ 46ft06 2 ~ 35C' 10 0 ~
0 ~
t~ tlft04
.3 ~ 42E<07 Co 115H 0~ to33E t 06 0~ 1~ 05E+06 0~ 5 cbf<0 0 ~ 4 '4c+04
)
"AS=0 ON 1 UCI/S G RELCASE RATf OF EACH ISOTOPE IN AND A VALUE OF 1 ~ FOR X/0, DEPLETED X/0 ANO RELATIVE DEPOSITION NOT=. - TH= UtlITS FOR C .-14 A!IO H----3 AF.E lHF N/Y t PER UCI/CU ~ 'tf TEF.)
0 Oi/Z5/79 ctlVIROtlHENTAL FATHNAY-DOSE CONVERSION FACTORS FOR GASEOUS 01SCHARGES PATHWAY - CONS tl11.K tCONTAHIttATEO FORAGE) AGE GROUP - CHILO tlUCL 10c 0 R G A N 0 0 S E F A C T 0 R S (SoeHETER HREH/YR PER UCI/SEC)
"CtlE LIVER THYROIO KIDNEY LUHG GI-LLI SKIN TOTAL ttOOY Stl-1 Z3 ge 0~ ~ 0 ~ 0~ 0 ~ De Oe 0.
SN 126 l. 75E+ 09 3evSEtor teotf ior 0~ 4 '7ft06, 1~ 16E+09 0~ 5 '5fior 80-124 2.75ce'07 5 '96405 6 '4E<04 0 ~ zet3ftor Terse+08 0 ~ 1 ~ 09E>07 S8-125 3.13E 1 0 7 1.41E i 06 1 idf + 06
~ 3 '6E+06 Zeb3fi09 2 '3E+08 0 ~ 5e99E<06 TE l75H r.3sf~or Zeoofior 2 ~ OTE <07 7 ~ 05ftor 0~ 7 ~ 12E+ Ol 0 ~ 9eb4E406 TE 12TH 5 e 18E+Ol 1 ~ Tbf tor 1 ~ 46E<07 2 ~ OOE+OS 0~ 2 '9E+08 0~ 6 '0E+06 TE 129'l 2 lrf+08 7 ~ 73EIOT 8 85fior Z TOE+08 0~ 3 33E&08 0~ 4~ Zdf ior 1--130 4 'vf~05 1 ~ 35E 06i i
- i. 71 f iitt Ob 2 '9E>06 0~ 1~ 15E>06 0 ~ 5 ~ 29E 105 1--131 1 ~ Zvf+09 1 ~ 2TE 09 ,4.12E 7 ~ 74E ios 0~ le09E+08 0~ 9 ~ 56E+08 1--132 l.rsf-o 1 4 ~ 76E Oi 6 '6E<ot le5SE 01 0~ de93E 02 0 ~ 1 ~ 69E 01 I- 133 1.78c<07 Z.ZOE>or 5 '0E>09 1 e29E+Dl Oe 8 ~ 90C.+06 0 ~ 8 '3E+06 1--1'l4 0~ 0 ~ 1 ~ 06E 09 0~ 0 ~ 0 ~ 0 ~ 0~
1--135 1 ~ 49E>04 '3 ~ 94 6+04 5e15E 106 6 ~ 26E F04 8 ~ OTE-OZ 4.4if i04 0 ~ 1 ~ 44E+04 CS -134 2~ irf > to I~ 65E+10 0 ~ 4 ~ 65C F09 4 ~ 06E>09 ie97E 4 08 0 ~ 7.76fi09 CS -1 36 7 ~ rbf lob let DE+09 0 ~ 6eitf+08 8 ~ 37E>ol 1~ 25E +08 0 ~ 7.90fibd CS -137
=
3 ~ OSC+10 Z.9SEiiO 0 ~ 3 '6'E+09 3 ~ 49E+09 1.81E+Ob 0~ 4 '4fi09 OA 140 1 1 if+08 ieozfi05 0 ~ ie22E >04 6e 09E >04 7 '5E+D6 0 ~ 6 ~ 84E i06 Cf-141 1.24fi05 6 ~ ZZE+04 0 ~ 9 ~ lzf+03 0 ~ 7 e SDE+07 0 ~ 9 '6ft03 C- 144 l.oofior 3et4E+06 0 ~ 5 '7E>05 0 ~ 8 e 15 f tob 0 ~ 5.34fi05 PR-1<3 1~ 695+OZ 6.8OE+Ot 0 ~ 3 '2E+Ot 0 ~ 7 ~ 41E+05 0 ~ Se '40EIDO NO 147 1 ~ 23Cioz le 19E i 02 0 ~ 7~ Ztf iot 0 ~ 5 ~ 63E+05 0 ~ '7 ~ 81E+ 00 caS 9 Ctt 1 UCI/Sfr, ttf Lcndf RATE OF EACH ISOTOPE IN ANO a VALUc OF 1 ~ FOR X/0, OEPLETEO X/0 aNO RELaTIVE Oft OSITIOt tlOT= - TH: UIIITS FOC C --14 ANO H - 3 APE (HttEH/YR PER UCI/CUeHETERt
26E ttUCLIOE H-r->>-14
~---32 Co.--51 Htt FE -59 co--Sr CO--98 Go--eo
>>I--e3 7N--65
~9--ie SR--S9 S" --90 Y---91 r~ -95 54 3
PATH)tAY 0~
7 0~
0~
C~
0~
0
~
1 ~
0~
'90NF.
