ML17334B645
| ML17334B645 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 07/21/1997 |
| From: | FITZPATRICK E AMERICAN ELECTRIC POWER CO., INC. |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| Shared Package | |
| ML17333A950 | List: |
| References | |
| AEP:NRC:0509T, AEP:NRC:509T, NUDOCS 9707280161 | |
| Download: ML17334B645 (1437) | |
Text
{{#Wiki_filter:CATEGORY1REGULATORYINFORMATIONDISTRIBUTIONSYSTEM,(RIDS)ACCESSIONNBR:9707280161DOC.DATE:97/07/21NOTARIZED:NODOCKETFACIL:50-315DonaldC.CookNuclearPowerPlant,Unit1,Indiana.M05Q0031550-316DonaldC.CookNuclearPowerPlant,Unit2,IndianaM05000316AUTH.NAMEAUTHORAFFILIATIONFITZPATRICK,E.AmericanElectricPowerCo.,Inc.RECIP.NAMERECIPIENTAFFILIATIONDocument.ControlBranch(DocumentControlDesk)
SUBJECT:
Forwards"1997UFSARforDCCookNuclearPlant,Units1&2."Instructionsforincorporatingupdateincludedw/eachcopy.DISTRIBUTIONCODE:A053DCOPIESRECEIVED:LTRIENCI,JOSIZE:TITLE:ORSubmittal:UpdatedFSAR(50.71)andAmendmentsNOTES:ERECIPIENTIDCODE/NAMEPD3-3PDINTERNAL:AEOD/DOA/IRBRGN3EXTERNAL:IHSNRCPDRCOPIESLTTRENCL1011111111RECIPIENTIDCODE/NAMEHICKMANEJILECENTER1NOACCOPIESLTTRENCL112211YD0CUNNOTETOALL"RIDS"RECIPIENTS:PLEASEHELPUSTOREDUCEWASTE!CONTACTTHEDOCUMENTCONTROLDESK/ROOMOWFN5D"5(EXT.415-2083)TOELIMINATEYOURNAMEFROMDISTRIBUTIONLISTSFORDOCUMENTSYOUDON'TNEED!TOTALNUMBEROFCOPIESREQUIRED:LTTR9ENCL
indianaMichigan'PowerCompany500CircleOrjyeBuchanan,Ml491071395INDIANAIHICHIGANPOWERJuly21,1997AEP:NRC:0509TDocketNos.:.50-31550-316U.S.NuclearRegulatoryCommissionATTN:DocumentControlDesk,Washington,D.C.20555Gentlemen:DonaldC.CookNuclearPlantUnits1and21997FINALSAFETYANALYSISREPORTUPDATEAttachedaretencopiesofthechangedpagesforthe1997updatetotransourfinalsafetyanalysisreport(FSAR).Thesepagesarebeingransmittedtoyouaccordingtotheprovisionsof10CFR50.71(e).InstructionsforincorporatingtheupdateareincludedwitheachInadditiontoverticallybarringthespecificchange,changedpageshavebeendated."July1997"inthelowerrightcorner.We-herebycertifythattheinformationcontainedinthisFSARupdate,toourknowledge,accuratelypresentschangesmadetotheplantfromJanuary22,1996,through'anuary221997WenotetheprocessofperformingarevalidationoftheFSARtotheplantdesignandoperations.Thiseffortisexpectedtobecompletedinlate1998.VSincerely,E.E.FitzpatrickVicePresidentvlbAttachmentsc:A..A.BlindA.B.BeachMDEQ-DWaRPDNRCResidentInspectorJ.R.Padgett..pod~~4e70msoi6i97072iPDRADOCK050003iSKPDRIIIIIIIIIIIIIIIllllllllllllllllflllll[l 'I UFSAR1997UpdateFilingInstructionsAllpagestoTableofContentsTABLEOFCONTENTSAllnewrevisiontoTableofContentsLISTOFEFFECTIVEPAGESAllpagestoListofEffectivePages1.2-61.2-71.2-81.2-91.2-101.2-11Fig.1.3N1.8-12.1-1'.1-22.1-32.1<2.1-52.1W2.1-72.1-82.1-92.1-102.I112.1-12AllnewrevisiontoListofEffectivePagesVOLUMEIChapter11.2W(Reissue)1.2-7(Reissue)1.2-8(Reissue)1.2-91.2-10(Reissue)1.2-11Fig.1.3-81.8-1VOLUMEIChapter22.1-1(Reissue)2.1-22.1-32.1A2.1-52.1%2.1-7(Reissue)2.1-82.1-9(Reissue)2.1-10(Reissue)2.1-11(Reissue)2.1-12Page1 2.1-292.2-72.2-82.6-52.6-62.6-72.6-82.6-112.6-122.6-132.6-142.6-152.6-162.6P32.6P42.6~aFig.2.6-7Fig.2.6-8Fig.2.6-11Fig.2.6-122.7-12.7-22.7-32.7P2.7-5VOLUMEI,Chapter2(con't)2.1-292.2-7(Reissue)2.2-82.6-5(Reissue)2.6W2.6%a2.6-72.6-8(Reissue)2.6-11(Reissue)2.6-122.6-12a2.6-13(Reissue)2.6-142.6-152.6-16(Reissue)2.6-43(Reissue)2.6<4aFig.2.6-7(Reissue)Fig.2.6-8Fig.2.6-11Fig.2.6-12(Reissue)2.7-12.7-2Page2 3.1-13.1-23.3-13.3-23.4-13.4-23.5-13.5-23.5.1-13.5.1-23.5.1-113.5.1-123.5.1-133.5.1-143.5.1-173.5.1-183.5.1-193.5.1-203.5.1-313.5.1-323.5.1-333.5.1-343.5.2-33.5.2Q3.'5.2-73.5.2-83.5.3-13.5.3-2VOLUMEIIChapter3Unit13.1-13.1-2(Reissue)3.3-13.3-2(Reissue)3.4-13.4-2(Reissue)3.5-13.5-2(Reissue)3.5.1-13.5.1-2(Reissue)3.5.1-11(Reissue)3.5.1-123.5.1-13(Reissue)3.5.1-143.5.1-173.5.1-18(Reissue)3.5.1-19..3.5.1-20(Reissue)3.5.1-31(Reissue)3.5.1-323.5.1-33(Reissue)3.5.1-343.5.2-3(Reissue)3.5.2X3.5.2-73.5.2-8(Reissue)3.5.3-13.5.3-2Page3 3.2-153.2-163.3-33.3Q3.3-93.3-103.3-113.3-123.3%13.3%23.3W33.3443.4-173.4-183.4-193.4-204.1-214.1-224.1-234.1-244.1-254.1-264.1-274.1-284.1-294.1-30VOLUMEliChapter3Unit2'.2-153.2-16(Reissue)VOLUMEIIIChapter3Unit23.3-3(Reissue)3.3-43.3-9(Reissue)3.3-103.3-113.3-12(Reissue)3.341(Reissue)3.3-623.3-633.3443.4-173.4-18InfoDeleted3.4-19InfoDeleted3.4-20-VOLUMEIIIChapter44.1-21(Reissue)4.1-224.1-234.1-24(Reissue)4.1-254.1-264.1-274.1-284.1-29(Reissue)4.1-30Page4 4.1-314.1-324.2-214.2-224.2-234.2-245.2-135.2-145.3-15.3-25.3-35.3A5.3-55.3-65.3-75.3-85.3-95.3-105.3-115.3-125.3-135.3-145.3-155.3-165.3-175.3-185.3-19VOLUMEIII,Chapter4(con't)4.1-314.1-324.2-21(Reissue)4.2-224.2-23(Reissue)4.2-244.2-24aVOLUMEIVChapter55.2-135.2-14(Reissue)5.3-15.3-25.3-35.3-4(Reissue)5.3-5(Reissue)5.3-65.3-7(Reissue)5.3-85.3-9(Reissue)5.3-105.3-115.3-125.3-135.3-145.3-155.3-165.3-17(Reissue)5.3-185.3-19Page5 5.3-205.3-215.3-225.3-235.3-245.3-255.3-265.3-275.3-285.3-295.3-305.3-355.3-36Fig.5.3-35.4-75.4-85.5-15.5-25.5-35.5P5.5-55.5-65.5-7.5.5N5.5-115.5-125.5-155.5-165.5-17VOLUMEIVChapter5(con't)5.3-205.3-215.3-225.3-235.3-245.3-25(Reissue)5.3-265.3-275.3-285.3-295.3-305.3-35(Reissue)5.3-36Fig.5.3-35.4-7(Reissue)5.4-85.5-15.5-2(Reissue)5.5-3(Reissue)5.5-45.5-55.5-6(Reissue)5.5-75.5-85.5-115.5-12(Reissue)5.5-155.5-165.5-17Page6 Fig.5.6-15.7-55.7-66.1-96.1-106.2-35.2-46.2-56.2W,6.2-116.2-126.2-136.2-146.2-156.2-166.2-176.2-186.2-196.2-206.2-356.2-366.2-376.2-386.2-396.2<0VOLUMEIV,Chapter5(con't)Fig.5.6-15.7-55.7-6VOLUMEIVChapter66.1-96.1-10(Reissue)6.2-36.2-4(Reissue)6.2-56.2462-11(Reissue)6.2-126.2-136.2-13a6.2-146.2-156.2-16(Reissue)6.2-176.2-17a6.2-18(Reissue)6.2-19(Reissue)6.2-206.2-35(Reissue)6.2-366.2-376.2-386.2-396.2-40Page7 6.2-416.2P26.2-43Fig.6.24Fig.6.2-56.3-16.3-26.3-36.3-47.2-377.2-387.2%27.2437.2-687.2-697.2-707.2-717.3-17.3-27.3-57.3%7.4-17.4-27.5-57.547.5-9.7.5-10VOLUMEIV,Chapter6(con't)6.2P16.2Q2(Reissue)6.2P36.3-16.3-2(Reissue)6.3-36.3P(Reissue)VOLUMEVChapter77.2-377.2-38(Reissue)7.2%27.2-63(Reissue)7.248(Reissue)7.2-697.2-707.2-717.3-1(Reissue)7.3-27.3-57.3%(Reissue)7.4-1(Reissue)7.4-27.5-57.5W7.5-97.5-10(Reissue)Page8 7.5-197.5-207.8-37.8<7.8-77.8-87.8-137.8-147.8-157.8-168.1-18.1-28.1-38.1A8.1-58.1-68.1-78.1-88.1-9Fig.8.1-1Fig.8.1-1aFig.8,1-2aFig.8.1-2b8.2-1Fig.8.2-18.3-18.3-2VOLUMEV,Chapter7(con't)7.5-19(Reissue)7.5-207.8-3(Reissue)7.847.8-77.8-87.8-13(Reissue)7.8-147.8-15."7.8-16VOLUMEVChapter88.1-18.1-2(Reissue)8.1-3(Reissue)8.1-48.1-58.1%8.1-78.1-88.1-9Fig.8.1-1Fig.8.1-1aFig.8.1-2aFig.8.1-2b8.2-1Fig.8.2-18.3-18.3-2Page9 8.3-38.3R8.4-18.4-28.4-38.5-18.5-29.2-59.2-69.2-139.2-149.2-179.2-189.2-199.2-20.9.2-219.2-229.2-259.2-269.2-279.2-28'.2-399.2QO9.2Q19.2Q29.2-439.2-44VOLUMEVChapter88.3-3(Reissue)8.3-48.4-18.4-28.4-38.5-18.5-2(Reissue)VOLUMEVChapter99.2-59.2-69.2-13(Reissue)9.2-149.2-179.2-18(Reissue),9.2-199.2-20(Reissue)9.2-219.2-229.2-25(Reissue)9.2-269.2-279.2-289.2-39(Reissue)9.2409.2-419.2-429.2P3(Reissue)9.244Page10 9.2<79.2489.2499.2-509.2-519.2-529.2-559.2-569.3-19.3-29.3-119.3-129.4-19.4-29.4-39.4A9.4-59.449.4-79.4-10'.4-11Fig.9.4-19.5-19.5-2.9.5-39.5P9.5-59.549.5-7VOLUMEV,Chapter9(con't)9.2<7(Reissue)9.2A89.2A99.2-50(Reissue)9.2-51(Reissue)9.2-52(Reissue)9.2-559.2-569.3-19.3-2(Reissue)9.3-119.3-12(Reissue)9.4-19.4-29.4-394M9.4-59.4-6(Reissue)9.4-79.4-10(Reissue)9.4-11Fig.9.4-19.5-1(Reissue)9.5-29.5-39.5-49.5-5(Reissue)9.5-69.5-7Page11 9.5-89.5-99.5-109.5-119.6-39.649.7-19.7-2a9.7-2b9.7-'59.7-69.7-79.7-89.7-99.7-109.7-119.7-129.7-239.7-249.8-159.8-169.8-179.8-189.8-239.8-249.8-259.8-269.8-299.8-30VOLUMEV,Chapter9(con't)9.5-8(Reissue)9.5-99.5-10(Reissue)9.5-119.6-39.6-4(Reissue)9.7-1(Reissue)9.7-2a9.7-2b9.7-5(Reissue)9.7-69.7-79.7-89.7-99.7-109.7-119.7-129.7-23(Reissue)9.7-249.8-15(Reissue)9.8-169.8-179.8-18(Reissue)9.8-239.8-249.8-25(Reissue)9.8-269.8-29(Reissue)9.8-30Page12 9.9-19.9-29.9-39.949.9-59.9-69.9-79.9-89.9-9Fig.9.9-19.10-19.10-29.10-39.10Q10.2-110.2-210.2-310.2-410.5-710.7-110.7-210.9-110.10-110.11-110.11-211.1-3VOLUMEVChapter9(con't)9.9-1(Reissue)9.9-29.9-39.9P9.9-5994(Reissue)9.9-7(Reissue)9.9-89.9-9Fig.9.9-19.10-19.10-29.10-39.10<VtlLUMEVlCapter1010.2-110.2-2(Reissue)10.2-3(Reissue)10.2-410.5-710.7-110.7-2(Reissue)10.9-110.10-110.11-110.11-2VOLUMEVlChapter1111.1-3Page13 11.1-411.1-711.1-811.2-711.2-811.2-1411.2-1511.3-111.3-211.3-311.3411.3-511.3411.3-711.3-811.3-911.3-1011.3-1111.3-1211.3-1311.3-1411.3-1511.3-1611.3-1711.3-1811.3-19~11.3-2011.3-2111.3-22VOLUMEVI,Chapter11(con't)11.1P(Reissue)11.1-711.1-8(Reissue)11.2-711.2-811.2-1411.2-15(Reissue)11.3-111.3-211.3-311.3411.3-511.3%11.3-711.3-811.3-9InfoDeleted11.3-10InfoDeleted11.3-11InfoDeleted.11.3-12InfoDeleted11.3-13InfoDeleted11.3-14InfoDeleted11.3-1511.3-16(Reissue)11.3-1711.3-18InfoDeleted11.3-1911.3-2011.3-2111.3-22Page14 11.3-2311.3-2411.4-111.4-211.4-311.4-411.4-511.4-611.4-711.4-811.4-911.4-1011,4-1111.4-1211.5-411.5-511.6-111.6-211.6-311.6QFig.11.6-1Fig.11.6-2a12.1-112.5-112.6-112.6-2VOLUMEVIChapter11(con't)11.3-2311.3-24(Reissue)11.3-2511.4-111.4-211.4-3(Reissue)11.4-411.4-511.4W11.4-711.4-811.4-9114-1011.4-1111.4-12(Reissue)11.5-4(Reissue)11.5-511.6-1(Reissue)11.6-211.6-311.6A(Reissue)Fig.11.6-1Fig.11.6-2a(Reissue)VllLUMEVlCapter1212.1-112.5-112.6-112.6-2Page15 14.1-114.1-214.1-314.1P14.1-514.1-614.1-714.1-814.1-914.1-1014.1-1114.1-1214.1-1314.1-1414.1-1514.1-1614.1-1714.1-1814.1-19.14.1-2014.1-21Fig.14.1-1Fig.14.1-2Fig.14.1-3Fig.14.14UFig.14.1-5Fig.14.14VOLUMEVIIChapter14Unit114.1-1(Reissue)14.1-214.1-314.1A14.1-514.1-614.1-714.1-814.1-914.1-1014.1-10a14.1-11(Reissue)14.1-121'4.1-1314.1-1414.1-1514.1-1614.1-1714.1-1814.1-1914.1-2014.1-2114.1-22Fig.14.1-1Fig.14.1-2Fig.14.1-3Fig.14.1PFig.14.1-5Fig.14.1%(Reissue)Page16 14.1.1-314.1.1-4Fig.14.1,1-1Fig.14.1.1-214.1.2-314.1.2-414.1.2-514.1.2-6Fig.14.1.2-1Fig.14.1.2-2,Fig.14,1.2-3Fig.14.1.2AFig.14.1.2-5Fig.14.1.2Fig.14.1.2-7Fig.14.1,2-8Fig.14.1.2-914.1.6-114.1.6-214.1.6-314.1.6P14.1.6-514.1.6-614.1.6-714.1.6-8Fig.14.1.6-1Fig.14.1.6-2VOLUMEVllChapter14Unit1(con't)14.1.1-314.1.1A(Reissue)Fig.14.1.1-1Fig.14.1.1-214.1.2-314.1.2-414.1.2-514.1.2-614.1.2-7Fig.14.1.2-1Fig.14.1.2-2Fig.14.1.2-3Fig.14.1.2AFig.14.1.2-5Fig.14.1.2WFig.14.1.2-7'ig.14.1.2-8Fig.14.1.2-914.1.6-1(Reissue)14.1.6-214.1.6-314.1.6-414.1.6-514.1.6W(Reissue)14.1.6-714.1.6-814.1.6-9Fig.14.1.6-1Fig.14.1.6-2Page17 Fig.14.1.6-3Fig.14.1.6-4Fig.14.1.6-5Fig.14.1.6-6Fig.14.1.6-7Fig.14.1.6-8Fig.14.1.6-9Fig.14.1.6-10Fig.14.1.6-11Fig.14.1.6-1214.1.7-314.1.8-114.1.8-214.1.8-314.1.8-414.1.8-5Fig.14.1.8-1(sheets1thru3)Fig.14.1.8-2(sheets1thru3)Fig.14.1.8-3(sheets1thru3)Fig.14.1.8Q(sheets1thru3)Fig.14.1.8-5(sheets1thru3)Fig.14.1.8%(sheets1thru3)Fig.14.1.8-7(sheets1thru3)Fig.14.1.8-8(sheets1thru3)VOLUMEVllChapter14Unit1(con't)Fig.14.1.6-3Fig.14.1.6-4Fig.14.1.6-5Fig.14.1.6-6Fig.14.1.6-7Fig.14.1.6-8Fig.14.1.6-914.1.7-314.1.8-114.1.8-214.1.8-314.1.8-414.1.8-514.1.8WFig.14.1.8-1Fig.14.1.8-2Fig.14.1.8-3Fig.14.1.8-4Fig.14.1.8-5Fig.14.1.8-6Fig.14.1.8-7Fig.14.1.8-8Fig.14.1.8-9Fig.14.1.8-10Fig.14.1.8-11Fig.14.1.8-12Page18 14.1.9-114.1.9-214.2.1-514.2.1%a14.2.1-914.2.1-1014.2.1-1514.2.1-1614.2.2-114.2.2-214.2.2-314.2.2A14.2.3-114.2.3-214.2.4-114.2.4-214.2.4-314.2.4A14.2A-514.2.414.2.4-714.2.4N14.2.4-914.2.5-114.2.5-214.2.5-514.2.5-614.2.5-7VOLUMEVllChapter14Unit1(con't)14.1.9-1(Reissue)14.1.9-214.2.1-5(Reissue)14.2.1-6a14.2.1-914.2.1-1014.2.1-15(Reissue)14.2.1-1614.2.2-114.2.2-1a14.2.2-214.2.2-314.2.2-414.2.3-114.2.3-2(Reissue)14.2.4-114.2A-214.2.4-314.2.4P14.2.4-514.2AW14.2.4-714.2.4-814.2.4-914.2.5-114.2.5-214.2.5-5(Reissue)14.2.5-614.2.5-7Page19 14.2.5-814.2.5-10Fig.14.2.5-1Fig.14.2.5-2'ig.14.2.5-3Fig.14.2.5PFig.14.2.5-5Fig.14.2.5414.2.6-514.2.6-614.2.6-1114.2.6-1214.2.6-1514.2.6-16Fig.14.2.6-1Fig.14.2.6-2Fig.14.2.6-3Fig.14.2.6-414.2.7-1114.2.8-114.2.8-2=-'4.2.8-314.2.8A.14.2.8-514.2.8W14.2.8-714.2.8-8VOLUMEVIIChapter14Unit1(con't)14.2.5-8(Reissue)14.2.5-1014.2.5-11Fig.14.2.5-1Fig.14.2.5-2Fig.14.2.5-3Fig.14.2.5PFig.14.2.5-5Fig.14.2.5-6Fig.,14.2.5-714.2.6-514.2.6-6(Reissue)14.2.6-1114.2.6-1214.2.6-1514.2.6-16Fig.14.2.6-1Fig.14.2.6-2Fig.14.2.6-3Fig.14.2.6-414.2.7-1114.2.8-1Page20 Fig.14.2.8-1Fig.14.2.8-2Fig.14.2.8-3Fig.14.2.8-4Fig.14.2.8-5Fig.14.2.84Fig.14.2.8-714.3.1-114.3.1-214.3.'-314.3.1P14.3.1-514.3.1W14.3.1-714.3.1-814.3.1-914.3.1-1014.3.1-1114.3.1-11a14.3.1-1214.3.1-1314.3.1-1414.3.1-14a14.3.1-1514.3.1-1614.3.1-1714.3.1-18VOLUMEVIIChapter14Unit1(con't)14.3.1-114.3.1-214.3.1-314.3.1P14.3.1-514.3.1-5a14.3.1W14.3.1-714.3.1-814.3.1-8a14.3.1-914.3.1-1014.3.1-1114.3.1-11a14.3.1-12(Reissue)14.3.1-1314.3.1-1414.3.1-14a14.3.1-1514.3.1-1614.3.1-1714.3.1-18Page21 14.3.1-1914.3.1-2014.3.1-21Fig.14.3.1-1aFig.14.3.1-1bFig.14.3.1-1cFig.14.3.1-1dFig.14.3.1-1eFig.14.3.1-1fFig.'14.3.1-1gFig.14.3.1-2aFig.14.3.1-2bFig.14.3.1-2cFig.14.3.1-2dFig.14.3.1-2eFig.14.3.1-2fFig.14.3.1-2gFig.14.3.1-3aFig.14.3.1-3bFig.14.3.1-3cFig.14.3.1-3dFig.14.3.1-3eFig.14.3.1-3fFig.14.3.1-3gFig.14.3.1%aFig.14.3.1MbFig.14.3.1AcFig.14.3.1-4dFig.14.3.1-4eVOLUMEVllChapter14Unit1(con't)14.3.1-1914.3.1-2014.3.1-21Fig.14.3.1-1aFig.14.3.1-1bFig.14.3.1-1cFig.14.3.1-1dFig.14.3.1-1eFig.14.3.1-1fFig.14.3.1-2aFig.14.3.1-2bFig.14.3.1-2cFig.14.3.1-2dFig.14.3.1-2eFig.14.3.1-2fFig.14.3.1-3aFig.14.3.1-3bFig.14.3.1-3cFig.14.3.1-3dFig.14.3.1-3eFig.14.3.1-3fFig.14.3.1<aFig.14.3.1-4bFig.14.3.1-4cFig.14.3.1<dFig.14.3.1-4ePage22 Fig.14.3.1<fFig.14.3.1-5gFig.14.3.1-5aFig.14.3.1-5bFig.14.3.1-5cFig.14.3.1-5dFig.14.3.1-5eFig.14.3.1-5fFig.14.3.1-5gFig.14.3.1<aFig.14.3.1-6bFig.14.3.1c,Fig.14.3.1-6dFig.14.3.1<eFig.14.3.1<fFig.14.3.1%gFig.14.3.1-7aFig.14.3.1-7bFig.14.3.1-7cFig.14.3.1-?dFig.14.3.1-7eFig.14.3.1-7fFig.14.3.1-7gFig.14.3.1-8aFig.14.3.1-8bFig.14.3.1-8cFig.14.3.1-8dFig.14.3.1-8eFig.14.3.1-8fVOLUMEVllChapter",4Unit1(con't)Fig.14.3.1-4f'ig.14.3.1-5aFig.14.3.1-5bFig.14.3.1-5cFig.14.3.1-5dFig.14.3.1-5eFig.14.3.1-5fFig.14.3.1-6aFig.14.3.14bFig.14.3.1-6cFig.14.3.14dFig.14.3.1<eFig.14.3.1fFig.14.3.1-7aFig.14.3.1-7bFig.14.3.1-7cFig.14.3.1-'7dFig.14.3.1-7eFig.14.3.1-7fFig.14.3.1-8ahFig.14.3.1-8bFig.14.3.1-8cFig.14.3.1-8dFig.14.3.1-8eFig.14.3.1-8fPage23 Fig.14.3.1-8gFig.14.3.1-9aFig.14.3.1-9bFig.14.3.1-9cFig.14.3.1-9dFig.14.3.1-9eFig.14.3.1-9fFig.14.3.1-9gFig.14.3.1-1OaFig.14.3.1-10bFig.14.3.1-10cFig.14.3.1-10dFig.14.3.1-10e.Fig.14.3.1-10fFig.14.3.1-10gFig.14.3.1-11aFig.14.3.1-11bFig.14.3.1-11cFig.14.3.1-11dFig.14.3.1-11eFig.14.3.1-11fFig.14.3.1-11gFig.14.3.1-12aFig.14.3.1-12bFig.14.3.1-12cFig.14.3.1-12dFig.14.3.1-12eFig.14.3.1-12fFig.14.3.1-12gVOLUMEVIIChapter14Unit1(con't)Fig.14.3.1-9aFig.14.3.1-9bFig.14.3.1-9cFig.14.3.1-9dFig.14.3.1-9eFig.14.3.1-9f41Fig.14.3.1-1OaFig.14.3.1-10bFig.14.3.1-10cFig.14.3.1-10dFig.14.3,1-10eFig.14.3.1-10fFig.14.3.1-11aFig.14.3.1-11bFig.14.3.1-11cFig.14.3.1-11dFig.14,3.1-11eFig.14.3.1-11fFig.14.3.1-12aFig.14.3.1-12bFig.14.3.1-12cFig.14.3.1-12dFig.14.3.1-12eFig.14.3,1-12fPage24 Fig.14.3.1-13aFig.14.3.1-136bFig.14.3.1-13c~Fig.14.3.1-13dFig.14.3.1-13eFig.14.3.1-13fFig.14.3.1-13gFig.14.3.1-14Fig.14.3.1-15Fig.14.3.1-16Fig.14.3.1-17Fig,14.3.1-18Fig.14.3.1-19Fig.14.3.1-20Fig.14.3.1-21Fig.14.3.1-22Fig.14.3.1-2314.3.2-714.3.2-7a14.3.2-7b14.3.2-7c14.3.2-7d14.3.2-1414.3.2-15VOLUMEVllChapter14Unit1(con't)Fig.14.3.1-13aFig.14.3.1-136bFig.14.3.1-13cFig.14.3.1-13dFig.14.3.1-13eFig.14.3.1-13fFig.14.3.1-14Fig.14.3.1-15Fig.14.3.1-16Fig.14.3.1-17Fig.14.3.1-18Fig.14.3.1-1914.3.2-714.3.2-7a(Reissue)14.3.2-7b(Reissue)14.3.2-7c14.3.2-7d14.3.2-7e14.3.2-1414.3.2-15(Reissue)14.3.2-2114.3.2-22Fig.14.3,2-67Fig.14.3.248Page25 14.3.4-114.3.4-214.3.4-914.3.4-1014.3.4-1114.3,4-12'14.3.4-1314.3.4-1414.3.4-1514.3.4-1614.3.4-1714.3.4-1814.3.4-3314.3.4-3414.3.4-3714.3.4-3814.3.4-3914.3.4-40VOLUMEVIIChapter14Unit1(con't)Fig.14.3.2-69Fig.14.3.2-70Fig.'4.3.2-71Fig.14.3.2-72Fig.14.3.2-73Fig.14.3.2-74Fig.14.3.2-75Fig.14.3.2-76VOLUMEVIIIChapter14Unit114.3.4-114.3.4-2(Reissue)14.3.4-914.3.4-10(Reissue)14.3.4-11(Reissue)14.3.4-1214.3.4-13(Reissue)14.3.4-1414.3.4-1514.3.4-1614.3.4-16a14.3.4-1714.3.4-1814.3.4-33(Reissue)14.3.4-3414.34-34a.14.3.4-3714.3.4-3814.3.4-39.14.3.4-40(Reissue)Page26 14.3.4%114.3.4-4214.3A<314.3.4-4414.3.4A514.3.4A614.3.4-5114.3.4-5214.3.4-8514.3A-8614.3.4-8714.3.4-8814.3.4-8914.3.4-9014.3.4-9114.3.4-9214.3.4-9314.3.4-9414.3.4-9514.3.4-9614.3.4-9714.3.4-9814.3.4-9914.3.4-13614.3A-13714.3.4-13814.3.4-140VOLUMEVillChapter14Unit1(con't)14.3.4-4114.3.44214.3.44314.3.4A414.3.444a14.3.4A514.3.4P614.3.4<6a14.3.4-51(Reissue)14.3.4-5214.3.4-8514.3.4-8614.3.4-87(Reissue)14.3A-88InfoDeleted14.3.4-8914.3.4-90(Reissue)14.3.4-9114.3.4-9214.3.4-9314.3.4-9414.3.4-95InfoDeleted14.3.4-9614.3.4-9714.3.4-98,14.3.4-9914.3.4-136(Reissue)14.3.4-13714.3.4-138InfoDeleted14.3.4-140InfoDeletedPage27 14.3.4-13914.3.4-14114.3.4-14214,3.4-14314.3.4-14414.3.4-14514.3.4-14614.3.4-14714.3.4-14814.3.4-14914.3.4-15014.3.4-15114.3.4-15214.3.4-15314.3.4-15414.3.4-155VOLUMEVillChapter14Unit1(con't)14.3.4-139InfoDeleted14.3.4-14114.3.4-142InfoDeleted14.3.4-143InfoDeleted14.3.4-144InfoDeleted14.3.4-14514.3.4-146InfoDeleted.14.3.4-147InfoDeleted14.3.4-14814.3.4-14914.3.4-150InfoDeleted14.3.4-151InfoDeleted14.3.4-15214.3.4-15314.3.4-154InfoDeleted414.3.4-155Fig.14.3.4-5Fig.14.3.4-6Fig.14.3.4-7Fig.14.3.4-8Fig.14.3.4-9Fig.14.3;4-10Fig.14.3.4-11Fig.14.3.4-12IFig.14.3.4-5(Reissue)Fig.14.3.4-6Fig.14.3.4-7Fig.14.3.4-8Fig.14.3.4-9Fig.14.3.4-10'ig.14.3.4-11aFig.14.3.4-11bFig.14.3.4-12aPage28 14.3.5-114.3.5-214.3.5-1514.3.5-1614.3.5-2514.3.5-2614.3.5-2914.3.5-3014.3.54114.3.5<214.3.6-3014.3.6-3114.4.2-514.4.2-614.4.2-1514.4.2-1614.4.3-114.4.3-214.4.3-314.4.3P14.44R14.4.4-514.4.10-314.4.10M14.4.10-5VOLUMEVIIIChapter14Unit1(con't)Fig.14.3.4-12bVOLUMEIXChapter14Unit114.3.5-114.3.5-214.3.5-15(Reissue)14.3.5-1614.3.5-25(Reissue)14.3.5-2614.3.5-2914.3.5-30(Reissue)14.3.5-32a14.3.5Q1(Reissue)14.3.5-4214.3.6-3014.3.6-31(Reissue)14.4.2-5(Reissue)14.4.2W-14.4.2-15(Reissue)14.4.2-16144.3-114.4.3-214.4.3-314.4.3P14.4.4AInfoDeleted144.4-5(Reissue)14.4.10-314.4.10M(Reissue)14.4.10-5(Reissue)14.4.104Page29 14.4.11-314.4.11M14.4.11-814.4.11-1914.4.11-2614.0-114.0-214.1-114.1-214.1-314.1-414.1-514.1-614.1-714.1-814.1-9.14.1-1014.1-1114.1-1214.1-1314.1-1414.1-1514.1-1614.1-1714.1-1814.1-1914.1-20VOLUMEIXChapter14Unit1(con't)14.4.11-314.4.11-4(Reissue)14.4.11-8(Reissue)14.4.11-1914.4.11-2614.4.11-27VOLUMEX.Chapter14Unit214.0-114.0-2(Reissue)14.1-1(Reissue)14.1-2,Page30 14.1-21'4.1-2214.1-2314.1-2414.1-2514.1-2614.1-2714.1-2814.1-2914.1-3014.1-31VOLUMEXChapter14Unit214.1.0-114.1.0-214.1.0-314.1.0%14.1.0-514.1.0-614.1.0-714.1.0-814.1.0-914.1.0-10,14.1.0-1114.1.0-1214.1.0-1314.1.0-1414.1.0-1514.1.0-1614.1.0-1714.1.0-18Page31 14.1.1-314.1.1P14.1.9-314.1.9Q14.2.2-114.2.2-214.2.2-314.2.2A14.2.4-114.2.4-214.2.4-314.24P14.2.4-514.2.4W14.2.4-7VOLUMEXChapter14Unit2(con't)14.1.0-1914.1.0-2014.1.0-2114.1.0-2214.1.0-2314.1.0-2414.1.0-2514.1.0-2614.1.0-2714.1.0-2814.1.0-2914.1.0-3014.1.1-3(Reissue)14.1.1A14.1.9-314.1.9Q14.2.2-114.2.2-1a14.2.2-214.2.2-314.2.2<(Reissue)14.2.4-114.2.4-214.2.4-314.2.4-3a14.2.4%14.2.4-514.2.4-6Page32 14.2.4-814.2.4-914.2.4-1014.2.5-714.2.5-814.2.6-914.2.6-1014.3.1-714.3.1-814.3.1-1314.3.1-1414.3.1-1714.3.1-1814.3.1-2514.3.1-2614.3.2-7c14.3.2-814.3.2-2114.3.2-2214.3.5-314.3.5P14.3.5-914.3.5-1014.3.5-11VOLUMEXChapter14Unit2(con't)14.2.5-714.2.5-8(Reissue)14.2.6-914.2.6-10(Reissue)VOLUMEX(Chapter14Unit214.3.1-714.3.1-7a14.3.1-8(Reissue)14.3.1-13(Reissue)14.3.1.-1414.3.1-14a14.3.1-1714.3.1-18(Reissue)14.3.1-2514.3.1-26(Reissue)14.3.2-7c14.3.2-814.3.2-21(Reissue)14.3.2-22VOLUMEXI.IChapter14Unit214.3.5-3(Reissue)14.3.5-414.3.5-914.3.5-1014.3.5-11(Reissue)Page33 14.3.5-1214.3.7-114.3.7-214.3.7-314.3,7<14.3.7-514.3.7414.3.7-714.3.7-814,3.7-914.3.7-1014.3.7-11Fig.14.3.7-1Fig.14.3.7-2Fig.14.3.7-3Fig.14.3.7-,4Fig.143.7-5Fig.14.3.7Fig.14.3.7-7Fig.14.3.7-8Fig.14,3.7-9Fig.14.3.7-10Fig.14.3.7-11Fig.14.3.7-12Fig.14.3.7-13Fig.14.3.7-14Fig.14.3.7-15Fig.14,3.7-16Fig.14.3.7-17VOLUMEXIIChapter14Unit2(con't)14.3.5-1214.3.7-114.3.7-214.3.7-314.3.7P14.3.7-514.3.7414.3.7-714.3.7-814.3.7-914.3.7-1014.3.7-11Fig.14.3.7-1Page34 Fig.14.3.7-18Fig.14.3.7-19Fig.14.3.7-2014.3.8-114.3.8-214.3.8-314.3.8-4Fig.14.3.8-1Fig.14.3.8-2Fig.14.3.8-3VOLUMEXIIChapter14Unit2(con't)14.3.8-1Page35
INDEXOFUPDATEDFARHAPTERSChapter1.Chapter2.Chapter3.Chapter3.Chapter4.Chapter5.Chapter6.Chapter7.Chapter8.Chapter9.Chapter10.Chapter11.Chapter12.Chapter13.Chapter14.Chapter14.AppendixJAppendixMIntroductionandSummarySiteandEnvironmentReactor(Unit¹1)Reactor(Unit¹2)ReactorCoolantSystemContainmentSystemEngineeredSafetyFeaturesInstrumentationandControlElectricalSystemsAuxiliaryandEmergencySystemsSteamandPowerConversionSystemWasteDisposalandRadiationProtectionSystemConductofOperationsInitial,TestsandOperationSafetyAnalysis(Unit¹1)SafetyAnalysis(Unit¹2)July1995 CHAPTER1TABLEOFCONTENTSiS~~~in~TilINTRODUCTIONANDSUMMARY1.0,-
11.0INTRODUCTION
1.0-11.1.11.1.21.1.31.1.41.1.51.1.6PLANTSITESUMMARYSiteDescriptionMeteorologyGeologyandHydrologySeismologyLimnologyEnvironmentalRadiationMonitoring1.21.2.1-1.2.21.2.31..2.41.2.51.2.61.2.71.2.B1.2DESIGNHIGHLIGHTSPowerLevelReactorCoolantLoopsPeakSpecificPowerFuelAssemblyDesignIceCondenserContainmentStructureOtherEngineeredSafetyFeaturesEmergencyPowerUseofSolid-StateLogicProtectionSystemReferences1.2-11.2-11.2-11.2-11.2-11.2-21.2-21.2-31.2-31.2-41.31.3.11.3.21.3.31.3.41.3.5SUMMARYPLANTDESCRIPTIONStructuresandEquipmentNuclearSteamSupplySystemReactorandPlantControlWasteDisposalSystemFuelHandlingSystem1.3-11.3-21.3-21.3-31.3-41.3-4July1997 CHAPTER1TABLEOFCONTENTS(Cont'd)Section1.3.61.3.71.3.81.3.9T~ilTurbineandAuxiliariesElectricalSystemSafetyFeaturesSharedFacilitiesandEquipment1.3-51.3-51.3-61.3-71.41.4.11.4.21.4.31.4.41.4.51.4.61.4.71.4.9GENERALDESIGNCRITERIAOverallPlantRequirementsProtectionbyMultipleFissionProductBarriersNuclearandRadiationControlsReliabilityandTestabilityofProtectionSystemsReactivityControlReactorCoolantPressureBoundaryEngineeredSafetyFeaturesFuelandWasteStorageSystemsEffluents,1.4-11.4-11.4-101.4-111.4-131.4-171.4-181.4-181.4-191.4-201.4References,1.4-221.5PLANTOPERATION1.5-11.6RESEARCHANDDEVELOPMENTREQUIREMENTS(Note:OriginalFSARSub-Chapter1.6isincludedforhistoricalrecordpurposes)1.6-0July1997 CHAPTER1TABLEOFCONTENTS(Cont'd)T~ilQUALITYASSURANCEIDENTIFICATIONOFCONTRACTORSFACILITYSAFETYCONCLUSIONS1.7-11.8-11.9-101-iiiJuly1997 CHAPTER1LISTOFTABLES~TileComparisonofDesignParametersIndexofAECGeneralDesignCriteriaReferences1-ivJuly1997 CHAPTER1LISTOFFIGURES~Fiure1.3-11.3-21.3-31.3-4Tits.StandardSymbols-UnitsNo.1or2PlotPlanPlantArrangement-Sections"D-D","E-E",and"F-F"-UnitsNo.1and2PlantArrangement-Sections"G-G","H-H",,"J-J",and"K-K"UnitsNo.1and2PlantArrangement-Sections"L-L"and"M-"-UnitsNo.1and1.3-51.3-61.3-71.3-81.3-91.3-101.3-11PlantArrangement-Sections"N-N","P-P,"Q-'Q,and"R-R"-UnitsNo.1and2PlantArrangement-PlanBelowBasement-UnitsNo.1and2PlantArrangement-BasementPlan-Elev.591'-0"and587.0'-0"-UnitsNo.1and2PlantArrangement.-MezzanineFloor-Elev.609'-0"Units1and2PlantArrangement-TurbineBuilding-MainFloor-Elev.633'-0"-Units1and2PlantArrangement-ReactorBuilding-MainFloor-Elev.650'-0"StandardSymbols1-vJuly1997 CHAPTER2TABLEOFCONTENTSSection2.0~TileSITEANDENVIRONMENT,Pacae2.12.1.12.1.22.1.32.1.42.1.52.1.6SITEDESCRIPTIONSummaryLocationTopographyAccessPopulationLandUse2.1-12.1-12.1-12.1"32.1-32.1-72.1-122.2.12.2.22.2.32.3.12.3.22.3.32.42.4.22.4.3METEOROLOGYSourcesofDataGeneralMeteorologyDispersionMeteorologyReferencesGEOLOGY=RegionalGeologySiteGeology'SummaryofConclusionsHYDROLOGYSurfaceWaterHydrologyRegionalLocalGroundWaterHydrologyRegionalLocal-SummaryofConclusions2.2-12.2-22.2-72.2-82.2-102.3-12.3-12332.3-52.4-12.4-12.4-12.4-12.4-2.2.4-22.4-32.4-52-iJuly1997 CHAPTER2TABLEOFCONTENTS(Cont'd)~Set~inPacap.2.52.5.12.5.22.5.3ENGINEERINGSEISMOLOGYSeismicityASeismicDesignFoundationMaterialsOperatingBasisEarthquakeDesignBasisEarthquakeResponseSpectraSupplementalDataConclusions2.5-12.5-12.5-22.5-22.5-32.5-42.5-52.5-62.5-72.62.6.12.6.22.6.32.6.42.6LIMNOLOGYANDECOLOGYIntroductionInitialStudiesNRCTechnicalSpecificationAppendixBPhaseStudies(1973to1982)OngoingStudyPhase(1983toPresent)References2.6-12.6-12.6-22.6-102.6-432.6-44aJuly1997 CHAPTER2TABLEOFCONTENTS(Cont'd)SectionT~llePacae2.7RADIOLOGICALENVIRONMENTALMONZTORINGPROGRAM2.7-12.7.12.7.22.7.3Purposeofthe'RadiologicalEnvironmentalmonitoringprogram(REMP)PreoperationalStudySummaryofPreoperationalRadio'ogicalEnvironmentalMonitoringProgram2.7-12.7-12.7-12.82.8.12.8.22.8.32.8.42.8.52.8.62.8.7PLANTDESIGNBASESDEPENDENTUPONSITEANDENVIRONSCHARACTERISTICSUnitVentGasEffluentLiquidWasteEffluentWindLoadingDesignGeologyHydrologySeismologyLimnology2.8-12.8-12.8-12.8-12.8-22.8-22.8-22.8-22.9PLANTDESIGNCRITERIAFORSTRUCTURESAND.2.9-1EQUIPMENT2.9.1DefinitionofSeismicDesignClassification~ClassIClassIIClassZIZ2.9-12.9-12.9-12.9-1July1997 CHAPTER2TABLEOFCONTENTS(Cont'd)~ec~i2.9.22.9.32.9.42.9.52.9.6~TitlClassificationofStructuresandEquipmentSeismicDesignCriteriaforSeismicClassIandIIPipingSeismicDesignCriteriaforClassI,,ClassIIandClass1IIS'ucturesClassIClassIIClassIIIForAllStructureSeismicClassificationsGeneralDesignConsiderationsforBuildingStructuresAuxiliaryBuildingTurbineBuildingSeismicDesignCriteriaforEquipment~Pa2.9-22.9-52.9-82.9-82.9-92.9-92.9-92.9-112.9-132.9-162.9-172.10CONCLUSIONS42.10-12-xvJuly1997 .CHAPTER2LISTOFTABLES2.1-12.1-22.1-32.1-52.1-62.1-6a2.1-72.1-7a2.1-82.1-8a2.1-8b2.1-92.1-122.2-12.2-22.2-32.2-42.2-52.2-62.2-72.2-82.2-92.5-12.6-12.6-2PopulationTrendsoftheCountiesSurroundingtheDonaldC.CookNuclearPlantSitePopulationTrendsofCitiesandTownshipsinBerrienCounty,MichiganPopulationCentersof25,000orMoreWithin60MilesoftheDonaldC.CookNuclearPlantSitePopulationDistribution,1975PopulationDistribution,1990PopulationDistribution,1990ProjectedPopulationDistribution,2000ProjectedPopulationDistribution,2000ProjectedPopulationDistribution,2037ProjectedPopulationDistribution,2037TransientPopulationDistribution,1MileIncrements,1971AgriculturalStatisticsHospitalsinBerrienCounty,1997DataSummarySheetMeteorologicalDataX/QGroundAverageHoursatEachWindSpeedandDirection,StabilityClass:AHoursatEachWindSpeedandDirection,StabilityClass:BHoursatEachWindSpeedandDirection,StabilityClass:CHoursatEachWindSpeedandDirection,StabilityClass:D'HoursatEachWindSpeedandDirection,StabilityClass:EHoursatEachWindSpeedandDirection,StabilityClass:FEarthquakeswithEpicentersLocatedWithin200MilesofPlantSiteBibliographyofReportsProducedasPartofInitialPhaseofDonaldC.CookNuclearPlantEnvironmentalImpactAssessmentBibliographyofReportsProducedasPartofPre-OperationalPhaseandOperationalorTechnicalSpecification,AppendixB,RequiredStudiesoftheImpactofDonaldC.CookNuclearPlantOutfallson,LakeMichigan2-vJuly1997 CHAPTER2LISTOFTABLES(Cont'd)Table2.6-32.6-42.6-52.6-62.9-12.9-22.9-22.9-2SummaryofPlumeAreas,WidthsandVolumesCommonandScientificNamesofFishSpeciesCollectedfromCookPlanStudyAreas,SoutheasternLakeMichigan,1973-1982CommonNamesandTotalEstimatedNumberofEachSpeciesimpingedDuring1975-1982attheCookNuclearPlantEstimatesofAnnualEntrainmentLossesofFishLarvaeandFishEggsattheCookNuclearPlant1975-1982LoadingConditions:DefinitionsLoadingConditionsandStressLimits:PressureVessels(PartA)LoadingConditionsandStressLimits:PressurePiping(PartB)LoadingConditionsandStressLimits:EquipmentSupports".'(PartC)2viJuly1997 CHAPTER2LISTOFFIGURES~F1ure2.1-12.1-22.1-32.1-42.1-4a2.1-4b2.1-52.1-62.1-6a2.1-6b2.1-72.1-7a2.1-7b2.1-82.1-8a2.1-8b2.1-92.1-102.2-12.2-22.2-32.2-42.2-52.2-62.2-72.2-82.2-92.2-102.2-11ShorelineTowerShorelineTowerWindRose,April-June1992WindRose,July-September1992TitleRegionalFeaturesLocalFeaturesTopographicMapofSiteTopographicViewofPlantSiteDonaldC.CookNuclearPlantSectionsWestandNorthDonaldC.CookNuclearPlantTo"rgraphicMap1990PopulationDistribution,0-60Miles1990PopulationDistribution,0-5Miles1990PopulationDistribution,5-60Miles1990PopulationDistribution,)0-60Miles2000PopulationDistribution,0-5Miles2000PopulationDistribution,5-60Miles2000PopulationDistribution,10-60Miles2037PopulationDistribution,0-5Miles2037PopulationDistribution,5-60Miles2037PopulationDistribution,10-60Miles1972DairyCattle'Distribution0-10Miles1971TransientPopulationDistribution,0-8MilesMeteorologicalTowerTornadosintheStateofMichigan,1950-1989MainTowerWindRose,January-December1992MainTowerWindRose,January-March1992MainTowerWindRose,April-June1992MainTowerWindRose,July-September1992MainTowerWindRose,October-December1992ShorelineTowerWindRose,January-December1992ShorelineTowerWindRose,January-March1992July1997 FLOU1e2.2-1212.2-132.2-142.2-152.2-162.2-172.2-182.2-192.2-202.2-212.2-222.2-232.3-12.3-22.5-12.5-1a2.5-22.5-32.5-3aCHAPTER2LISTOFFIGURES(Cont'd.)ShorelineTowerWindRose,October-December1992WindDirectionDistributions,TurbulenceClassIV,200Ft.LevelWindDirectionDistributions,TurbulenceClassIV,50Ft.LevelWindDirectionDistributions,TurbulenceClassIV,SatelliteWindDirectionDistributions,AllHours,200Ft.LevelWindDirectionDistributions,AllHours50Ft.LevelWindDirectionDistributions,AllHours,SatelliteWindDirectionDistributions,WinterWindDirectionDistributions,SpringWindDirectionDistributions,SummerWindDirectionDistributions,FallMonitoringSiteLocationsRegionalTectonicMapGeologicCross-SectionEpicentralLocationMapMapofPlantSiteRecommendedResponseSpectra-OperatingBasisEarthquakeRecommendedResponseSpectra-DesignBasisEarthquakeSiteSpectravs.ModifiedElCentro'34OperatingBasisEarthquake2.5-3b2.5-3c2.5-3dResponseSp'ectraResponseSpectraResponseSpect'raOBECookAuxiliaryBuildingFloorEl.650'-0"OBECookAuxiliaryBuildingFloorEl.633'-0"OBECookDieselGeneratorBuildingFloorEl.609'-0"2.S-3e2.5-3f2.5-3g2.5-3h2.5-3i2.5-33SiteSpectravs.ResponseSpectraResponseSpectraResponseSpectraModifiedElCentro'34DBEAuxiliaryBuildingFloorEl.587'-0"DBEDieselGeneratorBuildingFloorEl.609'-0"DBEAuxiliaryBuildingFloorE1.633'-0"DBEResponseSpectraAuxiliaryBuildingEl.650'-0"ResponseSpectraCookAuxiliaryBuildingFloorEl.587'-0"OBE2-viiiJuly1997 CHAPTER2LISTOFFIGURES(Cont'd.)Ficire2.6-12.6-22.6-32.6-42.6-52.6-62.6-72.6-82.6-92.6-102.6-112.6-12TitleBathymetricChartofLakeMichiganThreeConceptsoftheSurfaceCurrentsofLakeMichiganSurfaceWaterTemperatureLocationsofCurrentMetersandTemperatureRecordersSchematicofTowedArrayRegionofLakeInfluencebyCookNuclearPlantDischargeCookandPalisadesNuclearPlantsMeteorologicalNetworks136-stationCookNuclearPlantSamplingGridStationLocationsfortheMajorSurveysandShortSurveysGridofStationsUsedinBenthicSamplingNearCookNuclearPlantMapofSoutheasternLakeMichiganShowingPlantandFieldFishLarvaeSamplingStationsSpeciesCompositionoftheTotalNumberofFishImpingedEachYear1975-19822-ixJuly1997 CHAPTER3TABLEOFCONTENTSSectionParcae3.0REACTOR3.1-13.1.13.1.23.1.3SUMMARYDESCRIPTIONPerformanceObjectivesPrincipalDesign-CriteriaSafetyLimits3.1-13.1-23.1-43.1-113.23.2.13.2.23.2.1MECHANICALDESIGNMechanicalDesignandEvaluationCoreComponentTestsandInspectionsReferences3.2-13.2-13.2-443.2-543.33.3.13.3.23.3.33.3.43.3.13.3.23.3.3NUCLEARDESIGNNuclearDesignandEvaluationPhysicsTestsAnticipatedTransientsWithoutTripCriticalityofFuelAssembliesReferencesReferencesReferences3.3-13.3-13.3-243.3-253.3-253.3-263.3-263.3-273.4.13.4.23.43.4.2THERMALANDHYDRAULICDESIGNThermalandHydraulicEvaluationfortheInitialCoreThermalandHydraulicTestsandInspectionsReferences.References3.4-13".4-13.4-173.4-183.4-21UNIT13-iJuly19 CHAPTER3TABLEOFCONTENTS(Cont'd)~Se~inTitlePacap3.53.5.13.5&3;5.23.5.23.5.33.5.3CURRENTWESTINGHOUSEOFARELOADFUELFuelMechanicalDesign3.5.1'eferencesNuclearDesignReferencesThermalandHydraulicDesignReferences3.5-13.5.1-13.5.1-343.5.2-13.5.2-63.5.3-13.5.3-13UNIT13-iiJuly1997 CHAPTER3LISTOFTABLESTabal,3.2.1-1~TilInitialCoreMechanicalDesignParametersl3.3.1-13.3.1-23.3.1-3NuclearDesignDataReactivityRequirementsforControlRodsCalculatedRodWorths,hp(Unitgl)3.4.1-13.4.1-23.4.1-3ThermalandHydraulicDesignParametersEngineeringHotChannelFactorsSensitivityAnalysis3.5.1-13.5.1-23.5.2-13.5.2-23.5.2-33.5.3-1Westinghouse15x15OFADesignParametersComparisonofBurnableAbsorberRodsDesignParametersFuelAssemblyDesignParameters,CookNuclearPlantUnit1,Cycle15KineticsCharacteristics,CookNuclearPlantUnit1WithWestinghouseOFAFuelShutdownRequirementsandMargins,CookNuclearPlantUnit1-Cycle15CookNuclearPlantUnit1Thermal-HydraulicDesignParametersUNIT13-iiiJuly19 CHAPTER3LISTOFFIGURES~Fiu~r3.2.1-13.2.1-23.2.1-33.2.1-43.2.1-53.2.1-63.2.1-73.2.)-8.,'.2.1-93.2.1-103.2.1-113.2.1-123.2.1-133.2.1-143.2.1-153.3.1-13.3.1-23.3.1-33.3.1-43.3.1-5to3.3.1-103.3.1-113.3.1-123.3.1-13T~ileCoreCrossSectionReactorVesselandInternalsFuelLoadingArrangementTypicalRodClusterControlAssemblyCoreBarrelAssemblyUpperCoreSupportStructureGuideTubeAssemblyFuelAssemblyandControlClusterCrossSectionFuelAssemblyOutlineSpringClipGridAssemblyNeutronSourceLocations'urnablePoisonControlRodDriveMechanismAssemblyControlRodDriveMechanismSchematicThimblePlugAssemblyControlRodPattern(Unit1)Cycle1AssemblywisePower(BOL)Cycle1AssemblywisePower(MOL)Cycle1AssemblywisePower(EOL)Thesefigureshavebeenintentionallydeleted.DistributionofBurnablePoisonRods-NumberofB.P.RodsperAssembly,Unit1,Cycle1ArrangementofBurnablePoisonRodsWithinanAssembly,Unit1,Cycle1ModeratorTemperatureCoefficientvs.ModeratorTemperature,BOL,NoControlRodsInse'rted,UNIT13ivJuly1997 CHAPTER3LISTOFFIGURES(Cont'd)~Fi3.3.1-143.3.1-153.3.1-163.3.1-17ModeratorTemperatureCoefficientvs.ModeratorTemperature,BOL,AllControlRodsInsertedModeratorTemperatureCoefficientvs.ModeratorTemperature,(EOL)DopplerCoefficientvs.ResonanceEffectiveTemperatureDopplerContributionstothePowerCoefficientvs.PowerLevel3.4;1-13.4.1-23.4.1-33.4.1-43.4.1-4a3.4.1-53.4.1-63.4.1-73.4.1-83.4.1-9ThermalConductivityofU02(DataCorrectedto95-PercentTheoreticalDensity)HighPowerFuelRodExperimentalProgramComparisonofW-3PredictionandUniformFluxDataW-3CorrelationProbabilityDistributionCurveRodControlClusterAssemblyOutlineComparisonofW-3CorrelationWithRodBundleDNBData(SimpleGridWithoutMixingVane)ComparisonofW-3CorrelationwithRodBundleDNBData(SimpleGridWithMixingVane)ComparisonofNon-UniformDNBDataWithW-3PredictionsComparisonof"W-3PredictionWithMeasuredDNBLocationRadialPowerDistribution3.5.1-13.5.1-23.5.1-33.5.1-43.5.1-53.5.1-5aSchematicComparisonofWestinghouse15x15OFAWithENCFuelAssemblyDimensionsReactorCoreFuelAssemblyReloadPatternPlanViewofMidGridtoGuideThimbleJoint(BottomView)"ElevationViewofMidGridtoGuideThimbleJointTopGridtoGuideThimbleandTopNozzleAttachmentTopGridtoGuideThimbleandRemovableTopNozzleAttachmentUNIT13-v'July19 CHAPTER3LISTOFFIGURES(Cont'd)vicireTitle3.5.1-63.5.1-73.5.1-83.5.1-93.5.2-13.5.2-23.5.3-13.5.3-23.5.3-3GuideThimbletoBottomGridandNozzleJointBottomNozzletoThimbleTubeConnectionWetAnnularBurnableAbsorberRodComparisonofBorosilicateGlassAbsorberRodwithWABARodCookNuclearPlantUnit1-Cy-'.e15ExampleCoreLoadingPatternHeatFluxHotChannelFactorNormalizedOperatingEnvelope,FQECCSLimit2.15CookNuclearPlantUnit1-Cycle14Measuredvs.PredictedCriticalHeatFlux-WRB1CorrelationTDCvsReynoidsNumberfor26"GridSpacingImprovedThermalDesignProcedureIllustrationUNIT13-viJuly1997 CHAPTER3TABLEOFCONTENTS~BC~lOTiital3.0REACTOR3.1-13.13.1.1SUMMARYDESCRIPTIONReferences3.1-13.1"53.23.2.13;2.23.2.3MECHANICALDESIGNFuelReactorVesselInternalsReactivityControlSystem3.2-13.2-23.2-363.2-473.2References3.2-923.33.3.13:3.2"3.3.33.3NUCLEARDESIGNDesignBasesDescriptionAnalyticalMethodsReferences3.3-13.3-13.3-93.3-553.3-593.4.1THERMALANDHYDRAULICDESIGNDesignBases3.4-13.4-1UN1T23-iJuly1997 CHAPTER3TABLEOFCONTENTS(Cont'd)~SctionTitlePaae3.4.23.4.33.4.4DescriptionEvaluationTestingandVerification3.4-53.4-333.4-533.4.53.4InstrumentationApplicationReferences3.4-543.4-57UNIT23-iiJuly1997 ~T13.1-13.1-23.1-33.2-13.3-1CHAPTER3LISOFTABLES~TileReactorDesignComparisonTabeAnalyticTechniquesinCoreDesignDesignLoadingConditionsforReactorCoreComponentsMaximumDeflectionsAllowedforReactorInternalSupportStructuresReactorCoreDescription3.3-2'uclearDesignParameters3.3-33.3-43.3-53.3-63.4-13'.4-23.4-33.4-4.ReactivityRequirementsforRodClusterControlAssembliesAxialStabilityIndexPressurizedWaterReactor.Corewitha12-FootHeight4icalNeutronFluxLevelsatF1wTypu1PoerComparisonofMeasuredandCalculatedDopplerDefectsReactorDesignComparisonTableVoidFractionsatNominalReactorConditionswithDesignHotChannelFactorsSystemDesignandOperatingParametersComparisonofTHINC-IVandTHINC-IPredictionswithDatafromRepresentative-WestinghouseTwo.andThreeLoopReactorsUNIT23-iiiJulyll CHAPTER3LISTOFFIGURES~Fiu~r3.2-13.2-23.2-33.2-43.2-53.2-5a3.2-63.2-73.2-83.2-93.2-103.2-113.2-123.2-133.2-15TitleFuelAssemblyCrossSection17x17FuelAssemblyOutline17x17FuelRodSchematicPlanViewTopGridtoThi~leAttachmentGridtoThimbleAttachmentJointsTopNozzletoThimbleAttachmentGuideThimbletoBottomNozzleJointCoreBarrelAssemblyUpperCoreSupportStructurePlanViewofUpperCoreSupportStructureFullLengthRodClusterControlandDriveRodAssemblywithInterfacingComponentsFullLengthRodClusterControlAssemblyOutlineFullLengthAbsorberRodBurnablePoisonAssembly3.2-16,BurnablePoisonRodCrossSection3.2-173.2-183.2-19PrimarySourceAssemblySecondarySourceAssemblyThimblePlugAssembly3.2-20,FullLengthControlRodDriveMechanism3.2-213.2-223.2-233.2-243.3-1~FullLengthControlRodDriveMechanismSchematicPartLengthControlRodDriveMechanismNominalLatchClearanceatMinimumandMaximumTemperatureControlRodDriveMechanismLatchClearanceThermalEffectAxialZoningofUraniumEnrichmentandIFBAPoisoningUNIT23-ivJuly1997 Fic~r~3.3-23.3-33.3-43.3-53.3-63.3-73.3-83.3-93.3-103.3-113.3-123.3-133.3-143.3-153.3-16CHAPTER3LISTOFFIGURES(Cont'd)T~ileExampleLowLeakageFuelLoadingArrangementProductionandConsumptionofHigherIsotopesExampleIFBAArrangementsWithinanAssemblyExampleIFBALoadingPatternExampleBoronConcentrationOverCycleLengthNormalizedPowerDensityDistributionNearBeginning-of-Life,UnroddedCore,HotFullPower,NoXenon,forExampleCycleNormalizedPowerDensityDistributionNearBeginning-of-Life,UnroddedCore,HotFullPower,EquilibriumXenon,forExampleCycleNormalizedPowerDensityDistributionNearBeginning-of-Life,GroupDatInsertionLimit,HotFullPower,EquilibriumXenon,forExampleCycleNormalizedPowerDensityDistributionNearBeginning-of-LifeUnroddedCore,HotFullPower.,EquilibriumXenon,forExampleCycleNormalizedPowerDensityDistributionNearEnd-of-Life,UnroddedCoreHotFullPower,EquilibriumXenon,forExampleCycleRodwisePowerDistributioninaTopicalAssembly(AssemblyG-12)NearBeginning-of-Life,HotFullPower,EquilibriumXenon,UnroddedCoreforExampleCycleRodwisePowerDistributioninaTypicalAssembly(AssemblyG-12)NearEnd-of-Life,HotFuelPower,EquilibriumXenon,UnroddedCoreforExampleCycleExampleAxialPowerShapesOccurringatBeginning-of-LifeExampleAxialPowerShapesOccurringat'iddle-of-LifeExampleAxialPowerShapesOccurringatEnd-of-Life3.3-17FlowChartforDeterminingSpikeModel3.3-183.3-193.3-203.3-21PredictedPowerSpikeDuetoSingleNonflattenedGapintheAdjacentFuelPowerSpikeFactorasaFunctionofAxialPositionMaximumFQxPowerVersusAxia)HeightDuringNormalOperationPeakLinearPowerDuringControlRodMalfunctionOverpowerTransientspQ'NIT23-vJuly1997 CHAPTER3LISTOFFIGURES(Cont'd)Ficire3.3-223.3-233.3-243.3-253.3-263.3-273.'3-283.3-293.3-303.3-313.3-323.3-333.3-343.3-353.3-363.3-373.3-383.4-13.4-23.4-33.4-43.4-53.4-6T~itlPeakLinearPowerDuringBoration/DilutionOverpowerTransientsComparisonBetweenCalculatedandMeasuredRelativeFuelAssemblyPowerDistribution,Cycle1ComparisonofCalculatedandMeasuredAxialShapeMeasuredValuesofFQforFullPowerRodConfigurationsExampleDopplerTemperatureCoefficientatBOLandEOLExampleDoppler-OnlyPowerCoefficient-BOL,EOLExampleDoppler-OnlyPowerDefect-BOL,EOLExampl'eModeratorTemperatureCoefficient-BOL,NoRodsExampleModeratorTemperatureCoefficient-EOLExampleModeratorTemperatureCoefficientasaFunctionofBoronConcentration-BOL,NoRodsCExampleHotFullPowerTemperatureCoefficientDuringaCyclefortheICriticalBoronConcentrationExampleTotalPowerCoefficient-BOL,EOLExampleTotalPowerDefect-BOL,EOLRodClusterControlAssemblyPatternAxialOffsetVersusTimePWRCorewitha12-FootHeightand121AssembliesXYXenonTestThermocoupleResponseQuadrantTiltDifferenceVersusTimeCalculatedandMeasuredDopplerDefectandCoefficientsatBOL,Two-LoopPlant,121Assemblies,12-FootCoreThermalConductivityofUO2(DataCorrectedto95%TheoreticalDensity)MeasuredVersusPredictedCriticalHeatFlux-WRB-2CorrelationTDCVersusReynoldsNumberfor26"GridSpacing,NormalizedRadialFlowandEnthalpyDistributionat4-FtElevationNormalizedRadialFlowandEnthalpyDistributionat8-FtElevationNormalizedRadialFlowandEnthalpyDistributionat12-FtElevation-CoreExitUNIT23-viJuly1997 CHAPTER3LISTOFFGURES(Cont'd)~Fiu~rT~ile3.4-73.4-83.4-93.4-103.4-113.4-123.4-133.4-14VoidFractionVersusThermodynamicQual'ityH-HSTAT/Hg-HSAT100PercentPowerShapesEvaluatedatConditionsRepresentativeofLossofFlowAllShapesEvaluatedwithFNH1.59PWRNaturalCirculationTest.ComparisonofaRepresentativeWTwo-LoopReactorIncoreThermocoupleMeasurementswithTHINC-IVPredictionsComparisonofaRepresentativeWThree-LoopReactorEncoreThermocoupleMeasurementswithTHINC-IVPredictionsHanfordSubchannelTemperatureData'omparisonwithTHINC-IVHanfordSubcriticalTemperatureDataComparisonwithTHINC-IVDistributionofIncoreInstrumentationUNIT2July1997 CHAPTER4TABL'EOFCONTENTS~Secion4.0~TileREACTORCOOLANTSYSTEMPacap,4.1-14.14.1.14.1.24.1.34.1.44.1.54.1.6DESIGNBASESPerformanceObjectivesGeneralDesignCriteriaDesignCharacteristicsCyclicLoadsServiceLifeCodesandClassifications4.1-14.1-14.1-24.1-94.1-124.1-23'4.1-244.24.2.14.2.24.2.3SYSTEMDESIGNANDOPERATIONGeneralDescriptionComponentsDescriptionPressure-RelievingDevices4.2-14.2-14.2-14.2-244.2.4ProtectionAgainstProliferationofDynamic4.2-25Effects4.2.54.2.64.2.74.2.84.2.94.2.104.2.114.2MaterialsofConstructionMaximumHeatingandCoolingRatesLeakageWaterChemistryReactorCoolantFlowMeasurementsLoosePartsDetectionReactorVesselWaterlevelReferences4.2-254.2-284.2-294.2-324.2-334'-344.2-344.2-364.34.3.14.3.24.3.34.3.4SYSTEMDESIGNEVALUATIONSafetyFactorsRelianceOnInterconnectedSystemsSystemIntegrityPressureRelief4.3-14.3-14.3-224.3-224.3-23July1997 CHAPTER4TABLEOFCONTENTS(Cont'd)~SecionTitlePacae4.3.54.3SystemIncidentPotentialReferences4.3-244.3-25SAFETYLIMITSANDCONDITIONSSystemHeatupandCooldownRates4.4-14.4-14.4.2ReactorVessel,PressurizedThermalShock4.4-24.4.34.4.44.4.5ReactorCoolantActivityLimitsMaximumPressureSystemMinimumOperatingConditions4.4-34.4-34.4-34.5.14.5TESTSANDINSPECTIONSReactorCoolantSystemInspectionReferences4.5-14.5-14.5-25July1997 CHAPTER4LISTOFTABLESTable4.1-14.1-24.1-34.1-44.1-54.1-6TitleSystemDesignandOperatingParametersReactorCoolantSystemDesignPressureSettingsReactorVesselDesignDataPressurizerandPressurizerReliefTankDesignDataSteamGeneratorDesignDataReactorCoolantPumpsDesignData4.1-7'eactorCoolantPipingDesignParameters4.1-8PressurizerValvesDesignParameters4.1-9ReactorCoolantSystemDesignPressureDrop4.1-104.1-114.1-124.1-134.2-14.2-24.2-3DesignThermalandLoadingCyclesSummaryofPlantOutageforYankee-Rowe'(1964to1969)ReactorCoolantSystemCodesComponentTransientLimitsMaterialsofConstructionoftheReactorCoolantSystemComponentsReactorCoolantWaterChemistrySpecificationSteamGeneratorWater(Steam-Side)ChemistrySpecificationfor100%FullPower4.3-14.3-24.3-34.3-4SummaryofEstimatedPrimaryPlusSecondaryStressIntensityforComponentsoftheReactorVessel(Unit1)SummaryofEstimatedCumulativeFatigueUsageFactorsforComponentsoftheReactorVessel(Unit1)Unit1DesignTubeSheetStressesDuetoMaximumSteamGeneratorTubeSheetPressureDifferential(2485psig)Unit1RatioofAllowableStressestoComputedStressesforaSteamGeneratorTubeSheetPressureDifferentialof2485psig4-iiiJuly1997 CHAPTER4LISTOFTABLESTaabl.4.3-54.3-64.3-74.3-851,500Sq.Ft.SteamGeneratorUsageFactors(IndividualTransients)PrimaryandSecondaryBoundaryComponents51,500Sq.Ft.SteamGeneratorUsageFactors(IndividualTransient)CenterofTubeSheetTubeSheetStressAnalysisResultsfor51,500Sq.Ft.SteamGeneratorsLimitAnalysisCalculationResultsTableofStrains,LimitPressures,andFatigueEvaluationsfor51,500Sq.Ft.SteamGenerators4.5-1ReactorCoolantSystemQualityControlProgram4-ivJuly1' CHAPTER4LISTOFFIGURESPismire4.2-14.2-1A4.2-2TitleReactorCoolantSystemFlowDiagramSheet1ReactorCoolantSystemFlowDiagramSheet2ReactorVesselSchematic4.2-2A'eactorVesselSchematic4.2"34.2-44.2-4A4.2-54.2-64.2-7'4.2-84.2-9PressurizerSeries51SteamGeneratorRepairedSteamGeneratorGeneralArrangement-Model51FSteamGeneratorReactorCoolantPumpReactorCoolantPumpFlywheelFlywheelCharacteristicsCurveReactorCoolantPumpPerformanceCharacteristicsRadiationInducedIncreaseinTransitionTemperatureforMn-MoSteelr4.3-14.3-24.3-34.3-44.3-54.3-64.3-7ReactorVesselStressAnalysis:AreasExaminedReactorVesselStressAnalysis:Details.-Upper.ReactorVesselStressAnalysis:Details-LowerPrimary-SecondaryBoundaryComponentsShellLocationsofStressInvestigationsPrimaryandSecondaryHydrostaticTestStressHistoryfortheCenterHoleLocationPlantHeatupandLoadingOperationalTransients(withSteady-StatePlateau)StressHistoryfor-theHotSideCenterHoleLocationLargeStepLoadDecreaseandLossofFlowStressHistoryfortheHotSideCenterHoleLocation4.5-1SurveillanceCapsuleElevationView4.5-2SurveillanceCapsulePlanView4.5-2a.RadiationSurveillanceCapsulePlanViewforUnit1following19954.5-3SpecimenGuidetoThermalShieldAttachment4-vJuly1997 CHAPTER5TABLEOFCONTENTS5.0ionCONTAINMENTSYSTEMPacap5.0-1,5.1.1.GENERAL"DESIGNCRITERIAGeneralCriteria5.25.2.15.2.25.2.35.2.4CONTAINMENTSTRUCTUREDesignCriteriaContainmentSystemStructureDesignVesselStructuralAnalysis(Static)Penetrations5.2-15.2-15.2-95.2-625.2-895.35.3.15.3.25.3.35.3.45.3ICECONDENSERDesignConsiderationsDescriptionofIceCondenserandComponentsIceCondenserOperatingConsiderationsDesignEvaluationReferences5.3-15.3-25.3-115.3-275.3-315.3-'345.4CONTAINMENTISOLATIONSYSTEM5.4.15.4.25.4.35.4.4DesignBasesContainmentIsolationSystemDesignDesignEvaluationTestandInspection5.4-15.4-15.4-75.4-85.4-85.55.5.15.5.25.5.3CONTAINMENTVENTILATIONSYSTEMGeneralDescriptionDesignBases.SystemDescription5.5-15.5-15.5-25.5-35-iJuly1997 CHAPTER5'ABLEOFCONTENTS(Cont'd)~Stion5.5.45.5.55.5.65.5.7TitleDesignEvaluationIncidentControl,MalfunctionAnalysis'estsandInspection~Pe5.5-135.5-155.5-165.5-175.65.6.25.6.35.6.4CONTAINMENTPENETRATIONANDWELDCHANNELPRESSURIZATIONSYSTEMDesignBasesSystemDesignandOperationTestDuringErectionDesignEvaluation5.6-15.6-15.6-15.6-25.6-25.75.7.15.7.25.7.3CONTAINMENTSTRUCTUREINSPECTIONANDTESTINGStructuralIntegrityInitialContainment(Pre-OperationalContainmentPeriodic(PostOperational)LeakageRateTest5.7-15.7-15.7-55.7-65-iiJuly1997 CHAPTER5LISTOFTABLES~TilePotentialMissilesConsideredinClassI(Seismic)StructureDesignWindVelocitiesandVelocityPressuresIndianaandMichiganElectricCompanyDonaldC.CookNuclearPlantSiteSoilResistivityMeasurementsDataTakenApril10&11,1969ElectricalPenetration-,PrototypeTestsTableofDampingValuesSummaryofAnalyses-JetForcesImpactingonInternalStructuresSummaryofDynamicMotionsDynamicRotationsIceCondenserDesignParameters5-iiiJuly19 CHAPTER5LISTOFFIGURES~Fi~r5.2-15.2-2.5.2-35.2-45.2-55.2.2-15.2.2-1A5.2.2-25.2.2-2A5.2.2-35.2.2-45.2.2-4A5.2.2-4B5.2.2-5.5.2.2-65.2.2-6A5.2.2-6B5.2.2-6C5.2.2-6D5.2.2-75.2.2-85.2.2-95.2.2-105.2.2<<10A5.2.2-115.2.2-11A5.2.2-12TitleLocationofResistivityTestATypicalElectricalPenetrationTypicalPipingPenetrationsTypicalFuelTransferTubePersonnelLocksTypicalArrangement&DetailsPlantArrangementSections"G-G","H-H","J-J"&"K-K"PlantArrangementSections"L-L&"M-M"PlantArrangementMezzanineFloorEl.609'-0"PlantArrangementReactorBuildingMainFloorElev.650'-0"SectionalElevationContainmentBuildingDomeandWallReinforcingContainmentBuildingTypicalWall'ectionContainmentBuildingRe-BarAnchorDetailsTypicalExpansionJointDetailOrthographicViewofPlantDynamicMovementsAuxiliaryandSwitchgearBu'ldingsDynamicMovementsContainmentandAuxiliaryBuildingsDynamicMovementsTurbineandSwitchgearBuildingsDynamicMovementsTurbine,AuxiliaryandContainmentBuildingsDynamicMovementsWDeflection(Inches)WDeflection(Inches)PipeRestraintSteamPipeWindFunnelingEffectWindFunnelingEffectContainmentDesignPressuresandTemperaturesContainmentDesignPressuresandTemperaturesSect.ElevationUnitNo.1&2ShowingReactorContainmentThermalGradientsUsedFortheDesigninSummerOperation5-ivJuly1997 CHAPTER5LISTOFFIGURES~~iciure5.2.2-12A5.2.2-135.2.2-145.2.2-155.2.2-165.2.2-175.2.2-185.2.2-195.2.2-205.2.2-215.2.2-225.2.2-235.2.2-245.2.2-255.2.2-265.2.2-275.2.2-285.2.2-295.2.2-305.2.2-315.2.2-325.2.2-335.2.2-345.2.2-355.2.2-365.2.2-375.2.2-38SUPE17A-LinerThermalAccidentSUPE17A-LinerThermalAccidentSUPE2A/GNSLOOM1&GNSLOOTOLinerSUPE2A/GNSLOOM1&GNSLOOTOLinerThermalAccidentThermalAccident~TileSect.ElevationUnitNo.1&2ShowingReactorContainmentThermalGradientsUsedfortheDesigninWinterOperationLegendforFigures5.2.2-14to5.2.2-50OrientationforComputerResultsFinish4M-(5/11/71)DeadWeight(M11&M22)(0&180)Finish4M-(5/11/71)DeadWeight(Nll&N22)'(0&180,)Finish4M-(5/11/71)DeadWeight(W.defi.&Q.13)(0&180)Finish4M-(5/11/71)DeadWeight(Sll&.S22)(0&180)Finish4T(5/11/71)InternalPressure(0.&180)Finish4M(5/11/71)InternalPressure(N11&N22)(0)Finish4M(5/11/71)InternalPressure(W&Q.13)(0)Finish4M(5/11/71)InternalPressure(S11&S22)(0)SUPE2AGNSLOONO&GNSLOOTO-OperatingBasisEarthquakeSUPE2AGNSLOOMO&GNSLOOTO,-OperatingBasisEarthquakeSUPE17A-OperatingBasisEarthquakeSUPE17A-OperatingBasisEarthquakeSUPE2A-GNSLOOMO&GNSLOOTO-OperatingBasisEarthquakeSUPE17A/GNSLOOT1&GNSLOOM3WindConditionSUPE17A/GNSLOOT1&GNSLOOM3WindCondit'onSUPE2A/GNSLOOTO&GNSLOOMO-WindConditionSUPE17A/GNSLOOT1&GNSLOOM3WindConditionSUPE17A/GNSLOOT1&GNSLOOM3WindConditionSUPE2A/GNSLOOTO&GNSLOOM1LinerThermalAccidentSUPE2A/GNSLOOM1&.GNSLOOTOLinerThermalAccidentve5-vJuly199 CHAPTER5'ISTOFFIGURES(Cont'd)FiciFre5.2.2-395.2.2-405.2.2-415.2.2-425.2.2-435.2.2-445.2.2-455'.2.2-465.2.2-475.2.2-485.2.2-495.2.2-505.2.2-515.2.2-51A5.2.2-51B5.2.2-51C5.2.2-51D5.2.2-51E5.2.2-525.2.2-52A5.2.2-535.2.2-545.2.2-54AT~ileSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermalSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermalSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermalSUPE17A-ConcreteThermal(Normal&Accident)SUPE17A-ConcreteThermal(Normal&Accident)SUPE2A/GNSLOOMO&GNSLOOTOConcreteThermal(Normal&Accident)MeridianSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermal(Normal&Accident)HoopSUPE2A/GNSLOOTO&GNSLOOMODesignBasisEarthquakeSUPE2A/GNSLOOTO&GNSLOOMODesignBasisEarthquakeSUPE17A-DesignBasisEarthquakeSUPE17A-DesignBasisEarthquakeSUPE2A/GNSLOOTO&GN3LOOMODesignBasisEarthquakeContainmentBuildingOperatingDeck-ReinforcingContainmentBuildingSteamGeneratorandPressurizerEnclosuresandCraneWallReinforcingContainmentBuildingSteamGeneratorandPressurizerEnclosuresTopSlabsandCraneWall-ReinforcingPlanMissileShieldCoveronTopofReactorCavityRemovableWallTypicalSectionAnchorageAssemblyofMissileShieldCoverRemovableBulkheadsSeparatingtheReactorCavityFromtheRefuelingCanalRemovableBulkheadsSeparatingtheReactorCavityFromtheRefuelingCanalStructuralBarrierTypicalSectionLoadingDistributionUnsymmetricalInternalPressureLoadingDiagramof30PSIofSteamGeneratorEnclosure5-viJuly1997 CHAPTER5LISTOFFGURES(Cont'd.)~F1~r5.2.2-54B5.2.2-555.2.2-55A5.2.2-565.2.2-56A5.2.2-575.2.2-57A5.2.2-585.2.2-58A5.2.2-595.2.2-59A5.2.2-'59B5.2.2-59C5.2.2-59D5.2.2-59E5.2.2-605.2.2-60A5.2.2-60B5.2.2-60C5.2.2-615.2.2-625.2.2-635.2.2-645.2.2-655.2.2-65A5.3-15.3-2.TitlLoadingDiagramof22.5PSIofPressurizerEnclosureTypicalCoverWithoutConcreteTypicalSectionofCoverJetLoadLocationsPlans&Sect's.JetLo'adLocationsSectionsDistributionofSoilReactionBeneathContainmentUnitsDistributionofSoilReactionBeneathContainmentUnitsGNSLOOM2/DeadLoad/Hypot.EarthquakeGNSLOOM6/DeadLoad/Hypot.EarthquakeLineratReactorPoolLinerJunctionWallandFDNSlabDevelopmentofCraneWall(InsideFace)ContainmentBuildingEmbedded-AnchorforSteamGeneratorsandCoolantPumpsIceCondenserSupportColumnAnchorageContainmentBuildingShearRecess&UpliftAnchorofCraneWallSealingArrangementforSlabEl.612'-0"andWallsSealingArrangementforSlabEl.612'-0"andLinerSealingArrangementPlantatElev's.612'-0",638'-0",652.7'2"Elevation"E-4"LookingNorthDynamicModel'RuptureAnalysisDataForContainmentPenetrationsContainmentBuildingTyp.Re-BarArrangementatPenetration5'-0"9PlateUnderBiaxialLoadContainmentBuildingEquipmentAccessOpeningContainmentBuildingPersonnelAccessOpeningGeneralArrangementofIceCondenserIceCondenserRefrigeration(Sh1of2)5-viiJuly1! CHAPTER5LISTOFFIGURES(Cont'd.)~Fiuse5.3-2A5.3-35.3-4TitleIceCondenserRefrigeration(Sh2of2)IceCondenserInsulatedDuctPanelsPlanView-TypicalIceCondenserDoorFrameSections5.5-15.5-25.5-35.6-1ContainmentVentilationUnitsNos.1or2(Sh1of2)1ContainmentVentilationUnitNos~1or2(Sh2of2),FlowPathoftheContainmentAirRecirculation/HydrogenSkimmerSystemUnitsNos.1or2ContainmentPenetration6Weld'ChannelPressurizationUnitsNos,1or25.7-15.7-2ComputedStrainsComputedDisplacement5-viiiJuly1997 CHAPTER6TABLEOFCONTENTSit2nTitle~PaaENGINEEREDSAFETYFEATURES6.1-16.16.1.1CRITERIAEngineeredSafetyFeaturesCriteria6.1-36.1-36~26.2.16.2.26.2.36:2.46.2.5EMERGENCYCORECOOLINGSYSTEMSGeneralDesignCriteriaSystemDesignandOperationDesignEvaluationSafetyLimitsandConditionsTestsandInspections6.2-16.2-1.6.2-46.2-306.2-356.2-366.3CONTAINMENTSPRAYSYSTEMS6.3-16.3.16.3.26.3.3DesignBasesSystemDesignDesignEvaluation6.3-16'.3-46;3-11ree6-iJuly199 CHAPTER6LISTOFTABLESTarsal,6.1-1Titti.NetPositiveSuctionHeadsforPost-DBAOperationalPumps6.2-16.2-26.2-36.2-46.2-56.2-66.2-76.2-86.2-9SafetyInjectionSystemCodeRequirementsAccumulatorDesignParametersBoronInjectionTankDesignParametersRefuelingWaterStorageTankDesignParametersDesignParameters-ECCSPumpsSingleActiveFailureAnalysisEmergencyCoreCoolingSystemSinglePassiveFailureAnalysis-EmergencyCoreCoolingSystem,RecirculationPhaseAccumu1ator'nleakageRecirculationLoopLeakage6.3-16.3-26.3-36.3-4,ContainmentSprayPumpDesignParametersContainmentSprayHeatExchangersDesignParametersSprayAdditiveTankDesignParametersContainmentSpray.SystemMalfunctionAnalysis6-iiJuly1997 CHAPTER6LISTOFFIGURES~Fiure6.2-16.2-1A6.2-26.2-3~Tit1'FlowDiagramEmergencyCoreCoolingSystem(SIS)UnitNo.1or2EmergencyCoreCoolingSystem(RHR)UnitsNo.1or2RangeofCoreProtectionProvidedbyVariousComponentsoftheEmergencyCoreCoolingSystemEquivalentBreakDiameter6.3-1ContainmentSprayUnitNo.'1or26-iiiJuly19 CHAPTER7TABLEOFCONTENTSSection~TileINSTRUMENTATIONANDCONTROLParcae7.1-17.1GENERALDESIGNCRITERIAInstrumentationandControlSystemsMissileProtection7.1-17.1-17.1-27.27.2.17.2.27.2.3PROTECTIVESYSTEMSProtectiveSystemsSystemDesignSystemEvaluation7.2-17.2-17.2-137.2-427.37.3.17.3.27.3.3CONTROLSYSTEMSDesignBasisSystemDesignSystemDesignEvaluation7.3-17.3-17.3-37.3-87.4.17.4.2NUCLEARINSTRUMENTATIONGeneralDesignBasesCriteriaFissionProcessMonitorsandControlsNuclearInstrumentationSystemsDesignandEvaluation7.4-17.4-17.4-17.4-27.57.5.17.5.27.5.3ENGINEEREDSAFETYFEATURESINSTRUMENTATIONDesignBasesSystemDesignSystemEvaluation7.5-17.5-17.5-47.5-167.67.6.17.6.27.6.3IN-COREINSTRUMENTATIONDesignBasisSystemDesignSystemEvaluation7.6-17.6-17.6-17.6-47-iJuly1997 CHAPTER7TABLEOFCONTENTS(Cont'd)Sect~inTulle7.77.7.17.7.27.7.37.7.47.7.57.7.67.7.77.7,.87.7.97.7.107.87OPERATINGCONTROLSTATIONSGeneralDesignCriteriaGeneral.LayoutDesignBasisControlRoomLightingPlantCommunicationsFirePreventionDesignControlRoomAvailabilityHotShutdownControlAuxiliaryControlStationsLocalShutdownandCooldownStationPostAccidentMonitoringInstrumentationReferences7.7-17.7-17.7-27.7-27.7-57.7-67.7-77.7-87.7-87.7-107.7-107.8-17.7-117-iiJuly1997 ~CHAPTER7LISTOFTABLESTable7.2-17.2-27.2-37.2-47.2-57.2-67.2-77.5-17.5-27.8-17.8-27.8-37.8-47.8-5~TileListofReactorTripsandActuationMeansof:EngineeredSafetyFeatures,ContainmentandSteamLineIsolationandAuxiliaryFeedwaterInterlockCircuits'odStopsSymbolsandAbbreviationsProcessControlBlockDiagramDrawing108D087IndexReactorTripSystemInstrumentationResponseTimesEngineeredSafetyFeaturesResponseTimesProcessInstrumentationForRPSandESFActuationEngineeredSafetyFeaturesEquipmentExposedtoHarshEnvironmentType"A"VariablesProvidedtheOperatorforManualFunctionsDuringandFollowinganAccidentType"B"VariablesProvidedtheOperatorforManualFunctionsDuringandFollowinganAccidentType"C"VariablesProvidedtheOperatorforManualFunctionsDuringandFollowinganAccidentType"D"VariablesProvidedtheOperatorforManualFunctionsDuringandFollowinganAccidentType"E"VariablesProvidedtheOperatorforManualFunctionsDuringandFollowinganAccidentJuly1997 CHAPTER7.LISTOFFIGURES~Fi~r7.2-27.2-37.2-47.2-57.2-67.2-77.2-87.2-9ReactorProtectionSystemsControlRodBankInsertionMonitorRodDeviationComparatorPressurizerPressureProtectionSystemPressurizerLevelProtectionPressurizerSealedReferenceLegLevelSystemSteamGeneratorLevelProtectionSetpointReductionFunctionForOverpowerandOvertemperaturehTTrips7.3-1SimplifiedBlockDiagramofReactorControlSystem7.5-17,5-27.5-3ContainmentPressureProtectionEnvironmentalConditionsInsideContainmentLoss-of-CoolantAccidentEnvironmentalConditionsInsideContainmentMainSteamLineBreak7.6-1'.6-27.6-3InCoreInstrumentationDetailsTypicalArrangementofMovableMiniatureNeutronFluxDetectorSystem(ElevationView)SchematicArrangementofInCoreFluxDetectors(PlanView)7-ivJuly199 CHAPTER8TABLEOFCONTENTS~eceionELECTRICALSYSTEMS~TilePacae8.1-18.18.1.18.1.2DESIGNBASESGeneralDesignCriteriaFunctionalCriteria8.1-28.1-28.1-48.2NETWORKINTERCONNECTIONS'.2-18.38.3.18.3.28.3.38.3.48.3.58.3.6STATIONSERVICESYSTEMS4160VoltSystemLowVoltagePowerSystems120VoltACVitalInstrumentBusSystem250VoltDCSystem250VoltDCBatteryNSystemLightingSystem8.3-18.3-18.3-28.3-48.3-58.3-78.3-118.4EMERGENCYPOWERSYSTEM8.4-18.5DESIGNEVALUATION8.5-18.6TESTSANDINSPECTION8.6-18-iJuly1997 CHAPTER8LISTOFFIGURES8.1-1b8.1-2a8.1-2b8.2-18.3-18.3-28.3-38.4-1~TileAux.OneLineDiagramMainAuxiliaryOne-LineDiagramBus'AB'ngineeredSafetySystemMainAuxiliaryOne-Line,DiagramBus'CD'ngineeredSafetySystemCookNuclearPlantSimplifiedOffsitePowerSourcesOne-LineCookNuclearPlantSimplifiedOffsitePowerSourcesOne-LineSwitchingArrangementsDonaldC.CookNuclearPlantandNeighboringStationsVitalInstrumentBusDistribu'tionSystem250VDCDistributionD.C.CookNuclearPlantTurbineDrivenAuxiliaryFeedwater,SystemOne-LineEmergencyDiesel'eneratorFuelOilSupply8-iiJuly1997 CHAPTER9TABLEOFCONTENTS~Secion'.0~TileAUXILIARYANDEMERGENCYSYSTEMS~Pae9.1-19.19.1.39.1.2GENERALDESIGNCRITERIAAuxiliaryandEmergencySystemsCriteriaRelatedCriteria9.1-29.1-29.1-39.29.2.19.2.29.2.39.2CHEMICALANDVOLUMECONTROLSYSTEMDesignBasesSystemDesignandOperationSystemDesignEvaluationReferences9.2-19.2-19.2-49.2-319.2-389.39.3.19.3.29.3.39.3.49.3.59.3.6RESIDUALHEATREMOVALSYSTEMDesignBases'ystemDesignandOperat'ionSystemDesignEvaluationMalfunctionAnalysisTestsandInspectionsSafetyLimitsandConditionst9.3-19.3-19.3-29.3-69.3-119.3-119.3-129.49.4.19.4.29.4.3SPENTFUELPOOLCOOLINGSYSTEMDesignBasesSystemDesignandOperationDesignEvaluationTestsandInspections9.4-19.4-19.4-29.4-69.4-79.59.5.19.5.29.5.39.5.49.5.5COMPONENTCOOLINGSYSTEMDesignBasesSystemDesignandOperation.ComponentsSystemEvaluationMinimumOperatingConditions9-i9.5-19.5-3.9.5-'19.5-49.5-79.5-9July1997 CHAPTER9TABLEOFCONTENTS(Cont'd)~e~in9.5.6T~ileTestsandInspections9.5-99.69.6.19.6.29.6.3SAMPLiNGSYSTEMSDesignBasisSystemDesignSystemEvaluation9.6-19.6-19.6-29.6-79.79.7.19.7.29.7.39.7.4REACTORCOMPONENTSANDFUELHANDLINGSYSTEMDesignBasesSystemDesignandOperationDesignEvaluationTestsandInspections9.7-19.7-2a9.7-49.7-319.7-329.8FACILITYSERVICESYSTEMS9.8.1FireProtectionSystem9.8.2"CompressedAirSystem9.8.3ServiceWaterSystems9.8-2.9.8-19.8-219.8-249.99.9.19.9.29.9.39.9.4AUXILIARYBUILDINGVENTILATIONSYSTEMGeneralDescriptionDesignBasisSystemDescriptionsDesignEvaluation9.9-19.9-19.9-19.9-29.9-89.109.10.19.10.29.10.39.10.49.10.59.10.6CONTROLROOMVENTILATIONSYSTEMGeneralDescriptionDesignBasisSystemOperationDesignEvaluationIncidentControlTestsandInspections9.10-19.10-19.10-19.10-29.10-49.10-49.10-49-iiJuly1997 CHAPTER9LISTOFTABLESTable9.2-19.2-29.2-39.2-4TitleChemicalandVolumeControlSystemCodeRequirementsChemicalandVolumeControlSystemDesignParametersPrincipalComponentDataSummary'FailureAnalysisoftheChemicalandVolumeControlSystemA9.3-19.3-29.3-3ResidualHeatRemovalSystemCedeRequirementsResidualHeatRemovalSystemDesignParametersResidualHeatRemovalMalfunctionAnalys'is9.4-19.4-29.4-3SpentFuelPoolCoolingSystemCodeRequirementsSpentFuelPool.CoolingSystemComponentDesignDataSpentFuelPoolCoolingSystemMalfunctionAnalysis9.5-19.5-29.5-39.5-4ComponentCoolingSystemCodeRequirements,ComponentCoolingSystemMinimumFlowRequirementsPerTrainComponentCoolingSystemComponentDesignDataComponentCooling'SystemMalfunctionAnalysis9.7-19.7-29.7--39.7-49.7-59.7-69.7-7ModuleDataCommonModuleData1100AlloyAluminumPhysicalandMechanicalPropertiesChemicalComposition-Aluminum(1100Alloy)BoronCarbideSummaryofCriticalityAnalyses-NormalStorageConfigurationSummaryofCriticalityAnalyses-.InterimCheckerboardLoading9.8-19.8-29.8-39.8-49.8-59.8-6EssentialServiceWaterSystemMalfunctionAnalysis9-iiiJuly1997FirePumpStartingSequencesCompressedAirSystemDescriptiveInformationServiceWaterSystemsComponentsDesignDataNon-EssentialServiceWaterRequirementsEssential'erviceWaterSystemMinimumFlowRequirementsPer,Train Fic[urp~9.2-19.2-29.2-39.2-49.2-59.2-6CHAPTER9LISTOFFIGURESCVCS-ReactorLetdownandChargingCVCS-ReactorCoolantDemineralizationCVCS-BoronMake-upCVCS-BoronHold-upFlowDiagramCVCS-BoronRecoveryCVCS-MonitorTanks9.3-1EmergencyCoreCooling(RHR)9.4-1SpentFuelPitCoolingandClean-up9.5-1ComponentCooling9.6-19.6-2SamplingPost-AccidentSampling9.7-19.7-29.7-39.7-49.7-5TypicalFuelTransferSystemSpentFuelPoolLayoutNormalStoragePattern(MixedThreeZone)InterimStoragePattern(Checkerboard)AcceptableBurnupDomaininRegions2and39.8-19.8-29.8-39.8-49.8-59.8-69.8-7FireProtectionWaterFireProtectionC02CompressedAirSystemNon-EssentialServiceWaterUnitNon-EssentialServiceWaterUnit2Non-EssentialServiceWaterUnitslor2.EssentialServiceWater9.9-19.9-29.10-1AuxiliaryBuildingVentilationSheet1AuxiliaryBuildingVentilationSheet2ControlRoomVentilation9-ivJuly1997 CHAPTER10TABLEOFCONTENTSSection10TitleSTEAMANDPOWERCONVERSIONSYSTEMPacae10.1-110.1GENERALDESCRIPTIONS10.1-110.210.2.110.2.210.2.310.2.4MAINSTEAMSYSTEMDesignBasesDescriptionPerformanceAnalysisTestingandInspection10.2-110.2-110.2-110.2-610.2-610.310.3.110.3.210.3.310.3.410.3.5TURB1NEGENERATORDesignBasesEquipmentDescriptionTurbineControlsLossofExternalElectricalLoadTestandInspection10.3-110.3-110.3-110.3-410.3-510'.3-610.410.4.110.4.210.4.310.4.4MAINCONDENSERSDesignBasisDescriptionDesignEvaluationTestsandInspections10.4-110.4-110.4-110.4-310.4-310.510.5.110.5.2CONDENSATEANDFEEDWATERSYSTEMMainCondensateandFeedwaterSystem,AuxiliaryFeedwaterSystem10.5-110.5-110.5-410.610.6.110.6.2CIRCULATINGWATERSYSTEMDesignBasisDescription10.6-110.6-110.6-110-iJuly1997 CHAPTER10TABLEOFCONTENTS(Cont'd)10.6.310.6.410.6.5DesignEvaluationTestsandInspectionsDesignParameters10.6-410.6-410.6-410.710.7.110.7.210.7.310.7.4TURBINEAUXILIARYCOOLINGSYSTEMDesignBasisDescriptionDesignEvaluationTestsandInspection10.7-110.7-110.7-110.7-210.7-210.8SERVICEWATERSYSTEMS10.8-110.9MAKE-UPWATERANDPRIMARYWATERSYSTEMS10.9-110.10CHEMICALFEEDSUB-SYSTEM10.10-110.11.3TestingandInspection10'.llSECONDARYVENTANDDRAINSYSTEM10.11.1DesignBasis10.11.2Description10.11-110.11-110.11-110.11-310-iiJuly1997 CHAPTER10LISTOFTABLESTable10.5-1AuxiliaryFeedpumpDesignParameters10.6-1CirculatingNaterPumpDesignParameters10-iiiJuly1997 CHAPTER10LISTOFFIGURESFicire10.2-110.2-1A10.2-1B10.2-1CMainSteamUnitNo.1(Sheet1)MainSteamUnitNo.l(Sheet2)MainSteamUnitNo.2(Sheet1)MainSteamUnitNo.2(Sheet2)10.3-110.3-1ABleedSteamUnitNo.1BleedSteamUnitNo.210.5-110.5-210.5-2A10.5-310.5-3A10.5-410.5-4A10.5-510.5-5AFeedwaterUnitsNo.1or2CondensateUnitNo.1Sheet1CondensateUnitNo.1Sheet2CondensateUnitNo.2Sheet1CondensateUnitNo.2Sheet2'eaterDrainsandVentsUnitNo.1Sheet1HeaterDrainsandVentsUnitNo.2Sheet2HeaterDrainsandVentsUnitNo.2Sheet1HeaterDrainSandVentsUnitNo.2Sheet210.6-1CirculatingWaterSystemUnitsNo.1and210-ivJuly1997 CHAPTER11TABLEOFCONTENTS~etionTitle~PeWASTEDISPOSALANDRADIATIONPROTECTIONSYSTEM11.1-111.1.111.1.211.1.3WASTEDISPOSALSYSTEMDesignBasesGeneralDescriptionandOperationDesignEvaluation11.1-)11.1-111.1-211.1-1511.211.2.1PLANTRADIATION.SHIELDINGDesignBasis11.2-111.2-111.311.3.111.3.211.3.311.3.411.3.5RADIATIONMONITORINGSYSTEMGeneralDesignCriteriaDesignBasis=GeneralDescriptionandOperationReactorCoolantActivityMonitoringImprovedIn-PlantIodineInstrumentationUnderAccidentConditions11.3-111.3-111.3-311.3-711.3-1511.3-1711.411.4.111.4.211.4.311.4.411.4.511.4.611.4.711.4.811.4.911.4.10PLANTHEALTHPHYSICSPROGRAMFacilitiesRadiationControlAccessControlContaminationControlPersonnelContaminationControlAirborneContaminationControlExternalRadiationDoseDeterminationInternalRadiationDoseDeterminationRadiationProtection/RadiochemistryInstrumentationTestsandInspections11.4-111.4-111.4-411.4-411.4-411.4-511.4-611.4-711.4'-811.4-811.4-10July1997 CHAPTER11TABLEOFCONTENTS(Cont'd)S~ecttc11.511.5.111.5.2TitleSTEAMGENERATORBLOWDOWNTREATMENTSYSTEMDesignBasisSystemDesignandOperation~Pa11.5-111.5-111.5-211.611.6.111.6.2116.311.6.4RADIOACTIVEMATERIALSSAFETYMaterialsSafetyProgramPersonnelandProcedures.RequiredMaterialsRadioactiveWasteStorage1'1.6'-1)1.6-111.6-311.6-411.6-4)1-iiJuly1997 CHAPTER11LISTOFTABLES~Tale'itle11.1-111.1-2WasteDisposalSystemPerformanceDataWasteDisposalComponentsCodeRequirements11.1-3ComponentSummaryData11.1-411.1-511.1-6EstimatedLiquidDischargetoWasteDisposalSystemEstimatedLiquidReleasebyIsotope-TwoUnitsEstimatedAnnualGaseousReleasebyIsotope11.2-111.2-211.2-311.2-411.2-511.2-611.2-711.2-811.3-111.3-211.3-311.5-111.5-2PlantZonesClassificationsPrimaryShieldingDesignParameters,NeutronandGammaFluxesSecondaryShieldDesignParametersAccidentShieldDesignParametersOriginalRefuelingShieldDesignParametersPrincipalAuxiliaryShieldingInstantaneousRadiationSourcesReleasedTotheContainmentFollowingTID-14844AccidentRelease-Mev/SecGapActivityCirculatinginResidualHeatRemovalLoop,Mevfcc-SecRadiationMonitoringSystemChannelSensitivitiesandDetectingMedium,ReactorCoolantFissionandCorrosionProductActivitiesDuringSteadyStateOperationandPlantShutdownOperation4RadiationMonitoringSystemChannelsDesignandMeasuredEquilibriumReactorCoolantFissionProductActivitiesforOperatingPWR'sandCalculatedValuesfortheD.C.CookStationsBlowdownTreatmentSystemComponents11-iiiJuly1997 CHAPTER11LISTOFFIGURES~F1u~r.11.1-111.1-2TitleVentsandDrainsWasteDisposalSystem-LiquidsandSolidsSheetlof3Units1and211.1-2aWasteDisposalSystem-11.1-2bWasteDisposalSystem-LiquidsandSolidsSheet2of3LiquidsandSolidsSheet3of311.1-311.1-4WasteDisposalSystem-GaseousFlowDiagramWasteDisposalSystem-GasSupplyandAnalysis11.2-1IntegratedExposureasaFunctionofDistancefromContainmentBuildingl11.5-1SteamGeneratorBlowdownSystemUnit1or211.6-111.6-2a11.6-2b11.6-2cOrganizationandFunctionalStructureFuelAssemblyF)owChartMovableMiniatureNeutronFluxDetectorFlowChartFissionChamberDetectorFlowChart11-ivJuly1997 CHAPTER12TABLEOFCONTENTSSection12TitleCONDUCTOFOPERATIONSPacap.12.1-112.1ORGANIZATIONANDRESPONSIBILITYt12.1-112.2LICENSEDOPERATORREQUALIFICATIONPROGRAM12.2-112.2.1CONTROLOFHEAVYLOADS12.2-112.3EMERGENCYPLAN12.3-112.4RECORDS12.4-112.5REVIEWANDAUDITOFOPERATIONS12.5-112.6NUCLEARDESIGNANDSUPPORTCAPABILITY12.6-112.7WRITTENPROCEDURES12.7-112-iJuly1997 CHAPTER13TABLEOFCONTENTSQi~ctionPacap,13INITIALTESTSANDOPERATION13.1-113.1TESTS.PRIORTOINITIALREACTORFUELING13.1-113.2,13.2.113.2.2FINALSTATIONPREPARATIONInitialCoreLoadingPostloadingTests13.2-113.2-313.2-613.313-.3.113.3.213.3.313.3.4INITIALTESTINGINTHEOPERATINGREACTORInitialCriticalityLowPowerTestingPowerLevelEscalationPostStartupSurveillanceandTestingRequirements13.3-113.3-113.3-213.3-213.3-313.413.4.113.4.2OPERATINGRESTRICTIONSSafetyPrecautionsInitialOperationResponsibilities13.4-113.4-113.4-,113-iJuly1997 CHAPTER13LISTOFTABLES~Tabl13.1"1ObjectivesofSystemTestsPri'ortoInitialReactorFueling13.2-1ObjectivesofSystemTestsPriortoInitialCriticality13.3-3.PostCriticalityTestingSummary13-iiJuly1997 CHAPTER14TABLEOFCONTENTS~Sction.itlePacae14.0SAFETYANALYSIS14.0-114.114.114.1.114.1.214.1.214.1.314.1.314.1.414.1.514.1.514.1.614.1.614.1.714.1.814.1.914.1.1014.1.1114.1.1214.1.1314.1.13COREANDCOOLANTBOUNDARYPROTECTIONANALYSISReferencesUncontrolledRCCAWithdrawalFromaSubcriticalConditionUncontrolledRCCAWithdrawalatPowerReferencesRodClusterControlAssemblyMisalignmentReferencesRCCADropChemicalVolumeandControlSystemMalfunctionReferencesLossofReactorCoolantFlow(IncludingLockedRotorAnalysis)ReferencesStartupofanInactiveReactorCoolantLoopILossofExternalElectricalLoadILossofNormalFeedwaterFlowExcessiveHeatRemovalDuetoFeedwaterSystemMalfunctionsExcessiveLoadIncreaseIncidentLossofAllA.C.PowertothePlantAuxiliariesTurbine-GeneratorSafetyAnalysisReferences14.1-114.1-1314.1.1-114.1.2-114.1.2-614.1.3-114.1.3-714.1.4-114.1.5-114.1.5-314.1.6-114.1.6-814.1.7-114.1.8-114.1.9-114.1.10-114.1.11-114.1.12-114.1.13-114.1.13-1614.214.2.114.2.114.2.2Unit1STANDBYSAFEGUARDSANALYSISFuelHandlingAccidentReferencesAccidentalReleaseofRadioactiveLiquids14-i14.2.1-114.2.1-114.2.1-1414.2.2-1July1997 CHAPTER14TABLE,OFCONTENTS~SecinTitlePacae14.2.314.2.414.2.514.2.514.2.6,14.2.614.2.714.2.814.2.8AccidentalWasteGasesReleaseSteamGeneratorTubeRuptureRuptureofaSteamPipeReferencesRuptureofaControlRodDriveMechanismHousing(RCCAEjection)ReferencesSecondarySystemAccidentsDoseConsequencesMajorRuptureofaMainFeedwaterPipeReferences14.2.3-114.2.4-114.2.5-114.2.5-914.2.6-114.2.6-1514.2.7"114.2.8-114.2.8-714.3.114.3.114.3.214.3.214.3.314.3.314.3.414.3.414.3.514..3.514.3.614.3.6LARGEBREAKLOCAANALYSISReferencesLossofReactorCoolantfromSmallRupturedPipesorfromCracksinLargePipeswhichActuatestheEmergencyCoreCoolingSystemReferencesCoreandInternalsIntegrityAnalysisReferencesContainmentIntegrityAnalysisReferencesEnvironmentalConsequencesofaLossofCoolantAccidentReferencesHydrogenintheContainmentAfteraLossofCoolantAccidentReferences14.3.1-114.3.1-1214.3.2-114.3.2-7e14.3.3-114.3.3-1014.3.4-114.3.4-8314.3.5-114.3.5-3014.3.6-114.3.6-28Unit1July1997 CHAPTER14TABLEOFCONTENTSs~cionTiittl14.3.714.3.8LongTermCoolingNitrogenBlanketing14.3.7-114.3.8-114.414.4.1'4.4.214.4.314.4.414.4.514.4.614.4.614.4.714.4.814.4.914.4.1014.4.1114.4.11ENVIRONMENTALQUALIFICATIONANALYSISBasisofDiscussionPostulatedPipeFailureAnalysisOutsideContainmentAnalysisofEmergencyConditionsStressCalculationsDescriptionofPipeWhipAnalysisCompartmentPressuresandTemperaturesReferencesDescriptionofJetImpingementLoadAnalysisContainmentIntegrityPlantModificationsEnvironmentElectricalEquipmentEnvironmentalQualificationReferences14.4.1-114.4.1-114.4.2-114.4.3-114.4.4-114.4.5-114.4.6-114.4.6-714.4.7-114.4.8-114.4.9-114.4.10-114.4.11-114.4.11-7Appendix14ARadiationSourcesA.lA.2A.3A.4A.5ActivitiesinthecoreActivitiesintheFuelRodGapFuelHandlingSourcesReactorCoolantFissionProductActivityRe'actorCoolantTritiumSourcesGeneralDiscussionVolumeControlTankActivities14A-114A-114A-414A-714A-1514A-1514A-21Unit1July1997 /~~~cionTitleCHAPTER14TABLEOFCONTENTSPacap.A.7A.SA.9GasDecayTankActivityActivityinRecirculatedSumpWaterReferences14A-2114A<<2314A-26Unit114-ivJuly1997 CHAPTER14LISTOFTABLES~Tile14.1-114.1-214.1-314.1-414.1-5.14.1-614.1-714.1-814.1.10-114.1.10-214.1.10-314.1.10-414.1.13-114.2.1-114.2.1-214.2.1-414.2.3-114.2.3-214.2.5-114.2.5-2Unit1DesignPowerCapabilityParametersUsedinNon-LOCASafetyAnalysesReactorTripPointsandTimeDelaystoTripAssumedinSafetyAnalysesfpSummaryofInitialConditionsandComputerCodesUsedInstrumentationDriftandCalorimetricErrorsPowerRangeNeutronFluxDonaldC.CookNuclearPlantUnit1SGTPProgramInputAssumptionsforRCSVolumesDonaldC.CookNuclearPlantUnit1SGTPProgramInputAssumptionsforSteamGeneratorSecondaryMassDonaldC.CookNuclearPlantUnit1SGTPProgramInputAssumptionsforReactorCoolantSystemPressureDropECCSInjectiontoRecirculationSwitchoverModelfortheContainmne'esponseAnalysisTimeafterRWSTLowLevelAlarmTimeSequenceofEvents(ManualRodControl)TimeSequenceofEvents(AutomaticRodControl)TimeSequenceofEvents(ManualRodControl)TimeSequenceofEvents(AutomaticRodControl)PotentialTurbine-GeneratorMissilesFuelHandlingAccidentAuxiliaryBuildingInventoriesandConstantsofSignificantFissionProductRadionuclidesDataandAssumptionsfortheEvaluationoftheFuelHandlingAccidentInTheAuxiliaryBuildingActivitiesInHighestRatedDischargedAssembly(CuriesAtTimeOfReactorShutdown)FuelHandlingAccidentinContainmentVolumeControlTankandLetdownActivitiesGasDecayTankEquilibriumActivityLimitingSteamlineBreakStatepointDoubleEndedRuptureInsideContainmentWithOffsitePowerAvailableTimeSequenceofEventsDoubleEndedRuptureInsideContainmentwittOffsitePowerAvailableUnit114-vJuly1997 CHAPTER14LISTOFTABLES~Tab114.2.6-114.2.7-1ParametersUsedinAnalysisoftheRodClusterControlAssemblyEjectionAccidentLossofA.C.PowertothePlantAuxiliariesSteamRelease14.2.7-2SteamLineBreak-SteamRelease14.2.7-3SteamGeneratorTubeRupture-SteamRelease14.2.8-1'imeSequence'ofEvents14.3.1-1,LargeBreakLOCA-Results14.3.1-214.3.1-314.3.1,-414.3.1-514.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3.2-13PlantInputParametersUsedinLargeBreakLOCAAnalysisLargeBreakContainmentData(IceCondenserContainment)MassandEnergyReleaseRatesMaximumSINitrogenMassandEnergyReleaseRates.SafetyInjectionFlowRatePlantInputParametersUsedinSmallBreakLOCAAnalysisSmall-BreakLossofCoolantAccidentCalculationTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculationTimeSequenceofEventsforCo'nditionIIIEventsSmall-BreakLossofCoolantAccident10CFR50.46AssessmentResultsPeakCladTemperaturewithHHSICross-TieValvesClosedTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculationsTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculationsTimeSequenceofEventsforConditionIIIEvents3%MainSteamSafetyValveSetpointToleranceAnalysisfor3588MNTwithHHSICross-tieValvesOpenSmall-BreakLossofCoolantAccidentCalculations3%MainSteamSafetyValveSetpointToleranceAnalysisfor3588MNTNithHHSICross-tieValvesOpenUnit114-viJuly1997 CHAPTER14LISTOFTABLESTal14.3.2-1414.3.2-1514.3.3-114.3.4-114.3.4-214.3.4-4TimeSequenceofEventsforConditionIIIEvents30%SteamGeneratorTubePluggingAnalysisat3250MWTWithHHSICross-TieValvesClosedSmall-BreakLossof'CoolantAccidentCalculations30%SteamGeneratorTubePluggingAnalysisat3250MWTwithHHSICross-TieValvesClosedSelectedInputParametersUsedfortheCookNuclearPlantUnits1and2ReducedTemperatureandPressureandReratingProgramLOCAForcesAnalysisDonaldC.CookIceCondenserAnalysisParametersDeckLeakageSensitivityStructuralHeatSinkTable14.3.4-514.3.4-614.3.4-7EnergyAccountinginMillionsofBTUMaterialPropertyDataUnit1/Unit2SteamlineBreakMass/EnergyReleasesInside102>PowerDER(4.6FT')BreakFailure-MSIVContainme-14.3.4-814.3.4-914.3.4-.1014.3.4-1114.3.4-1214.3.4-13-14.3.4"1414.3.4-1514.3.4-1614.3.4-1714.3.4-1814.3.4-19"'4.3.4-20Unit1/Unit2SteamlineBreakMass/EnergyReleasesInsideContainment30%Power0.942FT~SplitBreakFailure-MSIVDouble-EndedSteamLineBreakParametersSteamLineRupturesLowerCompartmentTemperatureTransientCalculationResults0.35FT'plit30%Power0.6FT~Split30%PowerKeyParametersAffectingSplitSteamLineBreaksTMDInputTMDFlowpathInputDataCalculatedMaximumPeakPressuresinLowerCompartmentElementsAssumingUnaugmentedFlowCalculatedMaximumPeakPressuresInTheIceCondenserCompartmentAssumingUnaugmentedFlowCalculatedMaximumDifferentialPressuresAcrosstheOperatingDeckofLowerCraneWallAssumingUnaugmentedFlowCalculatedMaximumDifferentialPressuresAcrosstheUpperCraneWaAssumingUnaugmentedFlowUnit114-viiJuly1997 CHAPTER14LISTOFTABLESTableTitle14.3.4-2114.3.4-2214.3.4-2314.3.4-2414.3.4-2514.3.4-2614.3.4-2714.3.4-2814.3.4-2914.3.4-3014.3;4-3114.3.4-3314.3.4-3514.3.4-3714.3.4-3914.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4-4514.3.4-46SensitivityStudiesforCookNuclearPlantPeakDifferentialPressure(PSI)BreakatOutletNozzlePeakDifferentialPressure(PSI)BreakatSideofVesselPressurizerEnclosureNodalizationVolumesPressurizerEnclosureNodalizationHydraulicDataDifferentialPressureSummary-BreakMassFlowandEnergyFlowComparisonofPeakDifferentialPressuresFanRoom-BackflowContributionCompartmentVolumeandAreaDouble-EndedPumpSuctionBlowdownMassandEnergyReleaseDouble-EndedPumpSuctionMinimumSIKefloodMassandEnergyReleasesDouble-EndedPumpSuctionMinimumSZPrincipalParametersDuringRefloodIDouble-EndedPumpSuctionMinimumSIPostRefloodMassandEnergyReleasesDouble-EndedPumpSuctionMinimumSIDouble-EndedPumpSuetionMinimumSIParametersUsedinBoundingSteamlineBreakMass/EnergyReleasesforUnit1andUnit2SteamLineRuptureinSteamGeneratorDoghouse1973WaltzMillPreliminaryTestConditionsPeakPressures/DifferentialsEffectsofVaryingPolytropicExponentCalculatedMaximumPeakPressuresComparedWithDesignPressureUnit114-viiiJuly1997 CHAPTER14LISTOFTABLESTable~Tile14.3.5-114.3.5-214.3.5-314.3.5-414.3.5-514.3.5-614.3.5-714.3.5-814.3.5-914.3.6-114.3.6-214.3.6-314.3.6-414.3.6-514.3.6-614.3.6-714.3.6-814.3.6-9ContainmentPressure,LeakRatesandBreathingRatesAssumedforPurposesofRadiationDoseCalculationsatDifferentTimeIntervalsFollowingaMajorLossofCoolantAccidentCoreandGapActivitiesEquivalenceFactorIodineRemovalCoefficientsasaFunctionofTimefortheIceCondenserContainmentFollowingaLossofCoolantAccidentSiteDispersionFactorsAverageEnergiesperDisintegrationforVariousIsotopes;TimeDecayConstantsSummarygfOff-SiteDosesResultingFromaLossofCoolantAccidentDoseRate(Rem/hr)RHRorContainmentSprayKeyAssumptionsUsedinEvaluatingtheControlRoomDosesDueToaLOCAfortheDonaldC.-CookNuclearPlantUnits1and2CorrosionofAluminumAlloysinAlkalineSodiumBorateSolutionPost-AccidentContainmentTemperatureTransientUsedintheCalculation,ofAluminumCorrosionAEPAluminumInventoryInsideContainmentBuildingCoreFissionProductEnergyAfter830FullPowerDaysFissionProductDecayDepositioninSumpSolutionPlantParametersforCalculatingPost-AccidentHydrogenGeneration-ZincInventoryInsideContainmentBuildingFractionofEachHydrogenContributionConsideredForSubcompartmentAnalysisHydrogenConcentrationInSteamGeneratorSubcompartmentPairUnit114-ixJuly19". CHAPTER14'ISTOFTABLES~Tab1~Tile14.3.6-10,14.3.6-1114.3.6-1214.3.6"1314.3.6-1414.3.6-1514.3.6-1614.3.6-1714.4.2-114.4.2"214.4.2-314.4.2-414.4.2-514.4.4-114.4.4-214.4.4-4HydrogenConcentrationInPressurizerSubcompartmentHydrogenConcentrationInFanAccumulatorRoomHydrogenConcentrationInInstrumentRoomHydrogenConcentration,LowerandUpperVolumeOverallContainmentHydrogenConcentrations;1.5~Zr-H0Reaction;RecombinerStartsAt24Hrs.AfterAccidentRatesofHydrogenGenerationTemperaturesUsedinHydrogenAnalysis=IgniterAssemblyLocationsEquipmentRequiredtoShutdownReactor(ForHighEnergyPipeRupturesOutsideContainment)HighEnergyLinesThatWereWalkedUltimateShearStressesatDistancedFromtheSupportsforTwo-wayeElementsTwo.-WayElementsMajorPostulatedHighEnergyPipeBreaksStressValuesforMainSteamLeads1and4AllowableStressValues:OperationalPlusSeismicStresses<30,000PSI(~*)ThermalStresses18,000PSIStressValuesforMainSteamLeads2and3AllowableStressValues:OperationalPlusSeismicStresses<30,000PSI(*)ThermalStresses<18,000PSIStressValuesatPostulatedBreakLocationsAllowableStress30,000PSIUnit114-xJuly1997 CHAPTER14LISTOFTABLESTitle14.4.4-5~StressValuesforFeedwaterLinesAllowableStressValuesOperationalPlusSeismicStresses<<30;000PSIThermalStresses14.4.4-614.4.6-114.4.6-214.4.6-314.4.6-3a14.4.6-414.4.6-4a14.4.6-514.4.6-5a14.4.6-614.4.6-6a14.4.6-6b14.4.6-6c<<18,000PSIStressLevelsMainSteamtoAuxiliaryFeedPumpTurbineLineAllowableStressValues:OperationalPlusSeismicStresses<<30,000PSIThermalStresses<<18,000PSINestSteamEnclosure/MainSteamAccesswayVentAreaandVolumeInputstoTMDEastSteamEnclosureVentAreaandVolumeInputstoTMDModelParameters(WestMainSteamEnclosureandMainSteamAccessway)LargeBreakeModelParameters(WestMainSteamEnclosureandMainSteamAcces'swSmallBreakModelParameters(EastMainSteamEnclosure)LargeBreakModelParameters(EastMainSteamEnclosure)SmallBreakMassandEnergyReleaseforSteamLineBreakinMainSteamEnclosure,LargeBreakMassandEnergyReleaseforSteamLinebreakinMainSteamEnclosure,SmallBreakFeedwaterLineBreakattheContainmentPenetration(ApplicabletoEastorWestSteamEnclosure)SteamLineBreak-ForwardFlowEast/WestSteamEnclosures(PressureResponse)EastSteamEnclosureSteamlineBreak-Backflow(PressureResponse)WestSteamEnclosureSteamlineBreak-Backflow(PressureResponse)Unit1VF14-xiJuly1997 CHAPTER14LISTOFTABLESTable14.4.6-714.4.6-814.4.6-914.4.6-1014.4.6-1114.4.6-1214.4.6-1314.4.6-1414.4.6-1514.4.6;15a14.4.6-1614.4.6-16a14.4.6-1714.4.6-18FeedwaterLineBreakattheTeeBetweenthe20"and30"Lines,20"LineRunningtoSteamGenerators2and3(ApplicabletoMainSteamAccessway)RelationofNodeCalculatedPressuretoPressureCapabilityofSlabsPeakPressureDifferentialMainSteamLineBreakWestSteamEnclosurePeakDifferentialPressureFeedwaterLineBreakinWestSteamEnclosurePeakDifferentialPressureFeedwaterLineBreakinMainSteamAccesswayPeakDifferentialPressureMainSteamLineBreakinEastSteamEnclosurePeakDifferentialPressureFeedwaterLineBreakinEastSteamEnclosureRelationofNodesUsedinMainSteamAccesswayAnalysistoPanelIdentificationsPresentedinTable14.4.6-17PressureCapabilityofWallsandSlabsAroundMainSteamLineEnclosureEastofContainmentRelationofNodesUsedinEastSteamEnclosureAnalysistoPanelIdentificationsPresentedinTable14.4.6-15PressureCapabilityofWallsandSlabsatMainSteamEnclosureWestofContainmentRelationofNodesUsedInWestSteamEnclosureAnalysistoPanelIdentificationPresentedinTable14.4.6-16PressureCapabilityofWallsandSlabsofAuxiliaryBuildingAdjacenttoMainSteamLineAccesswayFffectsofPressuresandCircumferentialBreakImpingementLoadsonwallsandSlabsPanelstobeProtectedfromMainSteamLineLongitudinalBreaksUnit114-xiiJuly1997 CHAPTER14LISTOFTABLESTable14.4.6-2014.4.10-114.4.10"214.4.11-214.4.11-314.4.11-414.4.11-514.4.11-614.4.11-714.4.11-814.4.11-914A.2-114A.2-214A.3-114A.3-214A.4-114A;4-214A.4-314A.4-4Unit1FeedwaterLineBreaksTransmitterstobeProtectedwithSupplyandSignalLinesSupplyandSignalLinestobeProtectedPeakEnvironmentalQualificationConditionsForLOCA,MSLB,andFeedwaterLineBreakInsideContainmentAirborneSourceTermDosesIntegratedDosesSubmergedLowerVolume-ObserveratCenterBetaDoseFactorsDosefromAirborneSourceAfterAttenuation(ThicknessUnitDensity)BetaDoseFactorsDoseFromAirborneSourceAfterAttenuation(ThicknessofAluminum)BetaDose(FactorsDoseFromAirborneSourceAfterAttenuation(ThicknessofSteel)~PipesConsideredInCalculatingOutsideContainmentDosesPeakEnvironmentQualificationconditionsforHELB'OutsideContainmentCoreandGapActivitiesCoreTemperatureDistributionNuclearCharacteristicsofHighestRatedDischargedAssemblyActivitiesinHighestRatedDischargedAssemblyCuriesatTimeofReactorShutdownParametersUsedintheCalculationofReactorCoolantFissionProductActivitiesReactorCoolantEquilibriumFissionandCorrosionProductActivitiesParametersUsedintheCalculationofReactorCoolantFissionandCorrosionProductActivitiesforSteamGeneratorTubeRuptureRadiologicalAnalysisReactorCoolantEquilibriumFissionandCorrosionProductActivitiesforSteamGeneratorTubeRuptureRadiologicalAnalysis14-xiiiJuly1997 CHAPTER14LISTOFTABLESTable14A.5-114A.5-214A.7-114A.8-114A.8-2TritiumProductionintheReactorCoolantRevisedTritiumProductionintheReactorCoolantGasDecayTankEquilibriumActivityConcentrationofIodineIsotopesintheRecirculationLoopRadiationSourcesCirculatinginResidualHeatRemovalLoopand*Associated,Equipment-Mev/cc-sec14-xivJuly1997 CHAPTER14LISTOFFIGURESFiciureTits14.1-114.1-214.1-314.1-414.1-514.1-614.1.1-114.1.1-214.1.2-114.1-2-214.1.2-314.1.2-414.1.2-5IllustrationofOvertemperatureandOverpowerhTProtection0NominalTavg573.3F,NominalPressure2100psiaIllustrationofOvertemperatureandOverpowerhTProtection0NominalTavg553F,-NominalPressure2100psiaIllustrationofOvertemperatureandOverpowerhTProtection0NominalTavg573.6F,NominalPressure2250psiaIllustrationofOvertemperatureandOverpowerhTProtection0NominalTavg553.0F,NominalPressure2250psiaCookNuclearPlantUnit1NormalizedNegativeReactivityInsertionasaFunctionofTimeUsedforReactorTripinTransientSafetyAnalysesReactorCoreSafetyLimitsNuclearPowerandHotChannelHeatFluxvs.TimeFortheRodWithdrawalFromSubcrie,icalEventFuelAverageandCladTemperaturevs.TimefortheRodWithdrawalFromSubcriticalEventNuclearPowervs.TimefortheRCCAWithdrawalatPowerEvent,FullPower,80PCM/Sec.InsertionRateMaximumReactivityFeedbackPressurizerPressureandPressurizerWaterVolumevs.TimefortheRCCAWithdrawalatPowerEvent,FullPower,80PCM/Sec.InsertionRateMaximumReactivityFeedbackCoreAverageTemperatureandDNBRys.TimefortheRCCAWithdrawalatPowerEvent,FullPower,80PCM/SecInsertionRate,MaximumReactivityFeedbackNuclearPowervs.TimefortheRCCAWithdrawalatPowerEvent,FullPower,4PCM/SecInsertionRate,MaximumReactivityFeedbackPressurizerPressureandPressurizerWatervoluttvs.TimefortheRCCAWithdrawalatPowerEvent,FullPower,4PCM/SecInsertionRate,MaximumReactivityFeedbackUnit114-xvJuly1997 CHAPTER14LISTOFFIGURESPiciur,Title14.1.2-614.1.2-714.1.2-814.1.2-914.1.3-114.1.3-214.1.6-114.1.6-214.1.6-314.1."'6-414.1.6-514.1.6-614.1.6-714.1.6-814.1.6-9CoreAverageTemperatureandDNBRvs.TimefortheRCCAWithdrawalatPowerEvent,FullPower,4PCM/SecInsertionRate,MaximumReactivityFeedbackMinimumDNBRvs.ReactivityInsertionRatefortheRCCAWithdrawalatPowerEvent,100%PowerMinimumDNBRvs.ReactivityInsertionRatefortheRCCAWithdrawalatPowerEvent,60%PowerMinimumDNBRvs.ReactivityInsertionRatefortheRCCAWithdrawalatPowerEvent,10~PowerNuclearPowerandCoreHeatFluxVersusTimeforaTypicalResponsetoaDroppedRCCA(s)inAutomaticControlAverageCoolantTemperatureandPressurizerPressureVersusTimeforaTypicalResponsetoaDroppedRCCA(s)inAutomaticControlTotalCoreFlowvs.'imefortheCompleteLossofFlowEventNuclearPowerandPressurizerPressurevs.TimefortheCompleteLossofFlowEventAverageandHotChannelHeatFluxandDNBRvs.TimefortheCompleteLossofFlowEventTotalCoreFlowandFaultedLoopFlowvs.TimeforthePartialLossofFlowEventNuclearPowerandPressurizerPressureys.timeforthePartialLossofFlowEventAverageandHotChannelHeatFluxesandDNBRvs.TimeforthePartialLossofFlowEventTotalCoreFlowandFaultedLoopFlowvs.TimefortheLockedRotorEventNuclearPowerandRCSPressurevs.TimefortheLockedRotorEventAverageandHotChannelHeatFluxesvs.TimeandCladInnerTemperaturevs.TimefortheLockedRotorEventUnit1i14-xviJuly1997 CHAPTER14LISTOFFIGURESFiciureTitle14.1.7-114.1.7-214.1.8-114.1.8-214.1.8-314.1.8-414.1.8-514.1.8-614.1.8-714.1;8-814.1.8-914.1.8-1014.1.8-1114.1.8-12StartupofanInactiveReactorCoolantLoopStartupofanInactiveReactorCoolantLoopNuclearPowerandDNBRvs.TimeforLossofLoad,MinimumReactivityFeedbackWithPressurizerSprayandPORVsPressurizerPressureandPressurizerWaterVolumevs.TimeforLossofLoad,MinimumReactivityFeedbackWithPressurizerSprayandPORVsCoreAverageandLoop1Temperaturesvs.TimeforLossofLoad,MaximumReactivityFeedbackWithPressurizerSprayandPORVsNuclearPowerandDNBRvs.TimeforLossofLoad,MaximumReactivityFeedbackWithPressurizerSprayandPORVsPressurizerPressureandPressurizerWaterVolumevs.TimeforLossofLoad,MinimumReactivityFeedbackWithoutPressurizerSprayandPORVsCoreAverageandLoop1Temperaturesvs.TimeforLossofLoad,MinimumReactivityFeedbackWithPressurizerSprayandPORVsNuclearPowerandDNBRvs.TimeforLossofLoad,MaximumReactivityFeedback,WithoutPressurizerSprayandPORVsPressurizerPressureandPressurizerWaterVolumevs.TimeforLossofLoad,MaximumReactivityFeedback,WithoutPressurizerSprayandPORVsCoreAverageandLoop1Temperaturesvs.TimeforLossofLoad,MinimumReactivityFeedbackWithoutPressurizerSprayandPORVsNuclearPowerandDNBRvs.TimeforLossofLoad,MaximumReactivityFeedbackWithoutPressurizerSprayandPORVsPressurizerPressureandPressurizerWaterVolumevs.TimeforLossofLoad,'aximumReactivityFeedbackWithoutPressurizerSprayandPORVsCoreAverageandLoop1Temperaturevs.TimeforLossofLoad,-MaximumReactivityFeedbackWithoutPressurizerSprayandPORVsUnit114-xviiJuly1997 CHAPTER14LISTOFFIGURES~Fiuse14.1.9-114.1.9-214.1.10-114.1.10-214.1.10-314.1.10-414.1.10-514.1.10-614.1.10-714.1.10-814.1.11-114.1.11-2Nuclear,PowerandCoreHeatFluxvs.Time(LossofNormalFeedwater)PressurizerWaterVolumePressurizerPressureandLoopTemperatureVersusTime(LossofNormalFeedwater)NuclearPowerTransientandCoreAverageTemperatureVersusTime,SingleLoopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,SingleLoopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerNuclearPowerTransientandCoreAverageTemperatureVersusTime,SingleLoopFeedwaterMalfunctionWithManualRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,SingleLoopFeedwaterMalfunctionWithManualRodControlAtFullPowerNuclearPowerTransientandCoreAverageTemperatureVersusTime,Multi-loopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,Multi-loopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerNuclearPowerTransientandCoreAverageTemperatureVersusTime,Multi-loopFeedwaterMalfunctionWithManualRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,Multi-loopFeedwaterMalfunctionWithManualRodControlAtFullPowerNuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithManualRodControlCoreAverageTemperatureandDNBRVersusTimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithManualRodControlUnit114-xviiiJuly1997 CHAPTER14LISTOFFIGURESTitle14.1.11-314.1.11-414.1.11-514.1.11614.1.11-714.1.11-814.1.12-114.1.12;214.1.13-114.1.13-214.1.13-314.1.13-414.1.13-514.1.13-614.2.4-1~14.2.5-1)4.2.5-214.2.5-3Unit114-xixJuly1997NuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithManualControlCoreAverageTemperatureandDNBRVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithManualControlNuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithAutomaticRodContxolCoreAverageTemperatureandDNBRVersus,TimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithAutomaticRodControlNuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithAutomaticRodControlCoreAverageTemperatureandDNBRVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithAutomaticRodControlNuclearPowerandCoreFlowVersusTime(LossofOffsitePower)LoopTemperatureandPressurizerWaterVolumeVersusTime(LossofOffsitePower)CrossSectionL.P.TurbineRotor(Unit2)StressinL.P..TurbineRotorDiscsat176%'SpeedCalculatedFailureSpeedsofL.P.TurbineRotorDiscsSketchofLastStageRegionL.P.TurbineUnitNo.1SketchofLowPressureTurbineRotorandCasingUnitNo.2Unit1TurbineLastStageWheelBreakandInjectedMassFlowVariationofReactivitywithCoreTemperatureat1050psiafortheEndofLifeRoddedCoreWithOneControlRodA'ssemblyStuck(Assume0power)DopplerPowerFeedbacktSafetyInjectionFlowSuppliedbyOneChargingPump CHAPTER14LISTOFFIGURESPiciplre14.2.5-414.2.5-514.2.5-614.2.5-714.2.6-114.2.6-214.2.6-314.2.6-414.2.7-114.2.7-214.2.7-314.2.7-414.2.7-514.2.7-614.2.7-714.2.7-814.2.7-9Unit114-xxJuly1997NuclearPowerandCoreHeatFluxVersusTimeSteamlineBreakDERInsideContainmentWithPowerCoreAverageTemperatureRCSPressureVersusTimeSteamlineBreakDERInsideContainmentWithPowerPressurizerWaterVolumevs.TimefortheSteamlineBreakDoubleEndedRuptureEventInsideContainmentWithPowerReact'ivityandCoreBoronConentrationvs.TimefortheSteamlineBreakDoubleEndedRuptureEventInsideContainmentWithPowerNuclearPowervs.TimefortheRodEjectionEvent,HotZeroPower(EndofLife)FuelCenterline,FuelAverage,andCladOuterSurfaceTemperaturehvs.TimefortheRodEjectionEvent,HotZeroPower(EndofLife)NuclearPowervs.'imefortheRodEjectionEvent,HotFullPower(EndofLife)FuelCenterline,FuelAverage,andCladOuterSurfaceTemperaturevs.TimefortheRodEjectionEvent,HotFullPower(EndofLife)AnnualOperationalThyroidDosesatSiteBoundarylfDefectiveFuelAnnualOperationalWholeBodyDosesatSiteBoundary1<DefectiveFuelAnnualOperationalThyroidDosesattheBoundaryofLowPopulationZone1%DefectiveFuelAnnualOperationalWholeBodyDosesattheBoundaryofLowPopulationZone1%DefectiveFuelLossofAllA.C.PowertothePlantAuxiliaries1%DefectiveFuelLossofA.C.Po~ertothePlantAuxiliaries1%DefectiveFuelSteamLineBreakAccident1%DefectiveFuelSteamLineBreakAccident1%DefectiveFuelSteamGeneratorTubeRuptureAccident1>DefectiveFuel(3391MWt) CHAPTER14LISTOFFIGURESFiciur.14.2.7-1014.2.7-1114.2.7-1214.2.8-114.2.8-214.2.8-314.,2.8-414.2;8-514.2.8-,614.2.8-.714.3.1-1a14.3.1-1b14.3.1-1c14.3.1-1d14.3.1-1eSteamGeneratorTubeRuptureAccident1%DefectiveFuelSteamGeneratorTubeRuptureAccident1%DefectiveFuel(3391MWt)(3391MWt)ReactorCoolantSystemPressure,ReactorCoolantSystemPressure,CaseDCaseESteamGeneratorTubeRuptureAccident1:DefectiveFuel(3391MWt)MainFeedlineRuptureAccidentCoreHeatFluxvs.TimeMainFeedlineRuptureAccidentReactorCoolantFlowvs.TimeMainFeedlineRuptureAccidentPressurizerWaterVolumevs.TimeMainFeedlineRuptureAccidentPressurizerPressurevs.TimeMainFeedlineRuptureAccidentFaultedandIntactLoopsRCSTemperaturesvs."-TimeMainFeedlineRuptureAccidentSteamGeneratorPressurevs.TimeMainFeedlineRuptureAccidentSteamGeneratorMassvs.TimeReactorCoolantSystemPressure,CaseAReactorCoolantSystemPressure,CaseBReactorCoolantSystemPressure,CaseC14.3.1-1f14.3.1-2a14.3.1-2b14.3.1-2c14.3.1-2d14.3.1-2e14.3.1-2f14.3.1-3a14.3.1-3b14.3.1-3c14.3.1-3d14.3.1-3e14.3.1-3f14.'3.1-4aUnit1CorePressureDrop,CorePressureDrop,CaseDCaseECorePressureDrop,CaseFCoreFlowrate,CaseA14-xxiReactorCoolantSystemPressure,CaseFBreakFlowDuringBlowdown,CaseABreakFlowDuringBlowdown,CaseBBreakFlowDuringBlowdown,CaseCBreakFlowDuringBlowdown,CaseDBreakFlowDuringBlowdown,CaseEBreakFlowDuringBlowdown,CaseFCorePressureDrop,CaseACorePressureDrop,CaseBCorePressureDrop,CaseCJuly1997 CHAPTER14LISTOFFIGURESFiciure14.3.1-4b14.3.1-4c14.3.1-4d14.3.1-4e14.3.1"4f14.3.1-5a14.3.1-5b14.3.1-5c14.3.1-5d14.3.1-5e14.3.1-.5fCoreFlowrate,CaseBCoreFlowrate,CaseCCoreFlowrate,.CaseDCoreFlowrate,CaseECoreFlowrate,CaseFAccumulatorFlowDuringBlowdown,CaseAAccumulatorFlowDuringBlowdown,CaseBAccumulatorFlowDuringBlowdown,CaseCAccumulatorFlowDuringBlowodwn,CaseDAccumulatorFlowDuringBlowdown,CaseEAccumulatorFlowDuringBlowdown,CaseF14.3.1-6a14.3.1-6b14.3.1-6c14.3.1-6d14.3.1-6e14.3.1-6f14.3.1-7a14.3.1-7b14.3.1-7c14.3.1-7d14.3.1-7e14.3.1-7f14.3.1-8a14.3.1-8b14.3.1-8c14.3.1-8dCoreCoreCoreCoreCoreCoreCoreandDowncomerLiquidLevelsDuringandDowncomerLiquidLevelsDuringandDowncomerLiquidLevelsDuringandDowncomerLiquidLevelsDuringandDowncomerLiquidLevelsDuringandDowncomerLiquidLevelsDuringInletFlowDuringReflood,CaseACoreInletFlowDuringReflood,CaseBCoreInletFlowDuringReflood,CaseCCoreInletFlowDuringReflood,CaseDCoreInletFlowDuringReflood,CaseECoreInletFlowDuringReflood,CaseFSIFlow,CaseASIFlow,CaseBSI'low,CaseCSIFlow,CaseDReflood,CaseAReflood,CaseBReflood,CaseCReflood,CaseDReflood,CaseEReflood,CaseF14-xxiiJuly1997 CHAPTER14LISTOFFIGURESPlcQP18Title14.3.1-8e14.3.1-8f14.3.1-9a14.3.1-9b14.3.1-9c14.3.1-9d14.3.1-9e14.3.1-9f14.3.1-1'OaSIFlow,CaseESIFlow,CaseFIntegralofCoreInletFlow,CaseAIntegralofCoreInletFlow,CaseBIntegralofCoreInletFlow,CaseCIntegralofCoreInletFlow,CaseDIntegralofCoreInletFlow,CaseEIntegralofCoreInletFlow;CaseFMassFluxatthePeakTemperatureElevation,CaseA14.3.1-10bMassFluxatthePeakTemperatureElevation,CaseB14.3.1-10c'assFluxatthePeakTemperatureElevation,CaseC14.3.1-10d.14.3.1-10eMassFluxatthePeakTemperatureElevation,CaseDMassFluxatthePeakTemperatureElevation,CaseE14.3.1-10f-'MassFluxatthePeakTemperatureElevation,CaseF14.3.1-11a14.3.1-'11b14.3.1-llcRodHeatTransferCoefficientatthePeakTemperatureElevation,CaseARodHeatTransferCoefficientatthePeakTemperatureElevation,CaseBRodHeatTransferCoefficientatthePeakTemperatureElevation,14.3.1-lid14.3.1-11eCaseCRodHeatTransferCoefficientatthePeakCaseDRodHeatTransferCoefficientatthePeakCaseETemperatureElevation,TemperatureElevation,14.3.1-11f14.3.1-12a14.3.1-12b14.3.1-12cUnit114-xxiiiJuly1997RodHeatTransferCoefficientatthePeakTemperatureElevation,CaseFVaporTemperature,CaseAVaporTemper'ature,CaseBVaporTemperature,CaseC CHAPTER14LISTOFFIGURES~FipreT~ile14.3.1-12dVaporTemperature,CaseD14.3.1-12eVaporTemperature,CaseE14.3.1-12fVaporTemperature,CaseF14.3.1-13aFuelRodPeakCladTemperature,CaseA14.3.1-13bFuelRodPeakCladTemperature,CaseB14.3.1-13cFuelRodPeakCladTemperature,CaseC14.3.1-13dFuelRodPeakCladTemperature,CaseD14.3.1-13eFuelRodPeakCladTemperature,CaseE14.3.1-13fFuelRodPeakCladTemperature,CaseF14.3.1-14ContainmentPressure,CD0.4,MinSI14.3.1-1514.3.1-1614.3.1-1714.3.1-1814.3.1-19114.3.1-2014.3.1-2114.3.1-2214.3.1-2314.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-7UpperContainmentStructuralHeatRemovalRate,CD0.4,MaxSILowerContainmentStructuralHeatRemovalRate,CD0.4,MinSIHeatRemovalbySump,CD0.4,MinSIHeatRemovalbySumpandLCSpray,CD0.4,MinSIContainmentTemperature,CD0.4,MaxSI'owerCompartmentStructuralHeat,RemovalRate,CD0.6,MaxSIHeatRemovalbySumpandLCSpray,CD0.6,MaxSILowerandUpperCompartmentTemperatures,CD0.6,MinSILowerandUpperCompartmentTemperatures,CD=0.6,MaxSISafetyInjectionFlowrateHotRodPowerDistributionRCSPressure(3Inch),ReducedTemperature,ReducedPressureCoreMixtureHeight(3Inch),ReducedTemperature,ReducedPressureHotSpotCladTemperature(3Inch),ReducedTemperature,ReducedPressureCoreSteamFlowrate(3Inch),ReducedTemperature,ReducedPressureHotSpotHeatTransferCoefficient(3Inch),ReducedTemperature,ReducedPressureUnit114-xxivJuly1997 CHAPTER14LISTOFFIGURES~F1~rTulle14.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3.2-1314.3.2-1414.3.2-:1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-2214.3.2-23HotSpotFluidTemperature(3Inch),ReducedTemperature,ReducedPressureTotalBreakFlow(3Inch),ReducedTemperature,ReducedPressureIntactLoopPumpedSIFlow(3Inc".),ReducedTemperature,ReducedPressureRCSPressure(2Inch),ReducedTemperature,ReducedPressureCoreMixtureHeight(2Inch),ReducedTemperature,ReducedPressureHotSpotCladTemperature(2Inch),ReducedTemperature,ReducedPressureCoreSteamFlowrate(2Inch),ReducedTemperature,ReducedPressureHotSpotHeat'TransferCoefficient(2Inch),ReducedTemperature,ReducedPressureHotSpotFluidTemperature(2Inch),ReducedTemperature,Reduced-PressureTotalBreakFlow(2Inch),ReducedTemperature,ReducedPressureIntactLoopPumpedSZFlow(2Inch),ReducedTemperature,ReducedPressureRCSPressure(4Inch),ReducedTemperature,ReducedPressureCoreMixtureHeight(4Inch),ReducedTemperature,ReducedPressureHotSpotCladTemperature(4Inch),ReducedTemperature,ReducedPressureCoreSteamFlowrate(4Inch),ReducedTemperature,ReducedPressureHotSpotHeatTransferCoefficient(4Inch),ReducedTemperature,ReducedPressureUnit114-xxvJuly1997 CHAPTER14LISTOFFIGURES~Fiuee14.3.2-2414.3.2-2514.3.2-2614.3.2-2714.3.2-2814.3.2-2914.3.2-3014.3.2-3114.3.2-3214.3.2-33,14.3.2-3414.3.2-3514.3.2-3614.3.2-3714.3.2-3814.3.2-3914.3.2-4014.3.2-41HotSpotFluidTemperature(4Inch),ReducedTemperature,ReducedPressureRCSPressure(3Inch),ReducedTemperature,HighPressureCoreMixtureHeight(3Inch),ReducedTemperature,HighPressureHotSpotCladTemperature(3Inch),ReducedTemperature,HighPressureCoreSteamFlowrate(3Inch),ReducedTemperature,HighPressureHotSpotHeatTransferCoefficient(3Inch),ReducedTemperature,HighPressureHotSpotFluidTemperature(3Inch),ReducedTemperature,HighPressureTotalBreakFlow(3Inch),ReducedTemperature,HighPressureIntactLoopPumpedSIFlow(3Inch),ReducedTemperature,HighPressureRCSPressure(3Inch),HighTemperature,HighPressureCore.MixtureHeight(3Inch),HighTemperature,HighPressureHotSpotCladTemperature(3Inch),HighTemperature,HighPressureCoreSteamFlowrate(3Inch),HighTemperature,HighPressureHotSpotHeatTransferCoefficient(3Inch),HighTemperature,HighPressureHotSpotFluidTemperature(3Inch),HighTemperature,HighPressureTotalBreakFlow(3Inch),HighTemperature,HighPressureIntactLoopPumpedSIFlow(3Inch),HighTemperature,HighPressureRCSPressure(3Inch,3~MSSVTolerance)ReducedTemperature,ReducedPressureUnit1114-xxviJuly1997 CHAPTER14LISTOFFIGURESFicire~Tile14.3.2-4214.3.2-4314.3.2-44CoreMixtureLevel(3Inch,3RMSSVTolerance)ReducedTemperature,ReducedPressurePeakCladTemperature(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureCoreOutletSteamFlowRate(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressure14.3.2-45,HotSpotRodSurfaceHeatTransferCoefficient(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressure14.3.2-46,HotSpotFluidTemperature(3Inch,3%MSSVTolerance)ReducedTemperature;ReducedPressure14.3.2-4714.3.2-4814'.3.2-4914.3.2-5014.3.2-5114.3.,2-5214.3.2-5314.3.2-5414.3.2-55.ColdLegBreakMassFlowRate(3Inch,3cMSSVTolerance)ReducedTemperature,ReducedPressurelSafety,InjectionMassFlowRate(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureHotRodPowerDistributionReducedTemperature,ReducedPressureRCSPressure(2Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureCoreMixtureLevel(2Inch,*3%MSSVTolerance)ReducedTemperature,ReducedPressure'eakCladTemperature(2Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureCoreOutletSteamFlowRate(2Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureHotSpotRodsurfaceHeatTransferCoefficient(2Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureHotSpotFluidTemperature(2Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureUnit114-xxviiJuly1997 CHAPTER14LISTOFFIGURES~erure14.3.2-5614.3.2-5714.3.2-5814.3.2-5914.3.2-6014.3.2-6114.3.2-6214.3.2-6314.3.2-6414.3.2-6514.3.2-66ColdLegBreakMassFlowRate(2Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureSafetyInjectionMassFlowRate(2Inch,3vMSSVTolerance)ReducedTemperature,ReducedPressureRCSPressure(3Inch,3'.MSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenCoreMixtureLevel(3Inch,3+MSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenPeakCladTemperature(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenCoreOutletSteamFlowRate(3Znch,3RMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSZCross-TieValvesOpenHotSpotRodSurfaceHeatTransferCoefficient(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressureHotSpotFluidTemperature(3Inch,3%MSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenColdLegBreakMassFlowRate(3Inch,3:MSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSZCross-TieValvesOpenSafetyInjectionMassFlowRate(3Inch,3~MSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenHotRodPowerDistributionReducedTemperature,ReducedPressure3588MWt,HHSZCross-TieValvesOpenUnit114-xxviiiJuly1997 CHAPTER14LISTOFFIGURESFiciur.Title14.3.2-6714.3.2-6814.3.2-6914.3.2-7014.3.2-7114.3.2-7214.3.2-7314.3.2-7414.3.2-7514.3.2-76RCSPressure(3Inch,30%SGTP)ReducedTemperature,ReducedPressureCoreMixtureLevel(3Inch,30%SGTP)ReducedTemperature,ReducedPressureAHotSpotCladTemperature(3Inch,30%SGTP)ReducedTemperature,ReducedPressureCoreOutletSteamFlow(3Inch,30%SGTP)ReducedTemperature,ReducedPressureHotSpotRodSurfaceHeatTransferCoefficient(3Inch,30%SGTP)ReducedTemperature,ReducedPressureHot,SpotFluidTemperature(3Inch,30%SGTP)ReducedTemperature,ReducedPressureColdLegBreakMassFlowRate(3Inch,30%SGTP)ReducedTemperature,ReducedPressureBrokenLoopSafetyInjectionMassFlowRate(3Inch,30%SGTP)ReducedTemperature,ReducedPressureLumpedIntactLoopSIMassFlowRate(3Inch,30%SGTP)ReducedTemperature,ReducedPressureHotRodPowerDistribution(3Inch,30%SGTP)ReducedTemperature,ReducedPressureUnit14-xxixJuly1997 CHAPTER14LISTOFFIGURES~eiciureTitle14.3.4-114.3.4"214.3.4-314.3.4-414.3.4-514.3.4-614.3.4-714.3.4-814.3.4-914.3.4-1014.3.4-11a14.3.4-11b14.3.4-12a14.3.4-12b14.3.4-1314.3.4-14t14.3.4-15SteamConcentrationinaVerticalDistributionChannelPeakCompressionPressureVersusCompressionRatioUpperCompartmentCompressionPressureversusEnergyReleaseforTestsat110%and200~ofInitialDBABlowdownRateIceMeltedversusEnergyReleaseforTestsatDifferentBlowdownRatesUpperCompartmentPeakCompressionPressureversusBlowdownRateforTestsWith175<EnergyReleaseLOCAMassEnergyReleaseContainmnetIntegrityContainmentPressureLOCAMassEnergyReleaseContainmentIntegrityUpperContainmentTemperatureLOCAMassEnergyReleaseContainmentIntegrityLowerContainmentTemperatureLOCAMassandEnergyReleaseContainmentIntegrityActive/InactiveSumpTemperatureTransientLOCAMassandEnergyReleaseContainmentIntegrityIceMeltTransient102%Power,1.4sq.ft.DoubledEndedRupture-MSIVFailureUpperCompartmentTemperature102%Power,1.4sq.ft.DoubleEndedRupture-MSIVFailureLowerCompartmentTemperature30%Power,0.942sq.ft.SplitBreak-MSIVFailureUpperCompartmentTemperature30%Power,0.942sq.ft,SplitBreak-MSIVFailureLowerCompartmentTemperatureWorstBreak-LowerCompartmentTemperatureComparisonUpperCompartmentTemperature(30%PowerLevel)LowerCompartmentPressure(30:PowerLevel)Unit114-xxxJuly1997 CHAPTER14LISTOFFIGURES~FiurTitle14.3.4-1614.3.4-1714.3.4-18.14.3.4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3:4-2414.3.4-25'4.3.4-2614.3.4-2714.3.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214.3.4-3314.3.4-3414.3.4-3514.3.4-3614.3.4-3714.3.4-3814.3.4-3914.3.4-4014.3.4'-41LowerCompartmentTemperature(300PowerLevel)WorstBreak-LowerCompartmentTemperatureComparisonGenericAnalysisPlanatEquipmentRoomsElevationContainmentSectionViewPlanViewatIceCondenserElevation-IceCondenserCompartmentsLayoutofContainmentShellTMDCodeNetworkUpperandLowerCompartmentPressureTransientforWorstCaseBreakCompartment(Element6)HavingaDEHLBreakColdLegDouble-EndedGuillotine,.FullPowermhTransientColdLegDouble-EndedGuillotineFullPowermTransientColdLegDouble-EndedGuillotineFullPowermhTransientColdLegDouble-EndedGuillotineFullPowermTransient.HotLegDouble-EndedGuillotinePullPowermhTransientHotLegDouble-EndedGuillotineFullPowermTransientDECLG:Compartment¹1DEHLG:Compartment¹1DEHLG:Compartment¹2DEHLG:Compartment¹3DEHLG:Compartment¹4DEHLG:Compartment¹5DEHLG:Compartment¹6DECLG:Compartment,¹3DECLG:Compartment¹4DECLG:Compartment¹6IllustrationofChokedFlowCharacteristicsExperimentalCriticalMassFlow/HomogeneousThermalEquilibriumModeUnit114-xxxiJuly1997 P"CHAPTER14LISTOFF1GURESFicire14.3.4-4214.3.4-4314.3.4-4414.3.4-4414.3.4-4514.3.4-46'4.3.4-4714.3.4-4814.3.4-4914.3.4'-5014.3.4-5114.3.4-5214.3.4-5314.3.4-5414.3.4-5514.3.4-5614.3.4-5714.3.4-5814.3.4-5914.3.4-6014.3.4-61'14.3.4-6214.3.4-63SteamGeneratorEnclosureAboveElevation665ft.SteamGeneratorEnclosureBelowElevation665ft.(1of2)SteamGeneratorEnclosureCut-OpenViewoftheSteamGeneratorEnclosure(2of2)SteamGeneratorEnclosurePressurizerEnclosureNodingPressurizerEnclosureNodingDiagramandFlowpathsTMDCodeNetworkTMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosureIPressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressure,PressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePlotofthePeakCompartmentPressureasaFunctionofTimeinElement1foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement2foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement3foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement4foraDEHLinElement1Unit114-xxxiiJuly1997 =CHAPTER14LISTOFFIGURESPici>reTitle14.3.4-6414.3.4-6514.3.4-6614.3.4-6714.3.4-6814.3.4-69PlotofthePeakCompartmentPressureasaFunctionofTimeinElement5foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement6foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement25foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement40foraDEHLBreak=inElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement2foraDEHLBreakinElement2PlotofthePeakCompartmentPressureasaFunctionofTimeinElement25.foraDEHLBreakinElement214.3.4-70'lotofthepeakCompartmentpressureasaFunctionofTimeinElement'0foraDEHLBreakinElement114.3.4-7114.3.4-7214.3.4-7314.3.4-7414.3.4-7514.3.4-7614.3.4-7714.3.4-7814.3.4-7914.3.4-8014.3.4-8114.3.4-8214.3.4-8314.3.4-84HotLegDoubleEndedGuillotineFullPowermhTransientHotLegDoubleEndedGuillotineFullPowermTransientColdLegDoubleEndedGuillotineFullPowerConditionmhTransientColdLegDoubleEndedGuillotineFullPowerConditionmTransientHotLegSingleEndedSplintFullPowerConditionmhTransient1HotLegSingleEndedSplit,FullPowexConditionmTransientColdLegSingleEndedSplitFullPowermhTransientColdLegSingleEndedSplitFullPowermTransientPressurizerSprayLinemhTransientPressurizerSpray,LinemTransientComparisonofSatan(Zaloudek-Moody)toHenry-FauskeComparisonofSatan(Zaloudek)toMoodySubcooledZaloudekMeasuredDataversusModifiedZaloudekCorp.ZaloudekShortTubeDat'aUnit114-xxxiiiJuly1997 CHAPTER144LISTOFFIGURESPiciur.~Tile14.3.4-8514.3.4-8614.3.4-8714.3.4-8814.3.4-8914.3.4-9014.3.4-9114.3.4-9214.3.4-9314.3.5-114.3.5-214.3.5-314.3.5-414.3.5-514.3.5-614.3.6-114.3.6-214.3.6-614.3.6-714.3.6-814.3.6-914.3.6-1014.3.6-11ExitPlaneQualityasaFunctionofUpstreamPressureforSaturatedLiquid(ModdyModel)HenryANL7740DataLoftTests809and813PressureGageP-1(NearRupture)Full-ScaleSectionTestFacilityDischargePipingCirculationPumpReceiverVesselInstrumentLocationVariableAreaFlowPathFlowArea-PressureDifferentialTotalFractionofIodinePresentintheContainmentasaFunctionofTimeFollowingaLoss-of-CoolantAccidentThyroidDoseasaFunctionofIceCondenserEfficiencyLong-TermPressureTransientUsedforContainmentReleaseRateCalculationsIntegratedExposureasaFunctionofDistancefromContainmentBuildingControlRoomThyroidDoseControlRoomBetaKinandGammaBodyDoseAluminumCorrosioninDBAEnvironmentResultsofWestinghouseCapsuleIrradiationTestsCorrosionRateofAluminumasaFunctionofTemperatureCorrosionRateofZincasaFunctionofTemperatureElectricHydrogenRecombincrHydrogenProductionintheContainmentasaFunctionofTimeFollowinganAECTIDReleaseLoss-of-CoolantAccidentContainmentHydrogenConcentrationWithOneElectricRecombinerStartedOneDayAfterLOCAIContainmentPeakHydrogenConcentrationVersusRecombinerProcessUnit1RateWithRecombinerStarredOneDayAfterLOCA14-xxxivJuly1997 CHAPTER14LESTOFF1GURES~F1~r14.3.6-1214.3.6-1314.3.6-1414.3.6-14a14.3.6-1514.3.6-.1614.3.6-1714.3.6-1814.3.6-1914.3.6-2014.3.6-2114.3.6-2214.4.2-114.4.2-214.4.2-314.4.2-414.4.2-5ContainmentPeakHydrogenConcentrationVersusElapsedTimeAfterLOCABeforeStartingRecombinerSchematicDiagramofPost-AccidentContainmentHydrogenMonitoringSystem(PACHMS)ArrangementofPose-AccidentSamplingEquipmentinSprayAdditiveTankRoomPost-AccidentContainmentHydrogenDist.ignitionSystem,DetailsofIgniterBoxandSpliceBox(NoHeading)D.C.CookUnit2ContainmentPlanBel'owElevation652'7"D.C.CookUnit2ContainmentPlantAboveElevation652'7"D.C.CookUnit2ContainmentPlantAboveElevation715'ectionofContainmentDetailingLocationofHydrogenMonitoringSamplePartsESR-2,5,6,8,9PlanElevationofContainment(Elevation650'0")DetailingLocationofHydrogenMonitoringSamplePortsESR-1and7PlanElevationofContainment(Elevation633'0")DetailingLocationofHydrogenMonitoringSamplePortsESR-3and4Hi-EnergyLineBreakEquip/SourceArrg'tSections"D-D","E-E"and"F-F",Uni'tsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSections"G-G","H-H",and"J-J"and".K-K",UnitNos.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSection"L-L",and"M-M",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSections"N-N","P-P","Q-Q",and"R-R",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSectionsPlantBelowBasement,UnitsNo.1and2Unit114-xxxvJuly1997 CHAPTER14LISTOFFIGURESFBIFI18~Tile14.4.2-614.4.2-714.4.2-814.4.2-914.4.2-1014.4.2-1114.4.2-1214.4.2-1314.4.2-1414.4.2-1514.4.2-1614.4.2-1714.4.2-1814.4.2-1914.4.2-2014.4.2-20aHi-EnergyLineBreakEquip/SourceArrg'tElev.591'0"and587'0",'nitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tMazzanineFl.El.609'0",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tMainFloorElev.633'0",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tMainFloorElev.650'.0",UnitsNo.1and2LayoutandIdentificationofWallsandSlabsforEastMainSteamEnclosure,WestMainSteamEnclosure,MainSteamAccesswayIsometricViewofMainSteamEnclosureAccesswayWestofContainmentYieldLinePatternforPanelswithThreeEdgesFixedandOneEdgeUnsupportedSubjectedtoUniformlyDistributedLoadYieldLinePatternforPanelswithFourEdgesFixedSubjectedtoUniformlyDistributedLoadYieldLinePatternforPanelswithFourEdgesFixedSubjectedtoConcentratedPointLoadYieldLinePatternforPanelswithThreeEdgesFixedandFourthEdgeFreeSubjectedtoaConcentratedPointLoadattheFreeEdgeYieldLinePatternsforPanelswithThreeEdgesFixedandFourthEdgeFreeSubjectedtoaConcentratedpointLoadatInteriorIsometricMainstreamfromSteamTurbinetoContainmentPenetrationSleeveIsometricFeedwaterfromHeaters6Aand6BtoSteamGeneratorsAuxiliaryBuildingLetdownHeatExchangerPipingAuxiliaryBuildingSteamGeneratorBlowdownPipingIsometricBlowdowntoBlowdownFlashTankonEl.633"-0"4"MainSteamtoAux.FeedwaterPumpTurbine,UnitNo.1Unit114-xxxviJuly1997 CHAPTER14U'ISTOFFIGURESFiciFre~T'le14.4.6-114.4.6-214.4.6-314.4.6-414.4.6-514.4.6-614.4.6-714.4.6-814.4.6-914.4.6-9a14.4.6-9b14.4.6-1014.4.6-10a14.4.6-1114.4.6-11aSchematicofWestSteamEnclosure/MainSteamAccesswayTMDNetworkforWestSteamEnclosure/MainSteamAccesswaySchematicEastSteamEnclosureTMDNetworkforEastSteamEnclosurePeakEnvironmentalParameters(WestMainSteamEnclosureAccessway)PeakEnvironmentalParameters(EastMainSteamEnclosure),AuxiliaryFeedwaterPumpCompartment(UsedforAnalyzingBreakSG-MainSteamtoAuxiliaryFeedwaterPump)EastMainSteamEnclosurePressureProfileElements2and3~EastSteamEnclosureSmallBreak-WinterEastSteamEnclosureSmallBreak-SummerEastSteamEnclosure1argeBreakWestSteamEnclosureSmallBreakWestSteamEnclosureLargeBreakFeedwaterLineBreakinMainSteamAccessway(Element7),PressureVersusTimeUnit2MainSteamEnclosureTemperatureProfileinElements2and14.4.9-114.4.9-2EastSteamEnclosureWestSteamEnclosureUnit114-xxxviiJuly1997 TABLEOFCONTENTSpe~ionParcae14.0SAFETYANALYSIS14.0-114.0.1SUMMARYOFRESULTS14.0-314.1COREANDCOOLANTBOUNDARYPROTECTIONANALYSIS..14.1-114.1.0PLANTCHARACTERISTICSANDINITIALCONDITIONSUSEDINSAFETYANALYSIS14.1.0.1PLANTCONDITIONS14.1.0.2INITIALCONDITIONS14.1.0.3CORETHERMALPOWERDISTRIBUTION14.1.0.4REACTIVITYCOEFFICXENTSASSUMEDINTHESAFETYANALYSIS.14.1.0-114.1.0-114.1.0-214.1.0-214.1.0-314.1.0.5RODCLUSTERCONTROLASSEMBLY(RCCA)INSERTIONCHARACTERISTICS14.1.0-414.1.0.6REACTORTRIPPOINTSANDTIMEDELAYSTOREACTORTRIPASSUMEDINTHESAFETYANALYSIS14.1.0-514.1.0.7PLANTSYSTEMSANDCOMPONENTSAVAZLABLEFORMITIGATIONOFACCIDENTEFFECTS14.1.0-814.1.0.8RESIDUALDECAYHEAT14.1.0.9OTHERASSUMPTIONS14.1.0.10COMPUTERCODESUTILIZED14.1.0.11REFERENCES.14.l.0-914.1.0-1014.1.0-1014.1.0-1414.1.1UNCONTROILEDRODCLUSTERCONTROLASSEMBLY(RCCA)BANKWITHDRAWALFROMASUBCRITICALCONDITION14.1.1-114.1.1.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.1-114.1.1.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.1-314.1.