6.5~6~05 89E+08 05f+08 9.54fi09 2 SSE>08
~
~
3, 766+10 1.2eF~12.
1>> 82E i07
- 4. 15fiae 5>>VIi?ONtlEtlTAL PATHHAY DOSE CONVEPSIOtt FACTORS FRESH AHO STOREO FRUITS ANO VEGETAttLES 3~
6 ~ 54 4
0 1~
6~
3
~
O 2 '4E+OS 2 '0E+OS R G A N LIVER 98E+ 03
'4E+07 I+ 05 96E+07 62ftor
'9E+ OS 6>>62ftob
'9 ~ 12E+Cs 1 ~ 43E>08 0~
0 0>>
~
09E+06 3
6 0
2>>
0~
0~
0>>
0>>
0 0
0>>
0 0
0 0
~
~
~
~
~
~
~
0 0 THYRCIO
'SE<03 54Et05 S
iof 104 E
2~
1~
0 0~
0~
0 0~
0~
6 0
0 0
F A C T 0 R S KIONEY
~
~
~
~
~
'0 ~
~
62E+03 65E+05 7 '6E+03 8.45f F07 10E+08 6 '3E+05 0~
4 0
0~
0~
0~
0~
0~
0~
0~
0~
0~
LUNG 3 'SE<03
, 6>>54E105
'lf~04
~
6 '5f~or FOR GASEOUS ST 8
3 1
5 2
GI-LLI 3 '8E+03 6 '4E+05
~ 87Eiol 8.84fi06 ST 70E+08 2 '9E+od
'4fqob
'5E+09
~
>08 38E+08
'56108 2 '2E>07 1~ 40E+09 2 ~ 54E+10 2 '26+09 32E+09 OISCHARGES AGE GRGUP (SO.HETER-HREH/YR PER UCI/SEC) 0~
0 ~
0~
0~
0~
0 ~
0 ~
0 ~
0~
0 ~
0~
0 ~
0~
0 ~
0 ~
SKI)I
- CHILO 2~
1 3~
~
01/25/79 TOTAL SOOY 3>> 98E 103 6.54fi05 3 05E tor 3 ~ 51E>04 5 ~ 42E
- > 66E 07 1~ OSE+09 or 3 ~ 19E > 11 4 ~ brf<05 9>> 43E >05 N9 -95 3 '55>05 1
1~ 51E+05 0 ~
0~ 6 '4E+04 0~
0~
1 ~
2 ~ 62E+08 0~
0 ~ 1>> iif i05 FU>>103 1.45E ibr 0 ~ 1~ 51E+ol 0~ 3 ~ S1E+08 0 ~ 5 ~ bef~oe FU-106 7 57E ~08
~
0 0~
~
0~ 3~ 386 ~08 0~ 1 ~ 18E >10 0 ~ 9 '2ftor tGiiott 9 '16+06 8~ 89E 106 0 ~ 1.75E F07 0~ 3 '3E>09 0 ~ 5 '9f~oe CO1) EH 0~ 4 'ef<07 0~ 3 '8E>07 0 ~ -1 '95>09 0 ~ 1 '6f~oe
~46.-.9 OH 1 UCI/SEC RELEASE PA ~ E OF ft GH ISOTOPE Itt ANO A VALUE 'OF 1~ FOR X/0 ~ OEPLETEO X/0 ANO Rf LATIVE Of POSITIOlt
- t>>TF - Ttt=. lttlTTS FCR C---14 ANO H----3 ARE tHFLEH/YR PER UGI/GU>>'lETER)
- 7. 616t 04 Z ~ 46E+ 04 0~ 2~ ilE+04 0 ~ 9 oa 3 '0E<03 "t" . 3 Ott 1 UCI/ScC EL=ASE RATE OF EACH ISOTOPE IN AttD A VALU- OF 1~ FOR X/0 ~ 0EPLETEO X/O AttO RELATIVE OEPOSITIOt-'tCTF
- 1. ZOE tio
- l. tei t34 1 ~
- l. 1 tE t04 1.76E ta4 0
- 9. 23i t 02 6 57ct02 ioorEt03 0o 3 '8Eto2