1.3CONCLUSION
S14.1.1-614.l.1-7Unit214-iJuly1997 TABLEOFCNTENTS(Continued)~ctionPacae14.1.2AUNCONTROLLEDRODCLUSTERCONTROLASSEMBLY(RCCA)BANKWITHDRAWALATPOWER(MIXEDCORE)..DELETED.14.3...2A-114.1.2BUNCONTROLLEDRODCLUSTERCONTROLASSEMBLY(RCCA)BANKWITHDRAWALATPOWER(FULLVANTAGE5CORE)14.1.28-114.1.28.114.1.2B.214.1,.2B.3CONCLUSIONS14.1.2B.4REFERENCESIDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTIONANALYSISOFEFFECTSANDCONSEQUENCES14.1.2B-114.1.2B-214.1.2B-514.1.2B-614.1.3RODCLUSTERCONTROLASSEMBLY(RCCA)MISALIGNMENT(INCLUDINGRCCADROP)14.1.3-114.1.3.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.3.2ANALYSISOFEFFECTANDCONSEQUENCES14.1.3.'3CONCLUSIONS14.1,.
3.4REFERENCES
14.1.4'RODCLUSTERCONTROLASSEMBLYDROP14.1.5UNCONTROLLEDBORONDILUTION14.1.3-114.1.3-314.1:3-614.1.3-714.1.4-1II14.1.5-114.1.5.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.5-114.1.5.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.
5.3CONCLUSION
S14.1.5-214.1.5-614.1.6LOSSOFFORCEDREACTORCOOLANTFLOW(INCLUDINGLOCKEDROTOR)14.1.6.1LOSSOFREACTORCOOLANTFLOW14.1.6.2LOCKEDROTORACCIDENT414.1.6.3.REFERENCES14.1.6-114.1.6-114.1.6-514.1.6-11Unit214-iiJuly1997 TABLEOFCONTENTS(Continued)S~cl.0Il14.1.7STARTUPOFANZNACTZVEREACTORCOOLANTLOOP~acae14.1.7-114.1.7.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION...~.14.1.7-114.1.7.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.7-114.1.
7.3CONCLUSION
S14.1.
7.4REFERENCES
14.1.7-314.1.7-414.1.8ALOSSOFEXTERNALELECTRICLOADORTURBINETRIP(MIXEDCORE)-DELETED.14.1.8A-114.1.8BLOSSOFEXTERNALELECTRICLOADORTURBINETRIP(FULLVANTAGE5CORE)14.1.8B.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.8B-114.1.8B-114.1.8B.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.8B.3CONCLUSIONS14.1.8B-214.1.8B-514.1.8B.4REFERENCES14.1.8B-614.1.9LOSS,OFNORMALFEEDWATER"14.1.9.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.9-114.1.9-114.1.9.2ANALYSESOFEFFECTSANDCONSEQUENCES14.1.9-214.1.
9.3CONCLUSION
S14.1.
9.4REFERENCES
14.1.9-514.1.9-614.1.10AEXCESSIVEHEATREMOVALDUETOFEEDWATERSYSTEMMALFUNCTIONS(MIXEDCORE)-DELETED.14.1.10A"1Unit214-iiiJuly1997 TABLEOFONTENT(Continued)Spat~i,Pacap,14.1.108EXCESSIVEHEATREMOVALDUETOFEEDWATERSYSTEMMALFUNCTIONS(FULLVANTAGE5CORE)14.1.108-114.1.108.1FEEDWATERSYSTEMMALFUNCTIONSCAUSINGAREDUCTIONINFEEDWATERTEMPERATURE14.1.108-114.1.108.2FEEDWATERSYSTEMMALFUNCTIONSCAUSINGANINCREASEINFEEDWATERFEOWI14.1.108-314.1.11AEXCESSIVELOADINCREASEINCIDENT(MIXEDCORE).DELETED.14.1.11A-114.1.118EXCESSIVELOADINCREASEINCIDENT(FULLVANTAGE5CORE)........~~..~~~~~~~~~~~14.1.118.1IDENTIFlCATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.118.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.118-114.1.118-114.1.118-114.1.1
18.3CONCLUSION
S14.1.1
18.4REFERENCES
14.1.118-414.1.118-514.1.12LOSSOFOFFSITEPOWER(LOOP)TOTHESTATIONAUXILIARIES..............................14.1.12-114.1.12.'1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.12.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.
12.3CONCLUSION
S14.1.
12.4REFERENCES
14.1.12-114.1.12-214.1.12-414.1.12-514.1.13TURBINEGENERATORACCIDENT14.1.13-1Unit214-ivJuly1997 TABLEOFCONTENT(Continued)~SetionPacae14.2STANDBYSAFEGUARDSANALYSIS14.2-114.2.1RADIOLOGICALCONSEQUENCES'OFFUELHANDLING'ACCIDENT14.2.1-114.2.2POSTULATED'RADIOACTIVERELEASESDUETOLZQUID-CONTAININGTANKFAILURES14.2.2-1
14.2REFERENCES
14.2.3ACCIDENTALWASTEGASRELEASE14.2.4STEAMGENERATORTUBERUPTURE14.2.5RUPTUREOFASTEAMLINE(STEAMLINEBREAK)14.2.5.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.
5.3CONCLUSION
S14.2.
5.4REFERENCES
14.2.5.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.2.2-614.2.3-114.2.4-114.2.5-114.2.5-114.2.5-314.2.5-1014.2.5-1114.2.6RUPTUREOFCONTROLRODDRIVEMECHANISM(CRDM)HOUS1NG(RCCAEJECTION)14.2.6.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.2.6-114.2.6-114.2.6.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.6-714.2.
6.3CONCLUSION
S14.2.6-1514.2.7"SECONDARYSYSTEMSACCIDENTENVIRONMENTALCONSEQUENCES14.2.7-114.2.8MAJORRUPTUREOFMAINFEEDWATERPIPE(FEEDLINEBREAK)14.2.8.1IDENTIFICATIONOFCAUSESANDACCiDENTDESCRIPTION14.2.8.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.8-114.2.8-114.2.8-314.2.
8.3CONCLUSION
S14.2.
8.4REFERENCES
14.2.8-614.2.8-7Unit2I14-vJuly1997 TABLEFCONTENT(Continued)~ec~i)nPaca14.3REACTORCOOLANTSYSTEMPIPERUPTURE(LOSSOFCOOLANTACCIDENT)14.3.1LARGEBREAKLOSS-OF-COOLANTACCIDENTANALYSIS14.3.1.1MAJORLOCAANALYSESAPPLICABLETOWESTINGHOUSEFUEL14.3.1.2MAJORLOCAANALYSESAPPLICABLETOANFFUEL-DELETED...14.3.1-114.3.1-214.3.1-214.3.1-3014.3.2LOSS-OF-COOLANTFROMSMALLRUPTUREDPIPESORFROMCRACKSINLARGEPIPESWHICHACTUATESTHEEMERGENCYCORECOOLINGSYSTEM14.3.2-114.3.2.1ANALYSISOFEFFECTSANDCONSEQUENCES14.3.2-114.3.
2.2CONCLUSION
S14.3.2-414.
3.2REFERENCES
14.3.2-814.3.3COREANDINTERNALSINTEGRITYANALYSIS14.3.3-1/14.3.3.1ASYMMETRICLOCALOADSANDMECHANISTICFRACTUREANALYSXS.14.3.3-714.
3.3REFERENCES
14.3.414.3.5CONTAINMENTINTEGRITYANALYSES..14.
3.5REFERENCES
RADIOLOGICALCONSEQUENCESOFALOSSOFCOOLANT'ACCIDENTANDOTHEREVENTSCONSIDEREDINSAFETYANALYSIS...14.3.3-1214.3.4-114.3.5-11'4.3.5-414.3.6HYDROGENINTHEUNIT2CONTAINMENTAFTERALOSSOFCOOLANTACCIDENT14.3.6-114.4ENVIRONMENTALQUALIFICATION14.3.7LONGTERMCOOLING14.
3.7REFERENCES
14.3.8NITROGENBLANKETING14.3.7-114.3.7-1014.3.8-114.4-1APPENDIX14ARADIATIONSOURCES14A-1Unit214-viJuly1997 LISTOFTABLESTableTitle14.0-114.1.0-114.1.0-214.1.0-3OccurrenceEvaluatedforVantage5Fue'lTransitionRangeofPlantNominalConditionsUsedinSafetyAnalysesSummaryofInitialConditionsandComputer,CodesUsedSummaryofinitialConditionsandComputerCodesUsed;SeparateFullVantage5CoreAnalyses14.1.0-4RPSTripPointsandTimeDelaystoTrioAssumedinNon-LOCASafetyAnalyses14.1.0-5-ESFActuationSetpointsandTimeDelaystoActuationAssumedinNon-LOCASafetyAnalyses14.1.0-6PlantSystemsandEquipmentAvailableforFaultConditions14.1.0-714.1.0-814.1.0-9DonaldC.CookUnit23600MWTUpratingProgramInput-AssumptionsforRCSVolumesDonaldC.CookUnit23600MWTUpratingProgramInputAssumptionsforSteamGeneratorSecondaryMassDonaldC.CookUnit23600MWTUpratingProgramInputAssumptionsforReactorCoolantSystemPressureDron14.1.1-1TimeSequenceofEvents14.1.2B-1TimeSequenceofEvents(FullVantage5.Core)14.1.5-114.1.6-114.1.6-214.1.7-1TimeSequenceofEventsTimeSequenceofEventsTimeSequenceofEventsTimeSequenceofEvents14.1.8B-1TimeSequenceofEvents(FullVantage5Core)14.1.9-1TimeSequenceofEventsUnit214-vii.July1997 ~Tab1Title14.1.10B-1TimeSequenceofEvents(FullV-5Core)14.1.10B-2TimeSequenceofEvents(FullV-5Core)114.1.108-3TimeSequenceofEvents(FullV-5Core)14.1.10B-4TimeSequenceofEvents(FullVOSCore)14.1.11B-1TimeSequenceofEvents(FullVantage5Core)14.1.12-114.2.2-114.2.2-214.2.2-314.2.5-1TimeSequenceofEventsParameters,forLiquidRadioactiveTankFailureAnalysisGroundWaterActivitiesDuetoLiquidRadioactiveTankFailureReactorCoolantEquilibriumFissionandCorrosionProductActivitiesLimitingSteamlineBreakStatepointDoubleEndedRuptureInsideContainmentwithOffsitePowerAvailable14.2.5-214.2.6"1TimeSequenceofEventsParametersUsedintheAnalysisoftheRodClusterControlAssemblyEjectionAccident14.2.8-114.3.1-114.3.1-214.3.1-314.3.1-414.3.1-514.3.1-614.3.1-7TimeSequenceofEventsLargeBreakLOCA-CasesAnalyzedUnit2InputParametersUsedintheLargeBreakLOCAECCSAnalysisLargeBreakLOCAECCSAnalysisSystemsModellingLargeBreakLOCAContainmentData(IceCondenserContainment)LargeBreakLOCAAnalysisTimeSequenceofEventsLargeBreakLOCAResultsFuelCladdingDataCaseA-LargeBreakLOCAC~0.6MinimumSafeguardsMassandEnergyReleaseRatesUnit214-villJuly1997 LISTOFTABLESContinued~Tabl14.3.1-8CaseF-LargeBreakLOCAC~=0.6MaximumSafeguardsMassandEnergyReleaseRates14.3.1-9CaseG-LargeBreakLOCAC~0.6CrossTieClosed-3413MWtMassandEnergyReleaseRates14.3.1-10NitrogenMassReleaseRates14.3.2-1PlantInputParametersUsedin,SmallBreakLOCAAnalysis14.3.2-2TimeSequenceofEventsfozConditionIIIEvents14.3.2-3TimeSequenceofEventsforConditionIIIEvents14.3.2-4SmallBreakLossofCoolantAccidentCalculation14.3.2-5SmallBreakLossofCoolantAccidentCalculation14.3.2-6SafetyInjectionFlowRatewithHHSICzossTieValvesOpen14.3.2-7TimeSequenceofEventsforConditionIIIEvents14.3.2-8SmallBreakLossofCoolantAccidentCalculation14.3.2-9SafetyInjectionFlowRateWithHHSICrossTieValvesClosed14.3.2-10TimeSequenceofEventsforConditionIIIEvents14.3.2-11Small-BreakLossofCoolantAccidentCalculations(3"Break)14.3.2-12TimeSequenceofEventsforConditionIIIEvents(4"Break)14.3.2-13Small-BreakLossofCoolantAccidentCalculations(4"Break)14.3.2-14SmallBreak,LossofCoolantAccidentCalculationPeakCladTemperatureAssessmentsSinceLastAnalysis14.'3.5-1FuelParametersandCozeGapActivities14.3.5-2ActivityintheHighestRatedDischargedAssemblyfortheReratedPowerof3588MWT100HoursFollowingReactorShutdown14.3.5-3ParametersUsedintheCalculationofReactorCoolantFissionandCorrosionProductActivities14.3.5-4ReactorCoolantEquilibriumFissionandCorrosionProductActivitiesUnit214-ixJuly199'7 LISTOFTABLESContinuedl~TbleT~ileCHAPTER1414.3.5-5ParametersUsedtoEvaluatetheOffsiteDosesDuetoaLargeBreakLOCAat3588MWT14.3.5-6EstimatedDosesfor3588MWTPowerOperationLISTOFFIGURES~F1~r14.1.0-114.1.0-214.1.0-314.1.0-4TitleDopplerPowerCoefficientUsedinSafetyAnalysesRCCAPositionVersusTimeAfterRodDropBeginsNormalizedRCCAReactivityWorthVersusRCCAPositionNormalizedRCCAReactivityWorthVersusTimeAfterRCCADropBegins14.1.0-5OvertemperatureandOverpowerhT-Protection14.1.0-6OvertemperatureandOverpowerhTProtection14.1.0-714.1.1-11979ANSResidualDecayHeatUsedinAccidentAnalysesRodWithdrawalFromSubcriticalNuclearPowerandHeatFluxVersusTime'I14.1.1-2RodWithdrawalFromSubcriticalFuelAverageandCladTemperatureVersusTime14.1.2B-1RodWithdrawalatPowerNuclearPowerVersusTimeforFullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-2RodWithdrawalatPowerPressurizerPressureandWaterVolumeVersusTimeforFullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-3RodWithdrawalatPowerCoreAverageTemperatureandDNBRVersusTimeforFullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-4RodWithdrawalatPowerNuclearPowerVersusTimeforFullPower,4PCM/SecInsertionRate,MaximumReactivityFeedbackUnit214-xJuly1997 CHAPTER14>LISTOFFIGURES(Cont'd}FiciFreT~ile14.1.2B-SRodWithdrawalatPowerPressurizerPressureandWaterVolumeVersusTimeforFullPower,4PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-6RodWithdrawalatPowerCoreAverageTemperatureandDNBRVersusTimeforFullPower,4PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-7RodWithdrawalatPower100%Power,MinimumDNBRVersusReactivityInsertionRate14.1.2B-BRodWithdrawalatPower60>Power,MinimumDNBRVersusReactivityInsertionRate14.1.2B-9RodWithdrawalatPower10<Power,MinimumDNBRVersusReactivityInsertionRate14.1.3-1DroppedRCCA(s}Nuclearpo~erandCoreHeatFluxVersusTimeforaTypicalResponseinAutomaticControl.14.1.3-2DroppedRCCA(s}AverageCoolantTemperatureandPressurizerPressureVersusTimeforaTypicalResponseinAutomaticControl14.1.6-1CompleteLossofFlowCoreFlowCoastdownVersusTime14.1.6-2CompleteLossofFlowNuclearPowerandPressurizerPressureVersusTime14.1.6-3CompleteLossofFlowAverageChannelandHotChannelHeatFluxVersusTime14.1.6-4CompleteLossofFlowDNBRVersusTime14.1.6-5PartialLossofFlow1/4FaultedLoopandCoreFlowsVer'susTime14.1.6-6PartialLossofFlow1/4NuclearPowerandPressurizerPressureVersusTime14.1.6-714.1.6-SUnit2PartialLossofFlow1/4AverageChannelandHotChannelHeatFluxVersusTimePartialLossofFlow1/4DNBRVersusTime14-xiJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)~Piu~rT~ile14.1.6-91/4LockedRotorCoreandFaultedLoopFlowsVersusTime14.1.6-101/4LockedRotorReactorPressureandNuclearPowerVersusTime14.1.6-111/4LockedRotorAverageChannelandHotChannelHeatFluxVersusTime14.1.6-121/4LockedRotorCladInnerTemperatureVersusTime14.1.7-)14.1.8B-1StartupofanInactiveReactorCoolantLoopLossofLoadNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-2"LossofLoad.PressurizerWaterVolumeandDNBRVersusTimeforMinimumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-3LossofLoadLoopandCoreAverageTemperaturesVersusTimeforMinimumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-4LossofLoadNuclearPowerandPressurizerPressureVersusTimeforMaximumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-5LossofLoadPressurizerWaterVolumeandDNBRVersusTimeforMaximumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-6LossofLoadLoopandCoreAverageTemperaturesVersusTimeforMaximumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-7LossofLoadNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-8Lossof-LoadPressurizerWaterVolumeandDNBRVersusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVs.,Unit214-xii'uly1997 CHAPTER14LISTOFFIGURES(Cont'd)FicireTitle14.1.8B-9LossofLoadLoopandCoreAverageTemperatureVersusTimeforMinimumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-10Lossof'oadNuclearPowerandPressurizerPressureversusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-11LossofLoadPressurizerWaterVolumeandDNBRVersusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-12LossofLoadLoopandCoreAverageTemperatureVersusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.9-114.1.9-2LossofNormalFeedwaterNuclearPowerandCoreHeatFluxVersusTime4LossofNormalFeedwaterLoopTemperatureVersusTime14.1.9-3LossofNormalFeedwaterPressurizerPressureandPressurizerWaterVolumeVersusTime14.1.10B-1SingleLoopFeedwaterMalfunctionNuclearPowerTransientandCoreAverageTemperatureVersusTimewithAutomaticRodControlatFullPower14.1.10B-2SingleLoopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithAutomaticRodControlatFullPower14.1.10B-3SingleLoopFeedwaterMalfunctionNuclearPowerTransientandCoreAverageTemperatureVersusTimewithManualRodControlatFullPower14.1.10B-4SingleLoopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithManualRodControlatFullPower14.1.10B-S'Multi-loopFeedwaterMalfunctionNuclearPowerTransientandCoreAverageTemperatureVersusTimewithAutomaticRodControlatFullPowerUnit214-xiiiJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)~iciureTitle14.1.108-6Multi-,loopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithAutomaticRodControlatFullPower14.1.108-7Multi-loopFeedwaterMalfunctionINuclearPowerTransientandCoreAverageTemperatureVersusTimewithManualRodControlatFullPower-14.1.108-8Multi-loopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithManualRodControlatFullPower14.1.118-1ExcessiveLoadIncreaseNuclear,PowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithManualRodControl14.1.118-214.1.118-3ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMinimumReactivityfeedbackwithManualRodControl'IExcessiveLoadIncreaseNuclearPowerandPre'ssurizerVersusTimeforMaximumReactivity.FeedbackwithManualControl14.1.118-4ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMaximumReactivityFeedbackwithManualControl14.1.118-5ExcessiveLoadIncreaseNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithAutomaticRodControl14.1.118-6ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMinimumReactivityFeedbackwithAutomaticRodControl14.1.118-7ExcessiveLoadIncreaseNuclearPowerandPressurizerPressureVersusTimeforMaximumReactivityFeedbackwithAutomaticRodControl14.1.118-8ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMaximumReactivityFeedbackwithAutomaticRodControl14,1.12-1LossofOffsitePowertotheStationAuxiliariesNuclearPowerandCorFlowVersusTimeUnit214-xivJuly1997 CHAPTER14FiciureLISTOFFIGURES(Cont'd)rTitle14.1-12-2LossofOffsitePowertotheStationAuxiliariesLoopTemperatureandPressurizerWaterVolumeVersusTime14.2.5-1VariationofReactivitywithCoreTemperatureat1050PSIAfortheEndofLifeRoddedCorewith.OneControlRodAssemblyStuck(AssumesZeroPower)14.2.5-214.2.5-314.2.5-4DopplerPowerFeedbackforSteamlineBreakSafetyInjectionFlowSuppliedbyOneChargingPumpSteamlineBreakDERInsideContainmentwithPowerNuclearPowerandCoreHeatFluxVersusTime14.2.5-5SteamlineBreakDERInsideContainmentwithPowerCore'verageTemperature,RCSPressure,andPressurizerWaterVolumeVersusTime14.2.5-6SteamlineBreakDERInsideContainmentwithPowerReactivityandCoreBoronConcentrationVersusTime14.2.6-1RodEjectionNuclearPowerandFuelCladTemperatureVersusTimeforHotFullPoweratBeginningofLife14.2.6-2RodEjectionNuclearPowerandFuelandCladTemperaturesVersusTimeforHotZeroPoweratBeginningofLife14;2.8-1FeedlineBreakwithPowerNuclearPowerandCoreHeatFluxVersusTime14.2.8-2FeedlineBreakwithPowerPressurizerPressureandPressurizerWaterVolumeVersusTime14.2.8-3FeedlineBreakwithPowerFaultedandNon-FaultedLoopTemperaturesVersusTime14.2.8-4FeedlineBreakwith,PowerSteamGeneratorMassandSteamGeneratorPressureVersusTime14.2.8-5FeedlineBreakwithoutPoweNuclearPowerandCoreHeatFluvVersusTime14.2.8-6FeedlineBreakwithoutPowerPressurizerPressureandPressurizerWaterVolumeVersusTimeUnit2'l4-xvJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)~Fiu~rTitle14.2.8-7Feed)ineBreakwithoutPowerFaultedandNon-FaultedLoopTemperaturesVersusTime14.2.8-8FeedlineBreakwithoutPowerSteamGeneratorMassandSteamGeneratorPressureVersusTime14.3.1-1RHRandSafetyInjectionPumpFlowRatevs.RCSPressure14.3.1-2HighHeadChargingPumpFlowRatevs.RCSPressure14.3.1-3aReactorCoolantSystemPressure14.3.1-4aBreakFlowDuringBlowdown14.3.1-5aCorePressureDrop14.3.1-6aCoreFlowrate14.3.1-7aAccumulatorFlowDuringBlowdown14.3.1-8aCore'andDowncomerLiquidLevelsDuringReflood14.3.1-9aCoreInletFlowDuringReflood14.3.1-10aSIFlow14.3.1-11aIntegralofCoreInlet,Flow14.3.1-12aMassFluxatthePeakTemperatureElevation14.3.1-13aRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14aFluidTemperature14.3.1-15aFuelRodPeakCladTemperature14.3.1-3bReactorCoolantSystemPressure14.3.1-4bBreakFlowDuringBlowdown14.3.1-5bCorePressureDrop*14.3.1-6bCoreFlowrate14.3.1-7bAccumulatorFlawDuringBlowdownUnit214-xviJuly1997 CHAPTER14LISTOFFIGURES'Cont'd)Picilre14.3.1-8bCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9bCoreInletFlowDuringReflood14.3.1-10bSIFlow14.3.1-11bIntegral.ofCoreInletFlow14.3.1-12bMassFluxatthePeakTemperatureElevation14.3.1-13bRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14bFluidTemperature14.3.1-15bFuelRodPeakCladTemperature14.3.1-3c14.3;1-4c14.3.1-5cReactorCoolantSystemPressureBreakFlowDuringBlowdownCorePressureDrop14.3.1-6cCoreFlowrate14.3.1-7cAccumulatorFlowDuringBlowdown14.3.1-8cCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9cCoreInletFlowDuringReflood14.3.1-10cSIFlow14.3.1-11cIntegralofCoreInletFlow14.3.1-12cMass.FluxatthePeakTemperatureElevation14.3.1-13cRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14cFluidTemperature"14.3.1-15cFuelRodPeakCladTemperature14.3.1-3dReactorCoolantSystemPressure14.3.1-4dBreakFlowDuringBlowdownUnit214-xviiJuly199$ CHAPTER14LISTOFFIGURES(Cont'd)~F11814.3.1-5dCorePressureDrop14.3.1-6dCoreFlowrate14.3.1-7dAccumulatorFlowDuringBlowdown14.3.1-8dCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9dCoreInletFlowDuringReflood14.3.1-10dSIFlow14.3.1-11dIntegralofCoreInletFlow14.3.1-12dMassFluxatthePeakTemperatureElevation14.3.1-13dRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14dFluidTemperature14.3~1-15dFuelRodPeakCladTemperature14.3.1-3eReactorCoolantSystemPressure14.3.1-4e14.3.1-5e'reakFlowDuring.BlowdownCorePressureDrop14.3.1-6eCoreFlowrate14.3.1-7eAccumulatorFlowDuringBlowdown24.3.1-8eCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9eCoreInletFlowDuringReflood14.3.1-10eSIFlow14.3.1-11eIntegralofCoreInletFlow14.3.1-12eMassFluxatthePeakTemperatureElevation14.3.1-13eRodHeatTransferCoefficientatthePeak'emperatureElevation14.3.1-14eFluidTemperature14.3.1-15eFuelRodPeakCladTemperatureUnit214-xviiiJuly1997 CHAPTER1'4LISTOFFIGURES(Cont'd)FiciureTitle14.3.1-3fReactorCoolantSystemPressure14.3.1-4fBreakFlowDuringBlowdown14.3.1-5fCorePressureDrop14.3.1-6fCoreFlowrate14.3.1-7fAccumulatorFlowDuringBlowdown14.3.1-8f.CoreandDowncomerLiquidLevelsDuringReflood14.3.1-9fCoreInletFlowDuringReflood14.3.1-10fSIFlow14.3.1-.11fIntegralof'oreInletFlow14.3.1-12fMassFluxatthePeakTemperatureElevation14.3.1-13fRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14fFluidTemperature14.3.1-15fFuelRodPeakCladTemperature14.3.1-3gReactorCoolantSystemPressure14.3.1-4gBreakFlowDuringBlowdown14.3.1-5gCorePressureDrop14.3.1-6gCoreFlowRate14.3.1-7gAccumulatorFlowDuringBlowdown14.3.1-8gCore.andDowncomerLiquidLevelsDuringReflood14.3.1-9gCoreInletFlowDuringReflood14.3.1-10gSIFlow14.3.1-11gIntegralofCore'InletFlow14.3.1-12gMassFluxatthePeakTemperatureElevation14.3.1-13gRodHeatTransferCoefficientatthePeakTemperatureElevationUnit214-xixJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)~Fiare~Tile14.3.1-14gFluidTemperature14.3.1-15gFuelRodPeakCladTemperature14.3.1-16ContainmentPressure14.3.1-1714.3.1-18ContainmentPressurel,IContainmentPressure14.3.1-19UpperCompartmentStructuralHeatRemovalRate14.3.1-20LowerCompartmentStructuralHeatRemovalRate14.3.1-21HeatRemovalbySumpandLCSpray14.3.1-22UpperCompartmentStructuralHeatRemovalRate14.3.1-23LowerCompartmentStructuralHeatRemovalRate14.3.1-2414.3.1-25HeatRemovalbySumpandLCSprayeUpperCompartmentStructuralHeatRemovalRate14.3.1-26LowerCompartmentStructuralHeatRemovalRate14.3.1-27HeatRemovalbySumpandLCSpray14.3.1-28LowerandUpperCompartmentTemperatures14.3.1-2914.3.1-3014.3.2-114.3.2-214.3.2-3LowerandUpperCompartmentTemperatureseLowerandUpperCompartmentTemperaturesSafetyInjectionFlowrateCrossTieValvesOpenRCSPressure(4Inch)HighTemperature,ReducedPressureCoreMixtureHeight(4Inch)HighTemperature,ReducedPressure14.3.2-4I14.3.2-5HotSpotCladTemperature{4Inch)HighTemperature,ReducedPressureCoreSteamFlowrate(4Inch)HighTemperature,ReducedPressure14.3.2-6HotSpotHeatTransferCoefficient(4Inch)HighTemperature,ReducedPressureUnit214-xxJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)~F1Ul14.3.2-7HotSpotFluidTemperature(4Inch)HighTemperature,ReducedPressure14.3.2-8TotalBreakFlow(4Inch)HighTemperature,ReducedPressure14.3.2-9IntactLoopPumpedSIFlow(4Inch)HighTemperature,ReducedPressure14.3;-2-10HotRodPowerDistribution14.3.2-11RCSPressure(3Inch)HighTemperature,ReducedPressure14.3.2-12CoreMixtureHeight(3Inch)HighTemperature,ReducedPressure14.3.2-13HotSpotCladTemperature(3Inch)HighTemperature,ReducedPressure14.3.2-14CoreSteamFlowrate(3Inch)HighTemperature,ReducedPressure14.3.2-15HotSpotHeatTransferCoefficient(3Inch)HighTemperature,ReducedPressure14.3.2-16HotSpotHeatTransferCoefficient(3Inch)HighTemperature,ReducedPressure14.3.2-17TotalBreakFlow(3Inch)'ighTemperature,ReducedPressure14.3.2-18IntactLoopPumpedSIFlow(3Inch)HighTemperature,ReducedPressure14.3.2-19RCSPressure(6Inch)HighTemperat'ure,ReducedPressure14.3.2-20CoreMixtureHeight(6Inch)HighTemperature,ReducedPressure14.3.2-21HotSpotCladTemperature(6Inch)HighTemperature,ReducedPressure14.3.2-22CoreSteamFlowrate(6Inch)HighTemperature,ReducedPressure14.3.2-23HotSpotHeatTransferCoefficient(6Inch)HighTemperature,ReducedPressure14.3,2-24HotSpotFluidTemperature(6Inch)HighTemperature,ReducedPressure14.3.2-25TotalBreakFlow(6Inch)HighTemperature,ReducedPressure14.3.2-26IntactLoopPumpedSIFlow(6Inch)HighTemperature,ReducedPressure14.3.2-27RCSPressure(4Inch)HighTemperature,HighPressureUnit214-xxiJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)~rire~rile14.3.2-29HotSpotCladTemperature(4Inch)HighTemperature,HighPressure14.3.2-30CoreSteamFlowrate(4Inch)HighTemperature,HighPressure14.3.2-31HotSpotHeatTransferCoefficient(4Inch)HighTemperature,HighPressure14.3.2-32HotSpotFluidTemperature(4Inch)HighTemperature,HighPressure14.3.2-33TotalBreakFlow(4.Inch)HighTemperature,HighPressure14.3.2-34IntactLoopPumpedSIPlow(4Inch)HighTemperature,HighPressure14.3.2-35RCSPressure(4Inch)ReducedTemperature,HighPressure14.3.2-36CoreMixtureHeight(4Inch)ReducedTemperature,HighPressure14.3.2-37HotSpotCladTemperature(4Inch)ReducedTemperature,HighPressure14.3.2-3814.3.2-39CoreSteamFlowrate(4Inch)ReducedTemperature,HighPressureHotSpotHeatTransferCoefficient(4Inch)ReducedTemperature,Hig.Pressure14.3.2-40HotSpotFluidTemperature(4Inch)ReducedTemperature,HighPressure14.3.2-41TotalBreakFlow(4Inch)ReducedTemperature,HighPressure14.3.2-42IntactLoopPumpedSIFlow(4Inch)ReducedTemperature,HighPressure14.3.2-43RCSPressure(3Inch)HighTemperature,ReducedPressureCross.TiesClosed14.3.2-44CoreMixtureHeight(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-45HotSpotCladTemperature(3Inch)HighTemperature,ReducedPressureCrossTies=Closed14.3.2-46CoreSteamFlowrate(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-47HotSpotHeatTransferCoefficient(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3..2-48HotSpotFluidTemperature(3Inch)HighTemperature,ReducedPressurCrossTiesClosedUnit214-xxi'iJuly1997 CmPTBR14LISTOFFIGURES(Cont'd)PicireT~ile14.3.2-49TotalBreakFlow(3Inch)HighTemperature,ReducedPressureCrossTiesClosedL14.3.2-50IntactLoopPumpedSIFlow(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-51RCSPressure(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-52CoreMixtureHeight(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-53HotSpotCladTemperature(4Inch)HighTemperature,ReducedPressureCrossTiesClosedCoreSteamFlowrate(4Inch)HighTemperature,ReducedPressureCrossTiesClosedHotSpotHeatTransferCoefficient(4Inch)HighTemperature,Reduced114.3.2-5414.3.2-55PressureCrossTiesClosed14.3.2-56HotSpotFluidTemperature(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-57TotalBreakFlow(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-58IntactLoopPumpedSIFlow(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-59HotRodPo~erDistribution3413MWTSICrossTiesClosed14.3.2-60'RCSPressure(3Inch,3%'SSVTolerance)HighTemperature,ReducedPressure14.3.2-61CoreMixtureLevel(3Inch,3%MSSVTolerance)HighTemperature,ReducedPressure14.3.2.6214.3.2-63PeakCladTemperature(3Inch,3:MSSVTolerance)HighTemperature,ReducedPressurePCoreOutletSteamFlowRate(3Inch,3%MSSVTolerance)HighTemperature,.ReducedPressure14.3.2-64HotSpotRodSurfaceHeatTransferCoefficient(3Inch,3%MSSVTolerance)HighTemperature,ReducedPressure14-xxiiiJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)Ficire'~Ti114.3.2-65HotSpotFluidTemperature(3Inch,3%MSSVTolerance)HighTemperature,ReducedPressure14.3.2-66'oldLegBreakMassFlowRate(3Inch,3%MSSVTolerance)HighTemperature,ReducedPressure14.3.2-67SafetyInjectionMassFlowRate(3Inch,3%MSSVTolerance)HighTemperature,ReducedPressure14.3.2-68HotRodPowerDistributionHighTemperature,ReducedPressure14.3.2-69RCSPressure(4Inch,3~MSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-70CoreMixtureLevel(4Inch,3cMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-7114.3.2-72PeakCladTemperature(4Inch,3%MSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpenCoreOutletSteamFlowRate(4Inch,3vMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-73HotSpotRodSurfaceHeatTransferCoefficient(4Inch,3%MSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-74HotSpotFluidTemperature(4Inch,3~MSSVToleranceHighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-75ColdLegBreakMassFlowRate(4Inch,3%MSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-76SafetyInjectionMassFlowRate(4Inch,3%MSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.3-114.3.3-214.3.3-314.3.3-414.3.3-514.3.3-6LoopLayoutandGlobalCoordinatesRPVShellsubmodelRPVSupportModelCoreBarrelSubmodelInternalsSubmodelHydrodynamicMassesinVessel/BarrelDowncomerAnnulusUnit214-xxivJuly1997 CHAPTER14LISTOFFIGURES(Cont'd)Ficiure~Tile14.3.3-714.3.3-814.3.7-1NavePathforDepressurizationWavesEnteringRPVInletNozzle(ColdLeg)NavePathforDepressurizationWavesEnteringRPVOutletNozzle(HotLeg)FFrequencyof;-SignificantFlawExtensionforLongitudinalFlawsinaTypicalWestinghousePWRUni"2t14-xxvJuly1997
PageVOLUMEIChapter1,IntroductionandSummaPacap:1.0-11.0-21.0-31.1-11.1-21.1-3Fig.1-11.2-11.2-21.2-31.2-41.2-51.2-61.2-71.2-81.2-91.2-101.2-111.3-11.3-21.3-31.3-41.3-51.3-61~371.3-81.3-9Fig.1.3-1Fig.1.3-2Fig.1.3-3Fig.1.3-4Fig.1.3-5Fig.1.3-6Fig.1.3-7Fig.1.3-8Fig.1.3-9Fig.1.3-10Fig.1.3-111.4-11.4-21.4-31.4-41.4-51.4-61.4-71.4-81.4-91.4-101.4-11DeletedDate1988199419891996198219821982ORIG199319931993199119951989198919891997198919971982198219821984199619821982199419821995199019901990199019901996199719961996198219911991198719871991198219911991198219871991 l0 PageVOLUMEIChapter1InrductionandSummaPacap1.4>>121.4-131.4-141.4-151.4-161.4-171.4-181.4-191.4-201.4-211.4-221.4-231.4"241.4-251.4-261.5-11.6-01.6-11.6-21.6-31.6-41.6-51.6-61.6-71.6-81.6-91.6-101.6-111.6-121.6-131.6-14l.6-151.6-161.6-171.6-181.6-191.6-201.6-211.6-221.6-231.6-241.6-251.6-261.6-271.6-281.6-291.6-301.6-311.6-321.6-33l.6-341.6-35Date19911994199419911993198719871994199219911991199119911991199119821984198319831982198219831982'9831982198219831982198319821985198519851985198519921985198519851985198519921989198919891989198919891989198919891989
Page3VOLUMEIChapter1IntroductionandSummar~Pe~D"e1.6-361'.6-371.6-381.6-391.6-401.6-411.6-421.6-431.6-441.6-451.6-461.6-471.6-481.7-11.8-11.9-11989198919841989198919901989198919891989198919911993199419971982
Page4voLILLEIChapter2SiteandEnvironmenFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacap.2.1-12.1-22.1-32.1-42.1-52.1-62.1-72.1-82.1-92.1-102.1-112.1-122.1-132.1-142.)-152.1-162.1-172.)-182.1-192.1-20.2.1-212.1-222.1-232.1-242.1-252.1-262.1-272.1-282.1-292.1-12.1-22.1-32.1-42.1-4a2.1-4b2.1-52.1-62.1-6a2.1-6b2.1-72.1-7a2.1-7b2.1-82.1-8a2.1-8b2.1-92.1-102.2-12.2-22.2-32.2-42.2-52.2-62.2-7DeletedDeletedDeletedDaat1996199719971997199719971996199719951997199519971995199519951995199519951995199519951995199519951995199519961996199719821982199619821982199619951995199519951995199519951995199519951993)9931994199319951995199519951993
Page5Chapter2SitandEnvironmenVOLUMEIFig.Fig.Fig.Fig."Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae2.2-82.2-92.2-102.2-112.'2-122.2-132.2-142.2-152.2-162.2-172.2-182.2-192.2-12.2-22.2-32.2-42.2-52.2-62.2-72.2-82.2-92.2-102.2-112.2-122.2-132.2-142.2-152.2-162.2-172.2-182.2-192.2-20'.2-212.2-222.2-232.3-12.3-22.3-32.3-42.3-52.3-12.3-22.4-12.4-22.4-32.4-42.4-52.4-62.5-12.5-22.5-32.5-42.5-52.5-62.5-71997199419931993199319931993199319931993199319931982199319931993199319931993199319931993199319931982198219821982198219821982198219821982199219821995198219821982198219821982198419961982198819821982198219821982198219821982 Page6VOLUMEIChapter2SiteandEnvironmentPacaeDaatFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.2.5-82.5-92.5-12.5-1a2.5-22.5-32.5-3a2.5-3b2.5-3c2.5-3d2.5-3e2.5-3f2.5-3g2.5-3h2.5-3i2.5-332.6-12.6-22.6-32.6-42.6-52.6-62.6-6a2.6-72.6-82.6-92.6-102.6-112.6-122.6-12a2.6-132.6-142.6-152.6-162.6-172.6-182.6-192.6-202.6-212.6-222.6-232.6-242.6-252.6-262.6-272.6-282.6-292.6-302.6-312.6-322.6-332.6-342.6-352.6-362.6-371989198919821996198219821982198219821982198219821982198219821982199319921992199219921997199719971992199219921993199719971993199719971992199319931993199319931993199219921'992199319921992199219931993199219931993199219921992 Page7VOLUMEIChapter2SiteandEnvironmenFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.~Pe2.6-382.6-392.6-402.6-412.6-422.6-432.6-442.6-44a2.6-452.6-462.6-472.6-482.6-492.6-502.6-512.6-522.6-532.6-542.6-552.6-562.6-572.6-582.6-592.6-12.6-22.6-32.6-42.6-52.6-62.6-72.6-82.6-92.6-102.6-112.6-122.7-12.7-2~Dte1992199219921996199219931997199719921992199219921992199219921992199219921992199219921992199219921982198219921992199219921997199219921997199219971997 Chapter2SieandEnvironmentVOLUMEIPacaeDatePage82.8-12.8-22.9-1,2.9-22.9-32.9-42.9-52.9-62.9-72.9-82.9-92.9-102.9-112.9-122.9-132.9-142.9-152.9-162.9-172.9-182.9-192.9-20'.9-212.9-222.9-232.9-242.9-252.9-262.10-12.10-2198919821982198219821992199019831991199419951994199419941994199419941994199519951994199419941994199419941994199419961982
Page9VOLUMEIEChapter3ReactorUnit1~Pa3.1-13.1-23.1-33.1-43.1-53.1-63.1-73.1-83.1-93.1-103.1-113.1-123.1-133.1-143.1-15312-13.2-23.2-33.2-43.2-53.2-63.2-73.2-83.2-g3.2-103.2-113.2-123.2-133.2-14"'3.2-153.2-163.2-173.2-183.2-193.2-203.2-213.2-223.2-233.2-243.2-253.2-263.2-273.2-283.2-293.2-303.2-31Date1997199219961994199419941994199419941994199219941994199619961996198219941982198619821982198219821982199419961996199619821982198219961982198219821982198219821982198219821982198219821995
Page10VOLUMElIChapter3ReactrUni1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.3.2.1-73.2.1-83.2.1-93.2.1-103.2.1-113.2.1-123.2.1-133.2.1-143.2.1-153.3-13.3-23.3-33.3-43.3-53.3-63.3-73.3-83.3-93.3-103.3-11Palp:3.2-323.2-333.2-343.2-353.2-363.2-373,.2-383.2-393.2-403.2-413.2"423.2-433.2-443.2-453.2-463.2-473.2-483.2-493.2-503.2-513.2-5?3.2-533.2-543.2-553.2-563.2-57Fig.3.2.1-1Fig.3.2.1-2Fig.3.2.1-3Fig.3.2.1-4Fig.,3.2.)-5Fig.3.2.1-6~Dte1982198219831982198219821982198219821982198219821983198219871987199419951995199519951995199519951995199519821982198219821982198219821982198219821982198219821982199619971992199219821992199219831983198419901987 Page11VOLUMEIIChapter3ReactrUnit1Fig.Fig.Fig.-Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae3.3-123.3-133.3-143.3-153.3-163.3-173.3-183.3-193.3-203.3-213.3-223.3-233.3-243.3-253,3-263.3-273.3-283.3-293.3-303.3-313.3-323.3-33DELETED3.3.3.-13.3.1-23.3.1-33.3.1-43.3.1-113'.1-123.3.1-133.3.1-143.3.1-153.3.1-163.3.1-173.4-13.4-23.4-33.4-43.4-53.4-63.4-73.4-83.4-93.'4-103.4-113.4-123.4-13Date199619821996199219921992199219921992199219921992199219931989'199019951990199419901996199519821984198419841984198419841984198419841992'1997199319931982198219821993199319931982199319871993
Page12VOLUMEI1Chapter3ReacorUnit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.3.4.1-43.4.1-4a3.4.1-53.4.1-63.4.1-73.4.1-83.4.1~93.5-13.5-23.5-33.5-43.5.1-13.5.1-23.5."1-33.5.1-43.5.1-53.5.1-63.5.1-73.5.1-83.5.1-93.5.1-103.5.1-1)3.5.1-123.5.1-133.5.1-143.,5.1-153.5.1-163.5.1-173.5.1-183.5.1-193.5.1-203.5.1-213.5.1-223.5.1-233.5.1-243.5.1-253.5.1-263.5.1-273.5.1-283.5.1-293.5.1-30Pacae3.4-143.4-153.4-163.4-173.4-183.4-193.4-203.4-213.4.223.4.233.4.243.4.25Fig.3.4.1-1Fig.3.4.1-2Fig.3.4.1-,3~De19931983198219821982198219821982198919891989198919821982198219821982198219821982198219821997199619961996199719951995199619961996199619931996199619961997199619971996199619971996199719961996199619961996199619961996199619961996 Page13~VLUMRIIChapter3Reactorni)Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigFigFigFigPacae3.5.1-313.5.1-323.5.1-333.5.1-343.5.1-353.5.1-363.5.1-373.5.)-13.5.1-23.5.1-33.5.1-43'.1-53.5.1-5a3.5.1-63.5.1-73.5.1-83.5.1-93.5.2-13.5.2-23.5.2-33.5.2-43.5.2-53.5.2-63.5.2-73.5.2-83.5.2-93.5.2-)3.5.2-23.5.3-13.5.3-23.5.3-3'3.5.3-43.5.3-53.5.3-63.5.3-73.5.3-83.5.3-93.5.3-103.5.3-113.5.3-123.5.3-)33.5.3-143,.5.3-153.5.3-163.5.3-173.5.3-183.5.3-13.5.3-23.5.3-3~Dat1996199719961997199619961996199019901990199019901992199219921996199619941992199619971996199619971996199619961995199719921990199019921992199319901992199319901990199219911992199219901992199019901990
Page14,VOLUMEIIChapter3ReactorUnit2Pacae3.1-13.1-23.1-33.1-43.1-53.1-63.1-7'.1-83.1-93.1-103.1-113.1-123.1-133.1-143.1-153~2-13.2-23.2-33.2-43.2-53.2-63.2-73.2-83.2-93.2-103.2-113.2-123.2.133.2-143.2-14a'3.2-14b3.2-153.2-163.2-173.2-183.2-193.2-203.2-213.2-223.2-233.2-243.2-253.2-263.2-273.2-283.2-293.2-303.2-313.2-323.2-333.2-343.2-35~Dte19911991,1991199119911991199119911991199119941991199119911991198219911982199119911982199619911991199119911991,1991199419941994199719911991199119911991199119911991199119911991199119911991199419941995199519951995 Page15Chapter3ReaorUni2VOL[DEIIPacae3.2-363.2-373.2-383.2-393.2-403.2-413.2-423.2-433.2-443.2-453.2-463.2-473.2-483.2-493.2-503.2-513.2-523.2-533.2-543.2-553.2-563.2-573.2-583.2-593.2-603.2-61'.2-623.2-633.2-643.2-65'.2-663.2-673.2-683.2-693.2-703.2-713.2-723.2-733.2-743.2-753.2-763.2-773.2-783.2-793.2-803.2-813.2-823.2-833.2-843.2-85~Dae19951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995
Page16Chapter3ReactorUnit2VOLUMEIIFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae3.2-863.2-873.2-883.2-893.2-903.2-913.2-923.2-933.2-943.2-953.2-13.2-23.2-33.2-43.2-53.2-Sa3.2-63.2-73.2-83.2-93.2-103.2-113.2-123.2-133'-143.2-153.2-163'-173.2-183.2-193.2-203.2-213>2-223.2-233.2-24Date199519951995199519951995199519951995199519911991199119911991199119911991198219821982198219821982Deleted19821982198219821990198219821982198219821982
Page17Chapter3VOLUMEIIIReaorni2Pacap3.3-13.3-23.3-33.3-43.3-53.3-63.3-73.3-83.3-93'-103.3-113.3-123.3-133.3-143.3-153.3-163.3-173.3-183.3-193.3-203.3-213.3-223.3-233.3-243.3-253.3-263.3-273.3-283.3-293.3-303.3-313.3-323.3-333.3-343.3-353.3-363.3-373.3-383.3-393.3-403.3-413.3-423.3-433.3-443.3-453.3-463.3-47Date199119911991199719911991199119911993199719971995199119911991199119911991199$19911996199119921995199119911991199519911991199119911991'9911993199119911991199119911991199119911995199119911991 VOLUMEIlIPage18Chapter3ReactrUni2Pacae3.3-483.3-493.3-503.3-513.3-523.3-533.3-543.3-553.3-563.3-573.3-583.3-593.3-603.3-613.3-623.3-633.3-643.3-653.3-663.3-673.3-683.3-693.3-70Fig.3.3-1Fig.3.3-2Fig.3.3-3Fig.3.3-4Fig.3.3-5Fig.3.3-6Fig.3.3-7Fig.3.3-8'Fig.3.3-9Fig.3.3-10Date199119911991199119911991199119911991199119911991199119911997199719971995199119911991199119911991199119911991199119911991199119911991
Page19Chapter3ReactorUnit2VOLUMEIIIFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pa<ac3.3-113.3-123.3-133.3-143.3-153.3-163.3-173.3-183.3-193.3-203.3-213.3-223.3-233.3-243.3-253.3-263.3-273.3-283.3-293.3-303.3-313.3-323.3-333.3-343.3-353.3-363.3-373.3-383.4-13.4-23.4-33.4-43.4-53.4-63.4-73.4-83.4-93.4-103.4-11~Dte199119911991199119911991199119911991199519911991199119911991199119911991199119911991199119911991199119911991199119821991199119911993199119911991199119921991 Page20'hapter3RctorUnit2VOLUMEIII~acae3.4-123.4-133.4-143.4-153.4-163.4-173.4-18Deleted3.4-19Deleted3.4-203.4-213.4-223.4-233.4-243.4-253.4-263.4-273.4-283.4-293.4-303.4-313.4-323.4-333.4-343.4-353.4-363.4-373.4-383.4-393.4-403.4-413.4-423.4-433.4-443.4-453.4-463.4-473.4-483.4-493.4-503.4-513.4-523.4-533.4-543.4-553.4-563.4-573.4-583.4-593.4-60~Dte1991199119911993199119971997199719971991199119931991199319911991199119911993199119931991199119911991199119911991199319911991199219911991199319911991199119911992199119911991199119911991199119911991
Page21Chapter3ReatorUni2VOLUMEIIIPacaP,~Dae3.4-613.4-623.4-633.4-643.4-653.4-663.4-673.4-683.4-693.4-703.4-713.4-72Fig.3.4-1Fig.3.4-2Fig.3.4-3Fig.3.4-4Fig.3.4-5Fig.3.4-6Fig.3.4-7Fig.3,.4-8Fig.3.4-9Fig.3.4-10Fig.3.4-11'ig.3.4-12Fig.3.4-13Fig.3'-143.5-13.5-23.5-33.5-41991199119911991199119921992199119911991199119911991'1991199119911991'99119911991199119911991199119911991Deleted1996Deleted1996Deleted1996Deleted1996 0 Chapter4VLUMEIIIRtorCoolantSsemPacaePageDate224.1;14.1-24.1-34.1-44.1-54.1-64.1-74.1-84.1-94.1-104.1-114.1-124.1-134.1-144.1-154.1-164.1-17'.1-184.1-194.1-204.1-214.1.224.1-234.1-244.1-254.1-264.1-274.1-284.1-294.1-304.1-314.1-324.1-334.1-344.1-354.1-364.1-374.1-384.1-394.1-404.1-414.1-424.2-14.2-24.2-34.2-44.2-54.2-64.2-74.2-84.2-94.2-104.2-114.2-1219911991198219821982"1982198219821982198219821990199019901990199119821982198919821982199719971982199719971997199719911997199719971989'99619961996,1989198919891991199119961982198219821989198219821996'19821994198219891989 Page23Chapter4VOLUMEIIIRcorCoolantstemFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae4.2-134.2-144.2-154.2-164.2-174.2-18,4.2-194.2-204.2-214.2-224.2-234.2-244.2-24a4.2-254.2-264.2-27,4.2-284.2-294.2-304.2-314.2-324.2-334.2-344.2-354.2-364.2-374.2-384.2-394.2-404.2-414.2-14.2-1A4.2-24.2-2A4.2-34.2-44.2-4A4.2-54.2-64.2-74.2-84.2-94.2-9Ref.(4pp)4.3-14.3-24.3-34.3-44.3-54.3-64.3-74.3-84.3-9Date1989198219821982199519831991199119911997,198219971997198219951982198619821982198219961982198719871987198919891989199619951984199619821982198219821989198219821982198219821982198219821982198219821982199019821982 P PageChapter4VOLUMEIIIReactoroolantSsemFig.Fig.Fig.Fig.Fig.Fig.Fig.Pa<ac4.3-104.3-114'-124.3"134.3-144.3-154.3-164.3-174.3-184.3-194.3-204.3-214.3-'224.3-234.3-244.3-254.3-264.3-274.3-284.3-294.3-304.3-314.3-324.3-334.3-344.3-354.3-14.3-24.3-34.3-44.3-54'.3-64.3-74.4-14.4-24.4-34.5"14.5-24.5-34.5-44.5-54.5-64.5-74.5-84.5-94.5-104.5-114.5-12~Dat19821989198919891989198919891989198919891989198919891989198919891989199019901989198919901990199019901989198219821982198219821990199,0198619881986198219961982198219961996199619961996199619961996 Page25Chapter4VQLUMEIIIRectrClantternPacae4.5-134.5-144.5-154.5-164.5"174.5-184.5-194.5-204.5-214.5-224.5-234.5-244.5-254.5-264.5-274.5-284.5-29Fig.4.5-1Fig.4.5-2Fig.4.5-2aFig.4.5-3Date19961996199619961996199619961996'99619961996199619961989,1989198919901982198219961982 Page26Chapter5ContainmenstemVOLUMEIVPacae5.0-15.1-15.1-25.1-35.1-45.1-55.1-65.2-15.2-25.2-35.2-45.2-55.2-65.2-75.2-85.2-95.2-105.2-11.5.2-125.2-135.2-145.2-155.2-165.2-175.2-185.2-195.2-205.2-215.2-225.2-235.2-245.2-255.2-265.2-275.2-285.2-295.2-305.2-315.2-325.2-335.2-345.2-355.2-365.2-375.2-385.2-395.2-405.2-415.2-425.2-435.2-445.2-451989198719821982198219891989198919821982198219821986198219901986498219821982199719821982198219821982198219821982198219821982198219901982198719821982198719871987198219871987198819871987198719871995198719901989
Page27Chapter5nainmnstm~VLUMEXVPacae5.2-465.2-475.2-485.2-495.2-505.2-515.2-525.2-535.2-545.2-555.2-565.2-575.2-585.2-595.2-605.2-615.2-625.2-635.2"-645.2-655.2-665.2-675.2-685.2-695.2-705.2-715.2-725.2-735.2-745.2-755.2-765.2-775.2-785.2-795.2-805.2-815.2-825.2-835.2-845.2-855.2-865.2-875.2-885.2-895.2-905.2-915.2-925.2-935.2-945.2-95~Dae1989198919821988198919891987'995198819891990198719871991198919881987198719871987198719951988198819871988198719871987198719871988198819901991199019901990199019901990199019901993199019901990199019901990 Page28Chapter5ntainmntsemVOLUMEIVFig.Fig.Fig.Fig.,Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.~Pae5.2-965.2-975.2-985.2-995.2-1005.2-1015.2-1025.2-1035.2-1045.2-1055.'2-1065.2-1075.2-1085.2-1095.2-1105.2-1115.2-1125.2-113S.2-1145.2-1155.2-1165.2-1175.2-1185.2-1195.2-1205.2-1215.2-1225.2-15.2-25.2-35.2-45.2-55.2.2-15.2.2-1A5.2.2-25.2.2-2A5.2.2-35.2.2-45.2.2-4A5.2.2-4B5.2.2-55.2.2-65.2.2-6A5.2.2-6B5.2.2-6C5.2.2-6D5.2.2-75.2.2-85.2.2-95.2.2-105.2.2-10ADate19901990199019901990199019901990199019901990199019901990199019951990199119901990%99019901990199019901990199019821982ORIG198219881982198219821982,198219821982198219821982198219821982198219821982198219821982 Page29Chapter5ConainmentstemVOLUMEIVFig.Fig.Fig.Fig.Fig:Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigFigFig.Fig.Fig.Fig.FigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Parcae5.2.2-115.2.2-11A5.2.2-125.2.2-12A5,.2.2-135.2.2-145.2.2-155.2.2-165.2.2-175.2.2-185.2.2-195.2.2-205.2.2-215.2.2-225.2.2-235.2.2-245.2.2-255.2.2-265.2.2-275.2.2-285.2.2-295.2.2-305.2.2-315.2.2-325.2.2-335.2.2-345.2.2-355.2.2-365.2.2-375.2.2-385.2.2-395.2.2-405.2.2-415.2.2-425.2.2-435.2.2-445.2.2-455.2.2-465.2.2-475.2.2-485.2.2-495.2.2-505.2.2-515.2.2-51A5.2.2-51B5'.2-51C5.2.2-51D5.2.2-51E5.2.2-525.2.2-52A5.2.2-53~Dat19821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982"1982 Page30Chapter5ContainmentSstemVOLUMEIVFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.5.2.2-54B5.2.2-555.2.2-55A5.2.2-565.2.2-56A5.2.2-575.2.2-57A5.2.2-585.2.2-58A5.2.2-595.2.2-59A5.2.2-59B5.2.2-59C5.2.2-59D5.2.2-59E5.2.2-605.2.2-60A5.2.2-60B5.2.2-60C5.2.2-615.2.2-625.2.2-635.2.2-645.2.2-655.2.2-65A5.3-15.3-25.3-35.3-45.3-55.3-65.3-75.3-85.3-95.3-105.3-115.3-125.3-135.3-145.3-155.3-165.3-175.3-185.3-195.3-205.3-215.3-225.3-23PacaeFig.5.2.2-54Fig.5.2.2-54A~Dat19951982198219821982198219821982198219821982198219821982198219821982199119911982198219821982198219821982198219971997199719821982199719821997198219971997199719971997199719971984199719971997199719971997 Chapter5ntainmenSstm~VOLEIVFig.Fig.Fig.Fig.Fig.Pacae5.3-245.3-255.3-265.3-275.3-285.3-295.3-305.3-315.3-325.3-335.3-345.3-355.3-365.3-15.3-25.3-2A5.3-35.3-45.4-15.4-25.4-35.4-45.4-55.4-65.4-75.4-85.5-15.5-25.5-35.5-45.5-55.5-65.5-75.5-85.5-95.5-105.5-115.5-125.5-13Page~Da19971982199719971997199719971988198219881989199319971982198619861997198219961995199519951995199519951997199719821987199719971996199719971992199219971987198731
Page32Chapter5ContainmnSstmVOLUMEIVPacae~Dat"5.5-145.5-155.5-165.5-17Fig.5.5-1Fig.5.5-2Fig.5.5-35.6-15.6-25.6-35.6-4Fig.5.6-15.7-15.7-25.7-35.7-45.7-55.7-65.7-75.7-8Fig.5.7-1Fig.5.7-21987199719971997198519851982199319931992198619971982198219821982198219971982ORIG19821982 Page33Chapter64VIILUMEIVEnineeredSfeFeares~Pa6.1-16.1-26.1-36.1-46.1-56.1-66.1-76.186.1-96.1-106.1-116.1"126.2-16.2-26.2-36.2-46.2-56.2-66.2-76.2-86.2-96.2-106.2-116.2-126.2-136.2-13a6.2-146.2-15.6.2-166.2-176.2-17a6.2-186.2-196.2-206.2-216.2-226.2-236.2-246.2-256.2-266.2-276.2-286.2-296.2-306.2-316.2-326.2-336.2-346.2-356.2-366.2-37Date1989198919891989198919891989198919971989198919891982198219971982199719971993199319881996199219971997199719971997199519971997199219821997199619901990199519821982198219821982199319931982199319821996'9971997 0hC PageChapter6VOLUMEIVEnineeredafetFeaturesFig.Fig.Fig.Fig.Fig.Fig.FigPacae6.2-386.2-396.2-406.2-416.2-426.2-436.2-446.2-456.2-466.2-476.2-486.2-496.2-506.2-516.2-16.2-1A6.2-26.2-36.2-46.2-56.3-16.3-26.3-36.3-46.3-56.3-66.3-76.3-86.3-96.3-106.3-116.3-126.3-136.3-146.3-156.3-166.3-17.6.3-186.3-1/DeletedDeletedDate199719971997199619931997199119931989198919911991198919961993199519821982199719971997199419971982199419821982198219861991198219821982198919911991,199219891982
Page35~VLUMEVChapter7InrumentationndControlPacae7.1-17.1-27.2-17.2-27.2-37.2-47.2-57.2-67.2-77.2-87.2-97.2-107.2-117.2-127.2-137.2-147.2-157.2-167.2-177.2-187.2-197.2-207.2-217.2-227.2-237.2-24'".2-25~--72-267.2-27a7.2-27b7.2-287.2-297.2-307.2-317.2-327.2-337.2-347.2-357.2-367.2-377.2-387.2-397.2-407.2-417.2-427.2-437.2-447.2-457.2-46Date1993198219961990199619821982199619961982199619961982198219961996198219821996199619821982199619961'996198219961996199619961982199219871996199619871987198719921997199519871996199619901987198719871990 VOLUMEVPage36Chapter7InstrumentationandControlFig.Fig.Fig.Fig.FigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae7.2-477.2-487.2-497.2-507.2-517.2-527.2-,537.2-547.2-557.2-567.2-577.2-587.2-597.2-607.2-617.2-627.2-637.2-647.2-657.2-667.2-677.2-687.2-697.2-707.2-717.2-1a7.2-1b7.2-1c7.2-1d7.2-27.2-37.2-47.2-57.2-67.2-77.2-87.2-97.3-1703-27.3-37.3-47.3-57.3-67.3-77.3-87.3-97.3-107.3-117.3-127.3-137.3-17.4-17.4-2DeletedDeletedDeletedDeletedDate1996198719871987,198719871987198919921989199019901991199219911997199119911991199119911991199719971997199619961996'199619821982198219821982198219821982198719971982198219971992198319821982,1990198219821982198219821997 0J' V~OLEVPage37Chapter7EnsrumenainandControlPacaeDateFig.Fig.Fig.Fig.Fig.Fig.7.5-17.5-27.5-37.5-47.5-57.5-67.5-77.5-87.5-97.5-107.5-117.5-127.5-137.5-147.5-157.5-167.5-177.5-187.5-197.5-207.5-217.5-227.5-237.5-17.5-27.5-37.6-17.6-27.6-37.6-47.6-57.6-17.6-27.6-37.7-17.7-27.7-37.7-47.7-57.7-67.7-77.7-87.7-97.7-107.7-117.8-17.8-219821982198219821997199719951987199719961982198219911982198219821982199119821997198919891989198219821982199119911991199119911986198219821982198219821982199519931991199119951986199619921996 Page38VIILUMEVChapter7InstrumnationandCntrolParcae7.8-37.8-47.8-57.8-67.8-77.8-87.8-97.8"107.8-117.8-127.8-137.8-147.8-157.8-16Date19921997199219921997199719941993199219921992199719971997 Page39VOLUMEVChapter8ElectriclSstemsFig.Fig.Fig.'ig.Fig.Fig.Fig.Fig.Fig.Fig~acae8.1-18.1-28.1-3'8.1-48.1-58.1-68.1-78.1-88.1-98.1-'18.1-1A8.1-1B8.1-2A8.1-2B8.2"18.2-18.3-18.3-28.3-38.3-48.3-58.3-68.3-78.3-88.3-98.3-108.3-118.3-18.3-28.3-38.4-18.4-28.4-38.4-18.5-18.5-28.6-18.6-219971982199019971997199719971997199719971997199619971997199719971997199719901997199019941994199019901990199019901990199419971997199719921997198219861995 Page40Chapter9VOLUMEVAxiliarandEmerencSsmsPacae9.1-19.1-29.1-39.1-49.2-19.2-29.2-39.2-49.2-59.2-69.2-79.2-8.9.2-99.2-109.2-119.2-129.2-139.2-149.2-159.2-169.2-179.2-189.2-199.2-209.2-219.2-229.2-239.2-249.2-259.2-269.2-279.2-289.2-299.2-309.2-319.2-329.2-339.2-349.2-359.2-369.2-379.2-389.2-399.2-409.2-419.2-429.2-439.2-449.2-459.2-46'~Dae19821982199019821982198219911986199719971988198719821982199519821996199719821990199719921997199419971997199619881996199719971997199319931982198219931991199619821995198219901997199719971983199719891990 VOLUMEVPage41Chapter9AuxiliaandEmerencstemsPacae.9.2-479.2-489.2-499.2-509.2-519.2-529.2-539.2-549.2-559.2-569.2-579.2-589.2-59Fig.9.2-1Fig.9.2;2Fig.9.2-3Fig.9.2-4Fig.9.2-5Fig.9.2-69.3-"19.3-29.3-39.3-49.3-59.3-69.3-79.3-89.3-99.3-109.3-119.3-129.3-139.3-149.3-159.3-169.3-179.3-189.3-19Fig.9.3-19.4-19.4-29.4-39.4-49.4-59.4-69.4-79.4-89.4-99.4-109.4-119.4-129.4-13Fig.9.4-1~Dte19891997199719901997198919951990199719971989198919891992198219931982ORIG19821997198219941994199419941994199419871986199719901990199019901991199019901990199619971997199719971997198219971990198919951997198919961997 Page42Chapter9VOLUMEVAuxilindEmerencSstems~Pe9.5-19.5-29.5-39.5-49.5-59.5-69.5'-79.5-89.5-99.5-109.5-119.5-129.5-13Fig.9.5-19.6-19.6-29.6-39.6-49.6-59.6-6'.6-79.6-89.6-9Fig.9.6-1Fig.9.6-29.7-19.7-2a9.7-2b9.7-39.7-49.7-59.7-69.7-79.7-89.7-99.7-109.7-119.7-129.7-139.7-149.7-159.7-169.7-179.7-189.7-199.7-209.7-219.7-'229.7-239.7-249.7-259.7-269.7-279.7-289.7-29~Dae1985199719971997199619971997199219971990199719931993199519911983199719871987198819831983198219921987198219971997198219961996199719971997199719971997199719961996199619961994199419941994199419961996199719951995199519951995 Page43Chapter9VOLUMEVAuxiliandEmernSemsFig.Fig.Fig.Fig.Fig.Fig.Fig.Pacap9.7-309.7-319.7-329.7-339.7-349.7-359.7-369.7-379.7-389.7-399.7-19.7-29.7-39.7-49.7-59.8-19.8-29.8-39.8-49.8-59.8-69.8-79.8-89.8-99.8-109.8-119.8-129.8-139.8-149.8-159.8-169.8-179.8-189.8-199.8-209.8-219.8-2298-239.8-249.8-259.8-269.8-279.8-289.8-299.8-309.8-319.8-329.8-339.8-349.8-359.8-369.8-379.8-389.8-399.8-409.8-19.8-2Date199519961995199419941994199419941994199419911994199619961994199419951995199319951993199319941993199319931993199419931993199719971993199419931993199319971997198719971987198719941997199319891989199119891989198919891993198919931982
Page44Chapter9VOLUMEVAuxiliaandEmerencSs~tmsPacaeFig.9.8-3Fig.9.8-4Fig.9.8-5Fig.9.8-6Fig.9.8-79.9-19.9-29.9-39.9-4"9.9-59.9-69.9-79.9-89.9-9Fig.9.9-1Fig.9.9-29.10-19.10-29.10-39.10-4Fig.9.10-1Date199119931993198519821992199719971997199719911991199719971997198919971997199719971986 Page45VOLUMEVISteamandPowerConversionChapter10SsemFig.Fig.FigFigFigFigFigFigFigFigFigFigFigFigFigFigPacae10.1-110.1-210.2-110.2-210.2-310.2-410.2-510.2-610.2-110.2-1A10.2-1B10.2-1C10.3-110.3-210.3-310.3-410.3-510.3-610.3-110.3-1A10.4-110.4-210.4-310.5-110.5-210.5-310.5-410.5-510.5-610.5-710.5-810.5-110.5-210.5-2A10.5-'310.5-3A10.5-410.5-4A10.5-510.5-5A10.6-110.6-210.6-310.6-410.6-510.6-1~Dte19921982199719831985199719851988198419911982199219861982198619941995198419841984199119851991198619911982'9871990198919971991199519821982198219821991199119901982199519821982199619951982 Page46VOLUMEVEChapter10SteamandPowerConversionSsemPacae10.7-110.7-210.8-110.9-110.10-110.11-110.11-210.11-3Date19971982198219971997199719971983 Page47Chapter11VOLUMEV)WasteDisposal'andRdiatinProecionSstemFigPacae11.1-111.1-211.1-311.1-411.1-511.1-611.1-711.1-811.1-911.1-1011.1-1111.1-1211.1-1311.1-1411.1-15)1.1-16)$.1-1711.1-1811.1-1911.1-2011.1-2111.1-2211.1-2311.1-2411.1-2511.1-1FigFigFigFig11.)-2A11.)-'2B)1.1-311.1-411.2-111.2-211.2-311.2-411.2-511.2-611.2-711.2-811.2-911.2-)011.2-11)1.2-1211.2-1311.2-1411.2-151).2-1611.2-17Fig;11.1-2198519921997198319961994199719831996198219941993198519941985198219941996198919901990199319891989198919921994198219931995199219951983199519951982198219971997199619961995)99519891997199519891989 Page48ChapterllVOLUMEVIWasteDisposalandRadiaionProtectionserrPaaeFig.11.2-111.3-111.3-2,11.3-311.3-411.3-511.3-611.3-711.3-811.3-911.3-10'11.3-1111.3-1211.3-1311.3-,1411.3-1511.3-1611.3-17,11.3-18'1.3-1911.3-2011.3-21ll.3-2211.3-2311.3-2411.3-2511.4-111.4-211.4,-311.4-411.4-511.4-611.4-711.4-811.4-911.4-1013..4-1111.4-1211.5-111.5-211.5-311.5-411.5-511.5-6Fig.11.5-1DeletedDeletedDeletedDeletedDeletedDeletedDeleted~Da198219971997199719971997199719971997199719971997199719971997199719921997199719971997199719971997199019971997199719961997199719971997199719971997199719951987199019831989199719891983 I Page49Chapter11VOLUMEVIWasteDisposalandRadiaionProtecionSstemPacae11.6-111.6-211.6-311.6-4Fig.11.6-1Fig.11.6-2aFig.11.6-2bFi'g.11.6-2cDate19951997199719961997198619861990 Page50VOLUMEVIChapter12Condutof0erations~Pe12.1-112.2-112.3-112.4-112.5-112.6-112.6-212.7-1Date19971994198819831997199719971992
PageChapter13VOLUMEVI'\InitialTestsand0erationPacae13.1-113.1-213.1-313.1-413.1-513.1-613.1-713.1-813.1-913.1-1013.1-1113.1-1213.1-1313.2-113.2-213.2-313.2-413.2-513.2-613.2-713.2-813.2-913.2-1013.2-1113.2-1213.2-1313.3-113.3-213.3-313.3-413.3-513.3-613.3-713.3-813.4-1~Dae19911991199119821989198919911989199119891991198919891982199119911991199119911991199119891991199119911991198219911982199119821989199119911983 0 Page52VOLUMEVIIChapter14afetAn1isUnit)Pacae14~0-114.0-214.0-314.1-114.1-214.1-314.1-414.1-514.1-614.1-714.1-814.1-914.1-1014.1-10a14.1-1114.1-1214.1-1314.1-1414.1-1514.1-1614.1-1714.1-1814.1-1914.1-2014.1-2114.1-22Fig.14.)-)Fig.14.1-2Fig.14.1-3Fig.14.1-4Fig.-14.1-5Fig.14.1-614.1.1-114.).1-214.1.1-314.1.1-414.1.1-5Fig.14.1.1-1Fig.14.1.1-214.1.2-114.1.2-214.1.2-314.1.2-414.1.2-514.1.2-614.1.2-7Fig.14.1.2-1Fig.14.1.2-2Fig.14.1.2-3Fig.14.1.2-4Fig.14.1.2-5Fig.14.1.2-6Fig.14.1.2-7Fig.14.1.2-8Fig.14.1.2-9~Dae1993199319931993199719971997199719971997199719971997199719961997199719971997199719971997199719971997199719971997199719971997199219931990199719901990199719971990199019971997199719971997199719971997199719971997199719971997 I0 Page53VOLUMEVIIChapter14SafetAnalsisUnit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.14.1.4-114.1.5-114.1.5-214.1.5-314.1.6-114.1.6-214.1.6-314.1.6-414.1.6-514.1.6-614.1.6-714.1.6-814.1.6-914.1.6-114.1.6-214.1.6-314.1.6-414.1.6"514.1.6-614.1.6-714.1.6-814.1.6-914.1.6-1014.1.6-1114.1.6-1214.1.7-114.1.7-214.1.7-314.1.7"114.1.7-214.1.8-114.1.8-214.1.8-314.1.8-414.1.8-514.1.8-614.1.8-114.1.8-214.1.8-314.1.8-414.1.8-5Pacae14.1.3-114.1.3-214.1.3-314.1.3-414.1.3-514.1.3-614.1.3-7Fig.14.1.3-1Fig.14.1.3-2~Dae1993199619921992199019901996199019901990199019921992199019971997199719971990199719971997199719971997199719971997199719971997Deleted1997Deleted1997Deleted19971990199019971982198219971997199719971997199719971997199719971997 Page54VOLUMEV))Chapter14feAnalsisUni1FigFig.Fig.Fig.FigFigFigFigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigPacae14.1.8-614.1.8-714.1.8-8.14.1.8-914.1.8-1014.1.8-1114.1.8-1214.1.9-114.1.9-214.1.9-314.1.9-114.1.9-214.1.10-114.1.10-214.1.10-314.1.10-414.1.10-514.1.10-614.1.10-714.1.10-8)4.1.10-914.1.10-114.1.10-214.1.10-314.1.10-414.1.10-514.1.10-614.1.10-714.1.10-814.1.11-114.1.11-214.1.11-314.1.11-414.1.11-114.1.11-214.1.11-314.1.11-414.1.11-514.1.11-614.1.11-714.1.11-814.1.12-114.1.12-214.1.12-314.1.12-414.1.12-114.1.12-214.1.13-114.1.13-214.1.13-314.1.13-414.1.13-514.1.13-6Date19971997199719971997199719971990199719901990199019931993199319931993199319931993199319931993199319931993199319931993199019931990199019901990199019901990199019901990199019901990199019901990199119911989198219951995 VOLUMEVIIPage55Chapter14SafetAnalsisUni1Fig.Fig.Fig.Fig.Fig.Fig.Pacae14.1.13-714.1.13-814.1.'13-914.1.13-1014.1.13-1114.1.13-1214.1.13-1314.1.13-1414.1.13-1514.1.13-16,14.1.13-1714.1.13-114.l.13-214.1.13-314.1.13-414.1.13-514.1.13-614.2.1-114.2.1-214.2.1-314.2.1-414.2.1-514.2.1-6a14.2.1-6b14.2.1-714.2.1-814.2.1-914.2.1-1014.2.1-1114.2.1-1214.2.1-1314.2.1-1414.2.1-1514.2.1-1614.2.1-17Deleted14.2.1-1814.2.2-114.2.2-1a14.2.2-214.2.2-314.2.2-414.2.3-114.2.3-214.2.3-314.2.3-414.2.4-114.2.4-214.2.4-314.2.4-414.2.4-514.2.4-614.2.4-714.2.4"814.2.4-9~Dae.199619961996199619961996199619961996199619901'982198219821982198219821990'199619951995199619971996199619951997199719951995199519951995199719951995199719971997199719971997199019901990199719971997199.719971997199719971997
Page56VOLUMEV?IChapter14SafAnalsisUnit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.14.2.5-114.2.5-214.2.5-314.2.5-414.2.5-514.2.5-614.2.5-714.2.5-814.2.5-914.2.5-1014.2.5-1114.2.5-114.2.5-214.2.5-314.2.5-414.2.5-514.2.5-614.2.5-714.2.6-114.2.6-214.2.6-314.2.6-414.2.6-514.2.6-614.2.6-714.2.6-814.2.6-914.2.6-1014.2.6-1114.2.6-1214.2.6-1314.2.6-1414.2.6-1514.2.6-1614.2.6-114.2.6-214.2.6-314.2.6-414.2.7-114.2.7-214.2.7-314.2.7-414.2.7-514.2.7-614.2.7-714.2.7-814.2.7-914.2.7-1014.2.7-1114.2.7-114.2.7-214.2.7-3Fig.14.2.4-1~Dae19821997199719901990199019971997199019901997199719971997199719971997199719971990199019901990199719901990199019901990199719971990199019971997199719971997199719901990199019901990199619961996199519951997198219821987 'Dr, Page57VOLUMEVIIChapter14SafetalsisUnit1PacaeFig.14.2.7-4Fig.14.2.7-514.2.7-614.2.7-714.2.7-8FigFigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.14.2.7-914.2.7-1014.2.7-1114.2.7-1214.2.8-114.3.1-114.3.1-214.3.1-314.3.1-414.3.1-514.3.1-5a14.3.1-614.3.1-714.3.1-814.3.1-8a14.3.1-914.3.1-1014.3.1-1114.3.1-1la14.3.1-1214.3.1-1314.3.1-1414.3.1-14a14.F1-1514.3.1-1614.3.1-1714.3.1-1814.3.1-1914.3.1-2014.3.1-21Deleted14.3.1-la14.3.1-.1b14.3.1-lcDate'9871982198219821982199019901990199019971997199719971997199719971997199719971997199719971997199719931997199719971997199719971997199719971997199719971997 0 Page58VOLUMEViIChapter14SafetAn1isUni1Fig.Fig.FigFigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.14.3.1-3f14.3.1-4a14.3.1-4b14.3.1-4c14.3.1-4d14.3.1-4e14.3.1-4f14.3.1-5a14.3.1-5b14.3.1-5c14.3.1-5d14.3.1-5e14.3.1-Sf14.3.1-6a14.3.1-6b14.3.1-6c14.3.1-6d14.3.1-6e14.3.1-6f14.3.1-7a14.3.1-7b14.3.1-7c14.3.1-7d14.3.1-7e14.3.1-7f14.3.1-8a14.3.1-Bb14.3.1-8cPaaeFig.14.3.1-1dFig.14.3.1-1eFig.14.3.1-1fFig.14.3.1-2'aFig.14.3.1-2bFig.14.3.1-2cFig.14.3.1-2dFig.14.3.1-2eFig.14.3.1-2fFig.14.3.1-3aFig.14.3.1-3bFig.14.3.1-3cFig.'14.3.1-3dFig.14.3.1-3eDate19971997-1997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997 Page59VOLUMEVIlChapter14SafetAnalsisUnit1FigFigFigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigPacae14.3.1-Sd14.3.1-Se14.3.1-8f14.3.1-9a14.3.1-9b14.3.1-9c14.3.1-9d14.3.1-9e14.3.1-9f14.3.1-10a14.3.1-10b14.3.1-10c14.3.1-10d14.3.1-10e14.3.1-10f14.3.1-11a14.3.1-lib14.3.1-11c14.3.1-11d14.3.1-lie14.3.1-3.1f14.3.1-12a14.3.1-12b14.3.1-12c14.3.1-12d14.3.1-12e14.3.1-12f14.3.1-13a14.3.1-13b14.3.1-13c14.3.1-13d14.3.1-13e14.3.1-13f14.3.1-1414.3.1-1514.3.1-1614.3.1-1714.3.1-1814.3.1-1914.3.1-2014.3.1-2114.3.1-2214.3.1-23DeletedDeletedDeletedDeleted~Dae1397199719971997'199719971997199719971997,199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997
VOLUMEVIIPage60Chapter14SfetAnalsisUnit1Pa<ac14.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3.2-7a14.3.2-7b14.3.2-7c14.3.2-7d14.3.2-7e14.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3'-1314.3.2-1414.3.2-1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-22Fig.14.3.2-1Fig.14.3.2-2Fig.14.3.2-3Fig.14.3.2-4Fig.14.3.2-5Fig.14.3.2-6Fig.14.3.2-7Fig.14.3.2-8Fig.14.3.2-9Fig.14.3.2-10Fig.14.3.2-11Fig.14.3'.2-12Fig.14.3.2-13Fig.14.3.2-14Fig.14.3.2-15Fig.14.3.2-16Fig.14.3.2-17Fig.14.3.2-18Fig.14.3.2-19Fig.14.3.2-20Fig.14.3.2-21Fig.14.3.2-22Fig.14.3.2-23Fig.14.3.2-24Fig.14.3.2-25Fig.14.3.2-26Fig.14.3.2-27Fig.14.3.2-28Dae1990199019901990199019961997199519951997199719971990199019961990199019901997199519951995199519951995199719971990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990 Page61VLUMEVIIIChapter.14SafetAnalsiUnit1Fig.Fig.Fig.Fig.'ig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigFigFigFigFigFigFigFig.Fig.Fig.Fig.FigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigFigFigFigFigFigFigFigPacae14.3.2-2914.3.2-3014.3.2-3114.3.2-3214.3.2-3314.3.2-3414'.2-3514.3.2-3614.3.2-3714.3.2-3814.3.2>>3914.3.2-4014.3.2-4114.3.2-4214.3.2-4314.3.2-4414.3.2-4514.3.2-4614.3.2-4714.3.2-4814.3.2-4914.3.2-5014.3.2-5114.3.2-5214.3.2-5314.3.2-5414.3.2-5514.3.2-5614.3.2-5714.3.2-5814.3.2-5914.3.2-6014.3.2-6114.3.2-6214.3.2-6314.3.2-6414.3.2-6514.3.2-6614.3.2-6714.3.2-6814.3.2-6914.3.2-7014.3.2-7114.3.2-7214.3.2-7314.3.2-7414.3.2-7514.3.2-7614.3.3-114.3.3-214.3.3-314.3.3-414.3.3-514.3.3-614.3.3-714.3.3-814.3.3-914.3.3-1014.3.3-11Daae19901990199019901990199019901990199019901990,1990199519951995199519951995'9951995199519951995199519951995199519951995199519951995199519951995199519951995199719971997199719971997199719971997199719941994199419941994199419941994199419941994 Page62.VOLUMEVIIIChapter14SafeAnalsiUnit1~Pae14.3.4-114.3.4-214.3.4-314.3.4-414.3.4-514.3.4-614.3.4-714.3.4-814.3.4-914.3.4-1014.3.4-1114.3.4-12,14.3.4-1314.3.4-1414.3.4-1514.3.4-1614.3.4-16a14.3.4-1714,3.4-1814.3.4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3.4-2414.3.4-2514.3.4-2614.3.4-2714'.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214.3.4-3314.3.4-3414.3.4-34a14.3.4-3514.3.4-3614.3.4-3714.3.4-3814.3.4-3914.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4-44a14.3.4-4514.3.4-4614.3.4-46a14.3.4-4714.3.4-4814.3.4-4914.3.4-5014.3.4-5114.3.4-52Date199719921992199219921992199219921997199219921997-199219971997199719971997199719921992199219921992199219921992199219921992199219921992'19921997199719921992199719971997199219971997199719971997199719971997199219921992199219921997
Page63VQLUMEVIIIChapter14SafeAnalsisUnit1Pa<acDate14.3.4-5314.3.4-5414.3.4-5514.3.4-5614.3.4-5714.3.4-5814.3.4-5914.3.4-6014.3.4-6114.3.4-6214.3.4-6314.3.4-6414.3.4-6514.3.4-6614.3.4-6714.3.4-6814.3.4-6914.3.4-7014.3.4-7114.3.4-7214.3.4-7314.3.4-7414.3.4-7514.3.4-7614.3.4-7714.3.4-7814.3.4-7914.3.4-8014.3.4-8114.3.4-8214.3.4-8314.3.4-8414.3.4-8514.3.4-8614.3.4-8714.3.4-8814.3.4-8914.3.4-9014.3.4-9114.3.4-9214.3.4-9314.3.4-9414.3.4-9514.3.2-9614.3.2-9714.3.4-9814.3.4-9914.3.4-10014.3.4-10114.3.4-10214.3.4-10314.3.4-10414.3.4-10514.3.4-10614.3.4-10714.3.4-10814.3.4-10914.3.4-11014.3-4-11119921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199719971992199719921992199719971997199719971997199719971997199219921992199219921992199219921992199219921992 Page64Chapter14VOLUMEVIIIafAnalsis(Unit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Parcae14.3.4-11214.3.4-11314.3.4-11414.3.4-11514.3.4-11614.3.4-11714.3.4-11814.3.4-11914.3.4-12014.3.4-12114.3.4-12214.3.4"12314.3.4-12414.3.4-12514.3.4-12614.3.4-12714.3.4-12814.3.4-12914.3.4-13014.3.4-13114.3.4-13214.3.4-13314.3.4-13414.3.4-13514.3.4-13614.3.4-13I14.3.4-13814.3.4-13914.3.4-14014.3.4-14114.3.4,-14214..3.4-14314.3.4-14414.3.4-14514.3.4-14614.3.4-14714.3.4-14814.3.4-14914.3.4-15014.3.4-15114.3.4-15214.3.4-15314.3.4-15414.3.4-15514.3.4-15614.3.4-15714.3.4-15814.3.4-15914.3.4-16014'-.3.4-16114.3.4-114.3.4-214.3.4-314.3.4-414.3.4-514.3.4-614.3.4-714.3.4-814.3.4-914.3.4-1014.3.4-llaDeleteDeleteDeleteDeleteDeleteDeleteDeleteDeleteDeleteDeleteDeleteDelete~Dat1992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199719971997199719971997199719971997199719971997199719971997199719971997199719921992199219921992199219921992199219921992199719971997199719971997 Page65Chapter14VOLUMEVIIISafetAnalisUnit1Fig.14.3.4-11bFig.14.3.4-12aFig.14.3.4-12bFig.14.3.4-13Fig.14.3.4-14Fig.14.3.4-15Fig.14.3.4-16Fig.14.3.4-17Fig.14.3.4-18Fig.14.3.4-19Fig.14.3.4-20Fig.14.3.4-21Fig.14.3.4-22Fig.14.3.4-23Fig.14.3.4-24Fig.14.3.4-25Fig.14.3.4-26Fig.14.3.4-27Fig.14.3.4-28Fig.14.3.4-29Fig.14.3.4-30Fig.14.3.4-31Fig.14.3.4-32Fig.14.3.4-33Fig.14.3.4-34Fig.14.3.4-35Fig.14.3.4-36Fig.14.3.4-37Fig.14.3.4-38Fig.14.3.4-39~Dae199719971997199219921992199219921992199219921992199219921992"'99219921992199219921992199219921992199219921992199219921992 Page66Chapter14VOLUMEVIIISaftAnalsisUnit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFigFig.Fig.Pacap,14.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4.4514.3.4-4614.3.4-4714.3.4-4814.3.4-4914.3.4-5014.3.4-5114.3.4-5214.3.4-5314.3.4-5414.3.4-5514.3.4-5614.3.4-5714.3.4-5814.3.4-5914.3.4-6014.3.4-6114.3.4-6214.3.4-6314.3.4-6414.3.4-6514.3.4-6614.3.4-6714.3.4-6814.3.4-6914.3.4-7014.3.4-7114.3.4-7214.3.4-7314.3.4-7414.3.4-7514.3.4-7614.3.4-7714..3.4-7814.3.4-7914.3.4-8014.3.4-8114.3.4-8214.3.4-8314.3.4-8414.3.4-8514.3.4-8614.3.4-8714.3.4-8814.3.4-8914.3.4-9014.3.4-9114.3.4-9214.3.4-93(2pp)Date199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199019921992199219921992199219921992199219921992199219921992
Page67VOLUMEIXChapter14SafetAnalsisUnit1Pacap.14.3.5-114.3.5-214.3.5-314.3.5-414.3'-514.3.5-614.3.5-714.3.5-814.3.5-914.3.5-1014.3.5-1114.3.5-1214.3.5-1314.3.5-1414.3.5"1514.3.5-1614.3.5-1714.3.5-1814.3.5-1914.3.5-2014.3.5-2114.3.5-2214.3.5-2314.3.5-2414.3.5-2514.3.5-2614.3.5-2714.3.5-2814.3.5-2914.3.5-3014.3.5-3114.3.5-3214.3.5-32a14.3.5-3314.3.5-3414.3.5-3514.3.5-3614.3.5-3714.3.5-3814.3.5-3914.3.5-40~Dat19971997198619821982198219821982198319821983198619821986198219971982198319821982198219821982198219961997199519951997199519951996199719901990199019901990199019901990
Page68VOLUMEEXChapter14SafetAnalsisUnit1Pacae14.3.5-4114.3.5-4214.3.5-43Fig.14.3.5-1Fig.14.3.5-2Fig.14.3.5-3Fig.14.3.5-4Fig.14.3.5-5Fig.14.3.5-614.3.6-114.3.6-214.3.6-314.3.6-414.3.6-514.3.6-614.3.6-714.3.6-814.3.6-914.3.6-1014.3.6-1114.3.6-1214.3.6-13',14.3.6-1414.3.6-1514.3.6-1614.3.6-1714.3.6-1814.3.6-1914.3.6-20~14.3.6-2114.3.6-2214.3.6-2314.3.6-2414.3.6-2514.3.6-2614.3.6-2714.3.6"2814'.3.6-2914.3.6-3014.3.6-3114.3.6-3214.3.6-3314.3.6-3414.3.6-3514.3.6-3614.3.6-37Date'1995199719951982198219821982198719871989198219911989198219821982198219821982199019901990199019901990199019901990199419901990199019901990199019911990199119971990199019901990199019901990
Page69VOLUMEIXChapter14afetAnalsisUnit1PacaeFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.14.3.6-814.3.6-914.3.6-1014.3.6-1114.3.6-1214.3.6-1314.3.6-1414.3.6-14A14.3.6-1514.3.6-'1614.3.6-1714.3.6-1814.3.6-1914.3.6-2014.3.6-2114.3.6-2214'.3.7-114.3.8-114.4.1-114.4.2-114.4.2-2'4.4.2-314.4.2-414.4.2-514.4.2-614.4.2-714.4.2-814.4.2-914.4.2-1014.4.2-1114.4.2-1214.4.2-1314.4.2-1414.3.6-3814.3.6-3914.3.6-4014.3.6-4114.3.6-4214.3.6-4314.3.6-4414.3.6-4514.3.6-4614.3.6-47Fig.14.3.6-1Fig.14.3.6-2Fig.14.3.6-6,Fig.14.3.6-7Date19901990199019901990199019901990199019901982198219901990199019901990199019901990199019901990199019901990199019901990199019931993199219921982198219821982199719821982198219821982198219871982
Page70VOLUMEIXChapter14Saf'etAnalsisUnit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.'ig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae14.4.2-1514.4.2-1614.4.2-1714.4.2-1814.4.2-1914.4.2-2014.4.2-2114.4.2-2214.4.2-2314.4.2-2414.4.2-2514.4.2-2614.4.2-2714.4.2-2814.4.2-2914.4.2-3014.4.2-3114.4.2-3214.4.2-3314.4.2-3414.4.2-3514.4.2-3614.4.2-3714.4.2-38,14.4.2-3914.4.2-4014.4.2-4114.4.2-4214.4.2-4314.4.2-114.4.2-214.4.2-314.4.2-414.4.2-514.4.2-614.4.2-714.4.2-814.4.2-914.4.2-1014.4.2-1114.4.2-1214.4.2-1314.4.2-1414.4.2-1514.4.2-1614.4.2-1714.4.2-1814.4.2-1914.4.2-2014.4.2-20A14.4.2-2114.4.3-114.4.3-214.4.3-3,Date198219971982198219821982198219951982199519821982198219901990199019901990199019901990199619941990199019901990199019901982198219821982198219821982199519821982198219821982198219821982198219821982198219951982199719971997
Page71VOLUMEIXChapter14SafetAnalsisUnit1Fig.Fig.Fig.Fig.Pacae14.4.3-414.4.3-514.4.4-114.4.4-214.4.4-314.4.4-414.4.4-514.4.4-614.4.4-714.4.4-814.4.4-914.4.4-1014.4.5-114.4.5-214.4.6-114.4.6-214.4.6-314.4.6-414.4.6-514.4.6-614.4.6-714.4.6-814.4.6-914.4.6-1014.4.6-1114.4.6-1214.4.6-1314.4.6-1414.4.6-1514.4.6-1614.4.6-1714.4.6-1814.4.6-1914.4.6-2014.4.6-2114.4.6-2214.4.6-2314.4.6-2414.4.6-2514.4.6-2614.4.6-2714.4.6-2814.4.6-2914.4.6-3014.4.6-3114.4.6"3214.4.6-3314.4.6-3414.4.6"3514'.4.6-3614.4.6-3714.4.6-3814.4.6-3914.4.6-4014.4.6-4114.4.6-4214.4.6"114.4.6-214.4.6-314.4.6-4Date1997199019951990199019971990199019901990199019901990199019941994199619901993199019961990,19901993199319931993199319931990199419941994199419941994199419941994199419941994199419941994199419941994199419941994199419941994199419941982198219821982 Page72VOLUMEEXChapter14SafetAnalsisUnit1Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.-Fig.Fig.Jpacae14'.6-514.4.6-614.4.6-714.4.6-814.4.6-914.4.6-9a14.4.6-9b14.4.6-1014.4.6-10a14.4.6-1114.4.6-11a14.4.7-114.4.7-214.4.8-114.4.9-114.4.9-214.4.9-314.4.9-114.4.9-214.4.10-114.4.10-214.4.10-314.4.10"414.4.10-514.4.10-614.4.11-114.4.11-214.4.11-314.4.11-414.4.11-514.4.11-614.4.11-714.4.11-814.4.11-1914.4.11-2014.4.11-2114.4.11-2214.4.11-2314.4.11-2414.4.11-2514.4.11-2614.4.11-2714A-114A-214A-314A-414A-514A"614A-714A"814A-914A-10DeletedDate19931996198719871993199319931993199319931992199019901990199019961990198219821990199019971990199019971996199019971990199019901996199619971990199019901990199019901997199719921982198219821982198219821982~19821982
Page73VOLUMEIXChapter14SafeAnalsisUnit1TableTableTableFig.Fig.Fig.~Pae14A-1114A-1214A-1314A-1414A-1514A-1614A-1714A-1814A-1914A-2014A-2114A-2214A-2314A-2414A-2514A-2614.G-114.G-214.G-314.G-414.G-514.G"614.G-714.G-814.G-914.G-1014.G-1114.G-1214.G-114.G-214.G-314.G-114.G-1Notes14.G-2Date19821992199219921992199319931992199219921992199219921992199219921987198719871987198719871987198719871987198719881987198719871987(3pp)19881987
Page74VOLUMEXChapter14a"etAnalsisUnit2Pacae14.0-114.0-214.0-314.0-414.0-514.1-114.1-214.1'-114.1.0-214.1.0-314.1.0-414.1.0-514.1.0-614.1.0-714.1.0-814.1.0-914.1.0-1014.1.0-1114.1.0-1214.1.0-1314.1.0-1414.1.0-1514.1.0-1614.1.0-1714.1.0-1814.1.0-1914.1.0-2014'.1.0-2114.1.0-2214.1.0-2314.1.0-2414.1.0-2514.1.0-2614.1.0-2714.1.0-2814'.0-2914.1.0-3014.1.0-114.1.0-214.1.0-314.1.0-414.1.0-5a4.a.o-614.1.0-714..1.1-114.1.1-214.1.1-314.1.1-414.1.1-514.1.1-614.1.1-714.1.1-8FigFigPigFigFigFigFigPig.14.1.1-1~Dte1997199519951995199519931997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199719971997199319931993199319931993199319931991199a199719911991199119911992
Page75Chapter14VOLUMEXSafeAnalsiUnit2PacaeFig.14.1.1-214.1.2A-114.1.2A-214.1.2B-114.1.2B-214.1.2B-314.1.2B-414.1.2B-514.1.2B-614.1.2B-7Fig.14.1.2B-1Fig.14.1.2B-2Fig.14.1.2B-3Fig.14.1.2B-4Fig.14.1.2B-5Fig.14.1.2B-6Fig.14.1.2B-7Fig.14.1.2B-8Fig.14.1.2B-914.1.3-114.1.3-214.1.3-314.1.3-414.1.3-514.1.3-614.1.3-7Fig.14.1.3-1Fig.14.1.3-214.1.4-114.1.5-114.1.5-214.1.5-314.1.5"414.1.5-5DeletDeletee~Dte1992199519951991199319911991199119911991199119911991199119911991199119911991199319961995199519951995199619911991199119911991199119911991 Page76VOLUMEXChapter14~SfetAnalsisUnit2Pacae14.1.5-614.1.5-714.1.6-114.1.6-214.1.6-314.1.6-414.1.6-514.1.6"614.1.6-714.1.6-814.1.6-914.1.6-1014.1.6-1114.1.6-1214.1.6"13Fig.14.1.6-1Fig.14.1.6-2Fig.14.1.6-3Fig.14.1.6-4Fig.14.1.6-5Fig.14.1'-6Fig.14.1.6-7Fig.14.1.6-8Fig.14.1..6-9Fig.14.1.6-10Fig.14.1.6-11Fig.14.1.6"1214.1.7-114;1.7-214.1.7-314.1.7-414.1.7-5Fig.14.1.7-114~1.8A-114.1.8A-2DeletDeleteeDate19911991199119911991199619961991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199219951995
Page77VOLUMEXChapter14SafetAnalsisUni2Pacae~Dat14.1.8B-114.1.8B-214.1.8B-314.1.8B-414.1.8B-S14.1.8B-614.1.8B-714.l.8B-8Fig.14.1.8B-1Fig.14.1.8B-2Fig.14.1.8B-3Fig.14.1.8B-4Fig.14.1.8B-SFig.14.1.8B-6Fig.14.1.8B-7Fig.14.1.8B-8Fig.14.1.8B-9Fig.14.1.8B-10Fig.14.1.8B-llFig.14.1.8B-1214.1.9"114.1.9-214.1.9-314.1.9-414.1.9-514.1.9-614.1.9-7Fig.14.1.9-1Fig.14.1.9-2Fig.14.1.9-314.1.10A-114.1.10A-2(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)(2pgs)DeletDelet199119911995199519931991199519951995199519951995199519951995199519951995199519951991199119971996199119911991199219921992e1995e1995 Page78Chapter14VOLUMHXSafetAnalsisUni2PacaeDate14.1.10B-114.1.10B-214.1.10B-314.1.10B-414.1.10B-514.1.10B-614.1.10B-714.1.10B"814.1.10B-914.1.10B-1014.1.10B-1114.1.3.0B-1214.1.10B-13Fig.14.1.10B-1Fig.14.1.10B-2Fig.14.1.10B-3Fig.14.1.1QB-4Fig.14.1.10B-5Fig.14.1.10B-6Fig.14.1.10B-7Fig.14.1.10B-814.1.11A-114.1.11A-214.1.11B-114.1.11B-214.1.11B-314.1.11B-414.1.11B-514.1.11B-6Fig.14.1.11B-1Fig.14.l.11B-2199119911993199319911993199319911991199319931993199319931993199319931993199319931993Delete1995Delete199519911993199119911991199119911991
Page79Chapter14VOLUMEXSafetAnalsisUnit2Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae14.1.11B-314.1.11B"414.1.11B-514.1.11B-614.1.11B-714.1.11B-814.1.12-114.1.12-214.1.12-314.1.12-414.1.12-514.1.12-614.1.12-114.1.12-214.1.13"114.2-114.2.1-114.2.2-114.2.2-1a14.2.2-214.2.2-314.2.2-414.2.2-514.2.2-614.2.2-714.2.2-814.2.2-914.2.3-114.2.4-114.2.4-214.2.4-314.2.4-3a14.2.4-414.2.4-514.2.4-614.2.5-114.2.5-214.2.5-314.2.5-414.2.5-514.2.5-614.2.5-714.2.5-814.2.5-914.2.5-1014.2.5-1114.2.5-1214.2.5-1314.2.5-1414.2.5-1Date19911991199119911991199119911991199519951991199119921992199119951993199719971997199719911996199119911993199319911997199719971997199719971997199119911991199119911991199719911991199119911991199119911991 Page80Chapter14,VOLUMEXSafetAnalsisUnit2Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae14.2.5"214.2.5-314.2.5-414.2.5-514.2.5-614.2.6-114.2.6-214.2.6-314.2.6-414.2.6-514.2.6-614.2.6-714.2.6-814.2.6-914.2.6-1014.2.6-1114.2.6-1214.2.6-1314.2.6-1414.2.6-1514.2.6-1614.2.6-1714.2.6-1814.2.6-114.2.6-214.2.7-114.2.8-114.2.8-214.2.8-314.2.8-414.2.8-514.2.8-614.2.8-714.2.8-814.2.8-914.2.8-1014.2.8-114.2.8-214.2.8-314.2.8-414.2.8-514.2.8-614.2.8-714.2.8-8Date19911991199219911991199119911991199119911991199119911997199119911991199119911991199119911991199119911993199119911991199519951995199519951995199519911991199119911991199119911991 Page81VOLUMEXChapter14SafeAnalsisUni2Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Parcae14.3.1-114.3.1-214.3.1-314.3.1-414.3.1-514.3.1-614.3.1-714.3.1-7a14.3.1"814.3.1-914.3.1-1014.3.1-1114.3.1-1214.3.1-1314.3.1-1414.3.1-14a14.3.1-1514.3.1-1614.3.1-1714.3.1-1814.3.1-1914.3.1-2014.3.1-2114.3.1-2214.3.1-2314.3.1-2414.3.1-2514.3.1-2614.3.1-2714.3.1-2814.3.1-2914.3.1-3014.3.1-3114.3.1-114.3.1-214.3.1-3a14.3.1-4a14.3.1-5a14.3.1-6a14.3.1-7a14.3.1-8a14.3.1-9a14.3.1-10a14.3.1-11a14.3.1-12a14.3.1-13a14.3.1-14a14.3.1-15a14.3.1-3b14.3.1-4b14.3.1-5b14.3.1-6b14.3.1-7b14.3.1-8bDeDeleteleteDate199519911991199119911991199719971991199319931995199519951997199719911991199719911991199119911991199119921997199219921992199219951995199119911991199119911991199119911991199119911991199119911991199119911991199119911991
Page82VOLUME'XIChapter14SaftAnalsisUnit2FigFigFigFigFigFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae14.3.1-9b14.3.1-10b14.3.1-11b14.3.1-12b14.3.1-13b14.3.1-14b14.3.1-15b14.3.1-3c14.3.1-4c14.3.1-5c14.3.1-6c14.3.1-7c14.3.1-8c14.3.1-9c14.3.1-10c14.3.1-11c14.3.1-12c14.3.1-13c14.3.1-14c14.3.1-15c14.3.1-3d14.3.1-4d14.3.1-5d14.3.1-6d14.3.1-7d14.3.1-8d14.3.1-9d14.3.1-10d14.3.1-lid14.3.1-12d14.3.1-13d14.3.1-14d14.3.1-15d14.3.1-3e14.3.1-4e14.3.1-5e14.3.1-6e14.3.1-7e14.3.1-8e14.3.1-9e14.3.1-10e14.3.1-11e14.3.1-12e14.3.1-13eDate19911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991Fig.FigFigFigFigFig.Fig.Fig.FigFigFigFig14.3.1-14e14.3.1-15e14.3.1-3f14.3.1-4f14.3.1-5f14.3.1-6f14.3.1-7f14.3.1-8f14.3.1-9f14.3.1-10f14.3.1-llf14.3.1-12f199119911991199119911991199119911991199119911991
Page83VOLUMEXIChapter14SafetAn1sisUni2~PaeFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.14.3.1-13f14.3.1-14f14.3.1-15f14.3.1-3g14.3.1-4g14.3.1-5g14.3.1-6g14.3.1-7g14.3.1-Bg14.3.1-9g14.3.1"10g14.3.1-llg14.3.1-12g14.3.1-13g14.3.1-14g14.3.1-15g14.3.1-1614.3.1-1714.3.1-1814.3.1-1914.3.1-2014.3.1-2114.3.1-2214.3.1-2314.3.1-2414.3.1-2514.3.1-2614.3.1-2714.3.1-2814.3.1-2914.3.1-3014.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-7a14.3.2-7b14.3.2-7c14.3.2-814.3.2-914.3.2-10,14.3.2-1114.3.2-1214.3.2-1314.3.2-1414.3.2-1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-22Date199119911991199119911991199119911991199119911991199119911991199119911991199119911991-1991199119911991199119911991199119911991199119911991199119911991199619961997199719911991199219961991199119921996199119951995199519951997
Page84VOLUMEXEChapter14SafetAnalsisUnit2DateFig.Fig.Fig.Fig.FigFig14.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-6Fig14.3.2-10Fig.14.3.2-7Fig.14.3.2-8Fig.14.3.2-919911991199119911991"19911991199119911991Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fi:g.Fig.Fig.Fig.Fig.Fig.Fig.Pig.Fig.Fig.Pig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pig.Fig.Fig.Fig.Fig.Fig.Fig.14.3.2-1114.3.2-1214.3.2-1314.3.2-14'4.3.2-1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-2214.3.2-2314.3.2-2414.3.2-2514.3.2-2614.3.2-2714.3.2-2814.3.2-2914.3.2-3014.3.2-3114.3.2-3214.3.2-3314.3.2-3414.3.2-3514.3.2-3614.3.2-3714.3.2-3814.3.2-3914.3.2-4014.3.2-4114.3.2-4214.3.2-4314.3.2-4414.3.2-4514.3.2-4614.3.2-4714.3.2-4814.3.2-49199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991 Page85Chapter14VOLUMEXISfeAnalsisUnit2Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fi'g.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pa<ac14.3.2-5014.3.2-5114.3.2-5214.3.2-5314.3.2-5414.3.2-5514.3.2-5614.3.2-5714.3.2-5814.3.2-5914.3.2-6014.3.2-6114.3.2-6214.3.2-6314.3.2-6414.3.2-6514.3.2-6614.3.2-6714.3.2-6814.3.2-6914.3.2-7014.3.2-7114.3.2-7214.3.2-7314.3.2-7414.3.2-7514.3.2-7614.3.3-114.3.3-214.3.3-314.3.3-414.3.3-514.3.3-614.3.3-714.3.3-814.3.3-914.3.3-1014.3.3-1114.3.3-1214.3.3-1314.3.3-114.3.3-214.3.3-314.3.3-4~Dae19911991,199119911991199119911991199119911995199519951995199519951995199519951995199519951995199519951995199519941995199419951994199419941994199419941994199419941994199419941994 Page86Chapter14VOLUMEXIXSaftAnalsisUnit2Pa<ac~DaeFig.14.3.3-5Fig.14.3.3-6Fig.14.3.3-7Fig.14.3.3-814.3.4-114.3.5-114.3.5-214.3.5-314.3.5-414'.5-514.3.5-614.3.5-714.3.5-814.3.5-914.3.5-1014.3.5-1114.3.5-1214.3.6-114.3.7-114.3.7-214.3.7-314.3.7-414.3.7-514.3.7-614.3.7-714.3.7-814.3.7-914.3.7-1014.3.7-11Fig.14.3.7-114.3.8-114.4-114.A-1199419941994199419921993199319931997199319931993199319971997199319971990199719971997199719971997199719971997199719971997199719911989 0~i Chapter14AppendixJSaftAnalsisVOLUMEXII~PaPage87DateORIG Page88Chapter14AppendixMSafetAnalsisVOLUMEXIIIPacae'DaeORIG 0 TABLE1.2-1COMPARISONOPDE>>uPARAMETERS**RBPBRBNCBLINBNO.DONALDC.COOKNUCIBARPLANTUNITS1AND2PINALRBPORTSIONSTATIONUNITS1AND2PINALRBPORTINDIANPOINT¹2PI'NALRBPORTPOINTBBACHUNITS1AND2PINALRBPORTH.B.ROBINSON¹2PINALRBPORTTHBRNALANDHYDRAULICDBSIGNPARANBTBRSTotalPrie>>aryHeatOucput,HNcTotalCoraHeatOutput,Btu/hrHeatGeneratedinFuel,Naxi>>>>>>u>>>>>>thar>>aa1OverpowerSystea>>Pressure,Not>>anal,pslaSyota>>aPressure,Hinio>>u>>>>>>SteadyState,poia325011,090x10>>97.412i225022203250ll~090X10>>97.41252250222027589413x10>>97.4121225022201518.55181x10>>97.412%2250222022007479x1012%22502220101112131415Hot.ChannelPactoroHeatPluX,P4BnthalphyRise,Pu>>DNBRatioatNot>>inalOperatingcondttionoNinia>>ut>>DNBRforDeoignTranoientoCoolantPlowTotalPlowRate,lb/hrBffectivaPlowRaCeforHeatTransfer,lb/hr".ffectivePlowAreaforHeatTranofer,AverageVelocityAlongPuelRods,fc/oecAverageNaosVelocity,lb/hr-ft'.791.601.971.30135.6X10129.Sx10>>51.4'x10'5.52~53x10>>2~791.602.021-30133.0x10>>128.9x10>>51.4x10>>15.32.52x103.231.772.001.30136.3x10130x10>>51.4x10>>15.42.53X102.80I>>602.111.3066.7x10>>63.6x10'1.4x10'5.02.37x103.231.771.811.30101.5x10>>97.0x1051.4x10>>14.32.32x10'617CoolantTasperature,aPDesignNot>>inalInletNaxio>>ut>>Inlet.DuetoInotru>>>>>>ancationBrrorandDeadband,aP536.3540.3530.2534'543547552.5556.5546.2550.21819202122AverageRioeinVessel,>>PAverageRicainCoreAverageinCoreAver'agoinVeooelNo>>>>>>inalOutletofHotChannel63.065.7570.3567.8667.564.166.8564.8563.2631.753.055.5571.0569.5633.557.660.0582.5581.3642.955.958.3575.4574.264223AveragePil>>aCoefficient,Btu/hr-ft'-P5850Thistableisretainedforhistoricalpurposesonly.nuclearplants.580057905600ItcomparesoriginalCookPlantparameters1.2-65400toothersimilarAMENDMENT75April,1977July,1989 TABLE1.2-1(Continued)RBPBRBNCBLINBNO.24AverageFilmTemperatureDifference.4PDONALDC.COOKNUCLBARPLANTUNITS1AND2PINALRBPORT35.4ZIONSTATIONUNITSAND2PINALRBPORT35.6INDIANPOINT<<2FINALRBPORT30.3POINTBRACHUNITS1AND2PINALRBPORT31.0H.B.ROBINSON<<2PINALRBPORT31.825262'7282930313233HeatTransferat100lPowerActiveHeatTransferSurfaceArea,ft'verageHeatFlux,Btu/hr.ft'aximumHeatPlux,Btu/hr-ft'verageThermalOutput,kw/ftHaximumThermalOutputkw/ftHaximumCladSurfaceTemperatureatNominalPressure,4PPualCentralTemperature,4PHaximumat100lPowerHaximumatOverpowerThermalOutput,kw/ftatHaximumOverpowerCORBHBCHANICALDBSIGNPARAHBTBRS52,200207,900519.6006.718.86574250450021.152,200207,900579,6006.118.86514250450021.152,200115~60056I,3005.718.46574090438020.628,715175,800491,0005.716.06573750400017.942,460171>600554,2005.517.06574030430020.03435363738394041424344454647PuelAooembliaoDaoignRodPitch,in.OverallDimensions,In.PuelWeight(aoUO,),poundsTotalWeight,poundsNumberofGridoperAssemblyPuelRodsNumberOutsideDiameter,in.DiametralGap,in.(Region1,2)(Region3)CladThickness,inCladHatarialFuelPelletoHaterialDenoity(lofTheoretical)Diameter,in.(Region1,2)(Region3)Length,in,RCCCanless15xIS0.5638.426x8.426216,600276,000I39,3720.4220.00750.00850.0243ZircaloyUO,Sintered94-93-920.36590.36490'000RCCCanleoo15xlS0.5638.426x8.426216,600276,000739,3720.4220.00750.00850.0243ZircaloyUO,Sinterad94-93-920.36590.36490.6000RCCCanlaoo15x150.5638.426x8.426216,000216,000939,3720.4220.00650'243ZircaloyUO,Sintered9492-910.36690.6000RCCCanleoo14x140.5561.763x7.I63,120,130154,519721,6590.4220.00650.0243ZircaloyUO,Sinterad94-92-910.36690.6000RCCCanleoo15xlS0.5638.426x8.426116,200226'00I32'280.4220.00650.0243ZircaloyUO,Sintered94-9291-0.36690.60004950515253RodClusterControlAooembl'ieoNeutronAbsorberCladdingHaterialCladThickness,In.NumberofCluoterNumberofControlRodsperCluster1.2-7SlCd-151In-80lAgType304ss-coldWorked0.0195320SlCd-15'lIn-80lAgType304SS-ColdWorked0.0195320SlCd-15%In-80lAgType304SS-ColdWorked0.01953205\Cd-15'lIn-80lAgType304SS-ColdWorked0.0193716July19895lCd-15%In80\AgType304SS-ColdWorked0.0195320Sheet2of TABLE1.2-1(Continued)RBFBRBNCBLINBNO.5455CoreStructureCoreBarrelI.D./O.D.,in.ThermalShieldI.D./O.D.,in.DONALDC,COOKNUCLBARPLANTUNITS1AND2PINALRRPORT148.0/15215158.5/164.0ZIONSTATIONUNITS1AND2PINALRBPORT148.0/152.5158.5/164.0IHDIANPOINT82PINALRBPORT148.0/152~51585/164POINTBBACHUNITS1AN)2PINALRBPORT1090/112.5115.3/122.5H.B.ROBINSON82FINALRBPORT133.875/137'75FINALNUCLBARDBSIGNDATAstructuralcharacterlstles565758606162636465FuelWeight(AsUO,),lbsCladWeight,lbsCoreDianeter,in(Bquivajent)CoreHeight,in.(Act>vsPuel)ReflectorThjcknessandConpositionTop-WaterplusSteel,in.BottoaL-WaterplusSteel,in.Side-WaterplusSteel,in.H,0/U,(ColdvolumeRatio)NutaberofPuelAsseaLbliesUO,RodsperAssembly216,60044~54I132.71441010154.09193204216,60044,547132.7143.4101015409193204216.00044,600132.51010154.18193204120,13024,26096.51010154.20121179176,20036,300119.51441010154,18157204PerformanceCharacteristics6667686970/1LoadingTechniquePuelDischargeBurnup,HWD/MTUAveragePirstCycleBquilibriulaCoreAverageFeedBnrichments,weightRegion1Region2Region3Bquilibriun3region~non-unifona14,00021,8002.252.803.303.23region,non-uniforaL14,00021,8002.252.803.303.23region,non-uniforn14,20024,7002.22.73.23region,non-uniforaa15,10033,0002.273.033.403.403region,non-uniforaL14,50033F0001.852.553.103.10ControlCharacterisrics727374BffectiveHultiplication{BeginningofLife)Cold,NoPower,CleanHot.NoPower,CleanHot.PullPower,XeandSmBquilibrium1.1831.1541.0921.1831.1541.0921.2571.9991.1521.2111.16711131.1801.381.077Sheet3of61.2-8July1989 TABLE'.2-1(Continued)RBPBRBNCBLINBNO.75'76'77I879RodClusterControlAooembliasHacer1alNumberofRCCAooemblieoNumberofAboorberRodoparRCCAooemblyTotalRodWorthBoronConcentrationToshutreactordownwithnorodoInoerced,clean(Ka>>.99)Cold/hot,ppm/ppmDONALDC.COOKNUCLBARPLANTUNITS1AND2PINALRRPORTSlCd.15%In-801Ag5320SeeTable3.2.1.31408/1265ZIONSTATIONUHITS1AND2PINALRBPORT5\Cd-151In-80\Ag5320SaeTable3.2.1-31408/1265ZNDIANPOIN1'2PINALRBPORT51Cd-151In-80%Ag5320SeeTable3~2.131480/1370POINTBBACHUNITS1AND2PINALRRPORT51Cd151In-801Ag3716SeeTable3.2.131598/16'I6H~B~ROBINSON82PINAIRBPORT51Cd-15%In-80\Ag5320SeaTable3.2.1-31250/1210808182Tocontrolatpowerwxthnorodsinserted,clean/equilibriumxenonandsamarium,p/ppBoronworth,HotBoronworth,Cold1168/85011ak/k/85ppm11ak/k/70ppm1168/85011ak/k/8Sppm11ak/k/'70pps1200/78011ak/k/89ppm11ak/k/72ppm1465/100711ak/k/130ppm11ak/k/98pps1000/9207.3ak/k5.6ak/k83KineticcharacceristicoHoderatorTemperature,Coefficient,ak/k/op03x10-3.2x10t-0.3x104-3.2xIQt03xl01-3.0x10'0,3x10t-3.5x10'0.3x10<<3.5xIotHoderarorPreosureCoefficienc,ak/k/poit0.3xt<.0x10t>>1st+0~3x10t>>t<.0x,10t0.3x10t>>t3.0x10-0.3x1st3.5x10'.3x10t>>3.5x1085HoderatorDenoityCoefficientak/k/g/cm'.1xlot:Q.Sx10'0.1x10'0.8x10'0.03to-0.30.0.10Co-0.30+0.5x10'>>2.5x1st86DopplerCoafficient.ak/k/tPRBACTORCOOLANTSYSTEHCODSRBQUIRBHBNTS-1.0xIQt-1.7x10-10x10-1.7x10~-11x10'8x10~1xlot-1.6'10'x10s~1,6x108IComponentReactorVassalASNBIIIClaooAASHBIIIClaooAASHBIIIClaooAASHBZIIClassAASHBZZIClaooASheet4of61.2-9July1997 TABLE1.2-1(Continued)REPERBNCBj.llRND.DONALDC.COOKNUCLEARPLANI'NITS1AND2PINALREPORTZIONSTATIONUNITS1AND2PINALREPORTPOINTBEACHUNITSINDIANPOINT821AND2PINALPINALREPORT-REPORTH.8.ROBINSON82PINALREPORT8889SteamGeneratorTubeSideShellSideASHBIIIClassAASHBIIIClaosC+ASHBIIIClaooAASHBIIIClasoCeASHBIZZClaooAA&NBZIIClaooCeASHBZIZClaooAASHBIIIClassC*ASHBIIIClaooAASMBIIIClaooCi909293PresouriterPreoouriterReliefTankPressurizerSafetyValvesReactorCoolantPipingASHBIIIClassAASNBIIIClaooAASHBIIIUSAS831.1ASHBZIIUSAS831.1ASHBIIIClassCASHBIIIClasoCASHBZZIClassAASHBIIIClassCASHBIIIUSAS831.1ASHBZIZClasoAASNBClaooCASNBIIIUSAS831~1ASNBIIIClaonAASHBClassCUSAS831.1PRINCIPA(DESIGNPARANBTBRSOPTHBREACTORCOOLANTSYSTEH9596919899100101102103104104AReactorPrimaryHeatOutput,HWtReactorPrimaryHeatOutput,Btu/hrOperatingPresoure,poigReactorinletTemperatureReactorOutletTemperatureNumberofLoopoDesignPreooure,poigDesignTemperature,4PHydrostaticTeotPreooure(Cold),poigcoolantvolume,includingpressurizer,cu.ft.PTotalReactorPlow,gpmTotalReactorPlowlb/oec325011,090x2235536.3599.342485650310712,612-350,00031,765325011,090x1oi2235530.259432485650310712,710350,00031,765275&9413x10'235543596.042485650311012,600178~0001518.55181x10+2235552.5610.02248565031106450268,50022007508xloi2235546F2602.1365031109088105106107108109110111PRINCIPA(DESIGNPARAHBTBRSOPTHERBACIORVBSSE(NaterialDesignPressure,pnigDeoignTemperature,ePOperatingPressure,psigInsideDiameterofShell,in.outoideDiameterAcroooNor&leo.in.OverallHeightofVesoel8BnclooureHead,ft-in.SameasothersSeeTable4.2-124856502235173262-7/1643-911/16same,aoothersSeeTable4.2-124856502235173262-7/1643-923/32(Unit1)43-915/16(Unit2)SA-302Grade8,lowalloyoteel,internallycladwithausteniticotainlessoteel24856502235113262-7/1643911/16SA-302Grade8,lowalloysteel.internallycladwithauoteniticstainleoooteel24856502235132~02441/1639-0SA-302Grade8,lowalloyoteel,internallycladwithauoteniticotainleoooteel248565022'35155.523641-6112NinimumCladThickneoo,in.5/325/325/325/325/32*TheshellsideofthesteamgeneatorconformstotherequirementsforClassAvessels.andissostampedaspermittedundertherulesofSectionIII.Sheet5of61.2-10July1989 TABLE1.2-1(Continued)RBFBRBNCBLINBNO.DONALDC.COOKNUCLBARPLANTUNITS1AND2FINALRBPORTZIONSTATIONUNITS1AND2PINALRBPORTINDIANPOINT82PINALRBPORTPOINTBBACHUNITS1AND2FINALRBPORTH.B.ROBINSON82FINALRBPORT113114115116117118119120121122123124125PRINCIPALDBSIGNPARANBTSRSOPTHBSTBANGBNBRATORSNumberofUnitoTypeTubeNaterlalShellNaterlalTubeSideDesignPressure,poigTubeSideDesignTemperature,4PTubaSideDesignPlow,lb/hz'hallSideDeoignPressure,psigShellSideDesignTemperature,4FOperatingPressure,TubeSide,NominalpoigOperatingPressure,ShellSide,Nax,poigNaximumNoiotureacOutletatPullLoad,1HydrostaticTestPressure,TubaSide(cold),PolgVerticalU-Tubewithintegral-moiotureseparatorInconalCarbonSteal248565033.9xlory108560022351085(design)1/431074VerticalU-Tubawithintegral-moiotureseparatorInconalCarbonSteel248565033.8x10'08560022351085(design)1/43107VerticalUTubawithintegral-moiocureseparatorIncone1CarbonSteal248565034.1X10108555622351105.31/431102VerticalU-Tubewithincegral-moioturaoeparatorInconelCarbonSCeel248565033.4x10'085556223510201/431103VerticalU-Tubewithintegral-moiotureseparator'ncone1CarbonSteal248565033.9x10'085556223510201/43110PRINCIPALDBSIGNPARANBTBRSOFTHBRBACTORCOOLAN)'UNPS126127128129130131132133134135136NumberofUnitoTypeDesignPraooure,psigDesignTemperature,4POperatingPressure,Nominal,poigSuctionTemperature,4PDesignCapacity,gpmDeoignHead,fc.HydrostaticTeotPresoure(cold),poigNotorTypeNotorRating(nameplate)PRINCIPALDBSIGNPARANBTBRSOFTHBRBACTORCOOLANTPIPINGvercical,cinglest'ageradialflowwithbottomsuction,andhorizontaldiocharga2485650223553988,5002173107ACInductionsingleopeed6000HPVertical,oingleetageradialflowwithboccomsuctionandhorizontaldiocharge2485650223553987,5002713107ACInductionsinglespeedaircooled6000HP4Vercical,singlestageradialflowwithbottomsuctionandhorizontal.discharge2485650223555680,0002523110A-CInductionoinglespeed6000HP4Vertical,singlestageradialflowwithbottomouccionandhorizontaldiocharge24856502235551.580,0002593110ACInductionoinglespeedaircooled6000HP4,Vertical,oinglastageradialflowwithbottomsuctionandhorizontaldiocharga24856502235546588F5002613110ACInductionsingleopeedaircooled6000HP137138139140)4)NacerialHotLeg-I.D.,in.ColdLeg-I.D.,in.BetweenPumpandsteamgenerator-I.D.,ln.DesignPreosure,poigSaaTable4.2-12927-1/23124851.2-11SeaTable4.2-12921-1/2312485AuoteniticSS29271/2312485AuoteniticSS2927-1/2312485Sheet6of6July1997AuotaniticSS2921-1/2312485 AI0I0ICIFI0IMII~(IHIMI0t~CfgCgOLCStAt.(S<<LS.@O~Stet~tSict0QSICTSINJJJANfOS~IfOHCC~<<NStes.CtRR.TRACKstatttr~enQi>ra'SLAISTAAtVPIOHHT(faasfACAC>>CONIX.!OANMORHCACI~II<<00O)OICS(LICV~Sts(CN(tAA(S~~KIFttsa,HTOLtRCACTORCONTAANNCIITAHORCfaCTORFcaSCC.CerfcTORCON!At<<MINTVIIITNilLRCLCTORMAINSTOAaaNCLOSV<<tr4$tiqQTQRra(A~rrrr.Tu=QowWI."<<'.LSIJ.ACCCS'OarALKaragTAHILIAP(m'tiCCASffJCTRACCMilOVLILOt="='~=zLUAONLPrqI"orLICCatpraCFMOTIALCMATCHLL.tata(IAAra>>rata<<NINNIIart>>~ISaVaaWO~LIGitc((LACC(PISfAAI.VATtaw/,Artstat!-'OcncroRACCtSSHa\LTIAVFIJSCACONOCNLTCC~~NOOeCSS'lAIIINSQNTIl(t'STORA,GC/CCt.SOliIICAS&7I~CtTANK~~IIsI~LINGSTQR.NK,IIAICLAIIL6RCFVWLTCltTPANI~ISlsCLCITOI~I8m-*M~0I8NITP(rcIIccLCII$0t.~'IN!I(s<<tcI!~ONTTACTOLISACCCSS.'ICOL8VLtatksIraIStCLICFOaaaI'(CHa's'l~I1ICRAOCELraOII-0"Isltfltaalsftl~r'ILsxtiNA~IILjHTvisaslotI~aA~Aaf(ar>>rOLG.nle'~raIssC(g,I.Ql=aOIIL4tIALAICC~~..VQTNOAOVCNFARE)I'~t+HI<<irr'fVa(ataratIIACROOC'Cl.GICLOHsfcessorYIONA!IONSOgtaaa'I>>(!A40~~~LrOCIJphi~gJK".,/f~----C-'yt>>w~!gaR(GNTCtCV\tCCIO~0S0SIOAACEL~~ACCCISIOAAICPOIT!'IalNHCaNCttafItKLASCtICONOUIQQQIITORACEL~IIi~0I,ATE.TAISICS!IstIILIV(aSTCIRIKwATERlTAIfEPU'bSKV.TAKE-OFrp3)Ipats~literAsisEIIs',~sit~~ji'IiPAOTTI6AITUPtQK~II>>(Irgrsgl8NsOtg..wKJa',ANIO!ILEIIIAN.TCtHAN.TLTCOTLSATOMSF.CCQL~~.<aJ~H...J'NS~g~p~..~~'T(N(staCC(nNtDSNCllafttlCN.vIS1C3n~HltarAaVICIOfSt('ac>>tIL~OLLVtOOOCullttLSCOCTNOOOUCNSAi(Ctat%~nOrNC0Da\nAtsvlastLVOIIICCSta(~-IE:bCONOCNSATCta<<>>ttCCIL~SrstRCJOCTFOGTRLNSCfEHCLOSVR(cato.LttesttscclRATII'CTKOROVCHSAACCQVIRKAS!OPVALVtSGHrl'KJatTUROLNCVNITNTIJPUNROOCOSIHHCCt(OH.OILGTttII>>AKDHctiDIATaai-CM>>tfI(aaLPisLCIPITLTORP(CLOP+IC(OPV<<tsJ'].(A(ITM~a>>srsl0"IOtcsctSSSfCllcfFlcc'TIALLIateast~COcoca'C+3k(-.TI<tort(CLLtvutsL(GCAO.TSOROVGNFLOELtvocOLtatasGSAIC!soilTTAR)T.TAAHSCILAItCIICI0UlgIU1XGggiACCTOtnQICCA5STASONICOO/SICIPP+'EIIIOtub.WTrlfC.CIOCTSCat]SCALQcI~r~Žl~~t~SCALQILCCOLCI(SFIIJI!REI.3-8O'Vol,l991OO(AHat(HCMMa(tCO<<IVOONaLOC.COOR<<CLIOstartla0(AM~KICaa0ALMTNTCttt,TMCIsaIsosIHrt~Ii(DINI(IHItlcoraC.SOCF.MSNCWIICasa~s<<NIAKNIcal>>n~~tatLCONftfLVOTall(CCOOLCAS~IIICLCOTCFttSL.Ol;OILtlistll<<lpLaIIIaRRAIIGE>IEIIIIIE22ANINEFLOOREL609'-0I!IIIISII2~~I2-5968AriII(ASCAatfcf((OOiA(CICL'.SsatAllVfMASCS((aTOaltOClfSailAll~HIIKAHlntsalnrHaliCaaarattOlauHa>>rra0IC(~I~iII~0IK~MIIiaJS(<KHHLMMstart>>>>arianrvrasarsHII+>>H~~ t~ff4%.e 1.8IDENTIFICATIONOFONTRACTORSTheplantwasdesignedandconstructedbytheAmericanElectricPowerServiceCorporation(AEPSC)whichperformedthefunctionofArchitect-EngineerandConstructorforInd'anaMichiganPowerCompany(I&M).WestinghouseElectricCorporationdesignedandsuppliedtheNuclear4SteamSupplySystemsincludingtheinitialfuelassembliesforbothUnits1and2oftheDonaldC.CookNuclearPlant.SubsequentreloadfuelassembliesfortheseunitshavebeenandwillbeprocuredfromqualifiedsupplierssuchasWestinghouse.Inthedesignandconstructionoftheseunits,AEPSCemployedvariouscontractorsandsub-contractors;however,theultimateresponsibilityforallworkperformedwasassumedbyAEPSC.AEPSCandX&Mareresponsiblefortheimplementationofallfunctionsassociatedwiththeoperation,maintenance,modificationandcontroloftheDonaldC.CookNuclearPlant.1.8-1July,1&97 I( 2.1SITEDESCRIPTION2.1.1SUMMARYThesiteislocatedinaregiondevotedprimarilytoagriculture.Therearenocontinuouslyoccupiedresidenceswithin2160feetofthereactorcontainmentstructures.ThedistancesfromthereactorcontainmentstructurestotheareasdefinedintheRulesandRegulationsTitle10ChapterIPart100areas=follows:ExclusionareaMinimumdistancetoexclusionareaOuterboundaryoflovpopulationzonePopulationcenterdistance650acres2000feet2miles8milesTheclosestpopulationcenteristhetwincitiesofBentonHarbor-St.Joseph,Michigan.Thesite,therefore,providesexcellentisolationaswellaslowpopulationdensitiesoveravidearea.2.1.2LOCATIONThesiteislocatedinLakeTownship,BerrienCounty,Michigan,about11milessouth-southwestofthecenterofBentonHarbor,Michigan.TheaxispointoftheCookNuclearPlantislatitude41'8'32.07"andlongitude86'3'54.87'.Figure2.1-1shovstheregionalfeaturesof-theareaupto60milesfromthesite,vhileFigure2.1-2indicatesthefeatureswithinabout15milesofthefacility.Thesiteconsistsofabout650acresalongtheeasternshoreofLakeMichigan,withapproximately4350feetofLakefrontage,andextendsanaverageofaboutoneandonequartermileseastvardfromthelake.2.1-1July1996 Theentiresite,withtheexceptionoftherightofwayforZnterstateRoute94,about400feetfromtheeasternsiteboundary,iscontrolledbytheZndianaMichiganPowerCompany(Z&M).Noresidenceispermittedinsidethesiteboundaries.Figure2.1-3shows,amapoftheplantsitedefiningtheplantpropertylines.(1)TheboundarylinesinsideofwhichZ&MexercisesexclusivecontolofaccessarethepropertylineswhicharetothewestoftheZnterstate94.Thesepropertyl'nesarealsotheboundarylinesatwhichgaseouseffluentlimits'apply.ThelineintheareaofLakeMichiganistheshorelineEl5BO'0"extendedby100feettowardthe?ake,uptowhichZ&Mexerc'sesrights,besidesthoseobtainedtoinstall,maintainandoperate,thecondensercoolingwaterintakeanddischarge.pipes.Riparianrightsextendtothelowwaterlinewhichinconsiderationofthelakebottommovementisapproximately100feetoutwardfromtheelevation580'ine.(2)Thepointsontheplantstructurefromwhichgaseouseffluentcontaining,orpotentially,containing,radioactivitywillbereleased;andthe,distanceofeachfromthenearestboundarylinehavebeenshownandtabulatedonthemap(seeFigure2.5-1a.)Points3,4,5and6mayreleaseradioactivityeffluentsonlyduringconditionsofprimarytosecondaryleakage.(3)Therewillbenoresidentialhousingonsite.Freeaccessalongthebeachinfrontoftheplantispermitted.Onsitenon-plantrelatedactivities,suchasbeachactivitiesorpicnics(exclding'lltheVisitorCenteractivities>areevaluatedforimpactontheoperationoftheplantpriortograntingpermissionforsuchactivities.2.1-2July,1997 Theearenomilitaryinstallations,missilesites,or'ndustrialfacilitieslocatedbeyondtheDonaldC.CookNuclearPlantSite4boundariesatwhichanaccident-mightcauseinteractionwiththeplantsoastoaffectpublichealthandsafety.Theplantislocatedalongthelakeshoreapproximatelymidwaybetweenthenorthernandsouthernboundariesofthesite.Thedistancefromeitherofthereactorcontainmentstructurestothenearestsiteboundaryis2000feet.Figure2.1-3indicatesthetopographicaldetailsofthesiteandthelocationoftheplant.Figure2.1-4isanaerial'hotographofthesiteanditsimmediateenvironsbeforeplantconstructionbegan.2.1.3TOPOGRAPHYThesiteconsistsprimarilyofheavilywoodedruggedsanddunes.Asandybeachslopesgentlyupwardsforabout200feetfromthelakebeforerisingsharplyintothedunes.Thepeaksofthehighestdunesreachanelevationofabout120feetabovethelake'ssurface;depressionsbetweenthedunesareaslowas10feet,abovelakelevel.Figure2.1-4ashowsmod'icationsinthesitetopographyduetoplantstructuresFigure2.1-4bshowsviewsofthesitefromtheminimume'xclusionradiustomajorplantstructuresshowingthetopographyofthesiteinrelationtomajorplantstructures.2.,1.4ACCESSThesiteareaisaccessiblebyair,rail,androad.2.1-3July,1997 ThePereMarquetteLine,runsinanapproximatelynorth-southdirectionabout1600feeteastofthesite'seasternboundary.Acorridorbetweenthesiteandtherailroadhasbeenpurchasedtopermitconstructionofarailspur,andabridgespanningThortonDriveandInterstateRoute94hasbeenerectedtoprovidedirectrailaccesstotheplant.InterstateRoute94runsthroughtheeasternportionofthesiteinanorth-southdirection,whiletheRedArrowHighwayrunsalongtheeasternboundaryinthesamegeneraldirection.ThortonDrive,alocalroadway,runsparalleltoInterstate94andslightlytothewestofit,whileLivingstonRoad,alsoalocalthoroughfare,formsthesouthernsiteboundary.Withinthe15-milevicinityoftheDonaldC.CookNuclearPlanttherearetwoairports:'SouthwestMichiganRegionalAirportlocatedapproximatley12miles.NEoftheplantontheNEedgeofBentonHarborandAndrewsUniversityAirportlocatedapproximately10milesEastoftheplantnearBerrienSprings.Forairportsbeyondthis15-mileradius,-theorientationofrunwaysandnormalflightpatternsarenotinthedirectionoftheplantorthenormalglidepathheightsarenotwithinthe.plantvicinitysothataircraftutilizingthefacilitiesoftheseairportswouldnotnormallyflyovertheplantsite.SouthwestMichiganRegionalAirporthasthreerunwaysall100feetwide,oavedandlighted;~DircubinLentEast-WestNorth-SouthNW-SE5100feet3200feet3750feetFor1971therewere67,690operations(take-offorlandings)resultingin33,845flightsoranaverageof93flightsperdayofwhichonly9werescheduledbycommercialairplanes.2.1-4July,1997 Weightloadofaircraftusingthisfieldislimitedto30,000poundspersinglewheelloadwhichisthedesignspecif'cationfortheconcreterunways.Threeclassificationsofairplanesutilizetheairportfacilities:corporate,private,andcommercial.DuetotheNorth-Easterlylocationoftheairportandtheorientationoftherunways,normalglidepathswouldnot'approachthevicinityoftheplant.Therearenospecifiedglidepathheightssinceerectionofstructurestallerthan500feetarenotpermittedwithina10mileradiusoftheairport.Neith'eristhereaglideslope.However,theEast-Nestrunway,whichhandlesmostofthet-.afficbecauseoftheprevailingwinds,istheonlyrunwayhavingthelocalizerportionoftheInstrumentLan'dingSystem.Thisindicate"onlytheaimoftheairplane.2.1-5July,1997 AndrewsUniversityAirporthastworunways:~Dirc~in310&130210&30~Lenah3100feet2500feethracterisicsPaved&LightedSod&UnlightedTherearenorecordsmaintainedconcerningthenumberofflights.Theairportmanagerhasestimatedthatthereareapproximately70flightssomedaysandnoneduringinclementweatherconditionsforayearlytotalof4,000to6,000.Themaximumweightloadallowedis12,500pounds.Therearenocommercialflights;onlycorporateandprivateaircraftoperatefromthisfield.Thereisnoheight,length,ororientationspecifiedforanormalglidepath.2.1-6July,1997 POPULATIONThepopulationdataquotedinthissectionareamixtureoforiginalanalysisdata,dataobtainedduringanevacuationtimeestimatestudYperformedduring1991-1992,andthedemographicanalysisperformedduring1993.TheevacuationtimeestimatestudyalsoprovidedupdatedinformationregardingschoolsandbusinessesneartheCookNuclearPlantsite.ThedemographicanalysisprojectedfuturepopulationintheCookNuclearPlantforthe.years2000and2037.Someofthepopulationprojectionsforindividualsectorsneartheplantaregreaterthanvereanticipatedintheoriginalanalysis.However,thereferencedevacuationtimeestimatestudyshovsthatthepopulation'livingneartheplantcouldleavetheareainareasonableamountoftimeintheunlikelyeventofanorderedevacuation.Therefore,thecombinationofthesetimeestimatesandthefactthatthetotal10mile'Iemergencyplanningzone(EPZ)populationhasnotexceededprojectionsindicatethatthereisnoadverseimpactontheEPZpopulation.Theareavithin60milesofthesitevhichencompassesportionsofSouthvesternMichigan,NorthvesternIndiana,andNortheasternIllinoisisaregionofmoderatepopulationthatcontainedapproximately4,073,369peoplein1990.Thepopulationofthisareafrom197Sto1990hasdeclined12X.ThisdeclineintotalpopulationisattributedtothesteadydeclineoftheChicagoarea.Itisprojectedfromtheyear1990to2000,thepopulationwillincreaseapproximately3.3X.From2000to2037,itisexpectedthe'opulationvillincreasebyanother~X.Theprojectedpopulationdistrib'utioninformationfortheyears1990,2000,and2037islocatedinTables2.1-6and'2.1-6a,2.1-7and2.1-7a,andC2.1-&and'.1-&a,respectively.2.1-7July1996 Theclosestpopulationcenteristhetwin'citiesofBentonHarbor-St.Joseohwithacombined1990populationof22,032.TheclosestpopulationcenterboundaryisthesouthernedgeofSt.Joseph,abouteightmilesnorth-northeastoftheplant.Allpopulationcenterswithin60milesofthesiteareindicatedinTable2.1-3.Theclosestcontinuouslyoccupiedresidencetotheplantliesabout2160feettothenorth.Figures=2.1-6,-6a,and-6bshowsthe1990populationdistributionaroundthesiteuptoadistanceof60miles.TheLowPopulationZoneisidentifiedinFigure2.1-6asthezoneincludedwithinthe2-mileradius.Figure2.1-6dividestheregionfrom0to5milesfromtheplantintoconcentriccirclesandsectorsof22K,whereas.Figure2.1-06aand-6bdividestheregionfrom5to60milesand10to60miles,respectively.Similardataortheyears2000and2037areincludedinFigures2.1-7,-7a,-7band2.1-8,-8a,-8b.Populationdataarepresentedintabularformin.Tables2.1-1through2.1-8b.Thirty-fourpublicandparochial'choolsexistedwithin.atenmileradiuswith625teachersandastudentpopulat'onof11,621.(1992)Datacollectiontoprovideforecastsforthe21countiesentirelyor,partiallywithinthe60mileradiusoftheDonaldC.CookNuclearPlantsitewasperformed.ThisdatawasprocessedwiththeU.S.CensusTIGERdigitalmapstoapportionpopulationforecastsfortheyears2000and2037fortheradialdistancesandsectorsaspresentedinthetablesandfigures.ThisanalysisincludedtheassignmentofpopulationforecastsforcitiesandtownswithinBerrienCounty,Michiganbyonemileincrementsfor,the0to5milearea,and.afivemileincrementforthe5to10mileareaforforecastyears2000and2037.Similarforecastsweredevelopedforthe10to60mileareabytenmileincrementsforthesixteen22K'ompasssectors.2.1-8July1997 The"bestavailabledata"regardingpopulationgrowthduringthisstudywasobtainedfromthefollowingsources:~FortheStateofMichigan,iniitalpopulationforecastdatawasobtainedthroughtelephoneconversationswiththeStateDemographer,StateofMichigan,DepartmentofStatePlanningandCommerce.(ItshouldbenotedthattheexistingStateforecastsarebasedonpre-1990censusdataandaresubjecttochangewhenthenewprojectionsare.>'released.)Basedonhighlyvariabletrendsinpopulationgrowthoverthepastfewdecades,itwassuggestedthatitisdifficulttodeterminewhatthelongrangegrowthtotheyear2037willbe.Thus,forthepurposesofthisanalysis,populationforecastsfortheyears2000and2037werederivedusingadjustedgrowthfactorsbasedon1990censusdata.MoredetailedlocaldataforcitiesandtownsinBerrienCountywasobtainedthroughnumerousinformalcommunicationswiththeSouthwesternMichiganCommission.FortheStateofIndiana,countypopulationforecastswereobtainedthroughtelephoneconversationsandfromsubsequentdataprovidedbytheStateofIndianareportingtheresultsoftheBusinessResearchCenterestimatesforpopulationgrowththrough2030.ForCookCountyIllinois,populationforecastswereobtainedthroughtelephoneconversationswiththeNortheastIllinoisPlanningCommission,whichcitedpre-1990forecastsfromtheIllinoisBureauoftheBudget,IllinoisPopulationTrends-1990.Inadditiontothepermanentresidentpopulation,BerrienCountyexperiencesaninfluxofapproximately3000to4000summerresidentseachyear.ThegreatmajorityofthesummerhomesandcottagesarelocatedalongtheLakeMichiganBeachandinthePawPawLakeregioninthenorth-easternportionofthecounty.'.1-9July1995 Theclosestsummercolony.tothep'ant'stheRosemaryBeachAssoc'at'onjustnorthofthesitboundary.,RosemaryBeachisvirtuallyuninhabitedduringtheFall,WinterandSpringandhasapopulationofupto150duringthepeakof,thesummerseason.Duringthelatesummerand,fallfruitharvest,substantialnumbersofmigrantfarmwor'kersareemployed'nBerrienCounty.Themaximumnumberrecordedin1976was6,800.Table2.1-8bandFigure2.1-10representtheseasonaltransientpopulationouttothePopulationCenterDistanceof8mileswiththe0-2milepopulationfiguresrepresentingtheLowPopulationZone.TheWorkEmploymentSecurityCommissionsupplieddatafortotalmigrantworkersinBerrienCountyin1971workingastransientcroppickers.Thistotal,consistingof8355workers,wasuniformlyaveragedovertheentirecountyruralarearesultinginan,averagetotalof1263migrantsw'ithinthePopulationCenterDistancedistributedevenlyovertheruralarea.SomemigrantworkersarriveintheSpringtocutasparagusbutmostofthembegintoarriveinthelatterpartofAugust.,buildinguptoapeak'ntheFallduringthepeachandapplecrop-pickingperiods.Afterthecropshhvebeenharvested,theyleavethearea.ThenumberofsummerhomesweresuppliedbytheTwinCi"iesChamberofCommerce(St.Joseph-BentonHarbor)andtheBerrienCountyClerksOffice,andthenumberofpeopleoccupyingthevariousbeachareaswereestimatedfromvisualobservationsin1971.MostofthesummervacationistsbegintoarriveinJunewhenschoolendsandleaveinlateAugustwhenschool-recommences;although,afewremainintotheFallaslongasfavorableweatherconditionsexist.Thesevacationistsarelocatedmostlyalongthelakeshorefront.July1997 Although,thereisanove'rlappingoftheseasonaltransientpopulationtowardstheendofsummer;ingeneral,therearetworeasons:thesummermonthsconsistingofvacationistsandthefallmonthsconsistingofmigrantcroppickers.ThetrendistowardsadecreasingnumberoftransientswithinBerrienCountyandhencewithinthePopulationCenterDistance.Themigrantworkersinthecountydecreasedfromatotalof11,100in1966to8,355in1971.Thisdec4ineisattributedmainlytoautomationinthecrop-pickingindustry,andtoareducedapplemarketsincethecostofpickingwillnotsupporttheapplemarketprice.WarrenDunesStateParkliesalongthelakeaboutsixmilessouthofthesite.Onapeaksummerdayin1992,anattendanceof20,881wasrecordedattheparkofwhich1,600wereoverni'ghtcampers.In1969,theparkwasenlargedsomewhattoaccommodatemoredailyvisitorswithincreasedcampingfacilities.WhiletheWarrenDunesStateParkhaschangedfroma1976summerpeakof23,958daysvisitorsofwhich1300wereovernightcamperstoa1992dapeakof20,881visitorsofwhich1600wereovernightcampers,therehasbeenadeclineinthenumberofpeopleoccupyingsummerhomesovertheyearswithadecreasefrom4,000in1964to3,000in1971duetothehighcostofhomemaintenance.Hence,thepotentialforasignificantincreaseintransientpopulationoverthe40-yearlifeoftheplantdoesnotseemprobableespeciallywithintheLowPopulationZonewhichcomprisesabout3milesoflakeshorefrontalreadycontainingfourbeachareas.2.1-11July1995 2.1.6LANDUSETheareasurroundingthesiteisdevotedprimarilytoagriculturalpursuits.Over60%ofthelandinthethreecounties,Berrien,Cass,andVanBuren,surroundingthesiteisdevotedtofarming.Themajorrcropsproducedareapples,cherries,grapes,peaches,feedgrains,livestockanddairyproducts.AgriculturalstatisticsaresummarizedinTable2.1-9.Figure2.1-9illustratesthenumberoffarmswithdairycattle,thenumberofdairycattleperfarm,andtheirdistancefromtheplantwithina10mileradius(asof1972).In1990,thelowpopulationzonecontainedapproximately764permanentresidentswithnomorethan174inany223sector.0IndustrialactivitiesintheareaarecenteredaroundBenton,HarborandNiles,Michigan.Theprimaryindustriesarehomeappliances,metalcastingandelectronicandaudioequipment.IUpdatedinformationonhospitalsisgiveninTable2.1-12.LakeMichiganwaterinthevicinityoftheplantsiteisnotusedforirrigation.LakeMichiganishoweverusedforswimming,fishing,boating,domesticwatersupplyandsewage.Onlycrabfishinginwaterover30fathomsispermittedcommerciallyinMichiganwaters.2.1-12July1997 TABLE2.1-12HOSPITALSINBERRIENOUNTY17Distancefrom~Hoaoial~aooaiooSationmiles~CaoaoiaLakelandMedicalCenterBerrienCenter14LakelandMedicalCenterSt.Joseph10300LakelandMedicalCenterNiles1S174CommunityNatervliet22702.1-29July1997
2'.2GENERALMETEOROLOGYSouthwestenMichiganistypicalofthenorthernlakeregionsoftheUnitedStatesinmostrespects..Theflattezrainandthefrequentpassageofwell-developedextra-tropicalstormscreateaconsistentlystrongwindflow,aswellasrapidchar.gesinbothdispersionconditionsandwinddirection.Someofthemeteorologicalstatisticsareusefulprimarilyforgeneralplanningofthefaciliti~sandarethereforereportedwithaminimumofdescription.Otherdataareimportantintheassessmentofsafetyandthesearediscussedfully.ihWndsStrongwindsarethemostimportantmeteorologicalhazardtothefacilities.Theregionisfrequentedbyrelativelystrong,gustywinds,usuallyaccompanyingthepassageofsqualllinesorthunderstormsandthemaximum.,windassociatedwiththesephenomenais90mphona100yearrecurrencyinterval.Thetornadopresentsaveryspecializedtypeofhazardinvolvingbothviolentwindsandextremelylarge,rapidchangesinbarometricpressure.Thestormsaresmall,unpredictableindetailandzathezinfreq:.ent,buttheyundoubtedlyrepresent.oneofthefewenvironmentalfactorsthatcould,ifignoredinplantdesign,inflictdizectma)ord'amageonthefacility.Typically,thetornadoisanarrowfunnel,oftenonlyafewhundzedyardswide,'inwhichwindsmaybrieflyreach300mph.Almostinstantaneouschangesinbarometricpressureoccur,reaching3psiandcausingexplosionofvulnerablestructures.Becauseofthesevezityofthephenomena,veryfewreliablemeasurementsoftornadointensitiesexist.Itisthereforedifficulttodissociatewindandpressureeffects,buttheestimatesgivenaboveareconsideredfairlyreliablemaximumvalues.ThisportionofMichiganhasasignifi-canttornadoprobability,asisapparentinthemapshowninFj.guze2.2-2.BerrienCountyhashad2Stornadoesbetween1950and1989.2~27July,1993 IceStormsParlessdestructive,butfarmoreprobable,aretheicestormsthatfrequentthenorthcentralstates.M'chiganliesinthebeltwheresuchstormsarecommonandintheyearsfrom1970to1989,6significanticestormshavebeenreportedinthisarea.2.2.3DISPERSIONMETEOROLOGYWrstCaseXvalusX/Qvaluesfor1992(atyoicalyear)werecalculatedfromdatafromthemajntower's10meterinstrumentsusingtheMIDAScomputercode.ThedatashowaworstcaseX/Qvalueat,thesiteboundaryas1.06E-OSsec/m'uring1992.Theworstcaseeyercomputedbythepresentmeteorologicalsystemthrough1994is1.13E-05sec/m'.BochofthesevaluesarewellbelowtheestablishedworstcaseX/Qvalueof3.15E-04sec/m'.Table2.2-3showstheX/Qvaluesforallsectorsat10distances.AtmoshericStabilitTheatmosphericstabilityfortheareaisnowclassifiedaccordingtothePasquillcategoriesforuseindispersioncalculations.ThesecategoriesrangefromAtoG,withtheGcategorybeingthemoststable.Jo:ntfrequencytablesfor1992(atypicalyear)havebeencompiledand"areshowninTables2.2-4through2.2-11.Thedatashowthatalargepercentage(33':)oftheyearisdevotedtoCategoryD.AratherWsubstantialport'onoftheyear(23:)showsanextremelyunstableclassification(CategoryA).Thereisonlyasmalloortionoftime-(7~)devotedtotheextremelystableconditionsofCategoryG.HindSedandDirecionWindspeedsweremoderatein1992(atypicalyear).Thepredominantwindspeedrangeis4-7mphcategory.Thewindspeedexceeded14mphlessthan4~ofthetime.Thewinddirect'onatthemaintowervaied;229July1997 SedimentChemistzSedimentchemistrystudieswereconductedtodetermineiftheCookNucleazPlantvicinityinparticularandLakeMichiganingeneralwerecontaminatedfromanthropogenictraceelementsourcesandtoestablishthebackgroundlevelsoftheradioactiveandnon-radioactiveelementssotheseconcentrationscouldbecomparedwithlevelsmeasuredafterplantoperationbegan.4WaterChemistWaterchemistrystudieswereconductedtodetermineiftheCookNuclearPlantvicinityinparticularandLakeMichiganingeneralwerecontaminatedfromanthropogenictraceelementsourcesandtoestablishthebackgioundconcentrationsofradioactiveandnon-radioactiveelementssotheseconcentrationscouldbecomparedwithlevelsmeasuredafterplantoperationbegan.2.6.2.3InitialStudyResultsPhsicalLimnoloFigure2.6-1isaplotofthebottomofthelakeadjacenttothesite.Itischaracterizedbygentleandzegulartopography.The100-footdepthisoplethli.esaboutsixmilesfromshore.Isoplethsaregenerallyregularandparalleltotheshoreline.Twosandbarslieclosetoshorealongtheentirelengthofthesiteproperty.Thei.nnerbaraveragesabout500feetfromtheshorelinewhiletheouterbarrunsapproximately1000feetfromtheshoreline.Maximumwaterdepthoffivetosixfeetispresentbetweentheinnerbarandtheshore.Twelvetothirteenfeetofdepthisthegreatestmeasuredbetweenthe'bars.Thedepthoverthecrestoftheinnerbarisaboutfourfeet,whiletheouterbarpeaksateighttoninefeetbeneaththesurface.2.6-5July,1992 Anumbe"ofstudiesofbottomstabilityalongtheeastshoreofLakeMichiganhavebeenmadeinthepastdecadeortwo.'akeMichiganhaswhatapoearstobevery-stableconditionsnearlshoredespiteseveestormsandwintericing.Presentevidenceindicatesthatthenearshoresandbarsfluctuateinpositionbutmaintainafairlyconsistentaverageposition,withfairlyconsistentwaterdepthsovertheircrests.Thoughbottomcontoursremainrelativelystable,thelittoraltransportofsandhasbeenestimatedtobe100,000cubicyardsperyearmovinggenerallysouthwardalongtheMichiganshore.AlthoughallofthecurrentsofLakeMichiganarenotthoroughlyunderstood,.certainofthelargerfeatureshavebeenfoundwithasurprisingdegreeofconstancy.ThereisageneraloutflowcurrentalongtheMichiganshorefromLittleSablePointnorthwardtowardtheStraitsofMackinac,andthereisalargeeddyneartheeasternshorenearBentonHarbor,Michigan.Figure2.6-2indicatestheresultsofseveralstudiesmadeoflakecurrents.Xnadditiontothegrosscurrentfeatures,thereappearstobeathin,elongated,counterclockwiseeddyclosetotheshorebetweenMichiganCity,EndianaandBentonHarbor(indicatedbyXonFigure2'.6-2).Somediscussiononnaturalcycliclakelevelfluctuationiswarranted.Thespeedanddirectionoflocalwatercurrentsinthesitevicinitycontrolthemovementanddispersalofplantthermalplume.Studies(4)indicatedthatalongshorecurrentsareestablishedandcontrolledbyinteractionsbetweenlocalwindsandtheregionalcurrentpattern.Localwindsarethedominantfactorsinestablishingalongshorecurrents.Lakelevelstendtofollowcycles.Overthepastfifty'years,periodsofhighlakelevelsanderosionwereexperiencedfrom1951-55,1969-1975,and1983-1987.Theall-timehighwaterlevelwasrecordedin1986at581.10ft.InternationalGreat2.6-6July199~ Lake,Datum(IGLD}.Thecurrentperiodaopearstohavebegunatthebeginn'ngof1996atawaterlevelof578.5andendedtheyearup1.5ft.to580ft.IGLD.Thecurrentpredicationisthatlakelevelswillcontinuetoincreaseinto1997,andcouldmeetorexceedthe1986high.(2)AnIllinoisStateGeologicalSurveyreport(3)citesthatwherelakelevelsarerisingabovethe579ft.IGLDlevel,well-developedbeaches,willdelaytheonsetofmaximumblufferosionuntiltheyaredepleted.Afterbeacheshavebeendepleted,blufferosionfromwaveattackprogressesfarilyrapidly.Blufferosiongenerallydoesnotimmediatelydecreasewithdecreasinglakelevels,evenwhentheyfallbelowthe579ft.level.Commonly,thereisalageffectbywhichrecessionratesaremaintainedoracceleratedbecauseslopesremainexposeduntilvegetationcanbecomefirmlyestablished.TheCookNuclearPlantisprotectedbyasheetpilingwal,lwhichrunstheentirelengthofitslakefrontagefromthenorthtothesouthpropertylines.Asecondrowofsheetpilingrunsparalleland35ft.westofthefirstlineofpilingandspansthelengthoftheprotectedarea.Figure2.5-3isaplotofsurfacewatertemperaturesinLakeMichiganduringtherelativelycoolyearof1965andtherelativelywarmyearof1966.Temperaturesriseabruptlyfroma32'FicingconditioninwintertoapeakinJulyandAugustandthendecreaselinearlytoice-watertemperaturesbylateDecember.AnumberofsouthwesternMichiganmunicipalitiesuseLakeMichiganastheirpotablewatersource.Theseintakesandtheir"U.S.ArmyCorpsofEngineersreportsareexpressedinIGLD.CookNuclearPlantelevationsareexpressedinNationalGeodeticVerticalDatum(NGVD).NGVDIGLD+1.56ft.2.5-5aJuly,1997 I'tL approximatedistancesfromtheplantdischargeareasfollows:NorthwardSouth.HavenBentonHarborSt.Joseph32miles11miles9milesS~ouhwardLakeTownshipBridgmanOrchardBeachNewBuffaloGrandBeachMichigan,UnknownMichiganCity,Indiana,0.4miles2.5miles~7miles16miles18miles19miles22miles25milesTothenorth,theoutflowoftheSt.JosephRiverinterposesaphysicalanddynamicbarriertofurtherprogressofeffluentnorthward,alongtheshore.TheplanteffluentplumecouldreachthewaterintakestothesouthatLakeTownship,BridgmanandOrchardBeach.Theseintakesarealsooftheinfiltrationtype.However,theprevailingwindsofsummer,whentheworstdilutionconditions(minimumwindandwavesection)exist,areexpectedtocarrytheplumenorthfromtheplantandawayfromthesewaterintakes.Seichesareoscillationsintheleveloflakesandsimilarbodiesofwatercausedbythepassageofsqualllinesacrossthebodyofwater.-InLakeMichigan,thesesquallshavetheirfrontsorientedNEtoSWandareaccompaniedbyanabruptincreaseinbarometricpressureandlocalhighwinds.AlthoughseichesoccurfrequentlyintheGreatLakes,thegreatmajorityareonlyafewinchesinamplitude.AlargeseicheoccurredonJune26,1954andcausedwaterlevelincreasesofupto10feet2.6-7July,1997 atNorthAvenueinchicago,Illinois.Thegreatestlevelincreaserecordedonthelake'seasternshorewas6feetatMichiganCity,Indiana.Themax'mumrecordedamplitudeofanopenlakeseichewas4.2feetobservedat.theWilsonAvenueCribinChicagoonJuly6,1954.ApreviousseicheonJune26,1954,whichresulted'nariseof3.2feetatWilsonAvenueCrib,causedtheriseestimatedatlessthan6feetintheMichiganCityyachtbasi...apoint,approximately25milessouthoftheplantsiteinanareawhereseicheefectsareconsideredmoreseverethanthosefarthertothenorth..akingthesevalues'nproportion,onecanpos"u'atethemaximmse'cheoroducingawaterlevel'crease"'smuchas8feetintheM'higanC'yyach"basTodetemnethep'ntelevat'nnecessarytoprotectthep'n=fromccd"ngde"=seiches,thecharacter'st'csofthelakeshoreattheplant,'h'storicalmeteorologicalcondit'ons,andmathemat'ca'odelingwereusedto=stimateamaximumseicheo=8feet.Hcweve,theest'matewas:rbitrar'lyincreasedtofeetasanextrasafetymargin.Windgeneratedwavesare'mitedinthe'"dimensionsbywindvelocity,durationandfetch..he"rearestLakeM'chiganet".".Eorheplantsiteis255milestothenorth.Themaximumdee"~aterwave'sapproximately23Eeet,andwouldrequeasustained..orthwindcfabout26knc"sforover19hous.;herunupofsuchawaveonthesiteshore,discount'ngt.".=."e=softheoff-shoresandbars,nasbeenca'culatedas3,7feet.Thisf'gureisover'yconservat've,however,sincethe'argewaveacprcachingthebeachwou'dbetr'ppedbyeachofthesan"bars.Theco'n"de..ta'ccurrenceofmaximumwaveandmaximumse'chewaseva'"a=edandde"erm'nednottobeapossibleevent.2.6-8Julyg EliminationSystemPermitissuedtotheplantbytheMichiganIlWaterResourcesCommission.ThemajorityoftheresearchwasconductedbytheUniversityofMichiganwiththeprivateconsultingfirmETAEngineering,Inc.andtheCookNuclearPlantstaffconductingthetherma.'.plumemappingandbathymetricsurveys.Manystudiesbegunduringtheinitialphasewerecontinuedduringthisphase.Thesestudiesprovidetheplantoperationaldatatocomparewiththepre-operationaldatagatheredduringtheinitialphasestudies.Table2.6-2isabibliographyofthereportspublishedduringthisphaseofstudyattheCookNuclearPlant.2.6.3.1StudyGroupingsPh'icalLimnoloStudiesThesestudiesincludetheshoreiceformationandmeltstudies,thelakecurrentandtemperaturestudyusinginsitumonitors,thestudyoftheeffectsofthethermalplumeonlocalmeteorology,thethermalplumemappingstudiesandthebathymetricstudies.BoloicalStudiesThesestudiesincludecontinuationsoftheperiphyton,phytoplankton,zooplanktonandbenthosstudiesofspeciescompositionandabundance.Fishstudiesofpopulationsizeandspeciescompositionwereinitiated.SedimetChemstStudesSedimentchemistrystudiesincludedthenon-radiologicalelementalcompositionofthesediments.Radiologicalelements2.6-11July,1993 werealsomonitoredfortheincreaseincertainradioactiveisotopes.WarhmistrdieThewaterchemistrystudiesincludedanalysesforpH,hardness,conductivity,phosphorous,totalnitrogen,sulfate,ammoniaandtracemetals.2.6.3.2PurposeofTechnicalSpecification,AppendixBStudiesTheTechnicalSpecificationAppendixBispartoftheCookINuclearplantoperatinglicensethatregulatedtheradiologicalandnon-radiologicalenvironmentalmonitoring,aquatic-ecologicalstudiesofthepost-startupimpactstoLakeMichigan,andregulatedplanteffluents,bothradiologicalandnon-radiological.RadiologicalissuesarenowaddressedintheOffsiteDoseCalculationManual.Thenon-radiologicalissuesremainintheAppendixBTechnicalSpecifications,whoseobjectivesareto:(1)verifythatthestationisoperatedinanenvironmentallyacceptablemanner,as,establishedbytheFESandotherNRCenvironmentalimpactassessments.(2)CoordinateNRCrequirementsandmaintainconsistencywithotherFederal,State,andlocalrequirementsforenviornmentalprotection.(3)KeepNRCinformedoftheenvironmentaleffectsoffacilityconstructionandoperationandofactionstakentocontrolthoseeffects.EnvironmentalconcernsidentifiedintheFESwhichrelatetowaterqualitymattersareregulatedbywayofthePlant'sNPDESpermit.2.6-12July,1997 PhsicalLimnologicalStudiesTheicestudieswerecontinuedtodeterminehowthethermaldischargeaffectedtheshoreiceandthefloatingiceinfrontoftheplant.Winterstormscouldpotentiallycauseseverebeacherosionifthethermal,plumemeltedthefloatingiceandtheicefoot(theicefrozen.tothebottomatthewater/substrateinterface>exposingthebeachtowinterstormgenerated.waves.Afive-yearmeteorologicalstudywasconductedatCookNucleaPlanttodetermineif.theoperationoftheonce-throughlakewatercoolingsystemwouldsignificantlyeffectthenaturaltemperature,moisture,precip'tationandfogconditionsinlandfromtheplantand,ifso,howandtowhatextenttheseclimat'cconditionsareaffected.Thisinvestigationwasundertakenbecauseoftheabsenceofquantitativeinformationonthemeteorologicaleffectsofnear-shorewarmwat'erplumes.TheI2.6-l2aJuly,i&97 I'