- hVIrtONHEt)TAL PATHHAY DOSE CONVEiSIOtl FACTORS FOR GASEOUS OISCHAt:GES PATHHAY COHE tlILK (CONTAI:INATcu FORAGE 1 AGE GROUP - INFANT t UCL lai 0 R G A N 3 G S E F A C T 0 R S tSQ ~ HETER HfcfH/YR PER UCI/SECt BOtoE LIVER THYRCIO . KIOHEY LUNG GI LLI SKIN TOTAL OOOY
- <0;LIUE USGA N UUSc H S t. tl l UUNc l. LutR IHYICOIU K IUtlE Y LUNG GI-I.LI SKIN i Ul <<w JUUY H----4 0 ~ I ~ ddE-01 ledSE-01 Ze38&-Ul 1o SSE-OI I. 8 St-4 I U ~ I ~ ddc.-01 V---42 1.47c.tul ooolbt05 0 ~ 0~ U~ I ~ 19Et06 0 ~ 4.0dct45 I.rc--b I 0 ~ 0 ~ 5 ~ 92EtUO Zo 19Et00 I ~ SZtt01 2 ~ 49EtQS 4 ~ 9~ 9li;t JV HN- 4 ~ 3.48Et03 0~ I~ Il4ct QS 0 ~ I ult tuv U ~ b oboe t IIZ Fc.--75 i ~ 31E tub 1 ulE tub U ~ U~ I ZJEtub 4.lob t45 Loidbt06 U ~ CoduCtu7 I vl c. t ud f6--59 1 oSEt05 3 Jll.t45 0 ~ 0~ L.OSEtu5 Z ~ 53Et44 4 ~ ~
- 7. c IE tu 3 0 ~ 9 ~ &Jttaal I t U2 lELilH I ~ 3LEt43 4 ~ 5JEtUi S.44EtJZ 5 ~ 29ct US 4~ 0 ~ ~ bcc.
- d. Sbc. t u, i ~ vlc.tU3
- i. 4~E-Of tU2 TE1 25M 1 ~ 43E-U f 1 o 43E-ul 1 43E-01 1 ~ 4$ E Ul 1 ~ 4$ 1 ~ vSc U 1 1 ~ 9oc- ui o ~ 97 r"- u2 TE127H 5 ~ 09t.- 02 8 ~ u 9E.-u 2 5 ~ 09E-il2 8 ~ 0lc-02 d. u9E-U2 o.u&E-OZ 5. 09c-U~
- l. 37c+0 1 9ovdr 102 1 ~ 37E,+Of 9o45E.+tl2 1 ~ 37F 4 ul 9 ~ 45i+ uc 1
- v. Ldc-43 5 elec-ul Nu 95 1 b3c,tOO b ~ <<lt-01 0~ 2~ U~ U~
- -tlVIROHliEt)TAL FATHHAY OOSc CONVEFSION FACTOPS FOR GASEOUS OISCHAFGcS PATHHAY - GOATS t'.ILK )COt)TAHINATEO FORAGE) ~ AGE GROUP - TEcNAGER HUCL I 0= 0 R G A N 0 0 S E F A C T 0 R S lSO ~ HETEP. HREH/YR PER UCI/S'EC)
- t VI<CttHENTAL PATHXAY-OOSE COhVckSIOtt FACTORS FOR GASEOUS OISCHAfcGES PA HXAY - GOATS MILK tCOttTAMINDTEO FOt'AGc t AGE GROUP - INFANT ttUCL IOE 0 P G A tt 0 0 S = F A C T 0 R S (SO ~ HETER-MREM/YR PER UCI/SEC) 80ltE LIVER THYROIil KIOtlEY LUNG GI LLI SKIN TOTAL 800Y SV-123 0 0 ~ 0 ~ 0~ oo 0 ~ 0 ~ 0 ~
- 0. . 1~ 73E+04 02Et 10 CS-134 1 ~ 33Etii 2~ 0~ 1.39E t10 2 ~ 74E+10 0 ~ 2~
- 9. 37ct 07 7
- 0-125 2 ~ 15it 08 1 ~ 60ci 07 13Et07 iol2E les iobvEtia 1 e 6l 6+09 0 ~ 4 '6Et07 TE 125H lo26E<08 4 ~ 50c+07 3 ~ 55c tol 3 5SE+08 0~ 3 ~ 52c+08 0 ~ 1 ~ 67E>07 T= l?ltt '3Etod 1.21Eios 9 ~ O9E+Ol 1 ~ 35E>09 0 ~ 1 ~ 73E t09 0 ~ 4.26Et07 T- 129H 3
- 3. 1 lit 04 Zo29Etov 1 28Et04 2 Zeitov 0
- 1. 3E10
- 5. 2E6 avg b
- 7. 5E11 6.5E11 a air-grass-cow-milk-infant-thyroid dose transfer factor b Effective dose commitment transfer factor is the average of weighted dose transfer factor over three years.
- Denotes control sample.
- Ilonntoc rnntinl Samnlo
- 02 0 ~ loZti+Ot 0~ 5 ~ 63f +05 0 ~ lobtf+00 nb i CN 1 UCI /S EC
" Lt A c kAT c OF f ACH ISOTOPE IN ANO A VALUE OF 1 ~ FOR X/O OcPLETEO X/O AltO REL AT IVE OEPOSITIOh
'tOT. IHC UttJTS'O< C "14 AttO H- 3 ARE (HFEN/YR PCR UCI/CU HETcR)
><I iO/ I J PAT HeIAY - 0LSCHAkGr. MCANAL SHUkLZN= UkP0 Abc GROuP $ kcnAGER NlJ~LJ JJE 0 R G 4 N i1 k k H )
WW LLUEk THYR010 K ION c. Y <UNG Gl-l.Li SCEN l 0 1 AL BUDY
~ 0 ~ 0 ~ 0~ U~ U ~ U ~ 0 ~
P---32 U~ U ~ U ~ Uo 0. u~ 0 ~ U~
I.'R--51 2 uec+uo 2 ~ 56k+DU Z ~ Get,+0D Ze libc+U u C ~ UoEtuu 2 ~ Obt.tuu Z ~ 43Etuu Ze uoc. +u0 HN--54 os U9c.+GZ 6 ~ u 9k+U2 6.09E+U2 b u9r.tu2 os UJEtu2 beG9r4u2 7 ~ 15EtUZ be U9C tljZ FE--bb 0 0 ~ O ~ 0 ~ u ~ 0 ~ 0 ~
Fi--59
~
l eblE+02
~ 221Et 42 lo 21Et02 l. 21E+U2 le Zlc.+ u2 lo 2lc+u2 1 ~ 2lci uZ 1 ~ 4ZE4 02 G ~
le 21r. t02 i 0--5d I'0--6O 1 1. blE+02 l 45E+03
~ 67E+02 i. 67E+U2 1 ~ 6lE4 u2 1 ~ olctG2 1 ~ 96EtilZ i ~ blc tU2 9 '5E+U3 8 45E+0$ 9 9 ~ 45E+U $ 9 v5EtOS 9 ~ 4bEtu3 1 ~ llc.+04 9. 45Et03 ZN--b5 $ .27.+DZ 3 ~ 2?EtG2 3.2lxt02 3e 27c.+02 . 3 ~ Z?EtG2 S ~ 2lk toe S olbE4 u2 Oe 27 E tliZ RB do Se97E+00 3 ~ 97ktlJU 3. 9lE+00 3 ~ 97 c+0 u $ .9?r.t00 3 9?E+uu '.>Sctilu 8 ~ 97E+Ou SR--89 9 54E-US 9.54E-U3 9 '4k-03 9 ~ 54E-U3 9 54E-u3 9 ~ 94E UO 1 ollE-iJ2 9 ~ 54E -.03 SR--9U 2.$ 6E+UD 2.S6E+iJO 2 S6Etoo 2 ~ S6i+ii U CD S6ctJQ 2 '6E+Du 2 ~ 79F+u 0 2 ~ soE4'uu Y---9l ZR--9~