localeconomyisheavilyde'pendentonagriculture,especiallyfruitcrops.Changestothelocalweatherconditions,couldhaveaseriousimpactonthelocaleconomy.Thermalplumemappingstudieswereconductedtodeterminetheaerialextentofthe3F'nd1Fisothermsandthe3F'lumevolume.Thisinformationwasneededtodetermineiftheplumewouldimpactpotablewaterintakesnorth'andsouthoftheplant,ifthethermalplumewouldsinkinthewinterandimpactthebenthosand-ifthethermaldischargewouldcomplywiththe570-acreareallimitimposedbythestateissuedNPDESPermit.Thelakecurrentandtemperaturestudieswereusedtohelpinterpretthethermalplume"mappingstudiesandevaluatetheaccuracyofthemathematicalplumedispersionmodel.Knowingthesizeofthethermalplumealsohelpedaquaticbiologistsdeterminehowmuchaquatichabitatwasimpactedbytheplume.KnowingtheplumedimensionsandlocationalsohelpedtheresearchteamfromtheUniversityofMichiganevaluatecausesofchangesinfishpopulationsneartheplant.Thebathymetricstudieswereconductedtodetermineifthelakewaterintakeanddischargestructurescausedsedimenterosionoutsideoftherip-rapapronsaroundthesestructures.BioloicalStudiesThebiologicalstudiesoftheabundanceanddistributionofperiphyton,phytoplankton,zooplanktonandbenthoswerecontinuedfromtheinitialphasestudiestoprovidethepre-operationalandoperationaldatacomparisons.Fishstudieswereinitiatedin1973andwerefullyimplementedin1974.ThesestudieswereconductedtodeterminetheimpactoftheCookNuclearPlantfromconstructionandoperation.Constructionrelatedimpactsincludethehabitatalterationresultingfromincreasedsiltrun-offfromtheconstructionsite,placementofrip-raparoundtheintakeanddischargestructuresandburying2.6-13Zuly,1993 oftheintakeanddischargetunnelsinthelakebed.Operationalimpactscouldresultfromoilandchemicalsp'lls,thermaldischarges,theimoingementoffishandbenthos(c'rayfish)ontravelingscreensandtheentrainmentofplanktonicorganisms(phytoplankton,zooplankton,benthosandfisheggs'andlarvae)throughthecoolingwatersystem.Thecombinedimpactsoftheplantconstructionandoperationwerestudiedbyanalyzingthebiologicalcommunitystructureforchangesinspeciesdiversityandabundance.PrimaryproductionwasestimatedusingtheC-14method;ameasureoftheeffectoplanteffluentsonalgaecellfunction.Thehealthofalgaecellsentrainedthroughtheplantwasassessedbymeasuringchlorophylltophaeophytinratios.ZooplanktoncouldbeimpactedbytheCookNuclearPlantthermalplumeorbyentrainmentthroughthecoolingsystem.Heatandmechanicaldamagecausedbyturbulentwaterflowthroughthesystemarethemajoreffects.iBenthoswerestudiedtodeterminetheimpactsofheat,habitatalteration,impingementontravellingwaterscreensandplantentrainmentcausedbyCookNuclearPlantoperat'on.Changesin,speciescompositionandabundancewasthemeasureusedtodetermineeffects~'ishwerestudiedtodeteminetheef"ectsofthethermalplumeon,adultandjuvenilefishdistributions,theimpactofadult'andjuvenilefishimpingementontravellingwaterscreens,andtheeffectsoff'sheggandlarvaeentrainmentthroughthepoweplant.SeimntChemistrStudiesThesedimentchemistrystudiswereconductedtodeterminethechangesinsedimentchemicalcompositionduetochemicaldischargesfromtheplantandfromthepossiblebuild-upoforganicmater'aldueto"hesettlinganddecompositionof2.6-14July,19"."70 aquaticbiotakilledbytheCookNuclearPlantthermalplumeorplantentrainment.WterhemistrStudiesWatersampleswerecollectedandanalyzedforphosphorus,dissolvedsilica,nitate,nitrite,chloride,sulfate,oxygensaturation,alkalinity,pH,conductivityandthesetracemetalsBa,Ca,Co,Cr,Cu,Fe,K,Mg,Mn,Mo,Na,Ni,SrandZn.Xnaddition,adetailedstudyofthethermalbarwasconductedtodetermineifitisabarriertomixingofonshorewithoffshorewaterand,ifso,howgreatdidthechemicalgradientbecomebeforethethermalbarmovedfaroffshore.2.6.3.3ResultsofTechnicalSpecificaticn,AppendixBStudiesAllresultsreportedbelowarefromPublication22fromtheUniversityofMichiganunlessnotedotherwise.PhialLimnoludisIcestudieswereconductedoveratenyearperiodfromthewinterof1969-1970through1979-1980.Amethodofphoto-graphingtheiceformationandanalyzingthephotographswasdevelopedsothedistancefromthecameraandtheelevationoftheobjectcouldbedeterminedwithreasonableaccuracy.Theconclusionsoftheicestudywere:1.Thedatashowthattheoffshoreiceridges,offshorebreakersandbreakerzones,threecharacteristicfeaturesoftheLakeMichiganshorelineinfrontofCookNuclearPlant,arecoincident.iceridgesappeartobegroundedfeaturesofthenearshoreicecomplexandtheyserveadualrole.They2.5-1.5July,1997 protectthebeachesfromincomingwaveenergywhenpresentand,duringthebreakupofthecomplex,maymodifythetopographyintheoffshorebarvicinity.2.Thestagesoficedevelopmentappearnottobecontrolledbyanysinglemeteorologicalvariablebutbyacomplexinterrelationshipbetweenicedevelopmentandmeteorologicalconditions.Airtemperaturesbelowfreezingwerefoundtobeanecessaryconditionforinitiationoftheicefoot.'rowthoftheicecomplexwasassociatedwithwesterlywindsanddeteriorationwitheasterlywinds.3.Theplant'sthermalplumeproducedameltholethatrangedfrom0.1to0.5squaremilesinsize.Themeltholewasrestrictedtothevicinityofthedischargearea,The'ceridgesclosesttotheshorelinewereminimallyaffectedbythemeltholeandtheeffectivenessofthe"iceridge"complexasawaveenergydiss'"atortoprotectthebeachwasnotsignificantlyaltered.4.Northandsouthofthemeltholetherewasnonoticeablechangeinthenormalicecomplexofridgesandlagoonsandthenearshoreicecomplexwasnotdiscerniblyaltereddetothepresenceoftheplantthermalplume.Lakecurrentstudieswereusedtohelpanalyzethethermalplumemappingdata.Lakecurrentsneartheplantwerethesinglemostimportantphysicalparameteraffectingtheposition,sizeandtrajectoryofthethermalplume.Thelakecurrentdatawereneededtodeterminetheprobabilityoftheplumeinf'uencingother~aterintakes',recirculationtotheCookNuclearPlantintakesandcontactingthebeachesnorthc=southoftheplant.Theinsitucurrentmetersweremooredaboutlmfromthebottomofthelakeinfourlocations(seeFigure2.6-4).Surfacedrogueswereusedonthedaystherma:2.6-16July,1992 monthandyear-to-yearchangesinphytoplanktonassemblages"(2).u,2.6.4OngoingStudyPhase(1983toPresent)Asiaticclams~~b~Qum~ea)andzebramussels~neiaaeno~acr~a)havebeenintroducedtotheCookNuclearPlantareaaswellasotherlocationsinL'akeMichigan.AnAsiaticclamshellwasfoundat"theplantin1983andzebramusselswerediscoveredintheplantintakeforebayin1990.Asiaticclamshavecaused,seriouscloggingproblemsinwaterintakesystemsinthesouthernUnitedStatesoverthepast30yearsorso.TheNuclearRegulatoryCommissionissuedabulletinrequiringnuclearplantstomonitorforAsiaticclaminfestationin1982.Asiaticclamsareheattolerantandcoldintolerant.WatertemperaturesattheplantwillpreventthisspeciesfrombecomingaseriousbiofoulingorganismatCookNuclearPlant.MonitoringtoensuretheAsiaticclampopulationremainedlowwasbegunin1982andhasbeenconductedannuallysincethen.LarvalAsiaticclams(veligers)aremonitoredinfilteredintakewatersamplesandplantrawwatersystemsarecarefullyinspectedduringroutingmaintenance.Oneliveclamandaboutadozenshellhalveshavebeenfoundineightyearsofmoni-toring.Noveligershavebeencollected.ZebramusselshavebeenthecauseofseriousbiofoulingproblemsinEuropeandRussiaformanyyears(5).WaterintakesfordrinkingwatersuppliesandpowerplantshavebeencloggedbyzebramusselsinLakeEriesincetheywerefirstdiscoveredintheSt.ClairRiverin1988.Zebramusselsare2.6-43July,1993 coldadaptedanimalsandareconsideredapotentiallyser'ousbiofou)ingproblemattheCookNuclearPlan".NoAsiaticclamshavebeenfoundsinceApril1991,whenhalf-shellswerefoundduringaClam-trolflushofthefireprotectionsystem.ThissystemhasbeenplacedonLakeTownshipwatersincetheSpringof1993.NoAsiaticclamsorzebramusselshavebeenreportedintheFireProtectionSystemsinceithasbeenplacedontheLakeTownshipwatersystem.ThereisaconsensusthatAsiaticClamsdonotposeathreattoCookNuclearPlantastheyareawarmwaterspecies.Theyarenolongerapartofthemonitoringprogram.Biocidessupplementedbymechanicalcleaninganddesignchangesincludingstrainers,filters,screens,andchem'caldeliverysystems,worktoprotectplantsystems.Azebramusselmonitoringprogramutil'zingside-streamandartif'cialsubstratemonitors,alongwithdiverandheatexchangerinspections,isusedtoevaluatetheeffectivenessofchemicaandphysicalcontrolmeasures.2.6-44July,1997 ReferencesDonaldC.CookNuc'earPlant,SupplementtoEnvironmnetalReport,November8,1971MonthlyBulletinofLakeLevelsfortheGreatLakes,March1997,U.S.ArmyCorpsofEngineersBluffErosion,RecessionRates,andVolumetricLossesontheLakeMichiganShoreinIllinois,RichardC.BergandCharlesCollins,IllinoisStateGeologicalSurvey,EnvironmentalGeologyNotesNo.75,July1976Baker,D.L.1993.Reportonthe1992ZebraMusselControlProgram.LetterfromD.L.Baker(I&i<I)toF.P.Morley(MichiganDeoartmentofNaturalResources).2.5-44aJuly,1997 5PVTHHAV(H~9'Ilgy,@A:-~~8c>A,~S,Vf*3~e~I~II(g+~+AV,A+,~5~(3~6*l~AHCOIIITAIAV,'leil-PCO(0~ALAKEhllCS(IGANPwAI(tv(I(f'CsIIIsX5AIHTIOS(III'l~5AuAAHII(HIIfHfQHMA~lptOSOOVS5rArfOHrYPE$~t(CVLAISTATION*MAINSTATIONPHW5COOt((AIIV(QMICIIICANACIICULTUI(~(AA8HV(((AIIOW(It(AHTIWAT(IIN(AX(f(MtfIATVI((AVC',Al~(COOK""~~~weve~7~ll0OpwACIAC~4~I1AM<IOIIIOCMAHPI(t~I(HSttflvCS~8*lp~5~9~(2(5CI(HOptAM.Ill5IOIMAW'OFigure2.6-7Dcna'dC,.CookandPalisadsNuclearPlantsr..eteorologiclnetworks.Networksitesaregivenbynumbers.MainsitesareC03A,C'OA,P03A,andP07A.Opencirclesareotherlocationswithmeteorologicalinformation.July1992 MlIB40DC6NDC-4-40SDC-7.5000000R~;~RII0II2.1.50512KNDC-4-07Mllean4Ca~0ES8nnE\EhnCDPhyloplanktononly.0Compl~1~Il~lion.1'i<to>c2.6-8'llic3(>-st;ttloii(<tvkl'1;iiit.s;>>>>1>li<<l,<.t'(<I,iisc
Subject:
Amendment74toFacilityOperatingLicenseNo.DPR-53forDonaldC.CookUnit1andenclosedNRCSER,DocketNo.50-315.2.Skarirka,J.,Iorii,J.A.,"OperationalExperiencewithWestinghouseCores(uptoDecember31,1982),"WCAP-8183,Rev.12,August1983.LetterfromR.L.Tedesco(NRC)toT.M.Andexson(Westinghouse),SafetyEvaluationofWCAP-9500,"ReferenceCoreReport-17x17OptimizedFuelAssembly,"NRCSERletterdatedMay22,1981.Bordelon,F.M.,etal.,"WestinghouseReloadSafetyEvaluationMethodology,"WCAP-9273(Non-Prop.),March1978.Skaritka,J.,etal.,"WestinghouseWetAnnularBurnableAbsorberEvaluationReport,"WCAP-10021-P-A,Revision1(Proprietary),October1983.ContainsNRCSERdatedAugust9,1983andWresponsestoNRCquestions.UNIT13.5.1-34July1997 Idimensionalmodelwhichisu'tilxzedtosimulateoperationofthecoreforpreviouscycles.Asanexample,Cycle15corecalculationsusedas'semblyexposurescalculatedfromtheCycle14burnupof14,267t6ID/MTU.3.5.2.2.2DesignBasesForeachccletheuy,enucleardesignbasesareverysimilartothosefortheexampleCycle15coreasfollows:1.Atcorefullower3250p,MVt(notincludingpumpheat:),nuclearpeakingfactorsof2.15and1.55for1.55forF<andF<Hrespectively,villnotbe'xceeded.Inadditiotion,atanyrelativepowerlevelF(0.0(P<1.0),F0andPAHshallnotexceedthebasesoftheplantcontrolandprotectionsystem.2.Themoderatortemperaturecoefficientatoperatingconditionsgreaterthan70Xoweperlevelxsarampfunctionlimitedto+5.0pcm/Fat70X0powerand0.0pcm/Fat100Xpower.Below70Xpowerlevel,themoderatortemperaturecoefficientshallbelessthan+5.0pcm/F.C3.Piththhemostreactivecontrolrodstuckoutfthoecore,theremainingcontrolrodsshallbeabletoshutthereactordownbyasufficientreactivitytoreducetheconsequencesofanycredibleaccidenttoacceptablelevels.TheeffectsofallaccidentsituationsinC115illbyceweacceptableandcompatiblewith,thesafetybasesoftheFinalSafetyAnalysisReport(FSAK),asspecifiedinReference7.I5.Thefuelloadingspecifiedshallbecapableofgeneratingapproximately15520MWD/LKtJatnormalfullpoweroperatingconditionsduringCycle15.UNIT13.5.2-3July1996 3.5.2.2.3DesignDescriptionandResultsEachcycle'sreactorcoreconsistsof193WOFAassemblies,eachhavinga15x15fuelrodarray.AdescriptionoftheWOFAsisgiveninSection3.5.1.Asanexample.,theCycle15loadingpatternisgiveninFigure3.5.2-1whichshowstheregionnumber,sources,andtheburnableabsorberconfiguration.Thecoreconsistsof32freshwOFAswithanaverageenrichmentof3.117w/oU-235,52freshOFAswithanaverageenrichmentof3.612w/o,80onceburntOFAassemblies,and29twiceburntOFAassemblies.Alowleakageloadingpatternwasdevelopedwhichresultsinthescatter-loadingofthefreshOFAsthroughouttheinteriorofthecore.4304newZFBArodsand120wetannularburnableabsorbers(WABA)arepresentinanumberofOFAstocontrolpowerpeakingandMTC.TheIFBArodscontainapproximately0.0018gm/inofB-10.PertinentfuelassemblyparametersfortheCycle15fuelaregiveninTables3.5.1-1and3.5.2-1.PhishrariiaTheneutronicscharacteristicsofareactorcorewithWOFAfuelarepresentedinTable3.5.2-2.Thesereactivitycoefficients'areboundedbythecoefficientsusedinthesafetyanalysis.Foranexamplecyclelength,Cycle15wasprojectedtobe15,520MWD/MTUatacorepowerof3,250MWtwith-9ppmsolubleboronremaining.PwerDiributionConsiraionsFigure3.5.2-2showstheK(Z)function(fuelheightlimitfornormalizedF(Z)).Eachcycle'scoreloadingsatisfiestheenvelopeshowninFigure3.5.2-2.UNiT3.5.2-4July1997 TABLE3.5.2-1FUELASSEMBLYDESZGNPARAMETERSCOOKNUCLEARPLANTUNiT1-CYCLE15~eceionEnrichment(w/oofU235)Density(percenttheoretical)"NumberofAssemblies151516173.0993.6093.1103.5133.11722313295.48695.37895.52195.41895.451~173.61295.45152BurnupatBeginningofCycle15(MWD/MTU)--ApproximateBurnupatEndofCycle14(MWD.MTU)*""26301345333771548408170371716630012316871760419121Allvaluesareas-built."*BaseduponactualEOC14burnupof14267MWD/MTU"""AssumesEOCburnupof15520MWD/MTU3.5.2-7July1997 TABLE3.5.2-2KINETICSCHARACTERISTICSCOOKNUCLEARPLANTUNIT1WITHMOFAFUELIMostPositiveModeratorTemperatureCoefficient(pcm/F)~DopplerTemperatureCoefficient(pcm/F)LeastNegativeDoppler-OnlyPowerCoefficient,ZerotoFullPower(pcm/Xpower)MostNegativeDoppler-OnlyPowerCoefficient,ZerotoFullPower(pcm/Xpower)DelayedNeutronFraction.,Pff(X)(X)minimum(5Mrodejectiononly)MaximumDifferentialRodcnorthofTwoBanksMovingTogether.atHZP(pcm/sec)~+5,0<70XRTP*linearrampto0.0from70to100XRTP-0.9to-3.2-9'5to-6.17-19.4to-12.900.40to0.70)0.5(75*RTP-RatedTherma)Power~1pcm-1.0x10hpUNIT13.5.2-8July1996 3.5.3ThermalandHydraulicDesignIntroductionThissectiondescribesthethermalandhydraulicdesignofCookNuclearPlantUnit1corewithWestinghouseOptimizedFuelAssemblies(OFA)Thethermalhydraulicdesignofthecore,isconservativelyanalyzedat3413NNtcorepowerwitha578.7'Fvesselaveragetemperature.ExampleCycle15wasoperatedatalicensedpowerof3250MWtwithanominalvesselaveragetemperatureof553'F.TheanalysesemployedtheImprovedThermalDesignProcedure(ITDP)andTHINCIV'omputercode.TheWRB-1DNB(1)(2,3)(4)correlationwasusedintheWestinghouse15x15OFAanalyses.Vesseltemperaturewasincreasedto556'FinCycle16.~ummarrThedesignmethodemployedtomeettheDNBdesignbasisistheITDP.(1)Uncertaintiesinplantoperatingparameters,nuclearandthermalparameters,andfuelfabricationparametersareconsideredstatistically,suchthat'hereisatleasta95percentprobabilitythattheminimumDNBRwillbegreaterthanorequaltothelimitDNBRforthepeakpowerrod.PlantparameteruncertaintiesareusedtodeterminetheplantDNBRuncertainty.ThisDNBRuncertainty,combinedwiththeDNBRlimit,establishesadesignDNBRvaluewhichmustbemetinplantsafetyanalyses.SincetheparameteruncertaintiesareconsideredindeterminingthedesignDNBRvalue,theplantsafetyanalysesareperformedusingvaluesofinputparameterswithoutuncertainties.Inaddition,thelimitDNBRvaluesareincreasedtovaluesUNIT13.5.3-1July1997 IdesignatedasthesafetyanalysislimitDNBRs.TheplantallowanceavailablebetweenthesafetyanalysislimitDNBRvaluesandthedesignlimitDNBRvaluesisnotrequiredtomeetthedesignbasis.Znthisapplication,theWRB-1DNBcorrelationisemployedinthethermal*(4)hydraulicdesignoftheWestinghouse15x15OFAfuel.DuetoanimprovementintheaccuracyofthecriticalheatfluxpredictionwiththeWRB-1correlationcomparedtopreviousDNBcorrelations,acorrelationlimitDNBRof1.17isapplicable.ThetablebelowshowstherelationshipswhichexistbetweenthecorrelationlimitDNBR,designlimitDNBR,andthesafetyanalysislimitDNBRvaluesusedforthisdesign,usingtheWestinghouseZmprovedThermalDesignProceduze(ZTDP)(1)TypicalThimbleCorrelationLimitDesignLimitSafetyAnalysesLimit1.171.331.45l.171321.45hForeventswhereconditionsfalloutsidetherangeofapplicabilityoftheWRB-1correlation,theW-3(5.6)cozrelationisused.ThemargintothesafetyanalysisDNBRlimitismorethansufficienttocoverthemaximumrodbowpenaltyatfullflowconditions(7)UNZT13.5.3-2July,1992 defects,thehighresistanceofuan'umdioxidetoatcackbywaterprotectsagainstfueldeteriorationalthoughlimitedfuelerosioncanoccur.Ashasbeenshownbyoperatingexperienceandextensiveexperimentalwork,thethermaldesignparamecersconservativelyaccountforchangesinthethermalperformanceofthefuelelementsdue'topellecfracturewhichmayoccurduringpoweroperation.Theconsequencesofdefectsinthecladaregreatlyreducedbytheabilityofuraniumdioxidetoretainfissionproductsincludingchosewhicharegaseousorhighlyvolatile.ObservationsfromseveraloperaCingWestinghousePWR's'asshownthatfuelpelletscan<2,4)rdensifyunderirradiationtoadensityhigherthanthemanufacturedvalues.Fueldensificationandsubsequencsettlingofthefuelpelletscouldresultinlocalanddistributedgapsinchefuelrods.Anextensiveanalyticalandexperimentalefforthasbeenconductedby(2.4)Westinghouse'ocharacterizethefueldensificationphenomenon.Fueldensificationduringthemanufaccuringprocessisapproximately95.3percenctheoreticalfueldensity."Theeffectsoffueldensificationhavebeentakenintoaccountinthenuclearandthermalhydraul'c'esignofthereactordescribedinSections3.3and3.4,respectively.Mecallographicexaminationofirradiatedcommercialfuelrodshaveshownoccurrencesoffuel/cladchemicalinteraction.Reactionlayersof<1milinthicknesshavebeenobservedbetweenfuelandcladaclimitedpointsaroundchecircumference.Wescinghousemetallographicdacaindicatesthatthisincerfacelayerremainsverychinevenathighburnup.Thus,thereisnoindicationofpropagationofthelayerandeventualcladpenetration.Stresscorrosioncrackingisanotherpostulatedphenomenonrelatedtofuel/cladchemicalinteraccion.Outofpiletestshaveshownthatinthepresenceofhighcladtensilestresses,largeconcentrationsofiodinecanchemicallyattackcheZircaloytubingandcanleadtoeventualcladcracking.Westinghousehasnoinpileevidencechatthismechanism.isoperativeincommercialfuel.UNIT23.2-15July'997 aterials-StrenthConsiderationsOnefactorinfuelelementdutyispotentialmechanicalinteractionoffuelandclad.Thisfuel/cladinteractionproducescyclicstressesandstrainsintheclad,andtheseinturnconsumecladfatiguelifetime.Thereductionoffuel/cladinteractionisthereforeagoalofdesign.Inordertoachievethisgoalandtoenhancethecyclicoperationalcapabilityofthefuelrod,thetechnologyforusingpre-pressurizedfuelrodsinWestinghousePWR'shasbeendeveloped.Initiallythegapbetweenthefuelandcladissufficienttopreventhardcontactbetweenthetwo.However,duringpoweroperationagradualcompressivecreepofthecladontothefuelpelletoccurs'duetotheexternalpressureexertedontherodbythecoolant.Cladcompressivecreepeventuallyresultsinthefuel/cladcontact.Duringthisperiodoffuel/clad'ontact,changesinpowerlevelcouldresultinchangesincladstressesandstrains.Byusingpre-pressurizedfuelrodstopartiallyoffsettheeffectofthecoolantexternalpressure,therateofcladcreeptowardthesurfaceofthefuelisreduced.Fuelrod'pre-pressurizationdelaysthetimeatwhichfuel/cladinteractionandcontactoccurandhencesignificantlyreducesthenumberandextentofcyclicstressesandstrainsexperiencedby,thecladbothbeforeandafterfuel/cladcontact.Thesefactorsresultinanincreaseinthefatiguelifemarginofthecladandleadtogreatercladreliability.Ifgapsshouldforminthefuelstacks,cladflatteningwillbepreventedbytherodpre-pressurizationsothattheflatteningtimewillbegreaterthanthefuel'scorelife.Atwodimensional(r,h)finiteelementmodelhasbeenestablishedtoinvestigatetheeffectsofradialpelletcracksonstressconcentrationsintheclad.Stressconcentration,herein,isdefinedasthedifferencebetweenthemaximumcladstressintheh-directionandthemeancladstress.Thefirstcasehasthefuelandcladinmechanicalequilibriumandasaresultthestressinthecladareclosetozero.InsubsequentcasesthepelletpowerisincreasedinstepsandtheresulcantfuelthermalexpansionimposesUNIT23.2-16July1991 ~~ussr'tFuelburnupisameasureoffueldepletionwhichrepresentstheintegratedenergyoutputofthefuel(MUD/NTU)andisaconvenientmeansfmeansorquantifyingfuelexposurecriteria./Thecoredesignlifetimeordesigndischargeburnupis'hidbiaceveynstailingsufficientinitialexcessreactivityineachfueLregionandbyfollowingafuelreplacementprogram(suchasthatdescribedinSection3.3.2)thatmeetsallsafety-relatedcriteriaineachcycleofoperation.Initialexcessreactivityinstalledinthefuel,althoughnotadesignbasis,mustbesufficienttomaintaincorecriticalityatfullpower/~operat'ngconditionsthroughout'yclelifewithequilibriumxenonXsamarium,andotherfissionproductspresent.Theendofdesigncyclelifeisdefinedtoinedtooccur'henthechemicalshimconcentrationisessentiallyzerowithcontrolrodspresenttthdes'eegreenecessaryforoperationalrequirements(e.g.,thecontrollingbandatthe"bite"position).Intermsofchemicalshimtmboronconcentrationthisrepresentsapproximately10ppmwithnocontrolrodinsertion.Alimitationoninitialinstalledexcessreactivityisnotrequiredotherthanasisuantifiedintermsofotherdesignbasessuchascorenegativereactivityfeedbackandshutdownmargindiscussedbelow.3.3.1.2eedba(ReactivityCoefficient)Thefueltemperaturecoefficientisnegativeandthemoderatortemperaturecoefficientofreactiractivityisnon-positiveforpoweroperationatLOOXRTP,therebrovidiypngnegativereactivityfeedbackcharacteristics.ThedesignbasismeetsGDC-LL.s'uss0@hencompensationforarapidI~~twomajoref=ects.TheseareUNIT2increaseinreactivi-gEsconsidered,therearetheresonanceabsorptionef=ects(Doppler)3~33JulyL99L associatedwithchangingfueltemperatureandthesoectumeffectresultingfromchangingmoderatordensity.Thesebasicphysicscharacteristicsareoftenidentifiedbyreactivitycoefficients.TheuseofslightlyenricheduraniumensuresthattheDopplercoefficientofreactivityisnegat've.,Thiscoefficientprovidesthemostrapidreactivitycompensation.Thecoreisalsodesignedtohaveanoverallnon-positivemoderatortemperaturecoefficientofreactivityatfullpowersothataveragecoolanttemperatureorvoidcontentprovidesanother,slowercompensatoryeffect.Fullpoweroperationispermittedonlyinarangeofoverallnon-positivemoderatortemperaturecoefficient.Thenon-positivemoderatortemperaturecoefficientcanbeachievedthroughuseoffixedburnableaosorber,integralfuelburnableabsorbersand/orcontrolrodsbylimitingthereactivityhelddownbysolubleboron.Burnableabsorbercontent(quantityanddistribution)isnotstatedasadesignbasisotherthanasitrelatestoaccomplishmentofanon-positivemoderatortemperaturecoefficient,atpoweroperatingconditionsdiscussedabove.3.3.1.3nrlofwerDisributinBasisThenucleardesignbasisisthar,withatleasta95percentconfidenceleve':Thefuelisnottobeoperatedatgreaterthan12.9Kw/ftundernormaloperatingconditionsincludinganallowanceof2percentforcalorimetricerrorandnotincludingpowerspikefactorduetodensification.2.Underabnormal,conditionsincludingthemaximumoverpowercondition,thefuelpeakpowerdcsnotcausemeltingasdefinedinSection3.4.1.2.3.3-4July1997 issogreatthat,thisexcitationishighlyimprobable.Convergentalaith1oscillatonscanbeexcitedbyprohibitedmotionofindividualcontrolrodsSuchoacillationsarereadilyobservableandalarmedintharm,usgteexcorelongionchambers.Zndicationsarealsoavailablefromincorethermocouplesandlooptemperaturemeasurements.saveableincoredetectorscanbeactivatedtoprovidemoredetailedinformation.Inallpresentlyproposedcoresthesehorizontalplaneoscillationsareself&ingbyvirtueofreactivityfeedbackeffectsdesignedintothecore.However,axialxenonspatialpoweroscillatonsmayoccurlate'ncorelife.Thecontrolbanksandexcoredetectorsareprovidedforcontrolandmonitoringofaxialpowerdistributions.Assurancethatfueldesignlimitsarenotexceededisprovidedby-reactorOverpowerdTandOvertemperaturedTtripfunctionswhichusethemeasuredaxialpowerimbalanceasaninput.3.3.1.7ntc'edTrsientsWithoutScramEntheCodeofFederalRegulations,10CFRS0.62(c)(1)requizesthateachpressurizedwaterreactorhaveiquipment,fromsensoroutputtofinalactuationdevice,thatisdiversefromthereactortripsystem,toautomaticallyinitiatetheauxiliaryfeedwatersystemandinitioaturbinetripunderconditionsindicativeofananticipatedtransientwithoutscram(ASS).Suchasyst:emhasbeeninstalledatCookNuclearPlant,havingbeendesignedinaccordancewithReference1.Thissystemiscalled"ATRSMitigatingSystemActuationCircuitry"(AHSAC).Thisecgxipmentwillprotectagainst.reactorcoolantsystemoverpressurisationintheeventthatalossofnormalfeedwateroralossof-loadtransientisnotaccompaniedbyareactortripafterhavingreachedthereactortripsetpoint.33.2DESCRIPTIONJuly,19933.3-9Thema)orityoftheinformationinthissubsectionreferstotheCycle8reloaddesign.Cycle8isselectedastheexampleofcurrentreloaddesignpracticewhenreloadingthecorewiththeWestinghouseVantageS1?x17fuel~~assemblydesign.AdditionalinformationonCycle8maybefoundinReference23.UNIT2 3.3.2.1NuclearDesignDescritioThereactorcoreconsistsofaspec'fiednumberoffuelrodswhichareheldinbundlesbyspacergridsattachedtorodclustercontrolthimbleswhichareheldinturnbytopandbottomfittings.ThefuelrodsareconstructedofZircaloycylindricaltubescontainingUOfuelpellets.Thebundles,knownasfuelassemblies,arearrangedinapatternwhichapproximatesarightcircularcylinder.Eachfuel,assemblycontainsa17x17rodarraycomposedof264fuelrods,2crodclustercontrolthimblesandanincoreinstrumentationthimble.Figure3.2-1showsacrosssectionalviewofa17x17Westinghousefuelassemblyandtherelatedrodclustercontrollocations.FurtherdetailsofthefuelassemblyaregiveninSection3.2.1.StartingwithCycle8,freshfuelhasaxialzoningofuraniumenrichment;/however,theenrichmentintheradialdirectionofanassemblyisstillmaintainedataconsistentenrichment.Generally,axialzoningconsistsofloadingthetopandbottomsix(6)inchesofthefuelwithnaturaluranium.Blankets,asthenaturaluraniumregionsarereferredto,reducetheaxialneutronleakage,therebycontributingtobetterfuelutilization.Figure3.3-1showstheaxialzoningofthefuelandtheaxialplacementoftheintegralfuelburnableabsorber(XFBA)coatedfuelpellets.ThereferencereloadingpatternissimilartothexampleinFigure3.3-2.Theloadingoffreshfuelintheinteriorofthecoredecreasestheradialneutronleakagebyreducingthepowerproducedonthecoreperiphery.Thistypeofreloadpatternincreasesthefuelutilizationandisreferredtoasalowleakageloadingpattern.Eachcyclewilloperateforapproximatelyc76EFPD(whichisequaltoan18monthcycleat95%capacityfactorwitha45dayrefuelingoutage).Theexactreloadingpattern,initialandf'nalpositionsofassembliesandthenumberoffreshassembliesaredependentontheenergyrequirementforthecycleandpowerhistoriesoftheoreviouscycles.UNiT23.3-10July1997 Thecoreaverageenrichmentisdeterminedbytheamountoffissionablematerialrequiredtoprovidethedesiredcorelifetimeandenergyrequirements,namelyaregionaveragedischargeburnupof48,000MWD/MTU.ThephysicsoftheburnupprocessaresuchthatoperationofthereactordepletestheamountoffuelavailableduetotheabsorptionofneutronsbytheU-235atomsandtheirsubsequentfission.TherateofU-235depletionisdirectlyproportionaltothepo~erlevelatwhichthereactorisoperated.Inaddition,thef'ssionprocessresultsintheformationoffissionproducts,someofwhichreadilyabsorbneutrons.Theseeffects,depletionandthebuildupoffissionproducts,arepartiallyoffsetbythebuildupofplutoniumshowninFigure3.3-3forthe17x17fuelassembly,whichoccursduetothenonfissionabsorptionofneutronsinU-238.Therefore,atthebeginningofanycycleareactivityreserveequaltothedepletionofthefissionablefuelandthebuildupoffissionproductpoisonsoverthespecifiedcyclelifemustbe"built"intothereactor.ThisexcessreactivityiscontrolledbyremovablenutronabsorbingmaterialintheformofborondissolvedintheprimarycoolantandIFBAcoatingonfuelpellets.Theconcentrationofboricacidinthepr'marycoolantisvariedtoprovidecontrolandtocompensateforlongtermractivityrequirements.Theconcentrationofthesolubleneutronabsorberisvariedtocompensateforreactivitychangesduetofuelburnup,fissionproduct,poisoningincludingxenonandsamarium,burnableabsorberdepletion,andthecold-to-operatingmoderatortemperaturechange.Thenormalandemergencyborationpathsofthechemicalandvolumecontrolsystem(CVCS)areeachcapableofinsertingnegativereactivityatarateinexcessofthepeakxenonburnoutrate.Therateofboration,withasingleboricacidtransferpumpoperating,issufficienttotakethereactorfromfullpoweroperationto1percentshutdowninthehotcondition,withnorodsinserted,inlessthan90minutes.UNIT23.3-11July1997 Inlessthan90additionalminutes,enoughboricacidcanbeinjectedtocompensateforxenondecay,althoughxenondecaybelowtheequilibriumoperatinglevelwillnotbeginuntila'pproximately25hoursaftershutdownAdditionalboricacidisemployedifitisdesiredtobring'hereactortocoldshutdownconditions.Rapidtransientreactivityrequirementsandsafetyshutdownrequirementsaremetwithcontrolrods.Astheboronconcentrationisincreased,themoderatortemperaturecoefficientbecomeslessnegative.Theuseofasolubli1soueposonalonecouldresultintheMTCexceeding,theTechnicalSpecificationslimit.ThereforeIIFBAcoatedfuelpelletsareusedtoreducethe1blbesoueoronconcentrationsufficientlytoensurethattheMTCisnegativeforfullpoweroperatingconditions,andwithinsafetylimitsforpartpoweroperatingconditions.IFBApinscontainenricheduraniuhpelletswiththiiancoatngofZrB2onthefuelpellet'scylindricalsurface.Duringoperation,theburnableabsorbercontentxntheIFBAcoatingisdepletedthusaddingpositivereactivitytooffsetsomeofthenegativereactivityfromfueldepletionandfissionproductbuildup.ThedepletionrateoftheIFBAcoatingisnotcriticalsincechemicalshimisalwaysavailableandflexibleenoughtocoveranypossibledeviationsintheexpectedIFBAdepletionrates.TheIFBAcoatingisthinenough(approx.0.6mil)tonotcausesignificantincreasesinresistancetoheatconduction.fInadditiontoreactivitycontrolandaxialpowershaping,theIFBApinsarestrategicallylocatedtoprovideafavorableradialpowerdistribution.Figure3.3-4showsexampleabsorberdistributionswithinafuelassemblyforseveralexampleIFBAconfigurationsusedina17x17array.Anexample,IFBAcoreloadingpatternisshowninFigure3.3-5.Figure3.3-6isagraphofanexamplecoredepletionwithIFBAcoatedfuelpellets.Tables3.3-1through3.3-3containasummaryofthereactorcoredesignparametersforanexamplefuelcycle,includingreactivitycoefficientsdelayedneutronfractionandneutronlifetimes.Sufficientinformationisincludedtopermitanindependentcalculationofthenuclearperformancecharacteristicsofthecore.UNIT23.3-12July1995 20.Eggleston,F.T.,"Safety-RelatedResearchandDevelopmentforWestinghousePressurizedWaterReactors,ProgramSummaries,"Latestrevision.21.Poncelet,C.G.,"LASER,ADepletionProgramforLatticeCalculationsBasedonMUFTandTHERMOS,"WCAP-6075,April,1966.22.Olhoeft,J.E~,"TheDopplerEffectforaNon-UniformTemperatureDistributioninReactorFuelElements,"WCAP-2048,July,1962.23'ohansen,B.J.,et.al.,"NuclearParametersandOperationsPackagefortheDonaldC.CookNuclearPlant(Unit2Cycle8),"WCAP-12651(Proprietary),October1990.24.Meyers,R.0.,"TheAnalysisofFuelDensification,"DivisionofSystemsSafety,USNRC,NUREG-0085,July,1976.25.Meyer,C.E.andStover,R.L.,"IncorePowerDistributionDeterminationinWestinghousePressurizedWaterReactors,"WCAP-8498,July1975.26.Ford,W.E.,et.al.,"CSRL-V:ProcessedENDF/B-V,227-NeutronGroupandPointwiseCrossSectionLibrariesforCriticalitySafety,ReactorandShieldingStudies,"NUREG/CR-2306,ORNL/CSD/TM-160(1982).UNIT23.3-61July1991 Act'veCorTABLE3.3-aREACTORCOREDESCRIPTIONEquivalentDiameter,inActiveFuelHeight,F'stCore,inHeight-to-DiameterRatioTotalCrossSectionArea,ft2H0/UMolecularRatio,lattice(Cold)ReflectorThicknssandCmoitionTop-WaterplusSteel,inBottom-WaterplusSteel,inSide-WaterpiusSteel,inFuelAssemblisNumberRodArrayRodsperAssemblyRodPitch,inOverallTransverseDimensions,inFuelWeight(asUO),lb-perassemblyZircaloyWeight,lb-perassemblyNumberofGridsperAssemblyCompositionofGridsWeightofGrids(EffectiveinCore),lb-'erassembly132.7144.01.09,96.062.731010as19317x172540.4968.426x8.42610582062-R6-Z3-IFM1-PR-Inconel718Z-Zircaloy4IFM-Zircaloy4P-DebrisResistentIncone)71820.790NumberofGuideThimblesperAssemblyCompositionofGuideThimblesDiameterofGuideThimbles(upperpart),inDiameterofGuideThimbles(lowepart),inDiameterofInstrumentGuideThimbles,in24Zircaloy40.442I.D.x0.474O.D.0.397I.D.x0.430O.D.0.440I.D.x0.476O.D.UNIT23.3-5c.July1997 ~selRodsTABLE3.3-1(Continued)REACTORCOREDESCRIPTIONNumberOutsideDiameter,inDiameterGap,inCladThickness,inCladMaterialFuelPelletsMaterialDensity(percentofTheoretical)MaximumFuelEnrichmentsw/oDiameter,inLength,in50,9520.3600.00620.0225Zircaloy-4UO2Sintered95.34.950.30880.370Enriched0.462AxialBlanketMassofUOperFootofFuelRod,1b/ftRdClusterCnrolAssembliesNeutronAbsorberCompositionDiameter,inDensity,lb/in3CladdingMaterialCladThickness,inNumberofClustersFullLengthPartLengthNumberofAbsorberRodsperclusterFullLengthAssemblyweight(dry),lb0.349Ag-ln-C9480<,15%,5%0.3410.367Type304,ColdWorkedStainlessSteel0.0185531.57UNIT23.3-63July1997 TABLE3.3-1(Continued)REACTORCOREDECRTPT1'ONFxcssReacivitMaximum:uelAssemblyk(Cold=,Clean,unboratedWater)MaximumCoreReact.ivity(Cold,Zero?owerBeginningofCycle),1.4761.224ante1FuelBrnablesorbrNumberMaterialCoatingThickness,milBoron10loading,mg/in-8100ZrB2-0.22.253.3-54July'r".7 S.EffctfRodBowonDNBRThephenomenonoffuelrodbowingmustbeaccountedforintheDNBRsafetyanalysisofConditionIandConditionIIevents.Aportion(45)ofthemarginresultingfromthedifferencebetweenthedesignandsafetyanalysislimitDNBRsisusedtocounteracttherodbowpenalties.Themaximumrodbowpenalties(<1.3%)accountedforinthedesignsafetyanalysisarebasedonanassemblyaverageburnupof24,000MWD/MTU.Atburnupsgreaterthan24,000MWD/MTU,creditistakenforNtheeffectofF<Hburndown,duetothedecrease,infissionableisotopesandthebuildupoffissionproductinventory,andnoadditionalrodbowpenaltyisrequired(46)IntheupperspansoftheVantage5fuelassembly,additionalrestraintisprovidedwiththeintermediateflowmixer(IFM)gridssuchthatthegrid-to-gridspacinginthosespanswithIFMgridsisappoximately10inchescomparedtoapproximately20inchesintheotherspans.Usingthe.NRCapprovedscalingfactorresultsinpredictedchannelclosureinthelimiting10inchspansoflessthan50%closure.Therefore,norodbowDNBRpenaltyisrequiredinthe10inchspansintheVantage5safetyanalyses.fUNIT23.4-17July1997 Thispageisintencionallylefrblank.UHET2 7hispageisintencianallyle"t:blank.UNIT23.4-l9July1997 3.4.2.4FluxTiltnsidrationsSignificantquadrantpowertiltsarenotanticipatedduringnormaloperationsincethisphenomenon'scausedbysomeasymmetricperturbation.AdroppedormisalignedRCCAcouldcausechangesinhotchannelfactors;however,theseeventsareanalyzedseparatelyinChapter14;Thi.sdiscussionwillbeconfinedtofluxtiltscausedbyx-yxenontransients,in'ettemperaturemismatches,enrichmentvariationswithintolerancesandsoforth.UNIT23.4-20July1997 Itisassumedthatthesprayvalveopenstoadmitspraywaterintothepressurizeronce,atthedesignflowrate,foreachdesignstepchangeinplantload.ThusthenumberofoccurrencesforthespraynozzlecorrespondstothatshownfortheothercomponentsinTable4.1-10.Duringplantcooldown,spraywaterisintroducedintothepressurizertocoolitdown.Themaximumpressurizercooldownrateis0specifiedat200FperhourwhichistwicetheratespecifiedfortheotherReactorCoolantSystemcomponents.12.AccidentConditions'fheeffectojtheaccidentloadingwasevaluatedincombinationwithnormalloadstodemopstratetheadequacytomeetthestatedplantsafetycriteria.Abriefdescriptionofeachaccidenttransientconsideredfollows.Ineachcaseoneoccurrenceisevaluated.a.ReactorCoolantPieBreakThisaccidentinvolvestheruptureofaReactorCoolantSystempiperesultinginalossofprimarycoolant.ItwasconservativelyassumedthatthesystempressureandtemperaturewouldbereducedrapidlyandthattheSafetyInjectionSystemwouldbeinitiatedtointroduce70F(30FforUnit2)waterinto00theReactorCoolantSystem.Thesafetyinjectionsignalwillalsoresultinaturbineandreactortrip.BecauseoftherapidIblowdownofcoo)antfromthesystemandthecomparativelylargeheatcapacityofthemetalsectionsofthecomponents,itislikelythatthemetalisstillatno-loadtemperatureconditions00whenthe70F(30FforUnit2)safetyinjectionwater.isintroducedintothesystem.4.1-21July,1982 b.StamLineBrkForcomponentevaluation,thefollowingconservativeconditionswereconsidered:(1)Thereactorisinitiallyinahot,no-load,justcriticalcondition,assumingallrodsinexceptthemostreactiverodwhichisassumed'obestuckinitsfullywithdrawnposition.(2)Asteamlinebreakoccursinsidethecontainment,resultinginareactorandturbinetrip.(3)Subsequenttothebreak,"hereisnoreturntopowerandthereactorcoolanttemperaturecoolsdownto212F.(4)Thecentrifugalchargingpumpsrestorethereactorcoolantpressureto2500psia.ITheaboveconditionsresultinthemostseveretemperatureandpressurevariationswhichthecomponentwillencounterdur'ngasteambreakaccident.c,StemnrorTubRuotreThisaccidentpostulatesthedouble-endedruptureofasteamgeneratortuberesultinginadecreaseinpressurizerleveland,reactorcoolantpressure.Reactortripwilloccurduetoasafetyinjectionsignalonlowpressurizerpressure.Whentheaccidentoccurs,someofthereactorcoolantblowsdownintotheaffectedsteamgeneratorcausingtheleveltorise.Xfthelevelrisestoapre-selectedsetpoint,ahighlevelalarmwilloccurandthefeedwaterregulatingvalvewilLclose.4.1-22July,1997 Itisexpectedthisaccidentwillresultinatransientwhichis(nomoreseverethanthatassociatedwithareactortrip.Forthisreason,,itrequiresnospecialtreatmentinsofarasfatigueevaluationisconcerned.FurtherdetailaboutthesequenceofeventsmaybefoundinSection14.2.4(Units1and2).4.1.5SERVICELIFETheservicelifeoftheReactorCoolantSystempressurecontaining"componentsdependsupontheend-of-lifematerialradiationdamage,unitoperationalthermalcycles,designandmanufacturingqualitystandards,environmentalprotection,maintenancestandardsandadherencetoestablishedoperatingandmaintenanceprocedures.ThereactorvesselistheonlycomponentoftheReactorCoolantSystemwhichisexposedtoasignificantlevelofneutronirradiationandthereforeitistheonlycomponentwhichissubjecttomaterialradiationdamageeffects.TheNDTTshiftofthevesselmaterialandweldsduringserviceduetoradiationdamageeffectsismonitoredbyaradiationdamagesurveillanceprogram.DetailsaregiveninSub-Chapter4.5.Reactorvesseldesignwasbasedonthetransitiontemperaturemethodofevaluatingthepossibilityofbrittlefractureofthevesselmaterialasaresultofoperation.ToestablishtheservicelifeoftheReactorCoolantSystemcomponentsasrequiredbytheASME(SectionIII)BoilerandPressureVesselCodefor"A"vessels,unitoperatingconditionshavebeenestablished4.1-23July,1997 forthe40yeardesignlife.Theseoperatingconditionsincludethecyclicapplicationofpressureloadingsandthermaltransients.ThenumberofthermalandloadingcyclesusedfordesignpurposesislistedinTable4.1-10.4.1;6CODESANDCLASSIFICATIONSPressure-containingcomponentsoftheReactorCoolantSystemweredesigned,fabricated,"inspectedandtestedinconformancewiththeapplicablecodesliqtedinTable4.1-12.RefertoSubChapter4.5foradiscussionofInserviceInspection.ReactorCoolantSystempipinghasbeendesignedandsupportedinaccordancewiththeUSASB31.1-1967CodeforPressurePiping.TheCoderequirementthatthepipingshallbearrangedand'supportedwithconsid-erationofvibrationwasmetbymeansofvariablespringhangers,rigidsupports,constantsupporthangers,pipeanchors,guidesandsnubbers.TheCodedoesnotspecificallyrequireanyvibrationaltestprograms.However,duringthenormalcourseofthepreoperationaltestprogram,specificattentionwasdirectedatevaluatingpossiblevibrationproblemsduringperformanceofspecifictransientsassociatedwiththerequiredpreoperationaltests.Excessivevibrationsordeficiencies,determinedbyvisualexaminations,whichwereindicativeofpossiblevibrationproblems,wereinvestigatedandcorrectedwhennecessary.ThiswasdonetoverifythatthepipingandpipingrestraintswithintheReactorCoolantSystempressureboundarywereadequatelydesignedtowithstanddynamiceffectsresultingfromtransientconditions.4~1-24July,1982 TABLE4.1-1YSTEMDEIGNANDOPERATINGPARAMETERSPlantdesignlife,yearsNumberof,heattransferloopsDesignpressure,psigNominaloperatingpressure,psig4024852085(un't1)/2235(unit2)Totalsystemvolumeincludingpressurizerandsurgeline(ambientconditions)*>>,ft(estimated)3Systemliquidvolume,includingpressurizerandsurgeline(ambientconditions)"",ft3Systemliquidvolume,includingpressurizermax.guaranteedpower*,ft(estimated)3TotalReactorheatoutput(3.00%power)Btu/hr12,50011,89211,89111,089x10(Unit1)6(3250MWt)11,641x10(Unit2)6(3411MNt)BoundingConditionsforReratingLower/Upper~Uni2Reactorvesselcoolanttemperatureatfullpower:0Inlet,nominal,F0Outlet,nominal,FCoolanttemperatureriseinvesselatfullpower,avg.,F0Totalcoolantflowrate,lb/hrx106Steampressureatfullpower,psiaSteamTemp.8fullpower,F0TotalReactorCoolantVolumeatambientconditions"*,ft3514.9/545.2579.1/607.564.2/62.3139.0/133.9618/820489.4/521.112,438541.3606.464.8134.6820521.112,470<<>>Thesevaluesaresubjecttochangeduerotubeplugging4.1-25July1997 TABLE4.1-2REACTORCOOLANTYTEMDESIGNPRESURESETTINGSDesignPressureOperatingPressureSafetyValvesPowerReliefValves*PressurizerSprayValves(BegintoOpen)PressurizerSprayValves(FullOpen)PressurizerPressureHigh-ReactorTripHighPressureAlarmPressurizerPressureLow-ReactorTripLowPressureAlarmPressurizerPressureLow-SafetyInjectionHydrostaticTestPressureBackupHeatersOnPoportionalHeaters(BegintoOperate)ProportionalHeaters(FullOperation)Pressur~Uni248520852485233522602310237823101865213518153106218522502220si"U~ni2248522352485233522602310237823101950213519003106218522502220DuringStart-upandShut-downwhentheReactorCoolantSystemtemperatureisbelow2664FforUnit1and300'FforUnit2,asafeguardcircuitismanuallyswitchedonwhichallowsopeningofthatUnit'stwoPowerReliefValvesat<435psigforUnit1and<435psigforUnit2forlowtemperatureoverpressureprotection(LTOP)oftheReactorVessel.ThissafeguardcircuitensuresthatthereactorpressureremainsbelowtheASMESectionIII,AppendixG"ProtectionAgainstNon-ductileFailure"limitsinthecaseofan,LTOPevent.4.1-26July1997 TABLE4.1-3REACTORVESSELDESIGNDATADesignPressure,psigOperatingPressure,psigHydrostatl'cTestPressure,psigDesignTemperature,F0OverallHeightofVesselandClosureHead,ft-in.(BottomHeadO.D.totopofControlRodMechanismAdapter)ThicknessofInsulation,min.,in.NumberofReactorClosureHeadStudsDiameterofReactorClosureHeadStuds,in.IDofFlange,in.ODofFlange,in.IDatShell,in.InletNozzleID,in.OutletNozzleID,in.CladThickness,min.,in.LowerHeadThickness,min.,in.(basemetal)VesselBelt-LineThickness,min.,in.(basemetal)'ClosureHeadThickness,in.24852085(unit1)/2235(unit2)310765043-911/16(Unit1)43-10(Unit2)541721/2205173271/2295/325-3/881/261/2anni2BoundingConditionsforReratingLower/Upper~nit2ReactorCoolantInletTemperature,F0514.9/545.2ReactorCoolantOutletTemperature,F0579.1/607.5ReactorCoolantFlow,lb/hrx106139.0/133.9TotalWaterVolumeBelowCore,ft3WaterVolumeinActiveCoreRegion,ft3TotalWaterVolumetoTopofCore,ft3TotalWaterVolumetoCoolantPipingNozzlesCenterline,ft3TotalReactorVesselWaterVolume(withcoreandinternalsinplace),ft(estimated)34.1-271050665235229594848541.27606.35134.6July1997 PRESURIZERANDPRESSRIZERRELIEFTANKDEIGNDATADesignPressure,psigOperatingPressure,psigHydrostaticTestPressure(cold),psig0Design/OperatingTemperature,FWaterVolume,FullPower*,ft3SteamVolume,FullPower,ft3TotalInternalVolume,ft3SurgeLineNozzleDiameter,in.ShellID,in.ElectricHeaterCapacity,kWHeatuprateofPressurizer,F/hroStart-upWaterSolid,F/hr0HotStandbyCondition,F/hr0DesignSprayRateforValvesFullOpen,gpmContinuousSprayRate,gpmPrsurizerRelifTnkDesignPressure,psigRuptureDiscReleasePressure,psig0DesignTemperature,FNormalWaterTemperature,F0NormalOperatingPressure,psigNormalWaterVolume,ft3NormalGasVolume,ft3Coolingtimerequiredfollowingdesignmaximumdischarge,hr.NumberofspraynozzlesTotalSprayFlow,gpmTotalVolume,ft3TotalRuptureDiscReliefCapacity,saturated\steam.lb/hrAtcurrentratingconditions4.1-28,24852085(unit1)/2235(unit2)3106680/653858(Unit1)-974(Unit2)973(Unit1)-826(Unit2)1831I14841685(unit1)/1523(unit2)55(approx.)40~708001001.OO340ContainmentAmbient(120FMax.)01430370Approx.115018001.6x106July1997 NumberofSteamGeneratorsTABLE4.1-5STEAMGENERATORDEIGNDATA>>Unit1Unit2DesignPressure,ReactorCoolant/Steam,psigReactorCoolantHydrostaticTestPressure2485/10852485/1085(tubeside-cold),psigDesigntemperature,ReactorCoolant/Steam,FReactorCoolantFlow,lb/hrTotalHeatTransferSurfaceArea,ft2RatedThermalOutput/MWt)OperatingParametersat100~LoadPrimarySide:HeatTransferRate(perunit),Btu/hrCoolantInletTemperature,F0CoolantOutletTemperature,F0FlowRate,(perunit),lb/hrPressureloss,psiSecondarySide:SteamTemperatureatfullpower,F0SteamFlow,lb/hrSteamPressureatfullpower,psiaMaximummoisturecarryover,wt%FeedwaterTemperatureatNo.6Heater310765o/6oo33.9x10651,500812.52773x106582.8520.033.9x10631.4502.03.55x1066920.15436.53107650/60033.7x10654,500852.752910x106606.4541.333.7x10626.1521.13.685x1068200.15431.3Outlet20FoulingFactor,.hr-ft-F/BtuOverallHeight,ft-in.ShellOD,upper/lower,in.NumberofU-tubesU-tubeouterDiameter,in.TubeWallThickness,(minimum),in.Numberofmanways/ID,in.Numberofhandholes/ID,in.Numberofinspectionports/ID,in.0.000267-80.,0000567-833880.8750.0504/162/635920.8750.0504/166/62/417M.75/135175.9/135Quantitiesareforeachsteamgenerator4.1-29July1991 TABLE4.1-"5(cont'd.)STEAMENERATRDESIGNDATA*Unio2ReactorCoolantWaterVolume*",ft3PrimarySideFluidHeatContent,BtuSecondarySideWaterVolume,ft3SecondarySideSteamVolume,ft3SecondarySideFluidHeatContent,Btu~RaedLod108028.7x106"183740305.738x107NoLoad108027.7x106352423449.628x107~ni2ReactorCoolantWaterVolume*~,ft3PrimarySideFluidHeatContent,BtuSecondarySideWaterVolume,ft3SecondarySideSteamVolume,ft3SecondarySideFluidHeatContent,Btu111229.0x106207735895.18x107111228.46x106335123158.44x107*Quantitiesareforeachsteamgenerator~*Valuesmaychangesubjecttosteamgeneratortubeplugging.4.1-30July199 TABLE4.1-6REATORCOOLANTPUMPSDESIGNDATA+NumberofPumps-Pressure/OperatingPressure,psigHydrostaticTestPressure(cold),psigDesignTemperature(casing),F0RPMatNameplate"Rating0SuctionTemperature,FRequirednetpositivesuctionhead,ftDevelopedHead,ftCapacity,gpmSealWaterInjection,gpmSealWaterReturn,gpmPumpDischargeNozzleID,.in.PumpSuctionNozzleID~in.,ft-in.OverallUnitHeight,3WaterVolume,ftPump-MotorMomentofInertia,lb.-ft2MotorData:4Design2485/223531066501189536.3(Unit1);541.27(Unit2)17027788,50027.53127-05682,000VoltageInsulationClassPhaseFrequency,HzStartingCurrent,ampInput(hotreactorcoolant),kwInput(coldreactorcoolant),kwPower,"HPlnameplates)PumpWeight,lb.(dry)ACSquirrelCageInduction,SingleSpeed,WaterCooled4160~604692433756636000175,200"Quantitiesareforeachpump4.1-31July1997 TABLE4.1-7REACTOROOLANTPIPINGDEIGNPARAMETERSReactorinletpiping,ID,in.Reactorinletpiping,nominalthickness,in.Reactoroutletpiping,ID,in.Reactoroutletpiping,nominalthickness,in.Coolantpumpsuctionpiping,ID,in.Coolantpumpsuctionpiping>nominalthickness,in.Pressurizersurgelinepiping,ID,in.Pressurizersurgelinepiping,nominalthickness,in.Designpressure,psig27.52.38292.50312.6611.1881.4062485Operating.Pressure,psigHydrostatictestpressure(cold),psig0Designtemperature,FDesigntemperature(pressurizersurgeline),F02085(unit1)/2235(unit2)3106650680Designpressure,pressurizerreliefline,psigDesigntemperature,pressurizerrelieflines,Fwatervolume(all4loopswithoutsurgeline),f't,334Surgelinevolume,ft1127.858.5(1}Frompressurizertosafetyvalve:2485psig,650F0Fromsafetyvalvetopressurizerrelieftank:500psig,470F4.1-32July1997 Zndicationofvalvepositaonforthepressureersafetyandpower-operatedreliefvalvesisprovidedbyafourchannelacousticflowmonitor.Therearefouraccelerometers,onestrappedtothedischargeofeachofthethreepressurizersafetyvalvesandoneonthecommondischargeofthethreepo~:erreliefvalves.Flowthroughanyofthesevalvesproducesanacousticenergyinputtotherespectiveaccelerometerandthisisamplifiedontheassignedchannelofthemonitorwhichislocatedinthecontrolroom.Indicationonfourverticalrowsoflightemittingdiodesrepresentsabargraphdisplayofrelativeflowthroughthemonitoredvalves.essuzeaVvesThepressurizersafetyvalvesaretotallyenclosedpop-typevalves.Thevalvesarespring-loaded,self-activatedandwithback-pressurecompensationdesignedtopreventsystempressurefromexceedingthedesignpressurebymorethanllopercent,inaccordancewiththeASHEBoilerandPressureVesselCade,SectionZIZThesetpressureofthevalvesis2485psig.The6isppeconnectingthepressurizernozzlestotheirrespectivesafetyvalvesarsshapedintheformofaloopseal.Pipingisconnectedtothebottomofeachloopsealtodrainanycondensatethataccumulatesintheloopseal.Anacousticflowmonitorandatemperatureindicatoroneachvalvediscusalertslertstheoperatortothepassageofsteamduetoleakageorvalve1ifting.4.2-21July1991 PowrReliefValvesThepressurizerisequippedwith3power-operatedreliefvalveswhichlimitsystempressureforalargepowermismatchandthuslessenthelikelihoodofanactuationofthefixedhigh-pressurereactortrip.Thereliefvalvesoperateautomaticallyorbyremotemanualcontrol.Theoriginaldesignfor3pORVswastoprovide1004'oadrejectioncapability.Sincetheloadrejectioncapabilityhasbeenreducedto50%,thethirdPORVisnowconsideredaninstalledspare.Theoperationofthesevalvesalsolimitstheundesirableoperationofthespring-loadedsafetyvalves.Remotelyoperatedstopvalvesareprovidedtoisolatethepower-operatedreliefvalves.An.acousticflowmonitorandatemperatureindicatoronthecommondischargeofthereliefvalvesalertstheoperatortothepassageofsteamduetoleakageorvalveopening.Duringstartupandshutdowntransientconditions,when"thereactorcoolantsystem,temperatureisbelow266'FforUnit1and300'FforUnit2,asafeguardcircuitismanuallyenergizedinthecontrolroomtoallowautomaticopeningofthatunit'stwopowerreliefvalvesat435psigforUnit1,and435psigforUnit2,forlowtemperatureoverpressure(LTOP)protectionofthereactorvessel.ThissafeguardcircuitensuresthatthereactorpressureremainsbelowtheASMESectionXXI,AppendixG"ProtectionAgainstNonductileFailure"limitsinthecaseofanLTOPevent.Designparametersfortheoressurizerspraycontrol,safety,andpowerelievalvesaregiveninTable4.1-8.4.2.2.9RearClaneSstemSuots1.SteamGeneratorSupportEachsteamgeneratorissupportedbyastructuralsystemconsistingoffourverticalsupportcolumnsandupperandlowerlateralrestraintsapproximately46Kfeetapart.Theverticalcolumnshaveaballjointconnectionateachendtoaccommodateboththeradialgrowthofthesteamgeneratoritselfandtheradialmovementofthevesselfromthereactorcenter.4.2-22July1997 Thelowerlateralsupportconsistsofaninnerframe,keyedandshimmedtothefoursteamgeneratorsupportEeettoaccommodateradialgrowthofthesefeet.Theinnerframeissurroundedbyanouterframewhichisembeddedinboththeprimaryshieldandcranewallconcrete.TheconnectionbetweentheinnerandouterIframeconsistsofaseriesofshimmecmintswhichactasbothguidesandlimitstopstoallowforexpansionfromthecenterofthereactor.Thelowerlateralsupportrestrainsbothtorsionalandtranslationalmovements.Theupperlateralsupportconsistsofaringbandwhichisshimmedtothesteamgeneratorattwelvelocationsaroundthecircumference.Attachedtothisbandarelugs180'partwhichareshimmedandguidedtoastructuralframingsystemwhichisembeddedinthecranewallandsteamgeneratorenclosurewallconcrete.Hydraulicsnubbersarealsoconnected180'partonthebandandtiedtootherembeddedframesinadirectioncoincidentwiththedirectionofmovementawayfromthereactorcenter.Theupperlateralsupportrestrainsrapidtranslationalmovementsinallhorizontaldirections.2.ReactorVesselSupportsThereactorvesselissupportedbyfourofitseightnozzlesbyfourindividualweldmcntsembeddedintheprimaryshieldconcrete.Eachnozzlepadbearsonashoe,thatissupportedbyaheavyU-shapedweldmentwhichwrapsaroundtheshoe.TheU-shapedweld-mentiswater-cooledatthe)unctionoftheouterflangeandthewebbytwocontinuousweldedanglesoneithersideoftheweb.TheU-shapedweldmentbearsverticallyontwoshimsandisres-trainedhorizontallybyaseriesofshimsandbearingplates.ThesebearingplatesandshimsareconnectedtoanouterweldmentwhichcompletelysurroundstheU-shapedweldmentandisembeddedintheconcrete.4.2-23July,1982 Thereactorsupportsystemallowsthereactortoexpandradiallyfromitsverticalcenterlinebutresistsrotationalmot,ioninallorthogonalplanes.Thenozzlehorizontalcenterlinestranslateintheverticaldirectionrelativetotheshoes.3.PressurizerSupportThepressurizerissupportedona-ringgirderwhichisinturnsupportedonaconcreteslab.Horizontally,thevesselisrestrainedattwoelevationsapproximately27feetapart.Thelowerrestraintconsistsofanchorboltsinslightlyoversizeholesintheringgirder.Theupperrestraintconsistsoffourindividualweldmentsembeddedinconcretethatallowthepressurizertoexpandradially,butresisttorsionalandtranslationalhorizontalmovements.4.ReactorCoolantPumpSupportEachreactorcoolantpumpissupportedverticallybythreeballjointendedcolumns.Thisstructuralcolumnsystemresistsbothoverturningandverticalmovementwhileallowingforexpansionfromthecenterofreactor..Excessivetorsionalandhorizontaltranslationalmovementsareresistedbyacombinationoflateralthrustcolumnsanchoredintothecranewallconcrete.PRESSURE-RELIEVINGDEVICESTheReactorCoolantSystemisprotectedagainstoverpressurebycontrolandprotectivecircuitssuchasthehighpressuretrip-andbyreliefandsafetyvalvesconnectedtothetopheadofthepressurizer.Thereliefandsafetyvalvesarecurrentlyanalyzedforsteamdischargeonly.However,evaluationshaveshownthatthepressurizerwillnotbecomewatersolidbeforeatleast10minutesfolloiwngaspuriousSafetyInjectionorafeedlinebreak.Thereliefandsafetyvalvesdischargeinto'thepressurizerrelieftankwhichcondensesandcollectsthevalveeffluent.Theschematicarrangementofthe4.2-24July,1997 relieidevicesisshowninFigure4.2-lA,andthevalvedesignparametersaregiveninTable4.1-8.Thevalvesare"utherdiscussedinSub-Section4.2.2.8.4.2-24a
Uponcompletionofthecontainmentsub-slabs,thereactorpit,wasexcavatedand1/4"steelplateswereweldedtothesold'rpilestopreventthesandfromsloughingintotheexcavationfrombeneaththesubslab.Somesanddidsloughinduringtheexcavationandplateinstallationcreatingavoidbehindtheplatesinsomeareas.Thesevoidswerefilledbypressuregroutingafterconcreteworkwascompletedwithinthereactorpit.Thecontainmentstructureswereconstructedonmatfoundationsfoundeddirectlyonthedensebeachsands.Thesesandswerestudiedindetailtodeterminetheirsusceptibilitytoliquefactionunder,themaximumdesignearthquake.Therelativedensitiesofthesesandswerefoundtobeintherangeofvalueswhicharenotsusceptibleto'iquefaction.ThesupportingdataforthisconclusioniscontainedinAppendixGoftheOriginalFSAR.Inaddition,acompletesettlementanalysiswasconductedtodeterminetheanticipatedtotalanddifferentialsettlementbetweenmajorstructures,themajorportionofthesesettlementstakingplaceduringtheconstructionperiod.Computeddifferentialsettlementdoesnotexceedone(1}inch.ThesupportingdataanddetailedanalysisiscontainedinAppend'xGoftheOriginalFSAR.Inordertomonitorsettlementsofthecontainmentstructures,threepermanentbenchmarkswereinstalledthrougheachcontainmentbaseslab120degreesapartandwerepositionedsuchthattheyareoutsidethecontainmentbuilding.Thesebenchmarksextendtobedrockandareequippedwithextensometerswhichindicatedirectlytheamountofsettlementofthecontainmentslabs.Theinstallationwasmonitoredatregularintervalstosubstantiatetheconclusionofthesettlementanalysis.Themonitoringhasconfirmedthepredictionsofthesettlementanalysisandthesettlementactivityhasvirtuallyceased.TheperiodicmonitoringwasdiscontinuedinWiththeexceptionoftheClassITanks,allremainingClassIStructureswerehandledinamannersimilartothecontainmentstructures,e.g.,soldierpilesweredriven,excavationprogressedwiththeinstallation5.2-13July,1997 ofsteelplates,sub>>slabswereinstalledatthebottomoftheexcavationPressuregroutingwasalsoperformedbehindtheseplatestofillthesmallvoidswhichdevelopedasaresultofsloughingofthe,sand.TheClassETankswerefoundedoncompactedbackfill.Theareaswerefirstexcavateddowntothedensebeachsandsandthenbroughtbacktofoundationgradewithcontrolledcompactedbackfill.TheUndergroundareaoftheauxiliaryandcontainmentbuildingshavebeenwaterproofedbymeansofaPVC40mi.lthickmembrane.Thismembraneextendsatleast5feetabovethemaximumknownGWlevel.Thewater-proofingusedprovidesadequateprotectionagainstfloodiningofareaslocatedbelowthehighestGWlevel.Undergroundstructuressuchastunnelshavebeendesignedtoarticulate.Whereundergroundstructuresjoinmainfacilitiesthejointhasbeenmadenon-momentresisting.ThestresscriteriausedinevaluatingtheundergroundstructuredesignisthesameasthatusedinotherclassIstructures.TypicaldesignsketchofconnectionsareshowninFigure5.2.2-5.TheestimatedpotentialstaticdifferentialsettlementafterconnectionofinterlinkingmechanicalandelectricalelementsbetweentheContain-mentStructureandtheAuxiliaryBuildingis0.2"andbetweentheAuxiliaryBuildingandtheTurbineBuildingisO.l".Thisestimatewasbasedonanassumptionthat75%ofthetotalsettlementofthestructureoccursduringtheconstructionphase.TherearenodirectinterconnectingbuildingstructuralelementsbetweentheAuxiliaryBuildingandtheContainmentStructure,norbetweentheAuxiliaryBuildingandtheTurbineBuilding.Theinter-connectingelementbetweentheAuxiliaryBuildingandtheDiesel5.2-14July,1982 5.3ICECONDENSER'hefollowinginformation-presentsanoverviewoftheIceCondenserdesign.AdditionaldetailedinformationispresentedintheupdatedFSARAppendicesJandM.TheIceCondenser,isacompletelyenclosedannularcompartmentlocated0aroundapproximately300oftheperimeteroftheuppercompartmentofthecontainment,butpenetratingtheoperatingdecksothataportionextendsintothelowercompartmentofthecontainment.Thelowerportionhasaseries.ofhingeddoorsexposedtotheatmosphereofthelowercontainmentcompartmentwhich,fornormalplantoperation,aredesignedtoremainclosed.Atthetopoftheicecondenserisanothersetofdoorsexposedtotheatmosphereoftheuppercompartment,whichremainclosedduringnormalplantoperation.Intermediatedeckdoors,locatedbelowthetopdeckdoors,formthefloorofaplenumattheupperpartattheIceCondenser.Thesedoorsremainclosedduringnormalplantoperation.lntheicecondenser,iceisheldinbasketsarrangedtopromoteheattxansferfromsteamtoicetoallowtheicecondensertoperformitsfunction(seefollowingparagraph).Arefrigerationsystemmaintainstheiceinthesolidstate.Suitableinsulationsurroundingboththeicecondenservolumeandtherefrigerationductsservestominimizetheheattransferthroughtheicecondenserenclosure.Intheeventofaloss-of-coolantaccidentorsteamlinebreak,thedoorpanelslocatedbelowtheoperatingdeck(dividerbarrier)openduetothepressureriseinthelowercompartment.Thisallowstheairandsteamtoflowfromthelowercompartmentintotheicecondenser.Theresultingpressureincreasewithintheicecondensercausestheintermediatedeckdoorsandthedoorpanelsatthetopoftheicecondensertoopen,whichallowstheair5.3-1July1997 toflowourofthecondenser'ntotheuppercompartment.Theicecondensercondensesthesteamasthesteamenterstheicecondensercompartment,thuslimitingthepeakpressureandtemperaturebuildupinthecontainment.Condensationofsteamwithintheicecondenserresultsinacontinualflowofsteamfromthelowercompartmenttothecondensingsurfaceoftheice,thusreducingthetimethatthelowercompartmentisatanelevatedpressu're.Thedividerbarrierseparatestheupperandlowercompartmentsandensuresthatthesteamisdirectedintothebottomoftheicecondenser.Onlyanegligibleamountofsteamcanbypasstheicecondenserthroughthedividerbarrier.'f5.3.1DESIGNCONSIDERATIONSThefollowingisasummaryoftheicecondenserdesignconsiderat'ons.Thedesignconsiderationsarepresentedintwocategories:performancecriteria,andstructuralandmechanicalconsiderations.Morespecificcriteriaforindividualcomponentsoftheicecondenserarealsopresented.PrfrmancCitria)Theenergyabsorptioncap'acityoftheicecondenserisatleasttwice,thatrequiredtoabsorballoftheenergythatcanbereleased,1)duringtheinitialblowdownoftheReactorCoolantSystemforanyreactorcoolantpipebreaksizesuptoandincludingthehypotheticalseveranceofthereactorcoolantpiping,,or2)duringanysteamorfeedwatersystempipebreaksizeuptoandincludingthehypotheticalseveranceofthemainsteamlineinsidethecontainment,withoutexceedingthecontainmentdesignpressure.b)Afteranaccidentasdescribedin(a),theicecondensertogetherwiththecontainmentspraysystem,hassufficientremainingheatabsorptioncapacitysuchthatsubsequentassumed5.3-2July,1997 heatloadsareabsorbedwithoutexceedingthecontainmentdesignpressure.Thesubsequentheatloadsconsideedincludestoredandresidualheatofthereactorcoreandcoolantsystem,plusasubstantialmarginforanundefinedadditionalenergyrelease.c)Sufficienticeheattransferareaandflowpassagesareprovidedintheicecondensersothatthemagnitudeofthepressuretransientresultingfromanaccidentasdescribedin(a)doesnotexceedthecontainmentdesignpressure.d)Thelower(ReactorCoolantSystem)compartmentisboundedbythedividerbarriersuchthatessentiallyalloftheenergyreleasedinthiscompartmentisdirectedthroughdoorsatthebottomoftheicecondenser.e)Theresistancetoflowintotheicecondenserissuchthatthemaximumenergyinputintoanysectionoftheicecondenserdoesnotexceeditsdesigncapability.f}Theforcerequiredtoopenthedoorsoftheicecondenserissufficientlylowsuchthattheenergyfromanyleakageofsteamthroughthedividerbarriercanbereadilyabsorbedbythecontainmentspraysystemwithoutexceedingcontainmentdesignpressure.g}Theinletdoorsoftheicecondenseraredesignedtoopenanddistributesteamtotheicebedinaccordancewithdesignbasis(e)above,foranypostulatedloss-of-coolantaccident.h)Boththeinletandoutletdoorsoftheicecondenseraredesignedtofailopenataslightlyhigherdifferentialpressureabovethedesignhopeningpressureifforanyreasonthedoorsarepreventedfromopeningnormally.5.3-3July,1997 i)Icewithasuitableconcentrationofsodiumtetraborateisusedintheicecondensersothat'ncaseofanaccident,thewaterresultingfrom,themeltediceisavailableforcoolingthecore.j)RaisingthepHoftheicebyadditioaofborontotheiceassodiumtetraborateratherthanboricacidprovidesfortheabsorptionandretentionofiodinereleasedfromthecore.k)Condensationofsteamintheicecondenseraidsintheremovalofiodinefromthe'ontainmentatmosphere.StructuralandMechanicalDesina)Theicecondenserinternalstructuresarecapableofwithstandingallloadingcombinationswiththefollowingstresslimits:LoadinCombinationsNormalplusOperatingBasisEarthquakeLoadsStressLimitsWithinCodeAllowableNormalplusMaximumDesign'asisHypotheticalEarthquakeLoadsWithinyieldafterloadredistributionsNormalplusDesignBasisAccidentLoadsWithinyieldafterloadredistributionsNormalplusDesignBasisEarthquakeplusDesignBasisAccidentLoadsLimitCurves-WCAP-5890,Rev.1Inadditiontothestatedstresslimits,structuralstabilityanddeformationrequirementsaredeterminedsoastoensurenolossoffunctionunderaccidentanddesignbasesearthquake(DBE)loads.5.3-4July,1982 b)Inparticular,thestructure,equipmentmounting,supportsandjointsaredesignedtoaccommodatethemaximumtemperaturerangeandgradientswhichwilloccur.c)Structuralloadsarenottransmittedbetweentheicecondenserinternalsandthecontainmentshellstructure.d)Theinternalsoftheicecondenseraredesignedtofacilitatemaintenance.e)Theicecondenserinternalsaredesignedforalifetimeconsistentwiththatoftheplant.f)Thematerialsofconstructionareselectedtobeeffectivelyinertunderallconditionsofoperationoftheicecondenser.Inparticular,corrosionispreventedbyinhibitorsorprotectivecoatingswherenecessaryandnon-metallicmaterialsarestable.g)Materialsintheicecondensersystemareselectedtobecompatiblewiththegeneralenvironmentalconditionsinsidethereactorcon-tainmentduringnormaloperationorduringaccidentconditions.Inparticular,thechoiceofmaterialsfortheicecondenserinsulationpanelsiscompatiblewiththecontainmentshell.SeeupdatedAppendixM.h)Sufficientredundancyisincorporatedinthesystemdesigntoprovideahighassurancedegreeofplantavailability.i)Componentsformingtheboundaryoftheicecondenserarecontinuouslysealedtolimittheingressoregressofairandvapor,exceptwherespecificprovisionismadeforventing.5.3-5July,1982 Sc'icOeianCritriaIceuorttrueurea)Thestructureisdesignedtomaintaintheiceintherequiredarraytomaintaintheintegrityofperformanceoftheicecondenser.lnparticular,thehydraulicdiameterandheattransferareaaremaintainedwithinthelimitsestablishedbytesttobeconsistentwiththe"containmentdesignpressure.b)Thestructureallowsloadingsoftheicebasketsinposition,andpermitsliftingofcompletebasketcolumnsforremovalinsections.Manycolumnscanbeliftedandweighedforsurveillancepurposes.c)Anysectionoftheicebasketsiscapableofsupportingthetotal.weightoficeaboveandbelowthatsection.InlateDutPanelsanInsulaia)Theinsulationlimitsthemaximumtotalheatloadontheicecondenserrefrigerationsystemtoalevelconsistentwiththeinstalledcapacity,includingreasonablemargin.b}Theheatinputtotheicebedisminimizedsothattheicebedperformancecapabilitywillbemaintainedforalongperiodoftimeiftherefrigerationsystemisshutdown.Intheregionoftheicecondenser,increasedconductivitydueto'umidityandcompressionduringanaccidentwillnotdetractfromtheperformanceoftheicecondenser.Theinsulationrequirementsfortheicecondenser(undernormaloperatingcondit,ions)exceedtheinsulationrequirementstoprotectthe5.3-5July,ii&7 containmentvesselfromthermalshockunderaccidentconditions,evenallowingforincreasedconductivityduetocompression.c)Thegalvanizedsheetmetalcoversontheinnerfacesoftheductpanelsarecontinuouslysealed,andthe,outersheetmetalcoversadjacenttothecranewallandtheendwallsformavaporbarrier.Undernormaloperatingconditions,thevaporbarrierpreventssignificantlossofinsulationduetohumidity.d)Attheboundariesof4heicecondenserwhereaircoolingisnotincorporated,insulationisprovidedinaformconsistentwiththestructuralandfunctionalrequirementsofthoseareas.e)Thepanelinsulationisinstalledasprefabricatedsections(fiberglassencapsulatedinpolyethylenebags)andcanberemovedandreplacedifnecessaryduringthelifetimeoftheplant,afterdisassemblyoftheicecondenserinternals.Precompressionoftheicecondenserinsulationfromstructuralandleakagetestsdoesnotdetractfromitsperformancecapabilities.f)Theperformanceoftheinsulationisnotaffectedbytheearth-quakeconditions.g)Underaccidentconditionstheinsulationdoesnotaffecttheoverallperformanceoftheice'condenser.h)Thematerialsusedforinsulationarecompatiblewiththeotherareasofthereactorcontainmentandsystems.i)Themethodofattachmentofthepanelsandtheir'positionsrelativetotheicebasketsandsupport,structureprecludesdisplacementofthepanelsduringanaccident.5.3-7 EcendenserDorsNormal0erationa)Thedoorsrestricttheleakageofairintoandoutoftheicecondensertotheminimumpracticablelimit.'uchprovisionsasarerequiredforventingtheicecondenseraretreatedseparatelyandincorporatearangeofadjustmenttoachievetherequiredtotalventareainconjunctionwithanyinherentleakage.b)Thedoorsrestrictthelocalheatinputintheicecondensertotheminimumpracticablelimit.c)Thelowerinletdoorsareinstrumentedtoprovideindicationoftheiropenposition.d)Provisionismadeforadequatemeansofinspectingandtestingofthedoorsduringreactorshutdown.ErhuakCondiinsThedoorsaredesignedtowithstandearthquakeloadingssoasnottoaffecticecondenseroperationfornormalandaccidentconditions.Theseloadsarederivedfromtheseismicanalysisofthecontainment.AccidenConditionsLowerInlDora)Thedoorsopen(atleastpartially)intheeventofaprimarycoolantorsteamleakwhichproducesanequalizationofthecoldairheaddifferentialpressureacrossthedoorsof1/2to1lb/sq.5.,3-8July,1997 b)TheinletdoorsanddoorpartsoftheicecondenserareIdesignedtodistributesteamtothecondensertolimitmal-distributiontolessthan150percentofanyloss-of-coolantaccident,whichcausesthedoortoopen.c)Theinertiaofthedoorsislow,consistentwithproducinganegligibleeffectoninitialpressure.d)Duringblowdown,adequateflowareaisprovidedfortheeffluentofcondensateandmeltedicetodrainfromtheicecondenser,withoutimpedingthedistributedinputofsteam.IntermediateandToDeckDoorsForlargerleakrates,theresultingdifferentialpressureopensasufficientnumberofdoorstopermitairflowintotheuppercompartment.IntermediateandToDeckVents4Ventingoftheicecondenserforsmallleakratesisprovidedbypermanentventsinboththeintermediateandtopdeck.Thisallowstheinletdoorstoopenintotheproportioningrange.IceCondenserDrains1Drainshavesufficientflowcapacitytominimizethetimethatawaterlevelintheicecondensercouldcauseanadditionalresis'tancetodooropening,andtolimitthepotentialincreaseincontainmentpressurethatcouldoccuri.ntheshorttimethatthedoorsareclosed.5.3-9July,1982 Drainsareprovidedwithflappervalvestosealtheicecondenserandpreventlossofcolda'uringnormaloperation.WhentheicemeltsdurngaLOCA,theresultingboratedwaterwillflowthroughthesedrainstothelowercontainmentandsumps.Drainflappervalvesaregravityloadedtoholdshutagainst,thecoldairhead(1/2to1lb/sq.ft.),intheicecondenserduringnormaloperation.Thepressurerequiredtoopenthedraindoesnotexceed36inchesofwater.4.Drainsarelocatedsuchastodrainthewaterlevelinthecondensertoanelevationbelowthebottomofthedoors.Perfrmnabi1iBecauseofthestaticnatureoftheicebed,theicecondenserfunctionisnotsusceptibletofailureofactivecomponentsandtheresultingconsiderationofadditionalcapabilitytoaccommodatefailure.Enanycase,theicecondenserdoeshaveanexcessofcapabilityforbothrateandquantityofenergyreleasedfromtheReactorCoolantSystem.Thedoorpanelsanddraincheckvalveflappersaretheonlyelementsrequiredtomoveduringtheacc'ident.Theseitemsareconsideredaspassiveorstaticelementsequivalenttorupturediscsratherthanactivecomponentsrequiringanexternalsignalandenergysourcetofunction.TesinandInscioTheicecondenserdesignincludesprovisionsforinservicevisualinspectionoftheicebeds,flowchannels,doorpanels,andcoolingequipment.Samplesoftheicecanbetakentocheckadditive5.3-10July,1997 concentrations.Duringperiodswhenthereactorisshutdowndoorpanelsanddraincheckvalvescanbeinspected,thedooropeningforcecanbetestedandcomparedwiththedesignforce.Inaddition,inspectionandtestingoftheinstalledicecondenserbeforeandaftertheinitialiceloadingwasconductedpriortoinitialplantstartup.5.3.2"DESCR1PTIONOFICECONDENSERANDCOMPONENTS1'ncludedinthissectionaredescriptionsofthegeneralarrangementsoftheicecondenser,therefrigeration-coolingsystem,thedoorpanelsatthetopandbottomoftheicecondenser,andtheicecondenserinternalswhichformtheflowchannelsandicebeds.Table5.3-1presentsprincipaldesignparametersfortheIceCondenserSystem.Additionalinformat'onispresentedinAppendicesJandM.eneralArranmentThegeneralarrangementofthe-icecondenserisshowninFigure5.3-1.Theicecondenserisessentiallyawell-insulatedcoldstorageroominwhichiceismaintainedinanarrayofverticalcylindricalcolumns.Thecolumnsareformedbyperforatedmetalsheetbasketswiththespacebetweencolumnsformingtheflowchannelsforsteamandair.Theicecondenseriscontainedintheannulusformedbythecontainmentvesselwallandthecranewall0circumferentiallyovera300arc.Therefuelingcanalandequipmenthatch0arelocatedintheremaining60arc.Thetotalheightoftheicecondensercompartmentextendsfrombelowtheoperatingdecktothetopofthecranewall.Theuppermos'tsectionof5.3-11July,1997 theicecondenserformsaplenumwhichaccommodatestheaircoolingequipmentandprovidesaccessforiceloadingandmaintenance.Asmallbridgecraneisprovidedatthetopofthecompartmentforconstructionandmaintenancepurposes.Belowtheoperatingdeck,theinnerwalloftheicecondenserincorporatestheinletdoors,throughwhichtheairfromthelowercontainmentvolumeandthedischargedloopcontentspassintotheice.condenser.ThetopdeckoftheicecondenserisformedbydoorssupportedfromradialE-beamssupportedbythetopofthecranewall.Intermediatedeckdoorsformapartitionbetweentheupperplenumandtheicecompartment.Theicecondenserisinsulatedatitsexternalboundariestomaintainthetotalheatloadonthecoolingsystemtoanacceptablelevelfortherequiredequilibriumtemperatureoftheicebed,andtominimizetletemperaturegradientsontheinnersurfacesoftheicecompartment.lntheregionofthewallsoftheicecomoartment,theinsulationincorporatescoolingairducts,bywhichtheheatgainedisabsorbedandtransferredtothecoolersintheupperplenum.Thetemperatureofthecooiingairintheductsandtemperatureoftheiceisnormallymaintainedbetween10Fand0'0F.Theflooroftheicecompartmentincorporatesglycolcoolingcoilsembeddedintheconcretetopwearslabtoabsorbandtransfertheheatgainedtotherefrigerationcoolers.Theheatabsorbedbythecoolersistransferredtotherefrigerationunitsoutsidethereactorcontainmentbyanethyleneglycolcirculationsystem.Aninstrumentationsystemmonitorstheicebedtemperatureandtheopenpositionoftheinletandpersonnelaccessdoors.Toolboxescontainingtoolsusedformaintenanceoftheicecondenserairhandlingunitsarelocatedonthefloorgratingandseismicallyrestrainedatthe701'levationoutsideoftheicecondenserineachunit.EeSuorSructureTheicesupportstuctureconsistsofthelowersupportstructure,latticeframesandcolumns,andicebaskets.5.3-12July,1997 Theflooroftheicecondensercomoartmentisarrangedtoprovidestructuzalsupportfortheinternalsandcool'ngo~theicebed.Theicecondenserstructureandiceissupportedbythefloorandlowersupportstructure.Thelowersupportstructuz'esupportstheiceandbaskets.Thestructureextendsabovethefloortoprovideanaccessareabehindtheinletdoors.Thelowersupportstructureisessentiallyalatticeofradialrectangularboxbeamsonthecenterlineoftheicebaskets.Theseradialboxbeamsaresupportedbyinnerandoutermainbeammembersrunningcircumferentiallyaroundtheicecondenser.Theradialboxbeamsarefabricatedfromstructuralsteelchannelsectionsandplate.Themainbeammembersaresupportedbythecolumnsfromtheicecondenserfloor.Thelowersupportcolumnsstraddletheicecondenserinletdoorsprovidingaclearareafortheinletdoors.Lateralsupportagainstseismiceffectsisorovidedbystructuraltiestothecranewall.Clearanceismaintainedbetweentheicesupportstructureandtheprimarycontainmentvesseltoensurethatthereisnoloadtransmittedbetweenthemduetoseismicaccelerations.Thelatticeframes,ofweldedsteelconstruction,locatetheicebasketsinthedesiredarray.Theframesaresupportedfromverticalcolumnsateachcorner,eachcolumnservingadjacentframes..Thecolumns,locatedattheinnerandouterwallsoftheicecondenser,arebuiltfromrectangularsteelsectionsandarefastenedtothelowersupportstructure."Theradiallengthoftheframesisadjustabletoaccommodateconstructionclearancesandpermitverticalalignmentofthebasketlocationswithintheframes.Crossbracedboxtrusssectionsarebuiltintotheinsulatedductpanelsattheendsandmidsection.Theverticalspacingofthesetrusssectionsissuchthatareinforcedsectionisprovidedateachlatticeframeelevation.Outriggedbracketswithinsulatingpadsatthelatticeframeelevationsprovidethestz'ucturalconnectionbetweentheinnerductpanelandtheinnerlatticeframesupportcolumn.Asdiscussedbefoze,thelatticeframesareconnectedtothesupportcolumns.July,1997 Theboxtrusssect'onsofthewallpanelsareattachedtothepanelmountingangleswithstructuralanglebrackets.Thesebracketsandthewallpanelclampingboltsprovideaverticallyoinnedconnectiontothecranewallthatwilltransmitthelateralloadingtotheinnerwall.Groupsofsixlatticeframesareconnectedtogetherwithaslipjointbetweengroupstoprovideforcircumferent'althermalexpansionandcontraction.Sincethereisnoconnectionbetweenthestructureandthecontainmentwall,nospecialprovisionsarenecessaryforradialthermalexpansionorcontraction.Noseismicorthermalloadsfromtheicesupportstructurearerestrainedbythecontainmentshell.Theicecolumnsarecomposedofpart-lengthroundbasketsections,filledwithpiecesofice,andformedtoallowexposuretothesteam.interconnectionstiffeningringsarelocatedateachendofthebasketsection.Braceringsarelocatedwithinthest'ffeningringatthebottomofeachbaskettoprovidesupportfortheiceinadditiontotheshearsupportprovidedbythebaskets.Thebasketsareassembledintothelatticeframestoformacontinuouscolumnoficethefullheightoftheicebed.Onlythebottomendsofthelowestbasketsectionsareclosedtopreventtheicefallingthrough.Overallbasketcolumnlength'sa8feetandiscomposedofbasketsin2foot,3footor12footlengths.Basketsections"anbeassembledinanycombinationaslongasacouplingringorstiffeningringislocatedevery5fee-rocoincidewiththelatticeframelocation.Thelatticeframesprovideonlylateralicebasketsupportatintervals!correspondingtotheendsoftheicebasketsectionsoratthemidspanstiffenerringlocationofa12foot'cebasket.Theverticalsupportoftheiceandicebasketsistransmittedbythebaskettothelowersupportstructure.Theiceisloadedfromthetopoftheicebedintothecompletedbasketassembly.Thecolumnsoficecanbeliftedandremovedinsections,andprovisionismadeforliftingandweighingthewholelengthofselectedcolumnsforsurveillancepurposes.5.3-14Juy,1997 NormalLoadsFornormalloadconditionstheiceloadisappliedstatically,andtheonly~Jlateralloadisthatdue'toanymisalignmentofthebasketcolumnsandlatciceframes.Thelatticeframeandcolumnstructuredoesnotcarryanyverticalcomponentsofloadfromtheicebaskets.Horizontalloadcomponentsfrommisalignmentofthebasketcolumnsandlatticeframelocationsareminimizedbyproperadjustmentduringinstallation.Theresultantbasketstructureconsideredforanalysiscomprisesapinjointedcylindricalshell,laterallysupportedatchejointsandverticallyatche.base.Theloadingdue'otheiceintheverticaldirectionisassumedtobeappliedinuniformshearaboveanyseccion,combinedwichahydrostaticloadbelowthatsection,thusaccountingforcheworstcondicionoficesupport.Thelowersupport'struccurecarriesacotalstaticloadfromtheicebed,uniformlydistributed.Inaddition,cheinnercircumferentialmainbeamscaketheweightoftheinsulatedductpanelsonthecranewallandthereactionsacchefeecoftheinnercolumnssupportingthelatticeframes.Fordesignpurposeschebaskeccolumnsandstructureareconsideredtobesubjectedtooche'rmodesofloadingoutsidethescopeoftheNormal,Earthquake,andAccidentconditions.Thesearisefromhandlingduringremovalorweighingofthebaskeccolumnswhen:cisnecessarytoconsiderdynamicloadingofafullcolumnoficeduecoliftingbythecrane.Considerationisalsogivenrominimizingdamageintheeventchatabaskecloadedwithiceisdroppedorarrestedwhilebeingloweredbythecrane.5.3-l5July,l997 EarthakeLoadsInadditiontotheseismiceffectsontheicecondenserstructureduetotheweightoftheice,seismiceffectswillbetransmittedtothestructurethroughthecranewallandfloor.Thebehaviorisanalyzedusingaresponsetspectrum,absoluteaccelerations,displacementsandrelativemotionsofthewallsasdeterminedfromthedynamicanalysisofthecontainmentstructure.Thenaturalfrequenciesandvibrationmodesoftheiceinternalscomprisingthebaskets,framework,andstructuraltiestothecranewallaredeterminedbydynamicanalysis,withtheinternalsbeingsupportedtransverselybythestructuraltiesincorporatedin'heinsulatedductpanelsatthecranewall.Thebehavioroftheicestructureisinvestigatedusingtwomathematicalmodels.Thefirstofthesemodelsrepresentsonebasketorgroupofbasketssupportedlaterallyatthelevelofeachframe.Thesupportisassumedtobealinearspringrepresentingtheeffectoftheinsulation.Thesecond'odelrepresentsatypicalhorizontalframe.Thisframeiscontinuousaround300degreesofarcofthecontainmentandbearsonthecranewall.Thesemodelsgivethelowestfrequenciesandmodeshapesoftheicecondenserinternals.Intheanalysis,theiceisinitiallyassumedtohavemassbutzerostiffness.Torepresenttheoveralleffectoftheicebaskets,framework,andinsulation,dampingistakenas5%criticaldampingfortheoperatingbasisearthquakeand10:forthedesignbasisearthquakelinearanalysis.Foradiscussiononthenonlinearanalysisperformedontheicecondenserstructures,refertoAppendixM.Usingthefrequenciesestablishedfromthemodelsdescribedabove,theresponseoftheinternalstructureisdeterminedfromtheresponsespectra.Themaximumaccelerationsarethenappliedtothestructuralcomponentstodeterminethemaximumstressesanddeflections.5.3-l5July,I997 Experimentalveificationofthecomponentdesignwithrespecttothestructuraltiestothecranewallhasbeendeterminedbythecon-structionof8feetlongprototypepanelsformanufacturingevaluationpurposes.Onesuchprototypepanelwassubjectedtostaticloadtests,simulatingtheeffectofseismicaccelerations,todeterminethecorrespondingdeflectionsinthestructure.Asmentionedbeforecrossbracedboxtrusssectionsarebuiltintotheinsulatedductpanelstotransferthelateralloadtothecranewall.Thusnorelianceisplacedontheinsulationmaterialassuchtoaccommodatetheseismicloads,andcouplingbetweenthecranewallandcontainmentshellduetotheeffectivestiffnessoftheinsulationiswhollyobviatedbymaintainingapositiveclearancebetweentheframeworkoftheicecondenser,theinsulatedductpanelsandthecontain-mentshellforallconditions.AccidentLoadsAccidentloadsareconsideredforthemaximumpostulatedbreaksizeinthereactorcoolantorsteamsystempiping.Thisgivesrisetoanincreaseinpressureintheicecondensertogetherwithdragforcesonthebasketsandsupportstructureduetothevelocityofthesteam/airmixture.Considerationisgiventotemperaturegradientsbetweenthetopandbottomoftheicecondenserwhichdevelopfromheattransferbetweenthestructuralsteelworkandsteamcondensedbytheice.Themaximumdifferentialpressurebetweentheicecondenserand=heuppercompartmentiseffectivelyappliedacrosstheinsulatedductpanels.Thewallpanelsaredesignedandfastenedtothewallsinamannerthatprecludessignificantsteamchannelingduetopaneldeflec-tions,orleakagethroughthevaporbarrier,forfullaccidentdesignpressuredifferential.5.3-17July,1984 Thevaporbarrierjointsaremechanicallyfastened,sealedjointsforwhichthefasteningisdesignedtowithstandthefullpressuredifferential.Thepressuredifferentialisappliedtotheseatedjointsinamannerthat-increasesthesealingpressureappliedonthesealants.IcCndnserolinDuctanInulationTheinsulatedcoolingductsforthewallsoftheicecompartment,showninFigure5.3-1and5.3-3,areinstalledasprefabricatedpanels.Attheouterwallof.thecondenser,thepanelscoverthefullheightoftheicecompartment.Attheinnerwallandendwalls,thelowerendofthepanelsterminateabovetheinletdoorports.Foreaseofhandlingduringconstructionthepanelsweremadeinhalfheightsections,andthepanelwidthisconsistentwiththepitchofthecolumnsandlatticeframe.Eachpanelisanintegralductunit,consistingoftwobacktobackcrossbracedboxsectionforcoolingairflow.Fiberglassinsulationisprovided,ontheouterside(nexttotheicecompartment.walls).SeeFigure5.3-3.Eachwallductpanelcontainstwoparallelductsdividedbyaninsulatedwall'andjoinedwitha"U"typereturnsectionatthebottomendoftheductpanel.Theairflowchannelsarefedfromtherefrigerationsystemairhandlingunitsbyanairheaderaroundtheperipheryoftheupperplenum.Thechilledairisdistributedfromtheairheaderintotheicebedductsideofthewallpanels.Thechilledairdescendstothebottomoftheductandflowsupinthereturnductofthewallpanelandisdischargedintotheupperplenum.Thelayerofinsulationprovidedontheouterfaceofthepanelsminimizestheheatgaintothecoolingsystem.Thesupplyofrefrigeratedairdownthroughtheinnerfaceofthepanelsandtheinsulationprovided.betweentheinnerandouterpanelsminimizesthetemperaturegradientsintheicecompartmentduetoadifferencesinwall'emperatureintheicecondenser,therebyminimizingsublimationandmasstra'nsferoficefromoneregionofthecondensertoanother.Theinner,icecompartmentsideofthepanelsisgalvanizedsteelsheetandthejointsbetweenpanelsaresealedtoprovideavaporbarrierbetweentheicecompartmentandthecoolingairflow.Thegalvanizedsteel5.3-1BJuly,1997 sheetsurfacesofthepanelsonthecranewallandendwallsformsthevapor(barrierorthecompartmentonthosewalls.Thepanelsareclampedto't'ewallsbystuds,clampwashersandnuts.Theweightofthepanelsistransmittedtothefloorattheouterwalloftheicecondenserandtotheicelowersupportstructureattheinnerandendwalls.'Thefasteningoftheinsulatedductpanelstothewalls,-theconstructionincorporatingsheetmetalfaces,andtheadditionalconstraintsprovidedbytheconfigurationoftheicebasketsandsuppor"structure,eliminatesanymechanismwhichwouldallowtheinsulationmaterialtosignificantlyimpedetheperformanceoftheicecondenserduringaccidentconditions.Theflooroftheicecondenseriscooledbyembeddedpipecoilsthroughwhichchilledglycoliscirculated.Thewallpaneldesignissuchthatthestructureofpanelsresistscompressionofinsulationwithexceptionofslightmomentarycompressionoftheinteriorinsulation.layerbetweenthebacktobackducts.Thisslightcompressionisduetothedeformationofthefaceandwillreturnafterthepressureisreduced.Anadd'tionalloadisimposedontherefrigerationsystemduetotheheatflowintotheupperplenum.Thewallsoftheplenumarealsoinsulatedbyprefabricatedfiberglasspanels,buttheairflowfromtheductpanelexhausttotheairhandlingunitscirculatesintheplenum,pickingupheatinputthroughtheinsulationandtopdeckdoors.Thisensuresthatmoistureleakingintotheicecondenserplenumispickedupbytheairandfreezesonthecoolercoils.Togetherwiththevaporbarrierontheinnerfaceoftheinsulatedductpanels,thisminimizestheingressofmoistureintotheicebed.5.3-19July,1997 EceCndense~DorInletDrsTheinletdoorsattheoottomoftheicecondenseraresuitablyinsulatedpanelsmountedasverticallyhingedpairs,onananglesect'onframebetweentheconcretepillarssupportingthecranewallasshowninFigure5.3-4.Thedoorsconsistofa1/2inchcompositepanelwithsteelfacingsandastructuralsteelchannelframe,,anda7inchfoaminsulationbackingthatisenclosedwithastainlesssteelsheetmetalcover.=IThedoorsareprovidedwithspringswhichproduceasmallforcetoresistdooropeningandtoprovideapositiveclosingforcetobringthedoorbacktoitsneutralposition.Themagnitudeoftheforceproducedbythespringswhenthedoors'refullyopenisequivalenttoadifferentialpressureofapproximately1poundpersquarefoot.Thedoorsarenormallyhe'ldshut,againstasealmountedontheframe,bythestaticdifferer'tialpressureduetothehigherdensityairintheicecondensercompartment.Withzerodifferentialpressureacrossthedoors(nocoldairhead),theneutralpositionofthespringissetsothatthedoorsareslightlyopen(3/4"nominal).Thus,alldoorswillbegintoopenatthesamepressure(coldairhead)and,withinthelimitsofspringtolerances,thedoorswillallopenequalamounts.Provisionismadeforadrainareaofapproximately.13sq.ft.atthebottom(oftheicecondensertopermitwaterandairtoflowfromtheicecondenserduringandafterthereactorcoolantblowdown.Thisprovisionassuresthat,if'doorsrecloseafteralargebreakbeforeallwaterdrainsout,orforsmallbreakorresidualheatreleasecaseswheredoorsarenotfullyopen,waterfrommeltedicecandrainfromthecompartment.Thetotaldrainareaisprovidedby21individualfloordra'ns.5.3-20July1997 TDckandIntermediaeDoorTheintermediatedoorsenclosingtheicecompartmentandformingtheflooroftheupperplenumaresupportedbythelatticeframesupportcolumns.Thedoorpanelsarecomprisedofastructuralsteelframing,andaninsulationfoamplasticcorewithbondedandmechanicallyfastenedsheetmetalfacings.Thedoorsarehingedhorizontallyandarenormallyclosed.Onanincrease'inpressureintheicecondensercompartment,thesedoorswillopenasrequired,allowingairtoflowintotheupperplenum.Thetopdeckdoorsareflexiblemetalencased,insulatingbats.Thesebatsareattachedtothecranewallonly.Anincreaseinpressurebelowtheseflexiblebatswillcausethemtoflipopenoverthetopofthecranewall.Thiswillpermittheairtoflowoutoftheicecondenserintotheuppercompartment.Asmallventareaapproximately20sq.ft.isprovidedthrougheachsetofintermediatedeckdoorsandtopdeckdoorstoequalizepressurebetweentheicecondenserandcontainmentvolumesduringnormaloperatingpressurefluctuationsandtopermitsmallbreakLOCAsteam/airflowintotheicebed.Equipmentdoorswithintegralpersonnelaccessdoorsareprovidedateachendwalloftheupperplenum.Personnelaccessisprovidedintothelowervoidspaceforsurveillanceoftheinletdoorsduringreactorshutdownviaalowerpersonnelaccessdoorinoneoftheendwalllowerareas.Thesedoorsareallclosedduringnormaloperation.Forsmallleakslessthanapproximately70gpmto2<0gpm,apressuredifferencesufficienttoopentheinletdoorswouldnotbedeveloped.-Thisrangeofleakagewouldbequicklydetectedbyreactorcoolantsysteminstrumentation,andplantshutdownwouldbeinitiated.Forthiscase,thecontainment,ventilationfan-coolersalthoughnotengineeredsafeguards,havecapacityforremovalofadditionalheatinput.Enanyevent,thecontainmentpressurewouldbelimitedtoalowvaluebytheContainmentSpraySystem.5.3-21July,1997 Forslightlygreaterleakrates,zerodi"frentialpressurewouldbedevelopedacrossthedoors(coldaiheadbalanced),andtheneutra'ositionof,thespringissetsothatthedoorswouldopenslightly.Thus,alldoorswouldbegintoooenatthesamedifferentialpressure(coldaihead)andwithinthelimitsofsoringtolerances,thedoorswouldallopenbyequalamounts.Forlargerbreaksizes,thedoorswillopenbygreater-amountconsistentwiththespringcharacteristicsofthedoors.Theonepoundpersquarefootdifferentialpressurerequiredtoullyopenthelowerdoorswouldbedevelopedbythe'teamflowfromapproximatelyan8inchdiametersingle-endedpipebreak.Abovethisbreaksize,maldistributionwillbelim'tedtoalowamountbPthesizeofthedoorportAttheconclusionofthereactorcoolantsystemblowdown,thedoorswouldtendtoreclose.TheprovisionmadeEoradrainareaatthebottomoftheicecondenserallo~sfortheflowofwateandairfomtheicecondenserduringandaftertheblowdown.lfitis=assumedthatresidualheatisreleasedtothecontainmentintheEormofsteam,thedoorswouldreopenasrequiredtoallowthesteamtoflowintothecondenser.Rfriertinm,Therefrigerat'"nsystemisdesignedto'n'"'allycooldowntheicecondenserfromtheambientconditionsofthereactorcontainmentandtomaintainthedesiredequilibriumtemperatuintheicecompartment.Ktalsoprovidesthecoolantsupplyortheicemachines.Coolingoftheicecondenserisachievedbyathree-stagesystemshowndiagrammaticallyinFigure5.3-2andFigue5.3-2A.Firststage-RefrigerantcycleSecondstage-Glycolcycle;birdstage-Aircoolingcycle.322July,199~ FirstStae-RefrierntCcleTen25toncapacityf.eonvaporcompressionrefrigerationunits(5Twinunit,skids)locatedoutsidetheconta'nmentorovidecoolantforthetwounitsoftheplant.Condensercoolingwaterisprovidedforthenon-essentialservicewatersystem.Snte-Glc1cleThesecondstageworkingfluidisa50%solutionofethyleneglycolandwater.Thecyclecarriestheheatabsorbedfromtheicecondenserairhandlingunits,floorcoolingcircuitsortheicemachinestotheevaporator/coolersoftherefrigerationunits.Provisionismadeforcross-connectingthesecondstageforeachunitoftheplanttoanyoftherefz'igerationunits.Sixpumpshavebeenprovidedtoconveytheglycoltothetenrefrigerationunitsanda'rhandlingunitsandfloorcoolingcircuitsineachicecondenser.Twopipingmanifoldsfromthepmpdischargeconductethyleneglycolintoandoutofanycombinationofthesecomponents.Theglycolisfedtoeachreactorcontainmentbysingleflowandreturnpipesandsubsequentlybyb.anchfeedandreturnlinesto,theairhandlingunitsalongeachsideoftheicecondenserplenum.Theglycolfloozcool'ngcircuitisentirelywithinthecontainmentandconsistsoftwofloorcoolingpumpscirculatingchilledglycolthroughcoilsembeddedintheicecompartmentfloor.Thefloorcoolingpumpstakesuctionfromtheairhandlerglycolreturnlinebeforethelineleavesthecontainment.Glycolfromthefloorcoolingcircuitisreturnedtothesameline,downstreamofthesuctionpoint,throughamodulatingvalveforfloortemperaturecontrol.Niththeabovedescribedarrangement,thesystemscanberefrigeratedfromthecentralsourcewithaminimumofinteractionandahighdegreeofredundancy.5.3-23July,1997 Asurgetankisprovidedineachcontainmentsystemtoaccommodatevolumetricexpansionandcontractionoftheethyleneglycolsolutionandisequippedwithlevelalarms.ThirdSa-AirCoolincleThirtydualairhandling:unitsarelocatedaroundtheperipheryoftheicecondenser.plenum,spacedtogiveanevendistributionofairflowto'thecoolingairductsinthe.icecompartmentinsulationpanels.Airisdrawnfromtheupperplenumthroughthecoolingcoilsbythefansandisfedtoacontinuousheaderaroundtheplenumfordistributiontotheducts.Thisarrangementassuresthatthecoolingfunctioncanbemaintainedbyadjacentunitsshouldafanorcoolerbeshutdown.Theethyleneglycolflowinthecoolingcoilsiscontrolledbyairoutlettemperature,andtheflowisbypassedduringdefrost.ThecoilsareII'efrostedautomaticallybyindividualelectricheaters,and~lapper-typecheckvalvespreventreverseairflowthroughthecoilwhenthefansareshutoffduringdefrost.HndlinEiomenThebridgecranecouldmovecompletelyaroundtheannulusoutsidethecranewall.Thiscranewasusedforconstruction,iceloading,weighingselectedicebaskets,andgeneralmaintenanceduringplantconstructionandinitialplantoperation.However,sincethentheendwallequipmentaccessdoorshavebeenpermanentlypositionedintheuporclosedpositionwhichpreventsthecranefromaccessingintotheicecondenserarea.Thebridgecranetrackissupportedfromthebeamsoftheplenumtopdeckstructurewhichinturnaresupportedbyradialbeamssupportedbythecranewall.5.3-24July,1997 IceHachineThreeicemachinesareinstalledintheauxiliarybuilding.Themachinesareeachcapableofproducingtentonsofboratediceperday,whichisadequateforallrechargingrequirements.Theiceismadeinashapeancsizeconvenientfozhandling,andprovisionismadeforcheckingthaticeloadingandicechemistryaremaintainedwithinthepzescribedlimits.Instrumentation-MonitorinSstemThereare96temperaturesensingelementswhicharedistributedthroughouttheicebedandaremonitoredandrecordedintheControlRoom.Anannunciatorpanelprovidesanalarmforapre-setdeviationfromtheprescribedlimitsoficebedequilibriumtemperature.Eachinletdoorpaneloperatestwoswitcheswhenintheclosedposition.Thepositionandmovementoftheswitchesaresuchthatthedoorsmustbeeffectivelysealedbeforetheswitchesareactuated.AnannunciatorpanelintheControlRoomgivesanalarmsignalforthedooropencondition.Similarly,icecondensercompartmentequipmentandpersonnelaccessdoozsarefittedwithswitchesprovidingControlRoomindicationofthepositionofthosedoors.AlsoseeAppendixH,Section6.10.IceCondensermaterialsICorrosionoficecondensercomponentswillbegreatlyreducedbythelowtemperatureoperationoftheicecondenser.Corrosionaticecondenseroperatingtemperature,evenatsaturation,isalmostnon-existent.Icebedst:ucturalsteelmembermaterialswereimpacttestedtomeetthetemperaturerequirementsofN1210ofSubsection8SectionIIINuclearVesselCodeofASME,ofatleast30Flowerthenthanthelowest0servicetemperatureforallsectionthicknessesinexcessof5/8inch.Forsectionthicknessequaltoorlessthan5/8inchmaterialwaseitherimpacttestedorspecifiedtofinegrainpractice.5.3-25 Tofurtherinhibitcorrosion,galvanizingisusedforbasketsandmetalpanels.TheLowerSupportStructureisfabr'catedfromCortexStructuralSteel,whichformsitsownprotectiveoxidesurfacecoatingasthematerialweathers.Theothermajorstructuralmembersinsidetheicecondenserareprotectedbycorrosionresistantoaintsandareexpectedtolastthelifeoftheicecondenserwithoutmaintenance.Anyicecondenserequipmentwhoseperformancemight,beaffectedbycorrosionemployscorrosionresistantmaterialsforcriticalcomponents.Anycorrosionthatwoulddevelopoverlongtermoperationwouldnotimpairtheperformanceoftheicecondenser.Theicecondensercoolingsystemutilizesethyleneglycolasacoolant.Accordingtopublisheddata(1>allicecondensermaterialsselectedhavegoodchemicalresistancetoethyleneglycol.Theinsulationpanelsintheicebedregionareprovidedwithavaporbarrierwhichwouldpreventmoisturefromreachingthecontainmentvesselinsulationinterfaceregion.Asmallproportionoftheairflow.bleedsfromtheductsintotheannulusbetweentheductpanelandthecontainment.Theinnersurfacetemperatureattheboundaryoftheicecondenser,inparticular,thecontainmentliner,varieswithexternalambientconditions00fromamaximumof80Fdownto0F.Forallboundarytemperaturesabovetheductairtemperature,anymoistureintheinsulat'ondiffusestothecoolingductsand'nadditionisabsorbedbythebleedflowofair.Forcontainmentlinertemperaturebelowductairtemperature,whichcorrespondstonearzeroexternalambientconditions,anymoisturetransferredtotheannulusbetweenthecontainmentlinerandtheductpanelsformsasfrost,butsincethetemperaturegradientsarereversedforthiscondition,thefrostcannotdetractfromtheperformanceofthecoolingsystem.5.3-25July,1997 Withtheabovefactorsconsidered,removaloftheicecondenserwallpanelsforcontainmentlinerinspectionshouldnotbenecessary,asisthecasefortheanalogoussituationwheethesteelis'encasedinconcrete.Accesstothecontainmentlinerintheicecondenserregionforcontainmentinspectionisprovidedbythreespecialinspectionportsthroughductpanelslocatedapproximatelyatthequarterpoints,inthelowersectionoftheicebed.Accesstothecontainmentlinerintheplenumregionisprovidedbyremovalofaplenuminsulationpanel.5.3.3ICECONDENSEROPERATINGCONSIDERATIONSRfrieratin.semTheicecondenserandassociatedsystemsprovideacompletelyreliable,staticheatsink,whichisinstantaneouslyavailableifneededduringaloss-of-coolantaccident.Thedesignassuresthatthequantityandconfigurationoftheiceismaintainedwithinthelimitsacceptablefortheaccidentrequirements.Theinsulationsystemminimizesthetotalheatgainintothecompartment,andairleakageflowthroughthecompartment,thedouble-walledinsulationadjacenttothecompartmentfurtherminimizesheatflowswhichwouldotherwisetendtopromoteicesublimationandmasstransferwithintheicebed.Long-termicestoragetestshaveshownthattheicecanbestoredforlongperiodsoftimewithoutsignificantweightlossorphysicaldistortion.Theicecondenserrefrigerationsystemisprovidedwithexcesscapacitytoassurethattheiceismaintainedbelowthefreezingtemperature.Thecapacityoftherefrigerationunitsexceedthemaximumheatgaintotheicecondensercompartment,andtwostandbyrefrigerationunitsareavailableformaintenanceshutdowns,emergencyshutdowns,andicemachineoperation.Theethyleneglycolloopsforeachunitofthetwin-un'itplantareseparate,butcanbeinterconnected.Themanyairhandlingunitsineachicecondenseralsohaveexcesscapacitysothattheicebedcompartmenttemperature,andtemperaturegradientacrosstheicebedorbetweenadjacenticebedbays/zonesareminimizedandeasilymaintainediffansareshutdownfor'Idefrosting,thecoils,formaintenanceoftheequipment,orasaresultof5.3-27July,1997 equipmentfailure.Theairdistributionductsystemfeedingtheinsulatedductpanelsiscontinuousaroundthepheripheryoftheupperplenumintheicecondensercompartment,sothatallthepanelsareopentoavailableairflow.Thedouble-walledinsulationadjacenttotheicecompartmentprovidesadditionalprotectionagainstheatgai;slftheentirerefrigerationsystemweretoshutdown.Becauseoftheairgapandsecondinsulationlayer,thetimerequiredtoraisetheiceandinternalstructurestomeltingtemperaturewouldbeabou'toneweek,allowingmorethansufficienttimetorepairorrestarttherefrigerationequipment.Anadditional2weekswouldelapsebeforeeven10percentoftheicewouldmeltiftherefrigerationsystemwerenotoperating.IcBedLodinPriortotheinitialplantstartup,theicecondensercompartmentiscooled0tooperatingtemperature,10-20F,andloadedwithice.Oneormoreicemakingmachinesgeneratestheiceinflakeformforeaseinhandling.Theiceismovedintothecontainmentthroughanormallyclosedoenetrationbyapneumaticconveyingsystem.Thesystemfeedsicetoaloadinghead,whichispositionedbythebridgecrane,throughremovabletubesintheplenum.Thissystemisalsousedtoreplenishsectionsoftheicecondenser,ifrequired.IonnserZnscioneThedesignoftheicecondenseranditscomponentsissuchthataminimumamountofsurveillanceisrequired.However,inorder'toensuresatisfactoryperformanceintheeventofaloss-of-coolantaccident,thefollowinginspectionsandmonitoringarerequired:a)Totalweightoficeinitiallyinstalledinthecondenserisdeterminedbyweighingtheloadsoficebeinginstalled.b)Flowpassagesandicebedstypicalofallsectionsofthecondenserarevisuallyinspectedtocheckthatnosignificantchangesareoccurring.05.3-28July,1997 c)Selectedfull-heighticecolumnsareweighedtocheckthatnosignificantchangesareoccurring.d)Thedoorpanelsare-visuallyinspectedforanyevidenceoffrostformation.Further,thesedoorpanelsaremanuallyopenedmomentarilyandtheopeningforcemeasuredtoconfirmthatthedoorsarefunctioningproperly.e)Thechemicalcompositionintheiceischeckedbychemicalanalysis.f)Temperaturesinselectedlocationsintheicecondenseraremonitoredcontinuouslytoensurethatthecoolingsystemisoperatingsatisfactorily.g)Amonitoringsystemisprovidedroindicateiftheinletdoorsareopen.h)Priortoplantheatup,thehatchesintheoperatingdeckareinspectedtoensurethattheyareproperlysecured.Thefollowingparagraphisretainedforhistoricalreasonsonly:Aftertheicecondenserhasbeencooledandloadedwithice,sufficienttimewillelapsebeforethereactorplantisheatedtotemperatureforinitialpoweroperation.Duringthisperiod,anumberofinspectionsaremadeoftheicecondenseranditssystems.Afterpowergenerationbegins,thesurveillanceprogramcontinuesatthefrequencyspecifiedbyTechnicalSpecification.Accesstotheupperplenumoftheicecondensercompartmentispossiblewhilethereactorisatfullpower;therefore,inspectionsbandeoutlinedabove,aswellasfandg,arepossibleatanytime.TechnicalSpecificationsrequirethatarepresentativesampleoficebasketsbeweighedperiodically.ThesebasketsareSelectedandweighedinordertoensurethat(1)thereissufficienticeintheicecondenserand(2)theiceisuniformlydistributedthroughouttheicecondenser.5.3-29July,1997 Thebasketice~eightsarestatisticallyanalyzedtodemonstratethatthemin'mumaverage~eightisgreaterthan1220poundsoficeperbasketatthe954confidencelevel.EondnrMainenaneAsstatedintheDesignBases,theice.condenserinternalsaredesignedforalifetimeconsistentwiththatoftheplant.Specifically,thedesignoftheicesupportstructureandinsulationductpanelsisintendedtominimizethepotentialformaintenance.Theicecondenseranditscomponentshavebeendesignedtobemaintainable.nsiivitSmallLeksConsiderationhasbeengiventothepossibilitythatasmallleakfromthereactorcoolantsystemcouldmelticewithout'theleakorth'eaorteicemeltbeingdetected.Temperaturedetectorsintheicecondenserandtheinletdoorpositionindicatorsshouldprovideoneindicationofthiscondition.Enorderforsteamtoentertheicecondenser,'hedooropeningdifferentialpressure,producedbythecoldairdensityintheicecondenser,mustfirstbeovercome.Becauseoftheholesintheoperatingdeck,thereactorcoolantleakagehastobehighenoughtogeneratesufficientdifferentialpressureacrossthedeckbeforetheinletdoorswouldbegintoopen.iCalculationsoftheleakagerequiredtogeneratea1psfdifferentialpressurethroughtheassumed5sq.ft.deckleakageareaindicatethatthereactorcoolantleakagewouldbebetween70gpmand'240gpm,dependingonthemixtureconcentrationofsteamandairpassingthroughthedeck.Thesecalculationstakenocreditforheatremovalbystruc-turesandbythecontainmentventilationsystem.Thisrangeofleakagewouldquicklybedetectedbyreactorcoolantsysteminstrumentation,andplantshutdownwouldbeinitiated.Also,thisrangeofleakageintothecontainment5.3-30July,1997 TABLE5~3-1ERReactorContainmentVolume(netfreevolume)3UpperCompartment,ftIceCondenser,ft3LowerCompartment(active),ft3TotalActiveVolume,ft3745,896126,940306,8001,179,636LowerCompartment(dead-ended),ft,3TotalContainmentvolume,ft361,7021,241,338ReactorContainmentAirCompressionRatio+1~41Reactorpower,MWt(designbasis)3391DesignEnergyReleasetoContainmentInitialblowdownmassrelease,lbInitialblowdownenergyrelease,BtuAllowanceforundefinedenergyreleaseinadditiontocoreresidualheat,Btu549,000346.7x10I50x106IceCondenserparametersWeightoficeincondenser,lb(Tech.Spec.)2.37x106*DefinedinSection14.3.5'-35July,1993 TABLE53-'cont'd.)1DimensionsoficecondenserO.D.,ftI.D.,ft.Averagelength,ftWidth(lessinsulationpanels),ftIcebedheight,ftInletdoorflowarea,ft2Icecondenserflowarea,ft892674810001326IceCondenserinletdooropeningpressure,lb/ft2Iceboronconcentration,ppmboron1/2to1.02000Refrigerationcoolingcapacity(currentasof1/82)1nstalledcoolingcapacityforcompartment,TonsMaximumcompartmentheatinput,Tons(perunit)Totalcoolingcapacityforplant,Tons(capacitysharedbytwounits)352505.3-36July1997 CONTAINMENTWALLCONTAINMENTLINERINSULATIONCOOLINGAIRDUCTICECONDENSERCOMPARTMENTllFT.-13FT.Le~II~CRANEWALL,~~~~~~~~FIG.5.3-3ICECONDENSERINSULATEDDUCTPANELSPLANVIEWJULY,1997pc230b8d:(usrll(nmec)cooktvfsar)fiy2dl1.dyn(rasterfife)gfiy2dll.cit