4o 77E-01 21E+ u2 4 '7E-Di 2 ~ 21E+02 2 l lE-01 Zik+02 4~ ll E-01 Ze 21F tUC 4e llE-01 2 ~ 21i+ GZ 4e??c-01 2~ 21i O'UZ 5 ~ 38k-01 2 ~ 58c tu2 4~ ll t. 01 2 ~ 21E toe ZR--91 Zeoic+UO 2. 41E+G0 2.41E400 2 ~ 41c+u 4 2 ~ 41h,+uU 2 ~ 41E40u 2 ~ 82E too C~ 41k t00 Nii-- J5 6~ uiEto 1 -
o ~ uiE+iJ 1 6 ~ U1E+01 6. ulE+Di be lliEtol ooOlE401 l ~ 07C 4'u 1 6 ~ ulF tUl HO--99 2.6Oc+OO 2 ~ 60E+00 2 ~ 60E+00 2. 60E+OU 2 ~ 6uk4u 0 2 '0E400 S.uoctOu 2 ~ 6ur +OD Ru-10$ 4.d5i+Ui 4 ~ 85E+0 J. 4 ~ 55E+Oi 4 ~ S5 = +01 4 ~ 55k+0 1 4 ~ 85E+Ol 5 ~ ber.+Ol 4 ~ dbc.4 01 RU-lob lo55itu2 1. 85E+uZ 1 55E+02 ie 55E tiJZ 1 85E+UZ 1 ~ 55E 4'0? 2 o21EtIJZ 1. 85=+UZ AGllvN 1.58E+03 58i+U S 1 58k+US 1 ~ 58EtU3 l. o8EtDS 1 ~ 58t.t03 1 ~ S4c.+03 1 ~ 58E+03 Sd-124 64E+GZ 2 ~ b4k+u 2 2.64E+U 2 2 ~ 64E+u2 Z~ o4t.+02 2eb4EtU2 3 ~ 04Et UZ 2. 64E+02 SB-125 leiliE+U3 ie U1E+03 1 01E+03 1 ~ Dict 0$ le U1E4'03 1 e u lr.' O 3 1 14r 4uS lo GlctUS Tc125J4 bo54C Ul o ~ 84E-0 1 6 ~ 54E-01 6 ~ 64E-Gl 6 ~ 84E-0 1 be84E-ul 9 ~ 38E-01 6 ~ 84E -01 Teil?tf ST 87E-ul 3 ~ 8?E-ul 3 '7E-01 S ~ 87E-0 1 S ~ SlE-01 3 ~ 6?c-01 4 ~ 29i-01 3 ~ 8)E-01 TE129N 1 ~ ?UE+ui 1 ~ ?Ut,tol 1 lOE+01 1~ lor 4 iJ1 l. loi+ul
~. 69k t00 ie?DE401 4.b9it JO
. 1 ~ 99ci Ul J..?Ok tU1 TE131H 4.69E+uo 4 ~ b9c,+UO 4 e 69E+UD 4. 69k+GO 2 ~ 05:-tuZ 4 ~ 69E tuo Tc.-1S2 2. 05r. + 0 1 2 ~ U>ct01 2.05k+01 2 ~ U5Et01 2. 05Et01 2 ~ 45k 4'U 1 2 ~ 41Etul 2 ~ U5c. t Jl I--1$ 1 7 ~ 59c. t0 0 l ~ 59E+uU 7 eb9E too 7 ~ >9EtUO 7 ~ 59itu0 7 ~ 09ctuu l.ll9ktuu 9 ~ 22E+ Uu l. 59E tUD l>>-1$ $ 1 ~ U9E4 UGJ 1 ~ u9t,+00 1 09E+00 le U9ctGU 1. 09t.t Oo 1 ~ 3SEtu0 lo 09k4UU t'S-1$ 4 3.06E+u3 S~ uSE+D S S 08E+u3 S ~ Odi+ US 3.udkti3 S ~ udEt03 3 '9ctGS 3 ~ OSE4OS I'-136 6 57i+ul be 5?k+01 be57i +01 6. 5?k tul 6 ~ 5?ctU1 o ~ 5lE4ul 7 o44Etol 6. 5?E t01 CS-137 4 '4E+J3 4 o~Et03 4 ~ 54t. +03 4o 54itiJ$ 4 ~ o+kt03 4 ~ i4E tuS 5.29F tu3 4~ i4i t03 dA-140 7 38E+ ul 7 ~ S 66+01 7 '6E+ol 7. $ 6Etux le35ctO1 l 3dEiui 6 ~ Soc,+ui le3ak401 LA- 14 iJ de 46t.+uo d ~ 46k+0 0 6.4oE+OU 8 ~ 4o E+Uo do4of tuo 8 4oc+00 9 ~ 59ktUU d ~ 4bc+uU L c" 141 os UZci.iJG 02Et0u b.u2itoU 6 ~ 02c, tuU b ~ 02t.4 uU o ~ U2k+uu 0 ~ 79ktuu 6 ~ u2E tuu CE"14~ 1 u2t.+uu 1. 02E+iJQ Udk+QU 1 ~ UCE 4'u lo U2Etuu 1 ~ UZEtUO l.loktuU 1 ~ 02c'. +u0 I'E-144 '9ctU1 4. 99kto 1 4.99kt61 4o 99c.t Ui 4 ~ 99ciUl 4 ~ J9ct ul 5 loE,+ Ul 4 ~ V9c 4 Ui wP-23' 4
7 ~ 52c-ul 7 ~ 52E-Ul 7 52c.-o 1 I 52c-Ul
~ I' 52c,-ul l o52E-ui ~
Belli-ui 7 e >2c-Ul
0 UUUE F AGT JKb I OK c TcIUT U ULGI,HAKGcS UAbLU UN U1 / TR Kta. = ASC OF C AGH LbUT ut'C LN OLSLHAKGL F cUN ul' GFII HIIH sIU UUJa TLUNAL ULLUI ION I<<ATHNAT - bALT IIAI CK FaSH Abc ukOUI' Tcc.HAULS ttUJLIUt U K G A N OOSc I tlKttI)
JUNC a. 1 vc R THTRU10 KLONiT LUNG GL-Lwl bKTN TOTAL UuuT Uo I ~ o lb-u L. 7 obit-Ui 9<< lUt-01 l ~ olt Ui 7<<bit-UL U ~ 7 c Ic-Ql ooc t Jo I'-- - Jc 4<<29ctul C ~ o JttOo Q ~ 0 ~ li ~ 4 ~ ucE tub 0 ~ 1 ~
OR--Pl U ~ Uo 4.99t tuQ 1<< 8't=t UQ 1 ~ litt UL 2 'UEtU3 tu4 S ~ 3ot t JO o<<8'5c. tu3 HN--U4 u uZttuv ue be UQCtQJ U~ b ~ 15E. J ~
ft--55
~
LUUUEtu5 73Ltub Qe 0 ~ I 79ctud e3EtJ5 u ~ 1 ~ llc t Qi tL--u9 1 ~ U3ctub c'. ~ 456 tJ 5 0 Q~ o Tuttu4 5 ~ QSctJ5 J ~ 9~ dlc. tut uu--5d Jo 7.90Et02 Q U~ It ~ 1~ Olctuv U ~ 1 ~ UUc. tuo uu--ou U ~ ZdctU3 U ~ 0 ~ 0~ c<<6oE. tU4 U ~ s ~ uot t J3 I.il - -U) I. I Set U4 2 o 4li. tui 0~ 1.65ctui Q~ LobbttU5 0 ~ 1 ~ LCc. tui Kd--ub Q. 1~ dbt t03 Qe 0~ Q~ btctdc U ~ o. 33c tuZ SK -dJ I'uct03 Q ~ 0~ 0~ U~ I ~ 9cEtu2 U ~ C ~ 09= t JC JU 1 olctU5 0 ~ Q ~ Q~ L~ ICttuh 5.54ct03 J ~ 4 ~ LJC tu4 I---91 3.59LtUL li ~ 0 ~ 0 ~ Q ~ 1 ~ >uttuv 'J ~ 1 ~ Uvt. tud cR--vv 9 CTctJL 95c. tG 1 0 ~ 4~ utctOL U~ 1 ~ C5ttd5 U ~ 2<<bcctua x<--97 o ~ 13ttQQ 1.5Jct00 0 ~ le dict OQ U~ os 53tt04 U~ 5<<oot QL NO--di 1 ~ ILc.tu3 L.udct0$ U ~ 8~ lictOR J~ v<<ZLEtuo U~ 5 ~ SUE t JZ NU--'99 1 41E.