ClassGTheFuelTransfer(CPN-1)IceLoad)ceLoading(CpN-57)andReturn(CpN8O)nmentThimbleRemoval(CpN76))iandContainmentService(CPN-71penetrationsarespecialenetapenetrationsusedonlyduringoutaes.only-CPN-67alsohasasecialeneouges.ForUnit2asoasaspeci,alpenetrationsimilarindesigntothwhichisconsiderdsereasaspareandissgntoeabovesnotusedduringoutages.Durinoperations,wherecontainmrngpowere,tesespecialecontanmentintegrityisrequiredthepenetrationsareclosedbyablindflane.ThLocanange.TheseblindflangesareeBcalLeakRateTestedandtestedaspartoftheTestforverificestforverificationofcontainmentint.Thiliflgnegr1tv.Thei.eretobethesinlecoenetrat'containmentpressureboundacoryorthesepetrations.Theoutboardblind.flanewfacilitateeBn.ange,whereused,isprimarilyttyptestingoftheinboardflange.n.anew,'o5.4.2CONTAINMENTISOLATION'SYSTEMDESIGNThegeneraldesignbasiscoveroverxngvalvesrequiredtoassurereactor5.4.1.thenumberandlocationofisolationcontainmentintegrityisgiveninSectionaCheckvalvesmabeeyeemployedasoneofthetwobarriersforTestconnectionsandressoarrersforincominglines.econsandpressurizingmeansazeproviddval~eorbarrierfor1akighetotesteachisolationettness.EitherwateroragasisusedasthepressurizingmediumdependionthnecessngonerequirementsofeachcasWhessazytomakeaquantativeleakaoncase.ereitisveegetest,provisionismadetoa)measuretheinflownflowofthepressurizingmedium,orb).collectandmeasuretheleakageorsc)calculatetheleakagefromthgeromerateofpressuredroprThetestconnectionsareisolatedwheaeennotinusebyclosedmanual1and/orcasandaeemanuavavespandadmini.strati.velycontrolledtoensroetoensurecontainmentintegrity.lt5.4-7July1995 Allisolationvalvesaremissileprotected.Isolationvalves,actuators,andcontroldevicesrequiredinsidethecontainmentarelocatedbetweenthemissilebarrierandthecontainmentwall.Isolationvalves,actuatorsandcontroldevicesoutsidethecontainmentarelocatedoutsidethepathofpotentialmissilesorprovidedwithmissileprotection.TherearetwolevelsofautomaticcontainmentisolationidentifiedasPhaseAandPhaseB.PhaseAisolationclosesalllinespenetratingthecontainmentexceptessentiallinessuchasSafetyInjectionandContainmentSpraywhicharenotisolated,andcomponentcoolingwatertothereactorpumpsandservicewatertotheventilationunitswhichisolatesonPhaseB.(ForPhaseAandBinitiatingsignalsseeChapter7InstrumentationandControl.)Allautomaticisolationvalvesareabletobeclosedfromthemaincontrolroom.Positionindicatorsareprovidedforeachvalvenearitsmanualcontrolswitchinthemaincontrolroom.Specificadministrativeproceduresgovernthepositioningofallisolationvalvesexceptcheckvalvesaswellasanyflangedclosuresduringnormaloperation,shutdownandincidentconditions.Checkvalves'nincominglinesopenonlywhenthefluidpressureinthelinecomingfromtheoutsideishigherthanthepressureonthecontainmentside.Gravityoraspringholdsthevalveclosedinthebalancedpressurecondition.'.4.3DESIGNEVALUATIONThecontainmentisolationsystemprovidestwobarrierstopreventleakageofradioactivityateachcontainmentopening.Eitherbarrierissufficienttokeeptheleakagewithinlimits.TESTANDINSPECTIONAllvalveleaktestingforInserviceInspection(ISI)andIntegratedLeakRateTest(ILRT)programandsurveillancerequirementsareperformedinaccordancewithAppendixJ,OptionB,to10CFR50forTypeA,BandCtypet'esting.AlsocertainvalveswillbetestedforoperabilityinaccordancewiththeapplicableeditionoftheASMEOMStandards.5.4-8I~July1997 5.5CONTAINMENTVENTILATIONSYSTEM5.5.1GENERALDESCRIPTIONTheContainmentVentilationSystemisdesignedto-maintaintemperaturesinthevariouspotionsoftheContainmentwithinacceptablelimitsforoperationofequipment,andforpersonnelaccessforinspection,maintenanceandtestingasrequired.ItalsohascapabilityforpurgingtheContainmentatmospheretotheenvironmentviatheplantvent.Thesystemcanalsocleanupairbornecontaminationinthecontainmentpriortopersonnelentry.Thereisoneplantventforeachunit.Intheeventofaloss-of-coolantaccident,portionsoftheContainmentVentilationSystemaidinreducingContainmentpressureafterblowdownandalsopreventthepotentialaccumulat'onofanyhydrogenin"pockets"withintheContainmentfromreachingtheflammablelimit.TheContainmentVentilationSystemisshowninFigures5.5-1and5.5-2.Xtconsistsofnine,essentiallyindependent,sub-systemsasfollows:a.ContainmentPurgeSupplyandExhaustSystemb.InstrumentationRoomPurgeSupplyandExhaustSystemc.Conta'nmentPressureReliefSystemd.UpperCompartmentVentilationSysteme.LowerCompartmentVentilationSystemincludingControlRodDriveMechanismVentilationSystem,ReactorCavityVentilationSystemandPressurizersCompartmentVentilationSystemf."ContainmentInstrumentationRoomVentilationSystem5.5-1July,1997 g.ContainmentAuxiliaryCharcoalFilterSystemh.ContainmentAirRecirculation/HydrogenSkimmerSystemi.HotSleeveVentilationSystemUnitNo.1andUnitNo.2areeachsuppliedwithaseparatesystem.Thesesystemsareessentiallyidentical.Allventilationsystemswiththeexceptionofthepurgeandpressurereliefsystemsareoftherecirculatingtype(dthroughi,above).Thecontainmentandinstrumentationroompurgeexhaustandcontainmentpressurereliefsystemsdischargetotheunitventwheretheyaremonitoredbeforerelease.5.5.2DESIGNBASESTheContainmentVentilationSystemisdesignedtothefollowingparameters:a.Purgethecontainmentatmospheretotheplantvent.Systemcapacityissufficienttoprovide1.5changesofthecontain-mentairvolumeinonehour.b.Limitcontainmentpressureto0.3psig(maximum)duringnormalplantoperations.c~Maintainamaximumtemperatureof100'Finthecontainmentuppercompartmentduringplantoperationandaminimumof60'Fduringplantshutdowntopermitpersonnelaccessasrequired.d.Maintainamaximumtemperatureof120'Finthelowercompartment(135'Finsidetheprimaryconcreteshield)duringplantoperationandaminimumof60'Fduringanoutage.5.5-2July,1982 e.Maintainamaximumtemperatureof100oFandaminimumtemperature0of60FintheContainmentZnstrumentationRoom.f.PurgetheZn-coreZnstrumentationRoomatmospheretotheunitventduringperiodsofpersonnelaccesstothisroom.g.EnsurethatareliablesupplyofcoolingairisprovidedtotheControlRodDriveMechanisms.h.Reducetheconcentrationofairbornefissionproducts(particulates,iodineandmethyliodinegases)whichmaybeintroducedintothecontainmentatmospherevialeakagefromtheReactorCoolantSystem(concurrentwith1percentfuelcladdingdefects).i.AidinreductionofContainmentpressureintheeventofanaccident.(SeeChapter14.)j.Ensurethat,inthecaseofaloss-of-coolantaccident,anyhydrogenthatmaybeformedwillnotaccumulateinpocketsinexcessof4percent(byvolume).k.Maintainconcretetemperaturebelow150Fatthecranewallsleeves0servingtheRHRsystemwhenthatsystemisoperating.5.5.3SySTEMDESCRZPTZONContePuuandExhaustSsteOneContainmentPurgeSupplyandExhaustSystemissuppliedforeachContainmentstructuresothat,priortoentry,ifrequired,radioactivitycanbereducedtosafelevels.5.5-3July,1987 Purgeairissuppliedtothecontainmentthroughtwo16,000CFMfansandtheirassociatedfiltersandheatingcoils.Purgedairisexhaustedthoughtwo16,000CFMcapacityfansandhighefficiency.part'culateairfilterstotheunitventwhereitismonitoredbeforereleasetotheatmosphere.Thepurge-airsupplyandexhaustfansandfx.ltersarelocatedintheAuxiliaryBuilding.TherearefourairpenetrationsoftheContainmentassociatedwiththissystem,asupplyandanexhaustpenetrationintoboththeupper-andlower=compartment.Eachpenetrationhastwofail-closedisolationvalves.(Thesevalvesarenormallyclosedwhenthepurgesystemsarenotinoperation.)TheContainmentPurgeSupplyandExhaustSystemhasatotalcapacityof32,000CFMwhichaffordsapproximately1.5airchangesperhour.TheContainmentPurgeSupplyandExhaustSystemtakesoutsideairthroughintakeventsandpassesitthroughmedium-efficiencyparticulatefilters(NBSDustSpotEfficiencyforatmosphericdust,of50%)andsteam"oilswhen.necessarypriortodischargeintothecontainment.Theuppercompartmentpurgeexhaustplenumdraws11,000CFMofairthroughinletsalongtheperipheryoftherefuelingcanal.Thelowercompartmentpurgeexhaustplenumdraws21,000CFMofairthroughinletsalongtheperipheryofthereactorwellcavityTheContainmentPurgeSupplyandExhaustSystemservestoprovide:1)ameansofreducihgtheradiationlevel'nthecontairTmenttoasafevalueforcontainmententry,2)acontinuousairflowthroughthecontainmentduringrefuelingoperations,3)heatedairtothecontainmentnecessaryforcomforto"pesonnelworkinginthecontainment,and4)abackupmeansofpressurerelief,intheeventthatthecontainment,pressurereliefsystemisoutofservice.5.5-4July,1997 TheContainmentPurgeSupplyandExhaustSystemisnotnormallyoperated.If,priortocontainmententry,thecontainmentradiationmonitorsindicateradiationlevelsinthecontainmentareainexcessoftheappropriateFederalregulationsforradiationexposuretoanindividualworker(per10CFR20),andifitisdeterminedthattheradiationlevelwithinthecontainmentisat'asafelevelforpurging,thentheContainmentPurgeSupplyandExhaustSystemisactivatedtoreducetheradiationlevelwithinthecontainmenttoasafevalueforcontainmententry.Zntheunlikelyeventthatradiationlevelsinthecontainmentaretoohighforpurging,theContainmentAuxiliaryCharcoalFilterSystemmaybeoperateduntilradiationlevelsarelowenoughfoxpurging.Whenthecontainmentradiationle'velhasbeenreducedtoanacceptableoointforpurging,theContainmentPurgeSupplyandExhaustSystemisolationvalveswillbeopenedandthepurgesystemwillbeactuated.TheContainmentPurgeSupplyandExhaustSystemfansareoperatedremotelyfromtheControlRoom.Theisolationvalvescloseautomaticallyuponasafetyinjectionsignalorahighcontainmentradiationlevel.Duringpurgeoperations,therateofpurgecanbecontrolledbytheoperatorwhohastheoptionofoperatinganydesiredcombinationoftheContainmentPurgeSupplyand/orExhaustSystemfansorbyrepositioningasnecessaryvolumedampers(thevolumedampersarelocatedintheAuxiliaryBuilding).Operationinthismannerwillalsoprovideameansofvacuumreliefintheeventofanegativecontainmentpressure.BecausecontainmentpressurescanbecontrolledentirelybyoperationoftheContainmentPurgeSupplyand/orExhaustSystemduringpurgingoperations,therewillbenoneedtousetheContainmentPressureReliefSystemduringContainmentPurge.5.5-5July1997 Purgeoperationispermittedinalloperatingmodes.ForModes1through4ItheCookNuclearPlantpurgeestimategoalistwohundredand,forty(240)hourseachyearforeachunit.Thispurgeestimateisbasedonaplantcapacityfactorof95X,andaccountsfortwopurgeoperationsperweek.Eachpurgeoperationisassumedtobeapproximately21/2hoursinduration.Theannual240-hourpurgeoperationtimelimitamountstolessthan3Xofthe.estimatedplantoperationtimeinModes1through4.InModes1through4purgeoperationislimitedtoonesupplyandoneexhaustflowpath.Reasonstooperatethesystemincludetheneedtoimprovecontainmentworkingconditions,e.g.,reduceairborneactivity,toperformsurveillanceand/ormaintenanceonasafety-relatedsystemorpieceofequipment,ortorelievecontainmentpressureifthecontainmentpressurereliefsystemisoutofservice.Thepurge/ventsystemisnotintendedtobeusedtoroutinelycontrolcontainmentatmospheretemperatureandhumidity.Itisintendedthatpurgingandventingtimeswillbeasshortaspossible.AllowingpurgeoperationsinModes1,2,3,and4ismorebeneficialthanacooldowntoMode5fromthestandpointof(a)imposingunnecessarythermal.stresscyclesonthereactorcoolantsystemanditscomponentsand(b)reducingthepotentialforcausingunnecessarychallengestothereactortripandsafeguardssystems.ThecontainmentpurgesystemisdesignedinaccordancewiththerequirementsofNRCBranchTechnicalSpecificationCSB6-4,Rev.1.Thisincludes,butisnotlimitedto,ananalysisoftheimpactofpurgingonECCSperformance,anevaluationoftheradiologicalconsequencesofadesignbasisaccidentwhilepurging,andlimitingpurgeoperationtousingnomorethanones'upplypathandoneexhaustpathatatime.Thepurgeisolationvalveshavebeendemonstratedcapableofclosingagainstthedynamicforcesassociatedwithaloss-of-coolantaccidentandareassuredofreceivingacontainmentventilationisolationsignal.Resetswitcheshavebeenprotectedagainstinadvertentuseinamannerwhichfacilitatestheadministrativecontrolsgoverningtheiruse.Thepurgeandventisolationvalvesdonotuseresil'iehtseating/sealingmaterialandarenotsubjecttothetypeofenvironmentaldegradationcommontoresilientmaterials.5.5-6 InsrrumntationRoomPureeuoolvandExhaustSsemTheContainmentInstrumentationRoomisisolatedfromthegeneralContainmentatmosphereandhasasepar'ateandindependentpurgesystemconsistingofa1000CFMsupplyunitanda1000CFMexhaustunit.Thesupplyunitdrawsoutdoorairthroughanintake'ouver,passesitthroughamedium-efficiencyparticulatefilterandelectricblastcoilheatersanddischargesitintotheContainmentInstrumentationRoom.TheexhaustunitdrawsairfromtheContainmentInstrumentationRoom,passesitthroughboth,highefficiencyparticulateair(HEPA)andcharcoalfiltersanddischargesittotheunitventwhereitismonitoredbeforerelease.Thisoperationaffordsapproximately3-1/2airchangesperhourfortheContainment*InstrumentationRoom.I'oththeContainmentInstrumentationRoompurgesupplyandpurgeexhaustpenetrationshavetwoisolationvalvessimilarintypeandfunctiontothoseprovidedfor,theContainmentPurgeSupplyandExhaustSystem.ContainmentPrsureRliefSsemContainmentpressurereliefisprovidedbya.1000CFMexhaustunitcomposedofafan,aHEPAfilteandacharcoalfilter.ThissystemislocatedintheAuxiliaryBuilding.Thereisasinglepenetrationofthecontainmentbarrierforthissystemwithtwo,isolationvalvessimilarintypeandfunctiontothoseprovidedfortheContainmentPurgeSupplyandExhaustSystem.AflowdiagramoftheContainmentPressureReliefSystemisshowninFigure5=.5-2.Thesystemfandrawscontainmentatmospherethrougharegisterintheuppercompartmentwhere,priortodischargetotheplantvent,itispassedthroughafilterunitcontainingbothHEPAandcharcoalfilters.Additionalfeaturesofthesystemdesignincludetwoisolationvalves,anautomaticallyoperatedflowregulatingdamper5.5-7Ju3.y,1997 whichlimitsflowthroughthefilterstol000cfm,abackdraftdamperintheducttotheunitventtopreventbacklowfromtheunitventintotheIcontainment,andabypasspatharoundthefansothatcontainmentpressurereliefcanbeorovidedintheeventthepressurereliefunitfanfailstostart.ThesystemcanbeoperatedmanuallyfromtheControl'Roomanytimethatcontainmentpressureexceedsambient.'However,ifthecontainmentpressureshouldreach0.2psig,analarmwillsoundinthecontrolroomtoalerttheoperatortoactuatethesystem.Theoperatoract,ionrequiredtoactuatethesystemconsistsofopeningthenormally,closedisolationvalvesandstartingthefanmotor.Suchoperatoractionwilllimitthecontainmentinternalpressuretolessthan0.3psigfornormalatmospheric,fluctuations.MheneveroperationoftheContainmentPressureReliefSystemoccurs,thecontainmentatmospherewillalways,beexhaustedthroughthecharcoalandHEPAfiltersintheunit.Thisshouldbesufficienttopreventanyadverseradioactivityfrombeingexhaustedtotheenvironment.TheContainmentPressureReliefSystemisolat'onvalvesautomaticallycloseonuponrecieptofacontainmentventilationisolationsignal.Thiswillpreventanyfurtherreleaseofadverseradioactivitytotheenvironment.Thecontainmentpressurereliefsystemisintendedforuseonlyfornormaloperationwhenitisnecessarytoreduceinternalcontainmentpressure.It'snotintendedforusewhentheContainmentPurgeSupplyandExhaustSystemsareoperating,sincetheContainment,PurgeSupplyandExhaustfansthemselvesprovidethenecessarymeansofcontrollinginternalcontainmentpressure..TheContainmentPurgeSupplyandExhaustSystemsprovideabackupmeanstorelievecontainmentpressure,intheeventthatthecontainmentpressure!reliefisoutofservice.ItexhauststhroughHEPAfilterstotheplantvent.5.5-8July.1997 ContainmentinstrumentationRoomVenilationSstemThein-coreinstrumentationroomisanisolatedsectorofthelowerI,compartment.Thetemperaturesintheroomarecontrolledbytwofree-standing,9,600cfmrecirculationventila'tionunits(1standby).Eachunitiscomposedofafan,watercoolingcoilandelectricblastcoilheaters.Thewaterforcoilsissuppliedbythenon-essentialservicewatersystem.Materflowisregulatedinthesamemannerasfortheuppercompartmentventilationunits.Maximumwaterflowperunitis50gpm.(Flowratemaybeexceededduringventilationunitflushingoperations.)'heinstrumentationroomiskeptataconstanttemperatureofapproximately90Fduringplantoperation.onainmenAxiliahr1FilerSsmThissystemconsistsoftwo8000cfmfan-.filterunitslocatedinthelowercontainmentcompartment.Eachunitcontainsbothhighefficiencyparticulateairandcharcoalfilters,forreductionoffissionproductparticulateactivitywhichmaybeairborne'nthelowercompartment.Thecontainmentatmosphereismon'ito'redforradioactivityduringreactorpoweroperation,andthenumberofauxiliarycharcoalfilterunitsi'operation(none,1,or2)dependsontheairborneactivitylevelsobserved.)ConinmentAirRecirculainHdroenSkimmerThecontainmentairrecirculation/hydrogenskimmersystemistheonlysafetyrelatedventilationsystemwithinthecontainment.Thissystemfunctionsonlyintheeventofahi-hicontainmentpressuresignal.Ztconsistsoftworedundantindependentsystemswhichincludefans,backdraftdampers,valves,pipingandductwork.1Bothcontainmentairrecirculationhydrogenskimmersystemfansarelocatedintheuppervolume.Thefansdischarge,viatheannularspace5.5-11July,1997 betweenthecranewallandtheContainmentner,ntotheowercompartment..hefansareprovidedwithbackdraftdampe"scnt"..ed'schargetopreventbacklowdurng.".':'a'lowdo~z..='gure5.5-showsthevar'ouscomponentsofth'ssystemanc."-igre5.5-3showstherecirculationE'owpatternsthatarecreatedbvthissystem.Thesystemincludesprovisions.'orprovidingboth1)generarecirculat'onoEcontainmentatmospherebetweentheupperandlowercompartmentsEollowingaloss-of-coolantaccident,and2)prevent'ngtheimprobableaccumulationoEhydrogen'nrestr'ctedareaswith'nthecontainmentfollowingaloss-of-co'olantacc'dent.Thepotentialareasofhydrogenpocketingarethetopofthecontainmentdome,andthelowercompartmentenclosureswhichincludethethreerooms'ntheannularspacebetweenthecranewaandthe1'ner,thesteamgeneratorenclosures,andthepressurizerenc'osure.Hydrogenpocket-ingispreventedbycontinuouslydrawingairoutofthetopofeachottheaboveareasatsucharateastolimitthepotentiallocalhydrogenconcentrationtolessthan4Xbyvolume.Eachofthetwoindependentsystemsfanhas'tsownintakesystemcomposedofthreeseparateheaders.Theseheadersdraw39,000CFN'fromtheuppercompartment'ntheimmed'atevicinity.ofthefan,draw1,,000CPAfromtheuppercompartmentatthetopofthedome,anddrawairfromthepotentialhydrogenpocketsint'elowercompartment(this'sthehydrogenskimmerheader).Eachheaderhasvolumecontroldampersinthelineorattheairintaketobalanceflow.Thehydrogenskimmerheader'scomposedoftwopipebranches,onewhichdraws500CPMfromthetopofeachdoublesteamgeneratorencLosurea..dpressur'zerenclosureandonewh'chdraws100CRtfromeachorthreerooms'nt'eannu'arspace.There'sanorma'vclosed,=otor-operatedhy""oge..sk'=erva'veoneachheadertoprevnt.'ceconcenserbvpassduringV~vdeogea'aowdown~(o')July)-8I requiringtheoperatortoactuatetheContainmentPressureReliefSystemwhentheinternalcontainmentpressurereaches0.2psigassuresthatinternalcontainmentpressurewillneverreach0.3psigduringnormalplantoperations.Theautomaticair-operateddamperintheContainmentPressureReliefSystemprovidesameansofmaintainingaconstantairflowthroughthecharcoalandHEPAfiltersintheunit.Regulationoftheflowinthismannerwilloptimizetheiodineabsorptioncapabilityoftheimpregnatedactivatedcharcoalbylimitingthefacevelocitythroughthecharcoalfilters,thusprovidingaminimumresidencetimeofairflowof0.25secondsineachofthesix2-inchdeepcharcoalbedsinthisunit.TheHEPAandcharcoalfiltersintheContainmentPressureReliefSystemhaveanexceedinglyhighcapabilityforremovalofbothairborneparticulate!matterandairborneradioactiveiodine.TheContainmentPressureReliefSystemhasmorethanadequatecapacityforretentionofbothparticulatesandiodinefortheintendeduseofthesystem.Theimpregnatedactivatedcharcoalhasaminimumabsorptioncapabilityof2.5mg.ofiodineforeverygramofcharcoal]totalcharcoalinthisunitisaminimumof37,100grams).Thesingle24"x24"x12"HEPAfilteriscapableofholdingatleast4poundsofNBSCottrellPrecipitateStandardizedTestDustatapressuredropofnomorethan2.0inchesw.g.5.5.5INCXDENTCONTROLXntheeventofanincidentthetwoindependentContainmentAirRecirculation/HydrogenSkimmerSystemfansautomaticallystartwithin9z1minutesafterinitiationof2/4hi-hicontainmentpressuresignals.TheoperationofeitherfanensuresthereductionofthecontainmentpressuretothelimitsdescribedinChapter14.5.5-15July,1997 Atthesamet,imetheAiRecirculation/HydrogenSkimmerfansstart,thehydrogenskimmervalvesinthetwoContainmentAirRecirculation/HydrogenSkimmerheadersopen,thuscaus'ingtheAirRecirculation/HydrogenSkimmer,SystemfanstocontinuouslypurgeallpotentialhydrogenpocketsintheContainment.AllotherContainmentVentilationSystemsarenotdesignedforoperationduringalossofcoolantaccident.TheoccurrenceofaHighContainmentRadiationSignalfromtheuppercompartmentareaorlowercontainmentparticulate/radiogasmonitorswillautomaticallytripthepurgefansandcloseallventilationsystemisolationcontrolvalves,thusisolatingthe'ontainment.5.5.6MALFUNCTIONANALYSISSufficientredundancyex'stsinallrecirculationventilationsystemstoensureanormaloperationwithoneactivecomponentoutofservice.Thetwofiltercleanupunitsprovideredundancyforsmallleakagerates.;heContainmentPurgeSupplyandExhaustSystemisfittedwithdualsupplyandexhaustfans.Simultaneousfailureofasupplyandanexhaustfa'n-wouldresultinanBO-minutpurgerate.TheContainmentAiRe"'=ulation/HydrogenSkimmerfCEQ)SystemsaetworedundantsystemsthatarcooledfromacommonComponentCoolingHater(CCN,'eader.Theloss'feitherCEQsystemoranycomponentofeitherCEQsystemwillnotimpairsystemoperation.,1ntheeventthatflowtotheCCWheaderislost,proceduralguidanceisinplacetoensurethatitisexpedientlyrestored.TheContainmentPurgeSupolyandExhaustSystemisavailableforrelievingcontainmentpressureintheeventthatthecontainmentpressurereliefsystemisoutofservice.5.5-16July,1997 5.5.7TESTSANDINSPECTIONAllsystemsareinspected,testedandbalanceduponinstallation.Charcoalandparticulatefiltersareindividuallytestedbeforeshipment,uponin'stallationandperiodicallythereafterasrequired.Replacementfilterswill'etestedinthesamemanner.TheContainmentAir'ecirculation/HydrogenSkimmerfansweretestedduringinstallationandaretestedperiodicallytoensureproperfunctioning.Theinitialtestofthesefanswereconductedatbothnoflowandfullflow,verifyingthefancapabilitytodelivertherequiredamountofair.Theperiodicfantestsareconductedatnoflowtoassurethatthefanisstilloperable.5.5-17July,1997 A IRtCZ1vZ0I\vcZ(O)OOutv(LO(Nclcv(TON(5'IOI'IPIVCPlVl~ltAICOVSfTOH(Oct(OLAIRR((LIVERSEEDHG5910(ADD(DT(SY(twHQ(ITDNLLI~~TTPI(ALTOR1DHESTOM(w(LDCAANvtl'5A5ANDCIg>>PCACC~c'Ip~ISTCewLTYPICAL(oftllZONESOTUDPE(f(YLIHD'Ef(w(LDCHAHH(LS'3To<<scwvllAMIcuv~IAITTSTPANILAIRR(C(tv(RAIRREC(tv\RTOICNPPVtN~<<ATOMLoltCOCNCLAPS\I~IOVPVCVTATCCIAculSOOT~LVSCCYLLHDERwELDCHAN'v'lLllRON(510PttlovvttAcltlollOOCNCLCALt(51PAN1L~(N('TACTION~vfLOCvcuu(LCCSPto'tl'tiltCOPIaQBTOFcDwgttutf(ffNYT5fchht(TfV(CATION(1tlSluti(T1D)IOtcutw(IPLAT(OI~ILOW(R(YIWOtRV(LOCHANV('ON(5II/wStftiIH5TRVM(NTROONv(LDCNANNLL(ffDIOTA(ADP(D'l(STCONNTYDI<ALrOR~OOAOllu15Ol(DufAINM(Nt1IOOR>>(LOCuluu(LSCIPltOJ(SYCOIOIRA58WDovPLA(-~(DufAIHM(NTllOORvc(LDCNLl~w(LSTYDIALSO%5RlACTOR(ATITT(llOORCutIOCNAIIN(L(ON('Sf(l(lot(lvllHALLS(11OOCvtlOCNLNNLLSTON(5FlG;5.6-1INDIANA~lclCNIOAclCICClltlCCO.DONALDC.COOKfttt(L(ARfCAÃfVCNCCf.RTC((CIACALSLIPIAAICA15fD((CIACAL11vjtACON6CATT(V1151CONNAC.'10'RCOHTADIMNTCONrawv&npENEIRAIfoN&WE'IOCKANNEEPRESSVRIZAIIONUNIIN-IOR2DILfccAI-2-S94SPTL~IL.A.cIIFIOIHI4ItILI~ICCKSKIVlllCIAKIOVI~HocutCOST.ISCOLDS\I~lvTOocl~yg1997 I1II'I,k.w~4Am~y~~W"~k1lt~' 5'.2INITIALCONTAINMEÃI'PREMPERATIONAL)LEAKAGERATETESTSIntegratedLeakaeRateTestsAftercompletionofthecontainmentandafterloadingtheicecondenser,anintegratedleakageratetestwascarriedoutusingatestprocedurewhichwaswrittenusingtheAmericanNationalStandard-ANSIN45.4-1972and10CPR50,AppendixJasguidelines.Theintegratedleakageratetestswereconductedwiththeweldchannelzonesopentothecontainmentatmosphere.Thecontairxnentwaspres-surizedto12psig,thecontainmentdesignpressure,usingairdriedtoadewpointbelowthecoldesttemperatureintheicecondensertoeliminatethepossibilityof'ondensingwatervaporduringthetest.Thedesignleakagerateunderaccidentconditionsis0.25%ofthe,containmentfreevolumeper24hours.SensitiveLeakaeRateTestsThesensitiveleakageratetestsareperformedusingtestingprocedureswrittenfortestinglinerweldchannelsandpenetrationsusing10CPR50AppendixJasaguide.Sincethevolumescontainedintheweldchannelsandpenetrationsaresignificantlysmallerthanthecontairmentfreevolume,thetestsen-sitivityiscorrespondinglygreaterthanthatofanintegratedleakage-ratetest.'h'esetestsareconductedwith12psigintheweldchannelsandpenetrationsandwiththecontainmentatatmosphericpressure.5.7-5July,1982 5.7.3CONTAINMENTPERIODIC(POST-OPERATIONAL)LEAKAGERATETESTThereisasmallcombinedvolumeofenclosedspaceinthedoublebarrierpenetration,thepenetrationweldseamchannelsandthelinerweldchannelsinstalledontheinsideofthelinerinthecontainment.Sinceitiseasytomonitorthesesmallvolumes,asensitiveandaccuratemeansofIperiodicallymonitoringtheirstatuswithrespecttoleakageisprovided.Withthisprovision,thereisnoneedtoperformintegratedleakratetestsofthecontainmentvesselunlessmajormaintenanceormodificationsofthecontainmentaremade.Toallowforthispossibility,itispermissibletopressurizethecontainmentvesseltothedesignpressure.Observationsofthevesselwillbemadefromplatformsorbyothermeanswithspecialattentiongiventoareasofmajordiscontinuities.ProvisionshavebeenmadeinthedesignoftheIceCondenserstructuretopermitperiodicinspectionofthecontainmentlinerinthea".eabehindtheicecondenser.Inspectionofthelinerisaccomplishedthrough"InspectionPorts"locatedaroundtheicecondenser,topermitaccesstotheliner.PeriodicleaktestingofthecontainmentisperformedinaccordancewiththeTechnicalSpecificationsand10CPR50OptionBAppendixJTypeA,B,andCleaktests.Theleakratetestisdonetodeterminetheleaktightnessofthecontainmentvesselandcontainmentisolationvalvesandnottomeasurethestructuralresponseofthecontainment.Theleakratetestisperformedwiththeiceinplaceandatthedesignpressureof12psig.5.7-6July,1997 SincemaximumNPSHandminimumNPSHoccurattherunoutflowforthepumps,rathisflowwasassumedforcalculationpurposes.Theminimumtemperatureof0therefuelingwaterstoragetankis70Fforbothunits.Themaximumsumptemperatureconsideredwas160F(190FforUnit2)during00recirculationforpurposesofcalculatingNPSH.Thisexceedsthemaximumaexpectedsumptemperature.FrictionlosseswerecalculatedusingtheconservativepipeandfittingresistancesgivenintheCraneCo.TechnicalPaperNumber410.ThecontainmentsprayandRHRpumpstakesuctionduringtherecirculationphasefromthecontainmentsump.Thewaterisatahighertemperaturethanduringtheinjectionphase,buttheelevatedcontainmentpressurefollowingtheDBAsomewhatoffsetsthehighervaporpressureofthewater.However~,noIcreditistakenforthiselevatedcontainmentpressure.lnaddition,thepipingtothepumpsuctionsisdirect,hencefrictionlossesaresmall.EnineerafFearesomonentsailiCriterion:JEngineeredSafetyFeaturesshallbedesignedsothatthecapabilityofthesefeaturestoperformtheirrequiredfunctionisnotimpairedbytheeffectsofaloss-of-coolantaccident(LOCA)totheextentofcausingunduerisktothehealthandsafetyofthepublic.ThemajorityoftheactivecomponentsoftheEmergencyCoreCoolingSystemandtheContainmentSpraySystemwhosefailurewouldaffectthehealthandsafetyofthepublicarelocatedoutsidethecontainmentandnotsubjectto.containmentaccidentconditions.Instrumentation,,motors,cables,andpenetrationslocatedinsidethecontainmentwhicharerequiredtofunctionareselectedtomeetthemostadverseaccidentconditionstowhichtheymaybesubjected.Theseitemsareeitherprotectedfromcontainmentaccidentconditionsoraredesignedtowith6.1-9July1997 standwithoutfailure,theeffectsofradiation,temperature,pressure,andhumidityexpectedduringtherequiredoperationalperiodforindividualspecificaccidentconditions.AccidentAravationPreventionCriterion:ProtectionagainstanyactionoftheEngineeredSafetyFeatureswhichwouldaccentuatesignificantlytheadverseafter-effectsofaLOCAshallbeprovided.ThereactorismaintainedsubcriticalfollowingaLOCA.Introductionofboratedcoolingwaterintothecoreresultsinanetnegativereactivityaddition.TheRCCAsinsertandremaininserted,althoughcreditforthisisnottakeninthelargebreakanalysis(SeeSubchapter14.3).ThesupplyofwaterbytheEmergencyCoreCoolingSystemto'coolthecorecladdingdoesnotproducesignificantwater-metalreaction(SeeSubchapter14.3).ThedeliveryofcoldemergencycorecoolingwatertothereactorvesselfollowingaLOCAdoesnotcausefurtherlossofintegrityofth!reactorcoolantsystempressureboundary.Accumulatoractuation,includingpossiblenitrogenadditionisevaluatedinChapter14andisshownnottoaggravateanyloss-of-coolantaccident(LOCA).Instrumentation,motors,cablesandpenetrationslocatedinsidethecontainmentwhicharerequiredtofunctionareselectedtomeetthemostadverseaccidentconditionstowhichtheymaybesubjected(Chapter5and7).Theseitemsareeitherprotectedfromcontainmentaccidentconditionsoraredesignedtowithstand,withoutfailure,exposuretotheeffectsofradiation,temperature,pressure,andIhumidity'expectedduringtherequiredoperationalperiodforindividualspecificaccidentconditions.Protection,intheformofrestraints,supportsandphysicalseparationhasbeenprovidedfortheECCStoassurenolossofcorecoolingcapabilityJuly1989 PowersourcesarearrangedtopermitindividualactuationofeachactivecomponentoftheEmergencyCoreCoolingSystem.TestinofEmrenrolinSstmCriterion:CapabilityshallbeprovidedtotestperiodicallytheoperabilityoftheEmergency,CoreCoolingSystemuptoalocationasclosetothecoreasispractical.Anintegratedsystemtestcanbeperformedwhentheplantiscooleddownandtheresidualheatremovalloopisinoperation.ThistestwouldnotintroduceflowintotheReactorCoolantSystembutwoulddemonstratethe"operationofthevalves,pumpcircuitbreakers,andautomaticcircuitryuponinitiationofsafetyinjection.Theaccumulatortankpressureandlevelarecontinuouslymonitoredduringplantoperationanddischargeflowpathavailabilitycanbecheckedatanytimebynotingtheoutletisolationvalvepositionindicationonthemaincontrolboard.Theaccumulatorsandthesafetyinjectionpipeuptothefinalisolationvalvearemaintainedfullofboratedwateratrefuelingwaterconcentrationwhiletheplantisinoperation.Theaccumulatorsandinjectionlineswillberefilledwithboratedwaterasrequiredbyusingthesafetyinjection.Smallfillanddrainlinesareprovidedforthispurpose.Flowsineachofthecentrigugalchargingandsafetyinjectionpumpdischargeheadersandinthemainflowlinesfortheresidualheatremovalpumpsaremonitoredbyflowindicators.Pressureinstrumentationisalsoprovidedfor*6themainflowpathsofthesafetyinjectionpumpandcentrifugalchargingpumpheadersandresidualheatremovalpumps.Levelandpressureinstrumentationareprovidedforeachaccumulatortank.6.2-3July,1997 Testinof0erationalSeenceofEmerencCoreCoolinSstemCriterion:Capabilityshallbeprovidedtotestinitially,underconditionsascloseaspracticaltodesign,thefulloperationalsequencethatwouldbringtheEmergencyCoreCoolingSystemintoaction,includingthetransfertoalternatepowersources.Thedesignprovidesforcapabilitytotestinitially,totheextentprac-tical*thefull.operationalsequenceuptothedesignconditionsfortheEmergencyCoreCoolingSystemtodemonstratethestateofreadinessandcapabilityofthesystem.DetailsoftheoperationalsequencetestingarepresentedinSection6.2.5,TestandInspections.CodesandClassificationsTables6.2-1tabulatesthecodesandstandardstowhichtheemergencycozecoolingsystemcomponentsaredesigned.ServiceLifeUnderAccidentConditionsPortionsofthesystemlocatedwithinthecontainmentaredesignedtooperateunderthemostadverseaccidentconditionswithoutbenefitofmaintenanceandwithoutlossoffunctionalperformanceforthedurationoftimethecomponentisrequiredfollowingtheaccident.fi6.2.2SYSTEMDESIGNANDOPERATIONSstemDescritionTheEmergencyCoreCoolingSystemisshowninFigures6.2-1and6.2-1A,and9.2-1.Thesefiguresillustratetheredundancyofcomponentsandjpipingsystems.TheoperationoftheEmergencyCoreCoolingSystem,followingalossofcoolantaccident,canbedividedintotwodistinctphasess1)thein-jectionphaseinwhichanyreactivityincreaseattendingtheac"ident6.2-4July,1982 isterminated,initial'coolingofthecoreisaccomplished,andcoolantlostNfromtheprimarysystemisreplenished,and2)therecirculationphaseinwhichlongtermcorecoolingisprovidedduringtheaccidentrecoveryperiod.Adiscussionofeachphaseisgivenbelow.AccidentsanalyzedinChapter14assumeapumpheaddegradationfromvendorcurvesof10%forcentrifugalchargingpumpsand15~forthesafetyinjectionandresidualheatremovalpumps.In'ecionPhsThemajorequipmentinvolvedintheinjectionphaseare:a.Two,centrifugalchargingpumps(athird,positivedis-placement,chargingpumpisnotinvolvedintheinjectionsystem)b.-Twosafetyinjectionpumpsc.Tworesidualheatremovalpumpsd.Fouraccumulators(oneforeachloop)e.Refuelingwaterstoragetank(RWST)Therelativeimportance"ofthevariouspiecesofinjectionequipmentisdependentuponthesizeandlocationoftheprimarysystembreak.Foralargebreak,theaccumulatorsrepresenttheprincipleinjection.mechanisminthesensethattheyarethefirstpieceofequipmenttobeeffective.ForfurtherdetailsseeChapter14,andFigures6.2-2and6.2.3.Theaccumulators,utilizingacompressednitrogencovergas,injectboratedwaterintothecoldlegsofthereactorcoolantpipingwhentheprimarysystempressurefallsbelownominal600psig.OneaccumulatorisprovidedforeachcoldlegoftheReactorCoolantSystem.Theyarelocatedinsidethecontainmentbutoutsidethemissilebarrier,andarethereforeprotectedagainstcrediblemissiles.Accumulatorwaterlevelcanbeadjustedremotelyduringnormalpoweroperation.Boratedmakeupwaterfromtherefuelingwaterstoragetankisaddedusingasafetyinjectionpump.Waterlevelisreducedbydrainingtothereactorcoolant6.2-5July,1997 draintank.Samplesofthesolutionintheaccumulatortanksaretakeninthesamplingstationforperiodicchecksofboronconcentration.Provisionsarealsoincludedforremotenitrogen'akeup.Theaccumulatorsarepassivecomponentsoftheinjectionsystembecausetheyrequirenoexternalsourceofpowerorsignalinordertofunction.TheremainderofthemajorpiecesofequipmentcomprisingtheemergencycorecoolingsystemareactivecomponentswhichareactuatedbyanyoftheSafetyInjectionSignals:a)Lowsteamlinepressurein2of4steamlines.(Possiblesteamlinebreak)b)Highdifferentialpressurebetweenanytwosteamgenerators(Possiblesteamlinebreak)c)Lowpressurizerpressure(PossibleLOCA)d)Highcontainmentpressure(PossibleLOCAorsteamlinebreak)e)Manualactuation(theControlPanelincludesaswitchforeachtrain)Thesafetyinjectionsignalinitiatesareactortrip(thismayhavealreadyoccurred),startsthedieselgenerators,openstheboroninjectiontankisolationvalvesandthechargingpumprefuelingwaterstoragetanksuctionvalves,andstartsthecentrifugalchargingpumps,thesafetyinjectionpumps,andtheresidualheatremovalpumps.Inaddition,isolationvalvesonthevolumecontroltankdischarge,chargingline,andcentrifugalchargingpumpminimumflowlinesclose.Finally,asafetyinjection'ignalwillproduceaphaseAcontainmentisolationsignalwhichresultsintheclosureofthemajorityoftheautomaticcontainmentisolationvalves,isolatingallnon-essentialprocesslines.(SeeSub-Chapter5.4)6.2-6July,1997 Thecontainmentrecirculationsumpisprotectedatentrybycoarseandfinescreenssupportedwithinasubstantialframe.Waterflowingintothesumppassesthroughthecoarseandfinescreensanddownwardsunderthecranewall.TheflowisthenturnedupwardsandentersthetwinrecirculationpipesconnectingthesumptotheRHRandcontainmentspraypumps.Thetwosetsofgratingactasflowstraightenersandmitigatevortexformationbyequalizinglocalvelocitydifferences.Theadjacentcontainmentsumpisalsoequippedwithbothcoarseandfinescreensatitsentrance.Thissumpandtherecirculationsumpareconnectedviaan8"pipeatthebottomofthesumps.Thesumpisdesignedwithalargeflowarea,allowinglowwatervelocities,suchthatbuild-upofdebrisagainstthescreensisminimized.Thelowvelocitiesmakeitunlikelythatairbubblescouldbecarriedintothepumpsuctionareaofthesump.Eachrecirculationlinefromthesumpisrunoutsidethecontainmenttoasumpisolationvalve.Thisvalveissurroundedwithaleaktightsteelenclosureandthesectionofpipingjoiningittothesumpisrunwithinaguardpipeweldedtothevalveenclosure.Anyleakagefromthesumppipingorvalvebodywillbecontainedandcannotleakintotheatmosphereorcausealossofrecirculationfluid.Thepressurereliefforeachvalveenclosureisroutedtotheassociatedresidualheatremovalpumproomsump.Thereliefvalvesetpointis35psigwhichisalsothedesignpressureforthevalveenclosure.ThedrainlinesfromtheenclosurestotheRHRpumproomsumpsarenormallyclosed.TheenclosuresareASMESectionZZZClassBvesselswhichrequirepressurereliefprovision.ThesumpisolationvalvesareinterlockedwiththeRHRpumpsuctionsupplyvalvesfromtheRWSTsothatthesupplyline(s)fromthesumpcannotbeopeneduntiltheRHRpumpsuctionvalve(s)is(are)fullyclosed.TheseinterlocksaretrainorientedandwillpreventairfromgettingintotheRHRpumpsuction.AnyexcessiveleakageorpassivefailuredownstreamofthesumpvalvescanbecontrolledandisolatedbyclosureofthesumpvalveinWithinthecontainment,cont'nuityofthelinerisassuredbyweldingofthe~6.2-11July,1992 sumpdischargepipingtothelinerplateandfittingofaweldtestchanneloverthesealweld.Thelinerextendsunderthesumpareatoensurecontainmentintegrity(seeChapter5).Chan-OverfromIn'tionPhseRecirulatinPhaseThegeneralsequence,fromthetimeofthesafetyinjectionsignal,forthechangeoverfromtheinjectiontotherecirculationphaseisasfollows:a)First,sufficientwaterisdeliveredtothecontainmenttoprovideadequatenetpositivesuc'tionhead(NPSH)fortheresidualheatremovalpumps.ThisistheRefuelingWaterStorageTank(RWST)lowlevelsetpointandcorrespondstoavolumeintheRWSTof131,980gallons(tankheight7feetabovelo-lolevelsetpoint).b)Second,thelowlevelalarmontheRWSTsounds.Atthispoint,theoperatorinitiatestransfertorecirculation.IfallECCSpumpsareoperable,theoperatoralignsthewestRHRpumpandwes"'ontainmentspraypumptotakesuctionfromthecontainmentsump.Bothsetsofhighheadpumps(centrifugalchargingpumpsandsafetyinjectionpumps),theeastRHRpumpandtheeastcontainmentspraypumpcontinuetotakesuctionfromtheRefuelingWaterStorageTank.c)Third,thenorthandsouthsafetyinjectionpumpsandtheeastandwestcentrifugalchargingpumpsarealignedforcoldlegrecirculation.TheyachievethisbytakingsuctionfromthewestRHRpumpaftertheirrealignmentiscomplete.d)Finally,theoperatorcompletestheswitch-overoperationbytransferringthesuctionoftheeastcontainmentsprayandRHRpumpsfromtheRWSTtothecontainmentsump.TheoperatordoesnotbeginthisuntiltheRWSThasreacheditslo-lolevelsetpoint(usablewatervolumeintheRWSTof37,250gallons).Whenreachingthissetpoint,theoperatorterminatesallsuctionflowfromtheRWSTtotheECCSandcontainmentspraysystems.6.2-12July1997 Theemergencyoperatingproceduresprovidedetailedsequenceforthechangeoverfrominjectiontorecirculation.Theoperatorin'thecontrolroomimplementsthechangeoverfrominjectiontorecirculationviaaseriesofmanualswitchingoperations.Anautomaticpumptripwilloccuroncetherefuelingwaterstoragetank(RWST)reacheslo-lolevel.ThisprotectstheresidualheatremovalpumpsalignedtotheRWSTfromcavitation.Thepowersupplyforeachpumptripisfromanindependentpowersource.Thepumptripandassociatedcircuitryaredesignedtobeconsistentwiththeremainderoftheplantengineeredsafetyfeatures.Shouldtherebeatriponlo-loRWSTlevel,thepumpcanberestartedbyoperatoractiononcetheRWSTsuctionhasbeenisolatedandtherecirculationsumpsuctionopened.Thisautomatictripfeatureisaback-uptothemanualswitchover.FollowinganaccidenttheshortesttimewhentheoperatormusttakeactiontoperformthenecessaryswitchoverresultswhenbothtrainsofECCSandspraypumpsareinoperationatfullrunoutconditions.ThissituationemptiestheRWSTatthefastestpossiblerate,thusrequiringthemostrapidoperatoractiontoperformtheswitchoverfrominjectiontorecirculation.Earlierstudies(Reference1)haveshowntheminimumtimefortheoperatortocompletetheswitchoverofthewestcontainmentspraypump;thewestRHRpumps;andthenorthandsouthSZpumpsisaboutfourminutes(232seconds).Subsequenttothesestudies,thetransferprocesswasmodifiedtoincludethetransferofthecentrifugalchargingpumpspriortotransferringtheeastRHRtpumpandeastcontainmentspraypump.ThetimetocompletethetransfertocoldlegrecirculationofthewestRHRpump;thewestcontainmentspraypump;-thenorthand'southSIpumps;andtheeastandwestcentrifugalcharging6.2-13July1997 pumpshasincreaseduntilitcannolongerbefullyassuredthattheoperatorisabletocompletethetransferofoneentiretrain'fECCSpumpsthatisassumedintheFSAR'.ThevalvestroketimesforswitchovertocoldlegrecirculationwhichareusedintheChapter14safetyanalysisaredescribedinUnit1,Section14.1ofthisUFSAR.Relatedinformationregardingthelargebreaklossofcoolantaccidentevaluationfora3minuteSIinterruptionmaybefoundinSection14.3.1.1.2(Unit2)andjustprecedingthe"CoreandSystemPerformance",sectionof14.3.1(Unit1)emBreakProecinFollowingasteamlinebreak,thereactorcontrolsystem,inresponsetotheIapparentload,wouldtendtoincreasereactorpower.Forlargerbreaks,areactortripwouldoccur.Continuedsecondarysteamblowdowncoolsthereactorcoolantcausingapositivereactivityinsertion.AnalysesdescribedinChapter14indicatethatbreakslargeenoughtoproduceareactivityinsertionsufficienttocauseareturntocriticalityalsoproduce'TheFSARanalysisassumedtheavailabilityofpumpedwaterfromoneRHRpump,oneSZpump,andonecentrifugalchargingpump.Thisisreferredtoasa'trainofpumps.Whentransitioningtocoldlegrecirculationboththecentrifugalchargingpumpsaligntoacommonsuction,makingitimpossibleforrealignmentofonlyonepump;i.e.,boththeeastandwestcentrifugalchargingpumpsmustberealignedatthesametime.ThesamesituationexistsfortheSZ'umps.'Followingalargebreaklossofcoolantaccident,theoperatorisalwaysabletotransfer'necontainmentspraypumpandoneRHRpump.TheoperatorisnotalwaysabletodemonstratethecapabilitytocompletethetransferofatleastoneSI.pumpandonecentrifugalchargingpump.5.2-13aJuly1997 sufficientdepressurizationandshrinkageoftheprimarycoolanttoinitiatesafetyinjection.ThehighpressuredeliveryofboricacidsolutionbythecentrifugalchargingpumpsfromtheRWSTthenreestablishesadequateshutdownmarginevenforthecasewherethemostreactivecontrolrodisstuckinthefullywithdrawnposition.~cornonensAcmu1atorsTheaccumulatorsarepressurevesselsfilledwithboratedwaterandpres-surizedwithnitrogengas.Duringnormalplantoperationeachaccumulatoris6.2-14July1997 isolatedfromtheReactorCoolantSystembytwocheckvalvesinseries'.ShouldtheReactorCoolantSystempressurefallbelowtheaccumulatorpressure,thecheckvalvesopenandboratedwaterisforcedintotheReactorCoolantSystem.Mechanicaloperationoftheswing-disccheckvalvesistheonlyactionrequiredtoopentheinjectionpathfromtheaccumulatorstothecoreviathecoldlegs.Theaccumulatorsarepassiveengineeredsafetyfeaturesbecausethegasforcesinjection;noexternalsourceofpowerorsignaltransmissionisneededtoobtainfast-acting,high-flowcapabilitywhentheneedarises.OneaccumulatorisattachedtoeachofthecoldlegsoftheReactorCoolantSystem.IThedesigncapacityoftheaccumulatorsisbasedontheassumptionthatthecontentsof,oneoftheaccumulatorsspills'ntothecontainmentfloorthroughtherupturedloop,andthecontentsoftheremainingaccumulatorsprovides'ufficientwatertofillthevolumeoutsideofthecorebarrelbelowthenozzles,thebottomplenum,andaportionofthecore.Theaccumulatorsarecarbonsteel,cladwithstainlesssteelanddesignedtoASMEB&PVCodeSectionIEI,ClassC.Connectionsforremotelydrainingorfillingthefluidspace,duringnormalplantoperation,areprovided.TheaccumulatordesignparametersaregiveninTable6.2-2.IThemarginbetweentheminimumoperatingpressureanddesignpressureprovidesabandofacceptableoperatingconditionswithinwhichtheaccumulatorsystemmeetsitsdesigncorecoolingobjectives,Thebandissufficientlywidetopermittheoperatortominimizethefrequencyofadjustmentsintheamountofcontainedgasorliquidtocompensateforleakage.SeeTable6.2-8.6.2-15July1997 00ectoTankTheboroninjectiontank,constructedofcarbonsteelcladwithstainlesssteel,islocatedintheauxiliarybuildingandcontainsapproximately2X(byweight)boricacidsolution.ThetankdesignparametersaregiveninTable6.2-3.Theoriginallysuppliedtankheaters,pipeheattracingandrecirculationlineshavebeendisconnected.Thesesupportsystemstothetankarenolongerrequiredasahighconcentrationofboricacidsolutionisnolongermaintainedintheboroninjectiontank.WatetoaeaTheCookNuclearPlantisequippedwithtwo(2)refuelingwaterstoragetanks,oneforeachunit.IIThefunctionoftherefuelingwaterstoragetankis:1.Toprovidesufficientvolumeofboratedwatertofilltherefuelingcavityforrefuelingoperations.2.Toprovidesufficientvolumeofboratedwaterforemergency(post-accident)operations.ThisincludestheabilitytomaintainthecoresubcriticalduringthelongtermcoolingphaseofaLOCA,evenintheunlikelyeventthatthecontrolrodsdonotdropintothe'ore,3.~ToensurethattheECCSpumpsareprovidedwithadequateNPSH.6.2-16July1995 Thetankismaintainedwithaminimumof350,000gallonsofboratedwaterabovethebottomofthedischargepipe.Thisensuresthatanadequateamountofwaterwillbedeliveredtothesumpbeforetheoperatorsbeginswitchingfromtheinjectionmodetothesumprecirculationmodeofoperation.Theswitchoverisinitiateduponreceiptofalowlevelalarmwhichindicatesthatthetanklevelhasdraineddowntoalevelwhichis(nominal)9feet-9inchesabovethebottomofthedischargepipe.Ahighlevel"alarmisprovidedtoalerttheoperatorofpotentialoverflowconditions.Aminimumlevelalarmisprovidedtoassurethat350,000gallonsofusablewaterareintheRWST.TheUnitNo.1refuelingwaterstoragetankisheatedbymeansoftwo100%capacityheattracingcircuitswithseparatethermostaticcontrols.Thetankisinsulatedwith2inchthickfiberglassinsulation.Atemperaturesensorattachedtotheoutsideofthetankwillactuatealowtemperaturealarminthecontrolroomintheeventthatthetanktemperaturefallsbelowthedesignbasistemperaturerequirement.Thesetpointofthealarmistypically0setapproximately5Fabovetheminimumtemperature.TheUnitNo.2refuelingwaterstoragetankisheatedbymeansofa15gpmpumpwhichrecirculatestankwaterthroughtwoelectricheaters.TheRWSTheatingpumpoperatescontinuously,whenrequired,withtheheatersenergizingautomaticallyonalowRWSTtemperaturesignal.ThesystemisseismiccategoryIwithrespecttoprotectionofthetankboundaryandisdesignedtomaintainRWSTtemperatureatdesignbasisconditions.TheUnit2RWSTisinsulatedwith2inchthickfiberglassinsulation,andhasatemperaturesensorandalarmsimilartothatoftheUnit1tank.Eachtankisequippedwithan8inchventanda10-inchoverflowlineanda3-inchreturnline.Theoverflowlinesterminateinthepipetunnel.Shouldthe8-inchventbecomepluggedthe10inchoverflowlinewouldmaintainsufficientventingareatopreventanyadverseeffectonthesafetyfunctionofthetank.The3-inchreturnlineisroutedinternallyinthetanktoenhancemixingofthetankcontents.6.2-.17July1997 MissileprotectionisnotprovidedfortheRWSTsinceintheeventoftornadoorturbine-missiledamagetoit,theunitcanbesafelyshut-downwithouttheRNSTandcanbemaintainedshut-down..6.2-17aJuly1997 $>~umsDesignparametersfortheemergencycorecoolingsystempumpsareincludedinTable6.2-5.Thetwocentrifugalchargingpumpsarehorizontal,electricmotordrivenmultistagepumps.Allpartsofthepumpincontactwiththepumpedfluidarestainlesssteelorequivalentcorrosionresistantmaterial.Aminimumflowbypasslineisprovidedoneachpumpdischargetorecirculateflowtothevolumecontroltankorthepumpsuctionmanifold.Thisbypassisautomaticallyisolateduponinitiationofsafetyinjection.=-Theminimum'low,motor-operatedvalvereopensifthereactorcoolantsystempressureincreasesabove2000psigtoprotectthepumpsfromdeadheading.Thetwosafetyinjectionpumpsarehorizontal,electric,motor-driven,multistagepumps.Allpartsofthepump,incontactwiththepumpedfluidarestainlesssteelorequivalentcorrosion-resistantmaterial.Aminimumflowbypasslineisprovidedoneachpumpdischargetorecirculateflowtotherefuelingwaterstoragetankintheeventthatthereactorcoolantsystempressureisabovetheshutoffheadofthepumps.Thetworesidualheatremovalpumpsarevertical,electric,motor-driven,single-stagepumps.Allpartsofthepumpincontactwiththe.pumpedfluidarestainlesssteelorofequivalentcorrosion;resistantmaterial.Pumpminimumflowbypassconnectionislocateddownstreamoftheresidualheatexchangerandthebypassflowreturnstothepumpsuction.Thepressurecontainingpartsofthepumpsarestainlesssteelcastings'conformingtoASTMA-351GradeCF8orCF8M,stainlesssteelcastingsprocuredperASTMA-743GradeCA-15orA-487GradeCA6NMorcarbonsteelforgingstoASTMA-266Class1andASTMA<<181Grade1cladwithausteniticsteelorASMESA-182GradeF304.PartsfabricatedofstainlessplateareconstructedtoASTMA-240Type304or316.TheboltingmaterialconformstoASTMA-193orASTMA-453Grade660.6.2-18July,1992 0 Materialssuchasweld-depositedStelliteorColomonymaybeusedatpointsofcloserunningclearancesinthepumpstopreventgallingandtoensurelongtermperformanceabilityinhighvelocityareassubjecttoerosion.ZnothercaseswearpointsareofASTMA-420Gradestain-lesssteel,heattreatedtogivetherequiredanti-gallingproperties.PressurecontainingpartsofthepumpswerechemicallyandphysicallyanalyzedandtheresultsarecheckedtoassureconformancewiththeapplicableASTMspecification.Inaddition,pressurecontainingpartsofthepumpareliquidpenetrantinspectedinaccordancewithAppendixVZZI'ofSectionVIIIoftheASMEBoilerandPressureVesselCode.TheacceptancestandardfortheliquidpenetranttestistheASTMPumpaValveCode.Pumpdesignwasreviewedwithspecialattentiontothereliabilityandmaintenanceaspectsoftheworkingcomponents.Specificareasincludeevaluationoftheshaftsealandbearingdesigntodeterminethattheyareadequateforthespecifiedservice.4Whereweldingofpressurecontainingpartswasnecessary,aweldingpro-cedureincludingjointdetailwassubmittedforreviewandapprovalbyWestinghouse.Thisprocedureincludesevidenceofqualificationneces-saryforcompliancewithSectionZXoftheASMEBoilerandPressureVesselCodeWeldingQualifications.This'requirementalsoappliedtoanyrepairweldingperformedonpressurecontainingparts.Thepressure-containingpartsofthepumpwereassembledandhydro-staticallytestedto1.5timesthedesignpressureforthirtyminutes.EachpumpwasgivenacompleteshopperformancetestinaccordancewithHydraulicInstituteStandards.Thepumpswererunatdesignflowandhead,shut-offheadandthreeadditionalpointstoverifyperformancecharacteristics.WhereNPSHwascritical,thisvaluewasestablishedatdesignflowbymeansofadjustingsuctionpressure.46.2-19July,1982 HeatExchanrsThetworesidualheatexchangersoftheResidualHeatRemovalSystemcoolthewaterfromtherecirculationsump.TheseheatexchangersaresizedforthecooldownoftheReactorCoolantSystem.Table9.3-2givesthedesignparametersoftheheatexchangers.TheresidualheatexchangersaredesignedtotheASMEBoilerandPressureVesselCode,SectionsIII6VIIIandconformtotherequirementsofTEMA(TubularExchangerManufacturersAssociation)forClassRheatexchangers.Additionaldesignandinspectionprovisionsinclude:confined-typegaskets,generalconstructionandmountingbracketssuitablerortheplantseismicdesignrequirements,tubesandtubesheetcapableofwithstandingfullshellsidepressureandtemperaturewithatmosphericpressureonthetubeside,ultrasonicinspectioninaccordancewithParagraphN-324.3ofSectionIIIoftheASMEBoilerandPressureVesselCodeofalltubesbeforebending,penetrantinspectioninaccordancewithParagraphN-627ofSectionIIIoftheASMECodeofallweldsandallhotorcoldformedparts,ahydrostatictestdurationofnotlessthanthirtyminutes,thewitnessingofhydroandpenetranttestsbyaqualifiedinspector,athoroughfinalinspectionoftheunitforworkmanshipandtheabsenceofanygougemarksorotherscarsthatcould'actasstressconcentrationpoints,areviewoftheradiographsandofthecertifiedchemicalandphysicaltestreportsforallmaterialsusedintheunit.TheresidualheatexchangersareconventionalverticalshellandU-tubetypeunits(tubesheetdown).Thetubesaresealweldedtothetubesheet.TheIshellconnectionsareflangedtofacilitateshellremovalforinspectionandcleaningofthetubebundle.EachunithasaSA-515GR70carbonsteelshell,SA-213TP-304stainlesssteeltubes,SA-240Type304stainlesssteelchannel,SA-240Type304stainlesssteelchannelcoverandatubesheetofforgedsteelSA-105GR.IIwith1/4inchminimumTP-304weldoverlay.6.2-20July,1997 WhentheReactorCoolantSystemisbeingpressurizedduringthenormalplantheatupoperation,thecheckvalvesaretestedforleakageassoonasthereisabout100psidiffex'entialacrossthevalve.Thistestconfirmstheseatingofthediscandprovidesaquantitativeleakageratemeasurementwhichcanbecomparedwiththeresultsofearliertests.Whenthistestiscompletedthetestxscompeted,dischargelinetest'alvesareopenedandtheReactorCoolantSystempressureincreasecontinued.Thereshouldbenoincreaseinleakagefromthispointonsinceincreasingreactorcoolantpressureincreasestheseatingforceanddecreasestheprobabilityofleakage.TheaccumulatorscanacceptsomeleakagebackfromtheReactorCoolantSystemwithoutcompromisingtheiravailability.Table6.2-8indicatesthefrequencythattheaccumulatorlevelwouldhavetobex'eadjustedasafunctionofleakagerate.Tables6.2-6and6.2-7summarizethesinglefailureanalysesofrecirculationphase.Table6.2-9summarizestheestimatedleakageduringrecirculation.*EmerencFlowtotheCoreSpecialattentionisgiventofactoxsthatcouldadverselyaffecttheaccumulatorandsafetyinjectionflowtothecore.ThesefactorsareconsideredinChapter14.6.2'.4SAFETYLIMITSANDCONDITIONSimitCodi'tio08&t0ThelimitingconditionsforoperationaredetailedintheTechnicalSpecxfx.catxons.TheseconditionsappLytobothactivecomponentsandtanksoftheEmergencyCoreCoolingSystem.*Seefootnote,Table6.2-96.2-35\July1996 LimiinConditionsforMintnnTheTechnicalSpecificationsalsoest'ablishlimitingconditionsgoverningthemaintenanceofEmergencyCoreCoolingSystemcomponentsduringplantoperation.Maintenanceonacomponentispermittedprovidingtheredundantcomponentisoperableandcapableofbeingpoweredfromanemergencypowersource.Thedesignphilosophywithrespecttoactivecomponentsinthesafetyinjectionandresidualheatremovalsystemsistoprovideduplicateequipmentsothatmaintenanceispossibleduringoperationwithoutimpairmentofthesafetyfunctionofthesystems.6.2.5TESTSANDINSPECTIONSAllactiveandpassivecomponentsoftheEmergencyCore.CoolingSystemareinspectedperiodicallytodemonstratesystemreadiness.Thepressurecontainingsystemsareinspectedforleaksfrompumpseals,valvepacking,andflangedjointsduringsystemtesting.Inaddition,totheextentpractical,thecriticalpartsoftheinjectionnozzles,pipes,valvesandsafetyinjectionpumpsareinspectedforerosion,corrosion,andvibrationwearevidence.ComonentTesinPre-operationalperformancetestsofthecomponentswereperformedinthemanufacturer'sshop.Aninitialsystemflowtestdemonstratesproperfunctioningofthesystem.Thereafter,testsareperformedinaccordancewiththeprovisionsofASMEB&PVCodeSectionXIand,beginningwiththe3rd10yearintervalISIprogram,pumpandvalvetestsareinaccordancewithASME0&MStandardsandNUREG-1482todemonstratethatthecomponentsarefunctioningproperly.6.2-36July,1997 SstemTestinTestingisconductedduringplantshutdowntodemonstrateproperautomaticN,operationoftheemergencycorecoolingsystem.Atestsignalisappliedtoinitiateautomaticactionandverificationmadethatthesafetyinjectionpumpsattainrequireddischargeheads.Thetestdemonstratestheoperationofthevalves,pumpcircuitbreakers,andautomaticcircuitry.Theperiodictestingofpumpsintheemergencycorecoolingandcontainmentspraysystemsrequiresaflowofwaterfromtherefuelingwaterstoragetank.Demonstrationofproperoperationofthesepumpswillalsodemonstratetheoperabilityofthelinefromtherefuelingwaterstoragetank.Testingproceduresareemployedtoassurethatthemotoroperatedisolationvalvesfunctionnormally.Theaccumulatorpressureandlevelarecontinuouslymonitoredduringplantoperation.Theaccumulators,andtheirinjectionpipinguptotheaccumulatorisolationvalvearemaintai.nedfullofboratedwaterwhiletheplantisinoperation.Theboronconcentrationischeckedperiodicallybysampling.Theaccumulatorsandinjectionlinesarerefilledwithboratedwaterasrequiredbyusingthesafetyinjectionpumps.Asmalltestlineisprovidedforthispurposeineachinjectionheader.Themotor-operatedvalvesintherecirculationsuctionlinesfromthecontainment.recirculationsumptotheRHRpumpsarenormallyclosed.AtorIbetweeneachmajorrefuelingshutdown,the14"lockedopenhandvalve,.tothe.residualheat<removalpumpsuctionwillbeclosed,thelinedrainedandthesumpvalveexercised.5.2-37July,1997 Flowineachofthemainsafetyinjectionlinesandinthemainflowlinefortheresidualheatremovalpumpsismonitoredbyflowindicatorsonthemaincontrolboard.Pressureinstrumentationisalsoprovidedforthemainflowpathsofthesafetyinjectionandresidua'.heatremovalpumps.0erationalenTestinAfterhotfunctionaltestingandpriortoinitialfuelloading,theEmergencyCoreCoolingSystemplusaportionoftheContainmentSpraySystemwereoperationallytested.Thesetestsincludeindividualpumpfullflowtests,accumulatoroperationandcompletesystemoperationalflowtests,with'hereactorheadremoved.Haterwassuppliedfromtherefuelingwaterstoragetank.Separatefullflowtestswereperformedforaminimumofonehourtoassurethatallsafetyinjection,residualheatremovalandcontainmentspraypumpsarecapableofsustainedoperation.Thecontainmentspraypumpdischargeflowwaspipeddirectlytothecontainmentreciiculationsumpviatemporarypiping.Waterwasreturnedtotherefuelingwaterstoragetanksbytheresidualheatremovalpumps.Theaccumulatorsweretestedbychargingthetanksto100psigandnormalwaterlevelwiththeisolationvalvesclosed.Withthereactorheadremoved,theisolationvalveswereopenedandproperperformanceverified.Acompleteoperationalflowtestwasperformedincludingthesimultaneousfullflowoperationofallsafetyinjectionpumps,containmentspraypumps,residualheatremovalpumpsandchargingpumps.ThepurposeofthistestwastodemonstratetheproperfunctioningoftheinstrumentationandactuationJcircuitsandtoevaluatethedynamicsofplacingthesysteminoperation.5.2-38July,1997 Toinitiatethetest,theEmergencyCoreCoolingblockswitchwasmovedtotheunblockpositiontherebyallowingtheautomaticactuationoftheEmergencycorecoolingsystemrelaysfromthepressurizerlowpressuresignals.Asimulatedhighcontainment,pressuresignalinitiatedoperationoftheContainmentSpraySystem.Specialtestinstrumentationanddataobtainedprovidedinformationtoconfirmvalveoperatingtimes,pumpmotorstartingtimes,anddeliveryratesofinjectionwatertothereactorcoolantsystem.REFERENE1.AppendixQ,Amendment78toUnit2FSAR,Question212.36,October,1978.6.2-39July,1997
TABLE6.2-1AFETYINJECTIONYSTEMCDEREUZREMENTS*~Q~m~nen~CdeRefuelingWaterStorageTankNotapplicableResidualHeatExchangerTubeSideShellSideASMEB&PVCodeSectionIIIClassCASMEB&PVCodeSectionVIIIAccumulatorsASMEB&PVCodeSectionIII'ClassCValvesANSIB16.5,MSS-SP-66,andASMEB&PVCodeSectionIIZ,1968-Edition>>PipingUSASB31.1,1967EditionBoronInjectionTankASMEB&PVCodeSectionIZIClassC*RepairsandreplacementsareconductedinaccordancewithASMESectionXI""Subsequentprocurementofequipmentasreplacementisbeingdoneinaccordancewithcodesandspecificationsequivalenttotheorigianlcodesandspecfications,updatedasappropriate.6.2-40July1997 TABLE6.2-2CCRQJLATOR'ESIGNPARAMETERSNumberTypeDesignpressure,psigDesigntemperatux'e,FoOperatingtemperature,FNormalpressure,psigMinimumpressure,psigTotalvolume,ft3Maximumwatervolumeatoperatingconditions,ft3Minimumwatervolumeatoperatingconditions,ft3Boronconcentration(asboricacid),ppmCode4perunitStainlesssteelclad/carbonsteel700300120621.5585.01350971921I2400to2600ASMEB6ZVCodeSectionIIIClassCt46.2-41July1996 TABLE623000ESGPTERSNumberTotalVolume,gal(alsouseablevolume)Boronconcentration,wt\(approximately)Designpressure,psigoDesigntemperature,POperatingpressure,psig(ZngectionMode)Operatingpressure,psig(Standby)0Operatingtemperature,PMaterialCode1perunit90027353002340atmospheric.ambientSSCladCarbonSteelASMEB&PVCodeSectionZZZClassC6.2-42July,1993 TABLE6.2-4REFELINWATERSTORAGETANKDESINPARAMETERSNumberTankCapacity,gal.RequiredCapacity,gal.Designpressure,psig0Designtemperature,FNormalpressure,psig0Liquidtemperature,FInsidediameter,ft(approx.)Straightsideheight,ftMaterial1perunit420,000350,000Staticheadandsloshing-30to100Atmospheric70-1004831StainlessSteel6.2-43July1997 6.3ONTAINMENTPRAYSYSTEMS6.3.1DESIGNBASESonainmenHeaRemovlSsemsCriterion:Whereactive'eatremoval'systemsareneededunderaccidentconditionstopreventexceedingcontainmentpressure,atleasttwosystems,eachwithfullcapacity,shallbepro-vided.AdequateheatremovalcapabilityfortheIceCondenserContainmentisprovidedbytwoseparateContainmentSpraySystemsandtwo(redundant)portionsoftheResidualHeatRemovalSystem.'hesequentialmodesofoperationaregiveninSection6.3.2.ITheprimarypurposeoftheContainmentSpraySystemistospraycoolwaterintothecontainmentatmosphereintheeventofaloss-of-coolantaccidenttopreventcontainmentpressurefromexceedingthedesignvalue.ThedesignoftheContainmentSpraySystemisbasedontheconservativeassumptionthatthecoreresidualheatisreleasedtothecontainmentassteam.TheheatremovalcapabilityofeachContainmentSpraySystemissizedtoremovethereactorresidualheatduringcooldownfromoperationat3391MWtafteraloss-of-coolantaccident.Theresidualheat(duringicemelt)plusanundefined6'nergymarginof50x10BTUisabsorbedbytheoperationoftheContainmentSpraySystemandtheIceCondenser,respectively.ThesizingoftheContainmentSpraySystemsalsoprovidesforabsorptionofsteamleakingthroughtheoperatingdeckatthemaximumlongtermdeckdifferentialpressure(1/2to1lbpersquarefoot,thepressurerequiredtoopentheIceCondenserdoors).RefertoChapter14.3forContainmentIntegrityAnalysisincludingContainmnetSpraySystemModelling.ThesecondarypurposeoftheContainmentSpraySystemistheremovaloffissionproducts(radioactiveiodineisotopes>fromthecontainmentatmosphere.TheContainmentSpraySystemisdesignedtodeliver6.3-1July,1997 sufficientsodiumhydroxidesolutionwhich,whenmixedwithwaterfromtheRefuelingWaterStorageTankwhichcontainsapproximately1.5Xbyweightboricacid(2000ppmBoron),reactorcoolantsystemwaterandthemeltedice,givesafinalspray'waterpHofapproximately9.3afterthesprayadditive(NaOH)tankisemptied.TheperformanceoftheContainmentSpraySystemforiodineremovalwithasingleContainmentSprayPumpoperatingadequatelyfulfillstherequirementof10C"R100asdescribedinChapter14.sectonooaeessue-educnsteCriterion:Designprovisionsshallbemade,totheextentpractical,tofacilitatetheperiodicphysicalinspectionofallimportantcomponentsofthecontainmentpressure-reducingsystemssuchaspumps,valves,spraynozzlesandsumps.Wherepracticable,activeandpassivecomponentsoftheContainmentSpraySystemsareinspectedperiodicallytodemonstratesystemreadiness.TheIpressurecontainingcomponentsareinspectedtodetectleaksfrompumpseals,valvepacking,flangedJointsandsafetyvalves.DuringoperationaltestingoftheContainmentSprayPumps,theportionsofthesystemcontainingpumppressureareinspectedtodetectleaks.DesignprovisionsforinspectionofportionsoftheEmergencyCoreCoolingSystemwhichfunctionsaspartoftheContainmentSpraySystemaredescribedinSection6.2.5.Criterion:hcapabilityshallbeprovided,totheextentpractical,toperiodicallytestthedeliverycapabilityoftheContainmentSpraySystemsasclosetothespraynozzlesaspossible.'TheContainmentSprayPumptestlinesareprovidedtoverifyflowfromtheRWSTthroughthepumpdischarge.WaterispumpedthroughtheContainmentSpraypumpsandreturnedtotheRefuelingWaterStorageTankfromapointupstreamofthetwoparallelmotoroperateddischargevalvesviathe6.3-2July,1994 SprayPumpTestLinewhichincludesaflowmeter.Themotor-operatedvalvesintheRHRspraylinesdownstreamoftheRHRheatexchangersremainclosedduringtestingofthatportionoftheRHRsystemwhichisapartofthespraysystem.TestingofthisflowpathisaccomplishedbyarecirculationflowaroundtheResidualHeatRemovalHeatExchanger.Testconnectionsareprovideddownstreamoftheblockvalvesforchecking(withair)forunobstructedflowthroughthespraynozzles.TesinofntinmnPressur-RdcinsmsCmnentsCriterion:Thecontainmentpressure-reducingsystemsshallbedesigned,totheextentpractical,sothatactivecomponentscanbetestedperiodicallyforoperabilityandrequiredfunctionalperformance.IConsiderationwasgiveninthesystemdesignforprovisionstopermitperiodictestingofactivecomponents.'PeriodictestsareperformedtoverifypropercomponentfunctioninginaccordancewiththerequirementsofthhapplicableeditionoftheASMEOMStandards.TestingofthosecomponentsofEmergencyCoreCoolingSystemwhichareusedforcontainmentspraypurposesis"describedinSection6.2.5.Tinof0rainalenofCntinmenPrsr-RuinSsmsCriterion:Capabilityshallbeprovidedtoinitiallytestthecontainmentpressure-reducingsystemsunderconditionsascloseaspracticaltothedesignandfulloperationalsequencethatwouldbringsuchsystemsintoaction,includingtransfertoalternatepowersources.ThedesignoftheContainmentSpraySystemprovides,tothefullestlppracticalextent,thecapabilitytoperformaninitialtestofthefulloperationalsequence.todemonstratethestateofreadinessofthose6.3-3"Ju)y,1997 sectionsoftnesystemwhichdonotfunctionduringnormalplantoperation.Thistestingincludedafull-flowtestthroughspecialtestonnectionswhich,fortestpurposes,replacedthecheckvalvesbeforethenozzles.Transfertoemergencypowersourcewasalsodemonstratedduringthistest.Airflowteststhrough.eachofthenozzleswasusedforverificationofunobstructedflow.Thetransfertoemergencypowersourcetestandtheairflowtestthroughthenozzlesareperformedperiodically.6+3+2SYSTEMDESIGNSstemDescritionAdequatecontainmentpressurereductionandiodineremovalareprovidedbytheContainmentSpraySystemswhosecomponentsope'rateinsequentialmodesasfollows:a)'A'ode.SprayingaportionofthecontentsoftheRefuelingWaterStorageTankintothecontainmentatmosphereusingtheConta'nmentSprayPumps..Duringthismode,thecontentsofthesprayadditivetankaremixedintothespraysystemtoprovideadecpxatciodineremoval.b)'B'ode.RecirculationofwaterfromthecontainmentsumpbytheContainmentSprayPumpsthroughContainmentSprayHeatExchangersandbacktothccontainmentaftertheRefuelingWaterStorageTankhasbeenisolated,butwhilethereisstilliceintheIceCondenser.Thissprayreducesthecontainmcntatmospheretemperatureandprolongstheeffectivelifeoftheicc.c)Duringtheentire'A'odeandcontinuingintothe'B'ode,NaOHismeteredintothespraysolutionbyaneductorsystem,usingtheContainmentSprayPumpdischargeformotivewater.603-4July,1982 a.Lowpressurizerpressuresignalin2/3channels.MaybemanuallyblockedbelowP-11and'sautomaticallyunblockedaboveP-ll.b.Highcontainmentpressurein2/3channels.c.Steamlinepressureinonesteamline(2/3channels)lowincomparisontotheotherthreesteamlines(highsteamlinepressuredifferential).d.Steamlinepressurelowintwooutoffoursteamlines.e.Manualactuationfromonepanelmountedswitchpertrain.Thesetrips'relistedinTable7.2-1.TurinGnratrTriAturbinetripissensedbytwooutofthreesignalsfromlowemergencytripfluidpressure.Aredundant4/4stopvalveclosedsignalwillalsoindicateaturbinetripcondition.AturbinetripcausesadirectreactortripaboveP-7andresultsinacontrolledshorttermreleaseofsteamtothecondenserwhichremovessensibleheatfromthereactorcoolantsystemandtherebyavoidssteamgenerator.safetyvalveactuation.Theturbinecontrolsystemautomaticallytripstheturbinegeneratorunderanyofthefollowingconditions:1.Mechanicaloverspeedtrip7.2-37July,1997 2.Backupoverspeedtrip(electricalonUnit1,mechanicalonUnit2)3.Lowcondenservacuum4.Thrustbearingfailure5.Reactortrip6.Excessiveshaftvibration7.Moistureseparatordrainsystemlevelhigh8.Lossofstatorcooling(lowflow,lowpressure,orhightemp.)9.Safetyin]ection10.High-highwaterlevelinsteamgenerator(1/4loops)ll.Lowbearingoilpressure12.Manualoperationofanyofseveraltriplevers13.Lossofbothfeedpumpturbines~14.Lowshaftdrivenoilpumppressure(Unit1only)15.EHCtripsystempressurelow(Unit1only)I16.EHClossofspeedfeedback(Unit1only)17.LowEHCpressure(Unit1on1y)18.InitiationofAMSAC(ATWSMitigationSystemActuationCircuitry):lessthan25Xflowto3/4loopsandabove40Xreactorpower19.Unitoroveralldifferential20.Highexhausthoodtemperatureatnoload(Unit1only)wFeedwaterowThistripprotectsthereactorfromasuddenlossofitsheatsink.Thetripisactuatedbyasteam/feedwaterflowmismatch(1/2)incoincidencewithlowwaterlevel(1/2)inanysteamgenerator.w-wSteamGeeatoWateveThepurposeofthistripistopreventalossofthereactor'sheatsinkinthecaseofasustainedsteam/feedwaterflowmismatchofsufficientmagnitudetocausea'owfeedwaterflowreactortrip.Thetripisactuatedontwooutoftheth."ee(2/3)low-lowwaterlevelsignalsinanysteamgenerator.7.2-3&July1995 TABLE7.2-2(cont'd.)SHEET4OF6DesinationDerivaion,FunctionP-122/4TchannelsbelowsetpointavgPermitsmanualblockofsafetyinjectiononlowsteamlinepressure.Permitsorcausessteamlineisolationonhighsteamlineflow.Blockscondensersteamdump.P-12Reset3/4TabovesetpointavgPreventsordefeatsmanualblockofsafetyinjectiononlowsteamlinepressure.PreventsordefeatssteamIlineisolationonhigbsteamflow.Permitscondensersteamdump.I7.2-62July1997 SHEET5OFTABLE7.2-2(cont'd.)P-131/2turbinefirststagepressurechannelabovesetpoint~FunctioInputstoP-7.P-13Reset2/2turbinefirststagepressurebelowsetpointInputstoP-7.P-142/3hi-histeamgenerat'orlevel(anysteamgenerator)Permitstheinitiationof:-Feedwaterisolation-Mainfeedwaterpumptrip.-Mainturbinetrip.P-14Reset2/3hi-histeamgeneratorlevel(anysteamgenerator)Preventsordefeatsinitiationof:-Feedwaterisolation.-Mainfeedwaterpumptrip.-Minturbinetrip.C-11/2Intermediaterangeneutron'luxabovesetpointBlocksautomaticandmanualcontrolrodwithdrawal.MaybemanuallyblockedaboveP-10.AutomaticallyunblockedbelowP-10.C-21/4PowerrangeneutronfluxabovesetpointBlocksautomaticandmanualcontrolrodwithdrawal.C-32/4OvertemperatureDeltaTabovesetpointBlocksautomaticandmanualcontrolrodwithdrawal.Actuatesturbinerunbackvialoadreference.7.2-63July1991 TABLE7.2-5(cont'd.)eet28293031FunctonVolumeControlTankLevelControlBoricAcidBlendControlRodInsertionLimitbT/AuctioneeredhTDeviationAlarmsControlControlControlControl32TAVG./AuctioneeredTAVG.Dev'ationAlarmsControl333435SteamGeneratorLe~elControlSteamGeneratorLevel(VideRange)hT&hT-S.P.RecordingControlControlControl7.2-68July1991 TABLE7.2-6REACTORTRIPSYSTEMINSTRUMENTATIONRESPONSETIMESFUNTIONALUNITREPONSETIME1.PowerRange,NeutronFlux(HighandLowsetpoint)2.OvertemperaturedeltaTLessthanseconds*Lessthanseconds"orequalto0.5orequalto6.03.OverpowerdeltaTLessthanorequalto6.0seconds*4.PressurizerPressure-low5.PressurizerPressure-High6.PressurizerMaterLevel-HighLessthanorequalto2.0secondsLessthanorequalto2.0secondsLessthanorequalto2.0seconds7.LossofFlow-SingleLoop(AboveP-8)8~LossofFlow-TwoLoops~(AboveP-7andbelowP-8)9.SteamGeneratorMaterLevelLow-LowLessthanorequalto1.0secondsLessthanorequalto1.0secondsLessthanorequalto2.0seconds10.Undervoltage-ReactorCoolantPumps11.Underfrequency-ReactorCoolantPumpsLessthanorequalto1.5secondsLessthanorequalto0.6seconds*Neutrondetectorsareexemptfromresponsetimetesting.Responsetimeoftheneutronfluxsignalportionofthechannelshallbemeasuredfromdetectoroutputorinputoffirstelectroniccomponentinthechannel.7.2-69July1997 TABLE7'.2-7ENGINEEREDSAFETYFEATURESRESPONSETIMESINITIATINGSIGNALANDFUNCTIONRESPONETIMEINSECONDSntainmentPressure-Hiha.SafetyInjection(ECCS)b.ReactorTrip(fromSI)c.EssentialServiceWaterSystemPsurizerPresr-Lowa.SafetyInjection(ECCS)b.ReactorTrip(fromSI)c.'eedwaterIsolationd.EssentialServiceWaterSearnFlwinTwSteamLinsHihinintwithamLinePressurLowa.SafetyInjection(ECCS)b.ReactorTrip(fromSI)c.FeedwaterIsolationd.SteamLineIsolationnainmenPrssure-Hih-HiLessthanorequalto270'270'essthanorequalto3.0Lessthanorequalto13.0'/48.02Lessthanorequalto27Pl~i/2702,3Lessthanorequalto3.0Lessthanorequalto8.0Lessthanorequalto13.0'/48.0'essthanorequalto27.0~/370~Lessthanorequalto3.0Lessthanorequalto8.0Lessthanorequalto11.0a.Containment.Sprayb.SteamLineIsolationc.ContainmentAirRecirculationFanLessthanorequalto45.0Lessthanorequalto10.0Lessthanorequalto600.0SmGneirWrLevela.TurbineTripb.FeedwaterIsolationLessthanorequalto2.5Lessthanorequalto11.07..2-70July1997 TABLE7.2-7(cont'd)ENGINEEREDSAFETYFEATURESRESPONSETIMESINITIATINGIGNALANDFTIONRESPNETIMEINSECONDS6.SamnrorWaerLvel~Lw-Lowa.MotorDrivenAuxiliaryFeedwaterPumpsb.TurbineDrivenAuxiliaryFeedwaterPumps7.4160voltEmerenBusLossf~VI:acCa.a.MotorDrivenAuxiliaryFeedwaterPumps8.LofMainFedwrPma.MotorDrivenAuxiliaryFeedwaterPumps9..RcorCoolanBusUndervoltaeLessthanorequalto60.0Lessthanorequalto60.0Lessthanorequalto60.0Lessthanorequalto60.0Ia.TurbineDrivenAuxiliaryFeedwaterPumpsLessthanorequalto60.0Notes:DEFINITION:TheENGINEEREDSAFETYFEATURERESPONSETIME(ESF)shallbethattimeintervalfromwhenthemonitoredparameterexceedsitsESFactuationsetpointatthechannelsensoruntiltheESFequipment-iscapableofperformingitssafetyfunction(i.e.,thevalvestraveltotheirrequiredpositions,pumpdischargepressuresreachtheirrequiredvalue,etc.).Timesshallincludedieselgeneratorstartingandsequenceloadingdelayswhereapplicable.1.DieselgeneratorstartingandsequenceloadingdelaysNOTincluded.Offsitepoweravailable.'2.Dieselgeneratorstartingandsequenceloadingdelaysincluded.3.SequentialtransferofchargingpumpsuctionfromtheVCTtotheRWST(RWSTvalvesopen,thenVCTvalvesclose)isNOTincluded.4.SequentialtransferofchargingpumpsuctionfromtheVCTtotheRWST(RWST,.valvesopen,thenVCTvalvesclose)isincluded.7.2-71July1997 7.3CONTROLSYSTEMS7.3.1DESIGNBASISThereactorautomaticcontrolsystemisdesignedtoreducenuclearplanttransientsfordesignloadperturbations,suchthatreactortripswillnotoccurbecauseofthem.OverallreactivitycontrolisachievedbythecombineduseofchemicalshimandRodClusterControlAssemblies(RCCA).Long-termregulationofcorereactivityisaccomplishedbyadjustingtheconcentrationofboricacidinthereactorcoolant.Short-powerchangesisaccomplishedbymovingRCCA's.ThefunctionofthereactorcontrolsystemistoprovideautomaticcontroloftheRCCAssembliesduringpoweroperationofthereactor.Thesystemusesinputsignalsincludingneutronflux,coolanttemper-ature,andturbineload.TheChemicalandVolumeControlSystem(Chapter9)supplementsthereactorcontrolsystembytheadditionandremovalofvaryingamountsofboricacidsolution.Whenthereactoriscritical,thebestindicationofthereactivitystatusofthecoreisthepositionofthecontrolrodgroupsinrelationtopowerandaveragecoolanttemperature.ThereisadirectrelationshipbetweencontrolrodpositionandpoweranditisthisrelationshipwhichestablishesthelowerinsertionlimitcalculatedbytherodinsertionlimitmonitorwhichisdescribedinSub-Chapter7.2..Anyunexpecte'dchangeinthepositionofthecontrolgroupunderautomaticcontrol,orachangeincoolanttemperatureundermanualcontrolprovidesadirectandimmediateindicationofachangein7.3-1July,1987 thereactivitystatusoftodeterminethecoolantthecore.Inaddition,periodicsamplesaretakenboronconcentrationwhosevariationduringcorelifeprovidesa'furthercheckonthereactivitystatusofthereactorincludingcoredepletion.Thereactorcontrolsystemisdesignedtoenablethereactortofollowloadchangesautomaticallywhentheoutputisaboveapproximately15percentofnominalpower.Controlrodpositioningmaybeperformedautomatically,whenplantoutputisabovethisvalue,andmanuallyatanytime.Theoperatorisabletoselectanysinglebankofrodsformanualoperation.Thisisaccomplishedwithamultipositionswitchsothathemaynotselectmore.thanonebank.Hemayalsoselectautomaticreactorcontrol,inwhichcasethecontrolbankscanbemovedonlyintheirnormalsequencewithprogramoverlap.Asonebankreaches128steps,thenextbankbeginstowithdraw.Thesystemenablesthenuclearunittoacceptasteploadincreaseof10percentandarampincreaseof5percentperminutewithintheloadrangeof15percentto100percentwithoutreactortripsubjecttopossiblexenonlimitations.Similarstepandramploadreductionsarepossiblewithintherangeof100percentto15percentofnominalpowerexceptforbetween40%to25%whereAMSAClimitsthedecreasetoapproximately2%/min.Thecontrolsystemiscapableofrestoringcoolantaveragetemperaturetowithintheprogrammedtemperaturedeadband,followingascheduledorunexpectedchangeinload.Thepressurizerwaterlevelisprogrammedasafunctionofauctioneeredcoolantaveragetemperature.Thisminimizesthedemandsonthechemicalandvolumecontrolandwastedisposalsystemsresultingfromcoolantdensitychangesduringloadingandunloading.7.3-2July1997 heaters,whichareusedtocontrolsmallpressurevariationsduetoheatlosses,includingthoseduetoasmallcontinuoussprayinthepressurizer,andbackupheaterswhichareturnedonwhenthepressurizerpressurecontrollersignalisbelowagivenvalue.Aspraynozzleislocatedintheupperportion'fthepressurizercavity.Sprayisinitiatedwhenthepressurecontrollersignalisaboveagivensetpoint,andsprayrateincreasesproportionallywithincreasingpressure.SteamiscondensedbythespraywhichwillreturnthepressurizerpressuretoitsProgramValue.Asmallcontinuoussprayisnormallymaintainedtoreducethermalstressesandthermalshockandtohelpmaintainuniformwaterchemistryandtemperatureinthepressurizer.Threepressurizerpowerreliefvalveslimitsystempressureforlargeloadreductiontransients.Threespring-loadedsafetyvalveslimitsystempressureshouldacompletelossofloadoccurwithou'tdirectreactortriporsteamdumpactuation.PrssurizerLvelonrolThewaterinventoryintheReactorCoolantSystemismaintainedbytheChemicalandVolumeControlSystem.Duringnormalplantoperation,thepressurizerleveliscontrolledbythecharging-flowcontrollerwhichcontrolsthechargingflowcontrolvalveorthepositivedisplacementcharging-pumpspeedtoproducetheflowdemandedbythepressuiizer-levelcontroller.*Thepressurizerwaterlevelisprogrammedasafunctionofcoolantaveragetemperature.Thepressurizerwaterleveldecreaseswhenloadisreduced...Thisistheresultofcoolantcontractionfollowingprogrammedcoolanttemperaturereductionfromfullpowertolowpower.TheprogrammedlevelisdesignedtomatchasnearlyaspossiblethelevelchangesresultingfromthecoolantThepositivedisplacementchargingpumpsarenotcurrentlyusedforplantoperations.7.3-5July,1997 .temperaturechanges.Topermitmanualcontrolofpressurizerlevelduringstartupandshutdownoperations,thechargingflowcanbemanuallyregulatedfromthecontrolroom.SecondarSstemControlThesecondarysystemincludesthesteamfromthesteamgeneratorsandthecondensateandfeedwatersystems.SteamDumThesteamdumpsystemisdesignedtorelievesteamfromthesteamgeneratorstothecondenserthusreducingthesensibleheatintheprimarysystem'ntheeventofnetloadreductionnotexceeding50percent.Thesteamdumpdesigncapacityis40percentoffullloadsteamflowatfullloadsteampressures.Allsteamdumpsteamflowstothemaincondensersviathesteamlines.Whenaloadrejectionoccurs,ifthedifferencebetweentherequiredtemperaturesetpointoftheReactorCoolantSystemandtheactualaveragetemperatureexceedsapredeterminedamount,asignalwillactuatethesteamdumptomaintaintheReactorCoolantSystemtemperaturewithincontrolrangeun=anewequilibriumconditionisreached.Thesteamdumpflowreducesproportionallyasthecontrolrodsacttoreducetheaveragecoolanttemperature.Theartificialloadisthereforeremovedasthecoolantaveragetemperatureisrestoredtoitsprogrammedequilibriumvalue.C7.3-6 7.4CLEARINSTRUMENTATION7.4.1GENERALDESIGNCRITERIAssonProcesotosandControlsCriterion:Meansshallbeprovidedformonitoringorotherwisemeasuringandmaintainingcontroloverthefissionprocessthroughoutcorelifeunderallconditionsthat'canreasonablybeanticipatedtocausevariationsinreactivityofthecore.Theprimaryfunctionofnuclearinstrumentationistosafeguardthereactorbymonitoringtheneutronfluxandgeneratingappropriatetripsandalarmsforvariousphasesofreactoroperatingandshutdownconditions.Italsoprovidesasecondarycontrolfunctionandindicatesreactorstatusduringstartupandpoweroperation.TheNuclearInstrumentationSystemusesinformationfromthreeseparatetypesofinstrumentationchannelstoprovidethreediscreteprotectionlevels.Eachrangeofinstrumentation(source,intermediate,andpower)providesthenecessaryoverpowerreactortripprotectionrequiredduringoperationinthatrange.Theoverlapofigstrumentrangesprovidesreliablecontinuousprotectionbeginningwithsourcelevelthroughtheintermediateandlowpowerlevel.Asthereactorpowerincreases,theoverpowerprotectionlevelisincreasedbyadministrativeproceduresaftersatisfactoryhigherrangeinstrumentationoperationisobtained.Automaticresettocorerestrictivetripprotectionisprovidedwhenreducingpower.Varioustypesofneutrondetectors,withappropriatesolid-state~electroniccircuitry,areusedtomonitortheleakageneutronfluxfromacompletelyshutdownconditionto120percentoffullpower.-Becauseofthewiderangeofneutronflux,monitoringwithseveralrangesofinstrumentationisnecessary.Thelowestrange("source"range)coverssixdecadesofleakageneutronflux.Thenextrange7.4-1July,1982 ("Intermediate"range)coverseightdecades.Detectorsandinstrumentationarechosentoprovideoverlapbetweenthehigherportionofthesourcerangeandthelowerportionoftheintermediaterange.Thehighestrangeofinstrumentation("power"range)coversapproximatelytwodecadesofthetotalinstrumentationrange.Thisisaline~rrangethatoverlapswiththehigherportionoftheintermediaterange.Thepowerrangechannelsarecapableofrecordingoverpowerexcursionsupto200percentoffullpower.Thesystemdescribedaboveprovidescontrolroomindicationandrecordingofsignalsproportionaltoreactorneutronfluxduringcoreloading,shutdown,4startupandpoweroperation,aswellasduringsubsequentrefueling.Start-up-rateindicationforthesourceandintermediaterangechannelsisprovidedatthecontrolboard.ReactortripandrodstopcontrolandalarmsignalsaretransmittedtotheReactorControlandProtectionSystemforautomaticIplantcontrol7.4.2NUCLEARINSTRUMENTATIONSYSTEMS'DESIGNANDEVALUATIONAcomprehensivediscussionoftheNuclearInstrumentationSystem(NIS),coveringdesignbasesand'adetaileddescriptionofthesystem,canbefoundinReference7.Inaddition,twoneutronfluxmonitoringchannelshavebeenaddedtoUnits1and2forindicationpurposesonly.Bothchannelshavebeenqualifiedforpostaccident,monitoring.Widerangeandsourcerangefluxindicationisprovidedbybothchannelsinthecontrolroomandonechannelalsoprovidessourcerangefluxindicationonalocalshutdownindication'\panel.TheneutronfluxmonitoringchannelsthatwereaddedperformnoneofthetrippingorprotectivefunctionsdescribedinSection7.2.2.BothchannelscanbeconfiguredtoprovidebackupmonitoringfortheSourceRangechannelsduringshutdownconditions.7.4-2July1997 EninredftFuresndAssociadSemActuationTable7.2-1includestheengineeredsafetyfeaturesandassociatedsystemsactuationsignals.EninreafFeatursVitalFuninTheengineeredsafetyfeaturesactuationsystemautomaticallyperformsthefollowingvitalfunctions:a)StartsoperationoftheSafetyInjectionSystemupon:1.Lowpressurizerpressure2.HighContainmentpressure3.Highdifferentialpressurebetweensteamlines4.Lowsteamlinepressure(Ib)TheSafetyInjectionSignalwillalso:1.InitiatePhase"A"containmentisolation(A)andcontainmentventilationisolation(CVI)2.Initiatemainfeedwaterisolation3.Actuatetheauxiliaryfeedwatersystem4.Startthedieselgeneratorsc)Closesthesteamgeneratormainsteamstopvalveson:7.5-5July1997 IHigh-Highcontainmentpressureorlowsteamlinepressureorhighsteamlineflowcoincident.withlow-lowTavg.d)InitiatestheContainmentSpraySystemandaPhase"B"containmentisolation(B)onahi-hicontainmentpressuresignal.RsCabiliToallowforpostincidentrecoveryflexibilityaswellasrecoveryfromspuriousactuation,pushbuttonsareprovidedtoresetthefollowing'ctuatingsignals:a)'SafetyInjectionb)Phase"A"ContainmentIsolationc)ContainmentVentilationIsolationd)SteamLineIsolatione)Phase"B"ContainmentIsolationf)ContainmentSprayg)FeedwaterIsolationEachoftheseresetpushbuttonshasanalarmtoindicatethatithasbeenpushedandasealedcovertopreventitsinadvertantuse.EninrfFursalibrainanTstTheengineeredsafetyfeaturesactuationchannelsaredesignedwithsufficientredundancytoprovidethecapabilityforchannelcalibrationandtestduringpoweroperation.Exceptforcontainmentsprayactuation,removalJ>>ofoneactuationchannelfortestisaccomplishedbyplacingthatchannelinatrippedmode;i.e.,atwooutofthreematrixlogicbecomesaoneoutoftwomatrixlogic.Testingdoesnottripthesystemunlessatripconditionoccursinaredundantchannel.7.5-6July"1997 FdwarIsolationAnysafetyinjectionsignalwillisolatethemainfeedwaterlinesbyclosingtheflowcontrolandisolationvalves,trippingthemainfeedwaterpumps,andclosingthepumps'ischargevalves.MainSearnIsolinProtectionagainstasteamlinebreakisprovidedbysafetyinjectionactuation,feedwaterisolation-topreventexcessivecooldownoftheprimary4side,andmainsteamisolation-topreventtt.euncontrolledblowdownofmorethanonesteamgenerator.Closureofthesteamlineisolationvalvesisinitiatedbythesignalspreviouslydescribedinsection7.5.2andincludedinTable7.2-1aspartofanautomaticactuationsystemdesignedtomeetthe)requirementsforprotectivesystemsasdescribedinsections7.2.1and7.5.2.Mainsteamisolationmayalsobeinitiatedmanuallyfromthecontrolroom.EninerdfFaturesInsrumentaioThefollowingdescribestheinstrumentationwhichensuremonitoringoftheEngineeredSafetyFeatures.IeondensrInrmntinTheicecondenserinstrumentationservestomonitortheoperationoftheequipmentandtheicebedstatusbyprovidingtotheoperatorthecontrolroominformationlistedbelow.ThesefeaturesareinformativebutarenotrequiredforproperESFaction.I7.5-9July1997 a)TemperatureMeasurements:Themonitoringoficebedtemperaturesprovidesinformationtotheoperatoraboutpossiblethermalgradientsaswellasthegeneralicebedcondition.Thetemperaturerecorderislocatedinthecontrolroom.Therecorder"monitors96independenttemperatures.Therecorderisprovidedwithalarmswitchesandthealarmisactivatedifapreselectedtemperatureset-pointisexceeded.Thethermalstatusoficecondenserfloorcoolingandwallductpanelsismonitoredat32sensingpointswhicharerecordedbyanadditionalrecorderinthecontrolroom.b)DoorPositionIndications:The48lowerinletdoorsarearrangedinpairstocoverthe24openings..Eachdoorhastwolimitswitcheswhichmonitorits.position.Oneofeachdoor'sswitchesiswiredtoanindividualstatuslampontheCASsub-panel.The48remainingswitchesareconnectedinparalleltoacommonannunciatorontheSVpanelinthecontrolroom.Thus,ifanydoorisopentherewillbeanalarminthecontrolroomandtheidentityoftheopendoorordoorscanbedeterminedbyobservingthestatuslamps.Thelo~erpersonnelaccessdooralsohastwolimitswitches.OnelightsastatuslampontheCASsub-panelandtheotheractuatesitsownannunciatoronpanelSVintheeventthedoorisopened.July1996 waterpumps.Thislevelcontrolfunctioninvolvesremotemanualpositioningofauxiliaryfeedwaterflowcontrolvalvesinordertomaintainpropersteamgeneratorwaterlevel.SteamgeneratorwaterlevelindicationandcontrolsarelocatedinthecontrolroomandataHotShutdownPanellocatedintheotherunit'scontrolroom.MotorandValveControlForstartingpumpmotors,thecontrolrelaysareenergizedtoenergizetheclosingcoilonthecircuitbreakerorthemotorstarter.Whenmotorstartersareusedthestarteroperatingcoilwillbesuppliedbypowerfromthesamesourceasthemotor.Whencircuitbreakersareusedformotorcontrolthecircuitbreakerclosingandtripcoilswillbesuppliedbypowerfroma250-voltd-cbatterybusdescribedinChapter8.Forvalvemotorcontrol,thecontrol'elaycausesthecoilofthemain-contactorfortheactuatingcircuittobeenergized.Airactuatedcontainmentisolationvalvesarespringloadedtocloseuponlossofairpressure.EnvironmentalCaabilitTheengineeredsafetyfeaturesinstrumentationandequipmentinsidethecontainmentisdesignedtooperateunderthecredibleaccidentenvironmentsofasteam-airmixture'ndradiation.Table7.5-2.liststheequipmentbothinsideandouts/decontainmentexposedtoharshenvironmentswhichisrequiredforpost-accidentoperationandindicateswhethereachisaninitiationand/orlong-termr'ecirculationtimespanrequiredcomponent.7.5-19July,1982 FailureoftheequipmentidentifiedinTable7.5-2afterthespecifiedtimewillnotincreasetheseverityorconsequenceoftheaccident.Thereactorprotectioncontrolandinstrumentationequipmentandelectricalequipmentforengineeredsafetyfeatureslocatedintheauxiliarybuildingwilloperateinanormalambientenvironmentfollowingapostulatedaccident.A"type"or"similarcomponent"environmentaltestingprogramhasbeencompletedontheequipmentexposedtoharshenvironmentandusedforengineeredsafetyfeatures.ThecurrentresultsofthistestingarepresentedinresponsesubmittalstoInspectionandEnforcementBulletin79-01B,"EnvironmentalQualificationofClasslEEquipment".Figures7.5-2and7.5-3givetheChapter14accidentanalysisenveloperequiredforpredictedin-containmentpost-LOCAandin-containmentMainSteamLineBreak(MSLB)conditions,respectively.OutsidecontainmentequipmentlocationsandassociatedenvironmentsarediscussedinSub-Chapter14.4.Tables3.3-11(Unit1)and3.3-10(Unit2)intheTechnicalSpecificationsprovidedetailsoftheminimumnumberofchannelsofpost-accidentmonitoringinstrumentationthatarerequired.7.5-20July1997 Table7.8-1(sheet1of2)TYPE"A"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONS-~DURINGANDFOLLOWINGANACCIDENTParameterA-1CentrifigalChg.PumpFlow(CCP)h-2RCSpressure(widerange)h-3S/GPressureA-4ContainmentMaterLevelA-5S/GLevel(narrowrange)~ueuetotChannels21212Rancae0-200GPM0-3000psig0-1200psigt599'-3"to614'levation(cont.floortomaxfloodlevel)Frombelow1ststageseparatorto2ndstageseparator~niala~LacatonControlRoomPanelSISControlRoomPanelRHRControlRoomPanelSGControlRoomPanelRHRControlBoomPanelSG~cueoeeMaintainpressurixerlevelduringS/GtuberuptureManualtripofRCpumpsbasedonRCSpressureDeterminationofrequiredcoreexittemperaturebyS/GPressureDeterminationofadversecontainmentManualreductionofECCSflow(secondaryheatsinkcapability)A-6PressurizerLev.h-7ContainmentAreaRadiationmonitorhighrange0-100%(964oftotalflow)1R()(Rto1X10IR/HRControlRoomManualreductionofECCSPanelPZR.flowControlRoomDeterminationofadversePanelRMScontainmenth-8-ContainmentPressure(narrowrange)-5to+12psigControlRoomManuallyestablishorPanelSPYtripcontainmentspray7.8-3July,1992 Table7.8-1(sheet2of2)TYPE"A"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONSDURINGANDFOLLOWINGANACCIDENTParameterNum~rofg~hnn~ls~ancae~Disla~Locaioo~PurosaA-9AuxiliaryFeedwaterFlowA-10RWSTLevelA-11Degreessub-CoolingA-12CoreExitT/C'A-13CCPBreakerStatus-A-14SIPumpBreakerStatusNAT/C1-650"250x10~PPHEssentiallytop(bottomofover-flow)tobottom(100<oftotalvolume)-50"FSuperheatto+350'FSubcool200-2300"FOPEN/CLOSEOPEN/CLOSEControlRoomPanelSGCotrolRoomPanelSPYControlroom-PanelBAControlRoomPanelFI(U-1)PanelRMS(U-2)ControlRoomPanelBAControlRoomPanelSISManualreductionofECCSflow(secondaryheatsinkcapability)ManualtransfertocoldlegrecirculationonlowlevelinRWSTManualtriporreductionofpressurizersprayandECCSflowManualreductionofECCSFlowManualtripofRCPsManualtripofRCPsA-15SafetyInjection2PumpFlow0-800GPMControlRoomPanelSISManualtripofRCPs7.8-4July,1997 Table7.8-3(sheet1of2)TYPENCNVARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONSDURINGANDFOLLOWINGANACCIDENT~Parseter~NumberS~CharmlsRancae~DislaLocationPpurposeC-1CoreExitTemperatureC-2RadioactiveConcentrationorRadiationLevelinCirculatingPrimaryWaterC-3AnalysisofPrimaryCoolant(gammaspectrum)C-4RCSPressureC-5ContainnmentPressure(SeeItemA-12)NA~(SeeItemC-2)(SeeItemA-2)(SeeItemA-8andB-13)NAFuelCladdingReactorCoolantPressureBoundaryC-6ContainmentSumpWaterLevel(SeeItemB-12)C-7ContainmentAreaRadiation(SeeItemA-7)C-8EffluentRadioactivity-NobleGasfromCondenserAirremovalSystemExhaust9E-07-to9E+04uCi/CCControlRoomCT-1ControlTerminalC-9RCSPressure(SeeItemA-2)7.8-7July,1997 Table7.8-3(sheet2of2).TYPE"C"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONSDURINGANDFOLLOWINGANACCIDENTParameterContainmentHydrogenConcentrationNumberof~Chaosis9s'.Rancae0-30Volume%~Disla~LoationControlRoomPanelIV~PuroseContainnmentPressure(SeeItemA-8andB-13)ContainmentEffluentRadioactivity-NoblegasesfromIdentifiedReleasePoints9E-07to9E+04uCi/ccControlRoomCT-1TerminalEffulentRadioactivity-NobleGases(fromBuildingsorAreaswherePenetrationsandHatchesarelocated,eg.Secondary~ContainmentandAUXBuildingsthatareindirectContactwithPrimaryContainment(seeItemC-12)7.8-8July,1997 Table7.8-4(sheet5"of5)TyPE"D"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONSDURINGANDFOLLOWINGANACCIDENTParameterNumberofChannelsRancae~DielaLocation~PususeD-32b4KVSafetyRelatedPowerSystemsStatus0-150VControlRoomPanelSAD-32c250VDCBatteryPowerSystemStatus0-300VContr'olRoomPanelSAD-32d120VACSafetyRelatedPower~SystemsStatusD-32eInstrumentAirStatus0-150V0-150psig0-100psig0-60psig0160psigControlRoomPanelSAControlRoomPanelSV7.8-13July,1992 Table7.8-5(sheet1of.3)TYPE"E"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONSDURINGANDFOLLOWINGANACCIDENTE-1ParameterContainmentAreaRadiationHighRangeNumberofRa~caechanneli(SeeItemA-7)~Disla~Doaioo~PoeoseContainmentRadiationE-2E-3aE-3bE-3cE-3dRadiationExposureRate(insidebuildingsorwhereareasofaccessarerequiredtoserviceequipmentimportanttosafety)ContainmentorPurgeeffluentReactorShieldBuildingAnnulusAuxiliaryBuildingCondenserAirRemovalSystemExhaust12.01to1000R/HR.0001to10R/HR.001to10R/HR(SeeItemE-3e)(SeeItemE-3e)(SeeItemE-3e)9E-07to9E+04uCi/cc0-250scfmNAControlRoomAreaRadiationCRTNobleGasesandVentFlowRateE-3eCommonPlantVent9E-07to9E+04uCi/cc0-200KscfmControlroomCT-1ControlTerminalE-3fVentfromS/GSafetyReliefvalves0.-1to100uCi/ccControlRoomPanelRMS7.8-14July,1997 Table7.8-5(sheet2of3)TYPE"E"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTONSDURINGANDFOLLOWINGANACCIDENTParameterNumberof~han~nlRancae~Di>~la~Lo~tin~PereeE-3gOtherIdentified1ReleasePoints9E-07to9E+04uci/ccU1-0-1500SCFMU2-0-4500SCFMControlRoomPanelFIE-4E-SaE-5bAllIdentifiedReleasePoints(exceptS/Gsafetyrelatedvalvesandcondenserairremovalsystemexhaust)SamplingandonsiteanalysisAirborneRadioactivityandParticulatesSamplingandAnalysis(portable)PlantandenvironsRadiation(portable)(SeeItemE-3e)NA1E-9to1E-3uCi/cc(minimum)Gamma1.0E-3to1.0E4R/HRBeta/lowenergygamma1.0E-3to1.0E4Rad/hrNANAParticulatesandHalogensEnvironsRadiationandRadioactivityE-5cPlantandenvironsRadioactivity(portable)NAIsotopicAnalysisNAE-6WindDirection0-360"ControlRoomPanelFixand/orCRTMeterology7.8-15July1997 Table7.8-5(sheet3of3)TYPE"E"VARIABLESPROVIDEDTHEOPERATORFORMANUALFUNCTIONSDURINGANDFOLLOWINGANACCIDENTParameterNumberofChannelsRancae~Disla~Loaeioo~PuroseE-7WindSpeedE-8EstimationofAtmosphericStabilityE-9aGrossActivity0-100mph-30to50"C1uCi/mlto10Ci/mlControlRoomPanelFixand/orCRTControlRoomPanelFixand/orCRTNAAccidentSamplingPrimaryCoolantandSumpE-9bGammaSpectrum0.050to2.05NAMeVIsotopicAnalysisE-9cBoronContent375to2000ppmNAE-9dE-9fChlorideContent2ChlorideContent3DissolvedH,orTotalGas0.01to20ppmNA10to20,000ppmNA0-2000cc/kgNAE-9gDissolved0E-9hpH0-20ppm1.0to13'pHNAE-10aH,ContentNANAContainmentAirE-10bQContentE-10cGammaSpectrumNANA1uCi/cctoNA10Ci/ccIsotopicAnalysis7.8-16July,1997 ELETRIALSYTEMSSection8describestheelectricalsystemsandequipmentrequiredtogeneratepoweranddeliverittothehighvoltagesystem.Thesystemsdescribedhereinconsistoftwoidenticalunits(UnitsNo.1andNo~2)andincludefacilitiesforprovidingpowertoandcontrollingtheoperationofelectricallydrivenplantauxiliaryequipmentandinstrumentation.Figures8.1-1aand8.1-1bshowtheUnit1auxiliaryelectricalonelinediagram.Figures8.1-2aand8.1-2bshowtheinterconnectionsbetweentheplantanditsoffsitepowersources.ThemaingeneratoroutputofeachunitisfedintothetransmissionnetworkoftheAmericanElectricPowerSystem.Whilegenerating,allauxiliarypowerissuppliedfromthegeneratorterminalsthroughthenormalauxiliarytransformers(1ABand1CDforUnit1and:2ABand2CDforUnit2).Uponturbine-generatortrip,thestationauxiliariesareautomaticallyandinstantaneouslytransferredtothepreferredoffsitepowersourceauxiliarytransformers(101ABand101CDforUnit1and201ABand201CDforUnit2)toassurecontinuedpowertoequipmentwhenthemaingeneratorisofftheline.Thepreferredoffsitepowersourceauxiliarysystemforbothunitsisarrangedsothateitherthe345MVA,34.5kVtertiarywindingoftransformerNo.4,orthelowvoltagewindingof150MVA345/34.5kVtransformerno.5suppliesfourtransformers(101ABand101CDforUnitNo.1and201ABand201CDforUnitNo.2).TransformerNo.5hasbeeninstalledasafullservicealternatetotransformerNo.4.Xnaddition,thealternateoffsitepowersource,a69/4.16Kvtransformer,locatedattheplantsite,hasthenecessarycapacitytooperatetheengineeredsafeguardequipmentinoneunitwhilesupplyingsafeshutdownpowerintheother.Essentialinstrumentation,includingthereactorprotectionsystemandtheengineered'safetyfeaturesinstrumentation,isfedfromvitalinstrumentationbusestoprovide8.1-1July1997 continuousmonitoringandcontrol.Thestationbatteriesprovidecircui"breakercontrol,controlroomemergencylighting,andoperatingpowerforcertainelectricallyoperatedvalvesandvitalbusinverters.8.1DESIGNBASESTheplantelectricalsystemsaredesignedtoensureacontinuoussupplyofelectricalpowertoallessentialplantequipmentduringnormaloperationandunderabnormalconditions.8.1.1GENERALDESIGNCRITERIAPerformanceStandardsCriterion:Thosesystemsandcomponentsofreactorfacilitieswhichareessentialtothepreventionortothemitigationoftheconsequencesofnuclearaccidentswhichcouldcauseundueriskto.thehealthandsafetyofthepublicshallbedesigned,fabricated,anderectedtoperformancestandardsthatwillenablesuchsystemsandcomponentstowithstand,without.unduerisktothehealthandsafetyofthepublic,theforcesthatmightreasonablybeimposedbytheoccurrenceofanextraordinarynaturalphenomenon,suchasearthquake,tornado,floodingcondition,highwindorheavyice.Thedesignbasessoestablishedshallreflect:a)Appropriateconsiderationofthemostsevereofthesenaturalphenomenathathavebeenofficiallyrecordedforthesiteandthesurroundingarea.b)Anappropriatemarginforwithstandingforcesgreaterthanthoserecordedtoreflectuncertaintiesaboutthehistoricaldataandtheirsuitabilityasabasisfordesign.ApplicablestandardsandcodesasdetailedintheElectricalEquipmentSpecificationsfortheD.C.CookNuclearPlanthavebeencompliedwithinthedesign,manufacture,andtestingofallelectricalequipmentvitaltotheoperationoftheengineeredsafetyfeatures.Accordingly,elec-8.1-2July,1982 tricalequipmentdirectlyrelatedtotheoperationofthesafetyfeatures,ortothesafeshutdownoftheunitshasasClassI,whichdesignationassurescompliancewiththecriteriaasdefinedfortheCookNuclearPlant(ReferencetheFSAR).engineeredbeendesignatedseismicClassIsubchapter2.9ofThedesignofallcabletrough(trays),andconduitsystemsvitaltotheoperationof'theengineeredsafetyfeatureshasbeenanalyzedanddocumentedtoassurecompliancewiththeseismicClassIcriteriaasdefinedfortheCookNuclearPlant.Power,controlandinst'rumentationcabl'ing,motorsandotherelectricalequipmentrequiredforoperationoftheengineeredsafetyfeatureshavebeeninherentlydesignedtowithstandtheeffectsof-anuclearsystemaccidentorsevereexternalphenomena,asrequiredbytheirsafetyfunction,thusassuringahighdegreeofconfidenceintheoperabilityofsuchcomponentsshouldtheiruseberequired.EmerencPowerCriterionandsafety.r.Anemergencypowersourceshallbeprovidedanddesignedwithadequateindependency,redundancy,"capacity,andtestabilitytopermitthefunctioningoftheengineeredsafetyfeaturesandprotectionsystemsrequiredtoavoidunduerisktothehealthandsafetyofthepublic.Thispowersourceshallprovidethiscapacityassumingafailureofasingleactivecomponent.Eachunithastwo3500kVemergencydieselgeneratorswhichareindividuallycapable'ofsupplyingsufficientpowertooperatethe'ngineeredsafetyfeaturesandprotectionsystemsrequiredtoavoidunduerisktopublichealthThedieselgeneratorsstartautomaticallyandacceptloadwithin10secondsafterthelossofnormalandPreferredOffsitePowerSourcestothebuseswhichsupplyvitalloads.8.1-3July1990 Thedieselgeneratorcapacityisestablishedonthebasisoftheoperationofengineeredsafetyfeaturesduringamaximumhypotheticalincidentconcurrentwithalossof(offsite)powerandisadequateforsafeandorderlyshutdownoftheunit.Allnecessarysafetyfeaturesareduplicatedandpowersuppliessoarrangedthatfailureofanyoneoftheapplicablebusestoenergizeorfailureofonedieselgeneratortostart,doesnotpreventoperationofasufficientamountofequipmenttoensureprotectionofthepublic.Inaddition,thedieselgeneratorsmaybeteststartedandloadedtoapproximatelyfiftypercentofratedloadviathedieselgeneratorloadbankresistors.MiilroinCriterion:iAdequateprotectionforthoseengineeredsafetyfeatures,thefailureofwhichwouldresultinunduerisktohealthandsafetyofthepublic,shallbeprovidedagainstdynamiceffectsandmissilesthatmightresultfromplantequipmentfailures.IITheapplicableportionsoftheMissileProtectionCriteriaasstatedinSection1.4applytoClassIequipmentinthischapter.8.1.2FUNCTIONALCRITERIAInadditiontotheaforementionedcriteria,thefollowingfunctionalcriteriawillbeemployedtoachievemaximumreliabilityandoperatingefficiencyoftheelectricalsystems.a)Themainturbine-generatorforeachunit,describedinSection10,feedselectricalpowerat26kVthroughtheisolatedphasebustoitsmainstep-uptransformerandtheunitauxiliarytransformerslocatedadjacenttothe"urbinebuilding.8.1-4July1997 b)Theprimarysidesoftheunitauxiliarytransformers1ABand1CDforUnit1and2ABand2CDforUnit2areconnectedto,theisolatedphasebusatapointbetweenthegeneratorterminalsandthelowvoltageconnectionofthemainstep-uptransformer.Duringnormaloperation,stationauxiliarypoweristakenfromthesetransformers.These.transformersare,eachrated18/24/30MVA,26/4.16kV.The4160voltsecondariesfeedfourindependent4160voltauxiliarybusesofeachunit.Theshortcircuitfaultdutyofeachbusislimitedtowithintheinterruptingcapabilityofthe250MVAaircircuitbreakers.Thisfunctionalalignmentpermitslimitedstationoperationwhenone4160voltbusisoutofservice.c)Thepreferredoffsitepowersourceforthetwounitsiseitherthe345MVA34.5KvtertiarywindingoftransformerNo.4,a1500MVA765/34/transformerorthe150MVA345/34.5KvtransformerNo.5whichhasbeeninstalledasafullservicealternatetotransformerNo.4forpurposesof'supplyingtheplant'sauxiliaryloads..TransformerNo.4ortransformerNo.5maybeconnectedtotransformers101AB,101CD,201AB,and201CD(eachan18/24/30MVA,34.5/4.16Kvtransformer),whichsupplythereserveauxiliarypowerforbothunits.d)A69kVlineoperatingonaright-of-wayofftheplantpropertyhasbeentappedtofeeda7500kVA69/4.16kVtransformerlocatedattheplantsite.The4160voltpowerisusedasthealternateoffsitepowersourcetobothunits.The69/4.16kValternateoffsitepowersourceismanuallyconnectedtothe4160voltbuses.Thebreakerswhichconnectthissourcetothe4160voltbusesareinterlockedsotheywillnotcloseifanyother4160voltbussourceisclosed.Inaddition,theavailabilityofthe69kValternateoffsitepowersourceisconstantlymonitoredanditslossannunciated.8.1-5July1997 e)The4160voltsystemforUnit1isdividedintoeightbussections(1A,1B,1C,1DandTllA,T11B,T11CandT11D)~Buses1Aand1Baresuppliedeitherfromtransformer1ABwhenthemaingeneratorisinoperationorfromTransformer101ABwhenthemaingeneratorisnotinoperation.Buses1Cand1Daresuppliedinasimilarmanner,fromeithertransformer1CDortransformer101CD.BusesT11A,T11B,T11CandT11DaresuppliedfrombuseslA,1B,1Cand1Drespectively.Uponunittrip,4160voltbus1A,1B,1C,and1Dautomaticallytransferfromtheirnormalauxiliarysourcetothepreferredoffsitepowersource.Motors400hporlargerareoperatedat4160voltsandallemergencymotorsofthissizeareoperatedfrombusesT11AorT11D.Anidenticalbusarrangement(2A,2B,2C,2DandT21A,T21B,T21CandT21D)isprovidedforUnit2.f)The600voltsystemforUnit1isdividedintosixbussections,fourofwhich(11A,11B,11Cand11D)containmotorsupto400hpincludingemergencyequipmentrequiredintheeventofapowerfailure.Thesefoursectionsareeachnormally.fedbya2000kVA,4160/600volttransformerfrom4160voltbusesT11A,T11B,T11CandT11D,respectively,which,inturn,arefedfrom4160voltbuses1A,1B,1Cand1D,orbydieselgenerators,1ABor1CDduringalossofpower,incident.T11A,T11B,T11CandT11Darealsodirectlyalignabletothealternatesourceofoff-sitepower,the69/4.16kVtransformer.Therearealsotwo600voltbussections(11BMC1500/2000kVA,4160/600volttransformer,and11CMC),eachfedbyawhichsupplypowertonon-essential600voltequipmentrated100hporlessandwhichisgroupedintomotorcontrolcenters.Anidenticalbusarrangement(21A,21B,21C,21Dand21BMCand21CMC)isprovidedforUnit2.'gThe480voltsystemsforeachunitaredividedintotwobussections(11PHA,11PHCinUnit1and21PHA,21PHCinUnit2)andareusedtoprovidepowertothepressurizerheatersystem.8.1-6July1997 IBuses11PHAand11PHCarefe'dfromtwo4160/480V,1000kVAtransformersI(TR11PHAandTR11PHC,respectively).Thesetransformersarefedfrom4160voltbusesTllAandT11Drespectively.Buses21PHAand21PHCarefedfromtwo4160/480volt,1000kVAtransformers(TR21PHAandTR21PHC,respectively).Thesetransformersarefedfrom4160voltbusesT21AandT21Drespectively.g)The4160volt,600voltand480voltswitchgearisofmetal-cladconstructionwithclosingandtrippingcontrolpowertakenfromthestationbatteries.Eachbreakercubicleisisolatedfromtheadjacentcubiclewithmetalbarriersandeachbussectionisphysicallyseparatedfromallothers,,withtheexceptionofbuses11Aand11C,and11Band11D,whichareseparatedbymeansofbustiebreakersandthemetalbarriersbetweentheadjacentendcubicles.h)Thesystemhasbeensodesignedthatasinglefailureofanyelectricaldevicetooperateshallnotpreventtheprotectionandsafetyfeaturestfromprovidingtherequiredsafetyfunctions,.li)Powercablesaredistributedfromtheswitchgear,.bymeansofsteelconduit,plasticconduitimbeddedinconcreteandcabletrays.Controlcablesareruninsteelconduitorcabletrays.j)Thefeedfromthegeneratorterminalstothemainstep-uptransformerbankisisolatedphase,forcedaircooled,busduct.k)Themainfeedsandfeedermotorcablesin4160voltserviceareinsulatedcablesratedat5000volts.The,exactconstructionofthecablesandmethodofsupportconformtotherequirementsoftheindividualservice.Singleconductorcablesare8.1-7July1997 shieldedandprovidedwithafireretardantjacket.Threeconductorcablesaretriplexed.Copperconductorsareusedwithinthecontainment.l)Powercablesforthe600Vserviceareinsulatedcablesratedat600Vinsingleortriplex.constructionasrequired.Copperconductorshavebeenusedwithinthecontainment.m)Controlcablesareofsingleormulti-conductorcopperconstructionratedat600Vwithoverallflameretardantjacket.n)Low.voltageinstrumentcablesareratedat300V.Thesecableshavetotalcoverageelectrostaticshieldandareflameretardant.o)Thenormalcurrentratingofallinsulatedconductorsislimitedtothatcontinuousvaluewhichdoesnotcauseexcessiveinsulationdeteriorationfromheating.Selectionofconductorsizesisbasedon"PowerCableAmpacities,"publishedbytheXnsulatedPowerCableEngineersAssociation(IPCEA).p)Vitalinstrumentbusesareprovidedforessentialinstrumentationandreactorprotectioncircuits.Eachbusisfedfromaninverterwhichreceivesitsnormalsourceofpowerfromthe250VDCbus.Efthe250VDCbusortheDCtoACsectionoftheinverterfails,thevitalbusistransferredtoaregulated600/120VACBalanceofPlant-Source.The600/120VACBalanceofPlantSourceisatransformerwhichisregulatedtoprovide120VAC+3'%histransferfromthe250VDCbustotheBalanceofPlantSourceisaccomplishedwithoutvoltagevariations.TheoutputfrequencyoftheinverterissynchronizedtothenormalplantACsource.OnlossoftheplantAC,theinverterwillmaintainanoutputfrequencyof60Hz+0.5Hz.Thealternatesourceofpowertothevitalinstrumentbusesistheunitauxiliarypowersystem(seeFigure8.3-1).8.1-8July,1997 q)MotorandelectricalswitchgearenclosuresconformtotheexpectedenvironmentalconditionsandaredesignedinaccordancewithspecificationsissuedbytheNationalElectricalManufacturers'Association(NEMA).Thestationbatteriesaresizedtooperateturbineshutdownoilpumps,instrumentationandvitalnuclearchannels'forthreehourswithoutbenefitofanystationACpower.r)Allelectricalequipmentandcablesoperatewithintheirnormalratingortemperaturerise.Motorloading,doesnotexceeditsnameplaterating.July,1997
1SOILS-UVS3~~(20ChtTC~$bloc>>'IO/I@I00tert/5KVTR.45>>AeervaehtotelproovapIeivveYI~~ecletv~vicTRITKPITN.YW0>>/rVT1I'3/4.ICLVTRIAbtoTV4ICKYCD/Z4SOMVAO'ICv>>e(TR.ICDtCOXVSCD.I%4SOMVA4ICKYTR,IOIAbSA..SKVj3d"%ILSOMVAgf4.ICICVTRIOCCD54.5XVSdl%4/SOMyAYjI4.ereKVTRZOCCDS4SKVWA.TR2OIAbSa*KVI%4.1SOMVA)CSCO/t4SOI(VA%A'.IOKVIl4TSKVTOUNITToTall4bt~IO.4KVeVSTourtIt<<tV2L~thaKVbVSlakg>>~I'IJjfgPIIPIIQaeQIeiIast,tor>>Vi0fTvvra445o)gSsooDIESCLCCKlaaleer4ICUSter'ICv4L~ICCICI4!~IhCll~02II4KV5US.X4popoSlltstLCCICICOID4KVboSID2ahV053Ir2PEf5@$QIce4444I~PIP~IIKVOVSTili4KVSOSTllo4KYDOSTIIC4KVSKIS2IIOI~eej44Aha14244'eto~h>>>>Iv>>Lvval(4AQchCSIk44443YtJf'g~$Pvgogu>>IJvIi14cubiHi~of.ldlpej"VBi'TCI,IIPPI,IOOOe(vre0COVIaov,TR.IIIOOOOKvaIIIOV.20,IIOIICOV2oooKvreCoovTR.IIateC~eeOO/TOOOetetl~ICOICooTR,IICe>>CISOO/TOOOet>>4'2OOOKVeaTP.POQ+4KO4tooo>>vaTR.III>>ICIOOOrVre4ICOV.~t8$~veetl4dOV.SIISIIPHL~jIaVu$5CPOV.OVSIlaeICIIIIIIIPxBf05POVX*.vet$etX%220085~I$ZO)A=.LVurav~ITtt855-"f00OP>>ue'4et~V'vv25YXISCRle(IISRSv0llOpIjVT25~~vv535VC(t(PVCc>>IIIIIL)VvVVgeQam"8CIIcoouTIIISIKIIcr~IPPVLvbIAelv4-5>>Ct>>\tJJ"-50432VIIrrrrIIrcoov.OvsIlpeec'54~IP>>(l~PeppeecjotoTelop~eeplveleohtrt>>VtMePure>>tPv>>Ctr>>vee<<>>vp>>chv<<eev>>>>tejetcjhatopcrotc<>ea2cxttr,wpIpvtv<<<<<<ept>>>>I0pplpIcetc>>etc>>~ttv>>Lpweec<<<<MS<<ee<<MteaI~tMt<<<<tV>><<>>tpvm<<<<>>>>>>v>>cIppleeocov..<<M>>>>Mthcphttv4et>>>>pheetehvteevph>>h<<v>>eht>>NCOOVOVSllCCOOKbIICllAcoov.eubCIDCOCYOUSIIOiO'0ACTIrrkhJta22g>>7rpcV4vov2t3C2>>lee4rvV(vVgai+vv5It=avvthv>>Ivari54,V<<X)gz"araIf+Olegv>>,C.hhhIIAIOgPOr5hutrVCri5>>vTrrvv4<vprVVo~eVi~t<<fpeeJ>>22uvv>>4(P~4P>>4>PC'R<<appvrtg225>>5>>biIRIA4IlvslQgicP:"ri+I=:~=rvm~I3vtArts-4'Iee'21T:~pr$'itPgupv>>50)Iic.aQettQPePJete)rhII'Ih<<>>lgAQoirel00~tter~r>>elvv'vQOov8&.Vu.(ugLTree~>>)$2PX<P~PlgagQQQeoeICOSIIIII-'T-IID8oB>>5Ar5vXtvpO0~~-X-"-8Vfe~eTIqgtI~e$2vrr-Iv42a4'5rpIet52vgLaavvaVgPVKZt'gPhrhhlDONALDCCOOKCCV(ttAROSACCTvrlICelkItoe>>>>AVXILIARTNE<f%OIARAN(WITCH)tloFSARFIG8.I-IR<alcel<<IL'rlv"IQMINIIt<<IPtCPI~$IOCSottl0ICJIoeleoIIKLMMom->>w.<<5JULy)(I97 IIII~gI lCCINrf~I'1iiiiIIIIIelrilrIIII04IKhh<II0~~IAhhoIN?OIIhIXOyMANMI01YNliloh0M/INoyolhrÃCVII'l'WI0M03g!0>>e3J.~rI8YlIII'913553cN~~C~4eifil~!OIQS>OS'36IXIQOArSeY~QTIvia3!Ill-T!IAI!TIlINWNIIllMMr000SSI0arlXY90F003301VNOO~e>>>>r>>>>>>eeMhhhrheMeal<<reer>>>>M>>err>>r'>>ooDeh>>>>MMe>>ree>>>>>>i>>Meherl>>e>>r>>el>>rr0\rep~>>row>>m>>>>he>>ehr>>>>>>I>>>>>>>>>>r>>eII~erhi>>rie>>~>>eiRe>>40DehtlIoeolyiiye~>>yMerrIe>>e>>>>>>Mr>>~Mee5>>OIhriotleMOIIIaxoiyeIoir%tC8oooo~lISKIA009IIlIQhhIAOOOVYAWXXCICOS0MooI~IIIhhIIIIMAMOXCrotI~'gilgCIMrooDIIrreiieho'IJ'.IIII'Iklo~I~<l~A>>I.AIaTioool~hillhQQI0SssSnGA009O11IIIDMOODMAMOOgMOOI~9IIIIQhVV>IISnaA009CQgPiohrlh10IIIIyngMIIlII,.,I-~NEAP,IlhiiIlh4IOIIIIIITell98IN>~eelpAoo~MA'JOOOIMooI~IIIIISiSnQAxtYlllSnQAXII>>IIISnQAX%tfOeaiSnaAx>IIIIIIAII.Mil100010II-8-IIIYIII03IIA3ISASII3HOSISS3ysSn8AxyQCC0IMIIIri,.,>g<"IIm~g1ANIIr>>olAMSMSMNIOSI~0iOC~AMSISSCC4'19I'0MNIOS/0A1S'0CPSIPIICAM90'0VNIOS/MZ/90~A19!lPSICCssnaAxsvz>>IOlrlIr>>I4lIIIryyrroD>>lilee>>olMA1KOSLAMC9WO'OlZICCA19i~hVAWAh'tYAMOOSQ~A1IC9fOS40000SnnAx69&/40IIeSnaAx9ZAMM0NIOOSI~A'IS0SWWPIVorthoFSNFILLI-IA eI8tpf%)Qt~gMHlI,O~tD~C CALLjGO4DQCALxjQCQ4D345KVC)4D4DCD(Q4D765KVN2345KV765KVA2B2345KVMlKlLlTRANS345KVc534.5KVBE34.5KVBCTRANSFc4TERIARYAl765KV345KV26KVTR-1UNITN0.1STEP-UPTRANSF.26KV12ABNCNCPREFERREDOFFSITEPOWERSOURCEEMERGENCYTIC12CDEMERGENCYTIE2AB765KV26KV2CDIREMOVABLELINKSUNITN0.2iTR-2STEP-UPTRANSF.26KVREMOVABLELINKS1AB4KV1CD101AB34.5KV101CD34.5KV201CD34.5KV201AB34.5KV4KV4KVTRAIN8TRAINATRAIN8TRAINANORMALAUX.NO.lPOWERSOURCE4KVUNITN0.1TRAIN84KVUNITN0.1TRAINA4KVUNITN0.2TRAINA4KVUNITNO.2TRAIN8NORMALAUX.POWERSOURCEUNITNO.2oR~5T~4.5g~~O'IECRK.>~assacIaa<<s<<IEECca<<aaEMIR'MIIaMR<<eaa>>E<<>><<RS.>><<aaee~aec<<<<R>>e<<I<<eaasea<<aaeIIMIDealaaaaac<<Ill<<<<eaapacasaRaasccc<<RaaMa<<ea<<aae<<aRaERae<<EICaaRR<<ae>><<<<<<<<ee>>DGDGTRAIN8TRAINATRAINADGTRAIN8DGDONALDC.COOKSM.IFIEOOFFSIIEFOYERSIRCESONSITEEMERGENCYDIESELGENERATORSsssFSARFIG,6.I-2A-0QRIs">II'sMsIMsSR~s41s~~SE11SSI~ICssLsI0JULY1997 N-.N---.--=..-.~~N-~TN~II IiyIlII0CC"s~~j~II~~)fQI0~'IIall~~g~i~Il0~S~I~s~ay%IllIXIallNlIlttlatV~II'~~'III'5'IIS5JL%%a%%%\%&WH&~%0%yy~~&WWWWW'plERRICEIMRI..'4%%%5%5l ~I1pl'l0'tt'i(I '8.2NETWORK1NTERCONNECTEONSElectricalenergygeneratedat26kVisstepped-upto345kVand765kVbythemainpowertransformersofUnitNo.1andUnitNo.2,respectively.EnergyfromUnitNo.1feedsintoa345kVswitchyardconsistingofeleven3000-ampere,25,000MVAcircuitbreakers.Two345kVcircuitsconnectwiththePalisadesPlantofConsumersPowerCompany.Fouradditional345kVcircuitsconnectintotheAmericanElectricPowerCompanybulkpowersupplysystem;twocircuitstoTwinBranchandonecircuiteachtoOliveandCollingwoodStations.ExceptfortheCollingwoodline,all345kVcircuits(Palisades,Olive,(2)circuitseach,andTwinBranch,(2)circuitseach)terminateonabreaker-and-a-halfbusschemethrough345kV,3000ampere,25,000MVAcircuitbreakers.TheCollingwoodlineterminatesonanincompletebreaker-and-a-halfbusscheme.EnergyfromUnitNo.2feedsintoa765.kVringbusconsistingofthree765kV,3000ampere,35,000MVAcircuitbreakers.The765kVand345kVswitchyardsareconnectedthrougha1500MVA,765/345kVautotransformerbankcomprisedofthreesingle-phaseunits.lnaddition,a765kVcircuitfromtheplantterminatesonaringbusatDumontStationthroughtwo765kV,3000ampere,35,000MVAcircuitbreakers.Thefacilityisdesignedsuchthatlossofoneorbothunitswillnotperturbtheexternalgridtotheextentthatoffsitepowerwillbeunavailable.Figure8.2-1isaone-linediagramoftheexistingbulkpowersupplytransmissionsysteminthevicinityoftheplant.8.2-1July1997 00 3UY3~~TALLHADGETOPALISADESTOARGENTA810MMCPAEPDONALDC.COOKNUCLEARPLANTBENTONHARBORARGQTA()021100MH138KVS(mShER765KV(500~TS01-1100HVTO138KV345KV138KVSEEK138KVQHEASTaQHTO138KVCOLLINGMOD0345KVTONIPSTOCE34.5KVAUXL.O.L.O.N.C.H~HHL.0.345KVMTO138KVQHROBISONPARKfQAOLIVE345KVNRENSONALLEN,tcrsrAcalgC(tetD~~I~345KV"'P(h"[oI(s(IARE>~tt~ShCAS%ItVOCAwCCAtl~(rclRKPOt%ErwvKMcolt,~m~~ttttttfrt'Mlttttt%OP%AttaotttMLt4%tttIVgnet%roeototstArtMorelcotr,WthtttCHaoott4llttrtWCtt~totttrItlttrott~ttnlDONALDC.COOKS(EITCHINCAINANCNENTS00HALOC.(C00KNXLEARPuNTM)NEIQSORINGSTATICMILTOMRMTERPITA300HVATOHARYSVILLErcFSNFIG.8.2-1-0MItMI(II(sM(TINGArporrrr(cfc(MttroorgŽM~(crrWT(r(OCrrACAco(wcwcrMCCM~rlr0rr(cot~IIlr(Cro(TDloLrc0JVLT1997 >>iPfI 8.3STATIONSERVIEYTEMS8.3.14160VOLTSYSTEMUnitauxiliarypowerisdistributedfromthe4160voltswitchgearwhichisenergizedfromthemaingeneratorthroughunitauxiliary,transformers1ABand1CDduringn'ormaloperation,andfromPreferredOffsitePowerSourceauxiliarytransformers101ABand101CDduringstart-.uporshutdownoperations.The4160voltsystemisduplicatedforUnitNo.2.,The4160voltswitchgearisarrangedineightbussections.Buses1A,1B,1C,1D,T11AandT11Deachhaveacapacityof2000amperes.BusesT11BandT1'1C,whichserveonlytransformersT11BandT11C,haveacapacityof1200amperes.Allfeederandmotorcircuitsareprotectedby:fa)Overcurrentrelayswhichtriptheassociatedbreakerintheeventofasustainedoverloadorfault.b)Instantaneousrelaysforgroundfaultandmotorcablefaults.IIDuringstart-up,thetotalunitpowerdemandissuppliedfromPreferredOffsitePowerSourceauxiliarytransformers101ABand101CD.Uponattainingoperatingconditions,andaftertheturbinegeneratorhasbeensynchronizedandconnectedtothesystem,theauxiliaryloadistransferredtounitauxiliarytransformers1ABand1CD.Thetransferiseffectedwithoutapowerinterruption,bymomentarilyfeedingthe4160voltswitchgearfromboththereserveandunittransformers.Oncethetransferiscomplete,eachturbine-generatorsuppliesitsownauxiliaries.Atripoftheunitautomaticallybtripsthenormalsourcebreakers(unitauxiliarytransformers)andtransferstheauxiliaryloadstothePreferredOffsitePowerSource.Motors400hporlargeroperatefromthe4160voltbuses.8.3-1July1997 The4160voltbuses(T11A,T11B,T11CandT11D)mayalsobefedfroma4160voltdieselgenerator,tosupplypower.totheengineeredsafetyfeaturesandothernecessaryequipmentintheeventofalossofoffsitepower.Therearetwodieselgeneratorsassociatedwitheachunit.Eachdieselgeneratorisconnectedtotwo4160voltbuses,onetobusesT11AandT11BandonetobusesT11CandT11D.Uponloss-of-powertoa4160voltbus,theassociateddieselgeneratorstartsautomatically.Thecircuitbreakerwhichnormallysuppliespowertothatbusfromthemain4160busistripped.A4160voltcircuitbreakerineachbusisautomaticallyclosedwhenitsdieselgeneratorisatspeedandratedvoltageandre-energizesthebus.Thedieselgeneratorswillthensupplyallequipmentwhichmustoperateunderemergencyconditions.ThedieselgeneratorsystemisdescribedindetailinSubchapter8.4.Thealternateoffsitepowersourcehasbeenprovided(Ref.Figures8.1-1a,8.1-1band8.1-2)bytappinga69kVtransmissionlinewhichislocatedadjacenttotheplantproperty.Thislineisrunoverheadtothe69/4.16kVtransformerandthe4160voltmainbusisrunundergroundtoconnecttobusesTllA,TllB,T11C,T11DandT21A,T21B,T21CandT21D.Thistransformerhasbeensizedtoprovidenecessarycapacitytooperatetheengineeredsafeguardsequipmentinoneunitwhilesupplyingsafeshutdownpowerintheother.Thebreakerswhichconnectthissourcetothe4160voltbusaremanuallyoperated,andareinterlockedtopreventparalleloperationwithanyother4160voltsource.8.3.2LOWVOLTAGEPOWERSYSTEMSThe600voltauxiliarysystemdistributespowerforalllowvoltagestationservicedemandsotherthanthepressurizerheaters.Thenormalsourceofpowerforthe600voltsystemisthe4160voltsystembusesviathe4160/600'lg,volttransformers.Thepressurizerheatersarefedfromthe4160voltsystembusesviatheir4160/480volttransformers.(Ref.Figures8.1-1aand8.1-1b)8.3-2July1997 Theswitchgearismetal-cladwith250voltdcoperatedaircircuitbreakers.The4160/600,volttransformersarefilledwithnon-flammableliquid.The600voltsystemisdividedintosixbussections,fourofwhich(11A,11B,11CandllD)willfeedthemot'orsupto400hp.Eachmotorover100hpisenergizedbya600voltcircuitbreaker.Motors1.00hpandlessarefedfrommotorcontrolcenters.Thepowersourceforeachofthesebusesisa2000kVA,4160/600volttransformerwhoseprimaryisconnectedtobusesTllA,TllB,T11CandT11Drespectively.Bustiebreakersbetweenbuses11AandllCandbuses11Band11Dareprovidedsoa2000kVAtransformercanfeedtwoadjacent600voltbusesshouldoneofthetransformersfail.Uponsignaltostartthedieselgenerators,the600voltbustiebreakersareopenedautomatically.Theycannotbeautomaticallyclosedafterdieselstart,thuseliminatingthepossibilityofinadvertentparalleloperationofdiesels.Anidentical600voltsystemisprovidedforUnit2.IBustiebreakers11ACand11BDareinterlockedtocloseautomaticallyonlywhenahandresetauxiliaryrelay(HEA)operatesfromprotectiverelayswhichindicateafaultina4160/600volttransformerarea.Inaddition,theclosingcircuitsofthebustiebreakersareinterlockedtoinsurethatthefaultedsection's600voltfeederbreaker(11Aletc.)isalsoopen.Anidentical600voltsystemisprovidedforUnit2.Two600voltbuses,(11BMCand11CMC)arefedfromtwoofthe4160voltbuses(1Band1C)viatwo1500kVA,4160/600volttransformers.Thesebusessupplypowertothe100hpandsmallernon-safetyrelatedmotorsfedfrommotorcontrolcentersthroughouttheplant.Abustiebreakerenablesone1500kVAtransformertofeedbothbusesshouldtheothertransformerfail.Anidentical600volesystemisprovidedforUnit2.Two(2)480voltbuses,11PHAand11PHC,arefedfromtwoofthe4.16kVbuses,T11AandTllDrespectivelyviatwo1000kVA,4160/480volttransformers,Thesebusessupplypowertothepressurizerheaterloads.Anidentical480voltsystemisprovidedforUnit2.8~3'-3July1990 8.3.3120VOLTACVITALINSTRUMENTBUSSYSTEMThe120voltacvitalinstrumentbussystemconsistsoffourseparatevitalbuseswhicharesuppliedbyfourindependent7.5kVA,singlephasestaticinverters,asshowninFigure8.3-1.Twooftheinvertersconnecttooneofthestationbatteries,theothertwoconnecttoasecondstationbattery.Eachinvertercabinetoutputmayderiveitsinputfromanyoneofthreesources:a)Theoutputofabatterychargerwhoseinputisa600voltEngineeredSafetySystem(ESS)source.b)A250voltstationbattery,shouldtheacpoweiedbatterychargerfail.c)The'outputofabalanceofplantregulatingtransformerwhoseinputisa600voltESSsourceseparatefromthebatterychargersource.Transfersbetweensourcesareautomaticandwillnotdisturbvitalbus-voltageandfrequency.Theinvertervoltageoutputisregulatedautomaticallyat118voltac+3<.Theoutputfrequencyissynchronizedwiththefrequencyoftheacsupplyvoltagewhentheacsourceisenergized.Whenfreerunning,thefrequencyismaintainedwithin0.5Hzoftheratedvalue.Thevitalbusesconstituteaveryreliableelectricalsystem.Thefourvitalbusesprovideacontinuoussourceofpowertovitalinstrumentsandequipment,independentofanymomentaryinterruptionoftheacpowersystem.Theoutputofeachinverterisconnectedtoadistributioncabinetthroughanormallyclosedcircuitbreaker.Thedistributioncabinetshave15and20amperebranchcircuitbreakers;tofeedreactorpro-8.3-4July1997 EMERGENYPOWERSYSTEMTheplantpowersystemincludesanon-site,independent,automaticallystartingemergencypowersourcewhichsuppliespowertoessentialauxiliariesifnormalorpreferredoffsitepowersourceisunavailable.Theemergencypowersourceforeachunitconsistsoftwo4160volt,3-phase,60cycle,3500kWdieselgeneratorsasshowninFigures8.1-1aand8.1-1b.ThearrangementoftheemergencydieselgeneratorsandtheirfueloilsystemisshowninFigure8.4-1.Eachdieselengineisequippedwithitsownauxiliaries.Theseincludestartingair,fueloil,lubeoil,coolingwater,intakeandexhaustsystem,voltageregulator'andcontrols.CoolingwaterisprovidedfromtheEssentialServiceWaterSystemwhileelectricpowerfoieachengine'sauxiliariesisprovidedbyitsowngenerator.ICrankingpowerforeachdieselissuppliedfromitsrespectivehighpressurestartingairsystem.Energyforstartingadieselisderivedfromtwo(2)airreceiverseachcontainingenoughhighpressurecompressedairtoprovidefortwostartingsequences.Therearetwodieselfueloilstoragetanksonsite,physicallyseparatedfromeachother.Thepipingisarrangedsothateachstoragetanksuppliesfueltooneemergencydieselgeneratorineachunit.Eachstoragetankcontainsenoughfueloiltorunoneemergencydieselgeneratoratfullloadcontinuouslyforgreaterthansevendays.Theemergencypowersourcesforthetwounitsareidenticalandareelectricallyandphysicallyisolatedfromoneanother,asarethediesel.generatorsetsforeachunit.EachdieselgeneratorisfullcapacitywithonesupplyingpowertobusesT11AandT11B,(T21AandT21BforUnit2)andtheothersupplyingpowertoT11CandT11D(T21CandT21DforUnit2)8.4-1July1997 Lossofvoltagetothe4160voltbusesaboveissensedbyundervoltagerelays.Uponsensing,masterrelaysautomaticallystarttheemergencygenerators,tripthenormalfeedcircuitbreakersforthe4160voltbusesandtripsallmotorfeederbreakersand480voltbustransformerfeederbreakersonthebuses,the600voltbustiebreaker,allnon-essential600voltmotorfeederbreakersand480voltbusbreakers.Theemergencygeneratorcircuitbreakerwhichconnectsthedieselgeneratoroutputtothe4160/600voltbussystemisautomaticallyclosedwhenratedvoltageandspeedareobtained.Thedieselgeneratorssupplypowerto600voltbuses,11A,11B,11C,and11Dthroughthe4160voltbusesT11A,T11B,T11C,andT11Drespectively.The600voltbustiebreakerscannotcloseautomaticallyafterdieselstart,thuseliminatingthepossibilityofparalleloperationofdiesels.Eachemergencygeneratorcomesuptospeedandiscapableofacceptingloadlwithin10seconds.Ifeitherdieselfailstostart,theremainingoneiiscapableofsupplyingtherequiredengineeredsafeguardload.Asafetyinjectionsignalwillalsostartthediesels.Thedieselgeneratorsaresizedat3500kWeachtoassureavailablepowertooperatethefollowingequipmentassumingahoss-of-powerconcurrentwithaloss-of-coolantaccident:~NorC<~mn~n1CentrifugalChargingPump1SafetyInjectionPump'41ResidualHeatRemovalPump1ComponentCoolingWaterPump1EssentialServiceWaterPumpRatingHorewr600400400500450NominalStartTimeAfterSafetyInjectionSignalandBlackoutsc13172125301MotorDrivenAuxiliaryFeedwaterPump500351ContainmentSprayPump1Non-essentialServiceWaterPump60025041478.4-2July1997 Themotorslistedpreviouslystartautomaticallyinsequenceasdeterminedbytheinitiatingeventafterthedieselgeneratorhasenergizedtheappropriatebuses.Inaddition,.otherplantelectricalloadsfedfromthesebusesmaybeenergizedmanuallyprovidedtheoperatingdieselgeneratorscapacityisnotexceeded.AllsafetyequipmentisduplicatedwithoneconnectedtoanAorBemergencybusandtheother.connectedtoaCorDemergencybus.Shouldonebussectionfailtoenergize,oronedieselgeneratorfailtostart,safetyismaintainedbythecontinuedintegrityoftheduplicatesystem.Allswit'chingflexibilityofthe600voltsystemaspreviouslydescribed,isalsomaintained.Ifanysafetyfeaturefailstooperateautomatically,manualoperationispossiblefromthecontrolroom.ITheemergencypowersystemandthedieselgeneratorsareequippedwithmonitorsandannunciatorstoinsureadequateinformationonsystemstatus.Suitableprotectivedevicesareprovidedtoinitiatepromptautomaticdetectionandisolationofdefectiveorfaultedequipment.Allannunciatorsandprotectivedevicesareinserviceasapplicableduringdieselgeneratortesting.Onlythedieselgeneratordifferentialprotectionandoverspeedtripsareoperativeduringactualorsimulatedemergencyconditions.Dieselgeneratortestingisfacilitatedbyloadbanks,testcircuitbreakersandswitchingequipmentthatmakeitpossibletoloadthedieselgeneratorswithouttheneedofparallelingthedieselgeneratortotheenergizedsafetybuses.Thedieselgeneratorscanbestarted,stoppedandtheirvoltageandspeedcontrolledlocallyviasubpanelsineachdieselgeneratorroom.Inthismodeofoperation,dieselgeneratorcontrolisindependentofthecontrolroom.8.4-3July1997 8.5DEINEVALUATIN'IAllplantelectricalsystemsaredesignedtoensuremaximumoperatingefficiencyandreliabilityunderallconditions.Theplantisconnectedtosevenindependentexternalcircuits,(sixviathe345kVswitchyardandoneviathe765kVswitchyard).Theswitchyardsareinterconnectedandallswitchyardequipmentisprotectedfromlightning.Transformerratiosandtapsettings,havebeenchosentoinsurethatallsafetysystemelectricalequipmentconnectedtoorpoweredfromtheauxiliarysystemisoperatedwithinvoltagerating.Duringnormaloperation,auxiliarybusvoltagesarecontrolledbythemaingeneratorautomaticvoltageregulator.manualvoltageregulationandmanuallyoperator.The'maingeneratormaybeswitchedtoIregulatedbythecontrolroomAll4160voltand600voltsafetybusesservingmotorloadshavebeenequippedwithundervoltagerelaystoalarmlowbusvoltagetotheoperatorinthemaincontrolroom.Nhileoperatingfromthepreferredoffsitepowersourcethebusvoltagesaredependentonthesystempowergrid.Inordertopreventadegradationoftheoffsitepowergridfromreducingbusvoltagebeyondequipmentratings,/specialrelayinghasbeeninstalledtodisconnecttheESSbusesandautomaticallytransferthemtotheonsiteemergencygenerators.Plantauxiliaryelectricalsystemsaredesignedsoeachbusmaybefedfrom-severalsources.Componentswhichperformduplicatefunctionsreceivetheirpowerfromdifferentbusestoensurefunctionalreliability,.Inherentinsystemdesignistheabilitytoacceptasinglecomponentfailureorfaultwithoutjeopardizingplantsafetyorcausingunduerisktopublichealthandsafety.8.5'-1July1997. RedundancyintheEmergencyPowerSystemensurestheavailabilityofadequatepowerneededtoeffectanorderlyshutdownunderaloss-of-powerconditionoraconcurrent,loss-of-power,loss-of-coolantaccident.Bothemergencydieselgeneratorsassociatedwitheachunitareprotectedfromnaturalphenomena,arecapableofsupplyingrequiredpowershouldeithergeneratorfailtostart,andcanbeoperatedlocallyindependentfromthecontrolroomshouldthatbecomenecessary.8.5-2July,1982 SmDescriinDuringplantope'ration,reactorcoolantflowsthroughtheletdownlinefromoneofthereactorcoolantloopcoldlegsonthesuctionsideofthereactorcoolantpumpandisreturnedthroughthecharginglineonthedischargesideofthereactorcoolantpumpofthesameloop.Analternatechargingconnectionisprovidedonthecoldlegofadifferent-loop.Currentoperatingpracticeincludessimultaneoususeofboththenormalandalternatechargingconnections.Thispracticehasbeenadopted,toaddressthermalstressconcernsinpipingconnectedtothereactorcoolantsystem.Anexcessletdownlineisalsoprovidedasanalternateincasethenormalletdowncircuitisinoperative.EachoftheCVCSconnectionstotheReactorCoolantSystemhasanisolatingvalve.Inaddition,acheckvalveislocateddownstreamofeachcharginglineisolatingvalve.ReactorcoolantenteringtheChemicalandVolumeControlSystemflowsthroughtheshellsideoftheregenerativeheatexchangerwhereitstemperatureisreduced.Thecoolantthenflowsthroughaletdownorificewhichreducesthecoolantpressure.Thecooled,lowpressurewaterleavesthereactorcontainmentandenterstheauxiliarybuildingwhereitundergoesasecondtemperaturereductioninthetubesideoftheletdownheatexchangerfollowedbyasecondpressurereductionbythelowpressureletdownvalve.Afterpassingthroughoneofthemixedbeddemineralizers,whereionicimpuritiesareremoved,coolantflowsthroughthereactorcoolantfilterandentersthevolumecontroltankthroughaspraynozzle.Hydrogenisautomaticallysupplied,asdeterminedbypressurecontrol,tothevaporspaceinthevolumecontroltankwhichispredominantlyhydrogenandwatervapor..Thehydrogenwithinthetankis,inturn,thesupplysourcetothereactorcoolant.Fissiongasesareremovedfromthesystembyventingthevolumeco'ntroltanktotheWasteDisposalSystempriortoacoldorrefuelingshutdown.9.2-5July,1997 ToentertheReactorCoolantSystemthecoolantflowsfromthevolumecontroltanktothechargingpumpswhichraisethepressureabovethatintheReactoCoolantSystem.Thecoolantthenentersthecontainment,passesthroughthetubesideoftheregenerativeheatexchangers,andreturnstotheReactorCoolantSystem.Aportionofthehighpressurechargingflowisfilteredandinjectedintothereactorcoolantpumpsbetweenthepumpimpellerandtheshaftsealsothatthesealsarenotexposedtoparticulatematterinthereactorcoolant.PartoftheflowcoolsthelowerradialbearingandenterstheReactorCoolantSystemthroughalabyrinthsealonthepumpsshaft.Theremainder,whichistheshaftsealleakageflow,isfiltered,cooledinthe4sealwaterheatexchangerandreturnedtothesuctionofthechargingpumps.Coolantinjectedthroughthereactorcoolantpumplabyrinthsealsreturnstothevolumecontroltankbythenormalletdownflowpaththroughtheregenerativeheatexchanger.Whenthenormalletdownrouteisnotinservice,labyrinthsealinjectionflowreturnstothesuctionofthecharg'ngpumpsthroughtheexcessletdownandseal~aterheat,exchangers.Thecationbeddemineralizer,locateddownstreamofthemixedbeddemineralizers,isusedintermittentlytocontrolcesiumactivityinthecoolantandalsotoremoveexcesslithiumwhichisformedfromthe10.7B(n,<<)Lireaction.Boricacidisdissolvedinhotwaterinthebatchingtanktoaconcenrrat"nofapproximatelytwelveweightpercent.Thebatchingtankisjacketed""permitheatingofthebatchingtanksolutionwithlowpressuresteam.Oneoffourboricacidtransferpumpsisusedtotransfer'hebatchtotheboricacidtanks.ThebatchingtankandtheboricacidtanksaresharedbyUnits1and2.Smallquantitiesofboric9.2-6July.1997 suctionofthechargingpumpsisautomaticallyalignedtotakesuctionfromtherefuelingwaterstoragetank.Themaximumrate'ofborationoftheprimarysystemwiththe75gpmdischargeofaboricacidtransferpumpdirectedtothechargingpumpsuctionis24.0ppm/minute,whi.chcompensatesforacooldownrateof6F/minuteattheendofcorelife'whenthemoderatortemperaturecoefficientismostnegative.Themaximumrateofborationwiththetwocentrifugalchargingpumpsdeliverxngwaterfromtherefuelingwaterstoragetankataconcentrationof2400ppmboronisllppm/minute.Thiscompensatesforacooldownrateof2P/minuteattheendofcorelifewhenthemoderator.temperaturecoefficientismostnegative.Bycomparison,normalcooldownratesareabout00.8F/minute.AlarmFunctions~~Thereactormakeupcontrolisprovidedwithalarmfunctionstocalltheoperator'sattentiontothefollowingconditions:a.Deviationofreactorprimary,watermakeupflowratefromthecontrolsetpoint.b.Deviationofconcentratedboricacidflowratefromcontrolsetpoint.C~Lowlevel(makeupinitiationpoint)inthevolumecontroltankwhentheprimarywatermakeupcontrolselectorisnotsetfortheautomaticmakeupcontrolmode.d.Lowlevel(betweenmakeupinitiationpointandautomaticalignmentchargingpumpsuctiontorefuelingwaterstoragetank)inthevolumecontroltanktoallowtheoperatortomanuallmanuayinitiatemakeuppriortorefuelingwaterautomaticalignment.9.2-13July1996 harinPumonrolPositiveDislacementChrinPm*Thepositivedisplacementchargingpumphasavariablespeeddriveand.supplieschargingflowtotheReactorCoolantSystem.Thespeedofthispumpcanbecontrolledmanually,orautomaticallybypressurizerlevel.DuringloadchangesthepressurizerlevelsetpointvariesautomaticallywithTavg'ompensatingpartiallyfortheexpansionorcontractionofreactorcoolantassociatedwithTchanges.Chargingpumpspeedwillnotchangerapidlyavgfwithpressurizerlevelcontrol.Ifthepressurizerlevelincreases,thespeedofthepumpdecreases;conversely,iftheleveldecreases,thespeedincreases.Ifthepositivedisplacementchargingpumpreachesthehighspeedlimit,it-becomesnecessarytoplaceacentrifugalpumpinoperationtoprovidethehigherflowcapacityandtoremovethepositivedisplacement'pumpfromservice'.Toensurethatthechargingpumpflowisalwayssufficienttomeetboththesealwaterandminimumchargingflowrequirements,thepumphasavariablecontrolstopwhichpreventspumpflowlowerthanthespecifiedminimum.Thecontrolstopisvariabletopermithigherminimumflowlimitstobesetifmechanicalsealleakageincreasesduringplantlife.CenrifualharinPmThecentrifugalpumpsareconstantspeedpumpswithflowcontrolaccomplishedbyamodulatingvalveinthepumpdischargeline.Whenthepositivedisplacementpumpisinoperation,thiscontrolvalveisinthewideopenpositionThepositivedisplacementchargingpumpsarenotcurrentlyusedforplantoperations.9.2-14July,1997 Eachdemineralizerissizedtoaccommodatethemaximumletdownflow.Onedemineralizerservesasastandbyunitforuseiftheoperatingdemineralizerbecomesexhaustedduringoperation.Thedemineralizervesselsareprovidedwithsuitableconnectionstofacilitateresinreplacementwhenrequired.Thevesselsareequippedwitharesinretentionscreen.Eachdemineralizerhassufficientcapacityforapproximatelyonecorecyclewithonepercentdefectivefuelrods.ationBdDeminralizerAflushablecationresinbedinthehydrogenformislocateddownstreamofthemixedbeddemineralizersandisusedintermittentlytocontroltheconcentrationofLiwhichbuildsupinthecoolantfromtheB(n,<<)Li,.710.7reaction.Thedemineralizeralsohassufficientcapacityto-maintainthecesium-137concentrationinthecoolantbelow1.0pci/ccwith1%defectivefuel.Thedemineralizerisusedintermittentlytocontrolcesium.IThedemineralizervesselisprovide'dwithsuitableconnectionstofacilitateresinreplacementwhenrequired.Thevesselisequippedwithresinretentionscreens.Thecationbeddemineralizerhassufficientcapacityforapproximatelyonecorecyclewithonepercentdefectivefuelrods.RactorplantFiltThefiltercollectsresinfinesandparticulatesfromtheletdownstream.Thevesselisprovidedwithconnectionsfordrainingandventing.Thenominalflowcapacityofthefilterisequaltothemaximumpurificationflowrate.Disposablefilterelementsareused.9.2-17July,1997 VolumeControlTankThevolumecontroltankisanoperatingsurgevolumecompensatinginpartforreactorcoolantreleasesfromtheReactor"oolantSystemasaresultoflevelchanges.Thevolumecontroltankalsoactsasaheadtankforthechargingpumpsandreservoirfortheleakagefromthereactorcoolantpumpcontrolledleakageseal.Overpressureofhydrogengasismaintainedinthevolumecontroltanktocontrolthehdyrogenconcentrationinthereactorcoolantat25to35ccperkgofwater(STP).Aspraynozzleislocatedinsidethetankontheinletlinefromthereactorcoolantfilter.Thisspraynozzleprovidesint.imatecontacttoequilibratethegasandliquidphases.AremotelyoperatedventvalvedischargingtotheWasteDisposalSystempermitsremovalofgaseousfissionproductswhicharestrippedfromthereactorcoolantandcol'ectedinthetank.9.2-18July,1992 harinPumsThreechar'gingpumpsareprovidedforinjectingcoolantintotheReactorCoolantSystem.Twoarecentrifugalpumpsandthethirdisapositivedisplacementpumpequippedwithvariablespeeddrive.Allpartsincontactwiththereactorcoolantarefabricatedofausteniticstainlesssteelorothermaterialofadequatecorrosionresistance.Thecentrifugalpumppackingglandsandpositivedisplacementpumpstuffingboxareprovidedwithleakoffstocollectreactorcoolantbeforeitcanleaktotheoutsideatmosphere.Pumpleakageispipedtothedrainheaderdisposal.Thepumpdesignpreventslubricatingoilfromcontaminatingthechargingflow.Theintegraldischargevalvesonthepositivedisplacementpumpactascheckvalves.rThepositivedisplacementpumpisdesignedtoprovidethefullchargingflowandthereactorcoolantpumpsealwatersupplyduringnormalsealleakageandnormalletdown.'hecentrifugalpumpshaveahigherflowcapacityandarecurrentlyusedinnormalplantoperation.Eachpumpwasdesignedtoprovidechargingandsealinjectionflowswithnormalletdownflow(75gpm)ormaximumletdownflow(120gpm),providedthattheRCScoldlegbackpressureisatnromaloperatingconditions,andprovidedthatthechargingpumpminimflowpathisisolatedduringmaximumletdownflow..ThepositivedisplacementchargingpumpisdesignedtobeusedtohydrotesttheReactorCoolantSystem.Eitherthepositivedisplacementchargingpumporacentrifugalchargingpumpcantakesuctionfromthevolumecontroltankanddischargetothenormalchargingandreactorcoolantpumpsealwaterinjectionpaths.Whenthepositivedisplacementpumpisnotused,oneofthecentrifugalchargingpumpsisoperated.TheflowpathsremainthesamebutflowcontrolisThepositivedisplacementchargingpumpsarenotcurrentlyusedforplantoperations.9.2-19July,1997 accomplishedbyamodulating~alveonthedischargesideofthecentrifugalpumps.Forperiodswhenmaximumletdownorpurificationflowisrequired,acentrifugalpumpisoperatedtoprovidethenecessaryflow.ThecentrifugalchargingpumpsalsoserveashighheadsafetyinjectionpumpsintheEmergencyCoreCoolingSystem(Chapter6).TheprimaryuseofthechemicalmixingtankisinthepreparationofcausticsolutionsforpHcontrolandhydrazineforoxygenscavenging.Thecapacityofthechemicalmixingtankisdeterminedbythequantityof;35Xhydrazinesolutionnecessarytoincreasethehydrazineconcentrationinthereactorcoolantby10ppm.ThiscapacityismorethansufficienttopermitthepreparationoftheappropriatequantityofpHcontrolchemicalsolutionfortheReactorCoolantSystem.tTheexcessletdownheatexchangerisdesignedtocooltheamountofreactorcoolantletdownequaltothenominalinjectionratethroughthereactorcoolantpumplabyrinthseal,whenthenormalletdownpathisnotusable.Theletdownstreamflo~sthroughthetubesideandcomponentcoolingwateriscirculatedthroughtheshellside.Allsurfacesincontactwithreactorcoolantareausteniticstainlesssteelandtheshelliscarbonsteel.Alltubejointsarewelded.Thesealwaterheatexchangerremovesheatfromseveralsources;thereactorcoolantpumpsealwaterreturningtothevolumecontxoltank,thereactorcoolantdischargefromtheexcessletdownheatexchangerandthecentrifugalchargingpumpby-passflow.Reactor'coolantflows9.2-20July,1994 throughthetubesandcomponentcoolingwateriscirculatedthroughtheshellside.Thetubesareweldedtothetubedirectionandundesirablecontaminationsheettopreventleakageineitherofthereactorcoolantorcomponentcoolingwater.Allsurfacesincontactwithreactorcoolantareausteniticstainlesssteelandtheshelliscarbonsteel.Theunitisdesignedtocooltheexcessletdownflow,thepumpsealwaterflowandthecentrifugalchargingpumpby-passflowtothetemperaturenormallymaintainedinthevolumecontroltank.1WaerFilterThisfiltercollectsparticulatesfromthereactorcoolantpumpsealwaterreturnandfromtheexcessletdownheatexchangerflow.ThefilterisIdesignedtopassthesumoftheexcessletdownflowandthemaximumdesignleakagefromthereactorcoolantpumpseals.Thevesselisprovidedwithconnectionsfordrainingandventing.Disposablefilterelementsareused.Se1WaterIn'ectinFilersThefiltercollectsparticulatesfromthereactorcoolantpumpsealwaterinlet.Twofiltersareprovidedinparallel,eachsizedforthemaximumdesignpumpsealflowrate.Thevesselisprovidedwithconnectionsfordrainingandventing.Disposablefilterelementsareused.BoricAcidFilrTheboricacidfiltercollectsparticulatesfromtheboricacidsolution.beingpumped.tothechargingpumpsuctionlineorboricacidblender.Thefilterisdesignedtopassthedesignflowoftwoboricacidtransferpumpsoperatingsimultaneously.Thefilterelementsaredisposable9.2-21July,1997 cartridges.Provisionsareincludedforventinganddrainingthefilter.BoriAciTnksThreeboricacidtanksaresharedbyUnits1and2.Thetotalboricacidtankagecapacityissizedtostoresufficientboricacidsolution,recoveredfromtherecycleprocessingtrainormixedinthebatchingtank,forsimultaneousrefuelingplusenoughboricacidsolutionforacoldshutdownshortlyafterfullpoweroperationisachieved.OnetankprovidessufficientboricacidsolutionforcoldshutdownevenifthemostreactiveRCCassemblyisnotinserted.Onetanksuppliesboricacidforeachreactorcoolantmakeupsystemduringnormaloperating,whilethethirdtankservesasaspare.Theconcentrationofboricacidsolutioninstorageismaintainedbetw'een11.5and12.5%byweight.Periodicmanualsamplingandcorrectiveaction,ifnecessary,insuresthattheselimitsaremaintained.Asaconsequence,measuredamountsofboricacidsolutioncanbedeliveredtothereactorcoolanttocontrolthechemicalpoisonconcentration.Thecombinationoverflowandbreatherventconnectionhasawaterloopsealtominimizevapordischargeduringstorageofthesolution.BhinTankThebatchingtank(sharedbybothunits)issizedtoholdoneweek'smakeupsupply,perunit,ofboricacidsolutionfortransfertotheboricacidtanks.Thebasisformakeupisanarbitraryreactorcoolantleakageof1/2gpmatbeginningofcorelife.Thetankmayalsobeusedforsolutionstorage.4~+9.2-22July,1997 HoduTankReciculationPumTherecirculationpumpisusedtomixthecontentsofapairofholduptanksforsamplingortotransferthecontentstoanotherpairofholduptanks.Thepumpmayalsobeusedtofillthespentfuelpittransfercanal.fromtheholduptanks.Thewettedsurfaceofthispumpisconstructedofausteniticstainlesssteel.BoicAcidEvaoratorFeedPsThethreefeedpumps(sharedbybothunits)supplyfeedtotheboricacid'vaporatortrainsfromtheholduptanks.Thecapacityofeachpumpisequaltotheboricacidevaporatorcapacity.Thenon-operatingpumpisastandbyandisavailableforoperationintheeventtheoperatingpumpmalfunctions.Thesecannedc'entrifugalpumpsareco'nstructedofausteniticstainlessstee'1.EvaoratorFeedIonExchanersFourflushableevaporatorfeedionexchangers(sharedbybothunits)removecations(primarilycesiumandlithium)andanionsfromtheholduptankeffluent.Twoofthedemineralizersareofthemixedbedtypeandtheothertwoareofthecationbedtype.Oneofeachtypeareinseriesineachprocessingtrain.Thedesignflowrateisequaltotheboricacidevaporatorprocessingrate.Thedemineralizervesselsareconstructedofausteniticstainlesssteelandareprovidedwithsuitableconnectionstofacilitateresinreplacementwhenrequired.Thevesselsareequippedwithresinretentionscreens.9.2-25July1996 EonExchnerFilrsThesefilterscollectresinfinesandparticulatesfromtheevaporatorfeedionexchangers.Thevesselsaremade,ofausteniticstainlesssteel,andareprovidedwithconnectionsfordrainingandventing.Disposablefilterelementsareused.Themaximumdesignflowcapacityisequaltotheboricacide'vaporatorflowrate.BoricAcidEvartorsAboricacidevaporatorisprovidedwhichwillprocess30gpmofdiluteradioactiveboricacidandproducedistillateandapproximately12weightpercentofconcentratedboricacidstrippedoftheradioactivegases.TheotherboricacidevaporatorandassociatedequipmenthasbeenconvertedtoaCradioactivewasteevaporatorasdescribedinChapter11.=Radioactivegasstrippingisachievedbypassingheatedfeedthroughpackedtowersemployingstrippingsteamwhichremovesnitrogen,hydrogenandfissiongasesfromthefeedandisdesignedtoreducetheinfluentgasconcentrationbyafactorof10EvaorrCondnatDminralizrsAnaniondemineralizerremovesanyboricacidcontainedintheevaporatorcondensate.TheotheraniondemineralizerhasbeenconvertedtoaradioactivewastedisposalfunctionasdescribedinChapter11.HydroxylIbasedion-exchangeresinisusedtoproduceevaporatorcondensateofhighpuritybyreleasingahydroxylionwhenaborateionisabsorbed.Facilitiesareprovidedforregenerationoftheresin.Whenregenerationisnolongerfeasible,theresinisflushedtothespentresinstoragetank.Eachdemineralizerissizedforaflowrateequaltotheevaporatorflowrate.Thedemineralizervesselismadeofall-weldedausteniticstainlesssteel,andisequippedwitharesinretentionscreen.9.2-26July,1997 CondnsaeFilter'Thefiltercollectsresinfinesandparticulatesfromtheboricacidevaporatorcondensatestream.Thevesselismadeofausteniticstainlesssteel,andisprovidedwithconnectionsfordrainingandventing.Disposablefilterelementsareused.Thedesignflowcapacityofthefilterisequaltothetotalinstalledboricacidevaporatorflowrate.MonirTanksTwosharedmonitortankspermitcontinuousoperationoftheevaporatortrain.Whenonetankisfilled,thecontentsareanalyzedandeitherreprocessed,dischargedtotheWasteDisposalSystemorpumpedtotheprimarywaterstoragetank.TheothertwomonitortankshavebeenconvertedtoaradioactivewastedisposalfunctionasdescribedinChapter11.Eachofthetankshassufficientcapacitytoholdthecondensateproducedduring12hoursofoperationfromanevaporatoratfulloutputwithonlytwolabanalysesperday.Thetanksarefittedwithanylon,rubber-coatedmembranetopreventabsorptionofoxygenbythewaterstoredinthetank.Theportionofthetankabovethemembraneisventedtotheauxiliarybuildingatmosphere.MonitorTankPumsTwosharedmonitortankpumpsdischargewaterfromthemonitortanks.Eachpumpissizedtoemptyamonitortankinapproximately3hours.Thepumpsareconstructedofausteniticstainlesssteel.9.2-27July,1997 DeboratinDeminralizersWhenrequired,twoaniondemineralizersremoveboricacidfromtheReactorCoolantSystemfluid.Thedemineralizersareprovidedforuseneartheendofacorecycle,butcanbeusedatanytimewhenboronconcentrationislow.Hydroxylbasedion-exchangeresinisusedtoreduceReactorCoolantSystemboronconcentrationbyreleasingahydroxylionwhenaborateionisabsorbed.Facilitiesareprovidedforregeneration.Whenregenerationisnolongerfeasible,theresinisflushedtothespentresinstoragetank.EachdemineralizerissizedtoremovethequantityofboricacidthatmustberemovedfromtheReactorCoolantSystemtomaintainfullpoweroperationneartheendofcorelife.CnnresFilerThefilterremovesparticulatesfromtheevaporatorconcentrates.Designflowcapacityofthefiltercanaccommodatethetotalinstalledboricacidevaporatorcapacity.Thevesselisprovidedwithconnectionsfordrainingandventing.Disposablefilterelementsareused.nnresH1dinTankThesharedconcentratesholdingtankissizedtoholdapproximatelytheproductionofconcentratesfromonebatchfrombothevaporators.Thetankissuppliedwithanelectricalheaterwhichpreventsboricacidprecipitation.9.2-28July,1997 TABLE9'-1CHEMICALANDVOLUMECONTROLSYSTEMCODEREUIREMENTSRegenerativeheatexchangerLetdownheatexchangerMixedbeddemineralizersReactorcoolantfilterVolumecontroltankSealwaterheatexchangerExcessletdownheatexchangerCationbeddemineralizerSeal~aterinjectionfiltersBoricacidfilterEvaporatorcondensatedemineralizersConcentratesfilterEvaporatorfeedionexchangersIonexchangerfilterCondensatefilterPipingandvalvesASMEIII+,ClassCASMEIIZ,ClassC,TubeSide,ASMEVIII,ShellSideASMEIII,ClassCASMEIII,ClassCAShEIII,ClassCASMEIIZ,ClassC,TubeSide,ASMEVIIZ,ShellSideASMEIII,ClassC,TubeSide,ASMEVIII,ShellSideASMEZII,ClassCASMEIII,ClassCASMEZIZ,ClassCASMEIZZ,ClassCASMEZZI,ClassCASMEIII,ClassCASMEZZZ,ClassCASMEIIZ,ClassCUSASB31.1~*ASMEIII-AmericanSocietyofMechanicalEngineers,BoilerandPressureVesselCode,SectionIIZ,NuclearVessels.~USASB31.1-CodeforPressurePiping,USAStandards,andspecialnuclearcaeswhereapplicable.RepairsandreplacementsforpipingareconductedinaccordancewithASMESectionXI.9.2-39July1990 TABLE9.2-2HEMIALANDVOLECNTRLYSTEMDEINPARAMETERSGeneralPlant"designlife,yearsSealwatersupplyflowrate:Normal,gpmMaximum,gpmSealwaterreturnflowrate:Normal,gpmMaximumgpmLetdownflow:Normal,gpmMinimum,gpmMaximum,gpmChargingflow:Normal,gpmMinimum,gpmMaximum,gpmTemperatureofletdownreactorcoolant0enteringsystem,FCentrifugalpumpminiflow,gpmTemperatureofchargingflowdirected0toReactorCoolantSystem,FTemperatureofeffluentdirectedtoholduptanks,F04.4032113129375.1205525100Unit1:518.9to543.5Unit2:511.4to547.660(each)495127(volumetricflowratesingpmarebasedupon130Fand2350psig)09.2-40July1997 Sheet-"TABLE9.2-3PRINIPALOMPONENTDATAiYReeneraiveHaExchanrNumberHeattransferrateatdesignconditions,Btu/hr1(perunit)10.3x'06~he11ideDesignpressure,psig0Designtemperature,FFluidMaterialofconstruction2485650BoratedreactorcoolantAusteniticstainlesssteelFlow,lb/hr0Inlettemperature,F0Outlettemperature,FNormalDesin37,050545290Maximum~pe~ifieion59,280545'287~H59,280547366~~b~idDesignpressure,psigoDesigntemperature.FFluidMaterialofconstruction2735650BoratedreactorcoolantAusteniticstainlesssteelFlow,lb/hro'nlettemperature,FOutlettemperature,FNormal~DsicCin27,170130495MaximumPurifiaion49,400130461~hae.u29,6401305219.2-41 Sheet¹2TABLE'9.2-3(cont'.)LedownrifieDesignpressure,psig0Designtemperature,FNormaloperatinginletpressure,psigNormaloperatingtemperature,F0Materialofconstruction24856502085(U1)2235(U2)290AusteniticstainlesssteelNumberDesignflow,lb/hrDifferentialpressureatdesignflow,psig22,230190037,0501900cpm~7/m1(perunit)2(perunit)LedownHeExchanerNumberHeattransferrateatdesignconditions(heatup),Btu/hr1(perunit)14.8x106~h11ideDesignpressure,psig0Designtemperature,FFluidMaterialofconstruction150250ComponentcoolingwaterCarbonsteelFlow,lb/hrInlettemperature,F0Outlettemperature,F.0~Nrma1203,00095125HeatupDesin492,00095125MaximumPurifiion496,000951259.2-42July1997 Sheet<<3TABLE9.2-3(cont'd.)TubeSideDesignpressure,psig0Designtemperature,FFluidNaterialofconstruction600400BoratedreactorcoolantAusteniticstainlesssteel"Flow,1b/hr0'nlettemperature,0Outlettemperature,FNormal37,050290127Heatup(Des'zn)59,280380(max.)127MaximumPur'icat'on59,280380(max.)127AixedBedDeminerali=ersNumberTvpe'Jesseldesignpressure:Internal,psigExternal,psig0'/esse1designtemperature,Resinvolume,each,ft3Vesse1.volume,each,ft3Designflowrate,gpmAinimumdecontaminationfactorasmeasuredbyI-131removal0Normaloperatingtemperature,FNormaloperatingpressure,psigResintypeAaterialofconstruction2perunit)shable20015250304312010127150CationandanionAusteniticstainlessstee'.2-43July1983 Sheetg4TABLE9.2-3(cont'd.)ReactorCoolantFiltrGeneral:NumberFlowRates,Nominal,gpmMaximum,gpmvasssi~Designpressure,psiDesignTemperature,'FMaterialofconstruction~Crrride.MaximumDesign~Pressure,psiDesignTemperature,'F.AbsoluteRetentionSize,micron1(perunit)DisposableCartridge120150200250Austeniticstainlesssteel75180s6VlumonrlTnkNumberInternalvolume,ft3Designpressure:Internal,psigExternal,psig0Designtemperature,FOperatingpressurerange,psigSpraynozzleflow(maximum),gpmMaterialofconstruction1(perunit)40075152500-60120Austeniticstainlesssteel9.2-44July,1997 SheetojTABLE9.2-3(cont'd.)BatchinTankandBatchinTankHeaterJacketContinuedInitialambienttemperatureFinalfluidtemperature,F0Heatuptime,hrsTankmaterialofconstructionJacketmaterialofconstruction321653(approximately)AusteniticstainlesssteelCarbonsteelBatchinTankAitatorNumberFluidhandled,boricacid,wt8Service0Operatingtemperature,FOperatingpressureMaterialofconstruction1(shared)12Continuous165AtmosphericAusteniticstainlesssteelExcessLetdownHeatExchanerNumberHeattransferrateatdesignconditions,Btu/hr1(perunit)4.61x106Designpressure,psig0Designtemperature,FDesignflowrate,lb/hr0--Inlettemperature,FOutlettemperature,F0ShellSide150250115,00095.135TubeSide248565012,380545195FluidComponentcoolingBoratedreactorMaterialofconstructionwaterCarbonsteelcoolantAusteniticstainlesssteel9.2-47July1989 Sheet¹8TABLE9.2-3(cont'd.)lWrHeatExchanerNumberHeattransferrateatdesignconditions,Btu/hr1(perunit)2.49x106Designpressure,psig0Designtemperature,FDesignflow,lb/hrNormaloperatingflow,lb/hr(includesminiflow)Designoperatinginlet0temperature,FDesignoperatingoutlet0temperature,F~hl1!;a>~ie15025099,50099,50095120'I~~id150250160,60036,000143127FluidComponentcoolingBoratedreactorMaterialofconstructionwaterCarbonsteelcoolantAusteniticstainlesssteelealWrFil~Genrl:NumberTypeFlowRates,Nominal,gpmMaximum,gpm1(perunit)DisposalCartridge12325V~esallDesignpressure,psiDesignTemperature,'F,Materialofconstruction200250Austeniticstainlesssteel~cartriMaximumDesign~Pressure,psiDesignTemperature,'FNominalRetentionSize,micron80200259.2-48July1997 SheetC9TABLE9.2-3(con't'd.)BoricAcidFiltergeneral:NumberDesignFlowRate,gpmV~ss1'esignpressure,psiDesignTemperature,'FMaterialofconstruction~arride.MaximumDesign,~Pressure,psiDesignTemperature,'FNominalRetentionSize,micron1(perunit)DisposableCartridge150200250Austeniticstainlesssteel15025020BoriAiTrnferPumNumberDesignflowrate,each,gpmDesignpressure,psig'esigndischargehead,ft.0Designtemperature,FTemperatureofpumpedfluid,F0AvailableNPSHat170F,ft...Materialofconstruction4(shared)Two-speedhorizontalcentrifugal75athighspeed15023525017015AusteniticstainlesssteelBoricAidBlenderNumberDesignpressure,psig0Designtemperature,FMaterialofconstruction1(perunit)150250Austeniticstainlesssteel9.2-49July1997 Sheet¹10TABLE9.2-3(cont'd.)CationBedDemineralizerNumberTypeVesseldesignpressure:Internal,psigExternal,psig0Vesseldesigntemperature,FResinvolume,ft3Vesselvolume,ft30Normaloperatingtemperature,FNormaloperatingpressure,psigDesignflow,gpmResintypeMaterialofconstruction1(perunit)Flushable20015250203012715072CationAusteniticstainlesssteelChemicalMixinTankOrificeNumberDesi,gnpressure,psig0Designtemperature,FDesignflow,gpmMaterialofconstruction1(perunit)150200AusteniticstainlesssteelBoricAcidTankOrificeNumberDesignpressure,psigDesigntemperature,F0Designflow,gpmMaterialofconstruction3(shared)150200Austeniticstainlesssteel9.2-50July1990 TABLE9.2-3(cont'd.)SheetIllDeboratinDemineralizrsNumberTypeVesseldesignpressure,psigInternalExternalVesseldesigntemperature,F0ResinVolume,ft3Vesselvolume,ft3Normalflow,gpm0Normaloperatingtemperature,FNormaloperatingpressure,psigResintypeMaterialofconstruction2(perunit)Fixedbed200152504356120127150Anion'IAusteniticstainlesssteelSalIn'onFiltersG~enr1~NumberTypeFlowRates,Nominal,gpmMaximum,gpm~Vs~1~Designpressure,psig0Designtemperature,FMaterialofconstruction~CarridMaximumDesign~Pressure,psiDesignTemperature,'FAbsoluteRetentionSize,micron1(perunit)DisposalCartridge32802735200Austeniticstainlesssteel75180s6No1ealB-PassOrifiNumberDesignpressure,psig0Designtemperature,FDesignflow,gpmDifferentialpressureatdesignflow,psi4(perunit)24852501.03009.2-51July1997 TABLE9.2-3(cont'd.)Sheet¹12HolduTanksNumberTypeCapacity,eachpair,gal.Designpressure,psigNormaloperatingpressure,psig0Designtemperature,FNormaloperatingTemperature,F0Materialofconstruction6(shared)*Horizontal,cylindrical128,00015200130AusteniticstainlesssteelRecirculationPumNumberTypeDesignflow,gpmAvailableNPSHat130F,ft.Designhead,ft.Designpressure,psigDesigntemperature,F00Normaloperatingtemperature,FMaterialofconstruction1(shared)Centrifugal50015100150200150AusteniticstainlesssteelBoricAcidEvaoratorFeedPumsNumber'ypeDesignflow,gpmDesignhead(TDH),ft.Designpressure,psig0Designtemperature,FNormalfluidtemperature,FMaterialofconstructionNPSHat115F,ft.3(shared)Canned30320150,200115Austeniticstainlesssteel15*Threepairsoftanks9.2-52July1989 TABLE9.2-3(cont'd.)Sheet¹15EvrrFedEonExhanersContinuedNormalflow,gpm0Normaloperatingtemperature,FNormaloperatingpressure,PsigResintypeMaterialofconstructionCnresFiler~Gaesal:NumberDesignFlowRate,gpm~sess1:Designpressure,psiDesignTemperature,FMaterialofconstruction~ar~rid~MaximumDesign,~Pressure,psiDesignTemperature,FNominalRetentionSize,micrononcnratesHldinTankNumber'ypeVolume,gal.DesignPressure0Designtemperat'ure,F0Normaloperatingtemperature,FMaterialofconstructiononenreHlinTankElricHarNumberHeat.transferrate,KWMaterialofconstruction3013075Cation(2of4units)MixedBed(2of4units)Austeniticstainlesssteel2(shared)DisposableCartridge40200250Austeniticstainlesssteel80200251(shared)Cylindrical,heated2,000Atmospheric250150Austeniticstainlesssteel1(shared)6.0Austeniticstainlesssteel9.2-55July1997 TABLE9.2-3(cont'd.)nnreHoldinTankTransfrPumSheet¹16NumberTypeDesignflowrate,gpmDesignhead,ft.0Designtemperature,FDesignpressure,psigAvailableNPSHat180F,ft.MaterialofconstructionInExhnerFilterGyral:NumberDesignFlowRate,gpmV<a~i~lDesignpressure,psig0Designtemperature,FMaterialofconstruction~ar~riMaximumDesign~Pressure,psiDesignTemperature,'NominalRetentionSize,micronCnensasFilr~n~ral:NumberDesignFlowRate,gpm~Vsr~l~CDesignpressure,psiDesignTemperature,FMaterialofconstruction~arr~iMaximumDesignrPressure,psiDesignTemperature,'FNominalRetentionSize,micron9.2-562(shared)Centrifugalcan4015025015010Austeniticstainlesssteel2(shared)DisposableCartridge35200250Austeniticstainlesssteel80200252(shared)DisposableCartridge35200250Austeniticstainlesssteel8020025July1997 9.3RESIDUALHEATREMOVALSYSTEM9.3.1DESIGNBASESTheResidualHeatRemovalSystemisdesignedtoremoveresidual(sensible)heatfromthecoreandreducethetemperatureoftheReactorCoolantSystemduringthesecondphaseofplantcooldown.Duringthefirstphaseofcooldown,thetemperatureoftheReactorCoolantSystemisreducedbytransferringheatfromtheReactorCoolantSystemtotheSteamandPowerConversionSystem(Chapter10).TheResidualHeatRemovalSystemisnormallyplacedinoperationapproximatelyfourhoursafterreactorshutdownwhenthepressureandtemperatureoftheReactorCoolantSystemareapproximately400psigandlessthan350F,respectively.Undernormaloperatingconditions,theResidualHeatRemovalSystemwillreducethetemperatureofthereactorcoolantto0140Fwithin20hoursfollowingreactorshutdown.ThedesignresidualheatloadisbasedontheresidualheatfractionoffullcoreMW(thermal)powerlevelthatexistsat20hoursfollowingreactorshutdownfromanextendedIIpowerrunnearfullpower.Thesecooldownratescanbeachievedwith15%RHRpumpheaddegradation.ThedesignparametersofthesystemareshowninTable9.3-2.Asasecondaryfunction,theResidualHeatRemovalSystemisusedtotransferrefuelingwaterbetweentherefuelingwaterstoragetankandtherefuelingcavityatthebeginningandendofrefuelingoperations.Inaddition,portionsofthesystemareutilizedaspartsoftheEmergencyCore.CoolingSystemandtheContainmentSpraySystems.ThesefunctionsandtheassociatedanalysesarediscussedinChapters6and14.lTheResidualHeatRemovalSystemprovidessufficientcapabilityintheemergencyoperationalmodetoaccommodateanysingleactiveorpassivefailureandstillfunctioninamannertoavoidrisktothehealthandsafetyofthepublic.I9.3-1July,1997 Thesystemdesignprecludesanysignificantreductionintheoveralldesignreactorshutdownmarginwhencoolingwaterisintroducedintothecorefordecayheatremovalorduringtheemergencycorecoolingrecirculationmodeofoperation.SystemcomponentswhosedesignpressureandtemperaturearelessthantheReactorCoolantSystemdesignlimitsareprovidedwithredundantisolationmeansandoverpressureprotectivedevices.Allsystemactivecomponentswhicharereliedupontoperformthesystemfunctionsareredundantandthesystemdesignincludesprovisionforhydrostatictestingofsystemcomponentsoapplicablecodetestpressures.CodesandClassificationsAllpipingandcomponentsoftheResidualHeatRemovalSystemaredesignedtotheapplicablecodesandsrandardslistedinTable9.3-1.'Sincetheloopcontainsreactorcoolant,whenitisinoperation,austeniticstainlesssteelpipingisemployed.I9.3.2SYSTEMDESIGNANDOPERATION~SstemDescritionand0rationTheResidualHeatRemovalSystem(showninFigure9.3-1)consistsoftworesidualheatexchangers,tworesidualheatremovalpumpsandassociatedpiping,valves,andinstrumentation.TheinstrumentationisdiscussedinChapter7.Duringsystemoperation,coolantflowsfromtheReactorCoolantSystemtotheresidualheatremovalpumps,throughthetubesideoftheresi-dualheatexchangersandbacktotheReactorCoolantSystem.TheinletlinetotheResidualHeatRemovalSystemloopbeginsatthehotlegof9.3-2July,1982 returnedtotheRCS(andthustherefuelingcanal)byusingonetrainoftheRHR/ECCSoperatingintherecirculationmode.HeatremovalfromthesystemwouldbeviatheRHRheatexchanger.IftheRCScanbepressurized,andheatremovalisviathesteamgenerators,thiscoolingpathcouldbeestablishedinafewminutes.IftheRCScannotbeIpressurizedtheshorttermcoolingpathcouldalsobeestablishedinafewminutes.Thefollow-up,long-termcoolingpathcouldbeestablishedinanotheronetotwohours.Systemandequipmentactuatedcouldinclude(dependingonthemethodofcorecoolingemployed)thecentrifugalchargingpumps,thereactorcoolantpumps,thesteamdumpvalves(eithertoatmosphereorthemaincondenser),theauxiliaryfeedwatersyst'm,thesafetyinjectionpumps,theportablepumps,therefuelingcanaldrains,andonetrainofRHR/ECCSoperatingintherecirculationmode.Thecentrifugalchargingpumps,theauxiliaryfeedwatersystem,thesafetyinjectionpumps,andtheECCSareofsafetygradedesign.9.3.4MALFUNCTIONANALYSISAfailureanalysisofresidualheatremovalpumps,heatexchangersandvalvesispresentedinTable9.3-3.9.3.5TESTSANDINSPECTIONSTheresidualheatremovalpumpflowinstrumentationiscalibratedonaperiodicbasis.Periodicvisualinspectionsandpreventativemaintenancearealsoconducted.ThesystemcomponentsaretestedinaccordancewiththerequirementsoftheapplicableeditionoftheASMEBSPVCodeSectionXIandbeginningwiththe3rd10yearintervalISIprogram,pumpandvalvetestsareinaccordancewithASME0&MStandardsandNUREG-1482(RefertoChapter6)9.3-11July,1997 936SAFETYLZMZTSASDCONDZTZONS9'.61aoMmiai.strativecontrolsatthePlanthavebeenestablishedtopermittheremovalofRHRsystemequipmentfromserviceonlytoperformabsolutelyrequiredmaintenancewhentheRHRsystemisoperatinginthedecayheatremovalmode.Zftheequipmenthastoberemovedfromservice,considerationmustbegiventoalternatedecayheatremovalmethods.bAdministrativecontrolsattheplanthavebeenestablishedrequiringthatduringtheconditionwhenthereactorcoolantsystemisdepressurizedandventedwithairinthesteamgeneratortubes,andthereactorvesselheadinplace(withorwithoutbolting),bothRBRtrainsmustbeavailablewitheitherbothemergencydieselgeneratorsoronedieselgeneratorandthealternatereservesourceavailable.9.3.6.2aaArequirementtohaveonlyoneRHRpumpinoperationwheneverthereactorcoolantsystemisdrainedtohalf-loopandvented,hasbeenincorporatedintoapplicableoperatingprocedures.Thesecondpumpwillbeinmanualstandby.Thisrequirementwillreducetotalsystemflowwhichinturnreducesthepossibilityofvortexformationandairentrainmentatthesuctionline.b.OnlyoneRHRpumpwillbeoperatedwhentheRCSisopentotheatmospheretopreventdamagingbothpumpsintheunlikelyeventthatthesuctionvalvefromtheRCSshouldclose.CiThemotor"operatedvalvesintheRHRbypasslinearenormallyclosedduringpoweroperationClosingtheseRHRcross-tievalvesmakestheminiflowcircuitsforeachRHRpumpindependenttherebyremovingthepotentialfordeadheadingtheweakerpump.9.3-12July1990 PENTFUELPOLOLINGSYSTEM9.4.1DESIGNBASESThe-SpentFuelPoolCoolingSystemshowninFigure9.4-1isdesignedtoremovefromthespentfuelpooltheheatgeneratedbystoredspentfuelIelements."Thesystemservesthespentfuelpoolwhichissharedbetweenthetwounits.Thesystemdesignallowsfortheneedtototallyunloadareactorvessel.<193fuelassemblies)formaintenanceorinspection:.tatimewhenasmanyas3420spentfuelelementsarealreadyresidinginthespentfuelstoragepool.Thesystemdesignincorporatestwoseparatecoolingtrains.Systempipingisarrangedsothatfailureofanypipelinedoesnotdrainthespentfuelpoblbelowthetopofthestoredfuelelements.Fu1andWasreDcaHaCriterion:Reliabledecayheatremovalsystemsshallbedesignedtopreventdamagetothefuelinstoragefacilitiesandtowastestoragetanksthatcouldresultinradioactivityreleasewhichresultsinunduerisktothehealthandsafetyofthepublic.TheSpentFuelPoolCoolingSystemhastwocoolingtrainscapableofhandlingtheheatloadgeneratedby3420spentfuelassembliesplusanadditional80assemblyoffload,maintainingthepooltemperaturebelow132F.0Thesystem,withbothcoolingtrainsoperating,isalsocapableofmaintainingpooltemperaturebelow144Fwhenonecompletecoreisunloaded0andstoredinthepoolinadditionto3420spentfuelassembliesalreadystored.Thesystemdesignwillkeepthemaximumbulkpoolwatertemperaturebelow160Fassumingan80assemblyoffloadwithonecoolingtrainoperational.Theminimumtimetoboilintheeventthatbothloopsofthecoolingsystem9.4-1July1997 becomeinoperableis5.74hours,assumingaworstcasemaximumheatloadandabulkpooltemperatureof144Fpriortothelossofcooling.Anyspentfuelpoolloadingscenariowhichmeetsthe160'Fpeakbulkpooltemperatureand5.74hourstoboilcriteriaisacceptable.CdsandlassificatinAllpipingandcomponentsofthesystemaredesignedtotheapplicablecodesandstandardslistedinTable9.4-1.9.4.2SYSTEMDESIGNANDOPERATIONsmDcriionhEachofthetwocoolingloopsintheSpentFuelPoolCoolingSystem(geeFigure9.4-1)consistsofapump,heatexchanger,strainer,piping,associatedvalvesandinstrumentation.Thepumpdrawswaterfromthepool,circulatesitthroughtheheatexchangerandreturnsittothepool.Componentcoolingwatercoolstheheatexchanger.Theclarityandpurityofthespentfuelpoolwaterismaintainedbypassingupto150gpmofthecoolingflowthroughafilteranddemineralizer.Skimmersareprovidedtopreventdustanddebrisfromaccumulatingonthesurfaceofthewater.=Therefuelingwaterpurificationpumpandfiltercanbeusedseparatelyorinconjunctionwiththespentfuelpooldemineralizertoregainrefuelingwaterclarityafteracrudburstineitherunit.Thiscanpreventlossoftimeduringrefuelingduetopoorvisibility.Thesystemisalsousedtomaintainwaterqual'ityintheRefuelingWaterStorageTanksofbothunits.Thespentfuelpoolpumpsuctionlinespenetratethespentfuelpoolwallabovethefuelassembliesstoredinthe.pooltopreventlossofwaterasaresultofasuctionlinerupture.Thepoolisinitiallyfilledwithwateratthesameboronconcentrationasintherefuelingwaterstoragetank.9.4-2July1997 Thereissufficientcapacityinthespentfuelpooltostoreupto3420spentfuelassembliesaboveandbeyondthespacerequiredforthecompleteunloadingofoneunit(193fuelassemblies).Ifanyofthisextrastoragecapacityisbeingutilized,itisby"cold"spentfuelassemblies.Theseareassembliesthathavebeenremovedfromthereactor(e.g.duringpreviousrefuelings)andhavebeenstoredsufficientlylongtoreducedecayheatproductiontoarelativelylowlevel.Duringnormaloperation,withtwocoolingtrainsoperatingandwithupto3420spentfuelassembliesstoredinthepool,thecoolingsystemwillomaintainthepool'temperaturebelow132F.Inthesamescenario,withonlyonecoolingtraininoperation,thepooltemperatureisanalyzedtoremain0below160F.Underthemaximumanticipatedheatloading-3420spentfuelassembliesplusonecompletecore,andonlyonecoolingtrainavailable,the0temperatureisanalyzedtoremainbelow180F.Thisscenarioisnotpartofthedesignbasisofthesystemandresultsinanunacceptablebulkpooltemperature.Withthemaximumheatloading3420spentfuelassembliesplusonecompletecoreandtwocoolingtrainsoperating,thetemperatureisanalyzedtoremainbelow144F.Ifallcoolingislostand3420spentfuelassembliesarestoredinthepool,0thetimerequiredforthespentfuelpooltoboil(approximately242F)withonecompletecoreadded,isapproximately5.74hoursassuminganinitialsteadystatebulkpooltemperatureof144F.Afailureconsiderationapplicabletobothunitsisaremoteoccurrence.However,shouldbothcoresrequireremovalwhenupto3420fuelassembliesarealreadyinthespentfuelpool,oneofthecoresisplacedinthespent.fuelpooland'-'theotherisleftinitsreactorvessel.Thecoreaddedtothespentfuelpoolbringstheinventoryupto3613assemblies,whichcanbesafelyhandled.Theothercoreisleftinplaceinitsreactorvessel,withtheresidualheatremovalsysteminservice,untilthereisspaceavailableforitinthespentfuelpool.9.4-3July1997 Thespentfuelpoolislocatedoutsidethereactorcontainment.Duringrefuelingthewaterinthepoolcanbeisolatedfromthatintherefuelingcanalbyagatevalvesothatthereisonlyaverysmallamountofinterchangeofwaterasfuelassembliesaretransferred.~ComonensSpentFuelPoolCoolingSystemcomponentdesigndataarelistedinTable9.4-2.SpentFuelPoolHearExchangersThetwospentfuelpoolheatexchangersareoftheshellandU-tubetypewiththetubesweldedtothe.tubesheet.Componentcoolingwatercirculatesthroughtheshell,andspentfuelpoolwatercirculatesthroughthetribes.Thetubesareausteniticstainlesssteelandtheshelliscarbonsteel.SpentFuelPoolPumps0Thetwospentfuelpoolpumpscirculatewaterinthespen"fuelpoolcoolingloops.Allwettedsurfacesofthepumpareausteniticstainlesssteel,orequivalentcorrosionresistantmaterial.Thepumpsareoperatedmanuallyfromalocalstation.SpentFuelPoolFilterThespentfuelpoolfilterremovesparticulatematterlargerthan5micronsfromthespentfuelpoolwater.Thefilterelementisdisposable.Thevesselshellis,austeniticstainlesssteel.SpentFuelPoolStrainerAstainlesssteelstrainerislocatedattheinletofeachfuelpoolcoolingsuctionlineforremovalofrelativelylargeparticleswhichmightotherwiseclogthespentfuelpooldemineral'izerordamageothercomponentsinthesystem.9.4-4July1997 SpentFuelPoolDemineralizerThedemineralizerissizedtopassupto150gpmofthecoolingflowtoprovideadequatepurificationofthefuelpoolwaterforunrestrictedaccesstotheworkingareaandtomaintainwaterclarity.SpentFuelPoolSkimmerAspentfuelpoolskimmerpump,strainer,filter,andtwoskimmersareprovidedforsurfaceskimmingofthespentfuelpoolwater.Thissubsystemmaintainstheneededclarityforvisualobservationsofthepoolwater.RefuelingWaterPurificationPumpThesharedrefuelingwaterpurificationpumpprovidesforcirculationofrefuelingwaterfromeithertherefuelingcanalortherefuelingwaterst'oragetankforpurification.Etswettedsurfacesareausteniticstainlesssteel.RefuelingWaterPurificationFilterTherefuelingwaterpurificationfilter"emovesparticulatematterlargerthan5micronsfromtherefuelingwater.Thefilterelementisdisposable.-SpentFuelPoolCoolingSystemValvesManualstopvalvesareusedtoisolateequipmentandmanualthrottle-valvesprovide-flowcontrol.Valvesincontactwithspentfuelpoolwaterareausteniticstainlesssteelorequivalentcorrosionresistantmaterial.9.4-5July1997 SpentFuelPoolCoolingSystemPipingAllpipingincontactwithspentfue'oolwaterisausteniticstainlesssteel.Thepipingisweldedexceptwhereflangedconnectionsareusedat'thepumps,heatexchangers,andfilterstofacilitatemaintenance.9.4.3DESIGNEVMUATIONAvailabiliandReliabiliTheavailabilityoftwo-cooling-tr~-.allowsprolonged.outages-ofeither-coolingloop.~nannasProvisionsIwheneveraleakingfuelassemblyistransferredfranthefueltransfercanaltothespentfuelstoragepool,asmallquantityoffissionproductsmayenterthespentfuelcoolingwater.Apurificationloopisprovidedforremovingthesefissionproductsandothercontaminantsfranthewater.IncidentControlThemostseriousfailureofthissystemwouldbeccmpletelossofwaterinthestoragepool.Toprotectagainstthispossibility,thespentfuelpoolcoolingconnectionsenternearthewaterlevelsothatthe\poolcannotbegravity-drained.Malfonoaion~AnalisFailureanalysesof'systempumps,heatexchangersandvalvesarepresentedinTable9.4-3.9.4-6July,1982 9.4.4TESTSANDINSPECTIONSTheactivecomponentsofthesystemareincontinuoususeduringnormalplantoperation.ThespendfuelpitpumpsareperiodicallytestedinaccordancewiththerequirementsoftheapplicableeditionoftheASMEOMStandards.Additionally,periodicvisualinspectionsandpreventivemaintenanceareconductedfollowingnormalindustrypractice.9.4-7July,1997 Pae2oE4SpentfuelpoolskimmerpumpNumberDesignpressure,psig'Designtemperature,F0TABLE9.4-2(cont'd.)1(Shared)50200Designflowrate,gpmMinimumdevelopedhead,ft.Temperatureofpumpedfluid,FFluidNPSH,ft.(available/required)Material1005075-150Sgentfuelpoolwater30/2AusteniticStainlessSteelRefuelingwaterpurificationpumpNumberDesignpressure,psigDesigntemperature,F0Designflowrate,gpmMinimumdevelopedhead,ft.FluidNPSH,Ft.(available/required)Material600200Nom.100,Max150130Refuelingwater8100gpm30/5,Q150gpm43/7AusteniticstainlesssteelSpentfuelpooldemineralizerNumberVesseldesignpressure,psigInternal-External-Vesseldesigntemperature,FDesignflowrate,gpmMaximumMinimumD/FNormalflow,gpmNormaloperatingtemperature,FNormaloperatingpressure,psigResintype9.4-10'(Shared)Flushable2001525010010100,Max150120250anionandcationJuly1995 TABLE9.4-2(Cont'd)PBCBP3i4SpentfuelpoolfilterNumberXnternaldesignpressure,psigDesigntemperature,F0Designflowrate,gpmFiltrationrequirement1(Shared)Replaceable(Celluloseaodiorglass/resin)200250Nom.100,Max.1509B%retentionofparticlesabove5micronSpentfuelpoolskimmerfilterNumberinternaldesignpressure,psigDesignTemperature,F0Designflowrate,gpmFiltrationrequirement1(Shared)Replaceable(Celluloseand/orglass/resin)20025015098%retentionofparticlesabove5micronRefuelingwaterpurificationfilterNumberInternaldesignpressure,psig0Designtemperature,FDesignflowrate,gpmParticlesizeretained,minimum,micron1(Shared)Replaceable(Celluloseand/orglass/resin)200250Nom.100,Max.150SpentfuelpoolstrainerDesignflowrate,gpmFluid9.4-112(Shared)2300BorateddemineralizedwaterJuly1997 AISf65-ZlCIDFIOIIKILIMI~II0TOCOMPONENTCOOLINGSTSTTLLSlfOWGS1$$FROMCOMPONENTCOOLINGSYSTEM.SEE'WG.5955FROIACOMPOI4ENTCOOLINCISCS'IIM.Si'lONGSOSSrTOCOMPONENTCOOLINGSYSTEM.SEEDWG.5935ROCSPENtFUELPITH'EATECCNANGERSPEKTCUELPITHCA'fEXCNANCCRRcSPCIITFLICLPIT5l\IMMtlcFILTCRVENTTOCVCSHOLDUPTANK.SEEDwc/:5932LATAlclcgSTRAINT.R$fRAINE2SPENtFUELPI'tSKIMMERPUMPITODRAINIEATERSTRAOIERSIEONG5137TODRAINHIADIRSf(OwGS137SPFNTFUELPITFILTER.RESINFKLSIUÃkIal(URIS+los)SPENTFUEC.PITPUMrlSPENtFUELPltSKIMNERSSPENTFUELPIT'$IRIÃlCal(ROISZKKSISPENTFUELPITPUMPFROMcvcsNoLo.UpTANKSRECI'RCULATIONPCIMP.SffOWG5152FIG.9.4-1REFVEUNCAWATERPUCIFKATIONPUMPUNITNTIUIR'fNFROMREFUELIHCSCAICALDRAIN.SfCDWG5937OUTSIDEREACTORCOI4TAIHMEHTINSIDEPF'2ZVENTTODRAINNEADTRME$355TI5'I57UNITNIFROMREFU(LlNGWATTRSTORAGfTAKV.SlfONG,SSCATOt>>crKCATINCIFcl>>FlccTMCISill~tWATCK\TOREFUELIHGWATER5TORAGAETANK.SEEOWGOSA+(UNITNOI)REFUELIHCCAVITYNII>>O>>I>>>>w>>ea~ww>>>>>>CIAOICI>>CIOWI>>IIICO>>.w>>>>>>IWW>>>>>>W>>>>>>I~~IAA>>~>>>>WCA>>MeAA>>WA~>>>>>>>>>>W>>VIWIW>>WAIIIll>>CICA>>>>Twsw>>>>>>w>>>>>>>>o\MM~>>>>WIIIOfulufRALITSOWATERSPENTFUELPITOENTINERALIEERTODRAWHfAOCR.Sf(Owc.$137REFUELI54CIWATERPVRIFICATIONFk.TER/TOSPENTRESIHSTORCCC'AETANK.SEEOWGSOSOiTODRAINHOADER.SffOrcG5937OIIIIRITAillQVAR%TOREFUEUHGWATERSTORAGETAHK-SEECAVOO9<'+(UNITNT2)L.CL.C,5L.C.REACTORVfSSELUHITN'TII~//rTORfACTORCOOLANTDRAINTANK.SEEDWG.3937REFUELIHGCAVITYMOIAKII>>OACAKM>>ICACOMP>>IIDONALDC.COOKSP(IITflail.PIT(O)LIIIGL(LCUI-IPITIIIS44).IL7atel2-5936nccKW>>A~I~~IIIMCMIIIIJLC,L.C.ICAI&MKKRT.AC'fORVfSEELUulrHT2I+%IIMIroREAcroRCOOLANTORAIHTANK.SffOIVG.S$37XI'-"II'M>>'NIAKIIKIKKICIAK~eIIAl/III>>CICCMA~A>>IAIOIIIAIACa>>>>KICOCAIAI---~a)LT.I997 ~.'Sght,'~ 9.5COOCSTheComponentCoolingSystem,showninPigure9.5-1,isduplicatedforeachunit.Theonlysharedpieceofequipment'sthemaintenancespareComponeatCoolingpumpinstalledintheUnit1area.Themiscellaneousservicetraincanbefedfromeithersafeguardstrain.9.5.1DESZCNUSESThesystemisdesignedto>a)removeresidualandsensibleheatfromtheReactorCoolantSystem,viatheResidualHeatRemovalSystem,duringplantshutdown;b)coolthespentfuelpoolwaterandtheletdownflowtotheChemicalandVolumeControlSystemduringpoweroperation;c)providecoolingtodissipatewasteheatfromvariousprimiryplantcomponents,andd)providecoolingforsafeguardsequipment.ThesystemdesignprovidesradiationmonitorsforthedetectionofradioactivityenteringthesystemfromtheReactorCoolantSystemanditsassociatedauxiliarysystems,andincludesprovisionsforisolationofsystemcomponents.AllpipingandcomponentsoftheComponentCoolingSystemhavebeendesignedtotheapplicablecodesand'standardslistedinTable9.5-1.Component.coolingwatercontainsacorrosioninhibitortoprotectthecarbonsteelpipingandeyxipmeat.952SYSTEMDESZCNHANDOPERhTZONTheComponentCoolingMater(CCM)SystemprovidescoolingforthefollowingheatsourcesI9'-1July,1985 SafeguardsTraih~a~b.c~d.e.ResidualHeatRemovalHeatExchangerCentrifugalChargingPumpGear,LubeOil,andSealHeatExchangersSafetyInjectionPumpSealandLubeOilHeatExchangersResidualHeatRemovalPumpSealHeatExchangersContainmentSprayPumpSealHeatExchangersMiscellaneousServicesTraina.SampleHeatExchangersb.ReciprocatingChargingPumpBearingandFluidDriveHeatExchangersc.SpentFuelPitHeatExchangerd.WasteGasCompressorandSealWaterHeatExchangerse.ReactorCoolantPumpSealWaterHeatExchangerf.LetdownHeatExchangerg.BoricAcidEvaporatorHeatExchangersh.Steam&.FeedwaterContainmentPenetrationHeatExchangersExcessLetdownHeatExchangerj.ReactorSupportCoolersk.ReactorCoolantPumpThermalBarrierHeatExchangerReactorCoolantPumpMotorUpperBearingOilCoolerReactorCoolantPumpMotorLowerBearingOilCoolern.o.15GPMWasteEvaporatorHeatExchangersContainmentAirRecirculationFanMotorCoolersCCWminimumflowrequirementsfornormaloperation,LOCAinjectionandrecirculationphasesandcooldownaretabulatedinTable9.5-2.TheCCWsystemisarrangedinthreeflowcircuits,twoparallelsafeguardsequipmenttrains,andonemiscellaneousservicestrainwhichcanbeservedbyeitherofthesafeguardstrains.9.5-2July1997 Sincetheheatistransferredfromthecomponentcoolingwatertotheservicewater,thecomponentcoolingloopservesasanintermediatesystembetweenthereactorcoolantandtheservicewater'systemandinsuresthatanyleakageof'adioactivefluidfromthecomponentsbeingcoolediscontained,withintheplant.Thesurgetankaccommodatesexpansionandcontraction,andensuresacontinuouscomponentcoolingwatersupply.Becausethistankisnormallyventedtotheauxiliarybuildingatmosphere,aradiationmonitorisprovidedinthesupplypipingtoeachcomponentcoolingheatexchanger.Thesemonitorsactuateanalarmandclosethesurgetankventvalvewhenthe,radiationlevelreachesapresetlevelabovethenormalbackground.TheComponent,CoolingSystemconsistsoftwocomponentcooling,pumps,twocomponentcoolingheatexchangers,onesurgetankandassociatedpipingandvalvestoserveeachunit.Onepumpandheatexchanger,withassociatedIequipment,formsal00%train.AnadditionalpumpisprovidedasaninstalledmaintenancespareforeitherunitandislocatedinacrosstieheaderbetweentheUnit1and2systems.Thepipingandvalvearrangementj,ssuchthatthemaintenancesparecansupplywatertoanyoneofthefourtrains,aftertheelectricalcontrolshavebeentransferredtoitfromtheaff'ectedtrain.Onepumpandoneheatexchangerarerequiredfortheremovalofresidualandsensibleheatfromthereactorcoolantsystemviatheresidualheatremovalsystemduringthe"ooldownofoneunit.Fullpoweroperationofoneunit,includingcoolingofaspentfuelpitheatexchanger,lj.kewiserequiresonepumpandoneheatexchanger.Therefore,theremainingtrainservesasastandbyandcanbeplacedinservice,ifrequired,toincreasesystemcapability.Provisionismadetoaddmakeuptothesystemthroughlinesconnectedtothesurgetank.4Theoperationofthesystemismonitoredwiththefollowinginstru-mentationn:9.5-3July,1997 a)Temperaturerecorderandalarmintheoutletlinesforeachofthecomponentcoolingheatexchangersb)Apressureandflowindicatorinthesupplylinetoeachofthecomponentcoolingheatexchangersc)Aradiationmonitorinthesupplylinestothecomponentcoolingheatexchangersd)Flowindicatorsand/oralarms,locatedinthedischargelinesofthemajorheatexchangersservedbythesysteme)Temperatureindicatorsand/ortempe'raturetestpointslocatedinthedischargelinesofthemajorheatexchangersservedbythesystem.IIntheeventofalossofcoolantaccident,onepumpandone.heatexchangerarecapableoffulfillingsystemrequirements.FollowingaLOCA,bothtrainsreceiveanautomaticstartsignal.CoolingwaterforthecomponentcoolingheatexchangersissuppliedfromtheEssentialServiceHaterSystem<Chapter9)insuringacontinuoussourceofcoolingmedium.~'.5.3COMPONENTSComponentCoolingSystemcomponentdesigndataarelistedinTable9.5-3.omnenColinHExhanerThecomponentcoolingheatexchangersareoftheshellandtubetype.4~Servicewatercirculatesthroughthetubeswhilecomponentcoolingwatercirculatesthroughtheshellside.Theshellsideisofcarbonsteelandthetubesareofarsenicalcopper.9.5-4July,1997 CoonetCoolinPumsThecomponentcoolingwaterpumpswhichcirculatewaterthroughthecomponentcoolingwaterloopsarehorizontal,centrifugalunitsandmotordriven.Themotorsreceiveelectricpowerfromnormalandemergencysources.CoonentCoolinSureTankThecomponentcoolingwatersurgetankaccommodateschangesincomponentcoolingwatervolumeandisconstructedofcarbonsteel.Inadditiontopipingconnectionsateachpump'ssuction,thetankisprovidedwithameansofaddingachemicalcorrosioninhibitortothecomponentcoolingLoop.Thetankisinternallydivided(baffled)toform,ineffect,twocompartments.ThisarrangementprovidesredundancyforapassivefailureduringrecirculationphasefollowingaLOCA.ValvesThevalvesusedinthecomponentcoolingloopareconstructedofcarbonsteelwiththeinternalsupgraded'tostainlesssteelasneededduringrepairs.Sincethecomponentcoolingwaterisnormallynotradioactive,specialprovisionstopreventLeakagetotheatmospherearenotprovided.Reliefvalvesareprovidedforlinesandcomponentsthatcouldbepressurizedbeyondtheirdesignpressurebyimproperoperationormalfunction.Thereliefvalvesonthecomponentcoolingwaterlinesdownstreamfromeachreactorcoolantpumpthermalbarrieraredesignedtorelieveexcessivepressurethatmaybecausedbyoverheating.Thereliefvalvesetpressureequalsthedesignpressureoftheparticularsegmentofpipingbetweentheupstreamcheckvalveanddownstreammotor-operateddischargevalves.9.5-5July1996 Thereliefvalvesonthecoolingwaterlinesdownstreamofthesample,excessletdown,sealwater,,spentfuelpitandresidualheat"exchangersaresizedtorelievethevolumetricexpansionoccurringiftheexchangershell'sideisisolatedandhightemperatureliquidflowsthroughthetubeside.Thesetpressureislessthanoiequaltothedesignpressureoftheshellsideoftheheatexchangers.Thereliefvalveonthecomponentcoolingsurgetankissizedtorelievethemaximumflowrateofwaterthatwouldenterthesurgetankfollowingaruptureofareactorcoolantpumpthermalbarriercoolingcoil.Thesetpressureassuresthatthedesignpressureofthecomponentcoolingsystemisnotexceeded.Thedischargeofthisvalveisdirectedtothewasteholduptank.Thecomponentcoolingwatersurgetankvent-overflowline,whichisopentotheauxiliarybuildingatmosphere,isequippedwithanair-operatedvalvethatwillcloseautomaticallyifradiationisdetectedinthesystem..Avacuumbreakervalveisalsoprovidedtopreventcollapsingthistankintheeventofalargelossofwaterinthesystem.~Pi~inThecomponentcoolinglooppipingiscarbonsteelwithflangedjointsandconnectionsatcomponentswhichmightrequireremovalformaintenance.Allotherjointsarewelded.Oneexceptiontothecarbonsteelisthatportionofthepipingbetweenthedoublecheckvalvesandthemotor-operated-dischargeisolationvalvesforthereactorcoolantpumpthermalbarriercoolingwhichisstainless,steel.9.5-6July,1997 9.5.4SYSTEMEVALUATIONAvailabiliandRlibilitThecomponentcoolingpumps,heatexchangers,andassociatedvalves,pipingandinstrumentationarelocatedoutsideofthecontainmentandarethereforeavailableformaintenanceandinspectionduringpoweroperation.Replacementofapump,ormaintenanceonaheatexchangerispracticalwhileredundantunitsareinservice.Sufficientcoolingcapabilityisprovidedtofulfillallsystemrequirementsundernormalandaccidentconditions.Adequatesafetymarginsareincludedinthesizeandrmberofcomponentstoprecludethepossibilityofacomponentmalfunctionadverselyaffectingoperationofsafeguardsequipment.IninonrolIfoutleakageoccursanywhereintheComponentCoolingSystem,includinganon-seismicIcomponentservedbytheMiscellaneousServiceTrain,detectionisaccomplishedbyfallinglevelinthesurgetank.Thesurgetankisequippedwithalowlevelalarmthatannunciatesinthecontrolroom.Levelalarmsfromthesumpstowhichthiswater<<illdrain,alsoserveasleakindicators.Theleakingportionofthesystemisthenshutdownandisolatedandthebackuptrainisputinoperation.Tominimizethepossibilityofleakagefrompiping,valves,andequipment,weldedconstructionisusedwhereverpossible.ForleakageintotheComponentCoolingSystem,ahighlevelalarmisprovidedatthesurgetank.9.5-7July,1997 Thecomponentcoolingwatercouldbecomecontaminatedwithradioactivewaterduetoaleakinanyheatexchangertubeinthechemicalandvolumecontrol,residualheat.removal,samplingorthespentfuelpoolcoolingsystemorfromaleakinacoolingcoilforthethermalbarriercooleronareactorcoolantpump.Thedetectionofthiscontaminationisbyaradiationmonitorlocatedinthecomponent.coolingwater,supplytoeachofthecomponentcoolingwaterheatexchangers.Componentcoolingwaterflowata"educedrateisautomaticallyestablishedtotheresidualheatremovalheatexchangeratthesafetyinjectionsignal.Sincethethermaldemandonthisheatexchangerisminimalatthistime,fu'1designcomponentcoolingwaterflowisnotrequired.Whenithasbeenestablishedthatbothcomponentcoolingwaterpumpshavebeenstartedfudesignflowwillbeestablishedtotheresidualheatremovalheatexchangers.ThecomponentcoolingwaterlinestoandfromthereactorsupportcoolersandtheexcessletdownheatexchangerhavevalvesoutsidethecontainmentwallwhichareautomaticallyclosedonthePhaseAisolationsignal".Zfnormalsealwatersupplyisunavailabletothereactor'coolantpumps,thecoolingwatertotheRCPthermalbarriersshouldbeavailabletoassurethattherewillbenomechanicaldamagetothepump.Therefore,isolationvalvesforthecomponentclingwaterforthisservicearenotautomaticallycloseduntilaPhaseB(containmentspray)containmentisolationsignalisreceived.Thecoolingwatersupplylinetothereactorcoolantpumpscontainstworemote-operatedvalvesinseriesoutsidethecontainmentwall.ThereturnlinesfromthethermalbarriersandRCPmotorbearingseachhavetworemote-operatedvalvesinseriesoutsidethecontainmentwall.Theseredundantvalvesassure.theabilitytoisolatethiscircuitifaleak9.5-8July,1992 isdetected.Leakdetectionisaccomplishedbyflowalarmsandindicatorsinthesupplyandreturnlinesofthiscircuit.Exceptforthenormallyclosedmakeuplineandequipmentventanddrainlines,therearenodirectconnectionsbetweenthecomponentcoolingwaterandothersystems.Theequipmentventanddrainlinesoutsidethecontainmenthavemanualvalveswhicharenormallyclosedunlesstheequipmentisbeingventedordrainedformaintenanceorrepairoperations.MalfunctionsAnalsisAfailureanalysisofpumps,heatexchangersandvalvesispresentedinTable9.5-4.9.5.5MINIMUMOPERATINGCONDiTIONSMini'mumoperatingconditionsaregiveninthetechnicalspecifications.9.5.6TESTSANDINSPECTIONSComponentsoftheComponentCoolingSystemaretestedinaccordancewiththerequirementsofASMEBEPVCodeSectionXiand,beginningwiththe3rd10yearintervalISIprogram,pumpandvalvetestsareinaccordancewithASME0&MStandardsandNUREG-1482.ContainmentisolationvalveswillbetestedperiodicallyinaccordancewithproceduresestablishedinChapter5.Periodicvisualinspectionandpreventativemaintenanceareconductedfollowingnormalindustrypractice.9.5-9July,1997 TABLE9.5-1COMPONENTCOOLXNGSYST~CODEREQUIREMENTScomponentcoolingheateachangersASMEB&PVCodeSectionVZZZ1968EditionComponentcoolingsurgetankASMEB&PVCodeSectionVZZX1968EdiitonCacqmnentcoolinglooppipingandvalvesUSASB31.101967EditionPressurecontainingcomponents(orcomparuaantsofcomponents)throughwhich'eactorcoolantcirculatesatpressuresandtemperaturessignificantlylessthanthereactoroperating'conditionsatratedpower,willcomplywiththefollowtnqcodes:a.SystemPressureVessels-ASMEBoilerandPressureVesselCode,SectionZZZ,ClassC.b-SystemValves<fittingsandPiping-USAS831.1-1967Edition.0RepairsandreplacementsforpipingareconductedinaccordancewithASMESectionIZ95-10July1990 TABLE9.5-2COMPONENTCOOLINGWATERSYSTEMMINIMUMFLOWREQUIREMENTSPERTRAIN(GPM)ServiceSafeuardnTrain'ORNALOPBRATIONLOCAINJBCTIONLOCARBCIRCULATIONRHRHeatBxchangarCCPPPHxSIPPHxRHRPPHxCTSPPHxSubtotal3131312059495031205009495031205009NiocellaneounTrainBABvaporatorSPPHx'antaGanComprenooroSampleCoolers(UI/U2)PontAccidentSamplingSystem'etdownKx'ealHaterHeatBxchangerCtmt.Pen.CoolingCBQPanHtroRCPHotoroRCPThermalBarrierHxoReactorsupportclrsSubtotal(Ul/U2)Totalo(Ul/U2)1442s29804'139/169s984s1993004041406670.5/6700.56701~5/6731~559/5959/591559/595068/506842.'5139/169s984s199300404140402248.5/2278.57257.5/7287.5Noteos1.3~5.6.Theflowsohownreflecttheuoaofoneoafeguard's'train.Theoecondsafeguardtrainmaybeplacedinserviceprovidedthenecenoaryequipmentiooperable.Singletrainoperationresultsinminimumsafeguard'orequirementsandaminimumcooldown.porLOCARecirculationonlyoneCBQfanisrequired.Ananalyoiswaoperformedwhichdeterminedacceptableperformanceatareducedflowof15gpmThe44gpmflowinbasedontheuseof3modelQC-563(10gpmaa.)and1modelQC-501(14gpm)samplecoolero.SPPHxioaooumedtobeonthenon-accidentunit.Theseflowsrepreoentthemaximumflown;theymaybeoignificantlyreducedannecessarytocontrolprocesstemperatures.TheLetdownHxioanoumedtobeinnervice.TheexcessletdownHxio'placedinoerviceiftheletdownHxinunavailable.ThaexcenoletdownHx'ndesignflowrataio230gpm.9.5-11 Typicaloftheanalysd'sperformedonsamplesareboronconcentration,fissionproductradioactivitylevel,dissolvedgascontent,andcorrosionproductconcentration.Inaddition,localsamplepointsareprovidedatvariouslocationsoutsidethereactorcontainmentforoccasionalsamplingofothersystems.Thesearenotconsideredpartofthesamplingsystem.Analyticalresultsareusedtoregulateboronconcentration,evaluatefuelelementintegrity,evaluatemixedbeddemineralizerperformance,regulateadditionsofcorrosioncontrollingchemicalsandmonitorprimaryandsecondarywaterpurity.Exceptforthesteamgeneratorblowdownsampling,theNSSisdesignedtobeoperatedmanuallyandintermittentlyforconditionsfromfullpoweroperationtocoldshutdown.Gammaspectrometricanalysesoftheliquidprimarycoolantsamplesareperformed,wherepossible,withoutfurtherpreparationofthesample.Ininstancesinvolvingseparationtechniques,thetimedelayisdependentupontheparticularcomponentof*interest.Fornormalroutineanalysesofliquidsamples,includingnon-radioactivespecies,completioncanusuallybeaccomplishedwithin4hours,Forgaseouscomponentsofprimarycoolant,liquidsamplesarecollectedinpressuresamplingvesselsanddegassedinthelaboratoryaccordingtodetailedplantprocedures.Gassamplesarethencountedutilizinggammaspectrometry.Inmostcases,thiscanbeaccomplishedwithin1'-2hoursaftersampling.TheNSSincorporatesmeansofpurgingasamplelineforasufficientperiodoftimetoensurecollectionofarepresentativesample.Localflow,temperatureandpressuremeasuringdeviceshavebeenincludedinthenuclear-samplingroom:.tomonitortheseparameters.9.6-3July,1997 Liquidsamplesarecooledanddepressurized.Temperaturesaremaintainedhighenoughaftercoolingtopreventsolidsfromprecipitatingout.Inaddition,samplerunsarekepttotheminimumpracticableandallsamplelinesandcoilsareconstructedofmaterialscompatiblewithcoolantchemistry.Thereactorcoolantsamplepointswhicharenormallyinaccessibleandwhichrequirefrequentsamplingarepermanentlypipedtoasamplingroom.Thesamplelinesoriginatinginsidethereactorcontainmenthaveremotely-operatedisolationvalvesoutsidethecontainment.Adelaycoillocatedinsidethecontainmentprovidesfordecayofshort-livedradioactiveisotopespresentinthereactorcoolantsystem'samples.Withthedelaycoil,ittakes21/2to31/2minutesforasampleincrementtoreachthesamplingroom.Thesamplesarecooledastheyflowthroughthesampleheatexchangersandthepressureisreducedbypressure-reducingneedlevalves.Thesampleflowisdirectedtothevolumecontroltankthroughapurgelineuntilsufficientvolumehaspassedtoobtainarepresentativesample.Aportionoftheflowisthendivertedtothesamplesinkwherethesampleiscollected.Reactorcoolantgassamplesandpressurizersteamsamplesarecollectedinsamplevessels.LiquidsamplesoriginatingupstreamanddownstreamoftheChemicalandVolumeControlSystemmixedbeddemineralizerpassthroughacommonsamplelineatthesamplesink.ThesamplefromthevolumecontroltankgasspaceoftheChemicalandVolumeControlSystemisalsocollectedinasamplevessel.9.6-4July,1987 9.7RCOMPONENTSANDFUELHANDLZNGSYS~~TheReactorComponentsandFuelHandlingSystemprovidesasafe,effectivemeansoftransportingandhandlingfuelfromthetimeitreachestheplantinanunirradiatedconditionuntilitleavestheplant'afterpost-irradiationcooling.Eachunithas'tsovnfuelhandlingequipmentvithinitscontainmentandanindependentfueltransfermechanism.Otherfuelhandlingequipmentusedinandaroundthespentfuelpoolisshared.Thesystemisdesignedtominimizethepossibilityofmishandlingorofmaloperationsthatcouldcausefueldamageandpotentialfissionproduct,release.TheReactorComponentsandFuelHandlingSystemsconsistbasicallyof:a)Thereactorandrefuelingcavities.b)Thetransfercanalandthespentfuelpool,whichareaccessibletooperatingpersonnel.c)TheFuelTransferSystem,whichconsistsofanundezvaterconveyor,RCCchangingfixture,neoandspentfuelhandlingcrane,manipulatorcrane,transfertube,andnewfuelelevator.d)Fuelracks.e)Polarcrane.9.7-1July,1982 9.7.1DESZGNBASESPrvnionofFultoraeCriicaliCriterion:Criticalityinthenewfuelstorageroomandthespentfuelstoragepoolshallbepreventedbyphysicalsystemsorprocesses.Suchmeansasgeometricallysafeconfigurationsshallbeemphasizedoverproceduralcontrols.Duringreactorvesselheadremoval,andwhileloadingandunloadingfuelfromthereactor,theboronconcentrationismaintainedatnotlessthanthatrequiredtoshutdownthecoretoaK,~z0.95.Refuelingwaterboronconcentrationisverifiedinaccordancewithtechnicalspecificationsurveillancerequirementstoensurethepropershutdownmargin.ThenewfuelstorageracksaredesignedsothatitisimpossibletoIinsertassembliesinotherthanthestoragecells'ntheracks,therebymaintainingseparation.ThepoisonedhighdensityspentfuelstorageracksaredesignedsuchthatnoassemblycanbeplacedanyclosertoanotherassemblythanthatrequiredbythecriticalanalysistomaintaintherequiredK,zzof<0.95.Thenewfuelstoragerackaccommodates144fuelassemblies,overtwo-thirdsofacore,andaspentfuelstoragepitaccommodates3613fuelassemblies,slightlymorethaneighteenandone-halfcores,plustherequiredspentfuelshippingcaskarea.Boratedwaterisusedtofillthespentfuelstoragepoolandmaintainitataconcentrationtomatchthatusedintherefuelingcavityandrefuelingcanalduringrefuelingoperations.(Thefuelisstoredinaverticalarraywithsufficientcenter-to-centerdistancebetweenassembliestoassurek,zz<0.95[evenifunboratedwaterisusedtofillthepool.])Thenewfuelstoragevault(NPSV)rackanalysisisbasedonmaintainingK,ffc0.95underfullwaterdensityconditionsand<0.98underlowwaterdensity(Optimummoderation)conditions.9.7-2aJuly1997 Thedesignbasisforpreventingcriticalityoutsidethereactoristhat,includinguncertainties,thereisa95percentprobabilityata95percentconfidencelevelthattheeffectiveneutronmultiplicationfactor,K,~~,oftheNFSVwhenfloodedwithfulldensitywaterwillbelessthan0.95asrecommendedbyANSI'7.3-1983andNRCguidance.Furthermore,theeffectiveneutron,multiplicationfactor,K,z~,oftheNFSVunderoptimummoderation(aqueousfoam)conditionswillbelessthan0'.98asrecommendedbyNUREG-0800.Fuelassembliesandenrichmentsupto4.55w/o'~'UcanbesafelystoredintheNFSV.Themaximum95/95K,zzdeterminedfo=fullwaterdensityfloodingis0.9495andthemaximum95/95K,zzdeterminedforoptimummoderationfloodingis0.8974.BasedonthesepreviouslycalculatedK,zzvalues,theacceptancecriteriaaremetforbothfullandoptimumwaterdensityfloodingofthenewfuelstorageracks.Amaximumnominalenrighmentof4.95weighd.percentU-235forWestinghousefueltypesisacceptableprovidedthatsufficientintegralfuelburnableabsorberispresentineachfuelassembly.storedinthenewfuelstoragerackssuchthatthemaximumreferencefuelassemblykislessthanorequalto1.4857at68oF.Anexemption'fromtherequirementsof10CFR70.24,whichrequiresacriticalitymonitoringsystemandemergencyproceduresforthehandlingandstorageofunirradiatedfuel,hasbeengranted.ThebasisfortheexemptionisthatinadvertentoraccidentalcriticalitywillbeprecludedthroughcompliancewiththeCookTechnicalSpecifications,thegeometricspacingoffuelassembliesinthenewfuelstoragefacilityandspentfuelstoragepool,andadministrativecontrolsimposedonfuelhandlingprocedures.Detailedinformationisavailableforusebyrefuelingpersonnel.Theseinstructions,safetylimitsandconditionsandthedesignofthefuelhandlingequipmentincorporatingbuilt-ininterlocksandsafetyfeatures,provideassurancethatnoincidentscanoccurduringtherefuelingoperationsthatcouldresultinahazardtopublichealthandsafety.9.7-2bJuly1997 0k, fuelprovidesaneffective,economicandtransparentradiationshield,aswellasareliablecoolingmediumforremovalofdecayheat.Boricacidisaddedtothewatertofurtherensuresubcriticalconditionsduringrefueling.Inthereactorcavity,fuelisremovedfromthereactorvessel,transferredthroughthewaterandplacedinthefueltransfersystembyamanipulatorcrane.Inthespentfuelpool,fuelisremovedfromthetransfersystemandplacedinthepoisonedhighdensitystoragerackswithalongmanualtoolsuspendedfromanoverheadhoist.Afterasufficientdecayperiod,thefuelisexpectedtoberemovedfromstorageandloadedintoacaskforremovalfromthesiteorcontinuedon-sitedrystorage,unlessitisdesiredtoretaintheminthespentfuelpool.Upto3420fuelassembliesmaybestoredandstillretaincapacitytostoreuptoanadditional193fuelassemblieswhichcorrespondstoacompleteunloadingofoneunit.NewfuelIassembliesarereceivedandeventuallytransferredtothespentfuelpoolornewfuelstoragevaultfortemporarystorageortothereactorcore.Thenewfuelstoragevaultissizedforstorageofthefuelassembliesandothernuclearfuelcomponentsnormallyassociatedwiththereplacementofupto144assembliesforeitherorbothunits.Newfuelisloadedintothereactorbyeitherloweringitintotherefuelingcanalfromthenewfuelstoragevaultandtakingitthroughthetransfersystem,bytransferringitfromthespentfuelpoolviathetransfersystemorbytransferringitdirectlyfromthereceiptcanisterviathetransfersystem.Therefuelingcavity,refuelingcanalandspentfuelstoragepoolarereinforcedconcretestructureswithseam-weldedstainlesssteelplateliners.TheseClassIstructuresaredesignedtowithstandtheanticipatedearthquakeloadingsandtopreventlinerleakageevenintheeventthereinforced--concretedevelopscracks.Reuen0eato9.7-5July1996Therefuelingoperationfollowsadetailedprocedurewhichprovidesasafe,efficientrefuelingoperation.Thefollowingsignificantpointsareassuredbytherefuelingprocedure: 1)Therefuelingwaterandthereactorcoolantcontainapproximately2,400ppmboron,oraboronconcentrationsufficienttoensurethattheKeff<0.95,whicheverprovidesmoremargintocriticality.2)Thewaterlevelintherefuelingcanalismaintainedhighenoughtokeeptheradiationlevelswithinacceptablelimitswhenthefuelassembliesarebeingremoved,fromthecore.Thiswateralsoprovidesadequatecoolingforthefuelassembliesduringtransferoperations.~3)Thehandlingofheavyloadsiscontrolledtoreducethepossibilityofdamagetonuclearfueland/orequipmentthatmayberequiredtoachievesafeshutdownandcontinueddecayheatremoval.ThisismorefullydescribedinSection12.2.Whileoneunitisbeingrefueled,therearenorestrictionsontheoperationoftheotherunit.Refuelingofoneunitdoesnotaffectthesafetyaspectsoftheothrunit.RefuliProcduPrratinThefollowinggeneraltasksarerequiredpriortorefueling:~Thereactorhasbeensubcriticalforatleast168hrsandcooledtoambientconditions.Thebasisfor168hoursofsubcriticalityisthemaximumdecayheadloadtoensureadequateheatremoval-.capabilityinthespentfuelpool.~Aradiationsurveyismade.Aprocedureisfollowedtocheckoutthefunctioningandoperabilityofradiationmonitorsimportanttorefuelingoperations.Thisincludesradiationmonitors,bothinthecontainmentandintheauxiliarybuildingspentfuelventilationsystem.9.7-6July1997 ~Thereactormissileshieldsandthecontrolroddrivemechanism(CRDM)seismicrestraintareremoved.~Thebulkheadsectionsbetweenthereactorcavityandtherefuelingcavityareremoved.~CRDMcablesandcoolingairductsaredisconnectedandremoved.~Reactorvesselheadinsulationandinstrumentleadsareremoved.Thereactorvesselheadnutsareloc=enedwiththehydraulictensioner.~Thereactorvesselheadstuds'areremoved.~Thecanaldrainholesarepluggedandthefueltransfertubeflangeisremoved..~Checkoutofthefueltransferdeviceandmanipulatorcraneisstarted.~Guidestudsareinstalledinthreestudholesandtheremainderofthestudholesareplugged.~installthereactorvesseltocavityseal.~Finalpreparationofunderwaterlightsandtoolsismade.Checkoutofmanipulatorcraneandfueltransfersystemiscompleted.~Thereactorvesselheadisunseatedandraised.~Theliftofthereactorvesselheadisstoppedatseveralspecifiedheightstocheckthat:thereactorheadisleveltheheadisnotbindingontheguidestuds9.7-7July1997 etheprotectivesleevesfortheinstrumentportsealassembliesarenot.beinglifted.At,theappropriatereactorvesselheadliftthattheRCCAdriveshaftsareclearoftheheight,acheckismadeCRDMhousings,andarenotbeingliftedwiththehead.Thereactorvesselheadisliftedtoclearandistakentoitsstoragepedestal.ThereactorcavityandrefuelingcanalarefloodedwithwatertothelevelrequiredforunlatchingtheRCCAdriveshafts.Thecontrolroddriveshaftsareunlatched.Thereactorvesselinternalsliftingrigisloweredintopositionandlatchedtothesupportplate.Thereactorcavityandrefuelingcanalarefloodedwithwatertothelevelrequiredforrefueling.Thereactorvesselupperinternalsareliftedoutofthevesselandplacedintheunderwaterstoragerack.Thecoreisnowreadyforrefueling.II~RefiinRefuelingisperformedwiththemanipulatorcrane,followingthegeneraltaskslistedbelow.~Spentfuel,whichistobedischarged,isremovedfromthecoreandplacedonthefueltransferconveyorforremovaltothespentfuelpool.~Partiallyspentfuelisrelocatedwithinthecoreormovedtothe(spentfuelpool.~New.fuelassembliesandtheremoved,partiallyspentfuelassembliestobeusedintheupcomingcycleofoperationaretransferredfromthenewfuelstoragearea,newfuelreceiptcanisterorthespentfuelpoolintotherefuelingcanalandarefbroughtthroughthetransfersystemandloadedintothecore.9.7-8'uly1997 Wheneverfuelisaddedtothereactorcore,areciprocalcurveofsource,neutronmultiplicationisrecordedtoverifythesubcriticalityofthecore.Ifatransferoftherodclustercontrol(RCC)elementsbetweenfuelassembliesisrequiredandthereactorcoreisnotcompletelyoffloadedtothespentfuelpool,theassembliescanbetakentotheRCCchangefixturetoexchangetheRCCelementsfromoneassemblytoanother.ShouldafullcoreVoffloadbeperformedduringtherefueling,theRCCexchangecanbeperformedinthespentfuelpoolwithalonghandledtool.SuchanexchangeisrequiredwheneveraspentfuelassemblycontainingRCCelementsisremovedfromthecoreandwheneverafuelassemblyisplacedinortakenoutofacontrolpositionduringrefuelingrearrangements.Efthepreviouscoredesigncontainedburnablepoisonrod(BPR)elements,thenfuelassemblies>withBPRelementsaremovedtothespentfuel,poolwheretheBPRelementisremovedusingtheburnablepoisonhandlingtool,andathimblepluggingdeviceisinsertedtorestricttheflowthroughtheguidethimbles.SuchanoperationisnecessarywheneverafuelassemblycontainingaBPRelementisto.bereinsertedintothecore.9.7-9July,1997 ReacorResemblThefollowinggeneraltasksarerequiredfollowingrefueling:~Thefueltransfercarisparke".andthefueltransfertubeisolationvalveisclosed.Thereactorvesselinternalspackageisreplacedinthevessel.Thereactorvesselinternals'iftingrigisremovedtostorage.~Thecontrolroddriveshafts'arerelatchedtoRCCelements.~Themanipulatorcraneisparked.~Theoldsealringsareremovedfromthereactorvesselhead.,thegroovescleanedandnewringsinstalled.~Thereactorvesselheadispickedupandpositionedoverthereactorvessel.~Thewaterlevelisloweredandthereactorvesselheadislowered.~Therefuelingcavityandrefuelingcanalarecompletelydrainedandtheflangesurfaceismanuallycleaned.~Thereactorvesselheadisseated.~Theguidestudsandthestudholeplugsareremoved.~Theheadstudsarereplacedandtheheadnutsareretorqued.~Thecanaldrainholesareunpluggedandthefueltransfertubeflangeisreplaced.9.7-10July1997 ~ElectricalleadsandcoolingairductsarereconnectedtotheCRDM's.Vesselheadinsulation,CRDMseismicrestraints,andinstrumentationleadsarereplaced.~Removethereactorvesseltocavityseal.~Controlroddrivesarechecked.II~Thereactormissileshieldispickedupwiththepolarcraneandreplaced.~Pre-operationaltestsareperformed.M'orStructursReiredfrRefelinRfulinvitTherefuelingcavityisareinforcedconcretestructurethatformsapoolabovethereactorwhenitisfilledwithboratedwaterforrefueling.Thecavityisfilledsothatatleast23feetofwaterismaintainedoverthereactorpressurevesselflange.Theradiationatthesurfaceofthewaterislimitedtoalevelaslowasreasonablyachievableduringthoseperiodswhenafuelassemblyistransferredoverthereactorvesselflange.ThereactorvesselflangeissealedtothereactorcavitybyaPreferredEngineeringmechanicalsealwhichpreventsleakageofrefuelingwaterfrom~therefueling-'cavity.Thissealisinstalledafterreactorcooldownbutpriortofloodingtherefuelingcavityforrefuelingoperations.9.7-11July1997 Thefloorandsidesoftherefuelingcavityarelinedwithstainlesssteel.Therefuelingcavityhasbeendesignedtobewithinthestressandstrainlimitations-oftheACICode318-63,usingworkingstressdesigncriteriaforoperatingconditions,andultimatestrengthdesigncriteriaforaccidentconditions.AnalysisoftherefuelingcavityhasbeenmadeusingtheAEPFRAMEProgram.Theheatgeneration"ratesduetoradiationintheprimaryconcretewerecalculatedbyusingapointkernelanalysistechnique.Inadditiontothereactorcoresources,thecodeconsidersthecapturegammaandinelasticneutronscatteringcontributionsoutsidethecore,andwithintheconcrete.Rflinn1Therefuelingcanalisapassagewayextendingfromtherefuelingcavitytotheinsidesurfaceofthereactorcontainment.Thecanalisformedbyitwoconcreteshieldingwallswhichextendupwardtothesameelevationasthereactorcavity.Thefloorofthecanalisatalowerelevationthanthereactorcavitytoprovidethegreaterdepthrequiredforth~fueltransfertippingdeviceandthecontrolclusterchangingfixturelocatedinthecanalThetransfertubeentersthereactorcontainmentandprotrudesthroughtheendofthecanal.Thecanalisastainlesssteellinedreinforcedconcretestructure.Therefuelingcavityislargeenoughtoprovidestoragespaceforthereactorupperandlowerinternals,thecontrolclusterdriveshafts,andmiscellaneousrefuelingtools.Therefuelingcavityandrefuelingcanalaremodeledasoneunit;asagridofbeamsandcolumns.Thestaticandthermalloadsareintroducedasinputatthenodepointsofthegridwork.Seismicloadingisenteredusingtheaccelerationresponsesdeterminedfrompreviousanalyses.Allstressesinaloadingcombinationarecombinedalgebraically.Theseismicstressesareconsider'edtobereversibleinsign,soasto'givemaximumcalculatedcombinedstresses.Therefuelingcavity/refuelingcanalareaisfurthercheckedforseismicconditionbymeansoftheFRAMEProgramdynamicroutines.9.7-12July1997 CasDoProtectioSstemTheproposed,butnotinstalled",caskdropprotectionsystem(CDPS)consistsofacircularbaseplateattachedtothebottomofthespentfuelshippingcaskandacombinationguidestructure-dashpotassembly.Theguidestructureguidesandrestrainsthefallingcaskintheeventitisdropped,andthedashpotdeceleratesthecasktoalowvelocitytoreducetheimpactloadonthefloorofthepooltoanacceptablevalue.Thefunctionofthebaseplateistoactasapistonwithinthedashpot.ITolowerthecaskintothepool,thecaskwithitsbaseplateattachedismovedfromthebaseplateattachmentareatoapositionoverthecenteroftheGDPS.Thecaskfollowsaparticularpathsothatintheeventthatthecaskisdroppedatanypointalongthispath,thecaskwillnottipintospentfuelpool.CaskDecontamnatoFacliteshOncethespentfuelshippingcaskhasbeenloaded,itwouldberemovedfromthespentfuelpoolandplacedonapadjustbeyondthepoolfordecontaminationpriortoshipment.Thepadhasastainlesssteellinedbaseandacurbisprovidedaroundittopreventthewaterandsolventsusedduringdecontaminationfromspreadingovertheauxii.iarybuildingfloor,Drainsinthefloorofthepadremovethedecontaminantstothewastedisposalsystemforprocessing.ewuetoraeNewfuelassembliesandnewcontxolrodclustersmaybestoredinanareaadjacenttothespentfuelpool,whoselocationfacilitatestheunloadingofnewfuelassembliesfromdeliverytrucks.Thisstoragevaultisdesignedtoholdnewassembliesinspeciallyconstructedracks.Atotalof144stox'agepositionsareprovided.PriorSystemwillbeinstalledwhentheneedarises.9.7-23July1996 toinitialcoreloadingforUnit1assembliesinexcessofthenumberwhichcouldbeaccommodatedinthenewfuelstorageareawerestoredinthedryspentfuelpool.ForUnit2,temporarystoragefacilitieswereestablishedadjacenttothenewfuelstoragearea.Useofthenewfuelstoragevaultisnotrequired.Newfuelmaybeloadeddirectlyintothenewfuelelevatorfromthenewfuelshippingcanister(s)ifdesired,fortemporarystorageinthespentfuelpoolorfordirecttransfertotheappropriaterefuelingcavityforinsertionintothereactor.rEimnRiredforReflinRarVeelSdTenionrStudtensionersareusedtomake"uptheheadclosurejoint.Thestudtensionerisahydraulicallyoperated(oilistheworkingfluid)deviceprovidedtopermitpreloadingandunloadingofthereactorvesselclosurestudsatcoldshutdownconditions.Studtensionerswerechoseninordertominimizethetimerequiredforthetensioning'orunloadingoperations.Threetensionersareprovidedandtheyareapplied0simultaneouslytothreestuds120apart.However,procedures'existthatallowuseofonlytwotensioners180apart,-ifnecessary.Onehydraulicpumpingunitoperatesthetensionerswhicharehydraulicallyconnectedinparallel.Thestudsaretensionedtotheiroperationalloadintwoorthreestepstopreventhighstressesintheflangeregionandunequalloadingsinthestuds.Anoverstrokealarmisprovidedoneachtensionertoalertthe-operatorthatatensionerisabouttoreachmaximumstroke.Chartsindicatingthestudelongationandloadforagivenoilpr'essureareincludedinthetransientoperatinginstructions.Inaddition,measurementsoftheelongationofthestudsareperformedaftertensioning.RrVeselHadLifinDeviceThereactorvesselheadliftingdeviceconsistsofaweldedandboltedstructuralsteelframewithsuitablerigging-toenablethecraneoperatortolifttheheadandstoreitduringrefuelingoperations.9.7-24July1997 Allcharcoalfilterequippedairhandlingunitsintheauxiliarybuildingandforthecontrolroomsareprovidedwithmanualwaterspraydelugesystemstoextinguishthecharcoalfilterfire.Continuousstripthermistorsprovidedetectionandahightemperaturealarmintheassociatedcontrolroom.detectionalarmalsosendsasignaltoopentheisolatingvalvesintheauxiliarybuildingsupplyheaderandautomaticallyopensthecharcoalfiltersystemvalve.Thecontrolvalvetotheaffectedcharcoalfilterwaterspraysystemisthenmanuallyopenedtofightthefire.Hydrogentubesoutsidethe.auxiliary.buildingare.equippedwithawaterspraydrypilotdelug'esystemsimilartothatprovidedattheoffice/servicebuildinghydrogentubes.Ionizationfiredetectionisprovidedoneachflooroftheauxiliarybuil'dingIforgeneralalarmoffireasfollows:Elev.573'.ContainmentSprayandResidualHeatRemovalpumpCubicles~(Units1and2)b.NormallyaccessiblecommonareasoftheAux'.liaryBuildingElev.587'.b.CodoTransformerRooms(Units1and2)SamplingRoom(commontobothunits)SprayAdditiveTankRoom(commontobothunits)ChargingandSafetyZn)ectionPumpCubicles(Units1and2)DruamMg/DrumStorage(coaxnontobothunits)NormallyaccessiblecommonareasoftheAuxiliaryBuildingElev.609'.AccessControl(commontobothunits)and612'.ABandCD(EL625'-10")BatteryRooms(Units1and2)c.El617'alveGallery(commontobothunits)d.NESWValveGallery(UnitsIand2)e.NormallyaccessiblecommonareasoftheAuxiliaryBuildingElev.633'.NewFuelStorageRoom(coamontobothunits)b.N-TrainBatteryRooms(Units1and2)c.NormallyaccessiblecommonareasoftheAuxiliaryBuildingI98-15July,1993 Elev.650'.ControlRoomEquipmentRooms(Units1and2)b.NormallyaccessiblecommonareasoftheAuxiliaryBuildingc.ComputerRooms(Units1and2)(HighVoltageDetectors)AcombinationofthermalandinfrareddetectorsisprovidedintheMainSteamValveEnclosuresEast,andacombinationofionizationandinfrar'eddetectorsisprovidedintheMainSteamLineAreaofUnits1and2atelevation612'.RronainmensContainmentcabletrays,reactorcoolantpumpsandHVACcharcoalfiltersareequippedwithcontinuousstripthermistorfiredetectionwhichwillannunciateinthecontrolrooms.ITheHVACcharcoalfiltershavewaterspraydelugefiresuppressionsystemsandareactuatedbythethermistordetection.Reactorcoolantpumpsareequippedwithpreactionwaterspraysystems,/manuallyoperatedfromthecontrolroomsintheeventofalubricatingoilfire.Additionally,theRCPmotorsareprovidedwithanoilspillagecontrclandretentionsystemtoprecludespreadingoilfromapressureorgravitytypeleak.Watersupplytocontainmentfireprotectionisfromthenon-essentialservicewatersystem.Lw-PresurCarbnDioxidSstemA17-toncapacitylow-pressurecarbondioxidesystem,locatedintheauxiliarybuilding,isprovidedforautomaticand/ormanualprotectionofvariousareasaslistedbelow.TheamountofCOinthesystemissufficient2toprotectthelargestsinglehazardintheplant.TheCOisstoredinan2insulatedpressurevesselhavinganautomaticallyoperatedrefrigerationsystem.OperationoftheCOsystemsisannunciatedandactivatesthecontrolroomalarmsystem.9.8-16July1997 Theareasprotectedbythelow-pressureCOsystemandthetypeoffire2detectionareasfollows:1.TurbineBuildinga)LubricatingoilstorageroomsUnitsNo.1andNo.2.Manual(backuptoAutomaticSprinklerSystem)b)MainturbineoiltankroomsUnitsNo.1andNo.2.Manual(backuptoAutomaticSprinklerSystem)2.AuxiliaryBuildinga)ABandCDemergencydieselgeneratorroomsUnitsNo.1andNo.2.Continuous-stripthermistordetection.(2zonesforeachroom)b)DieseloilpumpandvalvestationroomsUnitsNo.1andNo.2.Continuous-stripthermistordetection.c)ElectricalswitchgearroomsUnitsNo.1andNo.2.1.4.16kVswitchgearrooms.Infraredandionizationdetection.2.4.16kV/600Vtransformersandengineeredsafetyequipmentrooms.Infraredandionizationdetection.3.4.16kV/600Vtransformers,controlroddriveandinvertorrooms.Infraredandionizationdetection.d)ElectricalswitchgearroomcablevaultsUnitsNo.1andNo.2...Infraredandionizationdetection.e).AuxiliarycablevaultsUnitsNo.1andNo.2.Ionizationdetection.f)ControlroomcablevaultsUnitsNo.1andNo.2.Manual(backuptoHalon1301systems)9.8-,17July,1997 g)ElectricalpenetrationareacabletunnelsUnitsNo.1andNo.2.2u3~4.56.Quadrant1.Znfraredandionizationdetection.Quadrant2Znfraredandionizati.ondetection.Quadrant3north.Znfraredandionizationfdetection.Quadrant3middle.Znfraredandionizationdetection.Quadrant3south.Znfraredandionizationdetection.Quadrant4Znfraredandioni.zationdetection.3.Carbondioxidehosereelstationsareprovidedformanualfirefightingi.ntheauxiliarybuilding,switchgearrooms,andattheentrancestothecontrolrooms,dieselgeneratorrooms'andelectricalpenetrationareacabletunnels.ao0SetHalon1301systemsareprovidedforautomaticfireprotectioninvariousareasoftheplant.Locationsofthesesystemsincludethecontrolroom.cablevaults,thecomputerroomsandunderfloor,controlpointsfortheplantsecuritysystem,andaspreviouslymentionedytheTSCcomputeLroomyTSCconsoleroom,andTSCUPSinverterroom.Actuationisbytwcizonesofioni.zationdetectionforeachsystem.ContoRoomPPotecoThecontrolroomsareequippedwithportablefireextinguishers.Detectionsystemsof-.theionizationtypeareinstalled.Thecontrolroomsareoccupiedatalltimesbyoperatorswhohavebeentrainedinfireextinguishingprocedures.Allareasofthecontrolroomsareaccessibleforfirefighting.9.8-18July,1993i~I TheControlAirSystemincludessufficientcapacitytosupplythecontrolandinstrumentairrequirementswiththeequivalentofapproximately5minutesofcontrolairoutputafteralossofpowerincident.Additionally,certainvitalcontrolvalveswithinthecontainmentareeachequippedwitha"localreceivertankwithcapacitytoactivatethevalve.Also,thecontrolair)compressorscanbesuppliedwithelectricpowerfrombothnormalandemergencysourcessothatasupplyofcompressedaircanbemadeavailableinanyforeseeablecircumstance.TheCompressedAirSystemincludesnormalaccessoryequipmentsuchasdryers,filters,storagereceivers,after-coolers,andsafetyvalvesinadditiontothecompryssors.AdescriptivesummaryofthemajorpiecesofequipmentinthesystemisincludedinTable9.8-2.9.8.2.3DesinEvluinTheCompressedAirSystemisdesignedtoprovideareliablesourceofcompressedairforallplantuses.Duringnormaloperation,eitheroneofthetwoplantaircompressorsiscapableofsupplyingtheen"iredemandofbothplantandcontrol-instrumentairrequirementsforbothunits.Lowplantairheaderpressurewillautomaticallystartthesecondplantaircompressor.Alowercontrolairheaderpressureineitherunitwillautomaticallystartthatunit'controlaircompressor.Afurtherdegradationintheplantairheaderpressurewillcausethefourair-operatedisolationvalveslocatedintheplantairringheadertoclose,thuscompletelyisolatingthecontrolairsystemsofthetwounits.Thissystemarrangementallowseitherunit'splantairsystemtoberemovedfromserviceshouldthatbecomenecessarywhileallowingtheremainderoftheplantairsystemaswellasbothunit'scontrolairsystemtocontinueinoperation.Thisisolationcanbeachievedbyclosingthetwoair-operatedisolationvalveswhichservetheeffectedunit.9.8-23July,1997 Inthismanner,eachunitstillretains,abackupsupplyofcompressedairfromitsowncontrolaircompressor.Afailureinthecontrolairsystemofoneunitwillnotaffectthecontrolairsystemoftheotherunitbecausecheckvalvesinthecontrolairoff-takesfromtheplantairheaderpreventbackflow.9.8.2.4TessnInsionsThe"CompressedAirSystem"pre-operationaltestprocedureverifiedthesystem'sautomaticstartsequences,theisolationofthecrosstie.headersbetweeneachunitandtheinterlockswhichassureproperoperationoftheequipment.Performancetestsareperformedonboththeplantairandcontrolaircompressorsinwhichthecapacity,pressureandtemperatureofthecompressedairaremeasured.Thesurgepointfortheplantaircompressorsisdeterminedasistheloadandunloa'dpressureofthecontrolaircompressors.Individualcomponentssuchasafter-cooler's,pre-andafter-filters,andairdryersarealsotestedtoassureproperoperationofthesystem.9.8.3SERVICEWATERSYSTEMSTheServiceWaterSystemsaresharedbybc"hunits.9.8.3.1DsinBsiTheServiceWaterSystemssupplycoolingwatertovariousheatexchangersinboththeprimaryandsecondarysystemsofeachunit.Provisionsaremadetoensurehcontinuousflowofcoolingwatertothosesystemsandcomponentsnecessaryforplantsafetybothduringnormaloperationorunderaccidentconditions.Sufficientredundancyofpipingandcomponentsisprovidedtoinsurethatcoolingismaintainedtovitalservicesatalltimes.9.8-24July,1997 Servicewaterisprovidedbytwoindependentsystems,theNon-EssentialServiceWaterSystemshowninFigures9.8-4,9.8-5and9.8-6andtheEssentialServiceWaterSystemshowninFigure9.8-7.Eachsystemconsistsoffouroperationalpumps,eachwithaduplexautomaticbackwashingstrainerinitsdischargeline,andassociatedpipingandvalves.ThedesignparametersofthesecomponentsarelistedinTable9.8-3.Non-EssentialServiceWaterSstemTheNon-EssentialServiceWaterSystemsuppliescoolingwatertothefollowingcomponents.Turbineoilcoolers,aircompressors,theupperandlowercontainmentventilationunits,reactorcoolantpumpmotoraircoolers,andmiscellaneousservices,noneofwhicharerequiredforplantsafetyrelatedfunctions.Coolingrequirementsaregiven'nTable9.8-4.Threeofthefourpumpsarenormallyoperatedtoprovideservicewatertothetwounitswithonepumpheldinstandby.AllpumpsareabletotakesuctionfromeithertheUnit1orUnit2CirculatingWaterJIntakeTunnelsordischargetunnels.ThesystemdischargesintoeithertheUnit1orUnit2CirculatingWaterDischargeTunnels.Thus,Non-EssentialServiceWatersupplytobothunitsisassured,evenifthetunnelsofoneunitareoutofservice.Followingalossofalloff;sitepower,thenon-essentialservicewaterpumpsareautomaticallystartedassoonastheemergencydieselgener-atorpowerbecomesavailable.Underthoseconditionsthepumpsareprimarilyusedtosupplycoolingwatertothecontrolaircompressorsinordertorestorecontrolairservice.Allmotor-operatedvalvesonthenon-essentialwatersystemsareoperatedfromthestationbatterysystem.Cross-tiesbetweenthepumpspermitsanyonepumptosupplytheinitialblackoutrequirementsforbothunits.9.8-25July,1987 Thedischargestrainersofthepumpsareofduplexconstruction,withautomaticbackwashing.Eachstraineriseffectivelytwostrainersinonecasingwithflowdirectedthroughonehalf,whileslidegatesblockofftheotherhalf.Whenthestrainerisinserviceandifitbecomesdirtyorclogged,ahighdifferentialpressuresignalinitiatesashiftoftheslidegatesblockingtheflowtothedirtybasketanddirectingitthroughthecleanbasket.Thedirtybasketisthenbackwashedandisreadyforre-use.EsntialervieWaerSstemTheEssentialServiceWater(ESW)Systemsuppliescoolingwatertothefollowingcomponents:a.ComponentCoolingHeatExchangersb.ContainmentSprayHeatExchangersc.EmergencyDieselGeneratorsd.AuxiliaryFeedwaterSysteme.ControlRoomAirConditionersDuringnormaloperationsessentialservicewaterissuppliedcontinuouslytotheComponentCoolingHeatExchangersandtheControlRoomAirConditionerswhiletheContainmentSprayHeatExchangersandtheEmergencyDieselGeneratorsaresuppliedonlywhenthesesystemsareinoperation.Enaddition,theessentialservicewatersystemservesasback-upwatersourcestotheauxiliaryfeedwaterpumpsforusewhenthecondensatestoragetank,thenormalsupplyfortheauxiliaryfeed-watersystem,iseitheremptyorotherwiselostasasourceofsupply.Thesystem,consistsoffouressentialservicewaterpumps,fourduplexstrainersandassociatedpipingandvalves.Systempipingisarrangedintwoindependentheaders,eachservingcertaincomponentsineachunitasfollows:9.8-26July,1997 Forthedetectionoflargeleaks,theEssentialServiceWaterSystemisequippedwithflowandpressurealarmsand/orindicatorswhichwillsignifylossesfromthesupplyheaders.Inaddition,flowindicators'relocatedintheEssentialServiceWaterlinesforeachComponentCoolingandContainmentSprayHeatExchangeraswellaseachDieselGenerator.Theheadersupplyvalvesareremotelyoperated,facilitatingisolationofthesupplyheaderorpumpwhichhasfailed.9.8.3.3esvaluetoNo-setiaSeceWateSsteTheNon-EssentialServiceWaterSystemisnotrequiredforthemaintenanceofplantsafetyrelatedfunctionsintheeventofanaccident.DuringnormalDoperation,thesystemremainsfunctionalevenifoneUnf.tisoutofserviceanditscirculatingwatertunnelsaredewatered.ssetaSeeWateteTheEssentialServiceWaterSystemisdesignedtopreventanyfailureinitssystemfromcurtailingnormalplantoperationorlimitingtheabilityofthe.engineeredsafeguardstoperformtheirfunctionsintheeventofanaccident.SincetheEssentialServiceWaterSystemisrequiredforlongtermheatremoval,itis'designedtowithstandapassivefailureonalongtermbasis.Althoughitisnotadesignrequirement,theEssentialServiceWaterSystem.hassufficientcapa-citytohandleaLOCAononeunitandhotshutdownintheothercon-sideringthesinglefailurecriterion.Sufficientpumpcapacityisincludedtoprovidedesignservicewaterflowunderallpostulatedconditions.TheheadersarearrangedsuchthatevenlossofaCcompleteheaderdoesnot)eopardizeplantsafetyrelatedfunctions.Table9.8>>6givesamalfunctionanalysisofapump,valveandstrainer.9.8-29July,l994 9.8.3.4TetanInionSystemcomponentswerehydrostaticallytestedpriortostationstartupandareaccessibleforperiodicinspectionsortestsduringoperation.Electricalcomponents,switchovers,andstartingcontrolsaretestedperiodically.'heessentialservicewaterpumps,valvesandcomponentsareperiodicallytestedinaccordancewiththeapplicableeditionoftheASMEOMStandardsandNUREG-1482.Periodictestingofthenon-essentialservicewaterpumpsisconductedinaccordancewithnormalindustrypractice.9.8-30July,1997 9.99.91UXIIARBUILDGIIONSYSTEGENERALDESCRIPTIONTheauxiliarybuildingventilationsystems,sho~ninFigures9.9-1and9.9-2,consistof:a.EngineeredSafetyFeaturesVentilationSystem(oneperplantunit).b.CoFuelHandlingAreaVentilation..System,(onesharedsystem).GeneralVentilationSystems(oneperplantunitwithcrosstie).GeneralSupplySystem(oneperplantunit).Theauxiliarybuildingisbasicallyafive-levelcompartmentedstructurecontainingtheauxiliarynuclearequipmentforbothunits.Allequipmenthandlingradioactivefluidsislocatedonthelowerfourlevelsoftheauxiliarybuilding.Thefourthlevelalsohouses.thetwocontrolroomsand.theventilationequipment.Theauxiliarybuildingventilationsystemsaredesignedtomaintaintemperaturesinthevariousportionsofthebuildingwithindesignlimitsforoperationofequipmentandforpersonnelaccessforinspection,maintenanceandtestingasrequired.9.92DESIGNBASESOutsideambientconditionsusedfordesignpurposesare91Fsummerdrybulb,oo75Fsummerwetbulband-7Fwinterdrybulb.Ventilationisbasedonlimitingtemperaturesinallareatoapredeterminedmaximum,generally110P,andheatingisprovidedtomaintaina60Fminimumtemperature.9.9-1July,1992 Allventilationsystemsservingtheauxiliarybuildingareonce-throughsystems.Supplyairisintroducedtotheareasleastlikelytobecontaminated,andexhausteddirectlyfromthosewiththegreatestcontaminationpotential.Additionally,theexhaustsystemsareofgreatercapacitythanthesupplysystems,thusmaintainingtheareawithintheauxiliarybuildingpressureboundaryataslightlynegativepressure.TheauxiliarybuildingpressureboundaryistheareawithintheauxiliarybuildingwhichismaintainedatanegativepressurebytheHVACsystem,asrequiredforradiologicalcontrol.Allexhaust=airfromtheauxiliarybuildingisdirectedtotheunitvents.Thereisaventforeachunit.Eachventhasradiationdetectorsforcontinuousmonitoringoftheexhaustairduringreleasetoatmosphere.Highefficiencyparticulateairfiltercellsaredesignedtoremoveas'uchas99.97percentofsolidparticulatesof0.3micronmeandiameterinsize.Performancecharacteristicsofthecharcoaladsorbentprovideforremovalofasmuchas99.9percentofanyentrainedmethyliodideoriodinevapor.SupplyandexhaustunitroughingfiltershaveaNBSductspot"efficiency(CottrellPrecipitate)of75~.9.9.39.9.3.1SYSTEMDESCRIPTIONSEninerdafeFureVniltiTheenclosuresfortheengineeredsafetyfeaturesequipmentforbothunitsarelocatedinthelowerthreelevelsoftheauxiliarybuilding.(Thecontainmentsprayheatexchangerandresidualheatexchangerenclosuresextendupintothefourthlevelwithaccessintotheenclosuresfromthethirdlevelonly.)Theenclosuresforeachunit'ssafetyfeatureequipmentareventilatedbytwoseparateventilationsystems.Theareasservicedbythissystemare:thecontainmentspraypumpenclosures,theresidualheatremovalpumpenclosures,thesafetyinjectionpumpenclosures,theresidual9.9-2July1997 heatexchangerenclosures,thecontainmentsprayheat,exchangerenclosuresandthereciprocatingandcentrifugalchargingpumpenclosures.Figure9.9-2showsaflowdiagramoftheengineeredsafetyfeaturesventilationsystemandistypicalforthesystemservingeitherunit.Theexhaustventilationsystemiscompoedoftwo25,000cfmfan/filterexhaustunits(1standby)whichdrawairfromtheauxiliarybuildingthroughtheequipmentenclosuresviaacommonventshaftanddischargeittotheunitvent.Eachfan/filterunitiscomposedofa100%capacitybankofrollmediaroughingfilters,highefficiencyparticulateairfilters,charcoalfiltersanda100%capacityexhaustfan.(Thereisabypassonthecharcoalfilterbank.)ThisisaClassIventilationsystem,>hereforeeachfan/filterunitreceivespowerfromaseparateengineeredsafeguardssystembuswhichcanbefedfromthedieselbusandallcomponentsuptotheconnectiontotheunitventareofClassIdesign.Normally,onefan/filterunitoperatescontinuously,directingtheexhaustairthroughtherough'ingfilterandhighefficiencyparticulateairfilter,bypassingthecharcoalfilter,anddischargingittotheunitvent.Thisoperation'aidsintheairdistributionwithintheauxiliarybuilding,isolatestheatmospher'eintheenclosuresbyinducingadraftthroughtheenteringportalsandremovesanyheatgeneretedwithintheenclosures.IntheeventofaPhaseBIsolationsignalthestandbyfan/filterunitisenergizedandthecharcoalfilterbypassesareautomaticallyclosedandtheairisdirectedthroughthecharcoalfiltersinadditiontotheroughingandhighefficiencyparticulateairfilters.Therearetwoindependentairoperated,fail-closed,dampersinthecharcoalfilterbypass.Thecharcoalfilterscanbeplacedinservicewhengaseouscontaminationwarrantstheiroperation..Make-upairfortheEngineeredSafetyFeaturesVentilationSystemis,normallyprovidedbytheAuxiliaryBuildinggeneralsupply.Partialmake-upaircanbeprovidedduringalossofoff-sitepowerbythree15,000cfmfansblowingoutdoorairintothecomponentcoolingpumpareaoftheAuxiliaryBuilding(thirdlevel).,ThefansareClassIdesignandareprovidedprimarily'oruseinemergencyconditions."9.9-3July1997 powerfortwoofthe15,000cfmfanscanbeprovidedbytheUnitNo.1diesel-generators,andforthethirdbyUnitNo.2diesel-generators.Thesefansaredualpurposeduringanemergency,aidinginprovidingsafeambienttemperatureforthecomponentcoolingpumpmotorsandprovidingpartialmake-upairfortheengineeredsafetyfeaturesventilationsystem.Thecapacityofthesefansislessthantheengineeredsafetyfeaturesventilationsystemexhaustfans,thusensuringanegativepressurewithintheauxiliarybuildingpressureboundaryduringanemergency.Znadditiontotheengineeredsafetyfeaturesventilationsystemdescribedabove,theemergencydiesel-generatorrooms,theauxiliaryfeedpumpenclosures,essentialservicewaterpumpenclosures,safetyrelatedbatteryrooms,andtheelectricrelayroomsareventilatedbysystemspoweredby=heemergencydiesels.Thesesystemsincludesupplyand/orexhaustfanssized=maintaindesignambienttemperatureswithinthevariousroomsandenclosures.9.9.3.2Fu1HanlinAraVnilainsmThefuelhandlingareaisasharedfacilityanditsventilationsystemisthereforeasharedfacilityconsistingofanexhaustsystemandasupplysystem.Thefuelhandlingareaexhaustsystemiscomposedoftwo30,000cfmfans{1standby)whichdrawairthroughacommonslotexhaustplenumalongthenorthsideofthespentfuelpool,todirectitthroughafilterhousinganddischargesittotheunitNo.1vent.Thefilterassemblyiscomposedofrollmediaroughingfilters,highefficiencyparticulateairfiltersandcharcoalfilters.Thereisanormallyopenbypassonthecharcoalfilters.9.9-4July1997 TheFuelHandlingAreaSupplyAirSystemismadeupoffoursupplyunitscomposedoffans,filtersandsteamcoils.Two11,000cfmsupplyunitsarelocatedinthewesternsectionoftheFuelHandlingAreaandtwo2,500cfmsupplyunitsarelocatedintheeasternsectionoftheFuelHandlingArea.Normally,allfoursupplyunitsoperate,drawingoutsideairthroughthesteamcoilsandfiltersanddischargingitintothefuelhandlingarea.TheairisdrawnthroughtheFuelHandlingAreaintotheexhaustplenum,andpassedthroughtheroughingandhighefficiencyparticulateairfiltersbyacontinuouslyoperatingexhaustfananddischargedintotheunitno.lvent.Thecombinedcapacityofthefoursupplyunitsislessthanthatofasingleexhaustfan,thustheFuelHandlingArea,aswellastheentirespacewithintheauxiliarybuildingpressureboundary,aremaintainedataslightlynegativepressure.IIntheeventthatthearearadiationmonitorsintheFuelHandlingAreagiveahighradiationsignalthecharcoalfilterbypassdampersaretrippedclosedthuspassingtheexhaustairthroughthecharcoalfilterspriortodischargetothevent.TheFuelHandlingAreaSupplyUnitsarealsotrippedonthehighradiationsignal,thusensuringanegativepressurewithinthespace.Operationofthissystemisthesameforbothsummerandwinterconditions.DuringwinteroperationtheheatingcapacityofthesupplyunitsissupplementedbysteamunitheaterslocatedthroughouttheFuelHandlingArea.9.9.3.3nralVenilaionsemAllareasexceptthefuelhandlingareaandthesafeguardequipmentareasareexhaustedineachunitbyaventilationsystemconsistingoftwo50%capacityfanswithroughingandhighefficiencyparticulateairfilters.Thereisnostandbycapacityinthesesystems,howeverthereisanormallyclosedtie-linebetweentheUnitNo.1andUnitNo.2exhaustunits.9.9-5July1997 Normally,allfansoperateattheirdesignspeedanddirecttheirairflowthroughthefiltersandthentotheunitvent.Thisoperationinducesadraftof50to150fpmthroughtheentranceportalsofthevariousenclosuresthusremovinganyheat,vaporsorparticulatemattergeneratedwithintheenclosures.Thehot.laboratorychemicalhoodandcabinetexhaustfans,sampleroomsinkhoodandsamplerackexhaustfansalsodischargeintothissystem.Intheeventofahighradiationsignalfromtheventmonitor,thegasdecaytankdischargeisautomaticallyclosed.ThehotlaboratoryislocatedintheaccesscontrolareaoftheAuxiliaryBuilding.Theaccesscontrolareaincludesaradiationcontroloffice,aradiationprotectionsupervisor'soffice,achemicalforeman'soffice,andothermiscellaneousroomswhichhavenointernalcontaminationpotential,andahotlaboratory,chemicalcountingroom,andR.P.countingroomanddecontaminationareawhichareinapotentialcontaminationarea.Theclean,ornon-contaminatedroomsareair-conditionedbyaconventional,partialrecirculationsystemwhichalsopressurizestheseareas.Thepotentially-contaminatedareasareair-conditionedbyaonce-throughsystemwith100%freshairsupplyofconditionedairwhichisexhaustedtotheauxiliarybuildinggeneralexhaustsystem.Thesprayadditivetankroomhousesthepost-accidentsamplingsystempanelandisnormallyventilatedbytheauxiliarybuildinggeneralexhaustsys-.m.Whennecessary,thesprayadditivetankroomcanbeisolatedfromtheauxiliarybuildinggeneralexhaustsystemandventilatedbythesprayadditivetankroomfilterunitandthesprayadditivetank..room.samplefilterunit.Thesprayadditivetankroomfilterunitconsistsofaroughingfilter,HEPA"filter,charcoalabsorber,asecondHEPAfilter,andfan.Thisunitcombinesmakeupairfromoutdoorswithrecirculatedairtobothpressurizetheroomandremoveradiationcontaminationinordertomaintain9.9-6July1991 theroomhabitableforplantpersonnel,Thesprayadditivetankroomsamplefilterunitexhaustsairfromthepost-accidentsamplingsystempanelanddischargesintotheauxiliarybuildinggeneralexhaustsystemtopreventcontaminationfromthepanelbeingdischargedtotheroom.ThesprayadditivetankroomsamplefilterunitconsistsofacanisterHEPAfilter,canistercharcoalfilter,andfan.9.9.3.4GenealSu1SstemNormalmake-upairfromtheoutdoors.for.the'engineeredmafetyfeatures.ventilationsystemandtheauxiliarybuildingexhaustsystemisprovidedbytheauxiliarybuildinggeneralsupplysystem.Thissystemconsistsoffour35,000cfmcapacityfans,2ineachunit,withsteamheatingcoilsandairfilters.Thereisnostandbycapacityinthissupplyairsystem.INormallyallfansoperateattheirdesignspeedanddirectoutdoorairthroughtheairfiltersandsteamcoilsandintothebuilding.Theairisdistributedthroughoutthebuildingbythesuctionofthevariousexhaustventilatingsystems.Thesteamcoilsareactivatedduringcoldweathertotempertheincomingair.Sufficientheatisaddedtotheairflowtomaintainthegeneralambienttemperatureofthebuildingatorabovethe60Fdesignminimum.Steamand/orelectricheaterslocatedinvariousareasofthebuildingareusedtoensureasatisfactoryminimumtemperature.Allventilationsystemequipmentislocatedwithinthebuilding.Duringoperationofeitherunit,allofitsauxiliarybuildingventilationsystemswillbeactivatedto"normal"operation.Duringshutdownofeither.unit,itsauxiliarybuildingventilationsystemsmayoperateinpartorintotaltosuitmaintenance,inspection,testing,refueling,etc.conditions.9.9-7July1991 Continuouslocalmonitoringoftemperatureandradiationisprovidedatappropriateareasthroughouttheauxiliarybuildingtoalertoperatingpersonnelofanyabnormalityinthese.parameters.DESEGNEVALUATIONTheAuxiliaryBuildingVentilationandHeatingSystemscapacityisadequateforthemaintenanceofpropertemperaturesinthebuildingunderoperatingorshutdownconditionsinalltypesofweather.SufficientredundancyisincludedintheEngineeredSafetyFeaturesVentilationSystemtoinsureproperoperationofthesesystemswithoneactivecomponentoutofservice.Evenifthethree15,000cfmfansandthefourauxiliarybuildingsupplyfansarenotavailable,orifthe15,000cfmfan'sintakedampersareclosed,sufficientventilationisavailablefartheComponentCoolingWaterpumps,andsufficientairflowexistsforproperoperationoftheEmergencySafeguardsVentilationSystem.TheFuelHandlingAreaVentilationSystemhassufficientredundancytoensureproperoperationofthissystemwithoneexhaustfanoutofservice.'harcoal,roughingandhighefficiencyparticulateairfiltersontheFuelHandlingAreaExhaustSystemprovideprotectionagainstreleaseofradioactivityfromthisareatotheatmosphere.TheGeneralVentilationSystemandtheGeneralSupplySystemeachconsistoftwo50%capacitysegmentsperunitwithacrosstiebetweentheUnitNo.1andUnitNo.2exhaustsystems,thusminimizingthepossibilityoflosingthetotalsystemoftheplantunit.Undernormaloperatingconditions,thetotalexhaustflowexceedsthetotalfansupply.Therefore,allareaswithintheauxiliarybuildingpressureboundaryareatanegativepressurewithrespecttoatmosphere.Allexhaustflowsfromwithintheboundaryaredirectedtotheventoftherespectiveunitandmonitoredbeforereleasetotheatmosphere.Allsupplyairispre-filtered.ThefuelhandlingareaexhaustsystemisdirectedtotheUnit1vent.9.9-8July1997 Allsystemsarelocatedwithinthebuildingandgenerallygroupedforeaseofaccess,controlandmonitoring.9.9.4.1,TestandIneionsThesystemsareinspected,testedandbalanceduponinstallation.Particulateandcharcoalfilterswereindividuallytestedbythemanufacturerafterfabricationandagainafterinstallation.Theengineeredsafeguardventilationsystemandthefuelhandlingareaventilationsystemaretestedonaregularlyscheduledbasisoverthelifeoftheplant.Replacementfilterswillbetestedinthesamemanner.Filterbankscanbetestedforleakageanddioctylphthalatesmoketestefficiencywhileinplace,anddefectivecellsidentifiedforremovalandreplacement.9.9-9July1997 y~ RAVRA>>HI'1'IENTQTQa8KWQkI0S>6S-.Z(M~Ak'IRAITEMN~1012IS1417151920COORD.G5058.KSOSSKS~kvtCK5054JSPSEGSC)EJ7CTEJTFGEGG0757(CGC7AhA8455I.C~ILOCATION(ARtAOICCNCL05VAC)PCCONTAM114AlIONARCAL'CTDOWNHCA'TCXCHAHCCRNOTTOOLOCCONTAMINAIONIltll,kTFANtOVIPMENTROOMCATIONSCDDCMIMMIXEDBCDOCMINDCSOAATIHGDCM>>C(sftufiutttatottvkt.fCCDloutXCNANGCRNONCSSCNTIAl.0CRVICCWktCRVkVtAACADORKACIDIuJCC'IIONTANKNOFCORNS.IWASTECASCOMPAC5$0ASvotVNCCONTROLTAHA5'CALWATCAHCA'TCSCHAIICLAICONCENTRATEHOI.PING'FI.NKPtttTVHHtLMOHITCATANKS\'OfLABORATORYHOOPCXHAVSTHOTLABORA'FORTCABINLT'CXHAUSTBAILERDRUMSTCAAC'c(()roJMMIucaJLAITEACN-OFCONH5.21b5'Z2CO23C8-IZ4BbZSCb'ZGCbLOCAT~'I0N(AACAOAtHCLOSUAL)SftutACSIASTCAAC'LlkNKwk)ltcvattacKkct(zcpu)SANPLaltcROOM'SAMPl.tSINKHoopSPRAYADDITIVE.TANX5AMtLT.AOOIAAACKCWASlt[VAP.FLCDFILTCAITEMNt444547LOCATION(AREAORENCLOSURE)COOR0.Cou>>5.H9(J9HOLD-VPTANKSIDORICAC1PCVAPFCCPPVMPSEGN2)ATN3(AZHOTLIACNINCSHOPNN4NLINANOANCPVM$MCONIAINMCNIt)SAtttcrVtM1'11a1AMot)fROOMPVAGSTltttfO<<C11atA2705250529t8KS250E5444231Eb(LSZ32Eb(LSWASTEHPLO'VtTANKAtfutvrcWATLAr)tttttlttlaafCotttrfttftI)litNta.>>N(ctflLTCRVCLVCCPCAATIHCCALL(ATBOA)CACIDEVAPORATOR3'5Fb(LS2CLIC.PENETRATION54Fb(XS255F8(xs50J54HS2PlttTUHH'LL445DLC*TTANr,AattRCACTOACOOLANTrltltR~ittTOHHCL57P9EKSz5SG95x9ZREACTORCOO)A>>lPRAINTI.HCPUMP'SVM'PTAAL(PVMtAVX.BLOC.SVMP39J940H941Dt4'2DG15ttulFVELPITPUMPSH'EV4FUELSTORAC'EROOM4950515253555)ClN3(ASN3(A3A/4A/7CltDI)Cjt(WI2CICCI10)1Orf*utaktuFafV51M.SttINCStairIAtVaIIONt.1'IatCTIktuAC~C4IOAIVttNkrVNhkvTCMOwcIt'11alAIIOTLABORATORYHCCDtXAAVSTACCISSCCNIROLARTIaIOAt)$rLOCXtPER)OH>>IVDICCMTAHTIATOHAREAHOTI.SBORATORTHOODBYPASSATOHKABSORPTIOtlIIOODVCNTNSFROalLIIIIORVAOOM~SGtaaaakaaiaMtacaaLAONOtvRioak0<<stlalattaatataSa<<raVtatat,ka<<>tv<<OctratataCllap.tortvt.V.tat)taoQZIMIIKII.IMIVultNttVE.NTraQCS~Q9I0VALVakSYMBOLSRECI5TERWITHOPPOSEOBLtptDAMPEILI~CHARCOALTILTtRPaHCPAF)L'ltRROVGHIHGF)LTIR)ItAIV)GCOILCOOL)HCCOI).ROLLTYPEPR'EItt.TERDAMPERNORMALLYCLOSE0CSAVTOilPAMPtR(t)AVLBLOCCS>>MISTVDITILATICH)P>>T$04)ASTCCASOCCAVrkNP,VCMTSCCOakc$45405QSQ707Q4QGQGQS05Q7Q7QQSQSQSCCICC~aZI2SHVTK)FFPAMPER(t)AUXBLDGCXHAVSTVCNTILATIOI4VHIT5DAMPERNORMALLYOPENBACKDRAFTDAMPER5<<CTCAOktatttc5Pk<<rt4vAAICAKIAMK3PAtvOS.'9CI~I).)~lfI~SQITONaktatApaklCAat765QCIQlQSQQSCQ>>QMQSC83QRQR0)CILQt5))51QQSFIG.9.9-1-QISQtoQtoCECE)QMutFAcpl~NTOCASk<<Al,VWlCAICA'5VAN0QtoQOQoQOZQtuzraotlAutoCASAIOAN'ICCRCAAASAIS<<avSrATto<<CQ>>'Cvk<<<<ACKACC~SVMPTAIOKSSitFaopaTAN<vctaTRAOaATaotSAIS<<IaNCSVSTC,PS,Q)4Q)SZC<<tart<<ACAP<<atata<<<<tvrQ).Q)iQ)l.Qts(i)6Q).Q)SOatlOtkkl)MA'tk)4fvtlavat<<TAR'kaaT~IWOOPSAM<<Maaa~~pMktrptkpotclpctopvN<<vaCoatptIata<<p<<tttapt<<vvw<<ta<<tppt~~t<<a~.r~t<<<<k~PP<<\aAvata<<caCo<<.t<<apavpMA<<apI\<<Pt<<<<V~1tHtMVDONALDC.COOKNtfklkkIMPfAVXILISPTSVILOII)Gv(HI(LAIIGNttt(IS44).ILtS)E(f.lIOFIMCN12-594Sfall<C>>aCI0II~~lI~~MalItJItal<<lNKNMSIMIt4~u)wastltltttrfCktr~AttkarrtakktcNapvvtotauatkattaKkr~KICNKRIO~ J(y~f>>pypt~P 9.10ONTROLROOMVENTILATIONSYSTEM9.10.1GENERALDESCRIPTIONThecontrolroomsforUnitNo.1andUnitNo.2arebothphysicallylocatedonEl633'"oftheauxiliarybuildingwithnormalaccessfromtheturbinebuilding.Controlroomairconditioningequipmentisinanequipmentroomdirectlyabovethecontrolroom.Bothcontrolroomsareenclosedina,missileandtornadoproofstructure.ThecontrolroomventilationsystemisshowninFigure9.10-1.9.10.2DESIGNBASESThecontrolroomairconditioningsystemisdesignedtomaintainroomtemperaturewithinlimitsrequiredforoperation,maintenanceandtesting'ofplantcontrolsanduninterruptedsafeoccupancyduringpost-accidentshutdown.Thecontrolroomairconditioningsystemisdesignedtomaintaina0temperatureof75Fdrybulband25-80percentrelativehumidityundernormaloperatingconditions.Thedesignisbasedonoutsidetemperaturesranging000from-7Fwinterdrybulbto91Fsummerdrybulband75Fsummerwetbulb.Thesystemoperatesduringnormaloremergencyconditionsasrequired.Conditionedairissuppliedtothecontrolroombyeitheroftwofull-capacity15,000CFHair-handlingunits(onestandby).Eachunitincludesaroughingfilter,mediumefficiencyfilter,chilled-watercoil,andafan.Downstreamofeachairhandlerintheductsystemisanelectricblastcoilheaterandanelectrichumidifier.Eachunitisprovidedwithchilledwaterfromanassociated30-tonliquid-chiller.Eachair-handler/liquid-chillercombinationisindependentlycapableoffulfillingdesignobjectives.CondenserwaterforeachliquidchilleristakenfromadifferentheaderoftheEssential9.10-1July,1997 servicewatersystem.TheairconditioningliquidchillerpackagewasnotdesignedtoseismicClass1standards.Foremergencycoolingtheessentialservicewatercanbemanuallydiverteddirectlythrough'heseismicClassIairhandlingcoil,thusbypassingthe.liquidchillers.Continuouspressurizationofthecontrolroomisnormallyprovidedbytheairconditioningsystemtopreventtheentryofdustanddirt.Emergencyfiltrationandpressurizationareprovidedbyaseparate6,000CFMair-handlerwithroughingfilters,highefficiencyparticulateairfiltersandcharcoaladsorbers.Thisunitcanalsobeusedintherecirculationmodeasacleanupsystem.Theperformancecharacteristicsofthehighefficiencyparticulateairfiltercellsprovideforremovalofasmuchas99.97percentofsolidparticulatesof0.3micronmeandiameter.Performancecharacteri'stiesofthecharcoaladsorbersprovideforremovalofasmuchas99.9percentofentrainedmethyliodideoriodinevapor".Allairconditioningequipment,pressurizationfansandauxiliaryequipmentcanbe.poweredfromemergencybuses.9.10.3SYSTEMOPERATIONTwofresh-airintakesareprovidedforeachcontrolroom.Bothairconditioningunitsshareoneintake.Aseparateintakeisprovidedforthepressurizer/cleanupfilterunit.Bothfresh-airintakesarefittedwithamotor-operatedisolationdamperforcontrolroomisolation.Normally,afixedproportionofroomairandoutsideairissuppliedtothecontrolroomthroughoneoftheair-handlingunits.Temperatureiscontrolledbythermostatslocatedinthecontrol,room.Eachliquidchillerhasanindependentcontrolsystem.Outdoorairsuppliedtothecontrolroomthroughtheair-handlingunitmaintainsapositivepressurewithintheroomwithrespecttothesurroundingenvironstoprevententryofdust,etc.AtoiletfacilityislocatedintheUnitNo.2controlroom.Asmallexhaustfancontinuouslypurgesthisroom.Theexhaustventisfittedwithanisolationdamper.*Foraccidentanalysis,thehighefficiencyparticulateairfilterisassumedtoremove99%ofallradioactiveparticulateswiththeadsorberremoving95%ofmethyliodine.9.10-2July,1997 hTheControlRoomPressurizer/CleanupFilterUnitdoesnotnormallyoperate.IntheeventofafiresignalfromthecableenclosurebelowtheControl.Room,theairconditionerfresh-airintakeisolationdamperisclosed,theControlRoomPressurizer/CleanupFilterUnitstarted.Theseoperationsareal'1performedautomatically.TheAirConditioning.Systemthenfunctionsasa100percentrecirculationsystem.andpressurizationairissuppliedseparatelythroughthehighefficiencyparticulateair'andthecharcoalfiltersofthe,ControlRoomPressurization/CleanupFilterUnitbeforedischargingintotheControlRoomThecontrolsforisolatingthenormalfresh-airintakeandstartingtheEmergencyPressurizer/CleanupFilterUnitarelocatedinboththeControlRoomandtheairconditioningequipmentroomandcanbemanuallyactuatedfromeitherroom.AhighradiationalarmfromtheControlRoomradiationmonitorora'SafetyInjectionsignalautomaticallyinitiatesclosureoftheisolationdampersintheAirConditioningSystemandthetoiletexhaustdischarge.TheAirConditioningSystemthenfunctionsinthe100percentrecirculationmode.Uponreceiptofthesesamesignals,theisolationdamperinthepressurizer/cleanupsystemintakegoestoaminimumpositiontoallowsufficientoutdoorairintothesystemtopre'ssurizetheControlRoom.TheControlRoomPressurizer/CleanupFilterUnitautomaticallystartsinthepartialrecirculationmodetoremoveradioactiveparticulatesandiodinesfromwithinthe'oomandfromtheoutdoorventilationairusedforpressurization.Amanuallyactuatedoverridecontrolcanbeusedtosupplyadditionalvariableamountsofoutsideair(overandabovetheminimummakeupair'equiredforpressurizationinthecleanupmode)throughtheEmergencyPressurizer/CleanupFilterUnittopurgetheControlRoomatmosphere(outdoorconditionspermitting).9.10-3July,1997 9.10.4DESIGNEVALUATIONThecontrolroomandtheventilationequipmentroomarebothenclosedinamissile-andtornado-proofconcretestructure.Theventilationequipmentroomisdirectlyaccessiblefromthecontrolroom.Allotherareasinthevicinityofthecontrolroomsuchascablespaces,auxiliarybuilding,turbinebuilding,etc.areventilatedbysystemswhicharecompletelyindependentofthecontrolroomventilationsystem,thusfireorsmokegeneratedinsuchotherareaswould-notimpairtheintegrityoraccessibilityofthecontrolroom.Twoindependent,fullcapacityairconditioningsystemsserveeachcontrolroom.Twofullcapacityfansareprovidedforthecontrolroompressurizer/cleanupfilterunitofeachc".ntrolroom.Thisredundancyensuresproperroomconditionswithoneactivecomponentoutofservice.9.10.5INCIDENTCONTROLIAsafetyinjectionsignalautomaticallyclosesthenormalcontrolroomairintake,thuspreventingpossiblycontaminatedairfromenteringtheroom.Thecontrolroompressurizer/cleanupfilterunitisautomaticallyoperatedtoremoveanyparticulatesoriodinewhichmayleakintotheroom.IntheeventofgrossfailureofboththeseismicClassIIIcontrolroomliquidchillers,essentialservicewater"anbediverteddiretlythroughtheseismicClassIairhandlercoolingcoilsforemergencycooling.9.10.5TESTSANDINSPECTIONThesystemswereinspected,testedandbalanceduponinstallation.Per'odictestingisperformedtoinsuresystemoperability.Highefficiencyparticulateairfiltersandcharcoalfiltersaretestedafterfabricationbythemanufacturer,againafterinstallationandperiodicallyoverthelifeoftheplant.9.10-4July1997 ,10.2MAINTEAMSYSTEM'heMainSteamSystemforUnitsNo.1andNo.2areshowninFigures10.2-1,10.2-1A,.10.2-1Band10.2-1C.10.2.1DESIGNBASESThedesignbasesoftheMainSteamSystemarelargelyderivedfrompastdesignexperiencewithfossilfuelstationsandhaveevolvedoveralongperiod.Theyaremodifiedinordertomeetspecialrequirementsassociatedwithnuclearapplicationandinclud-provisionsforspecificearthquake,tornado,missileandreactorprotectionasfurtherdescribedinothersections.Designcodesapplicabletothemainsteamsysteminclude,butarenotlimitedto:a.ASMEBoilerandPressureVesselCole,SectionsIII,VIII,andIX.b.ANSIPowerPipingCodeB31.1c.AEPSpecifications'0.2.2DESCRIPTIONTheMainSteamSystemisdesignedtodeliversteamfromthesteamgeneratorstotheturbineandtootherequipmentorsystemsrequiringmainsteam,including:1)Motivesteamtotheturbinedriverofanauxiliaryfeedwaterpump.Steamtothisturbineissuppliedby4-inchbranchconnectionsupstreamoftheSteamGeneratorStopValvesontwoofthefoursteamlines.Either1'neissufficientto10'July,1997 supplysteamfortheturbinebuttwoareorovidedforredundancy.Thesetwo4-inchlinesaretiedtogetherwitn'amotoroperatedshut-offvalveandacheckvalveineachlinebeforethetie.2)Motivesteamforthemainfeedpumpturbinesduringstart-upanduptoapproximately55%load(Unit1)or70%load(Unit2).3)Heatingsteamforthereheaters.4)Turbineby-passsystem(SteamDump)5)Auxiliarysteamsystem.6)Turbinesteamseals(Unit2only).Thesystemisbestdescribedbyfollowingtheflowpathfromthesteamgeneratortotheturbine.RefertoFigures10.2-1and10.2-1B.SteamfromthefoursteamgeneratorsflowsthroughA-155,GradeKC-70carbonsteelpipesdesignedfor1085psig,600'F,throughthecontain-mentpenetrations.Asteamflowmeasuringdevicelocatedineachleadwithinthecontain-mentprovidesasignalforsteamgeneratorlevelcont"olandinitiationofreactorsafeguardssystemintheeventofamainsteamlineruoture.Followingpenetrationofthecontainmentapowerreliefvalveandbankoffivesafetyvalves'reinstalledoneachsteamlead.Thefiveidenticalsafetyvalvesprovideacombinedrelievingcapacityof4,288,450lb/hrperlead(17,153,800lb/hrfor4leadsat1172psi).Thiscapacityissufficientforthesteamgenerationrateatmaximumcalculatedconditions.Thecapacityofthepowerreliefvalveis10.2-2July,1983 approximately10%offullloadflow.Itopensautomaticallyifsteam.pressureexceedsapre-setvalue.Downstreamofthesafetyvalvesaparallelslidegatevalveisinstalledineachlineasclosetothecontainmentwallaspossible.Thisvalve,knownastheSteamGeneratorStopValve,iscapableofclosingrapidlyintheeventofamainsteamlineruptureoccurringanywhereinthepipingbetweenthesteamgeneratorandturbine.AnanalysisofthesteambreakaccidentisgiveninChapter14,andasafetyevaluationofthesteamsystemisgiveninSection10.2.3.TheSteamGeneratorStopValvesaredesignedtocloseagainstflowineitherthenormalorreversedirectiontolimittheeffectofasteamlinerupturetotheblowdownoftheoneaffectedsteamgenerator;assuming,Iconservatively,thefailureofoneofthefourvalvestoclose.TheSteamGeneratorStopValvedesignincorporatesapistonwhichisattached.tothevalvestem.Thesteamaboveandbelowthepistonisnormallyatlinepressure.Thecylindervolumeabovethepistonispipedthroughathree-wayvalveintoapairofredundant,air-operateddumpvalves.Uponreceiptofasignaltoclose,thedumpvalvesopenandventthesteamfromthecylinder.'hesteampressureinthevalvebodybelowthepistonforcesthepistontomoverapidlyandclosethevalve.Thevalvethereforeisnotdependentonanexternalpowersourceforemergencyclosure.Eachvalvecloseswithin5secondsafterreceiptoftherequisi<esafetysignal.Speedofclosingiscontrolledbythesettingofaneedlerestrictorwithinthehydraulicopeningandclosingsystem.Foremergency"operation,reactorprotectionlogicissuppliedtoisolateallsteamgeneratorsbyrapidclosureofthefourstopvalvesforanyofthefollowingconditions:10.2-3July,1985 a)Containmentsprayactuationsignalinitiation(Hi-Hipressure)b)HighsteamflowcoincidentwithLo/LoTavg')Steamlinepressurelow.d)Inaddition,emergencyclosurecanbeinitiatedbyoperatoractuationofthedumpvalvesinthesteamgeneratorstopvalvecontrolsystem.Intheeventofasteamgeneratortuberuptureoccurring,therecoveryprocedure'nvolvesclosureofthesteamgeneratorstopvalveassociatedwiththeaffectedsteamgenerator.However,forthisaccident,rapidclosureofthevalveisnotessentialandtheoperatormayclosethevalveusingthehydraulicactuator.Normalopeningandclosingofthevalveisachievedbyuseofthehydraulichactuator,whichisbypassedincaseofanemergencyclosingrequirement.Theoperatingswitch,inthecontrolroom,act'uatesthereversingsolenoidandstartstheelectricallydrivenhydraulicfluidpumpsupplyinghydraulicfluidtothevalveactuator.Limitswitchesarefittedtothevalveandwireduptodisplaypositionindicationinthecontrolroom.Allfourmainsteamlinesareconnectedtoacommonheader,whichequalizesthepressurebeforethesteamflowsthroughtheturb'neadmissionvalves.Thisheaderisalsoconnectedtotheturbineby-passsystem(steamdumpsystem).Thecapacityoftheturbineby-passsystemis40%offullloadsteamflow.Allorseveralofthesteamdumpvalvesopenunderthefollowingconditionsprovidedacondenservacuumpermissiveinterlockissatisfied:l0.2-4Julyl997 Asteady-statehydraulicanalysiswasperformedforeachcaseassumingthemostlimitingsinglefailure,steamgeneratorspressurizedtothesafetyvalvesetting(plus3%accumulation)andnon-safetyrelatedcontrolsystemsfailingtooperate.The'esultsofthesehydraulicanlaysesareusedasinputsintheappropriateChapter14safetyanalysis.10.5.2.4TessndXnsectionsTheauxiliaryfeedwatersystem,includingpumps,valvesanddrivers,istested'inaccordancewithrequirementsoftheapplicableeditionoftheASMEBoilerandPressureVesselCodeSectionXIand,beginningwiththethird10yearintervalZSIprogram,pumpandvalvetestsareinaccordancewithASMEOMStandardsandNUREG-1482.Duringthetests,thepumpsareoperatedwithflowbacktotheCondensateStorageTankthroughatest/recirculationline.Performan'ceisverifiedbymonitoringflow'etersinthetestlinesandpressuregaugesonthesuctionanddischargeofthepumps.TheavailabilityoftheEssentialServiceWatersupplytotheAuxiliaryFeedwaterSystemmustalsobedetermined,butwithoutcontaminatingthecondensatetankwithlakewater.Twonormallyclosedvalves,onemotoroperated,connecttheEssentialServiceWatersupplytoeachoftheauxiliaryfeedpumps.Totest,thetell-talevalvebetweeneachsetofthetwoaforementionedvalvesisopenedtodrainthatportionoftheline,andthetwovalvesareindependentlystroked.Avisualcheckatthetell-talewillverifynormaldirectionofflowthroughthemanualvalveandbackflowthroughthemotoroperatedvalve,afterwhichallvalvingisrestoredtoitsnormalsetting.10.5-7July1997 10.7TURBINEAILIARYCOOLINGYSTEM10.7.1DESIGNBASISTheTurbineAuxiliaryCoolingSystemutilizeswaterfromthemaincondensatesystemasacoolantfor:a.Theglandsteamcondenserb.Thegeneratorhydrogencoolersc.Thegeneratorstatorcoolersd.Theexcitercoolere.Thebusductenclosure10.7.2DESCRIPTIONThesystemisshowninFigure10.5-2Aand10.5-3A.Thesystemcanoperatein]eitheroftwomodesasdescribedbelow.Themodeofoperationisdeterminedbythetemperatureofthecondensateleavingthehotwell.In".oldweather.whenthetemperatureofthecondensateissufficientlylowtoeffectadequatecoolingoftheserviceslistedinSection10.7.1,thesystemisoperatedinanopencycle.Inwarmweather,whenthecondensatetemperatureistoohightomeetcoolingrequirements,aclosedcycleisused.ThesystemsforUnitsNo.1andNo.2aresimilarexceptforthechangeoverpointfromclosedtoopencycle.ForUnitNo.1,whenthetemperatureofthecondensateleaving0thehotwellisabove95F,changeoverfromanopentoaclosedcycleismade,0forUnit.No.2,thispointis104F.Ingeneral,thechangeoverismadeonaseasonalbasis,bymanualoperationofvalves.Duringopencycleoperation,condensateistakenfromthehotwellpumpdischargeheaderandispumpedbyoneoftwofull-capacityturbineauxiliarycoolingpumpsthroughthevariousheatexchangers.Thecondensatefromtheheatexchangersthenreturnstothecondensateboosterpumpsuctionheader.Thismodereclaimsheatandimprovesthermalefficiencyoftheunit.10.7-1July,1997 Inclosedcycleoperation,thecondensateispumpedbyoneofthetwoturbineauxiliarycoolingpumpsthroughtheturbineauxiliarycooler,whereitiscooledbycirculatingwaterinthetubecircuitofthecooler.Flowthroughthetubecircuitisinparallelwiththecircu-latingwaterflowthroughthemaincondenser.Thepressuredifferentialacrossthemaincondensermaintainstheflowintheturbineauxiliarycooler.Cooledcondensatefromtheshellsidethenflowsthroughtheheatexchangersandreturnstotheturbineauxiliarycoolingpumpsuction.Makeupforthesystemissuppliedbyasmallby-passaroundthecondensateisolationvalve.Operationofthesystemismonitoredinthecontrolroombyflowindica-tors,pressureindicatorsandtemperaturerecorders.10.7.3DESIGNEVAULATIONWhenthetemperatureofthemaincondensate.isbelow95'F,UnitNo.1,orbelow104'F,UnitNo.2,theheatfromtheturbineauxiliarycoolers.isreclaimedbyutilizingtheopencycle.Whenitisabove95'F,UnitNo.1,orabove104'F,UnitNo.2,theturbineauxiliarycoolerisplacedinserviceandtheheatislosttothecirculatingwatersystem.10.7.4TESTSANDINSPECTIONTheactivecomponentsofthesystemareincontinuoususeduringnormalplantoperation.Periodicvisualinspectionsandpreventivemaintenanceareconductedfollowingnormalindustrypractice.10.7-2July,1982' 10.9MAKE-UPWATER6PRIMARYWATERSYSTEMSTheDemineralizedWaterMake-UpSystemproducesthehighpurity,degassifiedwaterrequiredformake-uptothereactorcoolantandcondensate-feedwatersystemsforbothunits.Lakewaterfromthenon-essentialservicewatersystemisfiltered,chlorinated,andheldinaretentiontanktoeffectcompletesterilization.ThereisanalternatesourceofsupplyfromtheLakeTownshippublicwatersystem.Thewaterispumpedfromtheretentiontankthroughcarbonfilterstoremoveorganicsandresidualchlorine.Thewateristhenprocessedbyareverseosmosisunitandpassedthroughcationexchangers,avacuumdegassifier,anionexchangersandmixed-bed"polishing"demineralizers.Followingtreatment,thedemineralized,degassifiedwaterisdistributedtothevariousIpointsofusage.ThePrimaryWaterSystemsupplieswaterformiscellaneouspurposesintheauxiliarybuilding,primarilyforreactorcoolantmake-up.Theprimarywaterisamixtureofdemineralized,degassifiedmake-upwaterandcondensaterecoveredfromprocessingreactor-coolantletdownfluid.10.9-1July1997 10.10CHEMICALFEEDSUB-SYSTEMChemicalfeedsystemsareprovidedforaddingchemicalsolutionstothecondensateandfeedwatertoscavengedissolvedoxygen,controlpHandminimizecorrosion.Thechemicalsusedarehydrazine,carbohydrazide,ammoniaorotheramines,andboricacid.Thesolutionsaremixedusingappropriatedilutionsofchemicalsfrombulkstorage,andstoredincoveredstainlesssteelfeedtanks.Whenneeded,thesolutionsarepumpedfromthesetanksbymotordriven,positivedisplacementpumpstothepointsofinjection.Thepumpshaveadjustablestrokesandonlyhavemanualcontrol.10.10-1July1997 10.11SENDARYVENTANDDRAINYTEMTheSteamandPowerConversionSystemventsanddrainsarearrangedinasimilarmannertothoseinafossil-fueledpowerstation,sincethesystemisnormallynon-radioactive.However,becausethesteamgeneratorblowdown(SGBD)andtheairejectorsdischargecanbecomecontaminated,thesesubsystemsaremonitoredanddischargedundercontrolledconditionsasexplainedbelow.10.11.1DESIGNBASISTheSteamGeneratorBlowdownSystemisdes'ignedtomaintaintheproperwaterchemistrywithinthesteamgenerators.Thesecondarysidewaterisblowndowntomaintainthetotaldissolvedsolidswithinestablishedlimits.TheSteamJetAirEjectorunitremovesnon-condensablegasesfromthecondensershells.Theseexhaustgasesareventedtotheatmosphere.Asmallrepresentativesamplepassesthrougharadiationmonitor.Eachofthecondensersteamjetairejectorelementsisdesignedtoremove15.0cfmofnon-condensablegases.Separatenon-condensingstart-upjetsareusedtoreducecondenserbackpressureto5inHgab~duringstart-up.10.11.2DESCRIPTIONThesteamgeneratorblowdownandblowdowntreatmentsystemsareshownonFigures10.2-1,10.2-1B,and11.5-1.ThesteamjetairejectorventsystemsareshownonFigures10.5-4Aand10.5-5A.II4TheSGBDisroutedtothestart-upblowdownflashtankduringstart-uporunderabnormaloperatingconditions,forexample,duringhighcondenserinleakage.Thesteamproducedinthestart-upblowdownflashtankisventedtotheatmospherethroughamoistureseparator.Thewaterisroutedtothescreenhouseforebay.Thestart-upflashtankisequippedwithaNESWsupplylineforquenching.10.11-1July,1997 Whentheplantreachesnormalfullpoweroperation,thestart-upblowdownflashtankistakenoutofserviceandtheblowdownisroutedtothenormalblowdownflashtank.Theblowdownflashesintoamixtureofapproximatelye0percentsteamand60percentwater..hesteamisreturnedtotheCondensateSystemthroughthecondensersandthewaterisroutedtothescreenhouseforebayeitherdirectlyorthroughmixed-beddemineralizers.ThenormalblowdownflashtankisequippedwithaNESWsupplylineforquenching.Theblowdownratefromeachsteamgeneratoriscontrolledbytwoparallel,failclosed,controlvalves,whicharelocateddownstreamof,ablowdownisolationvalve.TheSGBDismonitoredfor'adioactivitybeforeitreacheseitherblowdowntank.TheSGBDtreatmentsystemalsohasaradiationmonitorbetweenthesecondandthirdtreatmentdemineralizers(seeSections9.5and11.5,respectively).TheseradiationmonitorsclosetheSGBDiisolationvalvesupondetectionofhighradiation.Duringnormaloperation,bothelementsofeachofthefourtwo-stagetwinelementsteamjetairejector(SJAE)unitsremovesnon-condensablegasesfromeachofthethreemaincondensershellsandbothfeedp'umpturbinecondensers.Foraddedflexibility,theindividualairoff-takesarejoinedtoacommonheaderwithcrosstie-valves.ThemotivesteamiscondensedintheSJAEinter-andafter-condensers.Inter-condenserdrainsarereturnedto,thecondensatesystemviathemain"ondenserdriplegandthemiscellaneousdraintank,respectively.Gasesremovedfromthecondensersbythesteamjetairejectorsduringnormaloperationaredischargedintoacommonheader.Thesenon-condensablegasesarethenexhaustedataslightlypositivepressuretotheatmospherethroughaventstack.TheSJAEventstackhasanairflowmetertomeasurethequantityofnon-condensablesremovedfromthecondensersSincetheintroductionofradioactivityinthemainsteamsystembyasteamgeneratortubeleakwouldprobablyfirstJuly1997 escapetothereactorcoolantbydiffusionthroughdefectsinthecladdingofonepercentofthefuelrods.Thewastedisposalsystemcollectsandprocessesallpotentiallyradioactivereactorplantwastesforremovalfromtheplantsitewithinlimitationsestablishedbyapplicablegovernmentalregulations.Inaddition,thesystemiscapableofliquidwastesegregationandreuse.Allplannedreleasesmaybeeitherbatchor'continuous.Beforeabatchmaybereleased,thetankissampledandthesampleanalyzedinthelaboratory.Agasreleaseismadeonlyifthereleasecanbemade.withoutexceedingfederalstandardsandlackofreserveholdupcapacityrequiressucharelease.Radiationmonitorsareprovidedtomaintain'surveillanceoverthe.re-leaseoperation,andapermanentrecordofactivityreleasedisprovidedbyradiochemicalanalysisofknownquantitiesofwaste.AtleasttwovalvesmustbemanuallyopenedtopermitdischargeofliquidorgaseouswastefromtheWasteDisposalSystem.Oneofthesevalvesisnormallylockedorsealedclosed.Theotherisacontrolvalvewhichwilltripclosedonahigheffluentradioactivitylevelsignal.Assecondaryfunctions,systemcomponentssupplyhydrogenandnitrogentoprimarysystemcomponentsasrequiredduringnormaloperation,andprovidefacilitiestotransferfluids:romthecontainmenttoothersystemsoutsidethecontainment.Thesystemiscontrolledprimarilyfromacentralpanelintheauxiliarybuilding.Malfunctionofthesystemisalarmedintheauxiliarybuilding,andannunciatedinthecontrolroom.Allsystemequipmentislocatedinorneartheauxiliarybuilding,exceptforthereactorcoolantdraintankswhicharelocatedinthereactorcontainments.July,1997 SstemDescritionLiuidProcessinDuringnormalplantoperationtheWasteDisposalSystemprocessesliquidsfromthefollowingsources:a)Equipmentdrainsandleaksb)Radioactivechemicallaboratorydrainsc)Radioactivelaundryandhotshowerdrainsd)Decontaminationareadrainse)CVCSdemineralizerregenerationf)SamplingSystemThesystemalsocollectsandtransfersliquidsfromthefollowingsourcesinthecontainmentforprocessing:a)Reactorcoolantloopsb)Pressurizerrelieftankc)Reactorcoolantpumpsecondarysealsd)Excessletdown(duringstartup)e)Accumulatorsf)Valveandreactorvesselflangeleakoffsg)RefuelingcavitydrainsJuly,1983 b)Displacementofcovergasesasliquidsaccumulateinvarioustanksc)Miscellaneousequipmentventsandreliefvalvesd)Samplingoperationsandau'tomaticgasanalysisforhydrogenandoxygenincovergasesThewastedisposalsystemincludesnitrogenandhydrogensystemswhichsupplythesegasestoprimaryplantcomponents.Thepressureregulatorinthenitrogensystemheaderissetat75psig.Nhenthenitrogenheaderpressuredropsbelowapresetpressure,analarmalertstheoperator.MostofthegasreceivedbythewastedisposalsystemduringnormaloperationIIisnitrogencovergasdisplacedfromtheCVCSholduptanksastheyarefilledwithliquid.Sincethisgasmustbereplacedwhenthetanksareemptiedduringprocessing,facilitiesareprovidedtoreturngasfromthedecaytankstotheholduptanks.Abackupsupplyfromthenitrogenheaderisprovidedformakeupifreturnflowfromthegasdecaytanksisnotavailable.Sincethehydrogenconcentrationmayexceedthecombustiblelimitduringthistypeofoperation,componentsdischargingtotheventheadersystemarerestrictedtothosecontazningnoairornoaeratedliquidsandtheventheaderitselfisdesignedtooperateataslightpositivepressure(butnothighenoughtocauseoverpressurization)includingallowancesforinstrumentuncertainties,processinducedpressurechanges,andanyotherspecialconcernsthatmaybenecessarytopreventoxygenin-leakage.Out-leakagefromthesystemisminimizedbyusingSaunderspatentdiaphragmvalves,bellowsseals,selfcontainedpressureregulatorsandsoft-seatedpacklessvalvesthroughoutthesystem.Gasesventedtotheventheaderflowtothewastegascompressorsuctionheader.'neofthetwocompressorsisincontinuousoperationwiththesecondunitinstrumentedtoactasbackupforpeakloadconditionsorfailureofthefirstunit.Fromthecompressors,gasflows11.1-7July,1997 tooneofeightgasdecaytanks.Thecontrolarrangementonthegasdecaytankinletheaderallowstheoperaortoplaceonetankinsezviceandtoselectanothertankorbackup.Nhenthetankinservicebecomespressurizedto100psig,aoressuretransmitterautomaticallyclosestheinletvalvetotnattank,openstheinletvalvetotheback"ptankandscundsanalarmtoa'erttheoperatosohemayselectanewbackuptank.Pzessureindicatorsareprov'dedtoaidtheoperatorinse'ectingthebackuptank.Theindividual"ankpressuresarecontinuouslyrecordedonthecontrolpanelintheauxiliarybuilding.GasneldinthedecaytankscaneitherbereturnedtotheCVCSholduptanksoz>>icitgasdecavodsu-cic~>>ztlv<<o<<<<eloase>>discqa<<cedtoatmosphere.Genera'r,the'astankorece've=.aswillbethei"s"tankzecycledtotheC';C"ho'duptanks..his"ermi"sthemaximumdecaytimebefoere'eas'ngca-to"heenvironment.However,theheaderarrancementatthetankinletgives'heoperatorthecpt'ontof'll,reuse,anddischar-ecass';..u'-neously.DuringdeŽassinco~thereactorcoolantpriortoacoldshutdown,are<=-",.pie,'"may"edesirabletopumpthe-"aspurgedfromthevolume"ontroltankintoaoar"icular"asdecav"ankand'solatethattankfordecayz'atherthanreusethecasin'".hisis"onebvopeningt':.einletvalvtothedesired"ankandclos'nc"".eout'etra've"o"".ere~seheader.S'multaneously,onecftheothertankscan"eopenedtothereuseheaderides'red,whi'eanotherisd'scharcedtoat...osphere.Beforeatankis"'schargedtotheenv'ronment,i"'ssampledandanalyzedtodeter...'neandrecordtheactivi"ytobereleased,andthen>>)isdischargedtothe."lantventatacontrolledratethrougharad'-ationmonitorwhichenables"heo"eratortomonitort"..eradioacivityinthecasrlease.Samplesofthegastobereeasedaretakengassam1'..cvessels.Dur'ngreleaseatripva'veinthedischarge1'eisclosedutoma=icallyintheplantvent.bvah'chradioacti"v'evel'nd'ca"'on11.1-8Ju3.r,lg83 Therefuelingcavityandrefuelingcanal,floodedwithboratedwatertoanelevationofapproximately645'uringrefuelingoperations,provideatemporarywatershieldabovethecomponentsbeingwithdrawnfromthereactorvessel.Thewaterheightduringrefuelingisapproximately24ft.abovethereactorvesselflange.Thisheightensuresthattherewillbesufficientwaterdepthabovetheactivefuelofawithdrawnfuelassemblytomaintainexposuresaslowasreasonablyachievable(ALARA).Thespentfuelassembliesandcontrolrodclustersareremotelyremovedfromthereactorcontainmentthroughthehorizontalfueltransfertubeandplacedinthespentfuelpit.Thetransfertubeisshieldedwithaminimumof5'-2"ofconcreteinallareasexceptasmallpipingarealocatedunderthetransfertubeinthecontainment.Thepipingar:aisshieldedwith2'-5"ofconcrete.Itispostedasradiologicalconditionsdictateandisprotectedwithlockedgatestoensurethatpersonnelcannotenterthisareawhilespentfuelisbeingtransferred.FuelisstoredinthespentfuelpoolportionoftheAuxiliaryBuilding.Shieldingforthespentfuelstoragepoolisprovidedby6feetthickconcretewalls,andthepoolisfloodedtoalevelsuchthatthewaterheightisapproximately25feetabovethestoredspentassemblies.Duringspentfuelhandling,sufficientwaterdepthismaintainedabovethefuelassemblybeinghandledtomaintainexposuresALARA.TheoriginalrefuelingshielddesignparametersarelistedinTable11.2-5.11.2-7July1997 AuxiliaShieldinTheauxiliaryshieldconsistsofconcretewallsaroundcertaincomponentsandpipingwhichprocessreactorcoolant.Insomecases,theconcreteblockwallsareremovabletoallowpersonnelaccesstoequipmentduringmaintenanceperiods.Accesstotheauxiliarybuildingisallowedduringreactoroperation.Eachequipmentcompartmentisindividuallyshieldedsoacompartmentmaybeenteredwithouthaving'oshutdownand,possibly,todecontaminateequipmentinanadjacentcompartment.Theshieldmaterialprovidedthroughouttheauxiliarybuildingisnormaldensityconcrete(p=2.3g/cc).TheprincipalauxiliaryshieldingprovidedandthedesignparametersaretabulatedinTable11.2-6.hieldinDesinEvaluionThewholebodygammadoseinthecontrolroomunderaccidentconditionsiscalculatedassumingthereleaseofthefollowingsourcestothereactorcontainment(PerTID-14844):a)100~ofthenoblegasesb)50%ofthehalogensc)1%oftheremainingfissionproductinventory.Thesesources,tabulatedinTable11.2-7,areassumedtobehomogeneouslydistributedwithinthefreevolumeofthereactorcontainment.Thesourceintensityasafunctionoftimeaftertheaccidentisconservativelydeterminedbyconsideringdecayonly;nocreditistakenforwashdownorsprayandicecondenserremovalofiodine.11.'2-8July1997 "TABLE11.2-5ORIGINALREFUELINGSHIELDDESIGNPARAMETERTotalnumberoffuelassembliesMinimumfullpowerexposureMinimumtimebetweenshutdownandfuelhandlingMaximumexposurerateadjacenttospentfuelpitMaximumexposurerateatwatersurface1931000days100hours1.0mrem/hr2.5mrem/hrTheseparametersarekeptforhistoricalreasons.Thedoseratesarenolongerapplicablesincethedesignofthespentfuelpit,hasbeenchangers.11.2-14July1997 TABLE11.2-6PRINCIPALAUXILIARYSHELDINGIDesignparametersfortheauxiliaryshieldinginclude:CorethermalpowerFractionoffuelrodscontainingsmallcladdefectsReactorcoolantliquidvolumeLetdownflow(normalpurification)Cesiumpurificationflow(intermittent)Cut-inconcentrationdeboratingdemineralizerDoserateoutsideauxiliarybuildingDoserateinthebuildingoutsideshieldwalls3391MWt0.0112600ft75gpm75gpm100ppmc1mrem/hr'2.5mrem/hrComeonentMixedBedDemineralizersChargingpumpsLiquidholduptanksVolumecontroltankReactorCoolantfilterBoricAcidEvaporatorGasdecaytanksWasteGasCompressorsWasteEvaporatorLiquidWasteHoldupTankSpentResinStorageTankConcreteShieldThicknessFt.