-QR 2 ~ lUC t02 0 ~ 6.14ttu2 Le 9~E.-UZ o 51Etu2 0 ~ o ~ a9c. tuL KU-Lud oRctJQ Q ~ 0 ~ lo 68E+01 J~ 4~ 39ctuc U ~ c. 5lc tu0 I,U-luo <<eb3ctul U ~ J ~ lo 2$ tt02 u~ 4 ~ 36Etud Q ~ 1 ~ CLc tQL AI<<LLutl 4.24f.tu3 3~ 92Etu3 0 ~ ldctU3 0. 1<<UUctuo 0 ~ cd Jkctu3 Su-124 5 944tu2 l. b9E to 1 2 ~ 16EtUU 0~ 6 ~ 93ttuc I.v<<tt04 2 '3Et04 b<<33Etu3 il ~ 3 ~ 53c tuZ t UZ go-Lcm I ~ 18Et02 5 uuE,tQO
~ 8.>4K.-Q 1 2<< 19itUQ dobUEt02 Q ~ 1 ~ 44c t ul TELCOH 3<<uvEtuR 1 ~ 09EtQC 8 bdE+01 ST b6EtQZ u~ 0 ~ V ~ UVc.
IL127N 5 '2ctuC L. <<3EtQZ 1 ~ 45E tQZ C.ZSet03 U~ Z.blE t03 J ~ b<< ULi tQa IEL29N LE JLEtJ3 v.ubh t02 Zdtt02 3<< 79ctu3 u ~ 4.5IE tu3 It ~ 2 ~ Glc tQZ TcldLN 1 QTEtQZ T.lltt01 1 ~ 15tt04 4.39ct02 u ~ 3<<SUEt03 u ~ 5<<boctbL Ic loc C.45tt02 1 ~ dUCt02 4.93E t03 l<<U9EtQS J ~ 5 ~ Zlt tu3 Q ~ 1 ~ 4'9c t uZ T--L3L ville.tltd ) ~ dlEtud Lob8t+Ji l. 53c, t QC 0 ~ 1 ~ LOEtuC 0 ~ 3 ~ 4uctuc t Jl I--L33 7 39ttul 1 ~ c5ct02 2 'SttQ4 1 5SituR Q ~ . 9 ~ luE. tu 1 0 ~ 3 ~ 8oc GS-134 ~ 2 ~5 9t@U4 o ~ cvEtuv 0 ~ io 54t t04 T.oi ctu3 T.c,uctJC J ~ C. ~ 9lc t Uv I b-1JU L.99Etu3 7 odvttUJ 0 ~ 4<<dbctU3 5 ~ 9dct02 5.91Et02 U ~ )oo4c tuJ US-L JI 3 v4ctu4 v ~ o3ctuv U~ lo 19ct U4 ue 14ct03 o LSctud 0 ~ 1 ~ occ. tuv UA-LVu 2 ~ Loctu3 lbc,t JJ J ~ oo olE,-ul 1~ IUt t JII oobOctu3 U ~ 1 ~ 3 jr.tu2 UA-lv6 o3c-OL c.Z<<t-ui U~ 0 ~ U~ 1 ~ Cbctu4 u ~ b<<u5t uc uc- 141 9 Mcc-UL b ouuc-Ul J ~ 2<<JLc-UL U~ 1~ d Jctu3 U ~ I ~ bvc Uc UI.-143 1 ~ bdc-UL 5 ~ J3t tUL u~ 4 ~ 27 c Q2 Ii ~ 2 '3ctOo U~ 1 ~ Ulc.-QC Gc lvt 5.79ctuL C ~ duct GL 0~ 9 ~ T LE+ UII u~ a obEtu4
~ u ~ o ~ ult tuu III'-CJ<< 7~ 34C.-UC locSL UJ J ~ 2 ~ CQ c.-02 Ii ~ 1 'vEtud Q ~ 3 'ac-03
Ul/Yrl 0
KCL=ASC UF CAUrl ldui JPt LN 'ULSI'HARGC l LUK JF L EII H Nil H Nlu JJbl. l AJI JCS FUK LlalUIU UISUHARGCS c<ASCU Uu I'AIH<lAY - UALl IIAIEK SHc.LL FISH Aoi okUUP - I CENA<iEK