-In.4-022322-43-32-82-0211.2-15July1995 11.3RADIATIONMONITORINGSYSTEM11.3.1GENERALDESIGNCRITERIAMoniorinRadiaionRelasesCriterion:Meansshallbeprovidedformonitoringthecontainmentatmosphereandthefacility'effluentdischargepathsforradioactivityreleasedfromnormaloperations,fromanticipatedtransients,andfromaccidentconditions.Anenvironmentalmonitoringprogramshallbemaintainedtoconfirmthatradioactivityreleasestotheenvironsoftheplanthavenotbeenexcessive.Thecontainmentatmosphere,theunitvent,SJAEvent,turbineglandsealexhaust,steamgeneratorblowdown,andthewastedisposalsystemliquideffluentaremonitoredforradioactivityconcentrationduringoperation.Thedesignobjectiveisforannualaveragereleasesofradioactivity(gasesandliquids)forbothdoseanddoseratesatthecriticalsiteboundarywillbetomeettherequirementsof10CFRPart50.ILiquidreleasepathwaysaremonitoredbyradiationdetectioninstruments.Plannedliquideffluentsoftheplantarereleasedtothecirculatingwatersystem.Gaseousreleasesaremonitoredbytheunitventmonitors.Thegaseouseffluentfromthesteamgeneratorblowdowntankventisnormallyroutedtothemaincondenser,exceptduringstartupandotherperiodsofshortdurationwhenitmaybeventedtotheatmosphere.Inaddition,anytimetherearenon-condensibleradioactivegaseswhichmaybereleasedfromtheblowdownflashtank,suchgaseswouldalsobepresentinthecondensatsystemwheretheywouldberemovedbythesteamjetairejectorsandbedetectedbytheapplicableradiationmonitor.11.3-1July1997 Accidentalspillsofradioactiveliquidsaremaintainedwithintheauxiliarybuildingandcollectedinadraintank.Anycontaminatedliquideffluentdischargedtothecondensercirculatingwaterismonitored.Gaseouseffluentfrompossiblesourcesofaccidentalreleasesofradioactivityexternaltothereactorcontainment(e.g.,thespentfuelpoolandwastehandlingequipment)isexhaustedfromtheunitventandmonitoredbyaradiationmonitor.Gaseousbatchreleasesshallbemadeonlyifthereleasecanbemadewithoutexceedingfederalstandardsandlackofreservehold-upcapacityrequiressucharelease.MnitorinFuelandWaseStoreCriterion:Monitoringandalarminstrumentationshallbeprovidedforfuelandwastestorageandassociatedhandlingareasforconditionsthatmightresultinlossofcapabilitytoremovedecayheatandtodetectexcessiveradiationlevels.Monitoringandalarminstrumentationareprovidedforfuelandwastestorageandhandlingareastodetectexcessiveradiationlevels.Radiationmohitorsareprovidedtomaintainsurveillanceoverthereleaseoperation,butthepermanentrecordofactivityreleasesisprovidedbyradiochemicalanalysisofknownquantitiesofwaste.Acontrolledventilationsystemremovesgaseousradioactivityfromthefuelstorageandwastetreatingareasoftheauxiliarybuildinganddischargesittotheatmosphereviatheunitvent.Radiationareamonitorsa'eincontinuousserviceintheseareastoactuatehigh-activityalarmsonthecontrolroomboardannunciator.ProecinAainstRadiaivitRleasefromSnFuelandWsetoraeCriterion:Provisionshallbemadeinthedesignoffuelandwastestoragefacilitiessuchthatnounduerisktothehealthandsafetyofthepubliccouldresultfromanaccidentalreleaseofradioactivity.July,1997 WastehandlingandstoragefacilitiesarecontainedandequipmentdesignedsothataccidentalreleasesdirectlytotheatmospherearemonitoredandwillIresultindosesbelowthelimitsof10CFR100,asdiscussedinSection11.1.1[andChapter14.11.3.2DESIGNBASISTheRadiationMonitoringSystemisdesignedtoperformtwobasicfunctions:a.Warnofanyradiationhazardwhichmightdevelop,andb.Giveearlywarningwhichmightleadtoaradiationhazardorplantdamage.Instrumentsarelocatedatselectedpointsinandaroundtheplanttode'tect,compute,andrecordtheradiationlevels.Intheeventtheradiationlevelshouldriseaboveadesiredsetpoint,analarmisinitiatedinthecontrolroom.TheRadiationMonitoringSystemoperatesinconjunctionwithregular,andspecialradiationsurveysandwithchemicalandradiochemicalanalyses'erformedbytheplantstaff.Adequateinformationandwarningistherebyprovidedforthecontinuedsafeoperationoftheplantandassurancethatpersonnelexposuredoesnotexceed10CFR20limits.ThecomponentsoftheRadiationMonitoringSystemaredesignedtooperateduring,allexpectedenvironmentalconditionsfornormaloperation.Specificcomponentsaredesignedtooperateduringadvrseoraccidentplantconditions.Inaddition,processandarearadiationmonitorsareofanonsaturatingdesignsothatthey"peg"fullscaleifexposedtoradiationlevelsupto100timesfullscaleindication.11.3-3July,1997 aosRlesPathwasoninmennInstumntRomExhas-ReleasesarethroughtheUnitVent.Noblegasactivityandreleaseratesaremonitoredandrecorded.Releasesareonanintermittentbasisasthecontainmentispurgedonlyperiodically.Thecontainmentatmosphereissampledpriortorelease.Thecontainmentpurgeandexhaustisolationvalvescloseonacontainmenthighradiationsignal.MonitorsERS1300,1400,2300and2400andVRS1101,1201,2101and2201causetheESFactuation.TheUnitVentmonitorsystemsalsosampleiodineandparticulateactivity.OperationofthecontainmentpurgeandexhaustsystemiscontrolledbyPlantTechnicalSpecifications.2.xiiirBilinvnilin-TheactivityintheexhaustdependsonleakageintotheAuxiliaryBuildingatmospherefromtheprimarysystems,anditisexpectedtobeverylow.Releasesarethroughtheunitvent.Activityismeasuredpriortothereleasepointoftheunitvent.Highradioactivitywillbealarmedinthecontrolroom.July1997 3.SearnJetAirE'ecor-Acontinuousreleaseofactivityexistsonlyduringperiodsofsteamgeneratorprimarytosecondaryleakage.Thesteamjetairejectorexhaustiscontinuouslymonitored.Thesteamjetairejectormonitorissensitivetototalbetaandgammaactivity.GlandSealCondenserExhaust-Acontinuousreleaseofactivityexistsonlyduringperiodsofsteamgeneratorprimarytosecondaryleakage.Theglandsealcondenserexhaustiscontinuouslymonitored.StmGeneratrBlowdownExhaust-Thereleasesarethroughthemaincondenserwhileutilizingthenormal.ashtank.Duringoffno'rmalchemistryconditions,unitstart-up,orunitshutdownthereleaseistotheatmosphereviatheS/Gblowdownflashtankvent.Thesteamgeneratorblowdowniscontinuouslymonitored.6.MaintamPORVafetRlseValvs-Themainsteampoweroperatedreliefvalvesandsafetyvalvesprovidepressurereliefoneachsteamleadifsteampressureexceedsnormaloperatingvalues.Theyalsoallowplantcooldownbysteamdischargetotheatmosphereiftheturbineby-passsystemisnotavailable.ThePORVdischargelinesarecontinuouslymonitored.7.WaseGasDcaTanksunitvent.TheirtotalaradiationmonitorandIsolationvalvesonthehighradiationsignal.toreleaseandanalyzedThesetanksarebatchreleasedthroughtheactivityandreleaseratesaremonitoredbyaflowmeterandbotharerecorded.dischargeheaderfromthetankscloseonaThecontentsofthetanksaresampledpriortodetermineisotopicconcentrations.July,1997MiellanousVnilation-ReleasesarethroughtheunitventfromventilationsystemssuchasSFpool,nuclearsamplingroom,etc.Noblegasactivityandreleaseratesaremonitoredandrecorded.Highradioactivitywillbealarmedinthecontrolroom.11.3-5 MeteorologicalconditionsduringperiodsofreleasefromtheabovesystemsrIwillbeobtainedfromthemeteorologicalprogram.Theunitventmonitorsfornoblegase'sandsamplesforparticulatesandiodine.Thereactorcoolantsystemisotopicinventoryisdeterminedbysamplingandanalysistopredictanychangeinisotopicspectrumthatwouldleadtomeasurablequantitiesofiodinerelease.Theunitventisprovidedwithintegratingtypeairsamplers.Asamplefromtheunitventisdrawncontinuouslythroughaparticulatefilterandaniodinesamplingdevice.IThemethodsandformulasforcomputationofdosesassociatedwiththeliquidandgaseousreleasesaregivenintheCookNuclearPlant'sOff-siteDoseCalculationsManual(ODCM).LiuidRlesPahwaRadioactiveliquidsarereleasedthroughthewastedisposalsystemmonitortanks,steamgeneratorblowdownandturbineroomsump.Activityismonitoredandrecordedontheliquideffluentmonitorviatheapplicablepathway.Beforeabatchmaybereleased,thetankissampledandthesampleanalyzed.Iftheradioactivitylevelofthesampleisfoundtobewithinacceptablelimits,theliquidwasteswillbereleased,monitored,andrecorded.Atthesametime,therateoftheliquidreleaseismeasuredbyaflowmeter.Byusingtherateofliquidwastereleases,therateofflowofthecondensercoolingwater,theactivityoftheliquidwastereleased,therateofactivityreleaseandtheconcentrationofactivityinthecondensercoolingwatercanbedetermined.11.3-6July,3.997 Liquideffluentanddilutionvolumesreleasedarerecorded.Gammaisotopicanalysisisperformedontheliquideffluentpriortoeachbatchrelease.TheRadiationMonitoringSystemisdividedintothefollowingsub-systems:a.TheProcessRadiationMonitoringSystemmonitorsvariousfluidstreamsforindicationofincreasingradiationlevels.4b.TheAreaRadiationMonitoringSystemmonitorsradiationincertainareasoftheplant.c.Environmentalradiationmonitoring'rogrammonitorsradiationintheareasurroundingtheplantasQescribedinSub-Chapter2.7.hI11.3.3GENERALDESCRIPTIONANDOPERATIONTheoriginalradiationmonitoringchannelequipment,includingchassiswithsignalconditioningequipment,controls,powersupplies,indicatorsandalarmsiscentralizedincabinetslocatedinthecontrolroomsforconvenientoperatoraccess.Stripchartrecordersareprovidedinthesecabinetstosequentiallyrecordeachmonitoringchannel.Thisequipmenthasbeensupplementedandpartiallyreplacedbyasystemof,distributed,multi-channelfielddataacquisitionunits.Eachfieldunitservicesoneormoredetectorchannels.Itmeasuresandrecordsthechannelreadings,performsalarmandotherstatuschecksandinitiatestripfunctions(ifapplicable).Eachfieldunitisconnectedviaisolationdevicestotwodatacommunicationlines.Eachlineterminatesatitsassociatedsystemcontrolterminal(CT).ACTislocatedineachcontrolroomandprovidesthecontrolroomoperatorwithcurrentchannelstatus.Aprinterprovidesarecordofthechannelsonaregularbasis.Channelstatuschangesarereportedandrecordedastheyoccur.11.3-7July1997 Typicalsensitivityrangesofthevariousradiationmonitorchannelsaregiven)inTable11.3-1andarebasedonthefirstisotopelistedinthelastcolumnofthetable.Themonitorchannelsareresponsecheckedusingaradioactivesource,testedelectronically,andcalibratedbypulseinjectionmethods.ThedetectorsarecalibratedusingappropriatecalibratedsourcesatafrequencylistedintheTechnicalSpecificationsand/ortheODCM.'ffluentmonitorsetpointsaredeterminedinaccordancewiththeODCMandaredesignedtoaidinmaintainingODCMlimits.11.3.3.1ProcssRadiainMonitorinsem(Thissystemconsistsof(originalandnewer)channelswhichmonitorradiationlevelsinvariousplantoperatingsystems.High.radiationlevelalarmsareannunciatedandidentifiedinthecontrolroom.Theradiationmonitoringchannelsemployinstrumentfailurealarmsattheradiationmonitoringcabinets,controlboardannunciator,andatlocalindicators(whereprovided).Control,interlocksfailinthe'ighradiation'ositionuponinstrumentfailureandmustbemanuallyreset.Instrumentfailurealarmsareinitiateduponfailureoftheradiationmonitor,lossofdetectorsignalorlossofpower.'Gaseouseffluentsarescanned,alarmed,andrecordedtherebyprovidingacompletehistoryofabnormaloccurrencesforevaluation.TheseradiationmonitoringchannelsareshowninTable11.3-3.11.3-8July1997 Thispageisintentionallyleftblank11.3-9July1997 Thispageisintentionallyleftblank11.3-10July,1997 ThispageisintentionallyleftblankJuly1997 Thispageisintentionallyleftblank11.3-12July1997 Thispageisintentionallyleftblank11.3-13July1997 Thispageisintentionallyleftblank11.3-14July1997 11.3.3.2AreaRadiationMonitorinstemThissystemconsistsofchannelswhichmonitorradiationlevelsinvariousplantareas.Certainofthesemonitorshavebeenupgraded.BoththeoriginalandnewermonitorsareshowninTable11.3-1.EachoriginalmonitorconsistsofafixedpositionGeiger-Muellerdetectorwithlocalindicatorandchecksource.Anassociatedreadoutdrawerinthecontrolroomprovideshighradiationandfailurealarms,andinitiatestrips(ifrequired).Channelreadingsareloggedonamulti-pointrecorder.NewermonitorsconsistofeitherGeiger-Muellerorionchamberdetectors,withchecksources,connectedtomulti-channelfieldmounteddataacquisitionunits.Eachfieldunitreadsitsdetectors,performsstatuschecks,initiatestrips(ifrequired),recordsthereadings,provideslocalreadoutandreportstothesystemcontrolterminals.Thecontrolterminalspoll'hefieldunitsandprovidechannelreadingsandstatusinformationtothecontrolroomoperatorsthroughdisplays,annunciatorsandorinters.Selectedchannelsareprovidedwithindividualindicator/alarmunitsnearthedetector.Twohighrangeionchamberdetectorsmonitoreachcontainment.Oneislocatedintheuppercontainmentwhilethesecondisinthelowercontainmentabout0180apartfromthefirst.Theseaccidentmonitorsareseparatefromtheotherareachannels.Eachhasadedicatedreadoutmoduleinthecontrolroomwithamulti-rangeindicator,statuslights,andtestcircuits.Anisolatedoutputfromeachmoduleissenttoanassociatedfieldunittoprovidefor,recordingandsupplementaldataaccessviathesystemcontrolterminals.11.3.4RacoroolnAtivi~MonitorinRefuelingshutdownprogramsatoperatingWestinghousePNRsindicatethat,duringcooldownanddepressurizationoftheReactorCoolantSystem(RCS),areleaseofactivatedcorrosionproductsandfissionproductsfromdefectivefuelhasbeenfoundtoincreasethecoo'antactivitylevelabovethatexperiencedduringsteadystateoperation.However,highcoolantactivityisavoidedbyimplementingestablishedshutdownprocedures.Theseprocedures11.3-15uly,1997 includepurificationoftheRCSthroughthecationandmixedbeddemineralizersandsystemdegassification.Table11.3-2illustratesthecalculatedcoolantactivityincreasesofseveralisotopesfortheDonaldC.CookPlant.Thistableliststhecalculatedactivitiesduringsteadystateoperationbeforerefuelingshutdownoutageandcalculatedpeakactivitiesduringplantcooldownoperations.ThesedataarebasedonmeasurementsfromanoperatingPNRwhichissimilarindesigntotheCookNuclearPlantandhasoperatedwithfueldefects.ThemeasuredactivitylevelsarealsoincludedinTable11.3-2.Thedominantnon-gaseousfissionproductreleasedtothecoolantduringsystemdepressurizationisfoundtobeIodine-131.Theactivitylevelinthecoolantwasobservedtobehigherthanthenormaloperatinglevelfornearlyaweekfollowinginitialplantshutdown.Althoughlesserinmagnitude,theotherfissionproductparticulates(e.g.,cesiumisotopes)exhibitedasimilarpatternofreleaseandremovalbypurification.ZtisreasonabletoprojectthisdatatotheCookNuclearPlantsincethepurificationconstantsaresimilarandasitisstandardoperatingproceduretopurifythecoolantthroughthedemineralizersduringplantcooldown.Fissiongasdatafrpmoperatingplantsindicateamaximumincreaseofapproximately1.5overthenormalcoolantgasactivityconcentration.However,thesystemdegassificationproceduresareimplementedpriortoandduringshutdown,andhaveproventobean.effectivemeansforreducingthegaseousactivityconcentrationandcontrollingtheactivitytolevelslowerthanthesteadystatevalueduringtheentirecooldownanddepressurizationprocedure.ThecorrosionproductactivityreleaseshavebeendeterminedtobepredominantlydissolvedCobalt-58.FromTable11.3-2,itisnotedthatthiscontributionislessthan1%ofthetotalexpectedcoolantactivityandishenceconsideredtobeaminorcontribution.SincecontinuedoperationofthepurificationsystemisstandardoperatingprocedureduringplantcooldownandsincemeansforsystemdegassificationareJuly,1992 availableforfissiongasrmova',thetotalactivityconcentrationinthecoolantcanbemaintainedwithinTechnicalSpecificationlimitsthroughouttheplantshutdown,whileconsideringtheadditionalactivityinventoryreleasedduringsystemcooldownanddepressurization.ThecoolantactivityconcentrationsandinventoriesduringtheshutdownandpriortoplantstartupareestablishedbychemicalanalysisofsamplesfortheReactorCoolant\System.11.3.5IMPROVEDINPLANTIODINEINSTRUMENTATIONUNDERACCIDENTCONDITIONSMobilecontinuousairmonitorsareavailableforuseinemergenciesinvolvingairborneradioactivityconcerns.Thisequipmentincludes'particulate,'radioiodineandnoblegasmonitors.Regulatedairsamplesarealsoavailablewhichrequiresamplecollectionandlaboratoryanalysis.Emergencyresponseequipmentislocatedinthebasementassemblyareaforcountingradioactivesamples.11.3-17July,1997 Thispageisintentionallyleftblank11.3-18July,1997 TABLE11,3-1RADIATIONMONITORINGSYSTEMCHANNELSENSITIVITIES,ANDDETECTINGMEDIUMMonitorNameChnnelNumbuM~dimialRnDetecd.IsotoesContainment-AirParticulateContainment-AirIodinesContainmentRadio-GasERS-1301,14012301,2401ERS-1303,14032303,2403ERS-1305,14052305,2405ERS-1307,14072307,2407ERA-1309,14092309,2409AirAirAirAirAir1X10to10pCi42X10to3pCi-7-29X10to5X10pCi/cc-332X10to2X10pCi/cc-141X10to9x10pCi/cc137Cs,RadioactiveParticulates131I,RadioiodineXe,NobleGases133Xe,NobleGases133Xe,NobleGases133SteamJetAirEjectorGasSRA-1905,2905SRA-1907,2907AirAirSRA-1909,2909AirComponentCoolingLoopLiquidR-17A&BSteamGeneratorBlowdownLiquidEssentialServiceWaterLiquidR-19R-20HaterWaterWaterWaterWasteDisposalSystemLiquidEffluentRRS-10019X102X101X101X105to500,1X103X10-2to5X10pCi/cc3to2x10pCi/ccto9X10pCi/cc-2to1X10pci./CC000cpmto2pCi/cc-1to4X10pCi/ccXe,NobleGases133133Xe,NobleGases133Xe,NobleGases60Co,MixedFissionProducts60Co,MixedFissionProducts137Cs,MixedFissionProducts137Cs,MixedFissionProducts11.3-19July1997 TABLE11.3-1(Cont'd.)MonitorNameChannelNumberMediumicalRaneDetectedEsotoesSteamGeneratorBlowdownTreatmentSystemLiquidUnitVentAirParticulateR-24Water1X10to2X'10pCi/ccVRS-1501,2501Air1X10to10pCi60Co,MixedFissionProducts137Cs,RadioactiveParticulatesUnitVentRadioiodineUnitVentRadioGasUnitVentHi-LevelRadioGasVRS-1503,2503VRS-1505,2505VRS-1507,2507VRS-1509,2509EssentialServiceWaterLiquidContainmentAreaatPersonnelLockUpperContainmentAreaMonitorR-28VRS-1101,2101VRS-1201,2201GlandSealCondenserExhaustMonitorSRA-1805,2805SRA-1807,2807SRA-1809,2809AirAirAirAirAirAirAirWater~AirAir2X109X102X101X109X102X101X101X101X101X10to3pCi-2to5X10pCi/ccto2X10pCi/cc3to9X10pCi/cc4-2to5X10pCi/ccto2X10pCi/cc3to9X10pCi/cc-2to1X10pCi/cc4to1X10mrem/hrto1X10mrem/hr4131I,RadioiodineXe,NobleGas133NobleGas133XeXe,NobleGas133Xe,NobleGas133Xe,NobleGas133Xe,NobleGas13360Co,MixedFissionProductsSteamGeneratorPowerOperatedReliefValveMonitorMRA-1600,26001700,2700Vapor1X10to1X10+2pCi/ccXe,NobleGas133SpentFuelAreaR-5Air-11X10to1X10mrem/hr11.3-20-.July1997 MonitrNameSamplingRoomAreaIn-CoreInstrumentationRoomAreaDrummingStationAreaHighRangeContainmentAreaMonitorVestibuleElevation591'utsideContainmentSprayPumpRoomsElevation573'estofEquipmentHatch,Elevation650'urbineBuilding,Elevation609'urbineBuilding,Elevation591'orthofBoricAcid.Tanks,Elevation609'-6AirERA-7402(Unit1)AirR-7(Unit2)AirR-8AirVRS-1310,-2310Air-1410,-2410ERS-1306,-2306AirERS-1406,-2406AirSRA-1806,-1906,Air-2906SRA-2806RRS-1003AirAirVRS-1506,-2506Air1X10to1X-31X10to1X10mrem/hr210mrem/hr2-321X10to1X10mrem/hr-321X10to1X10mrem/hr-321X10to1X10mrem/hr1X5to500,000cpm-141X10to1X10mrem/hr-171X10to1X10mrem/hr1X10'o1X10'rem/hr"141X10to1X10mrem/hr1to1X10R/HR7DetectedIsotosUnit1ECCPRoomUnit1WCCPRoomUnit1ERHRPumpRoomUnit1WRHRPumpRoomUnit1NSISPumpRoomUnit1SSISPumpRoomERA-7303ERA-7304ERA-7305ERA-7306ERA-7307ERA-7308AirAirAirAirAirAir1X101X101X101X101X101X10to1X10R/hr3to1X10R/hr3to1X10R/hr3to1X10R/hr3to1X10R/hr3to1X10R/hr311.3-21July1997 MonitorNameTABLE11.3-1(Cont'd.)ChannelNumber.MediumicalRaneDetectedIsotoesUnit1ReactorCoolantFilteri'ubicle-ERA-7309-23,Air1X10to1X10R/hrUnit2ECCPRoomUnit2WCCPRoomUnit2ERHRPumpRoom.Unit2WRHRPumpRoomUnit2NSISPumpRoomUnit2SSISPumpRoomUnit1ReactorCoolantFilterCubicleUnit1ControlRoomAccessControlFacilityRadioChemistryLabUnit1NSealWaterInjectionFilterCubicleUnit1SSe~lWaterInjectionFilterCubicleUnit1SealWaterFilterCubicleUnit2ControlRoom609'levationPassagewayERA-8303ERA-8304ERA-8305ERA-8306ERA-8307ERA-8308ERA-8309ERS"7401ERA-7403ERA-7404ERA-7407ERA-7408ERA-7409ERS-8401ERA-8403AirAirAirAirAirAirAirAirAirAirAirAir.AirAirAir1X10to10R/hr1X10to10R/hr-41X10to-31X10to10R/hr1X10R/hr3-331X10to1X10R/hr1X10to1X.0R/hr-331X10to10R/hr1X10to10R/hr-231X10to1X10R/hr-231X10to1X10R/hr-231X10to1X10R/hr-231X10to1X10R/hr-231X10to1X'10R/hr-231X10to1X10R/hr-331X10to1X10R/hr11.3-22July1997 'ABLE11.3-1(Cont'.)MonitorNameChannelNumberMediumicalRaneDetectedIsotoesUnit2NSealWaterInjectionFilterCubicleUnit2SSealWaterInjectionFilterCubicleUnit2SealWaterInjectionFilterFilterCubicle587'levationPassagewayEmergencySamplingLocation573'levationPassagewayRefuelingWaterPurificationFilterCubicleBRA-8407ERA-8408BRA-8409ERA-7504ERA-7507ERA-7508ERA-7509-33Air1X10to1X10R/hr-33Air1X-10to1X10R/hr-4Air1X10Air1X10Air1X10to10R/hrto1X10R/hr2to1X10R/hr3Air1X10to1X10R/hr-33Air1X10to1X10R/hr-32Unit1VentSamplingAreaUnit1VentSamplingFlowAdjacentAreaUnit2VentSamplingAreaUnit2VentSamplingFlowAdjacentAreaERA-7601ERA-7602BRA-7603ERA-7604Air1X10Air1X10Air1X10Air1X10to10R/hrto1X10R/hr2to10R/hrto1X10R/hr2633'levationPassagewayBRA-7605Air1X10to10R/hr11.3-23July1997 TABLE11.3-2REACTORCOOLANTFISSIONANDCORROSIONPRODUCTACTIVITIESDURINGSTEADYSTATEOPERATIONANDPLANTSHUTDOWNOPERATIONoadCCooaec~sot)~MeasuredActivityBeforeShutdownMeasuredPeakShutdownActivityCCalculatedActivityExpectedPeakBeforeShutdownShutdownActivityCimCI-131Xe-133Cs-134Cs-137Cs-144Sr-89Sr-90Co-580.83127.01.291.670.000680.0033-0.0005714.965.0*1.72.140.00580.400.0130.952.4254.00.190.000510.00420.00010.02543.0130.0*0.251.40.00440.510.0023=1.0+Activityreducedfromsteadystatelevelbyapproximatelyonedayofsystemdegassificationpriortoplantshutdown,11.3-24July1990) eTable11.3-3RadiationMonitoringSystemChannelsChannelFRS-1301140123012401ERS-1303.140323032403FXS-1305140523052405IIRS-13¹140723072407ERS-1309140923092409I!RS-74018401SRA-1905,2905SRA-1907.2907SRA-1909,2909R-17A,R-17BRRS-1001R-5R-19R-20,R-28R-24PuseContainmentAirborneParticulates-DetectionContainmentRadioiodine-DetectionContainmentl~wRancNobleGas-DetectionContainmentMidRancNobleGas-DetectionContainmentHi~hRancNobleGas-DetectionControlRoomArcsMonitorSteamJctAirEjectorLowRangeNobleGas-DetectprimarytosecondsleakaeStcamJetAirEjectorMidRangeNobleGas-DctcctprimarytosecondsleakacStcamJctAirEjectorHighRangeNobleGas-DetectprimarytosecondaleakacComponentCoolingWaterLoopLiquidMonitor-DctcctleaksfromRCSorRHRintotheCCWsstemWasteDistsalSstemI.iuidENuentMonitorSl'PAreahlonitorStcamGen<<ratorBlowdownLiquidMonitor-DetectprimarytosecondaleakaeviacommonblowdownheaderEssentialScrviccWaterLiquidMonitor-DctcctIcakagcinthccontainmentsraheatcxchanersstLOCA.StcamGeneratorBlowdownTreatmentSystemLiquidMonitor-mcasurcactivityinthcblowdownliquidafteritpassesth>>treatmentdemineralizer.AssociatedTriFunctionOvcrvicwContainmentventilationisolationreventfurtherrclaseNuncContainmnetventilationisolationreventfurtherreleaseContainmentventilationisolationrevcntfurtherreleaseContainmentventilationisolationreventfurtherreleaseIsolateControlRoomVentilationNuncNoneNoneisolateCCWsurgetankventAutomaticvalveclosuretoreventfurtherreleasePlaceSFPventilationintoserviceClosecontainmnctisolationvalvesinthcblowdownlines,thcsamlelinesandthcblowdowntankcondensatcdrainline.Noneisolatestcamgeneratorblowdownsystem.VRA-ISOI2501VRA-15032503VRS-1505.2505VRS-15072507VRS-1509,2509SRA18052805SRA18072807SRA18092809UnitVentContinuousairliowsamIcrUnitVentAirborneParticulates-DetectionllnitVentRadiodines-DetectionUnitVentIwwRancNobleGas-Detection1JnitVentMidRaneNobleGas-DetectionUnitVentHihRaneNobleGas-Detectionol'accidentalrcleascGlandSealCondenserFxhaust-LowrancdetectionGlandSealCondenserFmhaust-hfidrancdetectionGlandSealCondenserFxhaust-HihranedetectionTritiumsamlin~NoneNoneGasdecatankisolationvalves~Gasdecatankisolationvalves~SamIcathwabassofchannelsI357tosamIcalletNoneNoneNoneNunc*Availablesetpointisusedtoaccomodate1)normaloperation,and2)gasdecaytankrelease.11.3-25July1997 I11.4PLANTHEALTHPHYS1SPROGRAMAnextensivehealthphysicsprogramunderthesupervisionoftrainedprofessionalandtechnicalpersonnelisestablishedfortheplant.,Appropriateadministrativecontrolsaredevelopedtoensurethatproceduresandotherrequirementsinvolvingradiologicalsafetyconsiderationsarestrictlyadheredto.'1.4.1FacilitiesFacilitiesforradiationprotection,personnelandequipmentdecontamination,andchemicalandradiochemicalanalysisarelocatedintheauxiliaryandturbinebuildings.a)AccessControlFacilitiesAccesscontrolfacilitiesarelocatedattheentrancestotheradiologicallyrestrictedareasoftheplant.Thesefacilitiesareusedtocontrolnormalaccessofpersonnelintopostedradiologicallycontrolledareaswheretheuseofprotectiveclothingand/orspecialradia"ionmonitoringequipmentmightbenecessary.Protectiveclothingandcalibratedradiationmonitoringinstrumentationareavailableforpersonneltouseasneeded.Alockerroomwherpersonnelchangeintoprotectiveclothingisalsoavailable.Radiationprotectionofficesarelocatedattheaccesscontrolfacilities.Personneldecontaminationfacilitiesarelocatedattheaccesscontrolfacilitieswhereappropriatemeasuresmaybetakentodecontaminatepersonnelifneeded.Thepersonneldecontaminationfacilitiescontainawashbasin,shower(eastfacilityonly),andaradiationsurveyinstrumentformonitoringpersonnelforresiduallevelsofcontaminationfollowingdecontaminationefforts.11.4-1July1997 b)DecontaminationFacilitiesPersonneldecontaminationfacilitiesarelocatedattheaccesscontrolfacilitiesasdescribedabove.Theliquidwastescollectedarenormallysenttothewastedisposalsystempriortorelease.Toolsandequipmentarenormallydecontaminatedinthehottooldecontaminationfacilitylocatedonthe633'levation.Protectiveclothingisprocessedbyanoff-sitevendor.Soiledprotectiveclothing,isperiodicallycollected,packaged,.andtransportedtothevendorforcleaning.Protectiveclothingmeetingthereleaselimitsspecifiedisreceivedfromthevendorandplacedinthechange-outfacilitiesforpersonneluse.Sufficientprotectiveclothingismaintainedon-site.c)ChemistryFacilitiesAsamplingroomwhereradioactiveandpotentiallyradioactivesamplesarecollectedislocatedintheauxiliarybuilding.0Achemicallaboratorywhereradioactivesamplesareanalyzedislocatedintheradiologicallyrestrictedareaoftheauxiliarybuildingneartheauxiliarybuildingaccesscontrolfacility.Achemicallaboratory,alsousedforanalyzingnon-radioactivesamples,islocatedintheturbinebuilding.Achemistrycountingroomwheresamplesareanalyzedforradioactivityislocatedintheradiologicallyrestrictedareaneartheauxiliarybuildingaccesscontrolfacility.ChemicalSupervisor'sofficesarelocatedneartheturbineside(east)accesscontrolfacility.Eyewashstationsand,whenappropriate,safetyshowersarelocatednearallchemicalhandlingandanalysisareas.July1997 HotLaboratorThislaboratorycanbeuse'dforradiochemicalwork,suchaschemicalseparations,etc.,inadditiontoroutinewaterchemistry.Thehotlaboratoryincludesthreeenclosedventilatedhoodsandaventilatedstoragecabinet.Theflow,fromallthesevents,aswellastherestoftheventilationflowfromthisarea,isfilteredandmonitoredbytheauxiliarybuildingventilationsystemasdescribedinSubchapter9.9.LiquidwastesfromthesinksinthislaboratoryarecollectedaridanalyzedforradioactivitybeforetreatmentorreleaseasdescribedinSubchapter11.1.,Thewasteliquidfromthedelugeshower,theface-eyewashandthefloordrainsarealsotreatedascontaminatedliquidwasteasdescribedinSection11.1oftheFSAR.CouninRoomThisroomisprovidedforthemeasurementofradioactivityincontainedliquid,solid,gaseous,orparticulatecollectionsamples.Noliquidwastesaredisposedofinthisroom.Solidwastesarehandled,asdescribedinSubchapter11.1.Theventilationforthisroomispartoftheauxiliarybuilding'entilationsystem.d)RadiationProtectionCalibrationFacilityThecalibrationfacilityislocatedoffthe609'uxiliaryBuildingCraneBay.Thisprovidesanareaforstorageandcalibrationofinstrumentsandstorageofhigheractivityradioactivecalibrationsources.Theroomisalsousedasarepairfacilityforradiationprotectionequipment.Sourcesavailableforcalibrationspurposesare:OneCs-137Shepardmodel89calibratorandoneShepardmodel1425calibratorcapableoflowleveltoveryhighlevelradiationintensities.OnePuBeneutronsourceforcalibrationofneutroninstruments.July1995 Accesstothefacilityisnormallycontrolledusingthecomputercontrolledkeycardsystem.Methodsareavailableforlockingthefacilityshouldthecomputezsystemfail.11.4.2RadiationControlPersonnelexposureto,radiationismaintainedaslowasreasonablyachievable(ALARA)bycontrollingaccess,throughradiationworkpermitsandbytheuseofshieldingwhenappropriate.11.4.3Access,ControlAccessiscontrolledtotheradiologicallyrestrictedareaonthebasisofradiationlevelsand/orthepresenceofradioactivematerialsorcontamination.Anyareainwhichradioactivematerialisstored,handledorprocessed,orinwhichradiat'ondoseratesare~0.2mR/hrisdesignatedaradiologicallyrestrictedarea.TheseareasaredesignatedbysignssuchasRESTRICTEDAREA,RADIOACTIVEMATERIALS,etc.Withintheradiologicallyrestrictedareaaccessisfurthercontrolledbasedonradiationandcontaminationlevels.TheentrancestoallareaswithintherestrictedareaarepostedwithsignsstatingCAUTION,DANGER,ORGRAVEDANGERandtheappropriateareadesignation:radiationarea,highradiationarea,extremehighradiationarea,veryhighradiationarea,controlledsurfacecontaminationarea,highcontrolledsurfacecontaminationarea,andairborneradioactivityarea.Radiationprotectionpersonnelmakeroutinesurveysofaccessibleareasoftheplanttoestablishcurrentstatusoftheradiationlevelsintheseareas.Radiologicalinformationispostedshowing(.radiationlevels(andsignificantradiationsources)inthearea.11.4.4ContaminationControl:Thespreadofcontaminationfromoneareatoanotherisminimizedbytheuseofstep-offpads.Bagsareusedtocarrycontaminatedtoolsandequipment.July1997 Personnelmonitoringdevicessuchas,countratemeterswithGeiger-Muellerdetectors,handandfootmonitorsandwholebodycontaminationmonitorsarelocatedthroughouttheradiologicalrestrictedareaforusebypersonneltomonitorthemselvesforcontamination.Personnelarealsomonitoredforcontaminationintheaccesscontrolfacilitypriortoleavingtheauxiliarybuildingorapostedcontrolledsurfacecontaminationarea.AllpersonnelaremonitoredforcontaminationwhenleavingtheProtectedAreathroughtheSecurityaccesscontrolarea.Radiationprotectionpersonnelcondu-troutinecontaminationsurveysofaccessibleareasoftheplant.Anyareacontaminatedabovesetprocedurallevelsispostedappropriatelyanddecontaminatedassoonas,andif,practical.Radiologicalinformationisavailableshowingthecontaminationandradiationlevels.Appropriateprotectiveclothingtobewornwhenenteringtheradiologically,restrictedareaisspecifiedonradiationworkpermitsorbyradiationprotectionpersonnel.11.4.5PersonnelContaminationControlThepotentialforpersonnelcontamination.isminimizedbytheuseofseveraltypesofprotectivecloth'ng.Thetypeandnumberofeachspecificpieceofprotectiveclothingtobewornisspecifiedbytheradiationworkpermitorbyradiationprotectionpersonnelbasedonknownorsuspectedcontaminationlevels.July1997 Normally,mostoftheplantisaccessibletopersonnelinstreetorconventionalclothing.11.4.6AirborneContaminationControlAirbornecontaminationisminimizedbymaintainingloosesurfacecontaminationatalowlevel.Effortsaremadeto,installtemporaryprocessventilationcontroldevicestoavoidapproachingorexceeding10CFR20levels.lftheuseofthisequipmentisnotfeasibleorcalculationsshowthatthetotaldosewouldbelower,aprovisionmaybemadeforpersonneltouserespiratoryprotectionequipmenttominimizepersonnelexposuretoairborneradioactivity.AllowancesaremadefordeterminingifpersonnelinradiologicallyrestrictedareasaresubjectedtoconcentrationsinexcessofAppendixB,Table1,Column3of10CFR20.Severaltypesofrespiratoryprotectionareavailableforper'sonneluse:a)b)c)Full-FaceCartridgeMaskSupplied-AirFull-FaceMask,ConstantAirflowPolyethyleneHoodSelf-ContainedBreathingApparatus11.<-6July1997 11.4.7,ExternalRadiationDoseDeterminationPersonnelexpectedtoreceive'occupationaldosewhileonsiteareissuedself-readingdosimetersand/orthermoluminescentdosimeterspriortoenteringtheradiologicallyrestrictedareas.Thermoluminescentdosimetersarenormallyusedtomeasurepersonnelradiationdosesandarenormallytheprimarybasisfordeterminingthedoseofrecord.Self-readingdosimetersarenormallyusedtoprovideacontinuousreadoutofoccupationaldoseaccumulatedbetweenthermoluminescentdosimeterprocessingandalsoprovideabackuptothethermoluminescentdosimeterdataandmaybeusedeitherCOnCurrentlywithOrinlieuOfTLDSinSOmeCirCumStanCeS.Doserecordsaremaintainedonpersonnelthatreceivedosewhileonsite.Extremitydosimetersareissuedasrequired.Neutronexposure~.monitoringisaccomplishedthroughdosimetersortheuseofmeasuredneutrondoseequivalentratesandstaytimes.Provisionsareinplaceforthedeterminationofskindoseintheeventofsignificantskincontaminationoruponrepeatedentryintoareashavingasignificantairbornenoblegasconcentration.Anannualtabulationofthenumberofplant,utility,andotherpersonnelreceivingdosegreaterthan100mreminacalendaryearandtheassociatedcollectivedoseaccordingtoworkandjobfunctionisincludedintheannualoperatingreport.Inaddition,alldosesarereportedasrequiredby10CFR20.Plantsupervisorsarekep-informedofplantpersonneldosesasresultsarereceivedfromthecomputerizedradiationprotectionsystem.11.4-7July1997 11.4.8InternalRadiationDoseDeterminationPassiveinternalmonitoringisroutinelyperformedforallworkersinordertodetectexternaland/orinternaldepositionofradioactivematerials.Additionally,investigationalwholebodycountsarealsoconductedwhenapotentialintakeofradioactivematerialmayhaveoccurred.Anycommittedeffectivedoseequivalentdeterminationresultsaremaintainedwithotherdoserecordsconsistentwithrecordsretentionguidelines.Thedeterminationofdosewillbebaseduponapprovedradiologicalprotectionmethodology.11.4.9RadiationProtection/RadiochemistryInstrumentationa)uninRoomInsrmentaionCountingroominstrumentationincludesgammaspectroscopyequipment,tritiumanalysisequipmentandalphaandbetacountingequipment(lowbackground).b)PorleRadiaionDetcinInstrumnatinPortableinstrumentationincludesdevicesformeasuringthermalandfastneutrons;alphacontamination;low,mid,andhighrangegammaexposurerates;andpersonnelcontamination(e.g.,friskers).Atransferstandard,ionizationchamberisavailable.11.4-8July1997 c)AirSamlinInstrumenttinAirsamplinginstrumentationincludeslowandhighvolumeairsampler-andcontinuousairsamplerswhichmeasureforparticulate,radioiodinesandnoblegases.d)PersonnelMonitorinInstrumentationPersonnelmonitoringinstrumentationincludesdevicesappropriateformonitoringdeep,shallow,andlensdoseequivalentsareused.e)EmrncInstrumentatinEmergencyinstrumentationlocatedthroughouttheplantandoffsiteincludelowandhighrangeexposureratemeters,airsamplersandpersonnelmonitoringdevices.July1997 Self-readingdosimetersofappropriaterange.11.4.10TstsandInsectionsal~ahieldinToassureshieldingintegrityismaintained,radiationsurveysofplantareasareperformedroutinely.b)ArandProcessRadiainMoniorsEachtechnicalspecificationareaandprocessmonitorisregularlytestedtoassurethatthe:Calibrationofthemonitoriscorrect.Alarmandtrippointsfunctionproperly.Inaddition,eachnontechnicalspecificationradiationmonitorisregularlytestedtoensurethecalibrationofthemonitoriscorrect.c)PrtlandSmi-PrblRaiaionMnirsThisequipmentis'regularlytestedtoassurecorrectcalibrationandfunction.MhodsPreencandandardsUsdinCalibratinInruments1)MethodBeta-gammaportablesurveyinstrumentsandportablecountrateinstrumentsarecalibratedasdescribedinSubchapter11.4,usingwrittenprocedures.Neutronsurveyinstrumentsaretypicallycalibratedoffsite.Countingandmeasuringinstrumentsarecalibratedusinglowlevelcalibrationsources.Smallchecksourcesareavailableforcheckingtheoperationandresponseofsurveyinstruments,portalmonitors,andcontaminationmonitoringinstruments.11.4-10July1997 2)FrequencyRadiationprotectioninstrumentsareperiodicallychecked,repaired,and/orcalibratedbyqualifiedpersonnel.3)StandardsThecalibrationsourcesinthecalibrationfacilityarethemselvescalibratedusinganinstrumentforwhichthestandardizationistraceabletotheNationalInstituteofStandardsandTechnology.July,1997 FIGURES11.4"1THROUGH11.4-4DELETEDe11.4-12July1995 0TABLE11.5-1DESIGNANDMEASUREDEQUILIBRIUMREACTORCOOIANTFISSIONPRODUCTACTIVITIESFOROPERATINGPMR'SANDCALCULATEDVALUESFORTHED.C.COOKSTATIONS**GinnaStation**BeznauStationCookStationDesign*Valueuc/ccMeasuredValueuc/ccRatioMeasuredDesignDesign*Valueuc/ccValueuc/ccMeasuredDesignValueuc/ccMeasuredRatioDesign+TotalActivity216710.332991680.73207IsotopicActivity(KeyIsotopes)I-1311.530.370.960.750.781.7I-1332'51.70.671.742.01.162,6Xe-133184450.242001190.60178Cs-1340.190.060.320.220.0750.350.13Cs-1370.940.37*Basedonanassumed1%defectlevel.**Amendment20tooriginalFSAR(Mar,1972)0.4011.5-41.530.220.150.8July1989 ~PumTABLE11.5-2BLOWDOWNTREATMENTSYSTEMCOMPONENTSNumberFluidPressure,SuctionTemperatureHeadFlowTypeMaterial,CasingImpellerNPSH,minimumFt.H01perunitSteamgeneratorblowdownAtmospheric200F12560gpmHorizontalcentrifugalSteelBronze2.5HExhnrNumberShellSide(blowdownliquid)InletTemperatureOutletTemperatureMax.pressureOperatingpressureFlowMaterialPressuredrop,normalmaximumallowableTubeSide(non-essentialservicewater)InletTemperatureOutletTemperatureMax.pressureOperatingpressureFlowMaterialPressuredrop,normalmaximumallowable1perunit200F120F70psi50psi60gpm304StainlessSteel4psi15psi76F106F150psig75psig160gpm304StainlessSteel5psi9psi11.5-5July1997 11.6~IOACT~MATERIALSSAFETY11.6.1MATERIALSSAFETYPROGRAMLicensedmaterialisused,handledby,orunderdirectionofoneofthosedesignatedasanindividualuserinthelicense.Eachindividualusingsuchradioactivemateri.alisfamiliarwiththerestrictionsandlimitationsplaceduponthatparti.cularsource.Aninventoryoflicensedmaterialonsiteismaint'darneanperiodicallyupdated.Theinventoryrecordcontains,asaminimum,theuseandlocationsof,licensedmaterial,'andthereceiptdatd'f'd'aninaisposi.tionofmaterialnolongerinuse.11.6.1.1~SecuritSealedsources,withtheexceptionofthoseinstalledinoronequipmentandsmallcheckorcalibrationsources,arekeptunderlockandkeywhennotinuse.11.6;1.2SourceHandlin'IWheneverradioactivesourcesarehandledorusduse,careisentoavoidtakunnecessaryexposure,thespreadofcontamination,ordamagetothesource.Xnaddition,aRadiationWorkPermitisrequiredforthefollowingsituationsdealingwithlicensedsources:1.Anytimeasealedsourcecapableofgivinganexposuregreaterthan5mrem/hrat30centimetersisusedorhandled.2.Anytimeasealed.sourceisinstalledin,orremovedfrom,equipmentonwhichitisnormallyinstalled.11.6-1July1995 11.6.1.3Materi1HndlinofSecialNlerMarialSNMANuclearMaterialsManagementGrouphastheoverallresponsibilityforSNMandtheassociatedinventoryrecords.TherearefourItemControlAreas(ICA)designatedfortheplant.The1custodianforeachoftheseareasisresponsibleforallSNMentering,leaving,orbeingstoredinthisarea.AllmaterialtransferdocumentsforthisICAaresignedbytheICACustodianoralternate.ThechainofresponsibilitybetweentheCustodianandtheNuclearMaterialsManagementGroupisshowninFigure11.6-1.Figure11.6-2presentsadiagramoftheflowofSNMthroughtheplant.ResponsibilityforthecontrolandaccountabilityofeachphysicalunitofSNMbeginswiththeon-sitereceipt.TheresponsibilityforthiscontrolandaccountabilityterminatesforeachphysicalunitwhenthephysicalunitofSNMisshippedoff-site.IEachtimefuelistransferredintooroutoftheICA,thetransferisdocumentedbyappropriateentriesonanICATransferForm..In'ventoryofallSNMmustbetakenonaperiodicbasis.11.6.1.4NMTranfrPrcdurFuelassembly,fissionchamberdetector,andmoveableminiatureneutronfluxdetector(MMNFD)movementfromoneICAtoanotherICAisnottobeinitiateduntilanICATransferFormhasbeenapprovedbytheReactorEngineeringManageroralternate>>.TheICATransferFormshowsthefuelassemblyand/orfissionchamberdetectorsand/orMMNFDinvolved,theirorigin,destination,andapprovalbytheReactorEngineeringManageroralternate;andpermitstransferofthefuelassembly,fissionchamberdetectorsorMMNFDacrosstheboundariesoftheICAsinvolved.Duringrefueling,newfuelreceipt,fuelexams,andfuelshuffles,theapprovedfuelshufflesequencemaybesubstitutedfortheICAtransferandinternaltransferforms.11.6-2July1997 Additionally,SNMmovementwithinanICAisadministrativelycontrolledbyuseoftheICAInternalTransferForm.EachInternalTransferFormmustbesignedbytheReactorEngineeringManageroralternatebeforeitisIconsideredapproved.EachICAInternalTransferFormandICATransferFormhasalimitedlifetimeoftencalendardaysasdelineatedontheformwiththeexceptionofnewfuelreceipt.ThedetailedproceduresformaterialhandlingandtransferofallSpecialNuclearMaterialaredescribedintheSNMAccountabilityManualoftheDonaldC.CookNuclearPlant.11.6.2PERSONNELANDPROCEDURESThekeypersonnelresponsibleforhandlingandmonitoringtheSpecialNuclearMaterialareidentifiedbytitleintheSpecialNuclearMaterialsAccountabilityManual.IRadiaionfInructionTheRadiationProtectionPlanpresentsthephilosophyandguidelinestobeusedtocontroltheexposuretoradiationandradioactivematerials,andtoeffectivelyrestricttheexposureofpersonnelwithintheplantandmembersofthegeneralpublictoionizingradiationresultingfromtheoperationoftheplant.SafehandlingandusageofradioactivematerialsarealsodescribedinRadiationProtectionProcedures,LaboratoryProcedures,FuelHandlingProcedures,andtheSpecialNuclearMaterialAccountabilityManual.)1.6-3July1997 11.6.3REQUIREDMATERIALSTheisotope,quantity,formanduseforallrequiredbyproduct,sourceandspecialnuclearmaterialfortheDonaldC.CookNuclearPlantareidentifiedintheFacilityOperatingLicenseandsubjecttotheconditionsidentifiedintheTechnicalSpecifications.11.6.4RADIOACTIVEHASTESTORAGETheDonaldC.CookNuclearPlantislocatedintheStateofMichigan.MichiganwastegeneratorswereunabletodisposeoftheirlowlevelradioactivewastefromNovember,1990untilJuly1995,whentheBarnwelldisposalsitere-opened.TheCookNuclearPlantisstoringsomewasteintheRadioactiveMaterialBuilding.TheRadioactiveMaterialBuildingwasdesignedandconstructedwiththeprimarypurposeofstoringlowlevel.radioactivewaste.ItislocatedbehindtheTrainingBuildingaboutahalfmilefromtheauxiliaryand,containmentbuildings.Ithasfourdifferentareas:thecellarea,thedryactivewaste(DAH)area,thetruckbay,andtheservicearea.Thecellareawillbeusedtostorethemoreradioactiveofthelowlevelradioactivewaste.Therearetwelvecellseachwithapairoftwo-footthickcovers.Typically,wasteinsevenfoothigh,sevenfootdiameter,cylindrical,highintegritycontainersareputinthecells.Theywouldcontainfiltersandresin.Thematerialsareplacedintothecellswithanoverheadcrane.TheDAWareaisusedtostoredryactivewasteinboxesanddrums.Thiswasteislessradioactiveandishandledusingaforklift.Thetruckbaywasdesignedtoaccommodateatractorandtrailer.Thewasteisunloadedinthisareawithaforkliftortheoverheadcrane.Thetruckbayisadjacenttothecellarea.ll.6-4July1996 ADMZNZSTRATZVE.CONTROLAEPNGVICEPRESIDENTNUCLEARGENERATIONNUCLEARMATERZALMANAGEMENTGROUPPLANTMANAGERREACTORENGINEERINGMANAGERNUCLEARMATERIALSMANAGERFUELMATERIALCONTROLCOG.ENGINEERACCOUNTABZLZTYNUCLEARMATERIALMANAGERICACUSTODIANSORGANIZATIONANDFUNCTIONALSTRUCTUREFIGURE11.6-1JULY1997 ON-SITERECEIPTOFSNNFKLASH!Q!LYRECEIVINGAREANEMFUELASSEMBLY,FISSIONCHAlQERDETECTORS,.ANDMOVABLEBINIATtlRENEUTRONFL1KDETECTORSTORAGEAREASICA-IIICA-IIIUNITISEAL.TABLEt.".tITiREACTORLAIT2SEAL,TABLEUNIT2REACTORVESSELUNIT1ISLNSTRtM'tT4ELLSt;NITREFt:ELINGCAVITYt!NIT2yUNIT2HISIÃSTR4~VEREHiELIÃQg~TCAVITYICA-IVSPAZFt!ELPOOLDECONTAMINATIONAREASHIPPINGAREAORUNNIRGOFr-SITESHIPNEVi'FSt%.='cx=e11.6-2aH~i.LASSE!SLYrLOUCHARTJuly,1985 12.ONDUCTOFOPERATIONS12.1ORGANIZATINANDREPONSIBILITYOverallresponsibilityforallplantoperationsisvestedintheAmerican'lectricPowerCompany.TheWestinghouseElectricCorporationprovidedtechnicalassistanceduringtheperiodofpre-operationaltesting,coreloading,initialstartupandpre-commercialoperation.TheapproachtooperatingtheplantwascompatiblewiththeorganizationalconceptsandoperationalphilosophythathavebeensuccessfullyemployedformanyyearsintheCompany'sconventionalthermalplants.ManyoftheplantpersonnelwereinitiallydrawnprimarilyfromtheexistingAmericanElectricPowerSystemconventionalplantstaff,andmosthadsignificantconventionalpowerplantexperience,plusvaryingdegreesofnuclearexperience.TheplantorganizationisshownintheQAPD.ThisorganizationisinaccordancewiththeorganizationalpracticesoftheCompanyforconventionalgeneratingplants,withincreasedemphasisonthetechnicalfunctionsrequiredfortheoperationofanuclearplant.TheSiteVicePresidentthroughthePlantManagerandappropriatedepartmentsuperintendents,providessupervisionfortheplantpersonnelandmaintainsdirectresponsibilityforallplantactivities.TheplantorganizationisunderthefunctionaldirectionofandreceivestechnicalsupportfromtheAmericanElectricPowerServiceNuclearGenerationGroup,locatedon-siteandinBuchanan,Michigan.TheindividualsselectedforSiteVicePresidentpositionandeachoftheprofessionalstaffpositionsintheoperatingorganizationmeetorexceedtheminimumqualificationsofANSIN18.1-1971/ANS3.1-71forcomparablepositions.addition:(1)theplantradiationprotectionmanagermeetsorexceedsthequalificationsofRegulatoryGuide1.8,September1975;(2)theshifttechnicaladvisorshaveaBachelor'sdegreeorequivalentinascientificorengineeringIndisciplinewithspecifictraininginplantdesign,andresponseandanalysisoftheplantfortransientsandaccidents;and(3)theoperationssuperintendentholdsorhasheldasenioroperatorlicense,orhasbeencertifiedwithsenioroperatorequivalentknowledge.12.1-1July1997 12.5REVIEWANDAUDITOFPERATIONSToensuresafety'ndefficiencyofoperationoftheplant,administrativeprocedureshavebeenestablishedtoreviewthefollowing:1.AllPlantManagerInstructionsandrevisions.2.Allplantoperatingproceduiesthatmayinvolveanunreviewedsafetyquestionasdefinedin10CFR50.59.3.Changesinplantoperatingproceduresthatmayinvolveanunreviewedsafetyquestionasdefinedin10CFR50.59.4.Designchangesthatmayinvolveanunreviewedsafetyquestionasdefinedin10CFR50.59.5.,Proposedtestsandexperimentsthatmayinvolveanunreviewedsafetyquestionasdefinedin10CFR50.59.6.=ProposedchangestotheTechnicalSpecifications7.ViolationsoftheTechnicalSpecifications8.Allreportableevents..Twocommitteeshavebeenestablishedforthispurpose:thePlantNuclearSafetyReviewCommittee(PNSRC)andthe'uclearSafetyandDesignReviewCommittee(NSDRC).Themembersofthesecommittees,theirresponsibilitiesandtheirauthority,havebeennotedintheAdministrativeControlsectionsoftheTechnicalSpecifications.AuditsoffacilityoperationsareconductedaspreviouslydescribedinSection1.7.12.5-1July1997 12.6NULEARDESINANDSUPPORTCAPABILITYTheCookNuclear'PlantorganizationisunderthefunctionaldirectionofandreceivestechnicalsupportfromtheAEPNuclearGenerationGroup(NGG)whichisheadquarteredat500CircleDrive,Buchanan,Michigan.TheAmericanElectricPowerServiceCorporation(AEPSC),withofficescurrentlyat1RiversidePlaza,Columbus,Ohio,43215,providesengineeringtoperationalsupport,design,legal,accountingandrelatedservicestotheAEPSystem.Consequently,AEPSCemploysengineers,designers,anddrafters'whoareexperiencedinthedesignandconstructionofelectricgeneratingstations.AEPSCactsasthearchitect-engineerfortheAEPsystemandassuchhasdesignedandbuiltnearlyalloftheSystem'spresentgeneratingcapacity.AEPSCwasresponsibleforthedesignoftheDonaldC.CookNuclearPlantandforconstructionoftheentireplant.DesignandfabricationofthenuclearsteamsupplysystemcomponentsandtheinitialfuelloadwereperformedbytheWestinghouseElectricCorporationanditssubcontractors.AEPSCbegantrainingemployeesinnuclearpowerin1952withtheassignmentofseveralengineers,designersandmaintenancespecialiststoOakRidgeNationalLaboratory,BettisAtomicPowerLaboratory,KnollsAtomicPowerLaboratory,andvariousprojectsattheNationalReactorTestingStation.Sincethattime,alargenumberofadditionalAEPpersonnelhavecompletedassignment'satvariousnationallaboratoriesorpursuedgraduatelevelworkinnuclearengineeringatleadinguniversities,whileothershaveattendedshortercoursesandseminarsinvariousaspectsofthenuclearpowerindustry.In1953,AEPbecameoneoftheco-foundersoftheNuclearPowerGroup,Inc.,andintheensuingyearsparticipated,technicallyandfinancially,inthedevelopmentoftheDresdenNuclearPowerStation.Thisgroupwasthendissolved.Itevolvedinto.theEastCentralNuclearGroup(ECNG);andAEPwasinstrumentalinthenewgroup'sformation.ECNGwascomprisedof10tutilitycompanies.='tsgoalwastoresearchanddevelop12.6-1July1997 nuclearpower.TheAEPServiceCorporationactedasarchitect-engineeradministratorandresearchanddevelopmentmanagerforthegroup.ECNG'smajorundertakingswerethedevelopmentwiththeGeneralNuclearEngineeringCorp.oftheFloridaWestCoastNuclearGroupgas-cooled,heavywatermoderatedreactorfrom1957-61,thejointdevelopmentwithBabcock&WilcoxofaSupercriticalPressureSteamCooledFastBreederReactorfrom1963-65,thedevelopmentofaGasCooledFastBreederReactorincooperationwithGulfGeneralAtomicfrom1965-67,thedevelopmentwithGeneralElectricofaSteamCooledFastBreederReactorin1967-1968,andfrom1968through1982,afurtherprojectwithGeneralAtomicfortheGasCooledFastBreederReactor,firstthroughaninformalgroupofutilitiesandthenthroughHeliumBreederAssociates.Inaddition,ECNG,withtheaidofAEPSCstaffandS.M.StollerAssociates,madeathoroughstudyofthe"TheOutlookforUranium",asurveyofthelikelydemandandavailabilityofnuclearfuel;andwiththeMassachusettsInstituteofTechnologyproducedastudyofthe"EffectsofChangingEconomicConditionsofFuelCycleCosts".Thisprogram'investigatedtheten-projectedeffectsofprivateownershipofnuclearpowereconomics.ECNGisnowdissolved.Atthepresenttime,theAEPNuclearGenerationGroupconsistsofprofessionalpersonnelwhodevotetheirprofessionalenergiestoCookNuclearPlantandnuclearpowerindustryissues.Inaddition,thereareotherindividualsatAEPSCwithsubstantialnucleartrainingorspecificnuclearexperience,inkeyengineering,designandoperatingpositions.12.6-2July1997 14.1CO0ONTheReactorControlandProtectionSystemisreliedupontoprotectthecoreandreactorcoolantboundaryagainstthefollowingfaultconditions:I1.UncontrolledRCCAbankwithdrawalfromasubcriticalcondition2.UncontrolledRCCAbankwithdrawalatpower3.RCCAmisalignment(thisencompassesRCCAdrop)4.UncontrolledBorondilutionS.Lossofreactor'oolantflow(includinglockedrotor)J6Start-upofaninactivereactorcoolantloop7Lossofexternalelectricalloadand/orturbinetrip8Lossofnormalfeedwater9.Excessiveheatremovalduetofeedwatersystemmalfunctions10.Excessiveloadincreasell'ossofoffsitepower(LOOP)tothestationauxiliaries.12.Turbine~eneratoroverspeedUNIT114.1-1July,1993 RCReduceTemeraurndPrsurRTP0eratinThesafetyanalysespresentedinthischapterincludewherenecessarytheeffectsofreducedRCStemperature(reactor.esselaveragetemperature)andpressure(pressurizerpressure)operationforCookNuclearPlantUnit1.Operationwithacorepower.of3250MWtissupportedintherangeoffullpowerOOprimaryvesselaveragetemperaturesbetween553Fand576.3FatRCSpressurevaluesof2100psiaor2250psia.Inaddition,theevaluationperformedsupportsamaximumsteamgeneratortubeplugginglevelof30%.Table14.1-1(Cases1and2)presentstherangeofconditionsforthereducedRCStemperatureIandpressureoperation.Steamlinebreakmassandenergyreleaseswereevaluatedtoaccountforfullpowerprimaryvesselaveragetemperaturesbetween547Fand00581.3F,thusboundingthelicensedRCStemperaturesofUnit2.Theefforttosupportanincreasedsteamgeneratortubeplugging(SGTP)1'evelof30%consistedofre-analysesandevaluations.Forthenon-LOCAtransientsthatwereevaluated,the"analysisofrecord"continuestobethepreviouslyperformedanalysiswhichsupportsthefuturereratingofUnit1.Assuch,therangeofconditionspresentedasCases3and4ofTable14.1-1continuetoapply.Thus,theseparticulartransientshavebeenshowntosatisfytheapplicableacceptancecriteriaviathereratinganalysisandthesubsequent30%SGTPevaluation.Theresultsofthenon-LOCAoccurrencessafetyanalysespresentedinthefollowingsectionsshowthatthereducedRCStemperatureandpressureoperationforUnit1,cansatisfytheapplicableFSARsafetylimits.Thesafetyanalysessupportamaximumaveragesteamgeneratortubeplugginglevelof30%,providedtheminimummeasuredRCSflowof84,775gpm/loopismetandtheRCStemperatureandpressurepresentedinTable14.1-1(Cases1and2)arenotexceeded.A5%RCSflowasymmetryisalsosupportedbythesafetyanalyses.Specifically,atotalRCSflowrateof339,100gpmwithareductionofRCSflowinoneloopof5%belowtheaverageloopflowratewasevaluatedinthesafetyanalyses.AslongasthetotalminimummeasuredRCSflowisequaltoorg".eaterthan339,100gpm,theflowrateinoneloopmaybebelow84,775gpmbyasmuchas5%.Shouldtheflowrateinmorethanoneloopbebelow84,775gpm,atotalloopflowshortUNIT114.1-2July,1997 falllessthanorequalto5%of84,775gpmissupportedbythesafetyanalyses,providedthetotalminimummeasuredRCSflowisequaltoorgreaterthan339,100gpm.ReactrProtectionSstemRPSandEninerfeFeareESFetpintsAssumdinAnalsiToenhanceoperatingflexibilityfortheRCSreducedtemperatureandpressureoperationwithamaximumaveragesteamgeneratortubeplugginglevelof30%,certainReactorProtectionSystem(RPS)setpointsandemergencydieselgeneration(EDG)requirementswererevised.TherevisedRPSsetpointsincludetheovertemperature~T(OT~T)andtheoverpower~~(OP~T)reactortrips.TherevisedEDGrequirementisrelaxed,suchthatthetotalEDGstart-updelaytimesupportedbythesafetyanalysesisnow30seconds.AreactortripisdefinedforanalyticalpurposesastheinsertionofallIRCCAsexceptthemostreactiveonewhichisassumedtoremaininthefullywithdrawnposition.ThisistoprovidemargininshutdowncapabilityagainsttheremotepossibilityofastuckRCCAconditionexistingatatimewhenshutdownisrequired.Theresponsetimes'fthereactortripsysteminstrumentationislistedinTable7.2-6.Instrumentationisprovidedforcontinuouslymonitoring.allindividualRCCAstogetherwiththeirrespectivebankposition.Thisisdoneintheformofadeviationalarmsystem.Proceduresareestablishedtocorrectdeviations.Intheworstcase,theplantwillbeshutdowninanorderlymannerandtheconditioncorrected.Insummary,reactorprotectionisdesignedtopreventcladdingdamageinallfaultconditionslistedpreviously.ThemostprobablemodesoffailureineachRPSchannelresultinasignalcallingfortheprotectivereactortrip.Coincidenceoftwooutofthree(ortwooutoffour)signalsisrequiredwheresinglechannelmalfunctioncouldcausespurioustripswhileatpower.Asinglecomponentorchannelfailureintheprotectionsystemitselfcoincidentwithone'tuckRCCAisalwayspermissibleasacontingentfailureanddoesnotcauseviolationoftheprotectioncriteria.ThereactorprotectionsystemisdesignediinaccordancewiththeIEEE279"StandardforNuclearPlantProtectionSystems,"August,1968.UNIT114.1-3July,1997 ReacrTriStinsRevisedOThTandOPETsetpointswerecalculatedbasedonthenewcorethermalsafetylimitsusingthemethodologydescribedinReference1.Figure14.1-1presentstheallowableRCSloopaveragetemperatureandhTfortheminimummeasuredflowandpowerdistributionasafunctionofRCSpressure.Figure14.1-1representsthemostlimitingoperatingconfiguration(nominalTavg0576.3F,nominalRCSpressure2100psia)oftherangeofconditionsdescribedinTable14.1-1forthecalculationoftheOThTandOPhTtripsetpoints.TheboundariesofoperationdefinedbytheOPhTandOT4Ttripsetpointsarerepresentedas"protectionlines"onthisdiagram.Theprotectionlinesaredrawntoincludealladverseinstrumentationandsetpointerrorssothatunde"nominalconditions,areactortripwouldoccurwellwithintheareaboundedbytheselines.,TheutilityofthisdiagramisinthefactthatthelimitimposedbyanygivenDNBRcanberepresentedasaline.,TheDNBlinesrepresent'heIlocusofconditionsforwhichtheDNBRequalsthesafetyanalysislimitvalue.AllpointsbelowandtotheleftofaDNBlineforagivenRCSpressurehaveaDNBRgreaterthanthelimitvalue.ThediagramshowsthatDNBispreventedforallcasesiftheareaenclosedwithinthemaximumprotectionlinesisnot'raversedbytheapplicableDNBRlimitlineatanypointforagivenRCSpressure.Theareaofpermissibleoperation(power,pressure,andtemperature)isboundedbythecombinationofreactortrips:highne~tronflux(fixedsetpoint);highpressurizerpressure(fixedsetpoint);lowpressu.izerpressure(fixedsetpoint);overpowerandovertemperaturedT(variablesetpoints)UNIT114.1-4July1997 Thesafetylimitvalue,whichwasusedastheDNBRlimitforallaccidentsanalyzedwiththeRevisedThermalDesignProcedure(RTDP)(Reference2),isconservativecomparedtotheactualdesignDNBRvaluerequiredtomeettheDNBdesignbasis.Table14.1-2presentsthelimitingreactortripsetpointsassumedinthesafetyanalysesandthetimedelayassumedforeachtripfunction.Thedifferencesbetweenthelimitingreactortrippointassumedforthesafetyanalysesandthenormalreactortrippointrepresentanallowanceforinstrumentationchannelerrorandsetpointerror.NominalreactortripsetpointsarespecifiedintheplantTechnicalSpecifications.Timeresponsetestingdemonstratesthatactualinstrumenttimedelaysareequaltoorlessthantheassumedvalues.Additionally,reactorprotectionsystemchannelsarecalibratedandinstrumentresponsetimesdeterminedperiodicallyinaccordancewiththeTechnicalSpecifications.Thesafetyanalysespresentedinthefollowingsectionsassumethatthereferenceaveragetemperatures(T'ndT")usedintheOThTandOPhTsetpointequationsarerescaledtothefullpoweraveragetemperatureeachtimethecycleaveragetemperatureischanged.Itisalsoassumedthatthereferencepressure(P')intheOThTequationissetequaltotheappropriatenominalRCSpressure(2250psiaor2100psia).'Figures14.1-1through14.1-4illustratetheOThTandOPhTsetpointsfortheendpointsoftherangeofaveragetemperaturesforthe30%SGTPconditionsofUnit1ateither2100psiaor2250psia.ThesafetyanalysesalsoassumerecalibrationoftheNISexcoredetectorstocompensateforthechangesincoolantdensityeachtime,.thecycleoperatingconditionsarechanged.UNIT114.1-5July,1997 0TheUnit1non-LOCAsafetyanalysesfortheRCSreducedtemperatureandpressureoperationwith30%steamgeneratortubeplugging(SGTP)wereperformedusingcurrentWestinghousemethodologyandcomputercodes.Forthesafetyanalysespresentedinthefollowingsections,theresultsshowthattheRCSreducedtemperatureandpressureoperationwithamaximumSGTPlevelof30%forUnit1,satisfytheapplicableFSARacceptancecriteria.,IniialondiionAlltransientshavebeenanalyzedorevaluatedtodemonstratethatRCSreducedtemperatureandpressureoperationwithamaximumaveragesteamgeneratortubeplugginglevelof30~canbesupported.Severalofthetransientsreflec'tIinitialconditionvaluesconsistentwiththepreviouslyanalyzedtransientsthatwereperformedtosupport,thererating(i.e.,3411MWtcorepower)ofUnit1.ForeachofthetransientsreanalyzedtosupportRCSreducedtemperatureandpressureoperationwith30'-.SGTP,conservativenominalvaluesforinitialreactorthermalpowerandRCStemperatureandpressureareassumedtoboundtheRCSreducedtemperatureandpressureoperation.TheinitialconditionsforeachsafetyanalysisarepresentedinTable14.1-3.UNIT14.1-5July1997 FormosttransientswhichareDNBlimited,nominalvaluesofinitialconditionsandtheminimummeasuredflow(339,100gpm)areassumed.TheallowancesonreactorthermalpowerandRCStemperatureandpressurearedeterminedonastatisticalbasisandareincludedinthelimitDNBRasdescribedinNCAP-11397(Reference2).Thisprocedureisknownasthe"RevisedThermalDesignProcedure"(RTDP).ForoccurrencesthatarenotDNBlimitedorinwhichRTDPisnotemployed,theinitialconditionsareobtainedbyaddingthemaximumsteadystateerrorstonominalvalues.Thefollowingsteadystateerrorsareconsidered:A.CoreThermalPower+2%calorimetricerrorallowanceB.RCSAverageTemperature+4.1Fcontrollerdeadbandandmeasurementerrorallowance;plusa+1.0"Fbiasforcold-legstreamingC.RCS(Pressurizer)Pressure+67psi-steadystatefluctuationsandmeasurementerrorallowanceD.ReactorFlowThermalDesignFlow(332,800gpm)UNIT114.1-7July,1997 'llTable14.1-3summarizesinitialconditionsandcomputercodesusedinthesafetyanalysisofoccurrencesinSections14.1.1through14.1.12andSections14.2.5,14.2.6and14.2.8,andshowswhichtransientsemployedaDNBanalysisusingtheRTDP.ReatorrePowrDiribuinThetransientresponseofthereactorsystemisdependentontheinitialpowerdistribution.ThenucleardesignofthereactorcoreminimizesadversepowerdistributionthroughtheplacementofRCCAsandoperationinstructions.Thepowerdistributionmaybecharacterizedbytheradialpeakingfactor,F,andAH'hetotalpeakingfactor,F.ThepeakingfactorlimitsaregivenintheTechnicalSpecifications.ForoccurrenceswhichmaybeDNBlimited,theradialpeakingfactorisof.importance.,TheradialpeakingfactorincreaseswithdecreasingpowerlevelduetoRCCAinsertion.ThisincreaseinF>isincludedinthecorethermal'safetylimits.AlloccurrencesthatmaybeDNBlimitedareassumedtobeginwithaF,hHconsistentwiththeinitialRCSthermalpowerleveldefinedintheTechnicalSpecifications.TheradialandaxialpowerdistributionsereinputtotheTHINCCodeasdescribedinChapter3.Foroccurrenceswhichmaybeoverpowerlimited,thetotalpeakingfactor,F,sQ'fimportance.AlltransientsthatmaybeoverpowerlimitedareassumedtobeginwithplantconditionsincludingpowerdistributionswhichareconsistentwithreactoroperationasdefinedintheTechnicalSpecifications.UNET114.1-9July,1997 Foroverpoweroccurrenceswhichareslowwithrespecttothefuelrodthermaltimeconstant,forexampletheuncontrolledborondilutionincidentwhichlastsmanyminutes,andtheexcessiveloadincreaseincidentwhichreachesequilibriumwithoutcausingareactortrip,fueltemperaturelimitsarediscussedinChapter3.Foroverpoweroccurrenceswhicharefastwithrespecttothefuelrodthermaltimeconstant,forexampletheuncontrolledRCCAbankwithdrawalfromasubcriticalconditionandRCCAejectionoccurrenceswhichresultinalargepowerriseoverafewseconds,adetailedfuelheattransfercalculationisperformed.Althoughthefuelrodthermaltimeconstantisafunctionofsystemconditions,fuelburnupandfuelrodpower,atypicalvalueatbeginning-of-lifeforhighpowerfuelrodsisapproximately7seconds.RcorTriIAreactortripsignalactstoopenthetwotripbreakersconnectedinseriesfeedingpowertotheRCCAdrivemechanismcoils.Thelossofpowertothemechanismcoilscausesthemechanismsto"eleasetheRCCAs,whichthenfallbygravityintothecore.Therearevariousinstrumentationdelaysassociatedwitheachreactortripfunction,includingdelaysinsignalactuation,inopeningthereactortripbreakers,andinthereleaseoftheRCCAsbythemechanisms.ThetotaldelaytoreactortripisdefinedasthetimedelayfromthetimethatreactortripconditionsarereachedtothetimetheRCCAsarefreeandbegintok-fall.ThetimedelayassumedforeachreactortripfunctionisgiveninTable14.1-2.Thedifferencebetweenthelimitingreactortripsetpointassumedforthesafetyanalysisandthenominalreactortripsetpointrepresentsanallowanceforinstrumentationchannelerrorandsetpointerror.Theinstrumentationdriftandcalorimetricerrorsusedinestablishingthemaximumpower,rangehighneutronfluxsetpointarepresentedinTable14.1-4.UNIT114.1-9July,1997 ThenegativereactivityinsertionfollowingareactortripisafunctionoftheaccelerationoftheRCCAsandthevariationinRCCAworthasafunctionofRCCAposit'ion.RCCApositionsafterthereactortriphavebeendeterminedexperimentallyasafunctionoftimeusingaprototypeRCCAundersimulatedflowconditions.TheresultingRCCApositionswerecombinedwiththeRCCAworthstodefinethenegativereactivityinsertionasafunctionoftime,accordingtoFigure14.1-5.0thrAssuminThoseanalysesthatmodelthemitigationeffectsofProtectionand/orEngineeredSafetyFeatureshaveusedtheresponsetimesprovidedinTable7.2-6and7.2-7.SomeinputassumptionsdiffersomewhatfromvaluesthatmaybefoundelsewhereintheUFSAR.Inparticular,Tables14.1-4,14.1-5,and14.1-6displayRCSvolumes,steamgeneratormass,RCSpressuredropsusedinthecurrentanalysesThesetablescanbefoundinreference7.Table14.1-7liststheRCSpressuredropsatBestEstimateflowcalculatedat0%steamgeneratortubepluggingandat30%SGTP(Reference7).ThetimetodraindowntheRWSTandthetimetoswitchovertorecirculationcoolingaffectstheLOCAcontainmentintegrityanalysis.Forpeakpressureconsiderations,itisconservativetoswitchover,torecirculationsoonerbecauseofthedecreasedcoolingeffectduringtherecirculationphaseofoperationofthesafetyinjection,theuppercompartmentspray,andthelowercompartmentspray.Becausethefluidenthalpyincreasesduringtherecirculationmode,thesafetyinjectionandsprayefficiencyisdiminished.Also,oncethesteamgeneratorshave.equilibrated,themassandenergyreleasesaredeterminedbaseduponaboiloffcalculationthatisrelatedtothesafetyinjectionwaterenthalpy.Thehighertheenthalpy,thelargerthereleases.Therefore,utilize:ngaconservativelyearlyswitchovertimesequencealsoresultsinhighe'randmoreconservativemassandenergyreleasestocontainment.Alsoincludedinthecontainmentpressurecalculationistheearlypartoftheswitchoversequence,whenthecontainmentspraysareinitiallydrawingwaterUNIT114.1-10July1997 fromtheRWST.Duringthisperiodthespraysareshut'ff.Itisalsoassumedthatthesprayswitchoversequenceisstarted,andiscompletedovera4minuteperiod.Thisresultsinasprayinterruption(i.e.,nocontainmentsprayflow)duringthisperiod.A4minutesprayinterruptionisalsoassumedintheoffsitedoseanalysis.Forthedraindowncalculationthemaximumpumpandsprayflowsareassumedduringinjection,andcombinedconservatively,toshortenthetimetostarttheswitchoversequence.Ifnecessary,valveclosingtimeisneglected.Thedraindownandswitchoversequenceinformationisdeterminedinaconservativemannertosupporttheanalyticalbasisforthepeakpressurecalculation.AtableprovidingdetailsofthevariouselementsthatweredevelopedtosupporttheseassumptionsispresentedinTable14.1-8.Thedetailedinformationinthistableisnotintendedtoserveasarequirementthattheoperatorsmustmeetwhiledemonstratingthecapabilitytoperformemergencyoperatingproceduresrelatedtothetransfertocoldlegrecirculation.merCodesUilizdSummariesoftheprincipalcom'utercodesusedxnthesafetyanalysesaregivenbelow.'hecodesusedinthesafetyanalysisofeachoccurrencehavebeenlistedinTable14.1-3.FACTRANFACTRANcalculatesthetransienttemperaturedistributioninacross-sectionofametalcladUOfuelrodandthetransientheatfluxatthesurfaceofthecladusingasinputthenuclearpowerandthetime-dependentcoolantparameters(pressure,flow,temperature,anddensity).Thecodeusesafuelmodelwhichsimultaneouslyexhibitsthefollowingfea'tures:A.Asufficientlylargenumberofradialspaceincrementstohandlefasttransientssuchasrodejectionaccidents.B.Materialpropertieswhicharefunct'onsoftemperatureandasophisticatedfuel-to-cladgapheattransfercalculation.UNIT114.1-10aJuly1997 Thenecessarycalculationstohandlepost-departurefromnucleateboiling(DNB)transients:filmboilingheattransfercorrelations,Zircaloy-waterreaction,andpartialmeltingofthematerials.FACTRANisfurtherdiscussedinReference3.TheLOFTRANprogramisusedfortransientresponsestudiesofapressurizedwaterreactor(PWR)systemtospecifiedperturbationsinprocessparameters.LOFTRANsimulatesamultiloopsystembyamodelcontainingthereactorvessel,hotandcoldlegpiping,steamgenerators(tubeandshellsides),andthepressurizer.Thepressurizerheaters,spray,relief,andsafetyvalvesarealsoconsideredintheprogram.Pointmodelneutronkinetics,andreactivityeffectsofthemoderator,fuel,boron,androdsareincluded.Thesecondarysideofthesteamgeneratorutilizesahomogeneous,saturatedmixtureforthethermal~~~~~~~"ransientsandawaterlevelcorrela'tionforindicationandcontrol.Thereactor.protectionsystemissimulatedtoincludereactortripsonhighneutronflux,overtemper-atureAT,overpowerhT,andhighandlowpressure,lowflow,andhzghpressurizerlevel.Controlsystemsarealsosimulatedincludingrodcontrol,steamdump,feedwatercontrol,andpressurizerpressurecontrol.TheECCS,includingtheaccumulators,isalsomodeled.LOFTRANalsohasthecapabilityofcplculatingthetransientvalueofDNBRbasedontheinputfromthecorelimits.ThecorelimitsrepresenttheminimumvalueofDNBRascalculatedfortypicalorthimblecell.LOFTRMisfurtherdiscussedinReference4.TWINKLETheTWINKLEprogramisamulti-dimensionalspatialneutronkineticscode,whichaspatternedaftersteady-statecodespresentlyusedforreactorcoredesign.UNIT114.1-11July1996 Thecodeusesanimplicitfinite-differencemethodtosolvethetwo-grouptransientneutrondiffusionequationsinone,two,andthree-dimensions.Thecodeusessixdelayedneutrongroupsand.containsadetailedmulti-regionfuel-clad-coolantheattransfermodelforcalculatingpointwiseDopplerandmode"atorfeedbackeffects.Thecodehandlesupto2000spatialpointsandperformsitownsteady-stateinitialization.Asidefrombasiccross-sectiondataandthermal-hydraulicparameters,thecodeacceptsasinputbasicdrivingfunctionssuchasinlettemperature,pressure,flow,boronconcentration,controlrodmotion,andothers.Variouseditsareprovided,e.g.,channelwisepower,axialoffset,enthalpy,volumetricsurge,pointwisepower,andfueltemperatures.TheTWINKLEcodeisusedtopredictthekineticbehaviorofareactorfortransientswhichcauseamajorperturbationinthespatialneutronfluxdistribution.TWINKLEisfurtherdescribedinReference5.THINCTheTHINC-IVcomputerprogram,as.approvedbytheNRC,isusedtodeterminecoolantdensity,massvelocity,enthalpy,vaporvoid,staticpressure,andDNBRdistributionsalongparallelflowchannelswithinareactorcoreunderallexpectedoperatingconditions.TheTHINC-IVcodeisdescribedindetailinReference6.UNIT114.1-12July1997 Section14.1~REFERENCE1.Ellenberger,S.L.,et.al.,"DesignBasesfortheThermalOverpowerhTandThermalOvertemperatureLTTripFunctions,"WCAP-8746,March1977.Friedland,A.J.,Ray,S.,"RevisedThermalDesignProcedure,"WCAP-11397-P-A,April1989.3.Hargrove,H.G.,"FACTRAN-AFORTRANIVCodeforThermalTransientsinaUOFuelRod,"WCAP-7908-A,December1989.4.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"WCAP-7907-A,April1984.I5.Risher,D.H.,Jr.,andR.F.Barry,"TWINKLE-AMulti-DimensionalNeutronKineticsCode,"WCAP-8028-A,January1975.,6.Friedland,A.J.andRay,S.,"ImprovedTHINCIVModelingforPWRCoreIffI~~II~INDesign,"WCAP-12330-P,August1989.7.McFetridge,R.H.,AmericanElectricPowerServiceCorporationDonaldC.CookNuclearPlantUnit1SteamGeneratorTubePluggingEngineeringReport,WCAP-14286,December1995.8.V.VanderBurgtoK.R.Worthington,SafetyReviewofaProposaltoUsetheValveTravelTimesfromtheUnit1SteamGeneratorTubePluggingandUnit2UprateProgramsfortheSumpRecirculationModelinLieuofThoseFoundinSection6.2.2oftheUFSAR,November13,'996UNIT114.1-13July1997 TABLE14.1-1UNIT1DESIGNPOWERCAPABILITYPARAMETERSUSEDINNON-LOCASAFETYANALYSES~Peaceee(ReducedTemperatureandPressure)Case1Case2(Rerating)*~Caa4~NSSSPower,MWtCorePower,MWtRCSFlow,gpm/loopMinimumMeasuredFlow,gpm/loop326232508320084775326232508320084775342534138850091600342534138850091600RSTemeraures'FCoreOutletVesselOutletCoreAverageVesselAverageVessel/CoreInletSteamGeneratorOutletZeroLoad589.7586.8555.8553.0519.2518.9547.0611.9609.1579.4576.3543.5543.2547.0583.6580.7549.7547.0513.3513.1547.0614.0611.2581.8578.7546.2~546.0,547.0RCSPressure,psia2250or21002250or21002250or21002250or2100SteamPressure,psiaStegmFlow(10lb/hrtotal)0FeedwaterTemp.,F59514.12434.874914.17434.860314.98442.82015.07442.SGTubePlugging,30-301010*CookUnit1isnotlicensedtooperateatthereratedconditionsspecifiedbyCases3and4with30<steamgeneratortubeplugging(SGTP)levels.However,severaleventsthatwerepreviouslyperformedusingtheseconditionsweresubsequentlyevaluatedtosupportthe30%SGTPprogram.Hence,thereratedconditionsarealsospecifiedinthistableforcompleteness.UNIT114.1-14July1997 TABLE14.1-2REACTORTRIPPOINTSANDTIMEDELAYSTOTRIPASSEDINSAFETYANALYSESReactorTriFunctionLimitingReactorTripPointAssumedInAnalsisTimeDelay~SeondsPowerrangehighneutronflux,highsetting118percent0.5Powerrangehighneutronflux,lowsetting35percent0.5OvertemperatureATVariable,seeFigure3.3-1through3.3-48.0OverpowerhTVariable,seeFigure3.3-1through3.3-4NAHighpressurizerpressure.LowpressurizerpressureHighpressurizerwaterlevel2420psig1825psige100~oNRS2.02.02.0Lowreactorcoolantflow(Fromloopflowdetectors)87percentloopflow1.0UndervoltagetripLow-lowsteamgeneratorlevel0.0percentofnarrowrangelevelspan1.52.0HighsteamgeneratorlevelTurbineTripFeedwaterIsolation82percentofnarrowrangelevelspan2.511.0cdTotaltimedelay(includingRTDbypassloopfluidtransportdelayeffect,bypasslooppipingthermalcapacity,RTDtimeresponse,andtripcircuit,channelelectronicsdelay)fromthetimethetemperaturedifferenceinthecoolantloopsexceedsthetripsetpointuntiltherodsarefreetofall.Thetimedelayassumedintheanalysissupportsthe6secondresponsetimeoftheRTDtimeresponse,tripcircuitdelays,andchannelelectronicsdelaypresentedintheTechnicalSpecifications.Noexplicitvalueassumedintheanalysis.Undervoltagetripsetpointassumedreachedatinitiationofanalysis.Thecontrolrodscramtimetodashpotis2.4seconds.Overpower(OP)hTreactortripnotexplicitlyassumedinanalysis.Avalueof1845psigisusedinLOCAanalyses..,UNIT114.1-15July1997 TABLB14.1-3SUNHARYOPINITIALCONDITIONSANDCOHPUTERCODESUSBDPaultConditionsComputerCodesutilizedNoderatorNoderatorTemperatureDanoity~cm~P~8Km~cc~DoIsrReactxvitCoefficientsAssumedDNBCorrelationRevisedThermalDesignProcedureInitialNSSSThermalPowerO~IIMReactorVesselCoolant~PloGPNVeooelAverageTemperature~P.PraoourixerPressure~PStAUncontrolledRCCABankWithdrawalfromaSubcz'iticalConditionUncontrolledRCCABankWithdrawalatPower(2)TWINKLBPACTRANTNINCLOPTRAN+5HinandHax(3)RefertoSection14.1.1Hin{I)W-3/WRB-1SeeSection14.1.1WRB-1Yao3270.1962327146~432339,100547576'564.58549.9320332100RccAHioalignmentLOPTRANNAaTHIHCWRB-13270339,100576.32100UncontrolledBoronDilutionNANANANA3425NALossofPorcedReactorLOPTRAH45HaxWRB13270339,100576.32100CoolantPlowLockedRotor(PeakPressure)PACTRAHTHINCLOPTRAH+5NaxNANA3335332,800581.42317LockedRororLOPTRAN+5Hax3335332,800581.42033{peakCladTemp)DNA-NotApplicable{I)HinimumDopplerpowerdefect(pcm/%power)a-9.55+0.035QwhereQioin\powert2)Hultiplepowerlevels,Tavg,andreactivityfeedbackcaoeowareexamined[3)HaXimumDOpplerpOWerdefeCt(pCm/%POWer)a-19.4+0.065Q(4)NinimumandNaximumreactivityfeedbackcaoeowereexaminedUHIT114.1-16July199I On.TABLB14.~ntinued)SUHNARYOPINITIALCONDIJANDCOHPUTBRCOD6SUSBDFaultConditionsComputer~HoderatorCodesTemperatureUtiliredQ>~cm'PHoderatorDensity~&OKBe~acc~DoIerReactivitCoefficientsAssumedRevisedThermalDNBDesign~C1'oPPInitialNSSSThermalPowerP~PPReactorVesselCoolant~PlooPllVesselAveragePressuriterTemperaturePressure~eSPPLockedRotor(Rods-in-DNB)tSPACTRANTHINCHaxWRB-1Yes3270339,100576.32100LossofBlectricalLoadand/orTurbineTrip(1)LOPTRAN+5HaxandHinWRB-13262339,100576.32100Losso(NormalPeedwater(5)LOPTRAN+5NAHaxNA3494354,000551.52285BxcessiveHeatRemoval(5)DuetoPeedwaterSystem1Ha1function~54HinWRB-1Yes3125366,400(6)SI8.I54721006xcessLoadIncrease(5)Incident0and.54NaxandNinWRB-1Yes3425366,400(6)578.72100LossofOffsitePower(LOOP)(5)LOPTRAN+5totheStationAuxiliariesHaxNA3494351,000542.52285RuptureofaSteamPipeLOPTRANSeePigureNATHINC14.2.5-1SeePigure14.2.5-2W3332,8005472100RuptureofaControlRodDriveHechanismHousingTWINKLBSeeSectionNAPACTRAN14.2.6.Hin3335332,800146,432581.45472033~MA-NotApplicable(1)HinimumDOppler,pOWerdefeCt(porn/%pOWer)e-9.55+0.035()Where(}iein\pOWer(2)Hultiplepowerlevels,Tavg,andreactivityfeedbackcaseswereexamined(3)NaXimumDOpplerpOWerdefeCt(porn/%POWer)e-19.4+0.065(}(4)HinimumandHaximumreactivityfeedbackcaseswereexamined(5)valuespresentedwereusedinthereratinganalysis.Subsequentevaluationssupportthep30lsGTpparameterspresentedascases1and2ofTable14.1-1.UNIT114.117July1997 TABLE14.1-4INTRUMENTATIONDRIFTANDCALORIMETRIERRORPOWERRANGENEUTRNFLUXSetpointandErrorAllowances:EstimatedInstrumentationErrors:fraewrNominalSetpoint109CalorimetricError1.55AxialpowerdistributioneffectsontotalionchambercurrentInstrumentationchanneldriftandsetpoint.reproducibility1.0Maximumoverpowerreactortrippointassumingallindividualerrorsaresimultaneouslyinthemostadversedirection119UNIT114.1-18July1997 .TABLE14.1-5DONALD"C.COOKNUCLEARPLANTUNIT1SGTPPROGRAMINPUTASSUMPTIONSFORRCSVOLUMESInuAssumtionsIniialConditionsReactorVessel(ft')04SGTP482630%'GTP4826SteamGenerators(ft~-Total)4308<'>ReactorCoolantPumps(ft'otal)314314LoopPiping(ft'Total)11751175SurgeLinePiping(ft')43Pressurizer(ft~)1001800TotalRCSVolume(ft')(AmbientConditions)12,46611,551.TotalRCSVolume(ft~)(HotConditionsincludes3%forthermalexpansion)12,84011,898Notes:(1)TheSGtubevolumeisassumedtobe762ft'/SG(3048ft~total).TheincreaseinSGtubepluggingfrom0%,to30%resultsinatotalreductioninSGtubevolumeofapproximately915ft~.ThereductionbetweentheSGtubevolumeandSGtubepluggingisassumedtobealinearrelationship;e.g.at15:SGTP,totalvolumereductionis0.15"(3048ft~)457.2ft~..UNIT114.1-19July1997 TABLE14.1-6DONALDC.COOKNUCLEAR'PLANTUNIT1SGTPPROGRAMINPUTASSUMPTIONSFORSTEAMGENERATORSECONDARYMASSInutAssumtionsInitialConditions0%'GTP30%SGTPCasesOriginalDesignCaseLowTempCaseAlHighTempCaseA2Steamgeneratorsecondary'06,506sidemass(Totalibs/SG)106,799112,192Notes:(1)InitialconditionsarepresentedforSGTPlevelsof0%(OriginalDesign)and30'.toboundtherangeofSGTPlevels.(2).ForTavgof553F(3)ForTavgof576'FUNIT114.1-20July1997 TABLE14.1-7DONALDC.'OOKNUCLEARPLANTUNIT1SGTPPROGRAMINPUTASSUMPTIONSFORREACTORCOOLANTSYSTEMPRESSUREDROPInutAssumtionsInitialConditions0'oSGTP30~oSGTPPressureDrsiPressureDrosiReactorVessel,includingnozzles(psi)472144'26,ILoopPiping(psi)5.144.55SteamGenerator(psi)Total(psi)43.2395.58<')~53.8I102.39(Notes:(1)PressuredropscalculatedatBestEstimateFlow.UNIT114.1-21July1997 TABLE14.1-8ECCSInjectiontoRecirculationSwitchoverModelfortheContainmentResponseAnalysisTimeAfterRWSTLowLevelAlarmEventStepTime(sec)CumulativeTime(sec)RWSTLowLevelAlarm.WRHRandWCTSpumpstop4242CloseWRHRandWCTSpumpsuctionvalvesfromRWST(IMO-320,IMO-225)155197OpenrecirculationsumptoWRHR/CTSpumpvalve(ICM-306)59256StartWRHRpump&.WCTSPumpCloseSIpumprecirculationlinetoRWST.valves(IMO-262,IMO-263)26282286OpenWRHRheatexchangerdischargetievalvetoSIpumps(IMO-350)294OpenSIpumpsuctioncrosstievalvestoCCpumps(IMO-360,IMO-361or-362)CloseSIpumpsuctionfromRWST(IMO-261)297297UNIT114.1-22July1997 ~g~aI~I~I~~0o~~~ 80757065~60~55-'4Nps'sINpsiast8JQps'~~~~~$I~~~~~~~~~~~~~~~~s\@Opsyt\tZl00pstas'\l840psta,\ssvOPdTTnp~~~~'~~0~~0~~0~~0~~~~gi~~~~~~/I50454035CoreLimitsOTETTrip\tt\tSGSafety~~tI\30560580600T,('F)620DONALD'.COOKNUCLEARPLANTUNITIFIGURE14.1-2IllustrationofOvertemperatureantiOverpowerdTProtectionNominalTavg553.0'FNominalPressure2100psiaJULY1997 80757065~60504535t84)psia'~~~OPDTirtp~~~~~~~~~~~~~~CoreLimitsOTBTTripstpsta.SOpsia~.~.~~~~~////SGSafeqr/ttValvesOpca30560580600T,a(F)620DONALDC.COOKNUCLEARPLANTUMT1FlGURE14.1-3illustrationofOvertemperatureandOverpowerdTProtectiorNominalTavg~576.3'FNominalPressure~2250psiaJULY1997 8580'57065~6055Cl5045403530CoreLimitsOTtsTTripttst8pssa'"50psia~~~~~s~~~~~~~~s~~0~~~~~~~~~~a2400pstattt\t4XpsiacseeSGSaletyValvesOpenOPATTnp~~~0~~~~~~~~~~~~~~~560580600T,('F)620DONALDC.COOKNUCLEARPLANTUMT1FIGURE14.1<IllustrationofOvertempetatureandOverpowerbTProtectioNominalTave~553.0'FNominalPressu!e~2250psiaJULY199l' CookNuclearPlantUnit1NormalizedNegativeReactivityinsertionasaFunctionofTimeUsedfortheReactorTriplnTransientSafetyAnalysis0.90.8070.6Q:<0.5OK7)0.4NEo0.30.20.1II00.40.81.21.622.42.83.2TimeAfterRodDropBegins(seconds)Figure14.1-5TripReactivityvs.RodDropTimeJULY1997 z~ooDfj~UNACCEPTABLEOPERATION,64/~~<oDsj~AgC~chooDfj'~ooooDgydela-logoDgy'acCCEPTABLEOPERATION578PRESSURE(PSIA).2,6.4.5.6.1.8.Rlel.lPQVEQll'roctionol'oe>noI)8REAKPOINTS(FRACTICNRATEDTHERNLREER,T-AVGINQEGREESF)18402000210022502400(0.0,622.1),(0,0,633.8),(0.0,640.8),(0.0,650.7),(0.0,660.1).(1~13,(1.08,(1.06,(1.02,(0.98,587.3),(1.20,577.5)601.4),(1.20,586.0)609,8),(1.20,591.3)621.9),(1.20,598.9)633.7),(1.20,606.2)UNITFire14.1-6:REACTORCORESAFETYLIMITS Aftertheinitialpowerburst,theneutronfluxismomentarilyreducedandthen,iftheincidentisnotterminatedbyareactortrip,theneutronfluxincreasesagain,butatamuchslowerrate.Terminationofthestartupincidentbytheaboveprotection'channelspreventscoredamage.Inaddition,thereactortripfrompressurizerhighpressureservesasabackuptoterminatetheincidentbeforeanoverpressurecondi'tioncouldoccur.MehdofAnalisTheanalysisoftheuncontrolledRCCAbankwithdrawalfromsubcriticalacci-dentisperformedinthreestates:firstanaveragecorenuclearpowertran-sientcalculation,thenanaveragecoreheattransfercalculation,andIfinallythedeparturefromnucleateboilingratio(DNBR)calculation.Theaveragecorenuclearcalculationisperformedusingspatialneutronkineticsmethods(TWINKLE)todeterminetheaveragepowergenerationwithtimeincludingthevarioustotalcorefeedbackeffects,i.e.,Dopplerreactivity'ndmoderatorreactivity.TheaverageheatfluxandtemperaturetransientsaredeterminedbyperformingafuelrodtransientheattransfercalculationinFACTRAN.TheaverageheatfluxisnextusedinTHINCfortransientDNBRcalculation.Analysisofthistransientincorporatestheneutronkinetics,includingsixdelayedneutrongroupsandthecorethermalandhydraulicequations.Inadditiontotheneutronfluxresponse,theaveragefuel,cladandwatertemperature,andalsotheheatfluxresponse,arecomputed.Inordertogiveconservativeresultsforastartupincident,thefollowingadditionalassumptionsaremadeconcerningtheinitialreactorconditions:1.Sincethemagnitudeoftheneutronfluxpeakreachedduringtheinitialpartofthetransient,foranygivenrateofreactivityinsertion,isstronglydependentontheDoppleroowerreactivitydefect,,acon-servativelylowvalueisusedforthestartupincident-955pcm.UNIT114.1.1-3July1997 2.Thecontributionofthemoderatorreactivitycoefficientisnegligibleduringtheinitialpartofthetransientbecausetheheattransfertimeconstantbetweenthefuelandthemoderatorismuchlongerthantheneutronfluxresponsetimeconstant.However,aftertheinitialneutronfluxpeak,thesucceedingrateofpowerincreaseisaffectedbythe'oderatortemperaturereactivitycoefficient.Theanalysis.isbasedona0moderatorcoefficientwhichwasatleast+5pcm/Fatthezeropower'ominal'average"temperature,andwhichbecamelesspositiveforhighertemperatures.ThiswasnecessarysincetheTVINKLEcomputercodeusedintheanalysisisa,diffusiontheorycoderatherthanapointkineticsapproximationandthemoderatortemperaturefeedbackcannotbeartificiallyheldconstant.withtemperature.03.Thereactorisassumedtobeathotzeropower(547F),Thisassumptionismoreconservativethanthatofalowerinitialsystemtemperature..TheIhigherinitialsystemtemperatureyieldsalargerfueltowaterheattransfer,alargerfuelthermalcapacity,andalessnegative(smallerabsolutemagnitude)Dopplercoefficient.ThelessnegativeDoppler~coefficientreducestheDopplerfeedbackeffecttherebyincreasingtheneutronfluxpeak.Thehighneutronfluxpeakcombinedwithahighfuelthermalcapacityandlargerthermalconductivityyieldsalargerpeakheatflux.Initialmultiplicationfactor(k)isassumedtobeclosely0approaching1.0sincethisresultsinthemaximumneutronfluxpeak.4.Themostadversecombinationofinstrumentationandsetpointerrors,aswellasdelaysfortripsignalactuationandcontrolrodassemblyrelease,aretakenintoaccount.h10%increasehasbeenassumedforthepowerrangefluxtripsetpointraisingitfromthenominalvalueof25%toavalueof35%inadditiontotakingnocreditforthesourceandintermediaterangeprotection.ReferencetoFigure14.1.1-1,however,showsthattheriseinnuclearfluxissorapidthattheeffectoferrors.inthetripsetpointonthe'actualtimeatwhichtherodsarereleased.isnegligible.Inadditiontotheabove,therateofnegativereactivity'NIT114.1.1-4July1990 COcOO0nX0.0I.OE-II.OE.201015time(s)20250.550O0.3COIDxIDCCO0x0.20.10.0010Time[s)152025DONALDC.COOKNUCLEARPLANTUMT1FIGURE14.1.1-1NuclearPowerandHotChannelHeatFluxvs.TimeForYheRodWithdrawalFromSubcriticalEvent 2.4002.0001Il.600,~1.200a)800u4000IOTimersjl51025750ua~700650ac600Zl550500010Time(s)152025DONALDC.COOKNUCLEARPLANTUMT1FIGURE14.l.1-2FuelAverageandQadTemperaturevs.Tirn=ForTheRodWitbdrawalFromSubcriticalEventJULYJ.997 MehodofAnalsisThistransientisanalyzedbytheLOFTRANcode.ThecorelimitsasillustratedinFigures14.1-1through14.1-4areusedasinputtoLOFTRANtodeterminetheminimumDNBRduringthetransient.ThisaccidentisanalyzedwiththerevisedthermaldesignproceduredescribedinReference1.PlantcharacteristicsandinitialconditionsarelistedinTable14.1-3.Foranuncontrolledrodwithdrawalatpoweraccident,thefollowingconservativeassumptionsaremade:A.Initialreactorpower,pressure,andRCStemperaturesareassumedtobeattheirconservativenominalvalues.UncertaintiesininitialconditionsareincludedinthelimitDNBRasdescribedinReference1.B.Reactivitycoefficients-twocases'areanalyzed:1.MinimumReactivityFeedback.A+5pcm/Fmoderatortemperature0coefficientofreactivityandaleastnegativeDoppleronlypowercoefficient(seeTable14.1-3)areassumed.2.MaximumReactivityFeedback.AconservativelylargenegativemoderatortemperaturecoefficientandamostnegativeDoppleronlypowercoefficient(SeeTable14.1-3)areassumed.Thereactortriponhighneutronfluxisassumedtobeactuatedataconservativevalueof118percentofnominalfullpower.ThehTtripsincludealladverseinstrumentationandsetpointerrors,whilethedelaysforthetripsignalactuationareassumedattheirmaximumvalues.D.TheRCCAtripinsertioncharacteristicisbasedontheassumptionthatthehighestworthassemblyisstuckinitsfullywithdrawnposition.-UNIT114.1.2-3July1997 E.Themaximumpositivereactivityinsertionrateisgreaterthanthatforthesimultaneouswithdrawalofthecombinationsofthetwocontrolbankshavingthemaximumcombinedworthatmaximumspeed.~ReslesFigures14.1.2-1through14.1.2-3showthetransientresponseforarapidRCCAbankwithdrawalincidentstartingfromfullpower(caseA).Reactortriponhighneutronfluxoccursshortlyafterthestartoftheaccident.Sincethisisrapidwithrespecttothethermaltimeconstantsoftheplant,smallchangesinTandpressureresultandmargintoDNBismaintained.avgThetransientresponseforaslowRCCAbankwithdrawalfromfullpower(caseB)isshowninFigures14.1.2-4through14.1.2-6.Reactortripon*IovertemperaturehToccursafteralongerperiodandtheriseintemperatureandpressureisconsequentlylargerthanforrapidRCCAbankwithdrawal.Again,theminimumDNBRisgreaterthanthelimitvalue.Figure14.1.2-7showstheminimumDNBRasafunctionofreactivityinsertionratefrominitialfullpoweroperationforminimumandmaximumreactivityfeedback.Itcanbeseenthattworeactortripfunctionsprovideprotectionkoverthewholerangeofreactivityinsertionrates.ThesearethehighneutronfluxandovertemperaturedTfunctions.TheminimumDNBRisalwaysgreaterthanthelimitvalue.Figures14.1.2-8and14.1.2-9showtheminimumDNBRasafunctionofreactivityinsertionrateforRCCAbankwithdrawalincidentssta'rtingat60and10percentpowerrespectively.Theresultsaresimilartothe100percentpowercase,exceptastheinitialpowerisdecreased,therangeoverwhichtheovertemperature4Ttripiseffectiveisincreased.InneithercasedoestheDNBRfallbelowthelimitvalue.UNIT114.1.2-4July1997 TheshapeofthecurvesofminimumDNBRversusreactivityinsertionrateinthereferencedfiguresisduebothtoreactorcoreandcoolantsystemtransientresponseandtoprotectionsystemactionininitiatingareactortrip.Theresultsofcases,whichexaminedaconservativepressurizerwatervolumetransientduetotheuncontrolledRCCAbankwithdrawalatpoweraccident,showedthatthepressurizerdoesnotfill.ThetimesequenceofeventsfortheRCCAbankwithdrawltransientisshowninTable14.1.2-1.ConclusionsThehighneutronfluxandovertemperature4T,tripchannelsprovideadequateprotectionovertheentirerangeofpossiblereactivityinsertionrates,i.e.,theminimumvalueofDNBRisalwayslargerthanthelimitvalueforall~fueltypes.Also,thepressurizerdoesnotfill.UNIT114.1.2-5July1997 14.1.2~Rference0Friedland,A.J.,Ray,S.,"RevisedThermalDesignProcedure,"WCAP-11397-P-A,April1989UNET114.1'.2-5July1997 TABLE14.1.2-1TIMESEQUENCEOFEVENTSAccidentEvent~TimeeecUncontrolledRCCABankWithdrawalAtFullPowerCaseAInitiationofuncontrolledRCCA(highinsertionratemaxbankwithdrawalatahighfeedback)reactivityinsertionrate(80pcm/sec)PowerrangehighneutronfluxhightripsignalinitiatedRodsbegintofallintocore5.3MinimumDNBRoccurs5.7CaseB(smallinsertionrate,maxfeedbackInitiationofuncontrolledRCCAbankwithdrawalatasmallreactivityinsertionrate(4pcm/sec)Overtemperature~TreactortripsignalinitiatedRodsbegintofallintocoreMinimumDNBRoccurs322.7324.7325.2UNIT114.1.2-7July1997 Tlic'P-Oc1.00c=0.8I0.63O0.4Oz0.20.00Timefs)ipDONALDC.COOKNUCLEARPLANTUNO.'FIGURE14.1.2-1NuclearPowervs.TineForTheRCCAWithdrawalAtPowerEvent,FullPower,80PCM/Sec.InsertionRateMaxitrmnReactivityFeedbackJULY1997 ".~001550CISCOCLe2.200Vlth2.150hQlNg2,100EOQ.2,0502,0000Time[s]lp1.200m1,150Ih~1,100H~~1,05001,0000Time[s]10DONALDC.COOKNUCLEARPLANTUNIT1FIGURE14.1.2-2PressurizerPressureandPtessurizerWaterVolumevs.TimeForTheRCCAWithdrawalAtPowerEvent,FullPower,80PCM/Sec.InsertionRateMaximumReactivityFeedbackJULY1997 590u4e580Cla.Ci~570OiCiiI560OO5500Time(sj104.03.53.0O2.5101.50Time[sj10DONALDC.COOKNUCLEARPLANTUbKI'FIGURE14.12-3CoreAverageTemperatureandDNBRvs.TireForTheRCCAWithdrawalAtPowerEvent,FullPower,80PCM/Sec.InsertionRateMaximumReactivityFeedbackJULY1997 t.4cal.2C2~l.00'=,0.8So0.6cO~0.4z0.20.0050100,,150200250300350TimetsJiDONALDC.COOKNUCLEARPLANTUNlT1FfGUREl4.1.2<NuclearPowervs.TimeForThcRCCAWithdrawalAtPowerEvent.FullPower,4PCM/Scc.InsertionRateMaximumReactivityFeedbackJULY1997I 2.200~2.160COQQPn2.120VlQ0.I2.080NCllOo-2,0402,000050100150200250300350Timetsj1,500=1,400E)1.300I1,200In1.1001,000050100150200250300350Time[s]DONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.2-5PressurizePressureandPressurizerWaterVolumevs.TimeForTheRCCAWithdrawalAtPowerEvent,FullPower,4PCM/Sec.InsertionRateMaximumReactivityFeedbackJULY1997 595n.590I-ca585o5805750,50100,150200250300350Timets)4.03.53.0XO2.52.01.5050150200250300350Time(s]DONALDC.COOKNUCLEARPLANTUNIT1FIGURE14.1.2-6CoreAverageTemperatureandDNBRvs.TineForThcRCCAWithdrawalAtPowerEvent,FullPower.4PCM/Sec.InseruonRateMaximumReactivityFeedbackJULY1997 OveneppearuredTTripHighVieumeFluxTrip1,61.50.331030ReactivityInsertionRate[PCM/Sec)100300DONALDC.COOKNUCLEARPLANTUNIT1FIGURE14.1.2-7MinitmimDNBRvs.ReactivityInsertionRateForTheRCCAWithdrawalAtPowerEvent,100%PowerJULYI.997 'l4Ze00EE'c=l.&Qvcrrcrnpcralurc'TTripHighhfeurronFluxTrip1.6l.40.3j'in.FeecbadrMax.FeedbackII3l030ReactivityInsertionRate(PCM/Sec]DONALDC.COOKNUCLEARPLANT,UNIT1FIGURE14.1.2-8MinionDNBRvs.ReactivityInsertionRateForTheRCCA%ithdrawalAtPowerEvent,60%PowerJULY1997 Min.FeedbackMax.Feedback2.6rLn4QEHighNeutronFluxTrip00QvertemperarurehTTripI,S0.331030ReactivityInsertionRate(PCM/SecjI00300DONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.2-9MinirntmDNBRvs.ReactivityhsertionRateForTheRCCAWithdrawalAtPowerEvent,10%PowerJULY1997 14.1.6LOSSOFREACTORCOOLANTFLOWINCLUDINGLOCKEDROTORANALYSISAlossofreactorcoolantflowmayresultfromasimultaneouslossofelectricalsuppliestoallreactorcoolantpumps.Ifthereactorisatpoweratthetimeoftheaccident,theimmediateeffectoflossofcoolantflowisarapidincreaseinthecoolanttemperaturewhichismagnifiedbythepositiveMTC.ThisincreasecouldresultinDNBwithsubsequentfueldamageifther'eactorwerenottrippedpromptly.Thefollowingtripcircuitsprovidethenecessaryprotectionagainstalossofcoolantflowincident:1.Undervoltageorunderfrequencyonpumppowersupplybuses2.Pumpcircuitbreakeropening3.LowreactorcoolantflowThesetripcircuitsandtheirredundancyarefurtherdescribedinChapter7(ProtectiveSystems).Simultaneouslossofelectricalpowertoallreactorcoolantpumpsatfullpoweristhemostseverecrediblelossofflowcondition.Forthiscondition,reactortriptogetherwithflowsustainedbytheinertiaofthecoolantandrotatingpumppartswillbesufficienttopreventRCSoverpressurizationandtheDNBratiofromexceedingthelimitvalues.MethodofAnalsisThefollowinglossofflowcasesareanalyzed:l.Lossoffourpumpsfromnominalfullpowerconditionswithfourloopsoperating.2.Lossofonepumpfromnominalfullpowerconditionswithfourloopsoperating.UNIT114.1.6-1July1990 Thenormalpowersuppliesforthepumpsarefourbusesconnectedtothegenerator.Eachbussuppliespowertoonepump.Whenageneratortripoccurs,thepumpsareautomaticallytransferredtoabussuppliedfromexternalpowerlines,and.thepumpswillcontinuetosupplycoolantflowtothecore.Thesimultaneouslossofpowertoallreactorcoolantpumpsisahighlyunlikelyevent.Sinceeachpumpisonaseparate'bus,asinglebusfaultwouldnotresultinthelossofmorethanone,pump.Afullplantsimulationisusedintheanalysistocomputethecoreaverageandhotspotheatfluxtransientresponses,includingflowcoastdown,temperature,reactivityandcontrolrodinsertioneffects.Thesedataarethenusedinadetailedthermal'-hydrauliccomputationtocomputethemargintoDNBusingRTDP.Thiscomputationsolvesthecontinuity,momentumandenergyequationsoffluidflowtogetherwiththeWRB-1DNBcorrelation.UncertaintiesininitialconditionsareincludedinthelimitDNBRas~describedinReference1.'heinitialconditionsusedarelistedinTable14.1"3.Thistransienti'nalyzedbythreedigitalcomputercodes.FirsttheLOFTRANcode,describedinSection14.1,isusedtocalculatetheloopandcoreflowduringthetransient,thetimeofreactortripbasedonthecalculatedflows,thenuclearpowertransient,andtheprimarysystempressureandtemperaturetransients.TheFACTRANcode,describedinSection14.1,isthenusedtocalculatetheheatfluxtransientbasedonthenuclearpowerandflowfromLOFTRAN.Finally,theTHINC-IVcode,alsodescribedinSection14.1,isusedtocalculatetheDNBRduringthetransientbasedontheheatfluxfromFACTRANandflowfromLOFTRAN.TheDNBRtransientspresentedrepresenttheminimumofthetypicalorthimblecellforeachtypeoffuel.'IUNIT114.1.6-2July1997 R<~~sl~tFigures14.1.6-1through14.1.6-3showthetransientresponseforthelossofpowertoallRCPsw'ithfourloopsinoperation.Thereactorisassumedtobetrippedonundervoltagesignal.Figure14.1.6-3showstheDNBRtobealwaysgreaterthanthelimitvalueforthemostlimitingfuelassemblycell.Figures14.1.6-4through14.1.6-6showthetransientresponseforthelossofoneRCPwithfourloopoperation.Thereactorisassumedtobetrippedonlowflowsignal.Figure14.1.6-6showstheDNBRtobealwaysgreaterthanthelimitvalueforthemostlimitingfuelassemblycell.ThesequenceofeventsfollowingeachofthesetransientsisincludedinTable14.1.6-1.SinceDNBdoesnotoccur,theabilityoftheprimarycoolanttoremoveheatfromthefuelrodisnotsignificantlyreduced.Thus,theaveragefuelan'dIcladtemperaturedonotincreasesignificantlyabovetheirrespectiveinitialvalues.ConclusionsTheanalysisshowsthattheDNBRwillnotdecreasebelowthelimitvalueatanytimeduringthetransient.Thus,nofuelorcladdamageispredicted,andallapplicableacceptancecriteriaaremet.LockeRrAidnAtransientanalysishasbeenperformedfortheinstantaneousseizureofareactorcoolantpumprotor.Flowthroughtheaffectedreactorcoolantloopisrapidlyreduced,leadingtoareactortriponalowflowsignal.Followingthetrip,heatstoredinthefuelrodscontinuestopassintothecorecoolant,causingthecoolanttoexpand.Atthesametime,heattransfertotheshellsideofthesteamgeneratorisreduced,firstbecausethereducedflowresultsinadecreasedtubesidefilmcoefficientandthenbecausethereactorcoolantinthetubescoolsdownwhiletheshellsidetemperatureincreases(turbinesteamflowisreducedtozerouponplanttrip).TherapidUNIT114.1.6-3July1997 expansionofthecoolantinthereactorcore,combinedwiththereducedheattransferinthesteamgeneratorcausesaninsurgeintothepressurizerandapressureincreasethroughoutthereactorcoolantsystem.Theinsurgeintothepressurizercausesapressureincreasewhichinturnactuatestheautomaticspraysystem,opensthepower-operatedreliefvalves,andopensthepressurizersafetyvalves,inasequencedependentontherateofinsurgeandpressureincrease.Thepower-operatedreliefvalvesaredesi'gnedforreliableoperationandwouldbeexpectedtofunctionproperlyduringtheaccident.However,forconservatism,theirpressure-reducingeffectaswellasthepressure-reducingeffectofthesprayarenotincludedinthisanalysis.Thelockedrotoraccidentanalysiswasperformedforfourloopoperation.ThelockedrotoreventisexaminedtodeterminetheDNBtransientandtodemonstratethatthepeakRCSpressureandpeakcladtemperatureremainbelowthelimitvalue.IMhd'AnaliTwodigital-computercodesareusedtoanalyzethistransient.'heLOFTRANcodeisusedtocalculatetheresultingloopandcoreflowtransientsfollowingthepumpseizure,thetimeofreactortripbasedontheloopflowtransients,thenuclearpowerfollowingreactortrip,andtodeterminethepeakpressure.ThethermalbehaviorofthefuellocatedatthecorehotspotisinvestigatedusingtheFACTRANcode,usingthecoreflowandthenuclearpower,calculatedbyLOFTRAN.TheFACTRANcodeincludestheuseofafilmboilingheattransfercoefficient.EvalainfhPrsurTrnientAfterpumpseizure,theneutronfluxisrapidlyreducedbycontrolrodinsertion.Rodmotionbegins1secondaftertheflowintheaffectedloopreaches87percentofnominalflow.Nocreditistakenforthepressurereducingefrectofthepressurizerreliefvalves,pressurizerspray,steamdumporcontrolledfeedwaterflowafterplanttrip.UNIT114.1.5-4IJuly1997 AlthoughtheseoperationsareexpectedtooccurandwouldresultinalowerpeakRCSpressure,anadditionaldegreeofconservatismisprovidedbyignoringtheireffect.Table14.1-3presentstheinitialconditionsassumedforthepeakpressuretransient.Theanalysisassumedthatthepressurizersafetyvalvesinitiallyopenat2575psiaandachieveratedflowat2580psia.EvluaionofDNBintheCoreDurinthAccidenForthisaccident,twoDNB-relatedevaluationsaemade.ThefirstevaluationhastheassumptionofrodsgoingintoDNBasaconservativeinitialconditioninordertodeterminethecladtemperatureandzirconiumwaterreaction.Resultsobtainedfromanalysisofthis"hotspot"conditionrepresenttheupperlimitwithrespecttocladtemperatureandzirconiumwaterreaction.Intheevaluation,therodpoweratthehotspotisassumedtobe2.5timestheaveragerodpower(i.e.,F2.5)attheinitialcoreQpowerlevel.Table14.1-3presentstheinitialconditionsassumedforthepeakcladtemperatureevaluation.Asecondevaluationmadeforthistransientistodeterminewhatpercentage,ifany,ofrodsareexpectedtobeinDNBduringthetransient.Forevaluationofthispartofthetransient,predictedcoreconditionsareusedasinputtoaTHINC4calculationoftheminimumDNBRduringthetransient.ResultsoftheTHINC4evaluationarethenusedtodeterminethepercentageoffuelrodswhichexperienceDNB.Table14.1-3presentstheinitialconditionsassumedforthepercentageofrodsinDNBanalysis.FilmBoilinCoeffiienThefilmboilingcoefficientiscalculatedintheFACTRANcodeusingtheBishop-Sandberg-Tongfilmboilingcorrelation.Thefluidpropertiesareevaluatedatfilmtemperatures(averagebetweenwallandbulktemperatures)Theprogramcalculatesthefilmcoefficientateverytimestepbasedupontheactualheattransferconditionsatthetime.Theneutronflux,systempressure,bulkdensity,andmassflowrateasafunctionoftimeareusedasprograminput.UNIT114.1.5-5July1997 Forthisanalysis,theinitialvaluesofthepressureandthebulkdensityareusedthroughoutthetransientsincetheyarethemostconservativewithrespecttocladtemperatureresponse.Forconservatism,DNBwasassumedtostartatthebeginningoftheaccident.FuelCladGaCoefficientThemagnitudeandtimedependenceoftheheattransfercoefficientbetweenfuelandclad(gapcoefficient)hasapronouncedinfluenceonthethermalresults.Thelargerthevalueofthegapcoefficient,themoreheatisItransferredbetweenpelletandclad.Basedoninvestigationsoftheeffectofthegapcoefficientuponthemaximumcladtemperatureduringthetransient,thegapcoefficientwasassumedtoincreasefromasteadystatevalue20consistentwithinitialfueltemperatureto10,000BTU/hr-ft-Fatthe5initiationofthetransient.Thusthelargeamountofenergystoredinthefuelbecauseofthesmallinitialvalueisreleasedtothecladattheinitiationofthetransient.Zirconium-SteamReactionThezirconium-steamreactioncanbecomesignificantabove1800F(cladtemperature).Inordertotakethisphenomenonintoaccount,thefollowingcorrelation,whichdefinestherateofthezirconium-steamreaction,wasintroducedintothemodel:.(2)~0e33.3x10exp-4550026dt1.986Twhere:2w"amountreacted,mg/cm.ttime,sec0Ttemperature,KThereactionheatis1510cal/gmUNIT114.1.6-6July1990 ~RRu1tRThetransientresultsforthelockedrotoraccidentareshowninFigures14.1.6-7through14.1.6-9.ThepeakRCSpressure(2641psia)reached(duringthetransientislessthanthatwhichwouldcausestressestoexceedthefaultedconditionstresslimits.ThepressureresponseshowninFigure14.1.6-8istheresponseatthepointinthereactorcoolantsystemhavingthemaximumpressure.Also,thepeakcladsurfacetemperature(1934F)is0considerablylessthan2700F.ThesequenceofeventsisincludedinTable14.1.6-1.Forthemostlimitingfuelassembly,lessthan7%oftherodsreachaDNBRvaluelessthanthelimitvalue.ConclusionA.SincethepeakRCSpressurereachedduringanyofthetransientsislessthanthat.whichwouldcausestressestoexceedthefaultedconditionsstresslimits,theintegrityoftheprimarycoolantsystemisnotendangered.B.Sincethepeakcladsurfacetemperaturecalculatedforthehotspotduringtheworsttransientremainsconsiderablylessthan2700F(thetemperature0atwhichcladembrittlementmaybeexpected),thecorewillremaininplaceandintactwithnolossofcorecoolingcapability.UNIT114.1.6-7July1997 14.1.6~Refercree1.Friedland,A.J.,Ray,S.,"RevisedThermalDesignProcedure,"WCAP-11397-P-A,April,19892.Baker,L.,andL.C.Just,"Studies.ofMetalWaterReactionsofHighTemperatures,III.ExperimentalandTheoreticalStudiesofZirconium-WaterReaction,"ANL-6548,May1962UNIT114.1.6-8July1997 Table14.1.6-1SequenceofEventsforLossofFlowandLockedRotorAccidents~Ac~ie~n~EvntTimsecCompleteLossofFlowAllpumpslosepowerandbegincoastingdown,undervoltagetripsignalgeneratedRodsbegintodropMinimumDNBRoccurs0.01.503.40PartialLossofFlowOneoperatingpumplosespowerand0.0beginscoastingdownLowreactorcoolantflowtripsetpointreachedinfaultedloopRodsbegintodropMinimumDNBRoccurs1.742.7'43.90LockedRotorOnepumprotorseizesLowreactorcoolantflowtripsetpointreachedinfaultedloopRodsbegintodrop0.00.041.04MaximumpercentageofrodsinDNB2.6predictedMaximumRCSpressureoccursMaximumcladtemperatureoccurs3.203.4914.1.6-9July1997 0f 1.41.2Col.pEiOOS0.6OLL,04OD0.00Time[sjtpDONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.6-1TotalCoreFlowvs.TimeforTheCompleteLossOfFlowEvent 1.400C0V0Q.8th08)z1.20.6.,-0.40.20.00Time[s)lO2.600888'~2.400DVlCll2.200I8872.000Q.1.8000Timets]IODONhLDC.COOKNUCLEaRPLaNTUNITIFIGURE14.L6-2."nuclearPowerandPressurizerPressurevs.TineforTheCompleteLossOfFlowEventJULY1997 1.6.Ysc1.2008XLi04ClzAv>>rag>>C!iatuxl.HoiChare>>i0.00Time(s)104,03.01.004Time(s]'eatfluxesareshownasafractionofthenominalaveragechannelheatfluxDONALDC-COOKNUCLEARPLANTUNITIFIGURE14.1.6-3AverageandHotChannelHeatFluxesandDNBRvs.TimefortheCompleteLossOfFlowEventJULY199? 1.2,m1.00.8"aV=0.6~0.4:-Q0.2pII0.00lime(s)IO1.2OioI.OC05O.SD06LLCL80.$Ol~0.2u0.00Time[sjIODONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.&4TotalCoreFlowandFaultedLoopFlowvs.TimeforTheParualLossOfFlowEventJULY19'37 1.4I1.2I"O1,0,0.8-0.6-Q0.40z~0'20.00Time[s)10".600fO'cn>,400QNIQg'.'00IP4P2QQQn1,8000Time[sj10DONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.6-5NuclearPowerandPressurizerPressurevs.TimforTheParualLossOfFlowEvent ~0~~0~~~~~~~ 1.4IIl.2:-O0.6r0.4t0.2"0.00Time(s)lp1.41.2Eol,P08C00604Qu0.'0.007U.04~0.60Time[s)lpDONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.6-7TotalCoreFlowandFaultedLoopFlowvs.TineForTheLockedRotorEventJULY1997 1.41.20C1.0"0.6'0.4r0.00TimeIsjIO'.8002.6002.400Vlo.2happMOK2.000l,8000Timefs)lpDONALDC.COOKNUCLEARPLANTUNIT1FIGURE14.1.6-8NuclearPowerandRCSPressurevs.TimeForTheLockedRotorEventJULY1997 1.6D.8"Vime!s)lo3.0000!i'.500.0.M.OEI4al.500.0Ol.000.0500.00Timejsjlo'eatfluxesaresho~nasafractionofthenominalaveragechannelheatfluxDONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.6-9AverageandHotChannelHeatFluxesvs.TimeandCladInnerTemperaturevs.TimeForTheLockedRotorEventJULY1997 averagethermalheatfluxreaches107%ofthenominalvalueat10.6seconds.Thecoreaveragetemperature,coreinlettemperature,reactorcoolantsystempressureandDNBRduringthetransientareshown.TheminimumDNBRduringthetransientis1.78andoccursat10.5seconds.ReducedTemeraurandPressureConsideratinThisaccidentwasnotreanalyzedforreducedtemperatureandpressuresince,theeventcannotoccurabovetheP-7setpoint(10%power)asrestrictedbytheTechnicalSpecifications.Theaboveanalysisremainsboundingwithrespecttotherestrictionto10<powerfortheoperationof3reactorcoolantpumpsimposedbytheTechnicalSpecification.Theparametersassumedintheanalysisboundtheparametersassociatedwitha10%powercondition.Thus,theconclusionspresentedaboveremainvalid.Amendment120totheUnit1TechnicalSpecificationsremovedMode1andMode2threeloop(i.e.,N-1Loop)operatingspecifications.Since,N-1loopoperationinModes1and/or2isprohibitiedforDonaldC.CookUnit1,theSUILeventdoesnotneedtobeconsideredfortheUnit130%SGTPprogram.Therefore,noreanalysiswasperformedforthe30%SGTPprogram.'onclusionThetransientresultsforthestartupofaninactivereactorcoolantloopshowthatthereisaconsiderablemargintoalimitingDNBRof1.3.NotethatthiseventhasnotbeenreanalyzedasaresultoftheSGTPprogram.UNIT114.1.7-3July1997 14.1.8LOSSOFEXTERNALELETRIALLOADThelossofexternalelectricalloadmayresultfromanabnormalvariationinnetworkfrequency,orotheradversenetworkoperatingconditions.Itmayalsoresultfromatripoftheturbinegeneratororinanunlikelyopeningofthemainbreakerfromthegeneratorwhichfailstocauseaturbinetripbutcausesarapidlargenuclearsteamsupplysystemloadreductionbytheactionoftheturbinecontrol.Intheeventthesteamdumpvalvesfailtoopenfollowingalargeloadlossthesteamgeneratorsafetyvalvesmayliftandt"..areactormaybetripped.bythehighpressurizerpressuresignalorthehighpressurizerwaterlevelsignal.Thesteamgeneratorshellsidepressureandreactorcoolanttemperaturewillincreaserapidly.Thepressurizersafetyvalvesandsteamgeneratorsafetyvalvesare,however,sizedtoprotectthereactorcoolantsystemandsteamgeneratoragainstoverpressureforallloadlosseswithoutassumingavailabilityofthesteamdumpsystem.Thesteamdump.valveswillnotbeopenedforloadreductionsof10'.orless.Forlargerloadreductionstheymayopendependingonthecapabilityofthereactorcontrolsystem.Themostlikelysourceofacompletelossofloadinthenuclearsteamsupplysystemisatripoftheturbine-generator.Inthiscase,thereisadirectreactortripsignal(unlesspowerisbelowapproximately10%power,i.e.,belowP-7)derivedfromtheturbineemergencytripfluidpressure.Reactorcoolanttemperaturesandpressuredonotsignificantlyincreaseifthesteamdumpsystemandpressurizerpressurecontrolsystemarefunctioningproperly.However,inthisanalysis,thebehavioroftheunitisevaluatedforacompletelossofloadfrom100%offullpowerwithoutadirectreactortripprimarilytoshowadequacyofthepressurerelievingdevicesandalsotoshowthatnocoredamageoccurs.Thereactorcoolantsystemandmainsteamsystempressurerelievingcapacitiesaredesignedtoensuresafetyoftheunitwithoutrequiringtheautomaticrodcontrol,pressurizerpressurecontroland/orsteamdumpcontrolsystems.UNIT114.1.8-1July1997 MethodofAnalsisThelossofloadtransientsareanalyzedbyemployingthedetaileddigitalcomputerprogramLOFTRAN,asdescribedinSection14.1.Theprogramsimulatestheneutronkinetics,RCS,pressurizer,pressurizerreliefandsafetyvalves,pressurizerspray,steamgenerator,andsteamgeneratorsafetyvalves.Theprogramcomputespertinentplantvariablesincludingtemperatures,pressures,andpowerlevel.'IThisaccidentisanalyzedwiththeRevisedThermalDesignProcedure,asmentionedinSection14.1.PlantcharacteristicsandinitialconditionsarelistedinTable14.1-3.Majorassumptionsaresummarizedbelow:A.InitialOperatingConditions-nominalinitialconditionsforreactorpower,pressure,andRCS'temperaturesareassumedforstatisticalDNBanalyses.ModeratorandDopplerCoefficientsofReactivity-thelossofloadisanalyzedwithbothmaximumandminimumreactivityfeedback.ThemaximumfeedbackcasesassumealargenegativemoderatortemperaturecoefficientandthemostnegativeDopplerpowercoefficient.Theminimumfeedback0casesassumea+5pcm/FMTCandtheleastnegativeDopplercoefficients.C,.ReactorControl-fromthestandpointofthemaximumpressuresattaineditisconservativetoassumethatthereactorisinmanualcontrol.Ifthereactorwere'nautomaticcontrol,thecontrolrodbankswouldmoveprior,totripandreducetheseverityofthetransient.UNIT114.1.8-2July1997 D.PressurizerSprayandPower-OperatedReliefValves-twocasesforboththeminimumandmaximummoderatorfeedbackcasesareanalyzed:1.Fullcreditistakenfortheeffectofpressurizersprayandpower-operatedreliefvalvesinreducingorlimitingthecoolantpressure.Safetyvalvesarealsoavailable.2.Nocreditistakenfortheeffectofpressurizersprayandpower-operatedreliefvalvesinreducingorlimitingthecoolantpressure.,Safetyvalvesareoperable.SteamRelease-nocreditistakenfortheoperationofthesteamdumpsystemorsteamgeneratorpower-operatedreliefvalves.Thesteamgeneratorpressurerisestothesafetyvalvesetpointswheresteamreleasethroughthesafetyvalveslimitssecondarysteampressure."(F.FeedwaterFlow-mainfeedwaterflowtothesteamgeneratorsisassumedtobelostatthetimeofturbinetrip.Nocreditistakenforauxiliaryfeedwaterflowsinceastabilizedplantconditionwillbereachedbeforeauxiliaryfeedwaterinitiationisnormallyassumedtooccur;however,theauxiliaryfeedwaterpumpswouldbeexpectedtostartonatripofthemainfeedwaterpumps.Theauxiliaryfeedwaterflowwouldremovecoredecayheatfollowingplantstabilization.G.Reactortripisactuatedbythefirstreactorprotectionsystemtriosetpointreached.Tripsignalsareexpectedduetohighpressurizerpressure,overtemperaturehT,highpressurizerwaterlevel,andlow-lowsteamgeneratorwaterlevel.ResultsThetransient-responsesforalossofloadfrom100~fullpoweroperationareshownforfourcases:twocasesforminimumreactivityfeedbackandtwocasesformaximumreactivityfeedback(Figures14.1.8-1through14.1.8-12).UNET114.1.8-3Julyl.997 Figures14.1.8-1through14.1.8-3showthetransientresponsesforthelossofloadwithminimumreactivityfeedbackassumingfullcreditforthepressurizersprayandpressurizerpower-operatedreliefvalves.Nocreditistakenforthesteamdump.Thereactoristrippedbytheovertemperature~Tatripsignal.TheminimumDNBR"remainswellabovethelimitvalue.~Thepressurizerrelief.andsafetyvalvespreventoverpressurizationoftheprimarysystem.Thesteamgeneratorsafetyvalvespreventoverpressurizationofthesecondarysystem,maintainingpressurebelow110percentofdesignvalue.Figures14.1.8-4through14.1.8-6showtheresponsesforthetotallossofsteamloadwithmaximumreactivityfeedback.Allotherplantparametersarethesameastheabove.TheDNBRincreasesthroughoutthetransientandneverdropsbelowitsinitialvalue.Pressurizerreliefvalvesandsteamgenerator4safetyvalvespreventoverpressurizationinprimaryandsecondarysystems,respectively.Thereactoristrippedbythelow-lowsteamgeneratorwaterlevelsignal.Thepressurizersafetyvalvesarenotactuatedforthiscase.Intheeventthatfeedwaterflowisnotterminatedatthe,timeofturbinetripforthiscase,flowwouldcontinueunderautomaticcontrolwiththe'eactoratareducedpower.TheoperatorwouldtakeactiontoterminatetheFtransientandbringtheplanttoastabilizedcondition.Ifnoactionweretakenbytheoperatorthereducedpoweroperationwouldcontinueuntilthecondenserhotwellwasemptied.A.low-lowsteamgeneratorwaterlevelreactortrip,wouldbegeneratedalongwithauxiliaryfeedwaterinitiationsignals.Auxiliaryfeedwaterwouldthenbeusedtoremove.decayheatwiththeresultslessseverethanthosepresentedinSection14.1.9,LossofNormalFeedwaterFlow.Thelossofloadaccidentwasalsostudiedassumingtheplanttobeinitiallyoperatingatfullpowerwithnocredittakenforthepressurizerspray,pressurizerpower-operatedreliefvalues,orsteamdump.Thereactoristrippedonthehighpressurizerpressuresignal.Figures14.1.8-7through14.1.8-9showthetransientresponseswithminimumreactivityfeedback.TheUNIT114.1.8-4July1997 neutronfluxremainsessentiallyconstantatfullpoweruntilthereactoristripped.TheDNBRnevergoesbelowitsinitialvaluethroughoutthetransient.Inthiscasethepressurizer.safetyvalvesareactuated,andmaintainsystempressurebelow110percentofthedesignvalue.Figures14.1.8-10through14.1.8-12showthetransientresponseswithmaximum)reactivityfeedbackwiththeotherassumptionsbeingthesameasintheprecedingcase.Again,theDNBRincreasesthroughoutthetransientandthepressurizersafetyvalvesareactuatedtolimitprimarypressure.ThesequenceofeventsfollowingeachofthesetransientsisincludedinTable14.1.8-1.CnclsinsResultsoftheanalysesshowthattheplantdesignissuchthatalossofloadwithoutadirectorimmediatereactortrippresentsnohazardtotheintegrityoftheRCSorthemainsteamsystem.Pressurerelievingdevicesincorporatedinthetwosystemsareadequatetolimitthemaximumpressurestowithinthedesignlimits.Theintegrityofthecoreismaintainedbyoperationofthereactorprotectionsystem,i.e.,theDNBRwillbemaintainedabovethelimitvalue.UNIT114.1.8-5July1997 Table14.1.8-1SequenceofEventsforLossExternalElectricalLoadCaseMinimumFeedbackwithPressureControl~EvenLossofexternalelectricalloadOT~TtripsetpointreachedPeakRCSpressureoccursTimsec0.014.215.5Rodsbegintodrop16.2MinimumDNBRoccurs18.0MaximumFeedbackwithPressureControlLossofexternalelectriclloadMinimumDNBRoccursPeakRCSpressureoccurs0.00.0Low-lowsteamgeneratorleveltripsetpointreached68.1Rodsbegintodrop70.1MinimumFeedbackwithoutPressureControlLossofexternalelectricalloadMinimumDNBRoccurs0.0'0.0Highpressurizerpressuretripsetpointreached8.4RodsbegintodropPeakRCSpiessureoccurs10.412.0MaximumFeedbackwithoutPressureControlLossofexternalelectricalloadMinimumDNBRoccursHighpressurizaerpressuretripsetpointreached0.00.08.9Rodsbeginto'dropPeakRCSpressureoccurs10.912.5UNIT114.1.8-6July1997 l.2I.OOC0.80.600.4z0.20.0090Time[s}80l005.04.03.02.01.0020Time(s)80DONALDC.COOKNUCLEARPLANTUMT1FIGURE14.1.8-1NuclearPowerandDNBRvs.TimForLossofLoad,MinimumReactivityFeedbackWithPressurizerSprayandPORVsJULY1997 2.8002.600COlhCLe2.400VlCllCl'.'00IP4g2.000C/II01,60002040Timetsar60802.0001,8001.6001,4001.200o-1,000800020Time(sJ6080DONALDC.COOKNUCLEARPLANTUNIT1FKrURE14.1.&-2PressurizerPressureandPressurizerWaferVolumevs.~ForLossofLoad.MitumumReactivityFeedback~WithPressurizerSprayandPORVsJULY199t "'00650LLcilp600OO5505000'70Time[s]6080+650600EI550~ThotTcold500020Time(s)6080DONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.8-3CoreAverageandLoop1Temperaturesvs.1creForLossofLoad.MinimumReactivityFeedbackWithPressurizerSprayandPORVsJULY1997 I4acl.P0e:0,80.63:00.4P'70.002040Timefs)60805.04.P2.01.0020Timets)80DONALDC.COOKNUCLEARPLANTUNITIFIGUREl4.1.8<NuclearPowerandDNBRvs.rurxForLossofLoad,MaximumReactivityFeedbackWithPressurizerSprayandPORVsJULY1997 2.8002,600tO(hCLe2,400V)'.'00C)Ng2.000EOQQ.1.8001.60001040Time[sj60802.0001.8001.600II1,400Il,200n-1.000800020Time[s)80100DONALDC.COOKNUCLEARPLANTUNIT1FIGURE14.LS-5PressurizerPressureandPressurizerWaterVolumevs.TineForLossofLoad,MaximumReactivityFeedbackWithPressurizerSprayandPORVsJULY1997 650LLC5p600OO5505000'70Time[s]6080100650a.600E~ClCL550TholTcold500020Time[s)80100DONALDC.COOKNUCLEARPLANTUNG'FiGUREi4.i.8-6CoreAverageandLoop1Temperaturesvs.TimeForLossofLoad,MaximumReactivityFeedbackWithPressurizerSprayandPORVsJULY199/ cIO.<1.000.80.60p.4z0.20.00'1pTime[sl805.04.03.0O2.01.0020Time(s)80100DONALDC.COOKNUCLEARPLANTUNiT1FIGURE14.1.8-7NuckarPowerandDNBRvs.Tim:ForLossofLoad,MinimumReactivityFeedbackWithoutPressurizeSprayandPORVsJULY1997 2.8002.600lgCle2,400402.200IHg2.000chQ.I~800l,60002040Time(s)6080l002.000l.800l,600Il.400l.200o-l.ooo800020Timefs)80l00DONALDC.COOKNUCLEARPLANTUNITIFIGURE)4.I.S-SPressurizerPressureandPressurizerWaterVolumevs.TimeForLossofLoad,MittirntmReactivityFeedbackWithoutPressurizerSprayandPORVsJULY1997 650ciap600OO55050002040Time(sj6080650k600E~Q550~ThotTcold500020Timets]80DONALDC.COOKNUCLEARPLANTUNH'HGURE14.1.8-9CoreAverageandLoop1Temperaturesvs.TimForLossofLoad,MinitntmReactivityFeedbackWithoutPressurizerSprayandPORVsJULY1997 ~i.oOI0.80.600.40.20.00204pTime[s]805.04.p3.0O2.01.0020Time[s)6080DONALDC.COOKNUCLEARPLANTUNIT1FIGURE14.1.8-10NuclearPowerandBHBRvs.Ting,ForLossofLoad,MaximumReactivityFeedbackWithoutPressurizerSprayandPORVsJULY1997 2.8002.600t5V)CLe'.400V)thCl'.'00H2.000UlQG.1.8001,60002040Time(s]60802,0001,800I1,600Im.1,400IH1.2008o-1,000800020Time(s]80DONALDC.COOKNUCLEARPLANTUNITIFIGURE14.L8-11PressurizerPressureandPressurizerWaterVolumevs.TheForLoss'fLoad.MaximumReactivityFeedbackWithoutPressurizerSprayandPORVsJULY1997 100650U0O)P6004)OO55050002040.Time[s]6080650o.600EI-O.550~Tllo(Tcold500020Time[s]80DONALDC.COOKNUCLEARPLANTUNITIFIGURE14.1.8-12CoreAverageandLoop1Temperaturesvs.ToreForLossofLoad,MaxintutnReactivityFeedbackWithoutPressurizerSprayandPORVsJULYj,997 ~~14.1,9LOSSOFNORMALFEEDVATERFLOPAlossofnormalfeedwater(frompumpfailures,valvemalfunctions,orlossofoffsiteACpower)resultsinareductionincapabilityofthesecondarysystemtoremovetheheatgeneratedinthereactorcore.Ifanalternativesupply'ffeedwaterwerenotsuppliedtotheplant,coreresidualheatfollowingreactortripwouldheattheprimarysystemwatertothepointwherewaterrelieffromthepressurizerwouldoccur,resultinginasubstantiallossofwaterfromtheRCS.Sincetheplantistrippedwellbeforethesteamgeneratorheattransfercapabilityisreduced,theprimarysystemvaria~lesneverapproachaDNBcondition.IThereactortriponlow-lowwaterLevelinanysteamgeneratorprovidesthenecessaryprotectionagainstalossofnormalfeedwater.Theauxiliaryfeedwatersystemisstartedautomatically.Theturbinedrivenauxiliaryfeedwaterpumputilizessteamfromthe'econdarysystemandexhauststotheatmosphere.Themotordrivenauxiliaryfeedwaterpumpsaresuppliedbypowerfromthedieselgeneratorsifalossofoffsitepoweroccurs.Thepumpstakesuctiondirectlyfromthecondensatestoragetankfordeliverytothesteamgenerators.Ananalysisofthesystemtransientispresentedbelowtoshowthatfollowingalossofnormalfeedwaterwheninreducedtemperatureandpressureoperation,theauxiliaryfeedwatersystemiscapableofremovingthestoredandresidualheat,thuspreventingeitheroverpressurizationoftheRCSoruncoveringthecore,andreturningtheplanttoasafecondition.MethodofAnalsisAdetailedanalysisusingtheLOFTRANcode(describedinSection14.1)isperformedinordertoobtaintheplanttransientfollowinglossofnormalfeedwater.Thesimulationdescribestheplantthermalkinetics,RCSUNITl.14.1.9-1July1990 includingthenaturalcirculation,pressurizer,steamgeneratorsandfeedwatersystem.LOFTRANcomputespertinentvariablesincludingthesteamgeneratorlevel,pressurizerwaterlevel,andreactorcoolantaveragetemperature.Assumptionsmadeintheanalysisare:A.Theplantisinitiallyoperatingat102percentoftheCookNuclearPlantUnit1corepowerlevelof3411MWt,plus20MWtforreactorcoolantpumpheat.B.Aconservativecoreresidualheatgenerationbaseduponlongtermoperationattheinitialpowerlevelprecedingthetrip.TheANS1979decayheatmodelplustwosigmauncertaintywasassumed.C.Reactortripoccursonsteamgeneratorlow-lowlevel.D.Theworstsinglefailureintheauxiliaryfeedwatersystemoccurs(e.g.,failureofturbinedriveauxiliaryfeedwaterpump).Theeventismodeledwithauxiliaryfeedwaterbeingdeliveredtofoursteamgeneratorsatarateof450gpm.Automaticinitiationoftheauxiliaryfeedwaterisassumed60secondsafteralow-lowsteamgeneratorsignalisactuated.F.Secondarysystemsteamreliefisachievedthroughthesteamgeneratorsafetyvalves.Theinitialreactorcoolantaveragetemperatureis4.5Fhigherthanthe0noloadtemperature,andinitialpressurizerpressureis35psihigherthanthenominalpressureof2250psia.H.Theinitial.pressurizerwaterlevelisassumedtobeatthemaximumnominalsetpoint(62%NRS)plusuncertainties(5%.NRS).*NOTE:Additionalevaluationshavedemonstratedthatthisanalysisboundsthecasewithanominalcorepowerlevelof3250MWtandassuming30%tubeplugging.UNIT114.1.9-2July1997 Therefuelingoperationexperiencethathasbeenobtainedwithgestinghousereactorshasverifiedthefactthatnofuelcladdingintegrityfailuresareexpectedtooccurduringfuelhandlingoperations.However,theaboveanalysisindicatesthatiftheunlikelyeventofafuelaccidentcouldoccur,itwouldresultfromthedroppingofafuelassemblyeitherinthecontainmentorauxiliarybuildings.14.2.1.1AuxiliaryBuildingAccidentIntheauxiliarybuildingafuelassemblycould'bedroppedinthetransfercanalorthespentfuelpool.However,supplyairforthespentfuelpoolareaentersfrombothendsoftheauxiliarybuilding,issweptacrossthefuelpoolandtransfercanal,exhaustedatthesideofthefuelpoolnearthepoolelevation,andthendischargedthroughtheUnitNo.1vent.IDoorsintheauxiliarybuildingareadministrativelycontrolledtomaintaincontrolledleakagecharacteristicsinthespentfuelpoolregionduringiirefuelingoperationsinvolvingirradiatedfuel.ShouldzfuelassemblybedroppedinthecanalorinthepoolandreleaseradioactivityaboveaprescribedlevelthespentfuelpoolradiationmonitorsoundsanalarmandautomaticallychannelsthespentfuelpoolventilationexhaustthroughcharcoalfilterstoremovemostofthehalogenspriortodischargingittotheUnitNo.1vent.Intheeventthetemporaryportableradiationmonitoronthebridgecranealarms,actionshallbetakentomanuallyalignthespentfuelpoolexhaustventilationthroughthecharcoalfilters.Ifthedischargeventradiationmonitorindicatesthattheradioactivityintheventdischargeisgreaterthantheprescribedlevels,analarmsoundsandthesupplyandexhaus<ventilationsystemsservicingthespentfuelpoolcanbeshutdown,limitingtheleakagetotheatmosphere.UNIT114.2.1-5July1996 Anymovementofthefuelcaskinthespentfuelpoolareaisunderadministrativecontrol.Interlockspreventthecranefrommovingthecaskoverstoredirradiatedfuelandlimitcaskmovementtoonecornerofthespentfuelpoolawayfromthefuelassemblies.Acageormetalcylinderarrangementsurroundsthecaskduringitsmovementinthepooltopreventitfromtopplingintoanyfuelassemblies.Interlockspreventmovementofthecranehookoveranyotherportionofthespent"fuelpool*atanyothertimeexceptwhenitisabsolutelynecessarytoservicethepoolanditsequipmentandinstrumentation,andtoaddorremoveanyequipmentassociatedwithspentfuelhandling,storage,orinspection.ThecranehookislimitedtotheTechnicalSpecification3.9.7valuewiththeentireoperationunderstrictadministrativecontrol.The'etaileddesignandsafetyanalysisofD.C.CookCaskDropProtectionSystem,whichhasnotyetbeeninstalled,isdescribedinReferences(1),(2)and(3)Theprobabilityofafuelhandlingaccidentisverylowbecauseofthesafetyfeatures,administrativecontrols,anddesigncharacteristicsofthefacilityaspreviouslymentioned.Theshockabsorbinganalysespresentedaboveindicatethat.inmostincidentswhereanassemblyisstruckagainstanotherobject',theouterrowoffuelrodswouldexperiencegreaterloadsandstressesthantheinnerrows.Therefore,ifafuelassemblyisdroppeditdoesnotnecessarilymeanthatallthefuelrodsbreak.Nevertheless,forafuelhandlingaccidentanalysis,theassumptionismadethatthecladdingofallthefuelrodsinonefuelassemblybreaksuddenly,releasingallthegaseousfissionproductsinthevoidsbetweenthepellets.Themainhoistloadblockofeitherauxiliarybuildingcraneandtheauxiliaryhoistloadblockoftheeastcranemaybemovedoverthespentfuelpoolifnoloadisbeingcarried.UNIT114.2.1-6aJuly1997 DF~effectiveIodinedecontaminationfactorforfilters(=10)DF~=effectiveIodinedecontaminationfactorforpoolwater(100)ThegapinventorieslistedinTable14.2.1-1aretheproductofI,(coreinventory)andFs(thefractionexistinginthegap).Thefunctionusedtocalculatetheexternalwholebodydosefrombeta(D>)orgamma(D,)radiationinthecloudusesmanyofthetermsdefinedaboveandisgivenby:D>=Z0.23(x/D)FPGzE>J.ipgandD=E0.25(x/Q)FPGiEwhereG~isthegapinventoryofthegaseousradionuclidesofXeandKrandthefunctionsabovearesummedoverallthenoblegases.E~andE,aretheaverageenergiesofdecay(betaandgammaradiationrespectively)forthevariousradionuclides.Thesefunctionsassumethenoblegasdecontaminationfactorsinwaterandthecharcoalfiltersare1.0.Thegapinventoriesofradioiodinemakeanegligiblecontributiontothewholebodydoses,DporDbecauseofthelargedecontaminationfactorsappropriatetotheiodines.RESULTSAsummaryoftheassumptionsusedtoevaluatethefuelhandlingaccidentisgiveninTable14.2.1-2.Theminimumtimeaftershutdownwhenfuelassemblieswouldbemovedwasconservativelyassumedtobe100hours.At100hoursaftershutdown,thetwo-hourdoseatthesiteboundary,forafuelhandlingaccidentreleasingallofthegaseousfissionproductradioactivityinthegapsofallrodsinthehighestpowerassembly,areasfollows:UNIT114.2.1-9July1997 Two-HouriteBoundDosNUREG/CR-5009Reg.GuideMhod~l.2Inhalationthyroiddose'holebodybetadose,D,=Wholebodygammadose,D,-7.07Rads0.36Rads0.31Rads5.97Rads0.70Rads0.58RadsThesedosesarewellwithinthelimitsof10CFRPart100inconformancewiththeacceptancecriteriaofSRP15.7.4.(Rev.1,July1981)14.2.1.2FUELHANDLINGACCIDENTINSIDECONTAINMENTDuringfuelhandlingoperations,thecontainmentiskeptinanisolatedconditionwithallpenetrationstotheoutsideatmosphereeitherclosedorcapableofbeingclosedonanalarmsignalfromaradiationmonitorindiqatingthatradioactivityisaboveprescribedlimits.Duringcorealterations,onecontainmentairlockdoorshallbeclosedor,appropriateadministrativecontrolsshallbeinplacetoallowbothairlockdoorstoremainopen.Shouldafuelassemblybedroppedandreleaseactivityaboveaprescribedlevel,theupperand/orlowercontainmentarearadiationmonitorssoundanalarm,thecontainmentisisolated,andpersonnelevacuated.Potentialconsequencesofafuelhandlingaccidentwereevaluatedusing(1)theconservativeassumptionslistedinRegulatoryGuide1.25and(2)therealisticassumptionsgiveninRegulatoryGuide4.2AppendixI.Theanalysiswasdoneforacorepowerlevelof3391MWt,whichwasrepresentativeoftheoriginalUnit2licensedpowerlevel.Unit2iscurrentlylicensedforacorepowerlevelof3411MWt.SeeUnit2UFSARSection14.3.5forareevaluationataboundingcore2powerlevelof3588MWt.UNIT114.2.1-10July1997 TABLE14.2.1-1FUELHANDLINGACCIDENTAUXILIARYBUILDINGINVENTORIESANDCONSTANTSOFSIGNIFICANTFISSIONPRODUCTRADIONUCLIDESNUCLIDESHUTDOWNCOREINVENTORYCURIESDECAYCONST.1/HRS100hrs100hrsTOTALGAPINVENTORY,CURIESNUREG/CR-5009Reg.Guide1.25DOSECONVERSIONRiEI(MEV)E,(MEV)I-1319.0E+73.591E-37.5E+66.3E+61.48E+60.1860.389I-1321.3E+83.013E-1Negligible"Negligible5.35E+4I-1331.8E+83.332E-26.3E+5*6.3E+54.0E+50.4190.597I-134I-1351.9E+81.7E+81.048E-1Negligible*7.905E-1Negligible+NegligibleNegligible2.5E+41.24E+50.3941.456Kr-85MKr-85Kr-87Kr-881.9E+71.4E+63.6E+75.0E+71.547E-17.376E-65.451E-12.442E-1Negligible"2.0E+5NegligibleNegligibleNegligible4.2E+5NegligibleNegligible0.2510.002Xe-131MXe-133MXe-133Xe-1351.0E+65.6E+61.8E+83.9E+72.427E-31.319E-25.506E-37.626E-27.9E+4*1.5E+5*5.1E+6Negligible7.9E+41:5Ejs1.0E+7Negligible0.1020.3090.1630.2330.0810.262*Noreleasefractiongiven-assumedsameasReg.Guide1.25UNIT114.2.1-15July1995 TABLE14.2.1-2DATAANDASSUMPTIONSFORTHEEVALUATIONOFTHEFUELHANDLINGACCIDENTINTHEAUXILIARYBUILDINGpureTrmAssumionsCorepowerlevel,MWTFuelburnup,MWD/MTUAnalyticalmethodVALUES341160,000ORIGEN2.R1AsumionsNumberoffailedfuelrodsFractionofcoreinventoryreleasedtogap(NUREG/CR-50090releaseofIodine-131isreportedtobe20%higher)AssumedpowerpeakingfactorInventoryingapavailableforreleasePooldecontaminationfactorsallrodsin1of193assembliesReuide1.2%oftheIodine-104oftheXenon-10ofKr-85-301.65Table14.2.1-1ForIodinesFornoblegasesFilterdecontaminationfactors1001ForIodineFornoblegasesAtmosphericDispersion,(x/Q)'Breathingrate1013.15x10'ec/m'.47x,10m'/secUNIT114.2.1-16July1997 14.2.2AidenalRelseofRdiaciveLiuidsTheinadvertentreleaseofradioactiveli'quidtotheenvironmentisnotconsideredacredibleaccident.Anyradioactiveliquidsmustultimatelybedivertedtothemonitortanks,andanytritiumfromtheCVCStothemonitortanksalso,priortodischarge.(Liquidsfromthesetanksaresampledandmonitoredforacceptableradioactivelevelsbeforebeingreleasedtothelake.)Erroneoussamplingandmalfunctionoftheradiationmonitorwouldhavetooccursequentiallytodischargeradioactiveliquidinadvertently,andthisseriesofeventsisnotconsideredcredible.WasteEvaoratorCndensaandMnitorTankAnyspillageofradioactivefluidduetoequipmentleaksorruptureswoulddraindirectlytoeitherthesumptankorwasteholduptanks,orwouldaccumulateintheareasumpspriortobeingpumpedtothewasteholduptanks.Radioactiveliquidstobeprocessedbythewastedisposalsystemareultimatelystoredinthewasteholduptanks.Periodicallythecontentsofthewasteholduptanksandthelaundrytanksareanalyzedandiftheradioactiveleveliswithindischargelimits-,theliquidistransferredtothewasteevaporatorcondensatetanksandthentothemonitortanksforrelease.Effluentsfromthewastedisposalsystemandmonitortanks3and4arereleased,notrecycled.DistillatefromtheCVCSboricacidevaporatorisdischargedtomonitortanks.Thecontentsofmonitortanks1and2areanalyzedbeforebeingpumpedtotheprimarywaterstoragetanks.Occasionallyitmaybenecessarytodisposeofsomeoftheboricaciddistillatefortritiumcontrol.(Ifanalysisofthecontentsofthemonitortankiswithinprescribedlimitsfordischargetotheenvironment,theliquidispumpeddirectlytothewasteliquiddischargelineafterthenormallylocked-closedvalveinthis,lineisopened.)The,radiationmonitordownstreampreventsdischargeoffluidsaboveprescribedlevelsasexplainedintheprecedingparagraph.UNIT114.2.2-1July,1997 Arepresentativesampleisobtainedfromthemonitortanktodetermineappropriatereleasesetpoints.Administrativeclearancemustbegrantedtoopenalocked-closedvalve.Inthehighlyunlikelyeventthatthelocked-closedvalveisopenedandthetankcontentsareinadvertenlypumpedtothedischargetunnelforreleasetothelakewithoutbeingpreviouslyanalyzedforactivity,theradiationmonitorssetpointissetsuchthatthereleasewillnotexceedreleaselimits.Ifitdid,theradiationmonitorwouldtripthesecondvalvedownstreamofthemonitorandterminatetherelease.Therefore,apumpingaccidenthavingradiologicalconsequencesisnotconsideredcredible.UHIT114.2.2-1aJuly,1997 CondensateSoreTankPrimaWaerStoraeTankandRefuelinWaterStoraeTankThecondensatestoragetankandtheprimarywaterstoragetankareessentiallyfreefromradionuclides.Therefuelingwaterstoragetankcontainsarelativelylowlevelofradioactivity.Thesetanksarenotconnectedtotheradwastesystem.lntheunlikelyeventoflossofwaterfromanyofthesetanksthewaterwillpercolatedowntheundergroundwatertable,whichisestimatedtobeatelevation590',thatis,about20feetbelowgroundlevel.Thehydraulicgradientofthegroundisverylow;lessthan4c.Ourstudiesshowaminimumof50yeaswouldberequiredforthewatertoreachthenearestgroundwaterwell.Thespilledwaterwouldpreferentiallyfollowtheverysmallnaturalgroundgradienttowardthelakeandwouldbeeventuallydilutedinthelakewater,Bythetimeanyradioactivematerialsreachthenearestdrinkingwaterintakefromthelake,Bridgmanis2.5milesawayfromtheplantdischarge,resultantdilution,dispersion,andradioact'ivedecaywillhave'educedtheradiologicalconsequencestoinsignificance.*TheinformationpresentedherereferstotheoriginalUnit1studies.LaterresultsofstudiesonthissubjectareincludedinSection14.2oftheUnit2UpdatedFSAR.UNET114.2.2-2July,1997 AuxiliaBuildinLiuidWasteStoraeTanksTheinadvertentreleaseofradioactiveliquidwastetotheenvironmentisnotconsideredacredibleaccident.Anyspillageofradioactivefluidduetoequipmentleaksorruptureswoulddraindirect'lytoeithersumpsorwasteholduptanks.Radioactiveliquidwastesaredivertedtotankstobeprocessedforrelease.Tanksaresampledandanalyzedtodeterminethattheconcentrationofradioactivenuclidescanbereleasedwithindischargelimits.Thereleasemustpassthroughanormallylockedclosedvalve,aradiationmonitorandanothervalveinseriespriortoreachingthedischargetunnelsforreleasetothelake.Administrativeclearancemustbegrantedtoopenthelockedclosedvalve.Inthehighlyunlikelyeventthatthelocked-closedvalveisopenedandthe'tankcontentsareinadvertentlypumpedtothedischargetunnelforreleasetothelakewithoutbeingpreviouslyanalyzedforactivity,theradiationmonitorssetpointissetsuchthatthereleasewillnotexceedreleaselimits.Ifitdid,theradiationmonitorwouldtripIthesecondvalvedownstreamofthemonitorandterminatetherelease.Therefore,apumpingaccidentinvolvingradioactivewastereleaseshavingradiologicalconsequencesisnotconsideredcredible.UNIT114.2.2-3July,1997 ~Pi~inThepipesrunningfromtherefuelingwaterstoragetank,theprimarywaterstoragetank,andthecondensatestoragetanktotheauxiliarybuildingareinstalledinapipetunnel.Encaseofabreakinanyofthesepipes,thewaterwillentertheauxiliarybuildingsump,fromwhereitwillbeprocessedasdescribedintheAuxiliaryBuildingliquidwastetanks.Nopipesfromthesetanksaredirectedtowardthecontainmentbuilding.CVCSHolduTnkTheanalysisofaCVCSholduptankruptureispresentedinSection'4.2.2,Unit2.UNZT114.2.2-4July1997 ,H 14.2.3AccidentalWaseGasReleaseRadioactivegasesareintroducedintothereactorcoolantbytheescapeoffissionproductsifdefectsandcontaminationexistedinthefuelcladding.Theprocessingofthereactorcoolantbyauxiliarysystemsresultsintheaccumulationofradioactivegasesinvarioustanks.Thetwomainsourcesofanysignificantgaseousradioactivitythatcouldoccurwouldbethevolumecontroltank(VCT)andthegasdecaytanks.Thesetanks,locatedinthelowerelevationsoftheauxiliarybuildingwhichisaseismicallydesignedstructure,arealsodesignedtowithstand'aseismicevent(DBE)withoutfailure.Forthepurposesofanaccidentalwastegasreleaseanalysis,itisassumedthatatankrupturesbyanunspecifiedmechanismafterthereactorhasbeenoperatingforonecorecyclewith1%defectsinthefuelcladding.VolumeContr1TankNoblegasesinthereactorcoolantaccumulateinthevolumecontroltankthroughoutacorecyclebythestrippingactionoftheenteringspray.Gasesretainedinthistankareventedtothegasdecaytankswhenthereactorisshutdownforrefueling.Aruptureofthevolumecontroltankjustpriortoventingwouldreleasealltheaccumulatedgasesintheliquidandgasphases,plusthatamountinthe75gpmflowfromtheletdownlinewhichisassumedtocontinueflowinguptofifteenminutesuntilisolationisaccomplished.Theequilibriumactivitieswhichareassociatedwithareleaseofthegasesatthistimearebasedon1%defectsinthefuelcladding,andarelistedinTable14.2.3-1.Thetotalrepresents18,080curiesequivalentXe-133.GasDeTankThegasdecaytanksaccumulateradioactivegasesfromthreemajorsourcesprocessedbythewastedisposalsystem:thegasstripper,theliquidholduptanks,andthevolumecontroltank.Ofthesethree,onlythevolumecontroltankiscapableofintroducinglargeamountsofactivitytothegasdecaytanksinarelativelyshortperiodoftime.AfterUNIT114.2.3-1July1997 shuttingdownthereactorfor'efueling,thereactorcoolantsystemispurifiedanddegassed.Thegasesaccumulatedinthevolumecontroltankareperiodicallyventedtothewastegascompressorpriortobeingstoredinthegasdecaytanks.Foranaccidentanalysis,itisassumedthattheentireequilibriuminventoryofKr-85andXe-133inthereactorcoolantsystemand"thevolumecontroltankvaporspaceiscontainedinasinglegasdecaytankatthetimeofrupture.Theothernoblegasisotopesarenotconsideredbecausetheyarepresentinnegligibleamountsinthereactorcoolantorbecomenegligiblethroughdecayduringtheprocessingperiod.ThisapproachisconservativesincenocreditistakenforthedecayofXe-133whilebeingstrippedfromthereactorcoolantandtransferredtothegasdecaytanks.Themaximumactivitiesavailableforreleasearebasedon1%fuelcladdingdefectsandarelistedinTable14.2.3-2.Thetotalrepresents83,300curiesequivalentXe-133.DoseEvaluationOff-siteradiationexposureevaluatedfornoblegasesreleasedisbasedonthemeteorologicalmodelandradiationdoseequationdescribedinSection14.3.5,includingtheeffectofdilutioninthewakeofonecontainment-4building,a2m/secwindvelocityandadispersionfactor,p/-3.15x10sec/matthesiteboundary,610metersfromthecontainment.Assumingthe3incidentoccurredimmediatelyaftera'efuelingshutdownfollowingoperationw'ith1%fuelcladdingdefects,themaximumtwo-hourintegratedwholebodydoseatthesiteboundaryduringpassageofescapedgaseswouldbe:VolumeControlTankGasDecayTank0.27rem1~26remItis,therefore,concludedfromtheaboveanalysisthatanunlikelyeventofanaccidentalwastegas.releasewouldpresentnohazardtothehealthandsafetyofthepublic,sincethemaximumtwo-hourintegratedwholebodydoseatthesiteboundaryiswellbelowthe25remguidelineforaccidentalexposureassetforthin10CFR100.UNIT114.2.3-2July1990 14.2.4SearnGeneratorTubeRuture~GenralTheaccidentexaminedisthecompleteseveranceofasinglesteamgeneratortube(SGTR).Theaccidentisassumedtotakeplaceatareactorpowerlevelof3262MWt'iththereactorcoolantcontaminatedwithfissionproductscorrespondingtocontinuousoperationwithalimitedamountofdefectivefuelrods.Theaccidentleadstoanincreaseincontaminationofthesecondarysystemduetoleakageofradioactivecoolantfromthereactorcoolantsystem.Intheeventofacoincidentlossofoffsitepower,orfailureofthecondensersteamdumpsystem,dischargeofacti'vitytotheatmospheretakesplaceviathesteamgeneratorpoweroperatedreliefvalves(andsafetyvalvesiftheirsetpointisreached).IThesteamgeneratortubematerialisInconel600and,asthematerialishighlyductile,itisconsideredthattheassumptionofacompleteseveranceissomewhatconservative.Themoreprobablemodeoftubefailurewouldbeoneormoreminorleaksofundeterminedorigin.ActivityinthesteamandpowerconversionsystemissubjecttocontinualsurveillanceandanaccumulationofminorleakswhichexceedtheTechnicalSpecificationlimitsisnotpermittedduringunitoperation.Theoperatorisexpectedtodeterminethatasteamgeneratortuberupture(SGTR)hasoccurred,toidentifyandisolatetherupturedsteamgenerator,andtocompletetherequiredrecoveryactionstostabilizetheplantandterminatetheprimarytosecondarybreakflow.Theseactionsshouldbeperformedonarestrictedtimescaleinordertominimizethecontaminationofthesecondarysystemandensureterminationofradioactivereleasetothe-atmospherefromtherupturedsteamgenerator.Considerationoftheindicationsprovidedatthecontrolboard,togetherwiththemagnitudeofthebreakflow,leadstotheconclusionthattherecoveryprocedurecanbecarriedoutonatimescalethatensuresthatbreakflowtotherupturedsteamgeneratoristerminatedbeforethewaterlevelintheaffectedsteamAssumes30:tubeplugging.UNIT114.2.4-1July1997 generatorrisesintothemainsteampipe.Sufficientindicationsandcontrolsareprovidedtoenabletheoperatortocarryoutthesefunctionssatisfactorily.UNlT114.2.4-2July1997 DescriionofAcidentAssumingnormaloperationofthevariousplantcontrolsystems,thefollowingsequenceofeventsisinitiatedbyatuberupture:Pressurizerlowpressureandlowlevelalarmsareactuated,andpriortoplanttrip,chargingpumpflowincreasesinanattempttomaintainpressurizerlevel.Onthesecondarysidethereisasteamflow/feedwaterflowmismatchbeforetrip,asfeedwaterflowtotheaffectedsteamgeneratorisreducedduetotheadditionalbreakflowwhichisnowbeingsuppliedtothatsteamgenerator.2.Lossofreactorcoolantinventoryleadstofallingpressureandlevelinthepressurizeruntilareactortrip'signalisgene'ratedbylowpressurizerpressureorovertemperatureaT.Asafetyinjectionsignal,initiatedbylowpressurizerpressurefollowssoonafterthereactortrip.Thesafetyinjectionsignalautomaticallyterm'inatesnormalfeedwatersupplyandinitiatesauxiliaryfeedwateraddition.3.Thesteamgeneratorblowdownliquidmonitorandtheairejectorradiationmonitorwillalarm,indicatingasharpincreaseinradioactivityinthesecondarysystem.4.Thereactortripautomaticallytripstheturbine,andifoutsidepowerisavailable,thesteamdumpvalvesopen,permittingsteamdumptothecondenser.Intheeventofacoincidentstationblackout,thesteamdumpvalve'swouldautomaticallyclosetoprotectthecondenser.Thesteamgeneratorpressurewouldrapidlyincrease,resultinginsteamdischargetotheatmospherethroughthesteamgeneratorpoweroperatedreliefvalves(andthesteamgeneratorsafetyvalvesiftheirsetpointisreached)UNIT114.2.4-3July1997 Followingplanttrip,thecontinuedactionofauxiliaryfeedwatersupplyandboratedsafetyinjectionflow(suppliedfromtherefuelingwaterstoragetank(RWST))provideaheatsink.Thus,steambypasstothecondenser,orinthecaseoflossofoutsidepower,steamrelieftoatmosphere,isattenuatedduringthetimeinwhichtherecoveryprocedureleadingtoisolationisbeingcarriedout~6.Safetyinjectionflowresultsinrestorationofpressurizerwaterlevel.ResultsInestimatingthemasstransferfromthereactorcoolantsystemthroughthebrokentube,thefollowingassumptionsweremade:a.Planttripoccursautomaticallyasaresultoflow'ressurizerpressure.b.Followingtheinitiationofthesafetyinjectionsignal,bothcentrifugalchargingpumpsareactuatedandcontinuetodeliverflow.c.AfterreactortripthebreakflowequilibratestothepointwheeincomingsafetyinjectionflowisbalancedbyoutgoingbreakflowasshowninFigure14.2.4-1.Intheoriginalaccidentanalysis,theresultantbreakflowisassumedtopersistfromplanttripuntil30minutesafterinitiation.Anassessmenthasbeen,madeoftheimpactontheoriginalanalysisofallowingtheoperatorlongerthan30minutestoterminatebreakflowtothefaultedsteamgenerator.Thatassessmenthasshownthatthebreakflowterminationcouldbeincreaseduptotwohours(providedthesteamgeneratordoesnotoverfill)withoutexceedingtheoffsitedoseradiologicalguidelinesdiscussedinthe"Conclusion"portionofthissection.(Reference3}UNIT114.2.4-4July1997 d.Thesteamgeneratorsarecontrolledatthesafetyvalvesettingminus3%toleranceratherthanthepoweroperatedreliefvalvesetting.e.Theoriginalanalysisassumedthattheoperatoridentifiestheaccidenttypeandterminatesbreakflowtotherupturedsteamgeneratorwithin30minutesofaccidentinitiation.Anassessmenthasbeenmadeoftheimpactontheoriginalanalysisofallowingtheoperatorlongerthan30minutestoterminatebreakflowtothefaultedsteamgenerator.Thatassessmenthasshownthatthebreakflowterminationcouldbeincreaseduptotwohours(providedthesteamgeneratordoesnotoverfill)withoutexceedingtheoffsitedoseradiologicalguidelinesdiscussedinthe"Conclusion"portionofthissection.(Reference3)Theaboveassumptionsleadtoaconservativeupperboundof140,264poundsforthetotalamountofreactorcoolanttransferredtotherupturedsteamgeneratorand56,525poundsforthetotalamountofsteamreleasedtotheatmosphereviatherupturedsteamgeneratorasaresultofthesteamgenerator'tuberuptureaccident.ReoverProcedureIntheeventofanSGTR,theplantoperatorsmustdiagnosetheSGTRandperformtherequiredrecoveryactionstostabilizetheplantandterminatetheprimarytosecondaryleakage.TheoperatoractionsforSGTRrecoveryareprovidedintheEmergencyOperatingProcedures(EOPs).TheEOPsarebasedonguidanceintheWestinghouseOwner'sGroupEmergencyResponseGuidelines-(Reference1)'whichaddressestherecoveryfromaSGTRwithandwithoutoffsitepoweravailable.Themajoroperatoractionsincludeidentificationandisolationoftherupturesteamgenerator,cooldownanddepressurizationoftheRCStorestoreinventory,andterminationofSItostopprimarytosecondaryleakage.Theseoperatoractionsaredescribedbelow.UNIT114.2.4-5July1997 1.Identifytherupturedsteamgenerator.Highsecondarysideactivity,asindicatedbythesecondarysideradiationmonitorswilltypicallyprovidetheinitialindicationof,anSGTRevent.Therupturedsteamgeneratorcanbeidentifiedbyanunexpectedincreaseinsteamgeneratorlevel,ahighradiationindicationonthemainairejectormonitor,orfromthesteamgeneratorblowdownliquidmonitor.ForanSGTRthatresultsinareactortripathighpower,thesteamgeneratorwaterlevelwilldecreaseoff-scaleon'henarrowrangeforallofthesteamgenerators.Theauxiliaryfeedwaterflowwillbegintorefillthesteamgenerators,distributingapproximatelyequalflowtoeachofthesteamgenerators.Sinceprimarytosecondaryleakageaddsadditionalliquidinventorytotherupturedsteamgenerator,thewaterlevelwillreturntothenarrowrangeearlierinthatsteamgeneratorandwillcontinuetoincreasemorerapidly.Thisresponse,asindicatedbythesteamgeneratorwaterlevelinstrumentation,providesconfirmation.ofanSGTReventandalsoidentifiestherupturedsteamgenerator.tIsolatethe'rupturedsteamgeneratorfromtheintactsteamgeneratorsandisolatefeedwatertotherupturedsteamgenerator.Onceatuberupturehasbeenidentified,recoveryactionsbeginbyisolatingsteamflowfromandstoppingfeedwaterflowtotherupturedsteamgenerator.Inadditiontominimizingradiologicalreleases,thisalsoreducesthepossibilityofoverfillingtherupturedsteamgeneratorwithwaterby1)minimizingtheaccumulationoffeedwaterflowand2)enablingtheoperatortoestablishapressuredifferentialbetweentherupturedandintactsteamgeneratorsasanecessarysteptowardterminatingprimarytosecondaryleakage.3,.CookdowntheRCSusingtheintactsteamgenerators.Afterisolationoftherupturedsteamgenerator,theRCSiscooledasrapidlyaspossibletolessthanthesaturationtemperaturecorrespondingtotherupturedsteamgeneratorpressurebydumpingsteamUHIT'114:2.4-6July1997 fromonlytheintactsteamgenerators.ThisensuresadequatesubcoolingintheRCSafterdepressurizationtotherupturedsteamgeneratortpressureinsubsequentactions.Ifoffsitepowerisavailable,thenormalsteamdumpsystemtothecondensercanbeusedtoperformthiscooldown.However,ifoffsitepowerislost,theRCSiscooledusingthepoweroperatedreliefvalves(PORVs)ontheintactsteamgenerators.4.DepressurizetheRCStorestorerea'ctorcoolantinventory.Whenthecooldowniscompleted,SIflowwillincreaseRCSpressureuntilbreakflowmatchesSIflow.Consequently,SIflowmustbeterminatedtostopprimarytosecondaryleakage.However,adequatereactorcoolantinventorymustfirstbeassured.Thisincludesbothsufficientreactorcoolantsubcoolingandpressurizerinventorytomaintainareliable'pressurizerlevelindicationafterSIflowisstopped.TheRCSdepressurizationisperformedusingnormalpressurizersprayifthereactorcoolantpumps(RCPs)'rerunning.However,ifoffsitepowerislostortheRCPsarenotrunning,normalpressurizersprayisnotavailable.Inthisevent,RCSdepressurizationcanbeperformedusingapressurizerPORVorauxiliax'ypressurizerspray.5.TerminateSItostopprimarytosecondaryleakage.ThepreviousactionswillhaveestablishedadequateRCSsubcooling,asecondarysideheatsink,andsufficientreactorcoolantinventox'ytoensurethatSIflowisnolongerneeded.Whentheseactionshavebeencompleted,SIflowmustbestoppedtoterminateprimarytosecondaryleakage.PrimarytosecondaryleakagewillcontinueafterSIflowisstoppeduntiltheRCSandrupturedsteamgeneratorpressuresequalize.Chargingflow,letdown,andpressurizerheaterswillthenbecontrolledtopreventrepressurizationoftheRCSandreinitiationofleakageintotherupturedsteamgenerator.UNIT114.2.4-7July1997 FollowingSItermination,theplantconditionswillbestabilized,theprimarytosecondarybreakflowwillbeterminatedandallimmediatesafetyconcernswillhavebeenaddressed.Atthistimeaseriesofoperatoractionsareperformedtopreparetheplantforcooldowntocoldshutdownconditions.Subsequently,actionsareperformedtocooldownanddepressurizetheRCStocoldshutdownconditionsandtodepressurizetherupturedsteamgenerator.30PercentTubPlinAnalsisReference2addressestherecentanalysisfortosupportsteamgeneratortubepluggingforunit1cycle16.ThisincludedanevaluationofthesteamgeneratortuberuptureaccidenttodeterminetheimpactondosereleasesIlassociatedwiththeanalysis.Theprimarythermal,hydraulicparameterswhichaffectthecalculatedokfsiteradiationdosesforasteamgeneratortuberuptureeventaretheassumedradioactivityinthereactorcoolant,thereactorcoolantreleasedthroughtherupturedtubetothesecondarysteamvolume,andthesteamreleasedfromtherupturedtubetotheatmosphere.Thechangeinsteamgeneratortubepluggingdidnotimpactthereactivitylevelofthereactorcoolant.However,boththeprimarycoolantreleasetothesecondaryandthesecondarysystemreleasetotheatmospherewereimpactedbytheassumedtubeplugginglevel.Toevaluatetheeffectof30%steamgeneratortubeplugginglevel,themassreleasesfromtheRCSandfromthesecondaryvolumetotheatmospherewerecalculated.FourcaseswereconsideredassuminganominalRCStemperatureof533'Fand576.3FwithbothsymmetricandasymmetricRCSflowconditions.Anominalfullpowerlevelof3262MNtwasalsoassumed.Theresultsofthe30%steamgeneratortubeplugginganalysisresultedinoffsiteradiologicalconsequenceslessthanthosepreviouslyprovided.UNIT114.2.4-8July1997 ConclusionAsteamgeneratortuberupturewillcausenosubsequentdamagetotheRCSorthereactorcore.Anorderlyrecoveryfromtheaccidentcanbecompleted,evenassumingasimultaneouslossofoffsitepowersuchthatliquiddoesnotenterthesteampipingspace.Thedosestothepublicasaresultofasteamgeneratortuberupturehavebeenshowntobelessthanthepermissiblelimitsof10CFRPart100.Theselimitsare:forpre-accidentiodinespike,thethyroiddosein10CFR100or300rem,foraccidentinitiatediodinespike,10%(smallfraction)of10CFR100or30remthyroidand2.5remgammabody.~Rfernces1.WestinghouseOwnersGroup;Emergency-ResponseGuidelines,PublishedbyIWestinghouseElectricCorporationfortheWestinghouseOwnersGroup.2.WestinghouseElectricCo.;DonaldC.CookNuclearPlant,Unit1;SteamGeneratorTubePluggingLicensingReport,May,1995(WestinghousereportWCAP-14285,Revision1)3.WestinghouselettertoAEP.NSD-NT-ESI-97-388,(AEP97-102);,AmericanElectricPowerDonaldC.CookNuclearPlantUnits1and2,RevisedSGTRFSARSection14.2.4;datedJune26,1997.UNIT114.2.4-9July1997 14.2.5RutureofaSearnPieAruptureofasteampiperesultsinanuncontrolledsteamreleasefromasteamge'nerator.=-Thesteamreleaseresultsinaninitialincreaseinsteamflowwhichdecreasesduringtheaccidentasthesteampressurefalls.Theenergyremovalfromthereactorcoolantsystemcausesareductionofcoolanttemperatureandpressure.Znthepresenceofanegativecoolanttemperaturecoefficient,thecooldownresultsinareductionofcoreshutdownmargin.XfthemostreactiveRCCAisassumedstuckinitsfullywithdrawnposition,thereisanincreasedpossibilitythatthecox=willbecomecriticalandreturntopower.Areturntopowerfollowingasteampiperuptureisa'potentialproblemmainlybecauseofthehighhotchannelfactorswhichexistwhenthemostreactiveassemblyisassumedstuckinitsfullywithdrawnposition.Thecoreisultimatelyshutdownbyboricaciddeliveredbytheemergencycorecoolingsystem.Theanalysisofasteampiperuptureisperformedtodemons>ratethat:Assumingastuckassembly,withorwithoutoffsitepower,andassumingasinglefailureintheengineeredsafetyfeatures,thereisnoconsequentialdamagetotheprimarysystemandthecoreremainsinplaceandintact.AlthoughDNBandpossiblecladperforationfollowingasteampiperupturearenotnecessarilyunacceptable,thefollowinganalysis,infactshowsthatnoDNBoccursforanyruptureassumingthemostreactiveassemblystuckinitsfullywithdrawnposition.MethfAnaliTheanalysisofthesteampiperupturehasbeenperformedtodetermine:A.ThecoreheatfluxandRCStemperatureandpressureresultingfromthecooldownfollowingthesteamlinebreak.TheLOFTRANCode,describedinSection14.1,hasbeenused.UNET114.2.5-1July1997 Thethermalandhydraulicbehavio"ofthecorefollowingasteamlinebreak.Adetailedthermalandhydraulicdigital-computercode,THINC,describedinSection14.1,hasbeenusedtodetermineifDNBoccursforthecoreconditionscomputedinitemAabove.Thefollowingconditionswereassumedtoexistatthetimeofamainsteamlinebreakaccident:End-of-lifeshutdownmargin(1.30%hk/k)atnoload,equilibriumxenonconditions,andthemostreactiveRCCAstuckinitsfullywithdrawnposition.OperationoftheRCCAbanksduringcoreburnupisrestr'ictedinsuchaway(tonotviolatetherodinsertionlimitspresentedintheTechnicalSpecifications)thatadditionofpositivereactivityinasteamlinebreakaccidentwillnotleadtoamoreadverseconditionthanthecaseanalyzed.Anegativemoderatorcoefficientofreactivitycorrespondingtotheend-of-liferoddedcorewiththemostreactiveRCCAinthefullywithdrawnposition.Thevariationofthecoefficientwithtemperatureandpressurehasbeenincluded.Thekffversustemperatureat1050psiaeffcorrespondingtothenegativemoderatortemperaturecoefficientusedisshowninFigure14.2.5-1.TheDopplerpowerfeedbackassumedforthisanalysisispresentedinFigure14.2.5-2.Thecorepropertiesassociatedwiththesectornearesttheaffectedsteamgeneratorandthoseassociatedwiththeremainingsectorwereconservativelycombinedtoobtainaveragecorepropertiesforreactivityfeedbackcalculation.Further,itwasconservativelyassumedthatthecorepowerdistributionwasuniform.Thesetwoconditionscauseunderpredictionofthereactivityfeedbackinthehighpowerregionnearthestuckrod.Toverifytheconservatismofthismethod,thereactivityaswellasthepowerdistributionwascheckedforthelimitingconditionsforthecasesanalyzed.ThiscoreanalysisconsideredtheDopplerreactivityfromthehighfueltemperaturenearthestuckRCCA,moderatorfeedbackfromthehighwaterenthalpyneartheUNIT114.2.5-2July1997 PowerpeakingfactorscorrespondingtoonestuckRCCAandnon-uniformcoreinletcoolanttemperaturesaredeterminedatendofcorelife.Thecoldestcoreinlettemperaturesareassumedtooccurinthesectorwiththestuckrod.Thepowerpeakingfactorsaccountfortheeffectofthelocalvoidintheregionofthestuckcontrolassemblyduringthereturntopowerphasefollowingthesteamlinebreak.Thisvoidinconjunctionwiththelargenegativemoderatorcoefficientpartiallyoffsetstheeffectofthestuckassembly.Thepowerpeakingfactorsdependuponthecorepower,temperature,pressure,andflow,andthusaredifferentforeachcasestudied.Theanalysesassumedinitialhotshutdownconditionsattimezerosincethisrepresentsthemostpessimisticinitialcondition.Shouldthereactorbe,justcriticaloroperatingatpoweratthetimeofasteamIlinebreak,thereactorwillbetrippedbythenormaloverpowerprotectionsystemwhenpowerlevelreachesatrippoint.Followingatripatpowerthereactorcoolantsystemcontainsmorestoredenergythanatno-load,theaveragecoolanttemperatureishigherthanatno-loadandthereisappreciableenergystoredinthefuel.Thus,theadditionalstoredenergyisremovedviathecooldowncausedbythesteamlinebreakbeforetheno-loadconditionsofRCStemperatureandshutdownmarginassumedintheanalysesarereached.Aftertheadditionalstoredenergyhasbeenremoved,thecooldo.~nandreactivityinsertionsproceedinthesamemannerasintheanalysiswhichassumesno-loadconditionattimezero.Inaddition,sincetheinitialsteamgeneratorwaterinventoryisgreatestatno-load,,themagnitudeanddurationofRCScooldownaremoresevereth'ansteamlinebreaksoccurringatpower.G.Incomputingthesteamflowduringasteamlinebreak,theMoody(2)Curveforfl/D0isused.UNIT114.2.5-5July1990 Thefastactingsteamlineisolationvalvesareassumedtocloseinlessthanelevensecondsfromreceiptofactuationsignal.Forbreaksdownstreamoftheisolationvalv'es,closureofallvalveswouldcompletelyterminatetheblowdown.Foranybreak,inanylocation,nomore'hanonesteamgeneratorwouldexperienceanuncontrolledblowdownevenifoneoftheisolationvalves.failstoclose.~RsulsThelimitingcaseofcasesathroughewasshowntobethedoubled-endedrupturelocatedupstreamoftheflowrestrictorwithoffsitepoweravailable.Table14.2.5-1liststhelimitingstatepointsforthisworstcase.Theresultspresentedareaconservativeindicationoftheeventswhichwouldoccurassumingasteamlinerupturesinceitispostulatedthatalloftheconditionsdescribedaboveoccursimultaneously.ThesequenceofeventsforthistransientispresentedinTable14.2.5-2.Figures14.2.5-4through14.2.5-7showtheRCStransientandcoreheatfluxfollowingamainsteamlinerupture(completeseveranceofapipeattheexitofthesteamgeneratornozzle)atinitialno-loadcondition.Offsitepowerisassumedavailablesothatfullr'eactorcoolantflowexists.Thetransientshownassumesanuncontrolledsteamreleasefromonlyonesteamgenerator.ShouldthecorebecriticalatnearzeropowerwhentheruptureoccurstheinitiationofsafetyinjectionbyhighdifferentialpressurebetweenanysteamlineandtheremainingsteamlinesorbyhighsteamflowsignalsincoincidencewitheitherlowlowRCStemperatureorlowsteamlinepressurewilltripthereactor.Steamreleasefrommorethanonesteamgeneratorwillbepreventedbyautomatictripofthefastactingisolationvalvesinthesteamlinesbyhighcontainmentpressuresignalsorlowsteamlinepressureorhighsteamflowcoincidentwithlow-lowT.Evenwiththeavg'ailureofonevalve,releaseislimitedtoapproximately13secondsfortheothersteamgeneratorswhiletheonegeneratorblowsdown.Thesteamlinestopvalvesaredesignedtobefullyclosedinlessthanelevensecondsfromtreceiptofaclosuresignal.UNlT114.2.5-6July1997 AsshowninFigure14.2.5-7,thecoreattainscriticalitywiththeRCCAsinserted(withthedesignshutdownassumingonestuckRCCA)beforeboronsolution,at2400ppmenterstheRCS.Apeakcorepowerlessthanthenominalfullpowervalueisattained.Thecalculationassumestheboricacidismixedwith,anddilutedbythewaterflowingintheRCSpriortoenteringthereactorcore.TheconcentrationaftermixingdependsupontherelativeflowratesintheRCSandinthesafety'njectionsystem.ThevariationofmassflowrateintheRCSduetowaterdensitychangesisincludedinthecalculationasisthevariationofflowrateinthesafetyinjectionsystemduetochangesintheRCSpressure.Thesafetyinjectionsystemflowcalculationincludesthelinelossesinthesystemaswellasthepumpheadcurve.Theassumedsteamreleaseforanaccidentaldepressurizationofthemainsteamsystem(Casee)isthemaximumcapacityofanys'inglesteamdump,relief,orsafetyvalve.Safetyinjectionisinitiatedautomaticallybylowpressurizerpressure.Operationofonecentrifugalchargingpumpisassumed.Boronsolutionat2400ppmenterstheRCSprovidingsufficientnegativereactivitytopreventcoredamage.Thetransientisquiteconservativewithrespecttocooldown,sincenocreditistakenfortheenergystoredinthesystemmetalotherthanthatofthefuelelementsortheenergystoredintheothersteamgenerators.Sincethetransientoccursoveraperiodofaboutfiveminutes,theneglectedstoredenergyislikelytohaveasignificanteffectinslowingthecooldown.TheDNBtransientisboundedbythelimitingcaseforasteamlinerupture.TheDNBanalysisforthelimitingcase(double-endedrupturelocatedupstreamoftheflowr'estrictor)showedthattheminimumDNBRremainedabove"thelimitvalue.UNIT114.2.5-7July1997 ConclusionsTheanalysishasshownthatthecriteriastatedearlieraresatisfiedAlthoughDNBandpossiblecladperforationfollowingasteampiperupturearenotnecessarilyunacceptableandnotprecludedbythecriteria,theaboveanalysis,infact,showsthatnoDNBoccursfortherupture(oranaccidentaldepressurizationofthemainsteamsystem)assumingthemostreactiveRCCAstuckinitsfullywithdrawnposition.UNIT114.2.5-8July1990 TABLE14.2.5-1LIMITINGSTEAMLINEBREAKSTATEPOINTDOUBLEENDEDRUPTUREINSIDECONTAINMENTWITHOFFSITEPOWERAVAILABLETimesecPressurepsiaHeatFluxInletTemp.FlowFractionCold'FHot'FFractionBoronPPMReactivityDensityPercentgm/cc180.2601.93.228336.6463.31.07.13-.001.849UNIT114.2.5-10July-1997 Table14.2.5-2TIMESEQUENCEOFEVENTSDOUBLEENDEDRUPTUREINSIDECONTAINMENTWITHOFFSITEPOWERAVAILABLEEventSteamlineruptureoccursLowsteamlinepressurecoincidentwithhighsteamflowintwosteamlinesreachedT~imeec0.002.06FeedwaterIsolation(Allloops)CriticalityattainedSteamlineIsolation(Loops2,3,and4)PressurizeremptiesSIflowstartsBoronfromSIreachesthecoree,Peakheatfluxattained10.0612.4013.0613.2029.0639.80179.2Corebecomessubcritical180.0UNIT114.2.5-11July1997 1.0301.0201.010I.000I~0.990h~0.980240280320360'00440480520560CoreAverageTemperature['F]DONALDC.COOKNUCLEARPLANTUNIT1'IGURE14.2.5-1VariationofReactivityWithCoreTemperatureAt1050psiaForTheEndOfLifeRoddedCoreWithOneControlRodAssemblyStuck(ZeroPower)ForTheSteamlineBreakDoubleEndedRuptureEventJULY1997 3.60u3.202.80Xc2.402.0001.60~o120P-0.80-0.40c0.00~~)v~05101520253035404550CorePowerfPrecentofNominal]DONALDC.COOKNUCLEARPLANTUNITIHGURE14.25-2DopplerPowerfeedbackForTheSteamJineBteakDoubleEndedRuptureEventJULY1997 2,4002,000'~1,600g1.2000o800K.0.05101520253035404550ColdLegSafetyInjection[Ibm/sec]DONALDC.COOKNUCLEARPLANTUNlT1FIGURE14.2.5-3SafetyInjectionFlowSuppliedByOneChargingPumpForTheStearnlineBreakDoubleEndedRuptureEventJULY1997 Q4CSt=E0.3OCOU0qICl0Q.hQ.1OX0.050150Timets)250Q.4m03OCO0.2)CLL0.1QOO0.0050150Time(s]DONALDC.COOKNUCLEARPLANTUNIT)FIGURE14.2.5<NuclearPowerandCoreHeatFluxvs.TineForTheStearnlineBreakDoubleEndedRuptureEventPnsideContainmentWithPower)JULY133t 560u.520Q.E4800)t5)I440QO050150Timets]2502.5002,000.5Q.Qg1,500IDn.tnVtt:1,000050150Time[s]250DONALDC.COOKNUCLEARPLANTUMT1FIGURE14.2.5-5CoreAverageTemperatureandRCSPressurevs.TomForTheSteantiineBmdcDoubleEndedRuptureEventPnsideContainmcntWithPower)JULY1997 500400I~300Il~-200~1000050,100150Time[s)250300DONALDC.COOKNUCLEARPLANT-UNIT1FIGURE14.2.5-6PressurizerWaterVolumevs.TineForTheSteamlineBreakDoubleEndedRuptureEventflnsideContainmentWithPower]JULY1997 0EOCL-500Ott:-1.000~1,500050100150Time(s]25040-30COCc20OOC"O~10OO0050150Time[sj250300DONALDC.COOKNUCLEARPLANTUNIT1FIGURE14,2.5-7ReactivityandCoreBoronConcentrationvs.Tine'orTheSteamlineBreakDoubleEndedRuptureEventtinsideContainmentWithPower]JULYj.997 Inviewoftheaboveexperimentalresults,criteriaareappliedtoensurethatthereislittleornopossibilityof'fueldispersalinthecoolant,grosslatticedistortion,orsevereshockwaves.ThelimitingcriteriaisdescribedinReference4andsummarizedbelow:A.Averagefuelpelletenthalpyathotspotbelow225cal/gmforunirradiatedfueland200cal/gmforirradiatedfuel.B.Averagecladtemperatureatthehotspotbelowthetemperatureatwhichcladembrittlement,maybeexpected(3000F)."C.Peakreactorcoolantpressurelessthanthatwhichcouldcausestressestoexceedthefaultedconditionstre'sslimits.D.Fuelmeltingwillbelimitedtolessthantenpercent(10%).ofthefuelvolumeatthehotspoteveniftheaveragefuelpelletenthalpyisbelowthelimitsofcriterionAabove.MethdofAnalsiThecalculationoftheRCCAejectiontransientisperformedintwostages,firstanaveragechannelcorecalculationandthenahotregioncalculation.Theaveragecorecalculationisoerformedusingspatialneutronkineticsmethodstodeterminetheaveragepowergenerationwithtime,includingthevarioustotalcorefeedbackeffects,i.e.,Dopplerreactivityandmoderatorreactivity.Enthalpyandtemperaturetransientsinthehotspotarethen,determinedbymultiplyingtheaveragecoreenergygenerationbythehotchannelfactor'ndperformingafuelrodtransientheattransfercalculation.Thepowerdistributioncalculatedwithoutfeedbackispessimisticallyassumedtopersistthroughoutthetransient.Adetailedinvestigationusingthismethod,andademonstrationoftheconservativenessofthecalculationcomparedtothree-dimensionalspatialkinetics,ispresentedinWCAP-7588.UNIT114.2.6-5July1997 AveraeCoreAnalsisThespatialkineticscomputercode,TWINKLE,isusedfortheaveragecoretransientanalysis.Thiscodesolvesthetwogroupneutrondiffusiontheorykineticequationinone,twoorthreespatialdimensions(rectangularcoordinates)forsixdelayedneutrongroupsandupto2000spatialpoints.Thecomputercodeincludesadetailedmulti-region,transientfuel-clad-coolantheattransfermodelforcalculationofpointwiseDopplerandmoderatorfeedbackeffects.Inthisanalysis,thecodeisusedasaonedimensionalaxialeffectscodesinceitallowsamorerealisticrepresentationofthespatialkineticsofaxialmoderatorfeedbackandRCCAmovement.However,sincetheradialdimensionismissing,itisstillnecessarytoemployveryconservativemethods(describedbelow)ofcalculatingtheejectedrodworthandhotchannelfactor.Further'descriptionofTWINKLEappearsinSection14.1.HotSotAnalsisInthehotspotanalysi,s,theinitialheatfluxisequaltothenominaltimesthedesignhotchannelfactor.Duringthetransient,theheatfluxhotchannelfactorislinearlyincreasedtothetransientvaluein0.1second,thetimeforfullejectionoftheRCCA.Therefore,theassumptionismadethatthehotspotbeforeandafterejectionarecoincident.ThisisveryconservativesincethepeakaftezejectionwilloccurinoradjacenttothefuelassemblywiththeejectedRCCA,andpriortoejectionthepowerinthisregionwillnecessarily'edepressed.Thehotspotanalysisisperformedusingthedetailedfuelandcladtransientheattrans'fercomputercode,FACTRAN.ThiscomputercodecalculatesthetransienttemperaturedistributioninacrosssectionofametalcladU02fuelrod,andtheheatfluxatthesurfaceoftherod,usingas'nputthenuclearpowerversustimeandthelocalcoolantconditions.Thezirconium-waterreactionisexplicitlyrepresented,andallmaterialpropertiesarerepresentedasfunctionsoftemperature.Aconservativeradialpowerdistributionisusedwithinthefuelrod.UNIT114.2.6-6July1990 ~significantdecreaseintheRCStemperaturebelownoloadbythistime,andthedepressurizationitselfhascausedanincreaseinshutdownmarginbyabout0.2<hk/kduetothepressurecoefficient.Thecooldowntransientcouldnotabsorbtheavailableshutdownmarginuntilmorethan10minutesafterthebreak.Theadditionofboratedsafetyinjectionflow(suppliedfromtheRWST)starting'oneminuteafterthebreakismuchmorethansufficienttoensurethatthecoreremainssubcriticalduringthecooldown.~ReuleTable14.2.6-1summarizestheresults.Casesarepresentedforbothbeginningandendoflife,atzeroandfullpower.A.BeginningofCycle,FullPowerControlBankDwasassumedtobeinsertedtoitsinsertionlimit.TheworstejectedRCCAworthandhotchannelfactorwereconservativelycalculatedtobe0.15%hk/kand6.8respectively.Thepeakcladaverage0temperaturewas2299F.Th'epeakspotfuelcentertemperaturereachedmelting,conservativelyassumedat4900F.However,meltingwas0restrictedtolessthan10%ofthepellet.B.BeginningofCycle,ZeroPowerForthiscondition,ControlBankDwasassumedtobefullyinsertedandbanksBandCwereattheirinsertion'limits.TheworstejectedrodislocatedinControlBankDandhasaworthof0.65%dk/kandahotchannelfactorof12.0.Thepeakcladaveragetemperaturereached2130F,the0fuelcentertemperaturewas3120F.0UNlT'14.2.6-11July1997 C.EndofCycle,FullPowerControlBankDwasassumedtobeinsertedtoitsinsertionlimit.Theejectedrodworthandhotchannelfactorswereconservativelycalculatedtobe0.19%hk/kand7.1respectively.Thisresultedinapeakclad0averagetemperatureof2245F.Thepeakhotspotfuelcentertemperature0reachedmeltingat4800F.However,meltingwasrestrictedtolessthan10>ofthepellet.EndofCycle,ZeroPowerTheejectedrodworthandhotchannelfactorforthiscasewasobtainedassumingControlBankDtobefullyinsertedandbanksBandCattheirinsertionlimits.Theresultswere0.75%hk/kand19.0respectively.Thepeakcladaverageandfuelcentertemperatureswere2322Fand003258F.TheDopplerweightingfactorforthiscaseissignificantlyhigherthanforothercasesduetotheverylargetransienthotchannelfactor.Forallthecasesanalyzed,averagefuelpelletenthalpyatthehotspotremainsbelow200cal/gm.Thenuclearpowerandhotspotfuelandcladtemperaturetransientsfortwocases(endoflifezeropowerandendoflifefullpower)arepresentedinFigures14.2.6-1through14.2.6-4.TheejectionofanRCCAconstitutesabreakintheRCS,locatedinthereactorpressurevesselhead.Theeffectsandconsequencesoflossofcoolantaccidents(LOCA)arediscussedinSection14.3.1and14.3.2.FollowingtheRCCAejection,theoperatorwouldfollowthesameemergencyinstructionsasforanyotherLOCAtorecoverfromtheevent.UNIT114.2.6-12July1997 REFERENCESETION14.2.61.Burnett,T.W.T.,"ReactorProtectionSystemDiversityinWestinghousepressurizedWaterReactor",~WCAP-706,April1969.2.Taxelius,T.G.,ed."AnnualReport-Spertproject,October1968september1969,"IdahoNuclearCorporation7~ID-400,June1970.3.I,iimatainen,R.C.andTesta,F.J.,"StudiesinTREATofZircaloy-2-Clad,UO-CoreSimulatedFuelElements,"ArgonneNationalLaboratoryChemicalEngineeringDivisionSemi-AnnualReport,~AND-722,January-June1966.Risher,D.H.,"AnEvaluationoftheRodEjectionAccidentin4WestinghousePWR'sUsingSpatialKineticsMethods,"WCAP-7588,Revision1A.5.Bishop,A.A.,Sandberg,R.O.,andTong,L.S.,"ForcedconvectionHeatTransferatHighPressureAftertheCriticalHeatFlux,"ASME65-HT-31,August1965.UNIT114.2,5-15July1997 TABLE14.2.6-1PARAMETERSUEDINTHEANALYSIOFTHERODCLUSTERCNTROLASEMBLYEJETIONACCIDENTTimeinLifeHZPBeceinningHFP~BinninHZPEndHFPEndPowerLevel('.)EjectedRodWorth(Mk)0.651020.150.751020.19DelayedNeutronFr'action(~)FeedbackReactivityWeighting0.00502.0710.00501.300.00400.00402.7551.30TripReactivity(~5k)2.FBefore.RodEjectionqFAfterRodEjectionqNumberofOperationalPumps2.5012.2.506.82.5019.2.507.12.'MaximumFuelPelletAverage27640Temperature(F)405629633969MaximumFuelCenteroTemperature(F)MaximumCladAverage0Temperature<F)3120213022993258232248722245MaximumFuelStoredEnergy(cal/gm)112.7177.3122.2172,7FuelMeltinHotPellet,00(10(10UNIT114.2.5-16July1997 \, I.OE+21.0E+108'40.05a.I.OE-I'0XI.OE-202,%me(s]DONALDC.COOKNUCXZmPr.avr.UNIT1HGURE14.2.6-lNacleatPowervs.TimeForTbeRodEjectionEvent,HotZeroPower,EndOfLife.JULY1997 3000Ul000FuelCenterlineFuelAverageCladOuterSurfaceTime(s]10DONhLDC.COOKNUCLKQtELhNTUNIT1HGURE14.2.6-2FuelCetttedirte,FuelAverage,andCladOuterSurfaceTemPeraturevs.TimeForTheRodEjectiooEvettt,HotZeroPower,EndOfLifeJULY1997 3.0o2.0851.5I1.0I~0.SZ0.002Time(s]DONhLDC.COOKNUCmu~rr.mrUNIT1FIGURE14.2.6-3NuclearPoorervs.TimeForTbeRodEjectionEvent.HotFullPo~,EndOfLifeJULY199t u.-5000Oe4000FuelCenterlineFuelAverage2000l000CladOuterSurface%ne[s)10DONALDC.COOKNUCLEARELANTUNH'1HGURE14,2.6-4FuelCenterline,FuelAverage,andCladOuterSurfaceTempaatttrevs;TimeForTbeRodEjectionEvent,HotFullPower,EndOfLifeJULY1997 TABLE14.2.7-3STEAMGENERATORTUBERUPRESTEAMRELEAESteamreleasefromdefectivesteamgenerat'or56,525lbs(0-30min)Steamreleasefrom3non-defectivesteamgenerators413,000lbs(0-2hr)978,'000lbs(2-8hr)Feedwaterflowto3non-defectivesteamgenerators613,000lbs(0-2hr)1,074,000lbs(2-8hr)Reactorcoolantreleasedtothedefectivesteamgenerator140,264lbs(0-30min)4,UNlT114.2.7-11July1997 14.2.8MAJORRUPTUREOFAMAINFEEDWATERPIPEThiseventisnotpartoftheUnit1licensebasis.Formerly,aninformationalpurposeonlyanalysissummaryofthiseventhadbeenincludedinUnit1Section14.2.8.Asdocumentedinreferences1and2,anevaluationwasperformedwhichconcludedthat'theresultspresetnedinUnit2Section14.2.8oftheUFSARboundUnit1.ThisevaluationisbasedonthechangestotheUnit1steamline"breakprotectionlogicwhichmadeitidenticaltothatinstalledinUnit2.Thisconclusionisrecognizedinreference3.~Refrnes11.WCAP-14285,DonaldC.CookNuclearPlantUnit1,SteamGeneratorTubePluggingProgramLicensingReport,May1995.2.LetterAEP:NRC:1207,DonaldC.CookNuclearPlantUnitsan'd2LicenseNos.DPR-58andDPR-74ProposedTechnicalSpecificationChangesSupportedbyAnalysestoIncreaseUnit1SteamGeneratorTubePluggingLimitandCertainProposedChangesforUnit2SupportedbyRelatedAnalyses,E.E.FitzpatricktoUSNRCDocumentDesk,May26,1995.'.AmendmentNo.214toFacilityOperatingLicenseNo.DPR-58,March13,1997.UNIT114.2.8-1July1997 14.3.1LARGEBREAKLOCAANALYSISInificationofaussandFreenc1ssificaionAloss-of-coolantaccident(LOCA)istheresultofapiperuptureoftheRCSpressureboundary.Fortheanalysesreportedhere,amajorpipebreak(largebreak)isdefinedasarupturewithatotalcross-sectionalarea2equaltoorgreaterthan1.0ft.ThiseventisconsideredanANSConditionIVevent,alimitingfault,inthatitisnotexpectedtooccurduringthelifetimeofCookNuclearPlantUnit1,butispostulatedasaconservativedesignbasis.TheAcceptanceCriteriafortheLOCAaredescribedin10CFR50.46(10CFR50.46andAppendixKof10CFR50,1974)asfollows:(1)1.Thecalculatedpeakfuelelementcladtemperatureisbelowtherequirementof2200F.02.Theamountoffuelelementcladdingthatreactschemicallywithwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.3.Thelocalizedcladdingoxidationlimitof17percentisnotexceededduringorafterquenching.4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperatureisreduced'nddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-livedradioactivityremaininginthecore.Thesecriteriawereestablishedtoprovideasignificantmargininemergencycorecoolingsystem(ECCS)performancefollowingaLOCA.WASH-1400(USNRC1975)presentsastudyinregardstotheprobabilityofoccurrenceofRCS(2)piperuptures.UNIT114.3.1-1July,1997 SeuenfEventsandSstmsOratinsShouldamajorbreakoccur,depressurizationoftheRCSresultsinapressuredecreaseinthepressurizer.Thereactortripsignalsubsequentlyoccurswhenthepressurizerlowpressuretripsetpointisreached.Asafetyinjectionsignalisgeneratedwhentheappropriatesetpointisreached.Thesecountermeasureswilllimittheconsequencesoftheaccidentintwoways:1.Reactortripandboratedwaterinjectionsupplementvoidformationincausingrapidreductionofpowertoaresiduallevelcorrespondingtofissionproductdecayheat.NocreditistakenintheLOCAanalysisfortheboroncontentoftheinjectionwater.However,anaverageRCS/sumpmixedboronconcentrationiscalculatedtoensurethatthecoreremainssubcritical.Inaddition,,theinsetionofcontrolrodstoshutdownthereactorisneglectedinthelargebreakanalysis.IInjectionofboratedwaterprovidesforheattransfefomthecoreandpreventsexcessivecladtemperatures.InthepresentWestinghousedesign,thelargebreaksingleallureisthelossofoneRHR(lowhead)pump.Thismeansthatcreditcouldbetakenfortwohighheadchargingpumps,twosafetyinjectionpumps,andonelowheadpump.ThefollowingisadiscussionofthemodelingprocedurefortheminimumsafeguardsandtheflowspillingfromabreakofanECCsbranchinjectionline(i.e.."hespillinglineassumptions).ThecurrentprocedureforlargebreakanalysesassumestharatleastonetrainofECCSisavailablefordeliveryofwatertotheRCS.AlthoughthesinglefailureisanRHRpump,onlyonepumpineachsubsystemisassumedtodelivertotheprimaryloops.However,bothemergencydieselgenerators(EDGs)areassumedtostartinthemodelingofthecontainmentdeckfansandsprays.Modelingfullcontainmentheatremovalsystemsoperationis.requiredbyBranchTechnicalPositionCSB6-1andisconservativeforthelargebreakLOCA.Thehighheadchargingpumpstartsanddeliversflowthroughtheinjectionlines(oneperloop)withonebranchinjectionlinespillingtothecontainmentbackpressure.Tominimizedeliverytothereactor,thebranchlinechosentospillisselectedas"honewiththeminimumresistance..Whenonesafetyinjectionpumpand"nelowheadUNIT114.3.1-2July,1997 residualheatremovalpumpstart,flowisdeliveredtothereactorcoolantsystemthroughtheaccumulatorinjectionlines.Again,oneline,withtheminimumresistance,isassumedtospilltocontainmentbackpressure.Inaddition,thesafetyinjectionpumpandowheadresidualheatremovalpump1performancecurvesweredegradedby15%.Forthehighheadchargingpumps,theperformancecurvesweredegradedby10%anda25gpmflowimbalancewasassumed.Therefore,inthelargebreakECCSanalysisperformedbyWestinghouse,singlefailureisconservativelyaccountedforviathelossofanECCStrain,andthespillingoftheminimumresistanceinjectionlinedespitefullcontainmentactiveheatremovalsystemoperation(i.e.,twoEDGs)ThetimesequenceofeventsfollowingalargebreakLOCAispresentedinTable14.3.1-1.Beforethebreakoccurs,theunitisinanequilibriumcondition;thatis,theheatgeneratedinthecoreisbeingremovedviathesecondarysystem.Duringblowdown,heatfromfissionproductdecay,hotinternalsandthevessel,continuestobetransferredtothereactorcoolant.Atthebeginningoftheblowdownphase,theentireRCScontainssubcooledliquidwhichtransfersheatfromthecorebyforcedconvectionwithsomefullydevelopednucleateboiling.Afterthebreakdevelops,thetimetodeparturefromnucleateboilingiscalculated,consistentwithAppendixKof10CFR50'".Thereafter,thecoreheattransferisunstable,withbothnucleateboilingandfilmboilingoc"urring.Asthecorebecomesuncovered,bothturbulentandlaminarforcedconvectionandradiationareconsideredascoreheattransfermechanisms.TheheattransferbetweentheRCSandthesecondarysystemmaybeineithertdirection,dependingontherelativetemperatures.Inthecaseofcontinuedheatadditiontothesecondarysystem,thesecondarysystempressureincreasesandthemainsteamsafetyvalvesmayactuatetolimitthepressure.Makeupwatertothesecondarysideisautomaticallyprovidedbytheauxiliaryfeedwatersystem.Thesafetyinjectionsignala"tuatesafeedwaterisolationsignalwhichisolatesnormalfeedwaterflowbyclosingthemainfeedwaterisolationvalves,andalsoinitiatesemergencyfeedwaterflowbystart'ngtheauxiliaryfeedwaterpumps.ThesecondaryflowaidsinthereductionofRCSpressure.UNIT114.3.1-3July,1997 WhentheRCSdepressurizesto600psia,theaccumulatorsbegintoinjectboratedwaterintothereactorcoolantloops.Theconservativeassumptionismadethataccumulatorwaterinjectedbypassesthecoreandgoesoutthroughthebreakuntiltheterminationofbypass.ThisconservatismisagainconsistentwithAppendixKof10CFR50.Sincelossofoffsitepower(LOOP)isassumed,theRCPsareassumedtotripattheinceptionoftheaccident.Theeffectsofpumpcoastdownareincludedintheblowdownanalysis.TheblowdownphaseofthetransientendswhentheRCSpressure(valueswithuncertaintyassumedtobe2317psiaor2033psia)fallstoavalueapproachingthatofthecontainmentatmosphere.Priortoorattheendoftheblowdown,themechanismsthatareresponsiblefortheemergencycorecoolingwaterbypassingthecorearecalculatednottobeeffective.Atthistime(calledend-of-bypass)refillofthereactorvessellowerplenumbegins.Refilliscompletedwhenemergencycorecoolingwaterhasfilledthelowerplenumofthereactorvessel,whichisboundedbythebottomofthefuelrods(calledbottomofcorerecoverytime)Therefloodphaseofthetransientisdefinedasthetimeperiodlastingfromtheend-of-refilluntilthereactorvesselhasbeenfilledwithwatertotheextentthatthecoretemperaturerisehasbeenterminated.Fromthelatterstageofblowdownandthenthe,beginning-of-reflood,thesafetyinjectionaccumulatortanksrapidlydischargeboratedcoolingwaterintotheRCS,contributingtothefillingofthereactorvesseldowncomer.Thedowncomerwaterelevationheadprovidesthedrivingforcerequiredfortherefloodingofthereactorcore.Thelowheadandhighheadsafetyinjectionpumpsaidinthefillingofthedowncomerandsubsequentlysupplywatertomaintainafulldowncomerandcompletetherefloodingprocess.ContinuedoperationoftheECCSpumpssupplieswaterduringlong-termcooling.Coretemperatureshavebeenreducedtolong-termsteadystatelevelsassociatedwiththedissipationofresidualheatgeneration.Afterthewaterleveloftherefuelingwaterstoragetank(RWST)reachesaminimumallowablevalue,coolantforlong-termcoolingofthecoreisobtainedbyswitchingtothecoldrecirculationphaseof,operationinwhichspilledboratedwaterisdrawnfromtheengineeredsafetyfeatures(ESF)containmentsumpsbythelowheadsafetyinjection(residualheatremoval)pumpsandUNIT114.3.1-4July,1997 returnedtotheRCScoldlegs.Thecontainmentspraysystemcontinuestooperatetofurtherreducecontainmentpressure.Approximately12hoursaftertheinitiation'oftheLOCA,theECCSisrealignedtosupplywatertotheRCShotlegsinordertocontroltheboricacidconcentrationinthereactorvessel.Long-termcoolingincludeslong-termcriticalitycontrol.CriticalitycontrolisachievedbydeterminingtheRWSTandaccumulatorconcentrationnecessarytomaintainsubcriticalitywithoutcreditforRCCAinsertion.ThenecessaryRWSTandaccumulatorconcentrationisafunctionofeachcoredesignandischeckedeachcycle.ThecurrentTechnicalSpecificationvalueis2400ppmto2600rpmboron.(3)Anevaluationhasbeenperformedtodeterminetheeffectofa3minuteSZinterruptionduringtheswitchovertosumprecirculationontheLBLOCAanalysis.ThisscenariocouldoccuriftheRHRpumpwhichwasfirstswitchedovertorecirculationfailsatthetimetheotherRHRpumpisIsecuredforswitchover.UsingaconservativelyshortestimateoftheRWSTdraindowntimeandaboundingscenariofortheavailabilityofpumpedinjection,itwasshown(Reference21)thattheshort-termpeakcladtemperatureresultsarenotchallengedbyathreeminutein"erruptionofallECCSflow.randSstemPerfrmanceMathematicalModel:TherequirementsofanacceptableECCSevaluationmodelarepresentedinAppendixKof10CFR50(FederalRegister1974)(1)LargeBreakLOCAEvaluationModelTheanalysisofalargebreakLOCAtransientisdividedintothreephases:(1)blowdown,(2)refill,and(3)reflood.Therearethreedistincttransientsanalyzedineachphase,includingthethermal-hydraulictransientintheRCS,thepressureandtemperaturetransientwithinthecontainment,andthe-fuelandcladtemperaturetransientofthehottestfuelrodintheUnit114.3.1-5July1997 core.Basedontheseconsiderations,asystemofinterrelatedcomputercodeshasbeendevelopedfortheanalysisoftheLOCA.AdescriptionofthevariousaspectsoftheLOCAanalysismethodologyis(4)givenbyBordelon,Massie,andZordan'(1974).Thisdocumentdescribesthemajorphenomenamodeled,theinterfacesamongthecomputercodes,andthefeaturesofthecodeswhichensurecompliancewiththeAcceptanceCriteria.TheSATAN-VI,WREFLOOD,BASHandLOCBARTcodes,whichareusedintheLOCAanalysis,aredescribedindetailbyBordelonetal.(1974)Kellyetal.(1974);Youngetal.(1987);andBordelonetal.(6)(7)(4)(1974).CodemodificationsarespecifiedinReferences8,9,10and11.ItisnotedthattheWREFLOODcode,whichwaspreviouslyusedtocalculatetheRCSbehaviorduringvessellowerplenumrefill,hasbeenreplacedbytheREFILLcodeasreportedinReference18.TheREFILLcodeisidenticaltothesectionoftheWREFLOODcodethatmodeledtherefillphase.t.Thesecodesassessthecoreheattransfergeometryanddetermineifthe'oreremainsamenabletocoolingthroughoutandsubsequenttotheblowdown,UNIT114.3.1-5aJuly,1997 refill,andrefloodphasesoftheLOCA.TheSATAN-VIcomputercodeanalyzesthethermal-hydraulictransientintheRCSduringblowdownandtheREFILLcomputercodecalculatesthistransientduringtherefillphaseoftheaccident.TheBASHcodeisusedtodeterminethesystemresponseduringtherefloodphaseofthetransient.TheLOTICcomputercode,describedbyHsiehandRaymundinWCAP-8355(1975)andWCAP-8345(1974),calculatesthe(12)containmentpressuretransient.Thecontainmentpressuretransientisinput.toBASHforthepurposeofcalculatingtherefloodtransient.TheLOCBARTcomputercodecalculatesthethermaltransientofthehottestfuelrodinthethreephases.TheRevisedPADFuelThermalSafetyModel,describedinReferences13,generatestheinitialfuelrodconditionsinputtoLOCBART.SATAN-VIcalculatestheRCSpressure,enthalpy,density,andthemass'andenergyflowratesintheRCS,aswellassteamgeneratorenergytransferbetweentheprimaryandsecondarysystemsasafunctionoftimeduringtheblowdownphaseoftheLOCA.SATAN-VIalso'alculatestheaccumulatorwatermassandinternalpressureandthepipebreakmassandenergyflowratesthatareassumedtobeventedtothecontainmentduringblowdown.Atthe"endoftheblowdown,informationonthestateofthesystemistransferredtotheREFILLcodewhichperformsthecalculationoftherefillperiodtobottomofcore(BOC)recoverytime.Oncethevesselhasrefilledtothebottomofthecore,therefloodportionofthetransientbegins.TheBASHcodeisusedtocalculatethethermal-hydraulicsimulationoftheRCSfortherefloodphase.InformationconcerningthecoreboundaryconditionsistakenfromalloftheabovecodesandinputtotheLOCBARTcodeforthepurposeofcalculatingthecorefuelrodthermalresponsefortheentiretransient.Fromtheboundaryconditions,LOCBARTcomputesthefluidconditionsandheattransfercoefficientforthefulllengthofthefuelrodbyemployingmechanisticmodelsappropriatedtotheactualflowandheattransferregimes.Conservativeassumptionsensurethatthefuelrodsmodeledinthecalculationrepresentthehottestrodsintheentirecore.ThelargebreakanalysiswasperformedwiththeDecember1981versionoftheEvaluationModelmodifiedtoincorporatetheBASHcomputercode.(7)UNIT114.3.1-6July,1997 InputParametersandInitialConditions:TheanalysispresentedinthissectionwasperformedwithareactorvesselupperheadtemperatureequaltotheRCShotlegtemperatureandauniformsteamgeneratortubeplugginglevelof30%'.TheanalysisisalsobasedonplantoperationwiththeRHRcross-tievalvesclosed,andadieselgeneratorstarttimeof30secondswhichresultsinasafetyinjectindelaytimeof47seconds.AlistofplantinputparametersusedinthelargebreakLOCAanalysisisprovidedinTable14.3.1-2.Arangeofreactoroperatingtemperatureswereanalyzedinordertojustifyplantoperationatareactorpowerlevelof3250MWtbetween609.1Fto000586.8Finthehotlegsand543.5Fand519.2Finthecoldlegs.Inadditiontothetemperaturerangeanalyzed,initialRCSpressurewasalsovariedtojustifyplantoperationat2250and2100psia.AfullspectrumbreakanalysiswasdoneatthenominalRCSconditions(initialRCSpressureof2250psiaandinitialhotlegtemperatureof609.1F)fromwhichthelimitingbreaksizewasdetermined.Thelimitingbreakwasthenreanalyzedatthereducedhotlegtemperatureof586.8FandnominalRCSpressureof2250psia.Thelimitingbreakwasalsoreanalyzedatthenominalhotlegtemperatureof609.1FandRCS;'pressureof2100psia.Table14.3.1-1identifiesthecasesanalyzed.Thebasesusedtoselectthenumericalvaluesthatareinputparameterstotheanalysishavebeenconservativelydeterminedfromextensivesensitivitystudies(Westinghouse1974;Salvatori1974;Johnson,Massie,and(14)(15)(16)Thompson1975.Inaddition,therequirementsofAppendixKregardingspecificmodelfeaturesweremetbyselectingmodelswhichprovideasignificantoverallconservatismintheanalysis.Theassumptionswhichweremade'ertaintotheconditionsofthereactorandassociatedsafetysystemequipment,atthetimethattheLOCAoccurs,andincludesuchitemsasthecorepeakingfactors,thecontainmentpressure,andtheperformanceoftheECCS.Decayheatgeneratedthroughoutthetransientisalsoconservativelycalculated.UNIT114.3.1-7July,1997 AnotherinputparameterthataffectsLOCAanalysisresultsistheassumedaxialpowershapeatthebeginningoftheaccident.LargebreakLOCAanalyseshavebeentraditionallyperformedusingasymmetric,choppedcosineaxialpowershape.Recentcalculationshaveshownthattherewasapotentialfortop';skewedpowerdistributionstoresultinpeakcladdingtemperatures(PCT)greaterthanthosecalculatedwithachoppedcosineaxialpowerdistribution.Westinghousepreviouslydevelopedaprocess,calledthepowershapesensitivitymodel(PSSM),thatreasonablyensuredthatthecosineremainsthelimitingpowerdistributionbydefiningappropriatepowerdistributionsurveillancedata.ThePSSMprocesswasappliedfortheCycle13and14reloadsforCookNuclearPlantUnit1.However,PSSMwassubsequentlyreplacedbyanalternate'axialpowershapemethodologydesignatedESHAPE,whichisbasedonexplicitanalysisofasetofskewedaxialpowershapes.TheexplicituseofskewedpowershapeshaspreviouslybeenapprovedbytheNRCaspartoftheWestinghouseLargeBreakLOCANEvaluationModel.TheESHAPEmethodologywasutilizedforthe.Cycle15Ireload,andhasalsobeenappliedforthisanalysisforCycle16;TheapplicationoftheESHAPEmethodologydemonstratedthatthecosineaxialpowershpaeusedforthecurrentlargebreakLOCAanalysisismorelimitingthanpotentialtop-skewedpowershapes.TheESHAPEmethodologyhasbeenimplement'edinthereloaddesignprocesstoensurethattop-skewedaxialpowerdistributionsthatarepotentiallymorelimitingthanthepowerdistributionusedintheECCSanalysisareprecludedforfuturecycles.AmeetingwasheldattheWestinghouseLicensingOfficeinBethesdaonDecember17,1981,betweenmembersoftheU.S.NuclearRegulatoryCommissionandmembersoftheWestinghouseNuclearSafetyDepartmenttodiscusstheimpactofmaximumsafetyinjec"iononthelargebreakECCShanalysisonagenericbasis.Furtherdiscussionofthisissue.isprovidedinaletterfromE.P.Rahe,ManagerofWestinghouseNuclearSafetyDepartment,to-'RobertL.TedescooftheU.S.NuclearRegulatory(17)Commission.Abriefdescriptionofthisissueisgivenbelow.WestinghouseECCSanalysescurrentlyassumeminimumsafeguardsforthesafetyinjectionflow,whichminimizestheamountofflowtotheRCSbyassumingmaximuminjectionlineresistances,degradedECCSpumpperformance,andthelossofoneresidualheatremoval(RHR)pumpasthemostlimitingsinglefailure.ThisisconservativelymodeledasalossofonetrainofUNET'14.3.1-9July,1997 safetyinjection,includingRHRpump,safetyinjectionpumpandcentrifuge'hargingpump.Bothcontainmentspraypumpsareassumedoperable.Thisisthelimitingsingle,failureassumptionwhenoffsitepowerisunavailableformostWestinghouseplants.However,forsomeWestinghouseplants,theicurrentnatureoftheAppendixKECCQevaluationmodelsissuchthatitmaybemorelimitingtoassumethemaximumpossibleECCSflowdelivery.Inthatcase,maximumsafeguardswhichassumeminimuminjectionlineresistances,enhancedECCSpumpperformance,andnosinglefailure,resultinthehighestamountofflowdeliveredtotheRCS.UNIT114.3.1-8aJuly,1997 TheworstbreakforCookUnit1(CASEF)wasreanalyzed,assumingmaximumsafeguards.TheresultsofthelargebreakLOCAanalysesaregiveninTable14.3.1-1.Results:BasedontheresultsoftheLOCAsensitivitystudies(Westinghouse1974(14)Salvatori1974;Johnson,Massie,andThompson1975)thelimiting(15)(16)largebreakwasfoundtobethedouble-endedcoldlegguillotine(DECLG)Therefore,onlytheDECLGbreak.isconsideredinthelargebreakECCSperformanceanalysis.CalculationswereperformedforarangeofMoodybreakdischargecoefficients.TheresultsofthesecalculationsaresummarizedinTable14.3.1-1.ThecontainmentdatausedtogeneratetheLQTIcbackpressuretransientareIshowninTable14.3.1-3.ThemassandenergyreleasedatausedforthelimitingminimumsafeguardscaseareshowninTable14.3.1-4.NitrogenreleaseratestothecontainmentaregiveninTable14.3.1-5.Figures14.3.1-1athrough14.3.1-19presenttheresultsofthecasesanalyzedforthelargebreakLOCA.ThealphadesignationinthefigurenumbercorrespondstothecasesasdescribedinTable14.3.1-1.Fiurs14.1la-fThesystempressureshownisthecalculatedcorepressure.Fiures14..1.2-fTheflowratefromthebreakisplottedasthesumofbothendsoftheguillotinebreak.Fires14a-fThecorepressuredropshownisfromthelowerplenum,nearthecore,totheupperplenumatthecoreoutlet.UNIT114.3.1-9July,1997 Fiures14..1.4a-fThecoreflowisshownduringtheblowdwnphaseof=hetransient.Fir14..1.5a-fTheaccumulatorflowduringblowdownisplottedasthesumofthatinjectedintotheintactcoldlegs.Fiures14.3.1.6a-fThecoreanddowncomercollapsedliquidwaterlevel,andthe,corequenchfrontareplottedduringtherefloodphaseofthetransient.Fiures14.3.1.7a-fThecoreinletflowisshownasitiscalculatedduringtherefloodphase.Fiurs14.1-fThetotalaccumulatorandpumpedECCSflowinjectedintotheintactcoldlegsduringrefloodisshown.Firs14..1.-fTheintegralofthecoreinletflowascalculatedwithBASHisplotted.Fir143.1.10a-fThemassfluxisplottedatthehotspot(thenodewhichproducedthepeakcladtemperature)onthehotrod.Fires14.3.1.11a-fTheheattransfercoefficientisplottedatthehotspotonthehotrod.Firs14.1.12a-iThevaportemperatueatthehotspotonthehotrodisplotted.Fires141.1a-Thecladtemperatureatthehotspotisshownforthehotrod.JNIT114.3.1-10July1997 Fiure14..1.14ThecontainmentpressuretransientusedintheanalysisisprovidedfortheminimumSIcase.Fiures14.1.1-1Thesefi'guresshowtheheatremovalratesoftheheatsinksfoundintheloweranduppercompartmentandtheheatremovalbythesumpandlowercompartmentspray.Fiur14..11Thisfigureshowsthetemperaturetransientsinboththeloweranduppercompartmentsofcontainment.Themaximumcladtemperaturecalculatedf'or'alargebreakis2164F,which0islessthantheAcceptanceCriterialimitof2200F.Themaximumlocal0metal-waterreactionis14.30percent,whichiswellbelowtheembrittlement(limitof17percentasrequiredby10CFR50.46.Thetotalcoremetal-waterreactionforallbreaksislessthanthe1percentcriterionof10CFR50.46.Thecladtemperaturetransientisterminatedatatimewhenthecoregeometryisstillamenabletocooling.Asaresult,thecoretemperaturewillcontinuetodropandtheabilitytoremovedecayheatgeneratedinthefuelforanextendedperiodoftimewillbeprovided.10CFR50.46(a)(3)requirestherecordkeepingandreportingofchangesinLOCAevaluationmodelsandofchangesintheapplicationofthesemodels.References19and20reportthe,followingpermanaentchangesthatapplytoCookNuclearPlantUnit1:1.DuringmigrationoftheLOCAcodesfromtheCraycomputertoUnix-basedplatforms,programmingerrorsweremadeintwolibraryroutinesrelatedtoimproperspecificationofdoubleprecisionvariables(Reference19).Thisresultedina5'FbenefitappliedtothepeakcladdingtemperatureforCase,E.2.Anerrorwasdiscoveredinthecodingrelatedtothetransloationoffluid-conditionsbetweentheSATANblowdownhydraulicscodeandtheLOCTAcodeusedforsubchannelanalysisofthefuelrods(Reference20).Thisresultedina15'FpenaltyappliedtothepeakcladdingtemperatureforCaseE.UNIT1)43.1-11July,1997 3.AnerrorwasdiscoveredintheLOCBARTcoderelatedoimpopemodelingoffuelrodcladdingcreepandburst(Reference20)resultedinp9'FbenefitappliedtothepeakcladdingtemperatureCaseE.TabulationsoftheassessmentsagainstpeakcladdingtemperatureduetothesechangesforthelimitingCaseEareshowninTable14.3.1-1.case,thepeakcladdingtemperatureresultremainslessthan2200'F.14.3.1-11aJuly,1997 NCSSECTIO4.3.11."AcceptanceCriteriaforEmergencyCore.CoolingSystemforLightWatezCooledNuclearPowerReactors,"10CFR50.46andAppendixRof10CFR50,deaeste97,Volume39,Number3.2.U.S.NuclearRegulatoryCommission1975,"ReactorSafety,Study-AnAssessmentoiAccidentRisksinU.A.CommercialNuclearPowerPlants,WASH-1400,NUREQ-75/014.3-Att;achment13tolettez,MP.Alexich<IMECo,toH.R.Denton,NRC,March26,1987,AEP:NRC!0916W.74.Boz'delonF.M.Massie,H.W.;andZordan,T.A."WestinghouseECCSEvaluat:ionModel-Summary,".WCAP-8339,1974.5.Bordelon,F.M-et5~<~etal.<SATAN-WProgram:ComprehensiveSpace,eTimeeimeDependentAnalysisofLoss-of-Coolant,"WCAP-8302(Proprietary)andWCAP-8306(Non-Proprietary)>19746.Relly,R.D.etal.,"CalculationModel,forCoreRefloodingAftezaLoss-of~lantAccident(WREFLOODCode),WCAP-8170(Proprietary)andWCAP-8171(Non-proprietary),1974.7.Young,M.Y.etal,The1981VersionoftheWestinghouseECCSEvaluationModelUsingtheBASHCode,"WCAP-10266-P-ARevision2(Proprietary)c1987~8.Rahe,E.Pe(Westinghouse),lettertoJ.R.Miller(USNRC)gLetterNo..NS-EPRS-2679,November1982.9.Rahe,E.P.,"WestinghouseECCSEvaluationModel,1981Version,"WCAP-9920-P-A(ProprietaryVersion),WCAP-9221-P-A(Non-Proprietaryversion),Revision1,1981.UNIT14.3'-12July,1993 REFERENCEECTIN14.3.1on'd10.Bordelon,F.M.,etal.,"WestinghousECCSEvaluationModelSupplementaryInformation,"WCAP-8471(Proprietary)andWCAP-8472(Non-proprietary),1975.11.Thomas,C.O.,(NRC),"AcceptanceforReferencingofLicensingTopicalReportWCAP-10484(P)/10485(NP),'SpacerGridHeatTransferEffectsDuringReflood,'"LettertoE.P.Rahe(Westinghouse),June21,1984.12.Hsieh,T.,andRaymund,M.,"Long-TermIceCondenserContainmentLOTICCodeSupplement1,"WCAP-8355,Supplement1,May1975,WCAP-8345(Proprietary),July1974.13."WestinghouseRevisedPADCodeThermalSafetyModel,"WCAP-8720,Addendum2(Proprietary)andWCAP-'8785(Non-proprietary).14."WestinghouseECCS-EvaluationModelSensitivityStudies,"WCAP-8341(Proprietary)andWCAP-8342(Non-proprietary),1974.15.Salvatori,R.,"WestinghouseECCS-PlantSensitivityStudies,"WCAP-8340(Proprietary)andWCAP-8356(Non-proprietary),1974.16.Johnson,W.J.;Massie,H.W.;andThompson,C.M."WestinghouseECCSFourLoopPlant(17x17)SensitivityStudies,"WCAP-8565-P-A(Proprietary)andWCAP-8566-A(Non-proprietary),1975.'7.Rahe,E.P.(Westinghouse).LettertoRobertL.Tedesco(USNRC),LetterNo.NS-EPR-2538,December1981.18.Liparulo,N.J.(Westinghouse),lettertoW.T.Russel(USNRC),LetterNo.NTD-NRC-94-4143,May23,1994.19.Fitzpatrick,E.E.(I&M)lettertoNRCDocumentControlDesk,March22,1996,AEP:NRC:1118K.20.Fitzpatrick,E.E.(I&M)lettertoNRCDocumentControlDesk,April,101997,AEP:NRC:1118L.21.AEP-97-004/NSD-SAE-ESI-97-020;"AmericanElectricPower,DonaldC.CookNuclearPlantUnits1and2;LBLOCAEvaluationfor3MinuteSIInterruption;January17,1997(WestinghouseLettertoAmericanElectricPower).UNIT114.3.1-13July1997 TABLE14.3.1-1LARGEBREAKLOC~RESULTSPeakCladTemperature(F)ComputedinAnalysisModelAssessmentsCaseAC~=0.4T~(yg6091FP2250psiaMin.SI20692069CaseBCp~0.6Tg~"-609.1FP=2250psiaMin.SI19931993CaseCC~~0.8Tg~~609.1FP=2250psiaMin.SI19651965CaseDCp~O.4Tq~=586:8FP2250psiaMin.SI20362036CaseECp=O.4T~=609.1FP=2100psiaMin.SI21642164CaseFCp~O.4Tq~=609.1FP~2100psiaMin.SI21492149.SalibraryDoublePrecision-ErrorsTranslationofFluidConditionsfromSATANLOCBARTCladCreepandBurstErrorCurrentLicensingBasisPeakCladLocation(ft)LocalZr/H~OReaction(Max%)LocalZr/H~OLocation(ft)5.757.595.756.258.196.006.256.626.006.008.456.00-5.0+15.0-9.02165>>6.2514.306.256.2512.016.25'SeetheLOCAevaluationlogmaintainedbytheNuclearSafetySectionfortemporarymarginallocations.UNIT114.3.1-14July1997 TABLE14.3.1-1(Cont.)LARGEBREAKLOCARESULTSCaseAC~~0.4T~(yp6091FP=2250psiaMin.SICaseBC()~0.6Tg~~609.1FP=2250psiaMin.SICaseCCp=0.8Tq~~609.1'FP2250psiaMin.SICaseDCo0T~<yp=586FP2250psiaMin.SICaseECp~0.4T~~609.1FP2100psiaMin.SICaseFCp~O.4T~=609.1FP2100psiaMin.SITotalZr/H,OReaction(%)HotRodBusrtTime(s)HotRodBurstLocation(ft)<10.43.65.75<1.041.86.00<1.045.76.00<1.046.56.00<1.042.06.25<1.042.06.250)4.3.)-14A TABLE14.3.1-1(Cont.)LARGEBREAKLOCATIMESEQUENCEOFEVENTSStartReactorTripSignalSafetyInjectionSignalAccumulatorInjectionEndofBlowdownPumpInjection"BottomofCoreRecoveryAccumulatorEmptyCaseACg)~0.4TH~=609.1'P=2250psiaMin.SI0.00.644.8018.7040.7551.8054.3069.09CaseBC~=O.6T~~609.1'P=2250psiaMin.SI0.00.644.6013.9031.7751.6044.6062.30CaseCCp=0.8"T~~609.1FP=2250psiaMin.SI0.00.634.5011.6028.0551.5041.8048.75CaseDCp=0.4TH~~586.8FP=2250psiaMin.SI0.00.554.4017.8040.6151.5055.3070.09CaseECp~O.4TH~=609.1FP2100psiaMin.SI0.00.494.1018.7039.9651.1054.2068.96CaseFCp~O.4TH~~609.1FP2100psiaMin.SI0.00.494.1018.7039.9651.1054.0069.78UNIT114.3.1-15July1997 TABLE14.3.1-2PLANTINPTPARAMETERSUSED.INLARGEBREAKLOCAANALYSISCorePower(MWt)PeakLinearPower(kW/ft)TotalCorePeakingFactor,FzHotChannelEnthalpyRise,Factor,F,MaximumAssemblyAveragePower,P~FuelAssemblyArraySteamGeneratorTubePluggingLevel(%)AccumulatorWaterVolume(ft'/tank)AccumulatorTankVolume(ft'/tank)MinimumAccumulatorGasPressure(psia)AccumulatorWaterTemperature('F)RefuelingWaterStorageTankTemperature('F)ThermalDesignFlowrate(gpm/loop)RCSLoopAverageTemperature('F}NominalInitialRCSPressure(psia)NominalSteamPressure(psia)SafetyInjectionDelayTime(sec)RHRPumpHeadDegradation(:)HHSIPumpHeadDegradation(~)ChargingrumpHeadDegradationis)ChargingPumpFlowImbalance(gpm)RHRCross-TieValvePosition102%'f3250102%'f14.4342.151.551.3815X15OFA30946135060010070-10583,200553.0and576.32100and2250595and74915151025Closed~UNIT114.3.1-15July1997 TABLE14.3.1-3LARGEBREAKCONTAINMENTDATA(ICECONDENSERCONTAINMENT)NETFREEVOLUME(IncludesDistributionBetweenUpper,Lower,andDead-EndedCompartments)InitialConditionsPressureMaximumTemperaturefortheUpper,Lower,andDead-EndedCompartmentsUCLCDEICUCLCDE746,829ft~249,446ft~116,168ft'63,713ft'4.7psia100'F120'F120'FMinimumTemperaturefortheUpper,Lower,andDead-EndedCompartmentsUCLCDE60'F60'F60'FRWSTTemperatureTemperatureOutsideContainmentInitialSprayTemperatureSpraySystem70'F-22'70'RunoutFlowforaSprayPumpNumberofSprayPumpsOperating3600gpmPost-AccidentInitiationofSpraySystemDistributuionofSprayFlowtothe,UpperandLowerConpartmentsDeckFanLCUC36sec2700gpm4500gpmPost-AccidentInitiationofDeckFans480secFlowRateperFan4AssumedSprayEfficiencyofWaterfromIceCondenserDrains43,890cfmperfan100%'NIT114.3.1-17July1997 TABLE14.3.1-3(cont'd)STRUHEATSINKSwall101213141516171819cornarmntLCLCLCLCLCLCLCLCLCLCLCLCUCUCUCUCUCUC~areafr'2,10511,70165,9795,4625,27329014,8964,5155,77557,3179,4042,62337834,8958,06042029,33234,125420thiknssft0.0469/2.02.04.00.08330.01030.250.00780.10420.0090.008330.03130.03130.0365/0.16670.00780.02080.00522.00.0469/2.00.0052materialsteel/concreteconcreteconcretesteelsteelleadsteelsteelsteelsteelsteelsteelsteel/concretesteelsteelsteelconcretesteel/concretesteelUC.LC:DE:IC.UpperCompartmentLowerCompartmentDead-EndCompartmentIceCompartmentUNIT114.3.1-18July1997 TABLE14.3.1-4MASSANDENERGYRELEASERATES,MAXIMUMSItimeec101212.41416182024283236405265758695,124206294579104887033500252602266019580169801600014530a2a4010410917070106750564035804390230280390810420400430330enerBTUsec3.081(107)2.542(107)1.762(107)1.357(107)1.223(10)1.096(107)9.838(10~)9.346(10)8.608(10~)-'7.313(10)6.254(10)5.472(10)3.871(10)2.839(10')1.757(10)7.951(10)9..057(10)1.267(10')6.321(10)2.073(10)'.884(10)2.464(10)1.666(10~)1.452(10)a.314(10')UNIT114.3.a-apJuly1997 TABLE14.3.1-5NITROGENMASSANDENERGYRELEASERATESimec69.273.277.281.285.289.293.297.2101.2105.2109.2113.2117.2121.2125.2129.2137.2141.2145.2153.2161.2169.2177.2flwraibmc231.8166.4120.887.362.142.928.819.514.19.07.35.94.83.93.22.11.81.00.70.50.3UNIT114.3.1-20July1997 Thispageisintentionallyleftblank.UNIT114.3.1-21July1997 lg~0 25002000150010005002030TIME(S)4050Figure143.1-1aReactorCoolantSystemPressureCaseA,'~.4,Tho~.l'F,P=2250psiaDonaldC.CootUnit1JULY199/ '25002000150010004J,50010>520TiME(S)2530Figure142.1-1bReactorCoolantSystemPressureCaseB,CD&.6,Thot~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 25002000KC15001000QJ500101520TIME(S)2530Figure143.1-1cReactorCoolantSystemPressureCaseC,C~.S,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1'ULY199? 250020001500LJ1000Lal5000102030TIME(S)4050Figure142.l-ldReactorCoolantSystemPressureCaseD,C~.4,That=586.8'F,P=2250psiaDonaldC.CookUnitIJULY1997 250020001500LIJ$0005001020TIME(S)3040Figure143.1-1eReactorCoolantSystemPressureCaseE,CD&.4,Thot~.l'F,P=2100psiaDonaldC.CookUnit1JULY1997 250020001500LJ10005001020TIME(S)30Figure14.3.1-1fReactorCoolantSystemPressureCaseF,C1ML4,Thot~.l'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1997 6000050000<0000300002000010000102030TIME(S)4050Figure143.1-2aBreakHo~DuringBiosdownCaseA,C~.4,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 700006000050000Lal'40000LJJI-30000CD2000010000lol52025TIME(S)30Figure149.1-2bBreakFlowDuringBlowdownCaseB,CD&.6,Thot~.1'F,P=2250psiaDonaldC.CookUnit1JULY199t 8000060000CJ40000C)20000101520TIME(S)2530Figure143.1-2c'reakFlowDuringBlowdownCaseC,C~.S,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 7000060000A5000040000I-30000C)200001000001020'30TIME(S)50Figure143.1-2dBreakFlowDuringBlowdownCaseD,C~.4,Thot=586.8'F,P=2250psiaDonaldC.CookUnit1JULY1997 6000050000<0000300002DDOO1000001020TIME(S)30Figure143.1-2eBreakFlowDuringBlowdownCaseE,CD&.4,Thot~.1'F,P=2100psiaDonaldC.CookUnit1JULY1997 6000050000<000030000200004100001020TIME(S)3040Figure143.1-2fBreakFlowDuringBlowdownCaseF,C~.4,Thot~.1'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1997 10-50102030TIME(S)4050Figure143.1-3aCorePressureDropCaseA,C~.4,Tho~.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 100-5010152025TIME(S)35'igure143.1-.3bCorePressureDropCaseB,CD&.6,Thot~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 10C/)CL-10CL-204JtY:CL-30ILtl-40UC3-50-60101520TIME(S)2530Figure143.1-3cCorePressureDropCaseC,CD&.S,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 ,40I2004JCLcn0CL-20IL44d-40C5-60102030TIME,(S)4050-Figure14.3.1-3dCorePressureDropCaseD,C~.4,Thot=586.8'F,P=Z250psiaDonaldC.CookUnit1JULY1997 20101020TIME(S)5040Figure149.1-3eCorePressureDropCaseE,CD&.4,Tho~.l'F,P=2100psiaDonaidC.CookUnitIJULY1997 2010C/)CLw0CLCf)C/).CCa-10I--20CCLJ4-30-401020TIME(S)30Figure143.1-3fCorePressureDropCaseF,C~.4,Thot~.l'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1997 COREINLET~COREOIITLET400003000020000UJI10000-10000102030TIME(Sj50Figure143.1MCoreFlowrateCaseA,C~.4,Thot~.l'F,P=Z250psiaDonaldC.CookUnit1JULY1997 ~~ COREINLET~COREOUTLET.4000030000o2000010000CO-10000-20000-30000101520TIME(S)2530Figure143.1MCoreFlowrateCaseC,CIMl.8,Thot~.1'F,P=2250psiaDonaldC.CookUnit1.JULY1997 COREIHLETa-aCOREOUTLET400003000020000I-100000-10000102030TIME(Sj4050Figure14.3.1MCoreFlowrateCaseD,C~.4,Thot=586.8'F,P=2250psiaDonaldC.CookUnit1JULY1997 COREINLETa-oCOREOUTLET4000030000LJJ2000010000-100001020TIME(S}30Figure143.1WCoreFloerateCaseE,CD&.4,Thot~.1'F,P=2100psiaDonaldC.CookUnit1JULY1997 CORE1RLET~COREOUTLET4000030000IJJ20000IJJ10000-100001020TIME(S}3040Figure149.1<fCoreFlowrateCaseF,C~.4,Thot~.l'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1997 6000500040003000I-200010002030TIME(S)4050Figure14.3.1-5aAccumulatorFlowDuringBlowdownCaseA,C~.4,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 60005000<0003000LIJI-20001000010152025TIME(S)3035Figure143.1-5bAccumulatorFlowDuringBlowdownCaseB,CD.6,Thot~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 60005000<0003000I20001000101520TIME(S)25Figure143.1-5cAccumulatorFlowDuringBlowdownCaseC,C~.S,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 500040003000cx20001000102030TILIE(S)4050Figure143.1-5dAccumulatorFlow-DuringBlowdownCaseD,C~,4,Thot=586.8'F,P=2250psiaDonaldC.CookUnit1JULY1997 60005.000~0003000200010001020TIME(S)30Figure14.3.1-5eAccumulatorFlowDuringBiowdownCaseE,CD&.4,Thot~.1'F,P=2100psiaDonaldC.CookUnit1JULY1997 60005000w40003000200010001020TIME(S)3040Figure149.1-55AccumulatorFlowDuringBlowdownCaseF,C~.4,Thot~.1'F,P=Z100psia,maxSIDonaldC.CookUnit1JULYL.997 COREMIXTURELEYELjpaQUENCNFRONTLOCATION~OOWNCOMERLEVEL252015501015020250TIMEAFTERREFLOOD(S)0Figure143.14aVesselLiquidLevelsDuringRefloodCaseA,C~,4,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 COREMIXTURELEVEL~QUENCIIFRONTLOCATIONOOWNCONERLEVEL2520u150501015020250TIMEAFTERREFLOOO(S)300Figure143.14bVesselLiquidLevelsDuringRefloodCaseB,CD.6,Thot~.1'F,P=2250psiaDonaldC.CookVnit1JULY199Il COREMIXTURELEVEL~QUENCHFRONTLOCATION~OOWNCOIIERLEVEL20u15I10UJ5010102020,TIMEAFTERREFLOOO(S}30Figure143.1MVesselLiquidLevelsDuringRefloodCaseC,CIA.8,Tho~.l'F,P=2250psiaDonaldC.Cook,Unit1JULY1997 COREIIIXTURELEVEL,a-gOUEHCHTROUTLOCRTIOH~OOWHCCIIERLEVEL2520u1510501015020250TtMEAFTERREFLOOD(S}300Figure149.1MVesselLiquidLevelsDuringRefloodCaseD,C~.4,Thot=5S&8'F,P=2250psiaDonaldC.CookUnit1JULY1997 COREMIXTURELEVELQUENCHFRONTLOCATION~OOWNCOIIERLEVEL2520I-u1510UJ50101502020TILIEAFTERREFLOOO(8)300Figure143.1WVesselLiquidLevelsDuringRefloodCaseE,CD&.4,Thot~.1'F,P=2100psiaDonaldC.CookUnit1JULY1337 COREHIXTURELEVEL'QUENCHI'ROUTLOCATION~DOWHCOIIERLEVEL2520u1510UJ05010150,200TIMEAFTERREFLOOOS250300Figure149.14fVesselLiquidLevelsDuringRefloodCaseF,CD&.4,Thot~.l'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1997 1~1V)0'C)o0.7O0~6C)COC/l0'0~4501015020TIMEAFTERREFLOOO(S}250Figure149.1-7aCoreinletFlowDuringRefloodCaseA,C~.4,Tho~.l'F,P=2250psiaDonaldC.CookUnitlJULY1997 1~11V)0'LaJI0'C9C7o0~7C)F6C)C)0'0'5010102TtMEAFTERREFLOOO,(S)0250Figure143.1-7bCoreinletFlowDuringRefloodCaseB,CD&.6,Thot~.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 C9C50'C)0'ClC)0'0'1502050()TIMEAFTERREFLOODS250Figure143.1-7cCorebeetFlowDuringRefloodCaseC,C~J3,Thot~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 1~20~50~450101020TIMEAFTERREFLOOO(S)250Figure143.1-7dCareInletFloorDuringRefloodCaseD,C~.4,That=5869'F,P=2250psiaDona)dC.CookUnit1JULY1997 1~2C3x0'C5CIC70~7o0'C)Ch0'04501015020TIMEAFTERREFLOOO(S)250Figure143.1-7eCoreInletFlowDuringRefloodCaseE,CD&.4,Thot~.1'F,P=2100psiaDonaldC.CookUnitIJULY1997 1~20'C5C7CO4o0.6C)C/l0~4501015020250TIMEAFTERREFLOOD(s)Figure143.1-7fCoreInletFlowDuringRefloodCaseF,C~.4,Tho~.i',P=2100psia,maxSIDonaldC.CookUnit1JULY1997 500040003000200010005010102020TlMEAFTERREFLOODSFigure143.1@aAccumulatorandSIHowDuringRefloodCaseA,C~.4,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 5000400030002000100050101502025030TIMEAFTERREFLOOD(S).Figure143.14bAccumulatorandSIFloeDuringReAoodCaseB,CD&.6,Thot=609.1'F,P=2250psiaDonaldC.CookUnitIJULY1997 500040004J3000I-cr20001000501015020250TIMEAFTERREFLOOO(S)30Figure143.14cAccumulatorandSIFlowDuringRefiood'aseC,C~.S,Tho~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 50004000CDLJJ30002000100050015020250TIMEAFTERREFLOODS30Figure149.1-8dAccumulatorandSIFlowDuringRetloodCaseD,CD=0.4,Thot=586.8'F,P=2250psiaDonaldC.CookUnit1JULY199? 50004000C3LJ3000tX)LLI20001000501015020250()TIMEAFTERREFLOODSFigure143.leeAccumulatorandSIFlowDuringRefloodCaseE,CD&.4,Thot~.1'F,P=2100psiaDonaldC.CookUnit1JULYl'N7 5000400030002000100050'1015020250TIMEAFTERREFLOOO(S)300Figure143.14fAccumulatorandSIHowDuringRefloodCaseF,CD=0.4,Thot~.1'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1991 20,OC415II-10C9C7Oo545010102020.TILIEAFTERREFLOOO(S)30Figure149.1-9aIntegralofCoreInletFloeCaseA,C~.4,Thot~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 20C)l5II-10CYC9CDtDo5501015020250TiMEAFTERREFLOOO(S)Figure143.1-9bIntegralo(CoreInletFlo~CaseB,CD.6,Thot~.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 20CDC415II10CDCDCD5CQw0IK501015020250TIMEAFTERREFLOOO(Sj30Figure14.3.1-9cIntegralofCoreInletFlowCaseC,C~.S,That=609.1'F,P=2250psiaDonaldC.CookUnit1JULY13'37 20C)C415II-I10C5C)o5w0I50101020250TIMEAfTERREELOOD(S)Figure149.1-9dIntegralotCoreInletFlowCaseD,C~.4,Thot=SS6.S'F,P=2250psiaDonaldC.CookUnitIJULY1997 20C)15I10ChC7o50I501015020250TIMEAFTERREFLOOD(S)30Figure143.1-9eIntegralofCoreInletFlowCaseE,C~.4,Thot~.l'F,P=2100psiaDonaldC.CookUnit1JULY1997 20CI15ILUt0C9C5CIo5501015020250TIMEAFTERREFLOOO(S)30Figure143.1-9fIntegralofCoreInletFlowCaseF,C~.4,Thot~.l'F,P=2100psia,maxSIDonaldC.CookUnit1JULY1997 I~i~~ 800600400CQ>C200-200,5010150TIME(S)Figure143.1-10bMassFluxatPeakTemperatureElevationCaseB,CD&.6,Thot~.l'F,P=2250psiaDonaldC.CookUnit1 800600C4400200-20050150T)ME(S)20250Figure143.1-10cMassFluxatPeakTemperatureElevationCaseC,C~.S,Thot~.l'F,P=2250psiaDonaldC.CookUnit1JULYI.997 BOO600OK,'00-2005010150202030350TIMESFigure149.1-10dMassHuxatPeakTemperatureElevationCaseD,C~.4,That=5864'F,P=2250psiaDonaldC.CookUnit1JULYI'3'3t BOO6004002004-2005010150202030350TIMESFigure143.1-10eMassFluxatPeakTemperatureElevationCaseE,ClMk4,Thot~.1'F,P=2100psiaDonaldC.CookUnit1JULY1997 ~~ I'II~~ Ch~10C10050100150200TIME(S)250$00Figure149.1-libRodH.T.C.atPeakTemperatureElevationCaseB,CD&.6,Thot~.l'F,P=2250psiaDonaldC.CookUnit1.JULY1997 050100150'00TIME(S)250300Figure143.1-11cRodH.T.C.at*PeakTemperatureElevationCaseC,C~.S,'who~.l'F,P=2250psiaDonaldC.CookUnit1JULY1997 I~'~~1lOi~~~s~I s~~'~~IsssIsssslls~ 10~10I~10-Laf4~10CA~104J101001SO200250SDOTIME(S)350Figure143.1-11fRodH.T.C.atPeakTemp.ElevationCaseF,CIA.4,Thot~.1'F,P=2100psia,maxSIDonaldC.CookVnit1JULY1997 ~:~lIsl'~ elI~lIIIII)sdAMII'IeIIlIIIIItIIlIIo~I.~II~I~I'II~ 180016001400120010008004JI-600400200010TiME(S)202030Figure143.1-12cVaporTemperatureCaseC,CIM.S,Tho~.1'F,P=2250psiaDonaldC.CookUnit1JULY1997 IIIIIIIIl[liJ)ll<<'I'flI4IIIIIIIIIIis:o~~I~Ie~I IIIIIIIIIIIIII4Ili~IIIIIell<iI~ IIIIIIIIIIIIIII1s.s4IoIle~~ 22002000180D160014001200LJI-10008006DO5010150202030350TIME(S)Figure149.1-13aFuelRodPeakCladTemperatureCaseA,C~.4,Thot=609.1'F,P=2250psiaDonaldC.CookUnit1JULYI:997 20001&00180012001000800600501015020TIME(S}250300Figure143.1-13bFuelRodPeakCladTemperatureCaseB,CD&.6,Thot~.1'F,P=2250psiaDonaldC.CookUnit1.JULY1997 20001BOO16OO1400I12OO10008006005015020TIME(S)250Figure143.1-13cFuelRodPeakCladTemperatureCaseC,CD=OS,Thot~.1'F,P=2250psiaDonaldC.CookUnit1.JULY1997 2200200018001600LIJ1400LLI1200LJI-10008006005Q0:1502Q25030350TIME(S)Figure143.1-13dFuelRodPeakCladTemperatureCase'D,C~.4,Thot=586$'F,P=2250psiaDonaldC.CookUnit1JULY1997 22002000180016001400>2001000fi7800600500$5020250T1ME(S)350Figure143.1-'13eFudRodPeakGadTemperatureCaseE,CD&.4,Thot~.l'F,P=2100piaDonaldC.CookUnit1JULY1997 22002000180016DO14001200LJ1000S0060050101502025030350TIME(S)Figure149.1-135FuelRodPeakCladTemperatureCaseF,C~.4.Thot~.l'F,P=Z100psia,maxSIDonaldC.CookUnit1JULY1997 IUPPERCOIIPARTUERTa-aLOWERCOIIPARTllERT50)50TIME(SEC)2020300Figure143.1-14ContainmentPressureC~.4,MinSIDonaldC.CookUnit1 14000120001000080006000400020005010015020TIME(SEC)2503DFigure143.1-15UpperCompartmentStructuralHeatRemovalRateCD&.4,MinSIDonaldC.CookUnit1.JULYj.997 710O~10410050100150200TIME(SEC)250500Figure143.1-16LowerCompartmentStructuralHeatRemovalRateC~.4,MinSIDonaldC.CookUnit1JULY1997 1600001400001200001000008000D600004000020000D-2000D501015020TIME(SEC)250Figure143.1-17HeatRemovalbySumpCD.4,MinSIDonaldC.CookUnit1JULY1997 1000008000060000UJI40000O20'00050015020TIME(SEC)0300FigureM9.I-IS'eatRemovalbyK,macrCompartmentSprayC~.4,MnSIDonaldC.CookUnit1JULY1997 UPPERCOIIPARTMEHT~LOWERCOUPARTMEMT250200150100501045020TIME{SEC)20300Figure143.1-19.ContainmentTemperatureC~.4,MinSlDonaldC.CookUnit1JOLY1337 Table14.3.2-7showsthepeakcladtemperatureobtainedforthesmallbreakLOCAanalysisperformedusingthehighheadsaetyinjectionsystemcross-tievalveclosed.ThetableincludestheapplicationofvariouspenaltiesasdescribedundertheheadingsmallbreakLOCAmodelassessments.IMainearnfetValveSeoinToleranceRlaxainAdditionalsmallbreakLOCAanalyseswereperformedtosupportanincreaseintheMSSVliftsetpointtolerancefrom+/-1'.to+/-3%.Thelimiting3-inchHHSIcrosstievalvesclosedanalysiswasperformedforlowpressure/lowtemperature(LPLT)operatingconditionsatacorepowerlevelof3250MWt,whichhasbeenpreviouslydemonstratedtoresultinthemostlimitingpeakcladtemperature.Sincethebasisforthelimitingcasedeterminationremainsvalid,itwasnotnecessarytoperformthefullbreakspectrum.Anadditional3-inchbreakcaseinitiatedatlowpressure/hightemperature(LPHT)confirmedthattheLPLTcaseremainedbounding,andanadditional2-inch,cross-tiesclosed,breakwasruntoprovidefurtherassurancethatthelimitingbreaksizedidnotshifttoasmallerbreak.Alsoincludedinalltheanalysesforunit1wasa25gpmchargingpumpflowimbalance.Theresultsofthelimiting3-inchbreakanalysisarepresentedintheSequenceofEventsTable14.3.2-8andtheResultsTable14.3.2-9.Resultsofthenon-limiting2-inchcaseareprovidedinTables14.3.2-10and14.3.2-11.BothoftheseanalyseswereperformedwiththeminimumAFWflowrateof750gpm.PlotsofthefollowingparametersfortheLPLT3-inchbreakanalysisareshowninFigures14.3.2-41through14.3.2-48,andforthe2-inchbreakinFigures14.3.2-50through14.3.2-57:~RCSpressure~Coremixturelevel~Peakcladtemperature~Coreoutletsteamflow~HotspotrodsurfaceheattransfercoefficientHotspotfluidtemperatureColdlegbreakmassflowrate,andSafetyinjectionmassflowrateFigure14.3.2-49containsthepowershapewhichisapplicabletobothcases.UNIT114.3.2-7July1997 The3-inchcrosstiesclosedcaseinitiatedatLPLToperatingconditionsisthemostlimitingofallthelicensingbasissmallbreakanalyses.Applicationofaburstandblockagepenaltyresultsinapeakcladtemperatureof2068'F,whichremainslessthanthe2200'Flimit.atSVaveSepeceatotetoAnadditionalsmallbreakLOCAanalysiswasperformedtosupportanincreaseintheMSSVliftsetpointto'lerancefromglXto~3Xforoperationat3588MWtwiththeHHSIcross-tievalvesopen.TheanalysiswasperformedfortheLPLToperatingconditionwhichwaspreviouslydemonstratedtobethemostlimitingcondition.Theanalysiswasalsoperformedforthepreviouslylimiting3-inchbreak,sincetheanalysisfor3250MWtindicatedthatthelimitingbreakwouldnotshifttoasmallersize.The~3XMSSVsetpointtoleranceanalysisat3588MWtwiththeHHSIcross-tiesopenwasperformedusingthesametotalcorepeakingfactorandsteamgeneratorItubeplugginglevelusedintheanalysisfor3250MWtwiththeHHSIcross-tiesclosed.TheminimumvalueforAFWflowrate,750gpm,wasusedforthiscase.However,someoftheotherconditionswerechangedfortheanalysisat3588MWtwiththeHHSIcross-tievalveopen.Thedieselgeneratorstarttimewas.increasedfrom10to30seconds.Sincealossofoffsitepowerisassumedinthedesignbaa.LOCAanalysis,thischangeresultsinatotaldelayof47secondsfromt..:timeofsafetyinjectionactuationuntilpumpedsafetyinjectionflowtotheRCSbegins,and80secondsfromthetimethatoffsitepowerislostuntilauxiliaryfeedwaterflowbegins.ThesafetyinjectionflowrateswiththeHHSIcross-tievalvesopenhavealsobeenrevisedtoreflectanincreasefrom10to15XdegradationoftheHHSIpumpperformancecurve.Thecentrifugalchargingpumpassumptionsof10Xpumpheaddegradationand25gpmflowimbalanceweremaintained.Theanalyzedcorepoweraxialoffsetwasreducedfrom+30Xto+20Xandthehotassemblyaveragepowerpeakingfactor(P~)was'educedfrom1.433to1.38,which'makesthe,analysismoreconsistentwithanticipatedcoredesigns.ThesmallbreakLOCAanalysiswasperformedwiththeWestinghouseSmallBreakLOCAECCSEvaluationModelusingtheNOTRUMPcomputercode(References1'nd2),includingtherecentchangesinReference13toincorporatemodelingofsafetyinjectionintothebrokenloopandtheCOSIcondensationmodel.Previously,safetyinjectionintothebrokenloopwasnotmodeledintheWestinghousesmallUNIT114.3.2-7aJuly1995 breakLOCAanalysessinceitwasassumedthattheadditionalsafetyinjectionwouldbeabenefit.BecauserecentstudieshaveshownthattheresponsetobrokenloopsafetyinjectioncanresultinanincreaseinthecalculatedPCT,4modelingofsafetyinjectionintothebrokenloophasnowbeenincorporatedintotheNOTRUHPsmallbreakevaluationmodel.Thelimitingbreaklocationwasestablishedtobethebottom,.ofthecoldleg,andthesafetyinjectionbranchlinesjointheRCSathigherelevationsofthecoldlegs.Therefore,theinjectionbranchlineswoulddeliverECCSflowtothebrokenloop.AmorerealisticmodelforcondensationofsteambypumpedsafetyinjectionbasedondatafromtheCOSItestfacilityhasalsobeenincorporated,whichprovidesabenefitlargerthanthepenaltyforsafetyinjectioninthebrokenloop.TheCOSIcondensationmodelwasappliedtothepumpedsafetyinjectiontothebrokenloopandtothelumpedintactloopintheNOTRUHP.code'.The.resultsoftheanalysisarepresentedintheSequenceofEventsTable14.3.2-12andtheResultsTable14.3.2-13.PlotsofthefollowingparametersfortheanalysisareshowninFigures14.3.2-58through14.3.2-65:~RCSpressure~CoremixturelevelPeakcladtemperature~Coreoutletsteamflow~Hotspotrodsurfaceheattransfercoefficient~Hotspotfluidtemperature~Coldlegbreakmassflowrate,and~SafetyinjectionmassflowrateFigure14.3.2-66containsthepowershapewhichwasusedfortheanalysis.aAsshowninTable14.3.2-13,thecalculatedpeakcladtemperatureis10474Fwhichissignificantlylessthanthe22004Flimit.BecausethebeginningoflifecalculatedpeakcladtemperatureislowenoughtoprecluderodburstandaZr/H,Oreactiontemperatureexcursionfollowingburst,no-burstandblockagepenaltyisapplied.ThePCTof10474Fforoperationat3588NMtisalsosignificantlylessthanthevalueof20684Fcalculatedforoperationat3250MQt.ThereductioninthePCTforthe3588MMtcaserelativetothe3250MWtcaseisattributedtothehigherSIflowattheincreasedpowerwiththeHHSIUNIT114.3.2-7bJuly1995 cross-tievalvesopen,theCOSIcondensationmodel..TheuseofreducedaxialoffsetandreducedP~alsocontributedtothePCTreduction.TheseresultsdemonstratethatthesmailbreakLOCAanalysisfor3250MWtwiththeHHSIcross-tievalvesclosedboundsthecasefor3588MWtwiththecross-tievalvesopen.30SannratrTubPluinAnlsisAnadditionalsmallbreakLOCAanalysiswasperformedtosupportanincreaseinsteamgeneratortubeplugginglevelfrom15%toamaximumof30%ineachsteamgenerator.Theanalysiswasperformedforthelimiting3-inchbreakforreducedtemperatureandreducedpressureoperatingconditionswiththeHHSIcross-tievalvesclosedandacorepowerlevelof3250MWt,whichwaspreviouslydemonstratedtoresultinthemostlimitingcladtemperature.Anevaluationofthebasisforthelimitingcasedeterminationwasperformedanditwasconcludedthatitwasnotnecessarytoperformafullbreakspectrum.Inadditionto30%steamgeneratortubeplugging,someotherchangeswerealsoincludedintheanalysis.Adieselgeneratorstarttimeof30secondswasused,whichresultsinatotaldelayof47secondsfromthetimeofsafetyinjectionactuationuntilpumpedsafetyinjectionflow.totheRCSbegins,and80secondsfromthetimethatoffsitepowerislostuntilauxiliaryfeedwaterflowbegins.ThesafetyinjectionflowrateswiththeHHSIcross-tievalvesclosedwererevisedtoreflectanincreasefrom10to15%degradationoftheHHSIpumpperformancecurve.Thecentrifugalchargingpumpassumptionsof10%pumpheaddegradationand25'gpmflowimbalanceweremaintained.'Alsoincludedintheanalysisisanewcorepowershapebasedonanaxialoffset.of+20%andahotassemblyaveragepowerfacto(P~)of1.38,andanevaluationofupto5cRCSloopflowasymmetry.Theanalysisfor30%steamgeneratortubepluggingmodeledsafetyinjectionintothebrokenloopandusedthemorerealisticCOSI'condensationmodelintheNOTRUMPEvaluationModelasdescribedinReference13.Thepumpedsafetyinjectionflowandtheaccumulatorflowtothebrokenloopweremodeled,andtheCOSIcondensationmodelwasappliedtothepumpedsafetyinjectiontothebrokenloopandtothelumpedintactloop.Theresultsofthe3-.inchbreakanalysisarepresentedintheSequenceofEventsTable14'.2-14andtheResultsTable14.3.2-15.,UNIT114.3.2-7cJuly1997 Plotsofthefollowingparametersforthe3-inchbreakanalysisareshowninFigures14.3.2-67through14.3.2-75.RCSpressureCoremixturelevelHotSpotCladTemperatureCoreOutletSteamFlowHotspotrodsurfaceheattransfercoefficientHotspotfluidtemperatureColdlegbreakmassflowrateBrokenloopsafetyinjectionmassflowrate,andLumpedintactloopsafetyinjectionmassflowrateFigure14.3.2-76containsthepowershapeusedintheanalysis.DuetothemodelingofsafetyinjectioninthebrokenloopwiththeCOSIcondensationmodelchange,inconjunctionwiththereducedpeakingfactors,thePCTforthe30%steamgeneratortubepluggingsmallbreakLOCAanalysisislowerthanfortheprevioussmallbreakanalysesat3250MWtwiththeHHSIcross-tievalvesclosed.BecausenorodburstwascalculatedtooccurandthebeginningoflifecalculatedpeakcladtemperatureislowenoughtoprecludeaZr/H,Oreactiontemperatureexcursionfollowingburst,noburstandblockagepenaltyisapplied.Theresultingtotalpeakcladtemperatureof1443'Fislessthanthe2200-Flimit.SBLOAMd1Asesmens10CFR50.46(a)(3)requirestherecordkeepingandreportingofchangesinLOCAevaluationmodelsandofchangesintheapplicationofthesemodels.Table14.3.2-7showsthepeakcladtemperatureobtainedforthesmallbreakLOCAanalysisforboththehigh.headsafetyinjectioncross-tieopenandclosedcases.Thevariouschangestotheevaluationmodelsshowninthetablearetakenfromreferences15,and16.Thepeakcladtemperatureresultforallcasesremainsbelow2200F.UNET114.3.2-7dJuly1997 REFEREN."ection14.2hMeyer,p.E.,"NOTRUMP-ANodalTransientSmallBreakandGeneralNetworkCode,"WCAP-10079-P-A,August1985.2.-Lee,N.et.al.,"WestinghouseSmallBreakECCSEvaluationModelUsingTheNOTRUMPCode,"WCAP-10054-P-A,August1985.Bordelon,F.M.,etal,"LOCTA-IVProgram:Loss-of-CoolantTransientAnalysis,"WCAP-8305,June1974,WCAP-8301,(Proprietary),June1974."ReportonSmallBreakAccidentsforWestinghouseNSSSSystem,"Vols.ItoIII,WCAP-9600,June1979.5."ClarificationofTMIActionPlanRequirements,"NUREG-0737,November1'980.6.NRCGenericLetter83-35fromD.G.Eisenhut,"ClarificationofTMIActionPlanItemII.K.3.31,"November2,1983.7.Rupprecht,S.D.,et.al.,"WestinghouseSmallBreakLOCAECCSEvaluationModelGenericStudyWiththeNOTRUMPCode;"WCAP-11145-P-A,October1986.8.Referencedeleted9.Referencedeleted10.Referencedeleted11.Referencedeleted12.ReferencedeletedIi13.Thompson,C.M.,etal.,"Addendumto,theWestinghouseSmallBreakECCSEvaluationModelUsingtheNOTRUMPCode:SafetyInjectionintotheBrokenLoopandCOSICondensationModel,"WCAP-10054-PAddendum2(Proprietary)andWCAP-10081-NP,Addendum2(Non-Proprietary),August1994.14.Referencedeleted15.Fitzpatrick,E.E.(1&M),lettertoNRCDocumentControlDesk,March22,1996,AEP:NRC:1118K.16.Fitzpatrick,E.E.(1&M),lettertoNRCDocumentControlDesk,April10,1997,AEP:NRC:1118L.UNIT114.3.2-7eJuly1997 Table14.3.2-7SAMLL-BREAKLOSSOFCOOLANTACCIDENT10CFR50.46ASSESSMENTRESULTSPEAKCLADTEMPERATUREWITHHHSICROSS-TIEVALVESCLOSED(ReferenceTables14.3.2-14and14.3.2-15)~PrameerAnalysisPCTPriorLOCAAssessments~PCT1.NOTRUMPSpecificEnthalpyError,~PCT2.SALIBRARYDoublePrecisionErrors,n,PCT3.SBLOCTAFuelRodInitializationError,~PCTLICENSINGBASISPCT+PERMANENTASSESSMENTS,PCTV~lue'443'F+20'-15F+10'F1458'FEvaluationModel:NOTRUMP,FQ2.32,Fn,H1.55,SGTP30%,3250MWtUNIT114.3.2-14July1997 TABLE14.3.2-8MSUENCEOFEVESorCONDIT0IEVESSmall-breakLossofCoolantAccident(3"Break,LPLW,HHSICross-tiesClosed)Mainsteamsafetyvalvesetpointtoleranceincreasecaseat3250MMtcorepower.ExtentBreakOccursReactortripsignal'SafetyinjectionsignalStartofsafetyinjectionStartofauxiliaryfeedwaterdeliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorecoveredSIflowrateexceedsbreakflowrateTimesec0.08.6417.1344.1368.6592NANA98416801890NA1890*LPLTislowpressure,lowtemperatureoperatingcondition.UNIT114'.2-15July1995 TABLE14.3.2-14TIMEEUENEOFEVENTSFORONDITIONIIIEVENT30%'TEAMGENERATORTUBEPLUGINGANALYSISAT320MWTWITHHHSIROS-TIEVALVECLOSEDSmall-brakLosfoolantAccident~EvnBreakoccursReactortripsignalSafetyinjectionsignalStartofsafetyinjectionStartofauxiliaryfeedwaterdeliveryLoopsealventingLoopsealcoreuncoveryLoopsealcorerecoveryBoil-offcoreuncoveryAccumulatorinjectionbeginsPeakcladtemperatureoccursTopofcorerecoveredCombinedpumpedSIflowrateexceedsbreakflowrate~TimeecReducedTemperature,ReducedPressure3-inchbreak0.08.817.464.488.8528NANA1054.1648174829951856UNIT114.3.2-21July1997 TABLE14.3.2-15SMALL-BREAKLSSOFCOOLANTACCIDENTCALULATIONS0%'EAMGENERATORTUBEPLUGGINGANALYSISAT320MWTWITHHHSICROS-TIEVALVESCLOEDREULTSNOTRUMPPeakCladTemperature('F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(0)LocalZr/H~OReactionLocation(ft)TotalZr/H,OReaction(0)RodBurstBurstandBlockagePenaltyTotalPeakCladTemperature('F)ReducedTemperature,ReducedPressure3-inchbreak1443F11.51748<1.0(1.0NoneNone1443'FCALCULATICV:NSSPower(MWt)102%ofPeakLinearPower(kw/ft)102%ofHotRodPowerDistribution(kw/ft)AccumulatorWaterVolume(ft')3250"14.87SeeFigure14.3.2-76DoesnotincludepumpheatUNIT114.3.2-22July1997 220020001800I1600-1400)200I/Ifl000II8"CII600L4000'COO20003003TICE(S)4000Figure14.3.2-67RCSPressure(3Inch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNuclearPlantUnit1JULY1997 L35~25'20150>0002000:IvE(Sj30004000Figurel4.3.2-68CoreMixtureLevel(3Inch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNuclearPlantUnitIJULY199? 1600I1400i'/r12001000t-800l/I1II600'4001000150020002500TiMc(sj3000I3500Figure14.3.2-69HotSpotCladTemperature(3Inch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNuclearPlantUnit1JULY1997 250Cl)ccl200,150o1005000IOOO2000TiVE(S)30004000Figure14.3.2-70CoreOutletSteamFlowgbirch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNrrclerrrPhntUnitjJULY1997 510I10I~10L-'LC'0~1010F0001500FI20002500T'M=(S)II~)iIIiI)I,iII,'0Gr,3500Figure14.3.2-71HotSpotRodSurfaceHeatTransferCoefficientgInch,30%.%4')ReducedTemperature,ReducedPressureDonaldC.CookNuclear,PlantUnit1JULY1997 ~~~~1~~~~~ 1600.1400Hi0'00G800t:00400IrLI200II01COO2000TiME(S}30004000Figure14.3.2-73ColdLegBmkMassFloeRate(3Inch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNuclearPlantUnitl.JUL'Y139/ 10002000TIME(5)30004000Figure14.3.2-74BrokenLoopSafetyInjectionMassFloeRate(3!nch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNuclearPlantUnit1JULY1997 60(so!Ilr40,L'ILIILL;0010002000T(Mf(Q)'000e000Figure14.3.2-75LumpedIntactLoopSIMassFlowRate(3Inch,30%SGTP)ReducedTemperature,ReducedPressureDonaldC.CookNuclearPlantUnitl.JULY199t 14128Ez468ElEVATION(FT)Figure14.3.2-76HotRodPowerDistribution(3Inch,30%SGTP)ReducedTempetatute,ReducedPressureDonaldC.CookNuclearPlantUnitI 14.3.4~~CONTAINMENTINTEGRITYANALYSIS14.3.4.1CONTAINMENTSTRUCTURE14.3.4.1.1DesiBasisThesteel-lined,reinforcedconcretecontainmentstructure,includingfoundations,accesshatches,andpenetrationsisdesignedandconstructedtomaintainfullcontainmentintegritywhensubjectedtoaccidenttemperaturesandpressures,andthepostulatedearthquakeconditions.DetailsoftheContainmentSystem,includingGeneralDesignCriteria,aredescribedinChapter5.Thecontainmentdesigninternalpressureis12psig.Theeffectsofpiperuptureintheprimarycoolantsystem,uptoandincludingadouble-endedruptureofthelargestpipeaswellasaruptureofthemainsteamline,areconsideredindeterminingthepeakaccidentpressure.Theinternalstructuresofthecontainmentvesselarealsodesignedforsubcompartmentdifferentialaccidentpressures.Theaccidentpressuresconsideredareduetothesamepostulatedpiperupturesasdescribedforthecontainmentvessel.Theothersimultaneousloadsincombinationwiththeaccidentpressures,andtheapplicableloadfactors,arepresentedindetailinChapter5.Thefunctionaldesignofthecontainmentisbaseduponthefollowingaccidentinputsourcetermassumptionsandconditions:Thedesignbasisaccidentblowdownmassandenergyisputintothecontainment.2.Thehotmetalenergyisconsidered.Areactorcorepowerof102%of3413MWtthermalpowerisusedfordecayheatgeneration.4,MinimumEngineeringSafetyFeaturesperformanceisassumedbaseduponthelimitingsinglefailurecriterion.UNIT114.3.4-1July1997 Theicecondenserisdesignedtolimitthecontainmentpressurebelowthedesignpressureforallreactorcoolantpipebreaksizesuptoandincludingadouble-endedseverance.Characterizingtheperformanceoftheicecondenserrequiresconsiderati.onoftherateofadd'zion'ofmassandenergytothecontainment,as-wellasthetotalamountsofmassandenergyadded.Analyseshave'hownthattheaccidentwhichproducesthehighestblowdownrateintotheicecondensercontainmentresultsinthemaximumcontainmentpressurerise.Thataccidentisthedouble-endedseveranceofareactorcoolantpipe.Post-blowdownenergyreleasescanalsobeaccommodatedwithoutexceedingthe.containmentdesignpressure.14.3.4.1.2Desi,nFeaturesThereactorcontainment'sareinorcedconcretestructureconsist'ngofaverticalcvlinder,ahemisphercaldomeandaf'atbase.TheinteriorisIdivi.dedintothreevol..es.a'o-er.ol'mewhichhousesthereactorandReactorCoolantSystem.an'-..termediatevol-..ehousingtheenergyabsorb.".-icebedinwhichsteamiscondensedandanuppervolumewhichaccommodatestheairdisplacedfromtheother"wovolumesduringadesignbasispipebreakaccident.ThetvpeoEcontainmentsed:ortheDonaldC."ook':.".'s1and2wasselectedforthefollowingreasons:}..TheIceCondenser"ontainmentcanaccept'.-rgeamountsofenergyandmassinputsandmaintain'owinternalpessuresandleakagerates.Aparticularadvantageoftheice"ondenserisi"spass'vedesignnotrequ'ringanac"ua='onsignal.2.TheIceCondenserContainmentcombinestherequiredintegrity,compactsize,andcarefully"consideredadvanceddesigndesirableforanuclearstaton.Considerationisgiventosubcompartmentdifferentialpressureresultingromadesignbasisaccident.anacce..t-.eretooccurduetoapiperuptureinoneoftheserelativesmallvolumes,thepressurewouldbuildupa"aEasterratethaninthecontainment,thusimposingadifferentalpressureacrossthewallof-hestr"ture.Section14.3.4.2."ContainmentSubcompartments",presents=hesubcompartmen"d'fferentialpressureanalvses.ITheIceCondenserContainment,'.'ncorporati..garcedcirculationoEthecontainmentatmospheretogetherwi=ht..econtainmentspraysystem,ensurestheUnitl<,i~<a'.July,1992 Duringtheblowdowntransient,steamandairwillflowthroughtheicecondenserdoorsandalsothroughthedeckbypassareaintotheuppercompartment.Forthecontainmentthebypassareaiscomposedoftwoparts,aknownleakageareaof2.2ft2withageometri.closscoefficientof1.5throughthedeckdrainageholeslocationatthebottomoftherefuelingcavity,andanundefineddeckleakageareawithaconservativelysmalllosscoefficientof2.5.Leakagethroughthebackdraftdamperoftheairreturnfanswasdeterminedtobe0.18sq.ft./damperandwasconsideredintheknownleakagearea.AresistancenetworksimilartothatusedinTMDisusedtorepresent6lowercompartmentvolumes,eachwitharepresentativeportionofthedeckleakageandthelowerinletdoorflowresistanceadjacenttothelowercompartmentelement.Theinletdoorflowresistanceandflowareaarecalculatedforsmallbreaksthatwouldonlypartiallyopenthesedoors.Thecoolantblowdownrateasafunctionoftimeisusedwiththisflownetworktocalculatethedifferentialpressuresonthelowerinletdoorsandacrosstheoperatingdeck.Theresultantdeckleakagerateandintegratedsteamleakageintotheuppercompartmentarethencalculated.Thelowerinletdoorsareinitiallyheldshutbythecoldheadofairbehindthedoors(approximately1/2-1poundpersquarefoot).Theinitialblowdownfromasmallbreakopensthedoorsandremovesthecoldheadonthedoors.Withthe'oordifferentialpressureremovedthedoorpositionisslightlyopen.Anadditionalpressuredifferentialofonepoundpersquarefootisthensufficienttofullyopenthedoors.Thenominaldooropeningcharacteristicarebasedontestresults.Oneanalysisconservativelyassumedthatflowthroughthepostulatedleakagepathsispuresteam.Duringtheactualblowdowntransient,steamandairrepresentativeofthelowercompartmentmixturewouldleakthroughtheholes;thuslesssteamwouldentertheuppercompartment.Ifflowwereconsideredtobeamixtureofliquidandvapor,thetotalleakagemasswouldincreasebutthesteamflowratewoulddecrease.Theanalysisalsoassumedthatnocondensingoftheflowoccursduetostructuralheatsinks.Thepeakaircompressionintheuppercompartmentforthevariousbreaksizesis'assumedwithsteammassaddedtothisvaluetoobtainthetotalcontainmentpressure.AircompressionforthevariousbreaksizesisobtainedfrompreviousfullscalesectiontestsconductedatWaltzMill.TheallowableleakageareaforthefollowingReactorCoolant,Systembreaksizeswasdetermined:DE,0.6DE,3ft2,8inchdiameter,6inchdiameter,2.5'inchdiameter,and0.5inchdiameter.Forbreaksizes3ft2andaboveaserieso'fdeckleakagesensitivitystudieswasmadetoestablishthetotalsteamleakagetotheuppercompartmentovertheblowdowntransient.ThisUnit114.3.4-9July1997 steamwasaddedtotheairintheuppercompartmenttoestablishapeakpressure.Airandsteamwereassumedtobeinthermalequilibrium,withtheairpartialpressureincreasedovertheaircompressionvaluetoaccountforheatingeffects.Forthesebreaks,sprayswereneglected.Reductionincompressionratiobyreturnofairtothelowercompartment,wasconservativelyneglected.TheresultsofthisanalysisareshowninTable14.3.4-2.ThisanalysisisconfirmedbywaltzHilltestsconductedwithvariousdeckleaksequivalenttoover50ft2ofceckleakageforthedoubleendedblowdownrate.Forbreaks8inchesind'ameterandsmaller,theeffectofcontainmentsprayswasincluded.Themethodusedisasfollows:Foreachtimestepofthe'blowdowntheamountofsteamleakinginto"heuppercompartmentwascalculatedtoobtainthesteammassintheuppercompartment.Thissteamwasmixedwiththeairintheuppercompar"ment,assumingthermalequilibriumwithair.Theairpartialpressure-as'.".'creasedtoaccountfora'rheatingeffects.Aftersprayswereinitiated,thepressurewascalculatedbasedontherateofaccumulationofsteamin"heppercompartment.Redctioninpress~reduetooperationoftheairrec'rc"la=onanshasbeenconservativelyneg'ected.Thisanalysiswasconduc"ed:orthe8inch,6inchand2-1/2inchbreaksizesassumingtwospraypumps'ereopera=ing(4000gpma"80'F).AsshowninTable14.3.4-2,the8inchbreak'sthelim'tingcas==orthisrangeofbreaksizesalthoughthe0.6DEisthe1'mitingcasefor='.".eentirespectrumofbreaksizes.Vithonesprayp'i..poperating(2000gp.-.at80'F)thelimitingcaseortheentirespec-"...ofbreakszes,is=he8'...chcaseandresultsinanallowabledeckleakageareaofapprox'ma"elv35ft".Asecond,morerealistic,met?:od-as-usedtoana'vze:h'slimit'ngcase.Th'sanalysisassumeda30percen"air~70percentsteammixtureflowingthroughthedeckleakagearea.Thisisconserva"veconsider'ngtheamoun"ofairinthelowercompartmentduringth'sportionofthetransient.Operationofthedeckfanwouldincreasethea'rcontentofthe'owercompartment,thusincreasingtheallowabledeckleakagearea.Bas-0ontheLOTICCodeanalysisastructuralheatremovalrateofover8000BTI:/secfromtheuppercompartmentisindicated.Thereforeasteamconde..sationrateof8lb/secwasusedfortheuppercompartment.Theresu'"sindicatedthatwthonespraypumpoperatingandadeckleakageareaof:6i"",thepeakcontainmentpressurewillbebel,owdesign:cr"'.".=-'nchcase,The1/2inchdiameterbreakisno"sufficienttoopen=heicecondense"'nle=doors.Forthisbreak,e't'.-.er"he'owercom"ar=,.enoheuppercompartmentspravissufficienttocondensethebreaks"earnf'ow.Unit1'4.3.4'0July,1992 Tnconclusion,itisapparentthatthereisasubstantialmarginbetweenthedesigndeckleakageareaandthacwhichcan'etoleratedwithoutexceedingcontainmentdesignpressure.ectoDead-endedVo'.umesThereareseveraldead-endedcompartmentsintheplantcontainmentdesign-whichareconneccedtothe'owercompartment.Thedead-endedvolumesconsideredinchefollowirganalysisaretheinstrumentationroomandthepipetrench.AdditionalstudyhasshownchatcheCanaccumulatorroomswouldalsoactasdead-endedvolumes.Sincetheadditionofdead-endedvolumereducedpeakcompressionpressure.theresu:"spresercedfor-'".efollowinganalysisareconservat've.ln..eprecedinganasisofheaorta'nmenccompressionratio,i"sconservativelyassumedthatonlysteam:ows'ncothedead-endedvolumesdur'ngchereactorcoo'ancsystemblowdom.'."'.owever,theresultsofcertainfu~l-scalesectiontests,whxchcontai..eddead-ended':olumes,shovedthatsomeairflowedintothese:ol"..esardrema'red"heredurxngcheblowdownperiod,thusreduc'ngthemasscompressionratioorchecontainment.Forexample,one'<<alcz'Hilltestwasr"..'-"'".".t?.e'owerhemisphereofthereceivervesselventedtoche'owercompartment.Fromanairbalanceoerformedfrompressureandtemperaturemeasuremencsa-het'meofpeakcorn=cessionpressure(9.6psig),xtwasfound"hattheracioof=hechar.-=-xnairmasscotheinicialmassinthedead-ended;olme"as:~0.1840Thischangeina'rmass'schencorrec:ed:orhelo-'ercompressionpeakpressureoftheplantdesigntogive:~0.18x'~015pxxgThestorageofairinthedea'd-e..ded:o'..es"..ascheeffectofreducingthemassoCairstoredinchedownstreamvolumesacche='meofchecompressionpeakpressure.Thecompressionra"ioCor=heCook."uc'earp"anccakng'.ncoaccountthedead-endedvolumesisfoundCromchefollowing:V~V+V015VUnit114.3.4-11July,1992 where:V~Dead-endedvolumes(instrumentroomandpipetrench).Substitutingtheoriginaldesignbasiscompartmentvolumes,whichprecededthoseshowninTable14.3.4-1,thecompressionratiocalculatedfromEquation(5)is:1,179,636-0.15x61,702745,896+0.645x126,940C~~1.41Thefinalpeakpressureis:Pg~15.0(1.41)113+0.4P,22.5psiaor7.8psigTherefore,theeffectofthedead-endedvolumeof61,702ft3istodecreasethefinalpeakcompressionpressureby0.2psig.ThemagnitudeofthiseffectwasfurthersubstantiatedbyaseriesoftestsatWaltzHillwhichwererunatamasscompressionratiocl'oselyrepresentativeoftheCookplantdesign.,Testswererunwithandwithoutadead-endedvolumeequivalentto155,000ft3forthecontainmentdesign.Inthesetests,theeffectofthedead-endedvolumewasmeasuredtobe0.5psig,whichisequivalenttoa0.32psidecreasein,finalpeakpressureper100,000ft3ofdead-endedvolume.LnTrmCninmnPrsureAnlsiEarlyintheicecondenserdevelopmentprogramitwasrecognizedthattherewasaneedformodelingoflongtermic'econdensercontainmentperformance.Itwasrealizedthatthemodelwouldhavetohavecapabilitiescomparabletothoseofthedrycontainment(COCOCode)model.Thesecapabilitieswouldpermitthemodeltobeusedtosolveproblemsofcontainmentdesignandoptimizethecontainmentandsafeguardssystems.ThishasbeenaccomplishedinthedevelopmentoftheLOTICCode.(1)Themodelofthecontainmentconsistsoffivedistinctcontrolvolumes,asfollows:the.uppercompartment,'thelowercompartment,theportionoftheicebedfromwhichtheicehasmelted,theportionoftheicebedcontainingunmeltedice,andthedeadendedcompartments.Theicecondensercontrolvolumewithunmeltediceisfurthersubdividedintosixsubcompartmentstoallowfor'aldistributionofbreakflowtotheicebed.PUnit114.3.4-12July1997 Theconditionsinthesecompartmentsareobtainedasafunctionoftimebytheuseoffundamentalequationssolvedthroughnumericaltechniques.Theseequationsaresolvedforthreedistinc"phasesintime.Eachphasecorrespondstoadistinctphysicalcharacteristicoftheproblem.EachofthesephaseshasauniquesetofsimplifyingassumptionsbasedontestresultsfromtheWaltzHillicecondensertestfacil'ty.Thesephasesaretheblowdownperiod,thedepressurizationperiod,andthelongterm.Th'emostsignificantsimplificationoftheproblemistheassumptionthatthetotalpressureinthecontainmentisuniform.ThisassumptionisjustifiedbythefactthataftertheinitialblowdownoftheReactorCoolantSystem,theremainingmassandenergvre'easedfromthissvstemintothecontainmentaresmallandveryslowlvchanging.T'heresult'ngflowratesbetweenthecontrolvolumeswillalsobereat've'ysmal'.hesesmallflowratesareunabletomaintainsignificantpressured.'":erencesbetweenhecompartments.IInthecontrovolumes."h'charea'"avsassumedtobesaturated,steamandairareassumedtobeniorm':m'xedanda"thecontrolvolumetemperature.Theairisconsideredaper=ec"gasandthethermodynamicpropertiesofsteamaretakenfromtheASHEsteamtables.PeakContainment?ress~reTransientThefollowingarethema!ornputassumpt'onsused'".=heLOTICanalvsisforthepumpsuctionpiperupturecasewi"hthesteamge.".=ratorsconsideredasanactiveheatsourcefor=heQonaldC;CookUnits1and2containments:1.Hinimumsafeguardsareemployedinallcalculations,e.g.,oneoftwospraypumpsandoneoftwosprayheatexchangers;oneof,tworesidualheatremovalpumpsandoneoftworesidualheatremovalheatexchangerswithcross-t'e:alvesclosedprovidingflowtothecore;oneoftwosafetyinject'onpumpsandoneoftwocentrifugalchargingpumps;andoneoftwoai"returnfans.2.11x106poundsofice'nit'al'vinthe'.'cecondenserwhichisat14'F.Thistempea"reassi."..".-'anmaximizestheairmassintheicecondenserand'sconser:at.ve-ithrespecttothe27'FTechnicalSpecaton3.Theblowdo-m,reflood,andoos"refloodmassandenergyreleasesdescribed'"..Sect'on14.3.4.3.1wereused.Unit1I~~y4j~3July,1992 Blowdownandpostblowdownicecondenserdraintemperaturesof190'Fand130Fareused.(Thesenumbersarebasedon'Reference2.)Nitrogenfromtheaccumulatorsintheamountof4510poundsisincludedinthecalculations.Essentialservicewatertemperatureof87.5'Fisusedforthesprayheatexchangerandthecomponentcoolingheatexchanger.Theairreturnfaniseffective10minutesafterthetransientisinitiated.Nomaldistributionofsteamflowtotheicebedisassumed.Noicecondenserbypassisassumed.(Thisassumptiondepletestheiceintheshortesttimeandisthus,conservative.)10.Theinitialconditionsinthecontainmentaretemperaturesof57'Fintheupper,60Finthelower,60'Finthedeadendedand14'Fintheicebedvolumes."Allvolumesareatapressureof0.3psigand15percentrelativehumidity,withtheexceptionoftheic'ebed,whichisat100percentrelativehumidity.Duringtheinjectionphasewh'enthecontainmentspraypumpsaretakingsuctionfromtheRWST,spraypumpflowof2075gpmisusedfortheuppercompartmentand1006gpmforthelowercompartment.Duringtherecirculationphasewhenthecontainmentspraypumpsaretakingsuctionfromthesump,containmentsprayflowtotheuppercompartmentis2136gpm,containmentsprayflowtothelowercompartmentis1025gpm.12.RHRsprayinitiationisassumedafterswitchoverfrominjectiontorecirculationhasbeencompletedandcontainmentpressureisgreaterthanorequalto8psig.Aresidualcontainmentsprayflowrateof2000gpmisused.13.Containmentstructuralheatsinkdataareassumedwithconservativelylowheattransferrates,andmaybefoundinTable14.3.4-4.14.Theoperationofonecontainmentsprayheatexchanger(UA3.107x106BTU/hr-'F)forcontainmentcoolingandtheoperationofoneaUnit114.3.4-14July1997 residualheatremovalheatexchanger(UAforcorecooling.Thecomponentcoolingmodeledat3.58x106BTU/hr-'F:"2.22x106BTU/hroF)heatexchangerwas15.Theairreturnfanreturnsairatarateof39,000cfmfromtheuppertolowercompartment.16.Anactivesumpvolumeof40,600ft3isused.17.Therefuelingwaterstoragetankisatatemperatureof105'F.18.102%of3413MNtpowerisusedinthe.calculation.19.CreditistakenforsubcoolingoftheECCwaterfromtheRHRheatexchanger.20.Essentialservicewaterflowtothecontainmentsprayheatexchangerwasmodeledas2000gpm.Theessentialservicewaterflowtothecomponentcoolingheatexchangerwasmodeledas5000gpm.ThecomponentcoolingflowtotheRHRheatexchangerwasmodeledas5000gpm.IWiththeseassumptions,theheatremovalcapabilityofthecontainmentissufficienttoabsorbtheenergyreleasesandstill.keepthemaximumcalculatedpressurewellbelowdesign.Thefollowingplotsareprovided:Figure14.3.4-6,Containmentpressuretransient.Figure14.3.4-7,Uppercompartmenttemperaturetransients.Figure14.3.4-8,Lowercompartmenttemperaturetransients.Figure14.3.4-9,Active'andinactivesumptemperaturetransient.Figure14.3.4-10,Icemelttransient.IInaddition,Table14.3.4-5givesenergyaccountingsatvariouspointsinthetransient.Theanalysisresultsshowthatthemaximumcalculatedcontainmentpressureis11.49psig,forthedouble-endedpumpsuctionminimumsafeguardscase.Thisr14.3.4-15July1997 pressurepeakoccursatapproximately7752seconds,withicebedmeltoutatapproximately5423seconds.StruturalHeatRemov1Provisionismadeinthecontainmentpressureanalysisforheatstorageininteriorandexteriorwalls.Eachwallisdividedintoanumberofnodes.Foreachnode,aconservationofenergyequationexpressedinfinitediffeienceformaccountsfortransientconductionintoandoutofthenodeandtemperatureriseofthenode.Table14.3.4-4isasummaryofthecontainmentstructuralheatsinksusedintheanalysis.ThematerialpropertydatausedarefoundinTable14.3.4-6.Theheattransfercoefficienttothecontainmentstructuresisbasedprimar'ilyontheworkofTagami.AnexplanationofthemannerofapplicationisgiveninReference(4).WhenapplyingtheTagamicorrelation,aconservativelimitwasplacedonthelowercompartmentstagnantheattransfercoefficients.Theywerelimitedto72BTU/hr-ft2.Thiscorrespondstoasteam-airratioof1.4accordingtotheTagamicorrelation.Theimpositionofthislimitation.istorestrictthe,useoftheTagamicorrelationwithinthetestrangeofsteam-airratioswherethecorrelationwasderived.'elevantAcceptanceCriteriaTheLOCAmassandenergyanalysishasbeenperformedinaccordancewiththecriteriashownintheStandardReviewPlan(SRP)section6.2.1.3.Inthisanalysis,therelevantrequirementsofGeneralDesignCriteria(GDC)50and10CFRPart50AppendixKhavebeenincludedbyconfirmationthatthecalculatedpressureislessthanthedesignpressure,andbecauseallavailablesourcesofenergyhavebeenincluded,whichismorerestrictivethantheoldGDCcriteria,appendixHoftheoriginalFSAR,towhichtheDonaldC.CookPlantsarelicensed.Thesesourcesinclude:reactorpower,decayheat,corestoredenergy,energystoredinthereactorvesselandinternals,metal-waterreactionen'ergy,andstoredenergyinthesecondarysystem.AlthoughtheDonaldC.CookNulcearPlantisnotaStandardReviewPlanplant,thecontianmentintegritypeakpressureanalysishasbeenperformedinaccordancewiththecritieriashownintheSRPsection6.2.1.1.b,foricecondensercontainments.ConformancetoGDC's16,38,and50isdemonstratedbyshowingthatthecontainmentdesignpressureisnotexceededatanytimeinthetransient;.ThisanalysisalsodemonstratesthatthecontainmentheatremovalsystemsfunctiontorapidlyreducethecontainmentpressureandtemperatureintheeventofaLOCA.ConclusionsBasedupontheinformationpresentedfortheSteamGeneratorTubePluggingProgram,itmaybeconcludedthatoperationwiththerevisedplantconditionsandincreasedoperatingmarginsfortheDonaldC.CookNuclearPlantisacceptable.OperationwiththeRHRcrosstievalveclosedwasalsoshowntobeUnit114.3.4-16July1997 morelimitingthanoperationwiththevalveopensincethereislesssafetyinjectionwateravailabelforsteamcondensation.Operationwiththerevisedplantconditions,increasedoepratingmarginsandtheRHRcorsstievalveclosedresultsinacalculatedpeakcontainmentpressureof11.49psig,ascomparedtothedesignpressureof12.0psig.Thus,themostlimitingcasehasbeenconsidered,aridhasbeendemonstratedtoyieldacceptableresults.14.3.4.1.3.2SteamLineBreakFollowingasteamlinebreakinthelowercompartmentofanicecondenserplant,twodistinctanalysesmustbeperformed.Thefirstanalysis,theshorttermpressureanalysis,hasbeenperformedwiththeTMDCode.Thesecondanalysis,thelongtermanalysis,doesnotrequirethelargenumber"ofnodeswhichtheTMDanalysisrequires.ThecomputercodewhichperformsthisanalysisistheLOTICiS~Code.TheLOTICCodeincludesthecapabilitytocalculate.thesuperheatconditions,andhastheabilitytobegincalculationsfromtimezero.,~6i78~Themajorthermodynamicassumptionwhichisusedinthesteambreakanalysisiscompletere-evaporationofthecondensateundersuperheated,condition'sforlargebreaks.Forthemostlimitingsmallbreaks,nore-evaporationisassumed;however,convectiveheattransferasdetailedinReference(7)isused.TheversionoftheLOTICCodewhichincorporatestheaboveistheLOTIC3Code.<9~Unit114.3.4-16aJuly1997 Thiscodewasusedtoperformthesteamlinebreakanalysesandistheversionwhichhasbeenacceptedforthisuse.~1011~PakninmnTmerareTranienThefollowingarethemajorinputassumptionsusedintheLOTIC3steambreakanalysis:1.Minimumsafeguardsareemployed,e.g.,oneoftwospraypumpsandoneoftwoairreturnfans.2.Theairreturnfaniseffective10minutesafterthehigh-highcontainment'ressure'signalisread.3.Auniformdistributionofsteamflowintotheicebedisassumed.14.Thetotalinitialicemassusedwater2.11x10~lbs.5.Theinitialconditionsinthecontainmentareatemperatureof120'Fintheloweranddeadendedvolumes,atemperatureof57'Fin'theuppervolume,andatemperatureof27Fintheicecondenser.Allvolumesareatapressureof0.3psigandarelativehumidityof15<.6.Aspraypumpflowof2075gpmisused'intheuppercompartmentand1006gpminthelowercompartment.Thesprayinitiationtimeassumedwas115sec.afterreachingthehigh-highsetpoint.Therefuelingwaterstoragetanktemperatureisassumedtobe1050F.8.Theessentialservicewaterusedonthesprayheatexchangerandthecomponentcoolingwaterheatexchangerismodeledatatemperatureof87.5'F.9.,ContainmentstructuralheatsinksaspresentedinTable14.3.4-4,wereused.10.Theairreturnfanemptiesairatarateof39,000cfmfromtheuppertothelowercompartments.11.ThematerialpropertydatagiveninTable14.3.4-6wereused.CUnit114.3.4-17July1997 12.ThemassandenergyreleasesgiveninTables14.3.4-7and14.3.4-Bwereused.SincetheseratesareconsiderablylessthantheRCSdoubleendedbreaks,andtheirtotalintegratedenergyisnotsufficienttocauseicebedmeltout,thecontainmentpressuretransientsgeneratedforthepreviouslypresenteddoubleendedpumpsuctionRCSbreakisconsiderablymoresevere.13.TheheattransfercoefficientstothecontainmentstructuresarebasedontheworkofTagami.AnexplanationoftheirmannerofapplicationisgiveninReferences(4,6and7).ResultsTheresultsoftheanalysisarepresentedinTable14.3.4-9.Theworstcaseofthedoubleendedsteamline'reakswasa1.4ft2break,occurringat102>powerwithmainsteamlineisolationvalvefailure(MSIV).ThistemperaturetransientisshowninFigures14.3.4-11-Aand14.3.4-11-B.Theresultsfromthesteamlinesplitruptures(orsmallbreaks)arepresentedinTable14.3.4-10.Theworstcaseforthesecaseswasa0.942ft2smallbreak,occurringat30%power,withaMSIVfailure.AtemperaturetransientofthiscaseispresentedinFigures14.3.4-12-Aand14.'3.4-12-B.Iparameterstudieshavebeenperformedaspartofpreviousanalyses,varyingtheicemassbetween2.0and2.45millionpounds.Thesepreviousicemassparameterstudieshaveshownthatthemaximum'ontainmentcalculatedtemperaturesarenotsensitive(lessthan1'Fchange)totheseicemasschanges.SnsitivitofthResulTheprevioussectionpertainstothesteamlinebreakanalysisanditssubsequentresponseinidentifyingthelimitingsmallbreak.Thefollowingevaluationdescribesadditionalsensitivitystudiesofagenericnature,doneforbreakssmallerandupto0.942ft2at30~power(12).TheLOTIC-3computercodewasemployedinthegenericanalysis.TheEOTIC-3computercode(9)wasfoundtobeacceptablefortheanalysisofsteamlinebreakswiththefollowingrestrictions:a.Massandenergyreleaseratesarecalculatedwithanapprovedmodel.Unit-114.3.4-18July1997 ITENStructuraldesignOriginalbasePEAKDIFFER.PRESSUREDP(1-25jDP[6-25!16.6psi14.1ps'EAKDIFFER.PRESSUREDP[2-25!DP<5-25112.0psi10.5psiPEAKDIFFERPRESSUREDP(7,8,9TO25)12.0psi8.2psiPEAKPRESSURESHELLP40,P4512.0psi10.8psiNewbaseNewtotal16.8ps'8.7ps.'2.2psi13.0psi10.7psi11.2psi13.1psi14.0psiAddit'onal'v,thepeakca"a=edpress"refortheinternalshellelements41-44andthe"eak"alcua=eddifferentia'ressureacrosstheoperatingdeckfore'.emen=s3and-'erebe.o"=he12.0psi.structuraldesignvalue.Thepreviou"-vmentic.-.ed"=-'"'a=e""essuresandd'~erentlalpressuresrexceedtheiginals=rc='a'esignbasis.Thestructuraladequacyofthiscompartmentasevaluateds'.".ga=ce=ancecr'era=ndinSection5.2.2.3oftheFSARandwasconfirmed.wEarlysensitivitystudes,ustra=edŽTable14.3--21(seeSec"ion14.3.4.2.3,"Sens'".'=,'tudies")~demcnstra=edtheeffectsofchanges'..certa"..:ar'ablesonhec"erat'n-deckdf=erentialpressureandtheshe1pressure.;hepurposeo=ha"s:"':"asto'ustratethesensitivitvoft..eT.!Dcoderes=s=odi:erentinpu:andassumptionconditionsandto';stratethe'"..heren"a"a';ssco.".servatism.Thepurposefthetables"asnottosu"".;a..extrapo.ationtoo'orallsubcompartmentssincethe"ork"asdoneoraspecficsbcc.-..partmentanctrendsmavbedifferentforothercompartmen=s.Fo"example.theeec"ofin'tialcompartmentpressureonthepeak".f=erent'a"ressurecanbeeitherabenefi-orapenaltydepend'ngupon=he'o"reg"mebe-oreandduringthepeak.Additionallv,ifthepeak"""rsia"er'n"'me:hetrendwillbegeometrvdependent.Tha"is.t..e"er='ne"..tdownstreameament-'c'pressuriefferen-ybasedpons"ec'='cke::ar'ab'es.suchasi'owareasandresis"anceintoando=ot=.-.=-e'e.-..ent.A"".-..'"'"..-=""..c=bothson'candsubsonicflowreg'meper'""s""'"occ".o:e"".heto=atransient.Sincenewanalysisissufficientv'=erenthenco.-..=ared"otheo"iginalsensi"ivitybasis,.ab'e'-."..'2'hou'"""..':'sedforguidance.Unit133July,1992 14.3.4.2.3.5ShortTermContainmentAnalysisConclusionsTheresultsoftheshort-termcontainmentanalysesandevaluationsforthe'CookNuclearPowerPlantsdemonstratethat,forthepressurizerenclosure,thefanaccumulatorroomandthesteamgeneratorenclosure,theresultingpeakpressuresremainbelowtheallowabledesignpeakpressures.Fortheloopcompartments,thepeakcalculatedpressuresarehigherthantheFSARdesignallowables;fortheseareas;structuralevaluationswereperformedforthesecompartm'entsfortherevisedpeakpressures.ThestructuraladequacywasconfirmedthroughevaluationsusingSection5.2.2.3oftheFSARasacceptancecriteria.14.3.4.2.3.6ReactorCavityEvaluationThedesignoftheconcretestructuresurroundingthereactorvesselisdesignedforthefollowingcriteria.Providesupportforthereactorvesselunderthedeadweight,seismic,andreactorcoolantpiperuptureloadingconditions.2.Attenuatetheneutronfluxsufficientlytopreven'rexcessiveactivationofplantcompartments.Reducetheresidualradiationfromthecore,reactorinternals,andreactorvesseltolevelswhichwillpermitaccesstotheregionbetweentheprimaryandsecondaryshieldsafterplantshutdown.Asaresultofcriterion1,thereactorsupportconcretestructurewillwithstandthepressurethatbuildsupwithintheannulusdefinedbytheconcretecavityandthereactorvessel,followingruptureofareactorcoolantpipe,withoutlosingitsstructuralintegrity.ThereactorcavitypressureanalysiswasperformedforCookNuclearPlant.Units1and2foraNSSSpowerlevelof3600MWt.Thepurposeofthisanalysisistocalculatetheinitialpressureresponseinthereactorcavitytoalossofcoolantaccident.Thereactorcavitypressureanalysiswasperformedfor.theupperandlowerreactorcavities,thereactorvesselannulusandthereactorpipeannulus.Unit114.3.4-34July1997 TheSGTPProgramparametersaffecttheReactorCavityPressureAnalysisthroughthemassandenergyreleasesprovidedasinputintotheanalysis.ThereisnodirectimpactofSGTPlevelonshort-termmassandenergyreleaseratecalculations.ThemajorimpactresultsfromchangestoRCStemperature.Forshort-termeffects,higherreleaseratestypicallyresultfromcoolerRCSconditions.ThemassandenergyreleasesusedasinputfortheReactorCavityPressureAnalysisreflectedlimitingconditionsandtherefore,theNSSSpeformanceparametersfortheSGTPProgramdidnotimpacttheresults.AsshowninTable14.3.4-30,ventareasfromtheupperandlowerreactorcavitieswere175and70squarefeet,respectively.TheLOCAbreakflowsplitissuchthat75%ofthebreakflowdischargestotheupperreactorcavityandloopcompartments,withtheremaining25%enterincrthereactorannulus.OfUnit114.3.4-34aJuly1997 C Thecalculatedvaluesarewellbelowthedesign,values.Therefore,structuralintegrityisensuredforthepipeannuliandreactorvesselannulus.14.3.4.3MASSANDENERGYRELEASEANALYSZSFORPOSTULATEDLOSS-OF-COOLANTACCZDENTSThisanalysispresentsthemassandenergyreleasestothecontainmentsubsequenttoahypotheticalloss-of-coolant(LOCA).TheLOCAtransientistypicallydividedintofourphases:1.Blowdown-whichincludestheperiodfromaccidentinitiation(whenthereactorisatsteadystateoperation)tothetimethattheRCSreachesinitialequilibrationwithcontainment.2.Refill-theperiodoftimewhenthelowerplenumisbeingfilledbyaccumulatorandsafetyinjectionwater.Attheendofblowdown,alargeamountofwaterremains,inthecoldlegs,downcomer,andlowerplenum.Toconservativelyconsidertherefillperiodforthepurposeofcontainmentmassandenergyreleases,thiswaterisinstantaneouslytransferredtothelowerplenumalongwithsufficientaccumulatorwatertocompletelyfillthelowerplenum.Thisallowsanuninterruptedreleaseofmassandenergytocontainment.Thus,therefillperiodisconservativelyneglectedinthemassand'energyreleasecalculation.'.Reflood-beginswhenthewaterfromthelowerplenumentersthecoreandendswhenthecoreiscompletelyquenched.4.Post-Reflood(Froth)-describestheperiodfollowingtherefloodtransient.Forthepumpsuctionbreak,atwo-phasemixtureexitsthecore,passesthroughthehotlegs,andissuperheatedinthesteamgenerators.Afterthebrokenloopsteamgeneratorcools,thebreakflowbecomestwophase.GenericstudieshavebeenperformedwithrespecttotheeffectontheLOCAmassandenergyreleasesrelativetopostulatedbreaksize.Thedouble-ended~guillotinebreakhasbeenfoundtobelimitingduetolargermassflowratesduringtheblowdownphaseofthetransient.Duringtherefloodandfrothphases,thebreaksizehaslittleeffectonthereleases.Unit114.3.4-37July1997 Threedistinctlocationsinthereactorcoolantsystemloopcanbepostulatedforpiperupture.1.Hotleg(betweenvesselandsteamgenerator)2.Coldleg(betweenpumpandvessel)3.Pumpsuction(betweensteamgeneratorandpump)Forlong-termconsiderationsthebreaklocationanalyzedisthedouble-endedpumpsuctionguillotinebreak(10.48ft2).Pumpsuctionbreakmassandenergyreleaseshavebeencalculatedfortheblowdown,reflood,andpost-refloodphasesoftheLOCA.Thefollowinginformationprovidesadiscussiononeachbreaklocation.Thedouble-endedhotlegguillotinehasbeenshewninpreviousstudiestoresult'nthehighestblowdownmassandenergyreleaserates.Althoughthe.corefloodingratewouldbehighestforthisbreaklocation,theamountofenergyreleasedfromthesteamgeneratorsecondaryisminimalbecausethemajorityofthefluidwhichexitsthecorebypassesthesteamgeneratorsinventingdirectlytocontainment.Asaresult,therefloodmassandenergyreleasesarereducedsignificantlyascomparedtoeitherthepumpsuctionorcoldlegbreaklocationswherethecoreexitmixturemustpassthroughthesteamgeneratorsbeforeventingthroughthebreak.Forthehotlegbreak,genericstudieshaveconfirmedthat'hereisnorefloodpeak(i.e.,fromtheendoftheblowdownperiodthereleaseswouldcontinuallydecrease).Themassandenergyreleasesforthehotlegbreakhavenotbeenincludedinthescopeofthiscontainmentintegrityanalysisbecauseforthehotlegbreakonlythebio'wdownphaseofthetransientisofanysignificance.Sincetherearenorefloodandpost-refloodphasestoconsider,thelimitingpeakpressurecalculatedwouldbethecompressionpeakpressureandnotthepeakpressurefollowingicebedmeltout.Thecoldlegbreaklocationhasalsobeenfoundinpreviousstudiestobemuchlesslimitingintermsoftheoverallcontainmentpeakpressure.Thecoldlegblowdownisfasterthanthatofthepumpsuctionbreak,andmoremassisreleasedintothecontainment.However,thecoreheattransferisgreatlyreduced,andthisresultsinaconsiderablylowerenergyreleaseintocontainment.'tudieshavedeterminedthattheblowdowntransientis,ingeneral,lesslimitingthanthepumpsuctionbreak.Duringreflood,thefloodingrateisgreatlyreducedandtheenergyreleaserateintoth'containmentisreduced.Therefore,thecoldlegbreakisnotincludedinthescopeofthisanalysis.Unit114.3.4-38July1997 Thepumpsuctionbreakcombinestheeffectsoftherelativelyhighcorefloodingrate,asinthehotlegbreak,andtheadditionofthestoredenergyinthesteamgenerators.Asaresult,thepumpsuctionbreakyieldsthehighestenergyflowratesduringthepost-blowdownperiodbyincludingalloftheavailableenergyofthereactorcoolantsystemincalculatingthereleasestocontainment.Thisbreaklocationhasbeendeterminedtobethelimitingbreakforallicecondenserplants.Insummary,theanalysisofthelimitingbreaklocationforanicecondensercontainmenthasbeenperformed.Thedouble-endedpumpsuctionguillotinebreakhashistoricallybeenconsideredtobethelimitingbreaklocation,byvirtueofitsconsiderationofallenergysourcespresentintheRCS.ThisbreaklocationprovidesamechanismforthereleaseoftheavailableenergyintheRCS,includingboththebrokenandintactloopsteamgenerators.InclusionoftheseenergysourcesconservativelyresultsinthemaximumamountoficebeingmeltedintheeventofaLOCA.14.3.4.3.1MassandEnerReleaseData14.3.4.3.1.1ShortTermMassandEnergyReleaseDataErlDsinAnalsTheMassandenergyreleaseratetransientsfora)lthedesigncasesaregiveninFigures14.3.4-71thru14.3.4-78.AllcasesaregeneratedwiththeSATAN-VbreakmodelconsistingofMoody-ModifiedZaloudekcriticalflowcorrelationsappliedatthebreakelement.Sincenomechanisticconstraintshavebeenestablishedforfullguillotinerupture,aninstantaneouspipeseveranceanddisconnectionisassumedforalltransients.Assumptionsspecifictotheearlydesigntransientsareasfollows:Forthehotlegmassandenergyreleaseratetransienttoloopcompartments:Figures14.3.4-71,-721.2.3.5.Adoubleendedguillotinetypebreak.Abreaklocatedjustoutsidethebiologicalshield.Abreaklocatedintheworstloop.Asixnodeupperplenummodel.A16nodebrokenhotlegpipemodel.Unit14.3.4-39July1997 Adischargecoefficient(CD)equal'-o17.A100%powerconditionwithThot-606.4'FandTcold540.4F.Forthecoldlegmassandenergyreleaseratetransienttoloopcompartments:Figures14.3.4-73,1.2.3.4.5.6.7.Adoubleendedguillotinetypebreak.Abreaklocatedjustoutsidet'ebiologicalshield.Abreaklocatedintheworst'oop.Asevennodedowncomermodel.A16nodebrokenhot'egpipemodel.Adischargecoeff'cient(CD)equaltol.AfullPowercondi"ionwithThor-606.4'FandTcold-540.4'F.Forhotlegmassandenergyreleaseratet'ransentstosubcompartments:Figures14.3.4-~5,1.'"singleendedsp=tvpebreak.2.Abreakjus"ou"side""..ehot'egnozzle.3.Abreakinthepressurizerloop.4.Asixnodeupper,plenmmodel.5.A16nodebrokenhot'egpipemodel.6.Adischargecoefficie~t(CD)equalto7.Fullpowercondit'onThot606.4'FandTcold540.4'F.ForthecoldlegmassandenegvreleaseratetransienttosubcompartmentsFigures14,3.4-77,-781.A2,A3.A4.A5.A6.A7.Asingleendedsp=typebreak.breakjustoutsidetheco'd'egnozzle.breakinthepressurizer'oop.sevennodedo-incomermodel.16nodebrokenhot'egoi=emodel.dischargecoefficient(CD}eqalto1'.fullpowecond'=on.h-605."Fand.-ld-540.4'F.Forthemassnchsprayandener":"e'ase"-te""=-.s'"ttothe"ressurit.renclosure,alinepipebreak"asconsidered(Figures'3.4-79,-80):Unit114.3.4-40July,1992 l.Aguillotinetypebreakmodeledasa0.147ft'plitinthecoldlegatthepumpdischarge(areaofthesixinchpressurizersprayfeedline)andaO.OB7ft2splitinthetopofthepressurizer(areaof4inchspraynozzle).2.Valvesinspraylinesareassumedtobeopen.r3.Nopiperesistanceforthefeedlineconsidered.4.AfullpowerconditionThot=606.4'FandTcold540,4F.5.Adischargecoefficient(CD)equalto1.Themassandenergyreleaseratetransientsforallthegeneratedcasesaresupportedbyanextensiveinvestigationofshorttermphenomena.Section14.3.4.5includesdetaileddiscussionofthephenomenaandtheresults.CurrenDesinBasisAnalsesAnalyseswereconductedtosupportchangesinReactorPowerandrevisedRCSparameters,suchasenthalpy,onthemassandenergyreleases.DetailsofthesubcompartmentevaluationarepresentedinSection14.3.4.2.3.2forthePressurizerEnclosureEvaluation,Section14.3.4.2.3.4fortheLoopCompartmentsEvaluationand,Section14.3.4.2.3.6,fortheReactorCavityEvaluation.14.3.4.3.1.2LongTermMassandEnergyReleaseDataAliaionofSinleFailurAn1sisAnanalysisoftheeffectsofthesinglefailurecriteriahasbeenperformedonthemassandenergyreleaseratesforthepumpsuction(DEPS)break.Aninherentassumptioninthegenerationofthemassandenergyrelease-isthatoffsitepowerislost.Thisresultsintheactuationoftheemergencydieselgenerators,requiredtopowerthesafetyinjectionsystem.Thisisnotanissuefortheblowdownperiodwhichislimitedbythecompressionpeakpressure.Unit114.3.4-41July1997 Thelimitingminimumsafetyinjectioncasehasbeenanalyzedfortheeffectsofasinglefailure.Inthecaseofminimumsafeguards,thesinglefailurepostulatedtooccuristhelossofanemergencydieselgenerator.Thisresultsinthelossofonepumpedsafetyinjectiontrain,therebyminimizingthesafetyinjectionflow.AsadditionalconservatismhasbeenincludedinthisanalysisinthattheclosureoftheRHRcrosstievalvehasbeenconsideredbecauseitresultsinafurtherreductioninsafetyinjectionflow.TheanalysisfurtherconsiderstheRHRandSIpumpheadcurvestobedegradedby1S%andthechargingpumphead'curvetobedegradedby10~.ThisresultsinthegreatestSIflowreductionfortheminimumsafeguardscase.BlwdwnMasndEnrRelaseDaaTheSATAN-VIcodeisusedforcomputingtheblowdowntransient,andisthesameasthatusedfortheFebruary1978ECCScalculation,(Reference32).Themethodology.fortheuseofthismodelisdescribedinReference22.Table14.3.4-31presentthecalculatedmassandenergyreleasesfortheblowdownphaseoftheDEPSbreak.Forthepumpsuctionbreaks,breakpath1inthemassandenergyreleasetablesreferstothemassandenergyexitingfromthesteamgeneratorsideofthebreak;breakpath2referstothemassandenergyexitingfromthepumpsideofthebreak.Themassandenergyreleasesforthedouble-endedpumpsuctionbreak,giveninTable14.3.4-31terminate28.0secondsafterthepostulatedaccident.IkRefldMandEnrRleseDaITheWREFLOODcodeusedforcomputingtherfloodtransient,is.amodifiedversionofthatusedintheECCScalculation(Reference32).ThemethodologyfortheuseofthismodelisdescribedinReference22.TheWREFLOODcodeconsistsoftwobasichydraulicmodels-oneforthecontentsofthereactorvessel,andoneforthecoolantloops.Thetwomodelsarecoupledthroughtheinterchangeoftheboundaryconditionsappliedatthevesseloutletnozzlesandatthetopofthedowncomer.Additionaltransientphenomenasuchaspumpedsafetyinjectionandaccumulators,reactorcoolantpumpperformance,andsteamgeneratorreleaseareincludedasauxiliaryequationswhichinteractwiththebasicmodelsasrequired.TheWREFLOODcodepermitsthecapabilitytocalculatevariationsduringthecorerefloodingtransientofbasicparameterssuchascorefloodingrate,coreanddowncomerwater'evels,fluidthermodynamicconditions(pressure,enthalpy,density)throughouttheprimarysystem,andmassflowratesthroughtheprimarysystem.Unit114.3.4-42July19971 Thecodepermitshydraulicmodelingofthetwoflowpathsavailablefordischargingsteamandentrainedwaterfromthecoretothebreak;i.e.,thepaththroughthebrokenloopandthepaththroughtheunbrokenloops.'AcompletethermalequilibriummixingconditionforthesteamandemergencycorecoolinginjectionwaterduringtherefloodphasehasbeenassumedforeachloopreceivingECCSwater.EventhoughtheReference22modelcreditssteam/mixingonlyintheintactloopandnotinthebrokenloop,justification,applicability,andNRCapprovalforusingthemixingmodelinthebrokenloophasbeendocumented(Reference33).Thisassumptionisjustifiedandsupportedbytestdata,andissummarizedasfollows:Themodelassumesacompletemixingcondition(i.;thermalequilibrium)forthesteam/waterinteraction.Thecompletemixingprocess,however,ismadeupoftwodistinctphysicalprocesses.ThefirstisatwophaseinteractionwithcondensationofsteambycoldECCSwater.ThesecondisasinglephasemixingofcondensateandECCSwater.Sincethesteamreleaseisthemostimportantinfluencerothecontainmentpressuretransient,thesteamcondensationpartIofthemixingprocessistheonlypartthatneedbeconsidered.(Anyspillagedirectlyheatsonlythesump.)Themostapplicablesteam/watermixing.testdatahasbeenreviewedforvalidationofthecontainmentintegrityrefloodsteam/watermixingmodel.Thisdataisthatgeneratedin1/3scaletests(Reference4),whicharethelargestscaledataavailableandthusmostclearlysimulatestheflowregimesandgravitationaleffectsthatwouldoccurinarWR.Thesetestsweredesignedspecificallytostudythesteam/waterinteractionforPNRrefloodconditions.."-romtheentireseriesof1/3scaletests,agroupcorrespondsalmostdirectlytocontainmentintegrityrefloodconditions.Theinjectionflowratesforthisgroupcoverallphasesandmixingconditionscalculatedduringtherefloodtransient.ThedatafromthesetestswerereviewedanddiscussedindetailinReference22.Forallofthesetests,thedataclearlyindicatetheoccurrenceofveryeffectivemixingwithrapidsteamcondensation.Themixingmodelusedinthecontainmentintegrityrefloodcalculationisthereforewhollysupportedbythe1/3scalesteam/watermixingdata.Additionally,thefollowingjustificationisalsonoted.Thepost-blowdown,limitingbreakforthecontainmentintegritypeakpressureanalysisisthepumpsuctiondoubleendedrupturebreak.Forthisbreak,therearetwoflowpathsavailableintheRCSbywhichmassndenergymaybereleasedtocontainment.Oneisthroughtheoutletofthesteamgenerator,theotherviareverseflowthroughthereactorcoolantpump.SteamwhichisnotcondensedUnit114.3.4-43July1997 lbyECCSinjectionintheintactRCSloopspassesaroundthedowncomerandthroughthebrokenloopcoldlegandpump.inventingtocontainment.ThisteamalsoencountersECCSinjectionwaterasitpassesthroughthebrokenloopcoldleg,completemixingoccursandaportionofitiscondensed.Itisthisportionofsteamwhichiscondensedthatistakencreditforinthisanalysis.Thisassumptionisjustifiedbaseduponthepostulatedbreaklocation,andtheactualphysicalpresenceoftheECCSinjectionnozzle.AdescriptionofthetestandtestresultsiscontainedinReferences22and23.Table14.3.4-33presentsthecalculatedmassandenergyreleasefortherefloodphaseofthepumpsuctiondoubleendedrupturewithminimumsafetyinjection.ThetransientsoftheprincipalparametersduringrefloodareprovidedinTable14.3.4-35.Pst-RefldMandEnrRleaseDaTheFROTHcode(Reference21)isusedforcomputingthepost-refloodtransient.TheFROTHcodecalculatestheheatreleaseratesresultingfromatwo-phasemixturelevelpresentinthesteamgeneratortubes.Themassandenergyreleasesthatoccurduringthisphasearetypicallysuperheatedduetothedepressurizationandequilibrationofthebrokenloopandintactloopsteamgenerators.Duringthisphaseofthetransient,theRCShasequilibratedwiththecontainmentpressure,butthesteamgeneratorscontainasecondaryinventoryatanenthalpythatismuchhigherthantheprimaryside.Therefore,thereisasignificantamountofreverseheattransferthatoccurs.Steamisproducedinthecoreduetocoredecayheat.Forapumpsuctionbreak,atwo'phasefluidexitsthecore,flowsthroughthehotlegsandbecomessuperheatedasitpassesthroughthesteamgenerator.'Oncethebrokenloopcools,thebreakflowbecomestwophase.ThemethodologyfortheuseofthismodelisdescribedinReference22.Aftercontainmentdepressurization,themassandenergyreleaseavailabletocontainment-isgenerateddirectlyfromcoreboiloff/decayheat.Afterdepressurization,themassandenergyreleasefromdecayheatisbasedonthe1979ANSI/ANSStandard,showninReference24andthefollowinginput:1.DecayheatsourcesconsideredarefissionproductdecayandheavyelementdecayofU-239andNp-239.Unit114.3.4-44July1997 2.Decayheatpowerfromfissioning'sotopesotherthanU-235isassumedtobeidenticaltothatofU-235.3.Fissionrateisconstantovertheoperatinghistoryofmaximumpowerlevel.4.ThefactoraccountingforneutroncaptureinfissionproductshasbeentakenfromTable10ofANS(1979).5.Operationtimebeforeshutdownis3years.6.Thetotalrecoverableenergyassociatedwithonefissionhasbeenassumedtobe200MeV/fission.7.Twosigmauncertainty(2timestnestandarddeviat,ion)hasbeenappliedtothefissionproductdecay.Tables14.3.4-37presentsthetwophase(froth),massandnergyreleasedataforthedouble-endedpumpsuctionbreakwithminimumsafetyinjection.DataIforthesetablesareterminatedattheendoffrothtime,afterwhichtheLOTlCcodeperformsitsown"oreboiloffcalculation.Unit114.3.4-44aJuly1997 SourceofMassandEnerThesourcesofmassandenergyconsideredi,ntheLOCAmassandenergyreleaseanalysisaregiveninTables14.3.4-39and14.3.4-40forthedouble-endedpumpsuctionbreakwithminimumsafetyinjection.Themasssourcesarethereactorcoolantsystem,accumulators,andpumpedsafetyinjection.Theenergysourcesinclude:1.Reactorcoolantsystemwater2.Accumulatorwater3.Pumpedinjectionwater4.DecayHeat5.Corestoredenergy6.Reactorcoolantsystemmetal7.Steamgeneratormetal8.Steamgeneratorsecondaryenergy9.Secondarytransferofenergy(feedwaterintoandsteamoutofthesteamgeneratorsecondary).Inthemassandenergyreleasedatapresented,nozirc-waterreactionheatwasconsideredbecausethecladtemperaturedidnotrisehighenoughfortherateofthezirc-waterreactionheattobeofanysignificance.Theconsiderationofthevariousenergysourcesinthemassandenergyreleaseanalysisprovidesassurancethatallavailablesourcesofenergyhavebeenincludedintheanalysis.AlthoughCookNuclearPlantUnit1isnotaStandardReviewPlanPlant,thereviewguidelinespresentedinStandardReviewPlanSection6.2.1.3havebeensatisfied.Themassandenergyinventoriesarepresentedatthefollowingtimes,asappropriate:1.2.3.Unit1Timezero(initialconditions)Endofblowdowntime14.3.4-45July1997 4.Endofrefloodtime5.Timeofbrokenloopsteamgeneratorequilibration6.TimeofintactloopsteamgeneratorequilibrationThemethodsandassumptionsusedtoreleasethevarious.energysourcesaregiveninReference22exceptasnoted'intherefloodmassandenergysection,whichhasbeenapprovedasavalidevaluationmodelbytheNuclearRegulatoryCommission.SinifianModelinAsumionsThefoll'owingassumptionswereemployedtoensurethatthemassandenergyreleasesareconservativelycalculated,therebymaximizingenergyreleasetocontainment:1.Maximumexpectedopertingtemperaturesofthereactorcoolantsystem(100:fullpowerconditions)2.Anallowanceintemperatureforinstrumenterroranddeadband(+S.1'F}3.Margininvolumeof3%(whichiscomposedof1.6%allowanceforthermalexpansion,and1.4~foruncertainty>4.Coreratedpowerof3413MWtS.Allowanceforcaloimetricerror(+2percentofpower)6.Conservativecoefficientofheattransfer(i.e.,steamgeneratorprimary/secondaryheartransferandreactorcoolantsystemmetalheattransfer)7.Allowanceincorestoreenergyforeffectoffueldensification8.Amarginincorestoredenergy(+15percentincludedtoaccountformanufacturingtolerances)9.AnallowanceforRCSintitialpressureuncertainty(+67psi)Un'it,114.3.4-46July1997 10.Steamgeneratortubeplugging,.leveling(0~uniform)MaximizesreactorcoolantvolumeandfluidreleaseMaximizesheattransferareaacrosstheSGtubesReducescoolantloopresistance,whichreducesdelta-pupstreamofbreakandincreasesbreakflowThusbasedontheaboveconditionsandassumptions,aboundinganalysisofCookNuclearPlantUnits1and2ismadeforthereleaseofmassandenergyfromtheRCSintheeventofaLOCAtosupporttheSGTPProgram.14.3.4.4MASSANDENERGYRELEASEANALYSZSFORPOSTULATEDSECONDARYSYSTEMPZPERUPTURESZNSZDECONTAZNMENTAseriesofsteamlinebreakswereanalyzedtodeterminethemostseverebreakconditionforthecontainmenttemperatureandpressureresponse.Theassumptionsontheinitialconditionsaretakentomaximizethemassandenergyreleased.TherangeofpossibleoperatingconditionsfortheDonaldC.CookNuclearPlantsarepresentedinTable14.1-1forUnit1andTable14.1.0-1forUnit2.Thesubsectionsthatfollowdiscuss;theshort-termmassandenergyreleases,whichaddressessteamlinebreakeffects,inthesteamgeneratorenclosureandthefanaccumulatorroom,followedbythelong-termmassandenergyreleases.14.3.4-46aJuly1997 ~' intheirfinalpositionandthepumpisassumedtobeatfullspeedandtodrawsuctionfromtheRUST.Thevolumecontainingthelowconcentrationboratedwaterissweptintothecorebeforethe2400ppmboratedwaterreachesthecore.Thisdelay,describedabove,isinherentlyincludedinthemodeling.1.Fortheat-powercases,reactortripisavailablebysafetyinjectionsignal~overpowerprotectionsignal(highneutronfluxreactortriporOPQTreactortrip),andlowpressurizerpressurereactortripsignal.Offsitepoweris'ssumedava'ab'e.Continuedoperationofthereactorcoolantpumpsmaximzestheenergytransferredfromthereactorcoolants:stemto".hes"earngenerators.n.Nosteamgenera=or"beoggin>>'sassmedtomaxmizetheheattransfercharacter.'s"cs.BreakFlowCa>culat'psa.SteamGeneratorBlowdownTheLOFTR<lcompu=ercode(Reference26)'-'-susedtocalculate,thebreakflowsanden"halp.'esofthereleasethroughthesteamlinebreak.Blowdownmass/energyre'easesdeterminedusingLOFTRAllincludetheeffec:sofcore"o"ergeneration.mainandauxiliaryfeedwateraddit;cns,eng'neeredsafeguardssys=ems,reactorcoolantthickmetalhea=storage,and<<e:e<<$2s>>amgeneratorheattransfer.b.SteamP'antPp'.."B'owdow..Theca'culatedmassande'"..ergvreleasesincude=hecontr'butionfromtheseconda.;steampi"ng.."-oral'."cures,thesteampipingvolumebio"dombeginsa-=he"meo"hebreakandcontinuesurti'heen"'repipin-inventor;'sreleased.Theflowrateisdeterm'ne"~sing=he.'iood;correlationandthepi"ecrosssectionalarea.SinleFailureEffectsa.Failureofa...a"..s"ea-...so'ation:ave'..S::;""..""eases"hevolumeofsteamp'p'n--'='sno='s"'-e~rc.-..=hebreak.'~~enallUnit114.3.'-BlJuly,1992 valvesoperate,thepipingvolumecapableofblowingdownislocatedbetweenthesteamgeneratorandthefirst'isolationvalve.Ifthisvalvefails,thevolumebetweenthebreakandtheisolationvalvesintheothersteamlinds,includingsafetyandreliefvalveheadersandotherconn'ectinglines,willfeedthebreak.Fort~ecaseswhichmodeledafailureofaMSIV,thesteamlinevolumesassociatedwithUnit2wereassumedsincethevolumeavailableforblowdownforthisscenarioisgreaterthanUnit1.ForthecaseswhichdidnotmodelafailureofaMSIV,thesteamlinevolumesassociatedwithUnit1wereassumedsincethevolumeavailableforblowdownforthisscenarioisgreaterthanUnit2.b.Failureofadieselgeneratorwouldresultinthelossofonecontainmentsafeguardstrain,resultinginminimumheatremovalcapability.Failureofafeedwaterisolationvalvewouldresultinadditionalinventoryinthefeedwaterlinewhichwouldnotbeisolatedfromthesteamgenerator.Themassinthisvolumecanflashintosteamandexitthroughthebreak.ForconsistencywiththeFSARsteamlinebreakmass/energyreleaseanalysis,allcasesconservativelyassumedfailureofthefeedwaterisolationvalve,which'resultedintheaddi,tionalinventoryavailableforreleasethroughthesteambreakandinhigherthannormalmainfeedwaterflows.d.Failureoftheauxiliaryfeedwaterrunoutcontrolequipmentcouldresultinhigherauxiliaryfeedwaterflowsenteringthesteamgeneratorpriortorealignmentoftheauxiliaryfeedwatersystem.Forcaseswheretherunoutcontroloperatesproperly,aconstantauxiliaryfeedwaterflowof775gpmtothefaultedsteamgeneratorwasassumed.Thisvaluewasincreasedto1375gpmtosimulateafailureoftherunoutcontrol.ThecalculatedmassandenergyratesforthelongtermsteamlinebreakanalysisatfullpowerarepresentedasTables14.3.4-7and14.3.4-8.Unit114.3.4-52July1997 .25.Moody,F.J.,"MaximumflowRateofSingleComponent,Two-PhaseMixture,"ASMEpublication,PaperNO.64-HT-35.26.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription",WCAP-7907-A,April1,1984.27.Zaloudek,'.R.,"Steam-WaterCriticalFlowFromHighPressureSystems,"interimReport,HW-68936,HanfordWorks,1964.28.Henry,R.E;,"AStudyofOne-andTwo-Component,Two-PhaseCriticalFlows.atLowQualities,"ANL-7430.29.Henry,R.E.,"AnExperimentalStudyofLow-Quality,Steam-WaterCriticalFlowatModeratePressures,"ANL-7740.30.C.Kramer,F.W.,"FLASH:-AProgramforDigitalSimulationoftheLoss-of-CoolantAccident,"WestinghouseAtomicPowerDivision,WCAP-1678,January,1961.31.Zaloudek,-F.R.,"TheCriticalFlowofHotWaterThroughShortTubes,"HW-77594,HanfordWorks,1963.32."WestinghouseECCSEvaluationModel-1981Version",WCAP-9220-P-A,Rev.1,February1982(Proprietary),WCAP-9221-A,Rev.1,(Non-Proprietary).33.DocketNo.50-315,"AmendmentNo.126,FacilityOperatingLicenseNo.DPR-58(TACNo.7106),forD.C.CookNuclearPla'ntUnit1",June9,1989.Unit114.3.4-85July1997 TABLE14.3.4-1DONALDC.COOKICENDENSERANALYSIPARAMETERReactorContainmentVolume(netfreevolume)UpperCompartment,ft3IceCondenser,ft3LowerCompartment(active),ft3TotalActiveVolume,ft3774,481110,520301,5831,186,584LowerCompartment(deadended),ft3TotalContainmentVolume,ft3'0,727NotApplicableReactorContainmentAirCompressionRatio1.403NSSSPower,MNt3413DesignEnergyReleasetoContainmentInitialblowdownmassrelease,lbInitialblowdownenergyrelease,BTU542,360334.4x106IceCondenserParametersWeightoficeincondenser,lb2.11x106AddiionalSsmParamersCoreInletTemperature(+5.1F),F00552.5>>InitialSteamGeneratorSteamPressure,psia836.3AssumedMaximumContainmentBackPressure,psia26.7ThisisinformationutilizedinthecurrentcontainmentpressureanalysisdiscussedinSection14.3.4.1.3.1.*Includes+4.1'Fallowanceforinstrumenterror,deadband,and+1'Fforcoldlegstreaming.Unit114.3.4-86July1997 TABLE14.3.4-2DCBreak~Sie5f"Deck2LeakAirCompressionPeakDeckLeakageAreaSprayFlo~Rate~mResultantPeakContain-mentPressures~Doubleended"'.854012.00.6doubleended6.64612.023c6.?5501208-inchdiameter56400012.28-inchdiameter35200012.08-inchdiameter*5.55620C:11.36-inchdiameter5,05640C:10.421/2-inchdiameter5640008.51/2-inchdiameter3.05040003.0*Thiscaseassumesuppercompartmentstructuralheatsinksteamcondensationof8lb/secand30percentofdeckleakageisair.Unit114.3.4-87July,1992 TABLE14.3.4-3DeletedUnit114.3.4-88July1997 TABLE14.3.4-4STRUCTURALHEATSENKTABLE~S~CS.ICMESSUerComatment.aterial1.PaintCarbonSteelConcrete32500.32500.32500.0.0010830.04692.02.PaintConcrete10086.10086.0.0010832.03.PaintConcrete5880.5880.0.0012501.34.PaintConcrete11970.1'700.001251.0owerComartmentMateral5.PaintConcrete5069.5069.0.::1256.PaintConcrete13660.136600.001251.57.PaintConcrete16730.16730.0.00125108.PaintConcrete8665.8665.0.001252.0IceCodee9.Steel10.Steelll.Steel'80600."6650.28670.0.006630.02170.0267Unit114.3.4-89July,1992 TABLE14.3.4-4(Cont'd)STRUCTURALHEATSINKTABLE2BZh<>D12.PaintConcreteAgQ~~3336.3336.13.SteelandInsulation19100.Steel19100.0.0008330.3331.00.0625'4.SteelandInsulationConcrete13055.13055.1.01.0Unit114.3.4-90July,1992 TABLE14.3.4-5ENERGYACCOUNTINGINMILLIONSOFBTUApprox.EndofBlowdownt100secApprox.EndofRefloodt24.7secIceHeatRemoval207.7250.3StructuralHeatSinks17.3744.73RHRHeat,ExchangerHeatRemoval00SprayHeatExchangerHeatRemovalEnergyContentofSump0188.940250.0IceMelted(Pounds)0.67(10)0.84(10)IntegratedEnergiesUnit114.3.4-91July1997 TABLE14'.4-5(Cont'd)ENERGYACCOUNTINGINMILLIONSOFBTUApprox.TimeofIceMeltOutApprox.TimeofPeakPressure7752secIceHeatRemoval567.21567.21StructuralHeatSinks82.52112.68RHRHeatExchangerHeatRemoval49.077.31SprayHeatExchangerHeatRemoval58.3192.3EnergyContentofSumpIceMelted(Pounds)583.62.11599.32.11IntegratedEnergies14.3.4-92July1997 TABLE14.3.4-6MATERIALPROPERTYDATAM~atrialThermalVolumetricConductivityHeatCapacityPaint0.083328.4Concrete0.822.6Steel26.056.4SteelandInsulation3.663Unit114.3.4-93July1997 TABLE14.3.4-7UNIT1/UNIT2STEAMLINEBREAKMASS/ENERGYRELEASESINSIDECONTAINMENT1026POWER,1.4ft2DOUBLEENDEDRUPTUREFAILURE-MSIVTIMEaec.0000.20001.4003i8006.0008.00010.0011.6012F0012.2013.0014.2015.2016.0016.4017.0022.0026.0028.0030.0032.0034.0036.0045.0075.00100.0200.0280.0282.5285.0287.5MASS1bmaec.00009'753.8708.7436.7228.7069.6882.6658.6441~6224'353~4047'959'090'657.1482.1306.1253~1208.1169.113711101087~1068'006.878~0851.6831.4825.3789.4695.6619,9HNBRGYMBtuaec.000011'810.458.9408.6938'048~2818.0147.7527.4906'434.8713'622~516li9951.7841.5721.5091.4551.4081.3691.3371~3091~2851~2111.0561.024.9998~9924.9485.8349,7431292.5300.0320.0350.0610.0Unit1455.2241.3112.0106.53.23114.3.4-94F5429.2850.1308~1244.0038July1997 Thispageisleftintentionalyblank14.3.4-95July1997 TABLE14.3.4-8UNIT1/UNIT2STEAMLINEBREAKMASS/ENERGYRELEASESINSIDECONTAINMENT30oPOWER0942FT2SPLITBREAKFAILURE-MSIVT~INR*.0000.20005.6007.00010.0013.0013.6014~8015.6016F0018.0020.0026.0035.0040.0045F0050.0060.0070.0080.0090i00100.0110.0120.01500200~0270.0290.0292.5295.0297.5320.0337.5352.5367.5395.0410.0N~aSSlb..00001873.1744.1734.1718.1703.1698.1688'681.1677.1629.~1522.1284.1061.974.2905.9853.1782.0741.1719.1.07.4701.3698.3696,7695.1694.1692.9691,3667.1607.8554,0476.8403~4344.5296.7183.5136,6BNBRGYNBtusec.00002.2342.0852'732.0542.0362.0312.0202.0112.0071.9501.8251.5441.277l.1731.0911.028~9418.8925i8659.85178444.8408.8388.8369i8357.8342.8323.8028~7312.66585711.4820.4106~3531.2174.1609432.5495.0605.0Unit1114.3106.6109.514.3.4-96.1345,1252~1282July1997 Thispageisintentionallyleftblank14.3.4-97July1997 TABLE14.3.4-91.4FT2DOUBLE-ENDEDTEAMLINEBREAKSOperatingPower,10270Aux.FeedFailurew/oIw/oMSIVFailureT,Fmax'TimeofT,secmax'22717.03321.727Q94.FT2DBLE-ENDEDSTFAMLINEBREAKSOperatingPower,10270Aux.FeedFailuretMSIVFailurew/ow/oT,Fmax'22.6B321.9TimeofT,secmax'.116.13Unit1.14.3.4-98July1997 TABLE14.3.4-10STEAMLZNERUPTURESSizeofBreak,ft20.860.9420.942HotOperatingPowerc'1023030Aux.FeedFailurew/oMSIVFailurew/oww/oT,Fmax'imeofT,secmax'25.9326.0325.683.473.586.1Unit114.3.4-99July1997 TABLE14.3.4-30eeVoume(ft)V~entAea(ft)UpperReactorCavity19'31175LowerReactorCavity14'3570SteamGenerator7'56264Pressurizer3,537<2."-anRoom25,423Unit114.3.4-136July,1992 TABLE14.3.4-31DOUBLE-ENDEDPUMPSUCTIONBLOWDOWNMASSANDENERYRELEASETD4ESECONDS,101.iOI.)0ILILXI/SEC41809.946791.4BREAKFATHNO.IFLOWTHOCSANDBTC:SECBREAKI'ATHNO.2FLOWLILXL'SECr0'1842.$,23698,7')S85.2THOLrSANDBTL'SEC.0I}850.7I?9L?.fIl854.8I.10I402.80~,409.4)11.01).816.418.418.819.019.219.419.619.820.221021.421.8??.22$.624.424.64.827.047304.8449?0.54506?,I4171$.93899).8)I50).$l6248.921790.019}01.6IS}78.7If511.6l)9Sf.8I?6?1.1I?409.81?926.)12?89.710124.19779.39523.671)7.6~SSI!24172.2401?.7)961.I}8?0.3)734.83554.0))??.7254?.I411.5I909.0IrOf.$I445.61)37.0Ilid0914.$8))A475A41).019.0?6W.TATPr.)2639$.2i')791769$.214SITA13347.2I?$)7.0107$1,89553.88669.)847f.88608')ff.d5'6.0584?.)$509.'$9).43819.d)729.$354$.6}588.4}L}0.0}571,6358KI34$IA!144,}29$1.?7$fidV5$.5L94L91805,11672,21475.111$1.51050?$?).lL79.48$.'45?XS}.221588.d19910.9IISTI.618465A179LOA17008A1553?.6L$908.2!50)4AL)99).7l)S48.712$70.9I)180.$I?$&~.2I?442.3I?NL$.8118413LOS)'.I9219.1SL).79594.38561.98518.3545),24907.94597,0fd!2.63815,9440?9?.46501.d4567.9I)?9.92964.0240?.3?309.9~99~1?5.0L?50$.81180S.OLOS89.610)'10106.)9842.$9)11.59?07.f8714.fSi39.87574.47)2195900A7237.~6507.$684).7671S.46514.65959.45074.S4)II.O)474.54972.02651.24?4$.4440}.8lr0),f4148.0i449,))1$2.72086A?$57.91483.9I974.21187.02457.31744.31231.8459Ad)L47$4.2548.093.945.3Unit)14.3.4-137July1997 Thispageisintntiona1lyleftblankUnit11$3.g$35 Table14.3.4-32isintentionallydeleted.Unit114.3.4-139July1997 Thispageisintentionallylettblank14.3.4-140July1997 TABLE14.3.4-33DOUBLE-ENDEDPUMPSUCTEONMINIMUMSZREFLOODMASSANDENERGYRELEASETNESECONDS28.028.)28.S28.729.7)4.1)9.1~0.14142.2~).24$,2"47'9.'1.25}'$.'7.2$9.261.2LB!IiSECIIL2IL.d110.9108.0119.612$.714KIIIO.621)4!SI,)}11.)}48.0!50.61)9..IS$,a!)$.!129,I)I6II~.5BREAKPATHNO.IFLORA'HOI:SHADBTD'SEC168.1144.}I'O.}126.8140.4I~7,6174.1188.8'00.92$1.1414.54}8.44!4.6741).8400.8419'19.}40}'9;9IAlj,)LILIISEC1818.)1791,4I.S91117,91658,11508.014}I,1)71.$2017.!!409.940').21949)9:9.1407,4!691.6190'.5IAR$~IW,P1694,$IQRIIf)4,8BREAKPATHNO'LO'N'THODSANDBTL'EC162.IIO.)1$9.215).8I)I.S148.~I)5.0128.1:2).)5!I.aSSI,)$4.954'IS!R.9!'8.5'0.}4.)'ll.S101)10$)107.}117.}127.)1)$.)14}.!ISS.}16!.)17$.)19).)249.~N,)414,I's0'141,I!29,9'5\41.118).$17).0Ia).IIf8.1ISKS150.11480144.4}50.!S)1.0440,}~19'4lv,l'll',61!4.1121I1,52)a.}19},IRS.S140,0I6.0I1.5I!.4I$.9I!I,A:82.9241,5+I244,9I:0.1'11$'0'.4190.1IA!.0A,lIlf4I'1,4I0.1169,4}59.610f244,5240.1219.410.4194.1179.$169,I:8,9121.!114,6II1.64,$71.4Unit14.3.4-141~~I~0J Thispageisintentionallyleftblank14.3.4-l42July'997 Table14.3.4-34IntentionallyDeleted14.3.4-143July1997 ThispageisintentionallyleftblankUnit114.3.4-144July1997 MINIMUMTABLE14.3.4-35DOUBLE-ENDEDPUMPSUCTIONSIPRINCIPALPARAMETERSDURINGREFLOODTIN8BBCONDS28.028,528.929.229430533.136.241.243.047.248.250.158.261.262363366.274~383.395.3106~3121.3136.'I155.3171~8191.3210.0229.3231~3249'TBHPDBGRBB219.9217.1215.1214.82148215.1216.7218~7221.62226223.4225.3226.0227.2232.9235.1235.8236.5238.4242.82443242'243.4244.0243F2244~3243.5244.3243.8244,3244,3244'PLOODINGRATBIN/SBC.00019.9628.4523.4124.3032.5702ijhj2.2203.5303.4013.3193.1493.2563.1772,8992'173.0923.7153.5153.0352.6282'241.9491~6941.53714231.3751.3471.3381~3341.3341.33'7CARRYOVBRPRATION.000.000.000.018~041.3lh.534.635.710724.731,742.745.750.761.764.765.763766.'770.711769.768.766.764.765765.768.770~774~774.'776HBIGHT.00,561,051.181.241.501~772.002.362.502.602.812.873.003,503.673.733.804.014.52F005.566.006.537.007.558.008.529.009,4910,00DOHNCOHBRBRIGHT.00.35.SS.971273.07.0011.5S15~9916~0016.0016~0016.0016.0016.0016.0015.9815.79jsi2313.9512.9212.0211~Ss11.3111.3611.6812.0712.6113.1713.7513i8114.37PLOWPRACl'ION.2501.0001.0001.0001.000598.48S.578.575.573.566576.575.562.558~612.628.626.621,614.604.594.581~571.563.560.559.581.563.563.565.07168.8707.46999.3695'l.l6672.96194.75728.84713.345h9.3445504240,34472.34397.43981~53851.3437.7403.2408.8421.8431.8441.3447.3452.4455.8458.8460.6462.4463.9465.3465.5466.77168.8707.46999.36953.16672.96194.75728.84713.34549344SS.04240'4049.63971.23548.83419.7.0.0.0,0.000.0.0.0.0.0.0.00.0.0.0,.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0,0.0.0.0INJBCTIONACCUMULATORBPIIL(POUNDSHASSPBRSBCOND).0.0BNTHALPYBTV/LBH.0089.5089.5089.5089.5089.5089.5089.5089.5089.589589.5087.94879087.7187.6472.9972.9972.9972.9972.9972.9972.99729972.9972.9972.9972.9972,9972.9972.9972.99Unit114.3.4-145guIy1'7 ThispageisintentionallyleftblankUnit1July1997 Table14.3.4-36IntentionallyDeletedJuly1997 Thispageisintentionallyleftblank14.3.4-148July1997 TABLE14.3.4-37DOUBLE-ENDEDPUMPSUCTIONMINlMUMSXPOSTREFLOODMASSANDENERGYRELEASETZHBSBCONDS249.7254'259'264.7269>7274.7279F7284.7289.7299.7304.7309.7314.7324.7329.7339>7344.7359~7364.'7399.7404.7424,7449'454,7469.7474>'7489,7499.7519.7529.7534~7$44.7549~7$$4.7574.7579.7609.7614.7870.8870.9874.71979.71982.32222>22222.32316.8LBH/SBC200.8201.2200.4200.8200'200.3199'199.9199.0199>6198.7199.0198.1198.5197.6197~9197.0197.2196~219$.8194>8194.4193.3193.8192~5192,8191.7191~7190.7190~9190~1190.1189.5189~9188.6188.61$7.382.082.079.979.864.864.764.763.463.4BRBAKPATHNO.1PLOHTHOUSANDBTO/SBC251.0251~5250.62$1.0250.0250.5249.5249.8248.8249.5248.5248.7247.7248.1247.0247.4246.2246.5245.3244.7243,5243.1241.6242.3240.6241.0239.7239.7238'238,7237.7237>.236.92374235.823$.8234.1102,.5102>594.499.475~280.580.$78.878.8LBH/SBC285~32$4.9285.7285.3286.1285.8286.6286'287.1286.6287'287.2288,0287.6288.5288.2289'289.0289.9290.4291.4291.7292.9292~3293.7293.3294'294.4295.5295~2296.0296.0296,7296.2297>5297.529$.8404.1404.1406.3406.3103.3103.3332.2332.2BREAKPATHNO.2PLOHTHOVSmmBTV/SBC103~3103.2103.2'103,0103.1102.9103.0102.8102.9102.5102.6102.5102,5102.2102.3102.0102.1101~7101~8101>2101>3100.9100~7100,4100.4100,2100,299r999,"99'99.S99'99.499r098.998.5120.8120.888.7155.784.896.$96.5158.0158.0Unit114.3.4149July1997 TABLE14.3.4-38IntentionallyDeletedUnit114.3.4-150July1997 TABLE14.3.4<<39DOUBLE-ENDEDPUMPSUCTIONMINIMUMSITIME(SECONDS).00MASSBALANCE28.0028.00MASS(THOUSANDIBM)249.66870.942316.82INITIALINRCSANDACC771.32ADDEDMASSPUMPEDINJECTION.00TOTALADDED<<*~TOTALAVAILABLE*"~.00771.32EFLUENTACCUMULATORTOTALCONTENTSBREAKFLOWECCSSPILLTOTALEFFLUENT234.00771.32.00.00.00***TOTALACCOUNTABLE***771.32.DISTRIBUTIONREACTORCOOLANT537.32771.32.00.00771.3257.74171.20228.94542.36.00542.36771.30771.32.00.00771.3267.87161.07228.94542.36.00542.36771.30771.3291.0191.01862.33135.93.00135.93726.39.00726.39862.31771.32393.02393.021164.34135.93.00135.931028.39.001028.391164.32771.321087.361087.361058.68135.93.00135.931722.73.001722.731858.66Unit1143.4-151July1997 Thispageisintentionallyleftblank14.3.4-152July1997 TABLE14.3.4-40DOUBLE"ENDEDPUMPSUCTIONMINIMUMSITIME(SECONDS).00INITIALENERGYADDEDENERGYEFFLUENTINRCS,ACC,SGENPUMPEDINJECTIONDECAYHEATHEATFROMSECONDARYTOTALADDED***TOTALAVAILABLE*"*DISTRIBUTIONREACTORCOOLANTACCUMULATORCORESTOREDPRIMARYMETALSECONDARYMETALSTEAMGENERATORTOTALCONTENTSBREAKFLOWECCSSPILLTOTALEFFLUENT*~*TOTALACCOUNTABLE*~*ENERGYBALANCE.0028.0028.00ENERGY(MILLIONBTU)901.43901.43901.43.00.00.00.008.988.96.00-5.10-5.10.003.873.87901.43905.30905.30318.0012.7413.6420.9415.3214.4228.0613.7113.71178.97168.74168.7484.1984.0884.08271.26275.82275.82901.43570.41570.41.00334.41334.41.00.00.00.00334.41'334.41901.43904.82904.82249.66901.436.6434.20-5.1035.75937.1830.54.003.19143.6077.83252.03507.19421.73.00421."3928.92901.4328.6987.00-2.19113.491014.9230.54.003.1692.9459.46189.66375.76630.90.00630.901006.66901.4384.57181.864.03270.461171.8930.54.002.9263.4135.57116.14248.57916.99.00916.991165.56870.942316.82014.3.4-153July1997 Thispageisintentionallyleftblank14.3.4-154July1997 TABLE14~3.4-41PARAMETERSUSEDINBOUNDINGSTEAMLINEBREAKMAENERGYRELEASESFORUNIT1ANDUNIT2ParameterParameterValueNSSSPower,MWtCorePower,MWtRCSFlow,gpm/loopMinimumMeasureFlow,gpm/loop360835888850091600RCSTemperature,'FCoreOutletCoreAverageVesselAverageVessel/CoreInletSteamGeneratorOutletZeroLoad618.0615.2584.6581.3547.3547.1547.0RCSPressure,psia2250or2100SteamPressure,psiaSteamFlow(106lb/hrtotal)FeedwaterTemp.,'F82016.00449.0SGTubePlugging,Unit114.3.4-155July1997 i~ISd)38ASS38d'AV3dNOISS38dHO"P~g<<e14.34.~UpperCompartmentPeakCompressionPressureversusBlowdownRatefor.estsPith175%EnergyReleaseUnit114.3.4-166July1992 ~~gl~~ ~~~~~'II 21002'3I1%i~~~\~~~~~~~~~~~~~~~~~~~~~~~~101010T1mo(a)t10I1010rt.~re14.3.4-6lOCAMaSSEre'eleaS8COr1~m~l<%~LowerContainmentTemperahtreJULY1997 180LLCl160IuQE~~~~~~~~010I10210Time(s)101010~SumpTecnp.IMOOvoSlumpTtmp.Figure14.3.4-9LOCAMassandEnergyReleaseContainmentIntegrityActiveandInactiveSumpTemperatureTransientJULY199t I~I~II~~'~~ g1100~~~~~~~~~~~~~~~~~~~t~~100~~~~~~~~~0Time(I)~RATVkt(t)Pea1a.3.u-lacta2%~,>Asq.~Dou~EndedRupture-MSlVFailureUppercompartmentTemperatureJULY1997 ~~~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~0~~~\~~~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~0~~~~~~~~~~~Time(e)Fkp&o14.3.4-1181~POWer,1ASq.tt.DOu5eEn~Rupture-MayFalseLowerCompartmentTemperatureJULY1997 110'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~70ITime(I)FSglzI14.3.4-12+3PgfgPOWer,p~gq.ft.$p@~+-M$P(FgggreUpperCompartmentTenpetahreJULY.1997 ~~~~~~~~~~Time(I)Figure14.3.4-12-830%Power,0.942sq.ft.SplitBreak-MSIVFaireLowerCompartmentTemperatureJULY1997 14.3.51ENVIRONMENTAL'CONSEQUENCESOFALOSS-OF-COOLANTACCIDENTTheresultsofanalyses,,presented'inthissectiondemonstratethattheamountsofradioactivityreleasedtotheenvironmentintheeventofaloss-of-coolantaccidentdonotresultinradiationexposureswhichexceedthelimitsspecifiedin10CFR100.ThecalculatedradiationdosesaresummarizedinTable14.3;5-7,andFigure14.3.5-2.IncalculatingtheabovedosesitisassumedthatfollowingtheLOCA,personnelaccesstovitalareaswillnotbeundulylimitednorwillvitalsafetyequipmentbeundulydegradedbythepost-accidentradiationfields.Thisconcernwasspecificallyraisedfollowingissuanceofthelicense,andtheanalyses',specialequipment,etc,,requiredtomeetthisconcernareaddressedinReferences16through29.Chapters5and6describetheprotectivesystemsandfeaturesoftheunitwhicharespecificallydesignedtolimittheconsequencesofamajorloss-of-coolantaccident.ThecapabilityoftheEmergencyCoreCoolingSystemforpreventingmeltingofthefuelcladandtheabilityofthepassiveIceCondenserContainmenttoabsorbtheblowdownresultingfromamajorlossofcoolantarediscussedinSubchapters14.3.2and14.3.4,respectively.Thecapabilityoftheengineeredsafetyfeaturesinmeetingdoselimitssetin10CFR100isdemonstratedinthissection.BsicRadioaciviRemovalFaturesRemovalofiodinefromtheDonaldC.CookNuclearPlantcontainmentatmospherefollowingaloss-of-coolantaccidentisaffectedbythecontainmentspraysystem,theicecondenser,andseveralnaturalprocesses.TheanalysestodemonstratethartheoffsitedoseconsequenceresultsofradioactivityreleasedtotheenvironmentintheeventofalossofcoolantaccidentanalysisarepresentedintheUnit2section14.3.5."TheinformationpresentedinthisUnit1sectionof14.3.5onthattopicisforhistoricalinformationonly.However,theinformationconcerningtheConrolRoomHabitabilitAnalsisinthisUnit1sectionof14.3.5isapplicabletobothUnits1and2.UNIT114.3.5-1July1997 TheeffectivenessofaspraysysteminquicklyandefficientlyremovingradioactiveiodinehasbeenrepeatedlydemonstratedintestsconductedatOakRidgeNationalLaboratory(ORNL),ContainmentSystemsExperiment(CSE),andbyreactormanufacturers.ForCookNuclearPlant,AmericanElectr'cPowerServiceCorporation(AEPSC)hasperformedjointlywithBattelle-ColumbusLaboratoriesadetailedanalysistofurtherstudytheremovalofgaseouselementaliodinebyspraysandtocalculatetheefficiencywhencertainnon-idealfactorsareconsidered.FromthisworkwecanstatethatthespraysysteminCookNuclearPlantwillbyitselfreducetheradioactiveiodineleakagefromthecontainmentto'alueswhichresultindosesbelow10CFR100fromthemaximumhypotheticalaccident,beforetakingcreditfortheicecondenserremovinganygaseouselementaliodine.Westinghousehasdemonstratedtheremovalofaaseouselementaliodinethroughtheprocessofsteamcondensationinanicecolumn,andtheyhaveevaluatedtheefficiencyofthisiodineremoval.ThisworkisreportedinWCAP-7426TopicalReportIodineRemovalintheIceCondenserSystem,datedMarch1970.ThedatafromtheWestinghousetestsshowsefficientiodine)(1)removalfromsteamandfrommixturesofsteamandnoncondensiblessuchasair.Thesetestsandtheiodineremovalmodelappliedtotheresultsshowthattheicecondenserinalargecontainmentbuildingreduces"hegaseouselementaliodineconcentrationafteranaccident.Thetreat'mentintheWestinghousereportignoredanyotheriod'ineremovalsystem(thatis,acontainmentspraysystem,exceptfortheassumptionsimplicitinthesteamproductionpredictions).Becausetheicecondenserisasubstantialadditionaliodineremovalfeature,andalthoughtheCookNuclearPlantmeetstherequirementsof10CFR100beforetakingcreditforitsiodineremovalcapability,theeffectofarangeoficecondenseriodineremovalefficienciesontheUNIT114.3.5-2July,1997 model.TheeffectoftheIceCondenserasaniodineremovalmechanismhasbeenincludedbytheadditionofanicecondenserremovalefficiencytotherecirculationfaninputterminthecontinuityequationfortheuppervolume.Theremovalofasolublecomponentbyareactivesprayinathreevolumesystemunderconditionsofaconstantmasstransferratecoefficientineachcompartment,andwithrecirculationflowbetweenthecompartments,assumptionofcompletemixing,andicecondenserremovalofiodine,isgiven"bythefollowingequations:dCBQRQRACB+-C--CBBVPVBdCT(<RQR-=-AC+-C--CWhere:)=1-cdtTT,VBVTTFQRQR-=-AC+-C--CdtFPUTUPWhere:'BCCF=icecondenseriodineremovalefficiency=concentrationinsprayedportionoflowervolume=concentrationinuppervolume~concentrationinfan-accumulatorroomN~removalcoefficientinsprayedportionoflowervolumeAF=removalcoefficientinsprayedportionoffan-accumulatorroomATQRVBVTVpremovalcoefficientinsprayedportionofuppervolume~recirculationfanflowrate~totalvolumeoflowercompartment~totalvolumeuppercompartment'totalvolumeoffan-accumulatorroom'NIT114.3.5-15July,1982 withtheinitialconditions:t0,CCandC=0,C0,whichyieldsBBT'0att=o,-==(Xs+-)Csand-=-CsdCSQRdC~pRdtVsodtV~dC~and-'0dtWhilethesesimultaneousdifferentialequationscanbesolvedanalyticallyundertheassumptionthattheremovalcoefficientsineachregion(i:e.,andL)areconstant,thespraycodementionedpreviouslywasusedtocalculatetheseremovalcoefficientsasafunctionoftime;thatis,takingintoaccounttheconservativeassumptionthatliquidphaseandgasphase,masstransferresistancesreducetheremovalcoefficientsasafunctionoftime.TheresultofthisanalysisisshowninFigure14.3.5-1,whichshowsthedecreaseinoverallairborneiodineconcentrationasafunctionoftimeforicecondenseriodineremovalefficienciesofzero,20~and40%althoughsignificantlyhigherefficienciesareexpectedforiodineremovalinthecalculationofdoses.Thefigureshowsthatthecontainmentspiaysystembyitselfisaveryeffectiveiodineremovalmechanism.In20minutes,thetotalamountofradioactiveiodineairborneinthecontainmenthasbeenreducedbyafactorof100(i.e.,only1~oftheinitialairborneiodineconcentrationisleft)withtheabove-mentionednon-idealphenomenatakenintoaccount(Curve1).Thefigurealsoshowsthatourconservativeanalyticalrepresentationofspraycoalescencecausesasignificantreductionintheefficiencyofsprayperformance.Forexample,atabout700secondsaftertheaccident,withoutspraydropletcoalescence,theinitialairborneiodineconcentrationwouldbereducedbyafactorof1000(Curve2).Withourcoalescencemodel,thefactorisabout16(i.e.,only6coftheinitialairborneconcentrationisleft,seeCurve1).UNIT114.3.5-16Ji,a997( RecirculationLeakaeSubsequenttotheemptyingoftherefuelingwaterstoragetankduringtheinitialphaseofemergencycorecooling,waterfromthecontainmentsumpisrecirculatedbytheresidualheatremovalpumpsandspraypumpsandcooledviatheresidualheatexchangersandsprayheatexchangersandthenreturnedtotheReactorCoolantSystemandcontainment.Becausethesumpwatercontainstheradioactivityofthespilledreactorcoolant,thepotentialoff-siteexposureduetooperationoftheseexternalrecirculationpathsisevaluated.TherecirculationloopleakagetotheauxiliarybuildingfromthecomponentsoftheEmergencyCoreCoolingSystemduringrecirculationisapproximately1770cubiccentimetersperhour.TheleakagefromtheContainmentSpraySystemamountsto2806cubiccentimetersperhour.*Duringtherecirculationphaseofpost-accidentcooling,thesumpwatermaximumtemperatureiscalculatedtobeabout140Fhattexnitiationofrecirculationsothatessentiallynoleakageisflashedtovapor.Thevolatilityofiodinefromasimulatedrecirculationloopsolutionhasbeenexperimentallyinvestigated.Asolutionincludingboricacidandsodiumhydroxidewas"spiked"withmoleculariodineandthenevaporatedtodrynessat200Finaflo'wingairstream.Thevaporgeneratedbytheevaporationprocessincludediodineentrainmentmeasuredtobelessthan10ofth'oteiooneinventoryintheoriginalsolution.Forconservatismintheanalysis,itisassumedthatapproximately4576cc/hrleaktotheauxiliarybuildingforaperiodoftwohoursafterinitiationofrecirculation.Theauxil'ilduxisaryuingventilationsystemorEngineeredSafetyFeaturesVentilationSystemequippedwithcharcoalfilterthendischargesthevolatileiodinetotheatmosphere.'ThesevalueswereusedintheanalysesassumedapproximatelybuildingorbacktotheRWST.2)requireimplementationofatoutsidecontainmentthatwouldtoaslowaspracticallevels.originaloffsitedoseanalysis.Subsequent10'gpmofleakage,eitherintheauxiliaryLicenseamendments49(Unit1)and34(UnitprogramtoreduceleakagefromsystemsorcouldcontainhighlyradioactivefluidsUNIT114.3.5-25July1996 Itisalsoassumedthatallthereleasediodineactivityinventoryisin9thewaterinthesumpwhichhasatotalvolumeofabout2.2x10ccincludingreacto"coolantandemergencycoolingwater,plusthewaterfromthemeltingofapproximately50'.ofthetotalice.Undertheseassumptions,thecombinedleakagefromtherecirculationsystemresultsinadoseoflessthan0.05mremtothethyroidintwohoursatthesiteboundary.>>Thisdoseisnegligibleandwouldbeevenlesssincethetemperatureoftherecirculatedwaterissubstantiallyreducedsothatlittleornovaporizationoccurs.Thepotentialoff-siteconsequencesfromthedesignbasisleakageinthecirculatingsystemdiscussedherewasreevalue"ed.Theresultsofthesurfacedoseratesoutsidetheconcretewalltoeachofthepost-accidentrecirculatingsystemsequipmentcompartmentsareinTable14.3.5-8.Furtherreanalyseswereperformedinthisareafollowingissuanceofthelicense.Thereferencescontainingthisreanalysisarediscussedat'thebeginningofthisSection14.3.5.ontr1RmHbiailiAnalsisInroduionAnalyseswereperformedtosetoperatinglimitsonthecontrolroomemergencyventilationsysteminordertoensuretherequirementsofGeneralDesignCriterion19weremet.(GDC19limits30daydosestocontrolroompersonnelto5remwholebody,oritsequivalent.TheNRChasdefined"orequivalent"asmeaning30remtothethyroidand30remtotheskin.)ThekeyassumptionsoftheanalysisarecontainedinTable14.3.5-9.Theanalysesincludeddeterminationofaplant-specific95thpercentileatmosphericdispersionfactor(X/Q)UNIT1"Subsequentoffsitedoseandcontrolroomdoseanalysesassumedapproximately10gpmofleakage.ThisleakagecouldbefromanycombinationofrecirculationfluidleakingintheauxiliarybuildingorfromECCSfluidleakingintotheEST.Nocreditwastakenforengineeredsafeguardsfeatureventilationsystemiodineremoval.(References39&40)14.3.5-26July1997 FailureofthetoiletdamperintheopenpositionwouldrepresentaslightbreachintheUnit2controlroompressureenvelope,reducingthepositivepressuredevelopedbythepressurizationfan.Sincethecontrolroomwouldstillremainatapositivepressurewiththisdamperopen,thisfailurewouldhaveanegligibleimpactoncontrolroomdose.aFailureofthenormalintakedampertoclosewouldresultinunfilteredairbeingdrawnintothecontrolroom.Thisflowthroughthenormalintakedamperisadministrativelylimitedsuchthatitislessthan200cfm.Thus,failureofthisdampertoisolatewouldresultinanadditional200tcfm'ofunfilteredin-leakagebeingadmittedtothecontrolroomuntilsuchtimeasthedampercanbeisolated.Thecontrolroomdoseanalysesassumefailureofthisdamperoccursattimezero.Thedamperisassumedtobemanuallyclosedtwohourslater.~ResulsTheevaluationdeterminedthatdosetocontrolroomoperatorswillbewithinthe5remwholebody,30remthyroid,and30remskinlimits(includingtheeffectsoffailureofthenormalintakedamper)ifinleakageislimitedbythefollowingequation:y-0.048X~153,where:unfilteredinleakage(cfm)Xfilteredintake(cfm)Theinleakagedeterminedtolimits.limitsestablishedbythethyroiddoseanalyseswereboundtheinleakagesbasedonthewholebodyandskindoseUNIT114.3.5-29July1997 REFERENCESSECTION14351.WCAP-7426WestinghouseTopicalReport.IodineRemovalintheIceCondenserSystem,March1970.2,TID-14844:CalculationofDistanceFactorsforPowerandTestReactorSites,March,1962,DivisionofLicensingandRegulation,AEC.3.TID-14844:IbidTableIV.4.Toner,D.F.andScott,J.L.,"FissionProductReleasefromU02"NuclearSafety,No.3(2),December1961.5.Falle,J.(Editor),"UraniumDioxide:PropertiesandApplications,NavalProcedure,Divisionof-ReactorDevelopment,USAEC,"U.S.GovernmentPrintingOffice,1961.6.Croft,J.F.,etal.,"ExperimentsontheDepositionofAirborneIodineofHighConcentration,"AEEW-R265,June1963.7.McCormack,J.D.andHilliard,R.K.,"NaturalRemovalofFissionProductsReleasedfromU02FuelinCondensingSteamEnvironments,"InternationalSymposiumonFissionProductandTransportUnderAccidentConditions,CCNF-650407,April1965.8.Parker,G.W.,etal.,"BehaviorofFissionProductsReleasedfromSimulatedFuelsintheContainmentMockupFacility,"p.83,NuclearSafetyProgramSemiannualProgressReportforPeriodEndingJune30,1965,ORNL-3&43.9.Griffiths,V.,"TheRemovalofIodinefromtheAtmospherebySprays,"AMCS(S),p.45.UNIT114.3.5-30July1995 ,REFERENCESSECTION14.35(cont'.)39.CalculationRD-97-01.40.CalculationRD-94-01.UNIT114.3.5-32aJuly1997 TABLE14.3.5-9KEYASSUMPTIONSUSEDINEVALUATINGTHECONTROLROOMDOSESDUETOALOCAFORTHEDONALDC.COOKNUCLEARPIANTUNITS1AND2(Page1of3)ISourceTermThecoreiodineand,noblegasinventoriesarebasedona3588MWtcore.ThisboundsthelicensedpoverforbothUnit1(3250t%t)andUnit2(3411MWt).I'100X,ofthecorenoblegasesarereleasedtothecontainment.~lottoeKr85mKr85Kr87Kr88Xe131mXe133mXe133Xe135mXe135Xe138Curies2.6E78.3E54.8E76.8E77.1E52.9E72.0E84.1E74.2E71.6E850Xofthecoreiodineisreleasedtothecontainment.~IeataeI-131I-132I-133I-134I-135IodinePlateoutFactor0.5Curies5.OE77.3E71.0E81.1E89.5E7IodineSpeciesFraction(X)ElementalOrganicParticulate0.9550.0200.025UNIT114.3.5-41July1995 TABLE14.3.5-9(cont'd)(2Of3)ContainmentLeakRate,':/day0-24hr24hrto30days0.250.125ContainmentIodineRemovalOrganicRemovalElementalRemovalSprayIceCond.Part.Removal(hr-1)DFs100DF)100nocredittakenperUFSARFigure14.3.5-130%efficiency6.70.67AtmosphericDispersionFactor(Chi/Q)0-8hour(sec/m')7.85E-4The,0-8hourChi/Qisadjustedforwindspeed,winddirection,andoccupancyaccordingtoTable1ofMurphy-Campe.ControlRoomHVACFilterEfficency,ParticulateElemental,Organic9995MiscellaneousControlRoomVolume(ft')BreathingRate(m'/sec)62,3563.47E-4UNIT114.3.5-42July1997 0TABLE14.3.6-1CorrosionofAluminumAllosinAlkalineSodiumBorateSolutionTempsratureF275275200Alloy'ype505250056061TestDuration3hrs.3hrs.320hrs.96.284012301077015.4197"corrosionRatemg/dm/hrmils/yearExposurepHCondition9Solution9Solution9.3SolutionReferenceWCAP-7153,Table9WCAP-7153,Table9WCAP-7153,Table8WCAP-7153,Figure921021021028450525052500550527days2days2days1dBy53.014.027.1678179347692Solution9Solution9Solution9.3SprayWCAP-7153,Table7WCAP-7153,Figure8WCAP-7153,Table5WCAP-7153,Table5ORNL-TM-2425,Table3.132842122125052606160611day3days3days31.512611040316109.3Solution9.3Spray9.3SolutionORNL-TM-2425,Table3.13ORNL-TM-2368,Table3.6ORNL-TM"2368,Table3.6150150606150527days7days2.953.89.3Solution37.19.3SolutionPWRDrecentdataPWRDrecentdata-UNIT114.3.6-30July1997 TABLE14.3.6-2Post-AccidentContainmentTemeratureTransientUsedintheCalculationofAluminumCorrosionTimeInternalsec0TemeratureF0-10001000-36003600-2040020400-1Day)1Day240170187161147UNIT114.3.6-31July1990 !b.,Circumferentialbreakswereexaminedinpipingrunsandbranchrunsexceedinganominal1-.inchdiameter.Acircumferentialbreakisperpendiculartothepipeaxis,andthebreakareaisequivalenttothecross-sectionalflowareaoftherupturedpipe.Dynamicforcesresultingfromsuchbreaksareassumedtocausepipemove-mentsperpendiculartotheplaneofthebreak.DesinBasisCrackAdesignbasiscrackisdefinedasasingleopencrackofasizeofone-halfthepipeinsidediameterinlengthandone-halfthepipewallthicknessinwidth.Thelocationofthisbreakcanbeanywherealongthelengthofthepipe.CrackLocationWherehigh-energypipesareroutedinthevicinityofstructuresandsystemsnecessaryforsafeshutdownofthenuclearplant,asinglepostulatedcrackinthepipesystemadverselocation.Thecriteriaforimpingementandresultingsteam-airhasbeenpostulatedatthemostevaluatingtheeffectsofjetenvironmentarediscussedbelow.14.4.2.3CriteriaForPiRutureInducedLoads~piWhiThereactionloadresultingfrompiperupturehasthedurationandinitialconditionstoadequatelyrepresentthejetstreamdynamicsandthesystempressurecharacteristics.4Thepipingsystemsinwhichpiperuptureswereconsideredaredefined"inSection14.4.2.1Theloadsinducedbypiperuptureincludetheeffectsofanylinerestrictions,forexample,flowlimiters,betweenthepressuresourceandthebreaklocation.UNIT114.4.2~5July,1982 Ifawhippingpipeimpactsanadjacentpipeofequalorgreaternominalpipesizeandequalorheavierwallthickness,theimpactedpipewillbeconsideredtobefreefromrupture.Protectionfrompipewhipisnotrequiredifpiperuptureoccursinsuchamannerthattheunrestrainedmovementofeitherendoftherupturedpipeaboutaplastichinge,formedatthenearestrestraintoranchorage,cannotimpactanystructure,system,orcomponentrequiredforthatincident.JetIminementJetimpingementloadsonsafety-relatedequipment,components,andstructureshavebeenconsideredforthedesignbasiscasesdefinedinSection14.4.2.2.Themagnitudeandareaofinfluenceofthejetwasdeterminedforeachbreakaccordingtothebreaklocation,sizeandorientationcriteriagiveninSection14.4.2.2-andtheproceduresdescribedinSection14.4.7.Thejetforcesorloadsatthepointofruptureareconsistentwiththoseusedinthepipewhipanalysis,andwerebasedonthemostseverefluidpressureandtemperatureconditionsoccurringduringnormaloperatingmodes.JetErosionofConreeTheerosionofconcretebysteamjetswasevaluatedinNCAP-7391,"PressurizedNaterandSteamJetsEffec=sOnConcrete"byNestinghouseAtomicPowerDivision.Insummary,fivereinforcedconcretebeamsweresubjectedtosteamjetswithnozzlediametersof1,2,and4inches.Thedistancesinvestigatedbetweennozzlesandbeamswere1footand4feet;theinitialsystempressurewas2250psi.Theresultsareasfollows:UNIT114.4.2-6July,1997 themainsteamaccessway.ThemainsteampipingfromsteamgeneratorsNos.2and3,exitthecontainmentatthewestmainsteamenclosure,enterthemainsteamstopvalvesandpiperupturerestraints.Theythenenterthemainsteamaccesswaywheretheyrunhorizontallytotheturbinebuilding.TheaboveroutingisshownisometricallyinFigure14o4.2-17'esinBasesBreaksDescritionofBreakLocationsPotentialdesignbasispipebreaklocationsareasshownontheMainSteamIsometric,Figure14.4.2-17anddescribedbelow.Thestressesforthemainsteampipingsystemwerecalculatedwiththeaidofacomputerprogramusinggeneralflexibilityandresponsespectramodelanalysistechniques.Thecombinedstressvaluesduetothermalexpansion,pressure,weight,andseismicloadingconditionshavebeencomputed.TheresultsofthesecalculationsarepresentedinTables14.4.4-1and14.4.4-2.PostulateddesignbasisbreaklocationsoutsidethecontainmenthavebeendeterminedonthebasisofANSI831.1-0-1967calculatedstressvaluesandthecriteriagiveninSection14.4.2.2.Theseconsistof:a~TheterminalpointsofthemainsteamlinesattheturbinestopvalvesintheTurbineBuildingandatthecontainmentwall.b.Thebranchpointconnectioninthemainsteamlinefortheturbinebypassheadersandintermediatepointsandtheterminalpointonthisbranchline.c.Thebranchpointconnectioninthemainsteamlineforthesteamsupplytotheauxiliaryfeedwaterturbine-drivenpumps.UNIT114.4.2~15July,1982 d.Thebranchpointconnectioninthemainsteamlineforthesafetyvalveandpowerreliefvalveheader.e.Twoadditionalintermediatepoints.chosenonthebasisofrelativelyhigheststresslevel.Ofthetotalnumberofbreaksonallsteamlines,noneexceeded0.8SorA0.8(S+S).SeeTable14.4.4-4forthestressvaluesatthepostulatedbreaklocations.ReirdEuimenTheequipmentrequiredforshutdownintheeventofadesignbasisbreakinthemainsteamlineisgiveninTable14.4.2-1.Operabilityofthisequipmentprovidesforreactortripandthecapabilitytomaintainthereactorathotshutdownafterthebreak,aswellasultimatelyachievingcoldshutdown.Requiredequipmentincludesassociatedpiping,cables,andstructuresrequiredfortheequipmenttoperformitsfunction.ProtetionfromPtenilPie-HhioDamaNoadditionalpiperupturerestraintsarerequiredtoprotecttherequiredequipmentlistedinTable14.4.2-1followingthepostulatedbreaksofthemainsteamline.ProecinfromJetIminementThelocationsthatrequireprotectionfrompostulatedjetshavebeendetermined.TheselocationsaretheintersectionsbetweencablingrequiredtosupportoperationofequipmentlistedinTable14.4.2-1andthehighenergylines.Protectionisprovidedattheselocationsbyeither1)installationofimpingementbarriers,2)movingthecabletonon-criticallocations,or3)otherappropriatemeasures.UNET114.4.2-16July,1997 14.4.3ANALYSISOFEMERGENCYCONDITIONSThean'alysesofemergencyconditionslistedbelowaregeneralinnaturesinceitisdeemedappropriatetoallowforassessmentoftheincidentpriortoultimatelybringingthereactortocoldshutdown.Forallofthepostulatedhighenergybreaksources,appropriatedetectionlandshutdowncanbebroughtaboutsolelythroughuseoftheinstrumentationlistedinTable14.4.2-1.However,thefollowinganalysispresentsaconsiderationoftheexpectedmethodofoperationassociatedwiththehighenergylinebreakoutsidethecontainment.14.4.3.1,MainSmLineRuourThefollowingsystemsprovideforthenecessarysafeguardssystemresponsetoasteampiperuptureoutsidethecontainment.1.Safetyinjectionsystemactuationfromanyofthefollowing:a.Twooutofthreelowpressurizerpressuresignals.b.Lowmainsteamlinepressure(twooutoffourlines)c.Twooutofthreehighdifferentialpressuresignalsbetweenasteamlineandtheremainingsteamlines.Theoverpowerreactortrips(neutronfluxandhT)andthereactortripoccurringinconjunctionwithreceiptofthesafetyinjectionsignal.This"HYBRID"SteamlineBreakProtectionwasinstalledinUnit1duringtherefuelingoutageof1997.Theprevious"OLD"SteamlineBreakProtectionrequiredhighsteamlineflowintwooutoffourmainsteamlines,incoincidencewitheitherlow-lowreactorcoolantsystemaveragetemperature(twooutoffourloops)orlowmainsteamlinepressure(twooutoffourlines).UNIT114.4.3-1July1997 Redundantisolationofthemainfeedwaterline'.Sustainedhighfeedwaterflowwouldcauseadditionalcooldown.Therefore,inadditiontothenormalcontrolactionwhichwillclosethemainfeedwatervalves,asafetyinjectionsignalwillrapidlycloseallfeedwatercontrolvalves,andtripthemainfeedwaterpumps.Tripofthefastactingmainsteamisolationvalves(analyzedforaclosuretimeof8seconds)occursonanyofthefollowing:a.Lowsteamlinepressure(twooutoffourlines).*b.Highsteamflowinanytwosteamlinesincoincidencewithlow-lowreactorcoolantsystemaveragetemperatureinanytwoloops.Each.steamlinehasafast-closingstopvalvecapableofstoppingflowineitherdirection.Thesefourvalvespreventblowdownofmorethanonesteamgeneratorforanybreaklocationevenifonevalvefailstoclose.Inadditioneachmainsteamlineincorporatesa16inchdiameter'venturitypeflowrestrictorwhichislocatedinsidethecontainment.Thesecomponentslimittherateofreleaseofsteamforanoutsidebreak.5.Safetyinjectionactuationwillalsoinitiateautomaticstartofthe(twomotor-drivenfeedpumps.Thelow-low-levelsignalinanytwosteamgen'eratorswillstarttheturbine-drivenfeedpump.Theplantisdesignedtoacceptthesteamlineruptureoutsidethecontainmentwithconcurrentlossofoffsitepower(dieselpoweravailableonly)andasingleactivefailureinarequiredsystem.Forsmallsteamlinebreaksatpowerwnichdonotcausethereactorpowerto'reachapointatwhichanimmediatereactortripwouldoccur,noreactorcoresafetylimitwillbeviolated.Thesmallbreakwillresultinacontinuedlossofwaterfromthesecondarysideoftheplantandwilleventuallyresultincondenserhotwelllowlevel.Thislow*This'HYBRID"SteamlineBreakProtectionwasinstalledinUnit1duringtherefuelingoutageof1997.Theprevious"OLD"SteamlineBreakProtectionrequiredhighsteamflowincoincidencewithlowsteamlinepressure.UNIT114.4.3-2July1997 levelMillresultinalossofma'nfeedwater,andthereactorwillbetippedonlow-lowsteamgeneratorlevelorfeed/steamflowmismatch.Afterthetrip,steamreleasethroughthebreak.willcausereactorcoolantsystemcooldown.Thecooldownwouldoccuruntilthesteamgeneratorfeedingthebreakempties.Thecooldownwillautomaticallyinitiatesafetyinjectiononlowpressurizerpressure.Initiationofsafetyinjectionwillisolateallmainfeedwaterbytrippingclosedthemainfeedwatercontrolvalves,trippingclosedthemainfeedwaterpumpdischargevalves,andtrippingthemainfeedwaterpumps.Shouldtheplantbeathotstandbyorsubcriticalatthetimeofasmallsteamlinebreak,theplantwillbecooleddownbytheoperatorwhowouldhaveothersystemsavailablefollowingtheincidenttofacilitateanorderlyshutdownofthe'reactor.Hencethemethodandproceduretobeused,forshutdownwillbedeterminedbytheoperatorbasedontheequipmentavailable.14.4.3.2FeedwaterLineRuureThefollowingsystemsprovidenecessaryorotectionagainstalossofnormalfeedwater:1.Reactortriponlow-lowwaterlevelinanysteamgenerator.2.Reactortriponsteam/feedwaterflowmismatchcoincidentwithlowwaterlevelinanysteamgen'erator.3.Twomotordrivenauxiliaryfeedwaterpumps(450gpmnominaleach)whicharestartedon:a.Low-lowlevelinanysteamgeneatorb.TripofallmainfeedpumpsrJNIT114.4.3-3Ju3.y,1997 c.Anysafetyinjectionsignald.Blackoutsignale.Manually-Eachofthesepumpsfeedstwosteamgeneratorsinitsunit.4.Oneturbinedrivenauxiliaryfeedwaterpump(900gpm)whichisstartedon:a.Low-lowlevelinanytwosteamgeneratorsb.Reactorcoolantpumpbusundervoltagec.ManuallyTheturbinedrivenauxiliaryfeedwaterpumpfeedsthefoursteamgeneratorsonitsunit.Followingthereactorandturbinetripfromfullload,thewaterlevelinthesteamgeneratorswillfallduetothereductionofsteamgeneratorvoidfractionandbecausesteamflowthroughthesafetyvalvescontinuestodissipatethestoredandgeneratedheat.Followingtheinitiationofthelow-lowleveltrip,theaux'iaryfeedwaterpumpsareautomaticallystarted,reducingthe'rateofwaterleveldecrease.Thecapacityoftheauxiliaryfeedwaterpumpsissuchthatthewaterlevelinthesteamgeneratorsdoesnotrecedebelowthelowestlevelatwhichsufficientheattransferareaisavailabletodissipatecoreresidualheatwithout,waterrelieffromthereactorcoolantsystemrelieforsafetyvalves.Theplantisdesignedtoacceptthisfailure(feedwaterlinerupture)withconcurrentloss'ofoff-sitepower(dieselgeneratorpoweravailableonly)andasingleactivefailureinarequiredsystem.Inaddition,allrequiredsystems"areoperablefromthecontrolroomoraccessibleformanualoperation.UNIT114.4.3-4July1997 TABLE14.4.4-3intentionallydeleted;TabletextmovedtoTable14.4.10-2UNZT114.4.4-4July1997 TABLE14.4.4-4STRESSVALUESATPOSTULATEDBREAKLOCATIONSALLOVABLESTRESS~30000PSIMainSteamLeads1&4NodeFailureNo.TotalStress12346926271A,4A1B,4B1I,4I1C,4C1D,4D1E,4E1F,4F1G,4G1H,4H.MainSteamLeads2&312,50028,12020,64032,06027,82018,8108,2808,28025,7901341956820212A,3A2B,3B2H,3H2D,3D2F,3F2G,3G2C,3C2E,3E2I,3IMainSteamtoAuxiliarFeedPumTurbine7,44622,09521,1428,41322,46421,98125,1057,7557,40637403938454663A5BA5CBSBBSC5D5E5F5G18,53017,75017,39017,89019,79023,42025,7908,740(SeeTable14.4.2-5forFailureDescriptions)UNIT114.4.4-5July1990 InstrumentsTheinstrumentsrequiredforthehighenergylineincidentasidentifiedinTable14.4.10-1wereenclosedand/ormodifiedbytheirrespectivemanufacturerstowithstandtheanticipatedadverse,environment.TheinstrumentsandtransmittersidentifiedinTable14.4.10-2arelocatedinareasunaffectedbytheadverseenvironment.Theinstrumentationsupplyandsignallinesandcableroutingswerereviewedtodetermineiftheyareroutedinareasofpossibleadverseenvironment.Anyitemsfoundtoberoutedintheseareaswereeitherreroutedoradequatelyshieldedfromtheseadverseconditions.14.4.10.3~SalsThecontrolroomhndelectricalswitchgearroomareprovidedwithsealsondoorsandpenetrationswhichadequatelyprotecttheseareasfromtheadverseenvironmentassociatedwiththehigh-energylineincident.2'orthoseareascontainingequipmentwhichisnotqualifiedtoperformitsfunctionunderthisadverseenvironment,sealsareprovidedondoorsandpenetrations.Theonlydoorfromtheaboveareastotheauxiliarybuildingisanemergencyfireexitfromthebackofthecontrolroompanel.Thisdoorisunderstrictadministrativecontrol,sealedtocontrolroomisolationcriteria,andexitstoanareacontainingnohighenergylines.UNIT114.4.10-3July1997 14.4.10.4VentilationProtectionFromAuxiliarBuildinEnvironmentNostructuralmodificationswererequiredtopreventtheadversesteamenvironmentfromenteringtheelectricalswitchgearroomorthecontrolroddriveequipmentroom.Sealsonthedoorsadequatelycontrolthesteamlinputfromalinerupture.ProtectionfromTurbineBuildinEnvironmentTheSeismicClassIauxiliaryfeedwaterpumprooms,batteryrooms,andthe4160voltswitchgearroomsaresimilarlyisolatedfromanyadverseenvironmentresultingfrompostulatedhigh-energypiperupturesintheturbinebuildingbytheinclusionofback-draftorfirecurtaindampersineachventilationductpenetratingitsboundaryandbysealeddoors.UNIT114.F10-4July1990 TABLE14.4.10-1TRANSMITTERSTOBEPROTECTEDMITHSUPPLYANDSIGNALLINESFeedvaterFloeFFC-210,211,220,221,230,231,240,241,1stStaeH.P.TurbinePressureMPC-253,254fS.G.MainSteamPressureMPP-211,221,231,241MPP-210,220,230,240UNIT114.4.10-5July1990 TABLE14.4.10-2UPPLY&SIGNALLINESTOBEPROTECTEDPrsurizerNLP-151,152,153NPP-151,152,153NPS-153NRV-151,152,153StamneraorBLP-110,111,112,120,121,122,130,131,132,140,141,142MRV-213,223,233,243,211,221,231,241,212,222,232,242RfuelinWaerSraeTankRWTILA-950,951ITA-900BronIn'ecinTankITC-251ITA-250RidualHeaRmova1IRV-311,310,320IFC-315,325EssenilSrvieWaterWFA-701,705,702,706WPA-707,705,706,708WPS-701,705,702,706WPI-707,705,706,708WRV-766,767,768,769,776,777,778,779,761,762,763,764,771,772,773,774WDS-701,702,703,704CmonenClinWaterCRA-415,425CLA-410,411,412,413CRV-412,410,411UNIT114.4.10-6July1997 Forradiationconsiderati'ons,amildenvironmentisoneinwhichthe4integrateddoseislessthan10rads..Fororganicmaterials,radiationqualificationmaybereadilyjustifiedbyexistingtestdataoroperating4experienceforradiationexposuresbelow10rads.Forelectroniccomponents,however,failuresinmetalcxidesemiconductordevicesoccuratsomewhatlowerdoses.Forthisreason,radiationqualificationforelectroniccomponentsmayhavealowerexposurethreshold.14.4.11.2HELBInsidentainmentTheLOCAandtheMSLBareconsideredinsidecontainment.TheLOCAwillresultinmaximumradiationdoses,andelevatedtemperaturesandpressures.TheLOCAmayalsoactivatethecontainmentspraysystem,producinganenvironmentofchemicalsprayforsomeportionoftheaccident.TheMSLBwillusuallyproducehighertemperaturesandpressures,butwillreleaselessradiation,althoughitmayalsoactivatethecontainmentspraysystem.RadiationdosesfromtheMSLBareessentiallynilwhensteamgeneratortubeintegrityismaintained.TheLOCAandtheMSLBprovideboundingconditionsfortemperature,pressure,andradiation.Environmentconditionsarefurtherdiscussedbelow.14.4.11.2.1TemeraturanPressureThelong-termtemperatureandpressureprofilesfortheLOCAinUnits1and2areshowninFigures14.3.4-6and14.3.4-7.TemperatureandpressureprofilesfortheMSLBinsidelowercontainmentareshowninFigures14.3.4-11through14.3.4-16.Table14.4.11-2tabulatesthepeakcalculatedtemperaturesandpressuresfortheLOCAandMSLBandfeedwaterlinebreaksinsidecontainment.UNIT114.4.11-3July1997 14.4.11.2.2ChemicalSravFollowingaLOCh,thecontainmentsumpwaterwillconsistofspray~ater,meltediceimpregnatedwithsodiumtetraborate,andprimarysystem~ater.TheTechnicalSpecificationslimitsforcapacityandboronconcentrationforthevariouscontributorstothecontainmentspraywereusedtoevaluate(6)therangeofboroninthecontainmentspray.Duringthein)ectionphase,theboronconcentrationrangeofthesprayisapproximately2400-2600ppm,resultinginapHof6.8to7.0.Duringtherecirculationphase,theinitialsolutionpHis12.9forapproximatelytwohours(7)Followingthis,theboronconcentrationandpHwouldbeapproximately2400(8)'ppmand9.3,respectively14.4.11.2.3FloodinElevationThefloodlevelforthecontainmentsumpis613'-2".Anysafety-related,(9)equipmentlocatedbelo~thefloodlevelwillactuatebeforeitbecomessubmerged.Noequipmentispresentlyrequiredtobequalifiedforsubmergence.14.4.11.2.4~Humid'Ztisassumedthatthecontainmentatmospherevillbepuresteamoramixtureofsteam.andnoncondensiblesat100%relativehumidity.14.4.11.2.5RadiationRadiationdosesinsidecontainmentarecalculatedbyusingtheintegratedgammaandbetaradiationdosetablesforeithertheupperorlowervolumecompartmentsofthecontainment.Fordevicesaboveelevation613'-2",theradiationdosesinTable14.4.11-3areused.Fordevicesthathavebeen0submergedbelowelevation613'-2",theradiationdosesinTable14.4.11-4areused.UNZT114.4.11-4July1990 TABLE14.4.11-1DELETED(Forpaginationpurposes,thispagerepresentspages14.4.11-8through14.4.11-18.)UNIT114.4.11-8July1996 Table14.4.11-2PEAKENVIRONMENTALQUALIFICATIONCONDITIONSFORLOCA,MSLB,ANDFEEDWATERLINEBREAKiNSIDECONTAINMENTLOCA~Tm'PPressisLocationUpperComp.LowerComp.Inst.andF/ARoom160<')230'b23027.2<)"27.2<)28.6<"MSLBANDFEEDWATERLINEBREAK~Ltion-UpperComp.LowerComp.DC.130')326<')35.S<s)3S.S<>)USFARFigure14.3.4-7UFSARFigure14.3.4-8USFARFigure14.3.4-5USFARFigure14.3.4-46USFARFigure14.3.4-11AUFSARTable14.3.4-10UFSARTable14.3.4-46reportsthisvaluecalculatedfortheSteamlineBreakintheSteamGeneratorDoghouse.TheSteamGeneratorDoghousepeakpressureisaboundingvalueforUpperandLowerContainment.UNIT114.4.11-19July1997 Table14.4.11-9PeakEnvironmentalQaulificationConditionsforHELBOutsideContainmentComartmentEastMainSteamEnclosureWestMainSteamEnclosureMainSteamAccesswayDieselGeneratorPipeTunnelTurbineDrivenPumpRoomVestibuleESWTunnel,FeedwaterTunnelTurbineRoom(TurbineBldg.609'lev.)DieselGeneratorRoomStartupBlowdownFlashtankRoomTemeratureoF488')449398350225(')282<<)298(h)217(a)295(i).(j)Pressuresia2.622.6226.226.216.0,("16.0("(f),())(f)r(a)(f).()149(a)9(i).(j)(b)(c)(a)(e)CalculationTH-93-01,SuerheatedSteam-EastEnclosureTemeratureProfileDurinColdWeather,March3,1993.CalculationTH-90-07,SteamlineBreakOutsideConainment,November30,1990.SpecificationDCC-NOSS-106-QCN,AnalticalBasisforEnvironmentaluglificationofEuiment,Rev;2,Novmeber27,1995,valueattributedtocalculationTH-90-07.CalculationTH-96-01,DieselGeneratorRoomTemeraturesandPressuresFo]lowinanHELBintheWesttamEnclsure,January4,1996.SpecificationDCC-NOSS-106-QCN,AnalticalBasisforEnvironmentaluglificationofEuiment,Rev.2,November27,1995,valueattributedtoLetter,R.G.VaseytoB.J.Gerwe,"TemperatureofTurbineDrivenAuxiliaryPump(TDAFP)RoomFollowingaHighEnergyLineBreak,"Junell,1993.Letter,J.F.EtzweilertoL.F.Caso,February27,1980.CalculationTH-96-04,FeedwaterLineBreakinAccesswabeweenEastEnclosureandAuxiliaBuildinFebruary6,1996.UNIT114.4.11-26July1997 (jc)(l)CalculationTH-95-01,DonaldC.CookNuclearPlantAnalsisofMainSteamLineBreakinTurbineBuildinNovember6,1995.CalculationTH-95-16,Start-uBlowdownFlashtankRoomPost-HELBConditionsWithDoor3690ntoAESVntilationShafRoom,February6,1996.CalculationTH-96-05,HELBEvaluationforVariousDoorConfiurationsintheAESShaftRoom,April22,1996,Letter,R.G.VaseytoK.J.Munson,August7,1986.Apeakpressureof14.9psiawascalculatedinReference(d).Apeakpressureof16.0psiawascalculatedinReference(g).Apeakpressureof15.2psiawascalculatedinReference(h).UNIT114.4.11-27July,1997 14.0SAFETYANALYSISThischapterpresentsanevaluationofthesafetyaspectsofUnit2ofCookNuclearPlantanddemonstratesthatUnit2canbeoperatedsafelyevenifhighlyunlikelyoccurrencesarepostulated.Italsoshowsthatradiationexposurestothepublicasaresultofthesehighlyunlikelyoccurrencesdonotexceedtheguidelinesof10CFR100.Unit2ofCookNuclearPlantwasinitiallyloadedwithfuelfabricatedbyWestinghouseElectricCorporationforthefirstthreecycles.FromCycle4throughCycle7,reloadfreshfuelwasfabricatedbySiemensPowerCorporationpreviouslyknownasAdvancedNuclearFuelandExxonNuclearCompany.StartingwithCycle8,thefabricationoffreshreloadfuelisagainfurnishedbyWestinghouse,thistimeusingthe17x17Vantage5fuelassemblydesign.ThetransitiontoareactorcorecompletelycomposedofWestinghousevantage5fuelassemblieswascomp'etedatthebeginningofCycle10(i.e.,the1994refuelingoutage).Totheextentthatthesafetyanalysesin.thischapterinvolveaparticularfueldesign,itistheWestinghouseVantage5fuelthatisconsidered.Thischapterisdividedintothethreesectionsdescribedbelow,eachsectiondealingwithadifferent(licensingbasis)categoryoffaultconditions.'heANSConditionsZZ,IIZ,andIVarebasedontheanticipatedfrequencyoftheiroccurrenceandarerelatedtothelicensingbasiscategoriesasdes-cribedbelow.TherearefourANSfaultconditions:ConditionI,ConditionZI,ConditionZZIandConditionZV.ANSConditionIoccurrencesdonotre-quireasafetyanalysisbecausetheyrepresentnormaloperationaltransients.ANSConditionIIoccurrencesarefaultsthatmayoccurwithmoderatefrequencyduringthelifeoftheplant.Theyareaccommodatedwith,atmost,areactorshutdownwiththeplantbeingcapableofreturningtooperationafteracorrectiveaction.'naddition,noANSConditionIIoccurrenceshallcauseconsequentiallossoffunctionoffuelcladdingandreactorcoolantsystembarriers.ThethreecategoriesoffaultconditionsanalyzedinthischapterdonothaveaonetoonecorrespondencewiththeANSConditionsII,IZI,andIv,buteachfault'onditionin,eachcategoryisalsoidentifiedaseitherANSConditionZZ,IIIorIV.UNIT214.0-1July1997 ANSConditionIIIoccurrencesarefaultsthatmayoccurveryinfrequentlyduringthelifeoftheplant.Theymaybeaccompaniedbythefailureofonlyasmallfractionofthefuelrodsalthoughsufficientfueldamagemightoccurtopreclu.:=resumptionoftheoperationforaconsiderableoutage"ime.Thereleaseofradioactivitywillnotbesufficienttointerruptorrestrictpublicuseofthoseareasbeyondtheexclusionradius.AnANSConditionIIIoccurrencewillnot,byitself,generateanANSConditionIVfaultorresultinaconsequentiallossoffunctionofthereactorcoolant~vstemorcontainmentbarriers.ANSConditionIVoccurrencesare.aultsthatarenotexpectedto.akeplace,butarepostulatedbecausetheironsequenceswouldincludethepotentialforthereleaseofsignificantamountsofradioactivematerial.Thesearethemcdrasticoccurrencesthatmustbedesignedagainstandrepresentlimitingdesigncases.ANSConditionIVoccurrencesshallnotcauseafissionproductreleasetotheenvironmentresultinginradiationexposuretothepublicinexcessoftheguidelinesin10CFR100.AsingleANSConditionIVoccurrenceshallnotcauseaconsequentiallossofrequiredfunctionsofsystemsneededtocopewiththefaultincludingthoseoftheemergencycorecoolingsystem(ECCS)andthecontainment.eadoaoeoThema]orityofthefaultconditionsdiscussedinthissectionareASSConditionIIoccurrences.Section14.1alsoincludesanANSConditionIIIoccurrence,completelossofforcedreactorcoolant(Section14.1.6.1),andanANSConditionIVoccurrence,lockedrotor(Section14.1.6.2).Thefaultconditionslistedinthissectionareveryinfrequentandmayleadtoabreachoffissionproductbarriers.Section14.2includeseventsotherthanAHSConditionIIIoccurrences,suchasruptureofacontrolroddrivemechanismhousing(Section14.2.6),maJorruptureofamainfeedwaterpipe(Section14.2.8),andruptureofasteamline(Section14.2.5),whichareANSConditionIVoccurrences.UNIT214.0-2July1995 141COREANDCOOLANTBOUNDARYPROTECTIONANALYSISThereactorcontrolandprotectionsystemisreliedupontoprotectthecoreandreactorcoolantboundaryagainstthefollowingfaultconditions:1.UncontrolledRCCAbankwithdrawalfromasubcriticalcondition.2.UncontrolledRCCAbankwithdrawalatpower.3.RCCAmisalignment(thisencompasses14.1.3RCCAmisoperationand14.1.4RCCAdrop).4.Uncontrolledborondilution.5.Lossofforcedreactorcoolantflow(includinglockedrotor).6.Startupofaninactivereactorcoolantloop.7.Lossofexternalelectricalloadorturbinetrip.8.Lossofnormalfeedwater.9.Excessiveheatremovalduetofeedwatersystemmalfunction.10.Excessiveloadincreasell.Lossofoffsitepower(LOOP)tothestationauxiliaries.12.Turbin~eneratoroverspeed.AroastertripisderideddooasalytioaiyorposasastheissertiooofaiifulllengthRCCAsexceptthemostreactiveonewhichisassumedtoremaininthefullywithdrawnposition.ThisistoprovidemargininshutdowncapabilityagainsttheremotepossibilityofastuckRCCAconditionatatimewhenshutdownisrecpxired.UNIT214.1-1July,1993 InstrumentationisprovidedforcontinuouslymonitoringallindividualRCCAstogetherwiththeirrespectivebankoosition.Thisisdoneintheformofadeviationalarmsystem.Proceduresareestablishedtocorrectdeviations.Intheworstcasetheplantwillbeshutdowninanorderlymannerandtheconditioncorrected.Suchoccurrencesareexpectedtobeextremelyrarebasedonoperationandtestexperiencetodate.Insummary,reactorprotectionisdesignedtopreventcladdingdamageinallfaultconditionslistedabove.Thesimulationofthefaultconditionslistedabovewasbaseduponanumberofconservativeassumptionssummarizedinthefollowingsections.Parametersandassumptionsthatarecommontovarioussafetyanalysesaredescribedbelowtoavoidrepetitioninsubsequentsections.Thismaterialappliestomostofthesafetyanalysesdescribedinsections14.1and14.2andthesteammassandenergyreleaseportionsofsections14.3.4and14.4.ThereisalsosomeinformationrelatedtoLOCAs.MostoftheinformationrelatedtoLOCAandcontainmentanalysscanbefoundinsection14.3UNIT214.1-2July1997I 14.1.0PlntharacteristicsandInitialCnditionsUsedinSafea~eelses14.1.0.1PlantConditionsThe"fullwindow"(cases1through6)oftherangeofplantnominaloperatingconditionsassumedinthesafetyanalysesarepresentedinTable14.1.0-1.ITheNon-LOCAsafetyanalysesandevaluationspresentedinthefollowingsections(Sections14.1and14.2)providesupportfora"fullwindow"(cases3through6)oftherangeofplantnominaloperat'ngconditionswhenafullWestinghouseVANTAGE5coreisinplaceatCookNuclearPlantUnit2.'ases1and2wereusedforsafetyanalysesfortwo,fueltransitioncycles,cycles8and9.Briefdescriptionsofcases1through6followsTable14.1.0-1.UNIT214.1.0-1July1997 14.1.0.2InitialConditionsFormostoccurrenceswhichareDNBlimited,nominalvaluesofinitialconditionsandtheRCSminimummeasuredflow(366,400gpm)areassumed.Theallowancesoncorethermalpower,RCStemperature,pressureandflowaredeterminedonastatisticalbasisandareincludedinthedesignlimitDNBRasdescribedinWCAP-11397(Reference1).ThisprocedureisknownastheRevisedThermalDesignProcedure(RTDP)ForoccurrencesthatarenotDNBlimitedorinwhichRTDPisnotemployed,theinitialconditionsareobtainedbyaddingthemaximumsteady-stateerrorstonominalvalues.Inaddition,theRCSthermaldesignflow(354,000gpm)isused.Thefollowingmaximumsteady-stateerrorsareconsidered:A.CorePower+2;calorimetricerrorallowanceB.RCSAverageTemperature0o+4.1F/-5.6FcontrollerandmeasurementerrorallowanceC.RCSPressure~62.6psisteady-statefluctuationsandmeasurementerrorallowanceTables14.1.0-2and14.1.0-3summarizeinitialconditionsandcomputercodesusedinthesafetyanalysisofoccurrencesinsections14.1.1through14.1.12andsections14.2.5,14.2.6,and14.2.8,andshowswhichoccurrencesemployedaDNBanalysisusingtheRTDP.14.1.0.3CoreThermalPowerDistributionThetransientresponseofthereactorsystemisdependentontheinitialcorethermalpowerdistribution.ThenucleardesignofthereactorcoreminimizesadversepowerdistributionthroughtheplacementofRCCAsandthroughoperationinstructions.Thepowerdistributionmaybecharacterizedbytheradialpeakingfactor,F<,andthetotalpeakinghHfactor,F.ThepeakingfactorlimitsaregivenintheTechnicalSpecifications.UNIT214.1.0-2July1997 ForoccurrenceswhichmaybeDNBlimitedtheradialpeakingfactorisofimportance.TheradialpeakingfactorincreaseswithdecreasingpowerlevelduetoRCCAinsertion.,This'ncreaseinF-isincludedinthecore4HlimitsillustratedinFigures14.1.0-5and14.1.0-6.AlloccurrencesthatmaybeDNBlimitedareassumedtobeginwithaFconsistentwiththehHinitialpowerleveldefinedintheTechnicalSpecifications.~N,TheaxialpowershapesusedintheDNBcalculationarediscussedinChapter3.TheradialandaxialpowerdistributionsdescribedaboveareinputtotheTHINCCodeasdescribedinChapter3.Foroccurrenceswhichmaybeoverpowerlimitedthetotalpeakingfactor,"Fisofimportance.AlloccurrencesthatmaybeoverpowerlimitedareassumedtobeginwithplantconditionsincludingpowerdistributionswhichareconsistentwithreactoroperationasdefinedintheTechnicalSpecifications.Foroverpoweroccurrenceswhichareslowwithrespecttothefuelrodthermaltimeconstant,forexampletheuncontrolledborondilutionoccurrencewhichlastsmany-minutes,andtheexcessiveloadincreaseoccurrencewhichreachesequilibriumwithoutcausingareactortrip,fueltemperaturelimitsarediscussedinChapter3.Foroverpoweroccurrenceswhicharefastwithresoecttothefuelrodthermaltimeconstant,forexampletheuncontrolled,RCCAbankwithdrawalfromasubcriticalconditionandRCCAejection,occurrenceswhichresultinalargepowerriseoverafewseconds,adetailedfuelheattransfercalculationisperformed.Althoughthefuelrod.thermaltimeconstantisafunctionofsystemconditions,fuelburnupandfuelrodpower,atypicalvalueatbeginning-of-life(BOL)forhighpowerfuelrodsisapproximately7seconds.14.1.0.4Reactivity"oefficientsAssumedintheSafetyAnalysesThetransientresponseofthereactorcoolantsystemisdependentonreactivityfeedbackeffcts,inparticularthemoderatortemperatureUNET214.1.0-3July,1997( coefficientandtheDopplerpowercoefficient.ThesereactivitycoefficientsandtheirvaluesarediscussedindetailinChapter3.Inthesafetyanalysesofcertainoccurrences,conservatismrequirestheuseoflargereactivitycoefficients,whereasinthesafetyanalysesoftheotheroccurrences,conservatismrequirestheuseofsmallreactivitycoefficients.Someanalyses,suchaslossofreactorcoolantfromcracksorrupturesintheRCS,donotdependonreactivityfeedbackeffects.ThevaluesusedaregiveninTables14.1.0-2and14.l..0-3.Figure14.1.0-1showstheupperandlowerDopplerpowercoefficients,asafunctionofcorethermalpower,usedinthesafetyanalyses.Thejustificationforuseofconservativelylargeversussmallreactivitycoefficientsistreatedonacase-by-casebasis.Insomecasesthisimpliesthatconservativeparametersfrombothbeginningandend-of-life(EOL)areusedforagivenoccurrencetoboundtheeffectsofcorelife.Forexample,inaloadincreaseoccurrenceitisconservativetouseasmallDopplerdefecttypicalofend-of-life(EOL)andasmallmoderatorcoefficienttypicalofbeginning-of-life(BOL)14.1.0.5RodClusterControlAssembly(RCCA)InsertionCharacteristicsThenegativereactivityinsertionfollowingareactortripisafunctionoftheaccelerationoftheRCCAandthevariationinRCCAworthasafunctionofRCCAposition.Withrespecttosafetyanalyses,thecriticalparameterisfromthestartofinsertionuptothedashpotentryorapproximately85:oftheRCCAtravel.Forsafetyanalyses,theinsertiontimetodashpotentryis-conservativelytakenas2.7seconds.TheRCCApositionversustimeassumedinthesafetyanalysesisshownonFigure14.1.0-2.versusnormalizedRCCAinsertionforacorewheretheaxialpowerdistributionisskewedtothelowerregionofthecore.Thiscurveisusedasinputtoallsafetyanalysespointkineticscoremodels.ThereJuly,l997)~14.1.0-4UNIT2Figure14.1.0-3showsthefractionoftotalnegativereactivityinsertion isinherentconservatismintheuse'ofthiscurveinthatitisbasedonabottomskewedaxialpowerdistribu"ion.Forcasesotherthanthoseassociatedwithaxialxenonoscillations,significantnegativereactivitywouldhavebeeninsertedduetothemorefavorableaxialpowerdistributionexistingpriortotrip.ThenormalizedRCCAnegativereactivityinsertionversustimeisshownonFigure14.1.0-4.ThecurveshowninthisfigurewasobtainedbycombiningFigures14.1.0-2and14.1.0-3.Exceptwherespecificallynotedotherwise,thesafetyanalysesassumeatotalnegativereactivityinsertionof4.0'.hk/kfollowingareactortrip.Thisassumptionisconsistentwiththecoredesign.ThenormalizedRCCAnegativereactivityinsertionversustimecurveforanaxialpowerdistributionskewedtothebottom(Figure14.1.0-4)'susedinthesafetyanalyses.Forsafetyanalysesrequiringtheuseofadimensionaldiffusiontheorycode(TWINKLE,Reference6),thenegativereactivityinsertionresultingfromareactortripiscalculateddirectlybythe.codeandisnot"separablefromotherreactivityfeedbackeffects.Inthiscase,theRCCApositionversustimeofFigure14.1.0-2isusedasacodeinput.14.1.0.6ReactorTripPointsandTimeDelaystoReactorTripAssumedintheSafetyAnalyses14.1.0.6.aReactorProtectionSystem(RPS)SetpointsandTimeDelaysjAreactortripsignalactstoopenthetworeactortripbreakersconnectedinseriesfeedingpowertotheRCCAcontroldrivemechanisms(CDMs).ThelossofpowertothemechanismcoilscausesthemechanismstoreleasetheRCCAs,whichthenfallbygravityintothecore.Therearevariousinstrumentationdelaysassociatedwitheachtrippingfunction,includingdelaysinsignalactuation,inopeningthereactortripbreakers,andinthereleaseoftheRCCAsbytheCDMs.ThetotaldelaytoareactortripUNIT214.1.0-5July1997I isdefinedasthetimedelayfromthetimethatreactortripconditionsarereachedtothetimetheRCCAsarefreeandbegintofall.LimitingreactortripsetpointsassumedinthesafetyanalysesandthetimedelayassumedforeachreactortripfunctionaregiveninTable14.1.0-4.Itshouldbenotedthatthehighpressurizerwaterlevelreactortripwasassumedinthesafetyanalyses.Thesafetyanalysespresentedinthefollowingsectionsassumethatthereferenceaveragetemperatures(T'ndT")usedintheOTDTandOPDTsetpointequationsarerescaledtothefullpowerRCSaveragetemperatureeachtimethecycleRCSaveragetemperatureischanged.Itisalsoassumedthatthereferencepressure(P')intheOTDTequationissetequaltotheappropriatenominalRCSpressure(2250psiaor2100psia).ThesafetyanalysesalsoassumerecalibrationoftheNISexcoredetectorstocompensateforthechangesincoolantdensityeachtimethe,cycleoperatingconditionsarechanged.ReferenceismadeinTable14.1.0-4totheovertemperature(OT)andoverpower(OP)dTreactortripsshowninFigures14.1.0-5and14.1.0-6.TheserevisedOThTandOPETsetpointswerecalculatedbasedonthenewcorethermalsafetylimitsusingthemethodologydescribedinReference2.BecauseoftheuseoftheW-3correlar.ionforANFfuelinthetransitioncycles,thecorethermalsafetylimitsfortransitioncyclesarelimitedbyrheANFfuel.ForafullVANTAGE5fuel,thesecorethermalsafetylimitsarelessrestrictive.TwosetsofOThTandOP4Tsetpointswerecalculated.Thefirstsetofthesesetpointsiscalculatedbasedonr.hemostrestrictivecorethermalsafetylimitsinthetransitioncycles(Cycles8and9)andthesecondsetiscalculatedforafullcoreofVANTAGE5fuel.ThefollowingDNB-relatedsafetyanalysesareperformedtwicetoincludethevariationinthecorethermalsafetylimitsandtheOThTandOPhTreactortripsetpointsbetweenamixedcoreandafullVANTAGE5core:(a)UncontrolledRCCAWithdrawalatPower(b)ExcessiveLoadIncreaseIncidentUNIT214.1.0-6July,1997 (c)ExcessiveHeatRemovalduetoFeedwaterSystemMalfunctions(d)LossofExternalElectricLoadorTurbineTripFigure14.1.0-5presentstheallowableRCSloopaveragetemperatureendvesselhTasafunctionofRCSpressureforthetransitioncycles(Cycles8and9).Thisfigurepresentsthemostlimitingoperatingconfiguration(nominalcorethermalpower3588MWt,nominalRCST-avg0576F,nominalRCSpressure2250psia)ofthepotentialfuturereratingrangeofconditionsdescribedinTable14.1.0-1(case1)forthecalculationoftheOTdTandOP4Tprotectionsetpoints.ARCSflowrateof366,400gpmwasassumedforgeneratingthesesetpoints.TheOTETandOPETsetpointscalculatedforthetransition"ycles(cycles8and9)arebeingusedincycles10and11.Thisisconservative.Figure14.1.0-6presentstheallowableRCSloopaveragetemperatureandvesselhTasafunctionofRCSpressureforthecycles(Cycle10andbeyond)withafullVANTAGE5core.Thisfigurepresentsthemostlimitingoperatingconfiguration(nominalcorethermalpower3588Mwt,cnominalRCST-avg581.3F,nominalRCSpressure2100psia)ofthepotentialreratingrangeofconditionsdescribedinTable14.1.0-1(case4)forthecalculationoftheOTATandOPhTprotectionsetpoints.A'CSflowrateof366,400gpmwasassumedforgeneratingthesesetpoints.TheboundariesofoperationdefinedbytheOPhTandOThTtripsetpointsnarcrepresentedas"protectionlines"onthesediagrams.Theprotectionlinesincludealladverseinstrumentationandsetpointerrorssothatundernom'inalconditionsareactortripwouldoccurwithintheareaboundedby,theselines.TheutilityofthesediagramsisthefactthatthelimitimposedbyanygivenDNBRcanberepresentedasaline.TheDNBRlinesrepresentthelocusofconditionsforwhichDNBRequalsthesafetyanalysislimitvalue.AllpointsbelowandtotheleftofaDNBlineforagivenRCS,pressurehaveaDNBRgreaterthanthesafetyanalysislimitvalue.ThesediagramsshowthatDNBispreventedforallcasesifUNiT214.1.0-7July1997 theareaenclosedwithinthemaximu...protectionlinesisnottraversedbytaheapplicableDNBRlimitlineatanypointforagivenpressurizerpressure.Theareaofpermissibleoperation<power,pressure,andtemperature)isboundedbyacombinationofreactortrips:highneutronflux(fixedsetpoint);highpressurizerpressure(fixedsetpoint);lowpressurizerpressure(fixedsetpoint);OverpowerandOvertemperaturehT(variablesetpoints).ThedifferencesbetweenthelimitingtripsetpointassumedforthesafetyanalysesandthenominalreactortripsetpointinTable14.1.0-4representsanallowanceforinstrumentationchannelerrorandsetpointerror.Nominalreactortripsetpointsarespecifiedintheplant/TechnicalSpecificationsandareshowninTable14.1.0-4forcompleteness.Thereactorprotectionsystem(RPS)channelsarecalibratedandinstrumentresponsetimesdeterminedperiodicallyinaccordancewiththeTechnicalSpecifications.14.1.0.6.bEngineeredSafetyFeatures(ESF)ActuationSetpointsandTimeDelaysTable14.1.0-5presentsthelimitingESFsetpointsassumedinthesafetyanalysesandthetimedelayassumedforeachESFactuationfunction.Thenominalvalueofthelowsteamlinepressuresetpointassumedwas500psig.lTherevisedlowsteamlinepressuresetpointvalueprovidesoperatingmarginforthepotentialreducedtemperatureoperatingconditionsofTable14.1.0-1(cases2,5,and6).ThedifferencebetweenthelimitingESFactuationsetpointassumedforthesafetyanalysesandthenominalESFactuationsetpointrepresentsanallowanceforinstrumentationchannelerrorandsetpointerror.NominalESFactuationsetpointsarespecifiedinplantTechnicalSpecificationsandareshowninTable14.1.0-5forcompleteness.14.1.0.7PlantSystemsandComponentsAvailableforMitigationofOccurrenceEffectsUNIT214.1.0-8July1997 Table14.1.0-6isasummaryofreactortrip.functions,engineeredsafety.featuresactuationfunctions,andotherequipmentavailableformitigationofaccidenteffects.ThetripsandactuationsintheTable14.1.0-6includesomethatareanticipatoryand/orbackupfunctions..Thesetripsandactuationsarenotnecessarilytakencredit,forthesafetyanalyses.XnthesafetyanalysesoftheChapter14.1occurrences,controlsystemactionisconsideredonlyifthatactionresultsinmoresevereoccurrenceresults.Nocreditistakenforcontrolsystemoperationsifthatoperationmitigatestheresultsofanoccurrence.Forsomeoccurrences,theanalysisisperformedbothwithandwithoutcontrolsystemoperationtodeterminetheworstcase.14.1.0.8ResidualDecayHeatForthenon-LOCAsafetyanalyses,conservativecoreresidualdecayheatgenerationbasedonlong-termoperationattheinitialpowerlevelprecedingthereactortripisassumed.The1979ANSresidualdecayheatstandard(Reference3)plusuncertaintywasusedforcalculationofresidualdecayheatlevels.Figure14.1.0-7presentsthiscurveasafunctionoftimeaftershutdown.14.1.0.8.1DistributionofResidualDecayHeatFollowingaLOCADuringaLOCA,thecoreisrapidlyshutdownbyvoidformationorRCCA'nsertion,orboth,andalargefractionoftheheatgenerationtobeconsideredcomesfromfissionproductdecaygammarays.Thisheatisnotdistributedinthesamemannerassteadystatefissionpower.Localpeakingeffectsheatgenerationstatefactorofwhichareimportantfortheneutrondependentpartofthedonotapplytothegammaraycontribution.Thesteady97.4%whichrepresentsthefractionofheatgeneratedwithinthecladandpelletdropsto95~forthehotfuelrodinaLOCA.'CreditisnottakenforRCCAinsertionforthelargebreakLOCA.UNET214.1.0-9July1997 Forexample,0.5secondsaftertheinitiationofapostulateddouble-endedlargebreakLOCA(LBLOCA)about30%oftheenergygeneratedinthefuelrodsresultsfromgammarayabsorption.Partofthegammarayfromthehotfuelrodisabsorbedinthefuelrodssurroundingthehotfuelrod.Aconservativeestimateofthiseffectisthat10'.ofthegammaray(or3:ofthetotalenergy)fromthehotfuelrodisdepositedinthefuelrodsurroundingthehotfuelrod.Sincethewaterdensityisconsiderablyloweratthistime,anaverageof98%oftheavailableenergyisdepositedinthefuelrods.Theremaining2%energyisabsorbedbywater,thimbles,sleeves,andgrids.Theneteffectisthatafactorof0.95(98:-3%)ratherthan0.974shouldbeappliedtotheresidualdecayheatproductioninthehotfuelrod.14.1.0.9OtherAssumptionsThoseanalysesthatmodelthemitigativeeffectsofProtectionand/orEngineerSafeguardsFeatureshaveusedtheresponsetimesprovidedinTables7.2-6and7.2-7.SomeinputassumptionsdiffersomewhatfromvaluesthatmaybefoundelsewhereintheUFSAR.Inparticular,Tables14.1.0-7,14.1.0-8,and14.1.0-9displayRCSvolumes,steamgeneratormass,RCSpressuredropsusedinthecurrentanalyses.Thesetablescanbefoundinreference9.14.1.0.10ComputerCodesUtilizedSummariesofsomeoftheprincipalcomputercodesusedinthesafetyanalysesaregivenbelow.Othercodes,inparticular,veryspecializedcodesinwhichthemodelinghasbeendevelopedtosimulateonegivenoccurrence,suchasthoseusedintheanalysisofthereactorcoolantsystempiperupture(Section14.3.1),aresummarizedintheirrespectivesafetyanalysessections.ThecodesusedintheanalysisofeachoccurrencehavebeenlistedinTables14.1.0-2and14.1.0-3.UNIT214.1.0-10July1997I 1.FACTRANFACTRANcalculatesthetransienttemperaturedistributioninacross-sectionofametalcladUOfuelrodandthetransientheat2fluxatthesurfaceofthecladusingasinputthenuclearpowerandthetime-dependentcoolantparameters(pressure,flow,temperature,density).Thecodeusesafuelmodelwhichsimultaneouslyexhibitsthefollowingfeatures:UNIT214.1.0-11July1997 a.Asufficientlylargenumberofradialspaceincrementstohandlefasttransientssuchasarodejectionaccidents.b.Materialpropertieswhicharefunctionsoftemperatureandasophisticatedfuel-to-cladgapheattransfercalculation.c.Thenecessarycalculationstohandlepost-departurefromnucleateboiling(DNB)transients:filmboilingheattransfercorrelations,Zircaloy-waterreaction,andpartialmeltingofthefuel.FACTRANisfurtherdiscussedinReference4.LFTRANTheLOFTRANprogramisusedfortransientresponsestudiesofapressurizedwaterreactor(PWR)systemtospecifiedperturbationsinprocessparameters.All4(four)reactorcoolantloopsaremodeledinLOFTRANprogram.Thiscodesimulatesamultiloopsystembyamodelcontainingthereactorvessel,hotandcoldlegpiping,steamgenerators(tubeandshellsides),andthepressurizer.Thepressurizerheaters,spray,reliefvalves,andsafetyvalvesarealsoconsideredintheprogram.Pointmodelneutronkineticsandreactivityeffectsofthemoderator,fuel,boron,andRCCAsareincluded.Thesecondarysideofthesteamgeneratorutilizesahomogeneous,saturatedmixtureforthethermaltransients.Thereactorprotectionsystem(RPS)issimulatedtoincludereactortripsonhighneutronflux,overtemperaturedT,overpowerhT,highandlowRCSpressure,lowRCSflow,andhighpressurizerlevel.ControlsystemsarealsosimulatedincludingRCCA,steamdump,andpressurizerpressurecontrol.TheECCS,includingtheaccumulators,isalsomodeled.LOFTRANalsohasthecapabilityofcalculatingthetransientvalueofDNBRbasedontheinputfromthecorethermalsafetylimits.LOFTRANisfurtherdiscussedinReference5.UNlT214.1.0-12July1997i~ 3.TNINKLRTheTWINKLEprogramisamulti-dimensionalspatialneutronkineticscode,whichwaspatternedaftersteady-statecodesusedforreactorcore'esign.Thecodeusesanimplicitfinite-differencemethodtosolvethetwo-grouptransientneutrondiffusionequation'sinone,two,andthreedimensions.Thecodeusessixdelayedneutrongroupsandcontainsadetailedmulti-regionfuel-clad-coolantheattransfermodelforcalculatingpointwiseDopplerandmoderatorfeedbackeffects.Thecodehandlesupto2000spatialpointsandperformsitsownsteady-stateinitialization.Asidefrombasic,cross-sectiondataandthermal-hydraulicparameters,thecodeacceptsasinputbasicdrivingfunctionssuchasinlettemperature,pressure,flow,Iboronconcentration,RCCAmotion,andothers.Variouseditsareprovided;e.g.,channelwisepower,axialoffset,enthalpy,volumetricsurge,pointwisepowerand-fueltemperatures.TheTWINKLEcodeisusedtopredictthekineticbehaviorofareactorfortransientswhichcauseamajorperturbationinthespatialneutronfluxdistribution.TWINKLEisfurtherdescribedinReference6.4.,~THINTheTHINC-IVcomputerprogramisusedtoperformthermal-hydrauliccalculations.TheTHINC-IVcodecalculatescoolantdensity,massIvelocity,enthalpy,voidfractions,staticpressure,andDNBRdistributionsalongflowchannelswithinareactorcoreunderallexpectedoperatingconditions.TheTHINC-IVcodeisdescribedindetail"inReferences7and8,includingmodelsandcorrelationsused.UNIT214.1.0-13July1997) 14.1.0.11REFERENCES1.Friedland,A.J.,Ray,S.,"RevisedThermalDesignProcedure,"WCAP-11397-P-A,April1989.2.EllenbergerS.L.et,al.,"DesignBasesfortheThermalOverpowerhTandThermalOvertemperaturedTTripFunctions,"WCAP-8746-A,September1986.3.ANSI/ANS-5.1-1979,"DecayHeatPowerInLightWaterReactors,"August29,1979.4.Hargrove,H.G.,"FACTRAN-AFORTRAN-IVCodeforThermalTransientsinaUO~FuelRod,"WCAP-7908,June1972.5.Burnett,T,W.T.,etal.,"LOFTRANCodeDescription,"WCAP-7907-A,April1984.6.Risher,D.H.,Jr.,andBarry,R.F.,"TWINKLE-aMulti-DimensionalNeutronKineticsComputerCode,"WCAP-8028-A,January1975.7.Hochreiter,L.E.,"ApplicationoftheTHINC-IVProgramtoPWRDesign,"WCAP-8195,October1973.8.Hochreiter,L.E.,Chelemer,H.,Chu,P.T,"THINC-IVAnImprovedProgramforThermal-HydraulicAnalysisofRodBundleCores,"WCAP-7956,June1973.McFetridge,R.H.,"AmericanElectricPowerServiceCorporation,DonaldC.CookNuclearPlantUnit2,3600MWTUpratingProgramEngineeringReport,"DraftWCAP-14488,January1996.UNIT214.1.0-14July1997 TABLE14.1.0-1RANGEOFPLANTNOMINALCONDITIONSUSEDINSAFETYANALYSES*~aramrarNSSSPower,MwtCorePower,Mwt-RCSFlow,(gpm/loop)MinimumMeasuredFlow,(totalgpm)Case13600358888,500366,400~Car23600358888,500366,400RTmeraures'FCoreOutletVesselOutletCoreAverageVesselAverageVessel/CoreInletSteamGeneratorOutletZeroLoad613.5610.2579.5576.0541.8541.6547.0585.8582.3550.1547.0511.7511.4547.0RCSPressure,psia22502250SteamPressure,psiaSte~mFlow,(10lb/hrtotal)FeedwaterTemp.,F00SGTubePlugging780.415.98449.010587.015.90449.010Abriefdescriptionof,eachcasefollowsTable14.1.0-1(1)LOCAanalysiswithresidualheatremoval(RHR)orhighheadsafetyinjection(HHSI)Crosstievalvesclosedbasedon3411Mwt.UNIT214.1.0-15July,1997 TABLE14.1.0-1(continued)RANGEOFPLANTNOMINALCONDITIONSUSEDINSAFETYANALYSES"~PreeeterQyse~3Cere4Case5CseNSSSPower,MwtCorePower,MWtRCSFlow,(gpm/loop)MinimumMeasuredFlow,(totalgpm)3600358888,500366,4003600358888,500366,4003600358888,500366,4003600358888,500366,400RSTmrurs'FCoreOutletVesselOutletCoreAverageVesselAverageVessel/CoreInletSteamGeneratorOutletZeroLoad618.4615.2584.8581.3547.3547.1547.0618.2615.0584.9581.3547.6547.4547.0585.8582.3550.1,547.0511.7511.4547.0585.7582.2550.1547.0511.8511.5547.0RCSPressure,psia22502100,22502100SteamPressure,psiaSte~mFlow,(10lb/hrtotal)FeedwaterTemp.,F00SGTubePlugging820.016.0449.010820.016.0449.010587.015.9449.010587.015.9449.010AbriefdescriptionofeachcasefollowsTable14.1.0-1(1)LOCAanalysiswithresidualheatremoval(RHR)orhighheadsafetyinjection(HHSI)crosstievalvesclosedbasedon3411MWt.14.1.0-16July,1997 AbrifdescritionofvariouscaseslistedinTabl14.1.0-'1Case1and2:Theseparameterscaseswereusedtosupportoperationduringmixedcorecycles(Cycles8and9).Case3:Theseparametersincorporateacorepowerlevelof3588MWt,anNSSSpowerlevelof3600MWt(whichincludes12MWtforreactorcoolantpumpheat),anaveragesteamgeneratortubeplugging'evelof10<,RCSpressureof2250psia,andanupperboundvesselaveragetemperatureof581.3F.Thisparameter0casewasusedtosupporthighRCStemperatureandhighRCSpressureoperationforafullVANTAGE5core(Cycle10andbeyond).Case4:Case5:Theseparametersincorporatethesamefeaturesascase3,excepttheRCSpressureis2100psia.ThisparametercasewasusedtosupporthighRCStemperatureandlowRCSpressureoperationforafullVANTAGE5core(Cycles10andbeyond)Theseparametersincorporatethesamefeaturesascase3,0exceptthelowerboundvesselaveragetemperatureis547F.ThisparametercasewasusedtosupportlowRCStemperatureandhighRCSpressureoperationforafullVANTAGE5core(Cycles10andbeyond).Case6:Theseparametersincorporatethesamefeaturesascase5,"excepttheRCSpressureis2100psia.ThisparametercasewasusedtosupportlowRCStemperatureandlowRCSpressureoperationforafullVANTAGE5core(Cycles10andbeyond)UNIT214.1.0-17July1997 TABLE14.1.0-2SUMMARYOFINITIALCONDITIONSANDCOMPUTERCODESUSEDFaultConditionsComputerCodesUtilizedReactivityCoefficientsAssunedModeratorModeratorTemperatureDensity+c~m'F~~hKLmmccc~DolerDHBCorrelationRevisedThermalDesignProcedureInitialNSSSThermalPowerOutput~HiltReactorVesselCoolantFlow~GPHVesselAveragePressurizerTemperaturePressure~F~PSIAUncontrolledRCCABankWithdrawalfromaSubcriticalConditionTWINKLEFACTRANTHINGSeeSectionHA14.1.1.2(11)W3AHFWRB-2andW3V-5Ho162,840547.02037.0(6)RCCAMisalignmentLOFTRANTHINCNANAW3ANFWRB2V-5Yes3600366,400581.32100.0(10)UncontrolledBoronDilutionNANANAHANAHAHANANAHANANA36000NANAHANANANALossofForcedReactorCoolantFlowLOFTRANFACTRANTHINC+5NAMax(4)W-3ANFWRB-2V-5Yes3608366,400581.3(12)-2100.0(10)LockedRotor(PeakPressure)-LOFTRAN+5HAMax(4)NANA3680354,000585.42312.6I~NA-HotApplicable(1)MiniaxziiDopplerpo~ercoefficient(pcm/empower)=-9.55+0.3732Q,whereOisin)'o~er(seeFigure14.1.0-1)(2)Multiplepo~erlevels,Tavg,andreactivityfeedbackcaseswereexamined.(3)Intentionallyomitted(4)MaxinxzaDopplerpowercoefficient(pcm/Xpower)=-19.4+0.71760,~hereOisin'/.power(seeFigure14.1.0-1)(5)Minisxmandmaxisxzareactivityfeedbackcaseswereexamined.(6)CorePressure.(7)FullPowerDopplerPowerdefectatBOLandEOLassiznedtobe-966pcmand-893pcmrespectively.(8)Corethermalpower.(9)Includesreactorcoolantpumpheat,ifapplicable.(10)Fortransitioncycles,pressurizerpressureis2250psia.(11)ZeroPowerDopplerPowerDefectatBOLassunedtobe-1081pcm.(12)ForTransitionCycles,VesselAverageTemperatureis576'F.(13)ZeroPowerDoppleronlyPowerdefectatBOLandEOLassiznedtobe.965pcmand849pcm,respectively.UNIT214.1.0-18July1997 TABLE14.1.0-2(Continued)SUMMARYOFINITIALCONDITIONSANDCOHPUTERCODESUSEDFaultConditionsLockedRotor(PeakCladTerp)ComputerCodesUtilizedLOFTRAN-FACTRANHoderatorTemperature~c'F+5ModeratorDensity~OKFImmccgaolerNAMax(4)ReactivityCoefficientsAssumedDNBCorrelationNARevisedThermalDesignProcedureInitialNSSSThermalPowerOutput~AllI3680ReactorVesselCoolantFlow~CPA354,0002037.4I585.4VesselAveragePressurizerTemperaturePressure~F~PFIALossofNormalFeedwaterLOFTRAN+5NAHax(4)NA3680354,000585.42312.6LossofOffsitePo~er(LOOP)totheStationAuxiliariesLOFTRAN+5Max(4)NANA3680354,000541.42312.6RuptureofaSteamPipeLOFTRANSeeFigureNATHING14.2.5-1SeeFigure.N-3ANF14.2.5-2W-3V-5NO354,000547.02100.0'NA-NotApplicable(1)HinlsxzaDopplerpowercoefficient(pcm/fewer)=-9.55+0.037320,~here0isin%po~er(seeFigure14.1.0-1)(2)Hultiplepowerlevels,Tavg,andreactivityfeedbackcaseswereexamined.(3)Intentionallyomitted.(4)Maxim'opplerpowercoefficient(pcm/%power)=-19.4+0.07176Q,where0isin%power(seeFigure14.1.0.-1)(5)Minimisandmaxiaxsareactivityfeedbackcaseswereexamined.(6)CorePressure.(7)FullPowerDopplerPo~erdefectatBOLandEOLassignedtobe-966pcmand-893pcmrespectively.(8)Corethermalpower.(9)Includesreactorcoolantpumpheat,ifapplicable.(10)Fortransitioncycles,pressurizerpressureis2250psia.(11)ZeroPo~erDopplerPowerDefectatBOLasswedtobe-1081pcm.(12)ForTransitionCycles,VesselAverageTemperatureis576'F.(13)ZeroPo~erDoppleronlyPowerdefectatBOLandEOLassumedtobe-965pcmand-849pcm,respectively.UNIT214.1.0-19July1997 TABLE14.1.0-2(Continued)SUMMARTOFINITIALCONDITIONSANDCOHPUTERCODESUSEDFaultConditionsComputerCodesUtilizedReactivityCoefficientsAssumedModeratorTemperature~c~m'F~ModeratorDensityDHB~8K~mccD~olerCorrelotionRevisedThermalDesignProcedureInitialNSSSThermalPowerOutput~IAItReactorVesselCoolantFlow~GPMVesselAverageTemperature~FPressurizerPressure~PAlARuptureofaControlRodDriveMechanismHousingRuptureofFeedwaterPipeTWINKLEFACTRAHLOFTRANSeeSection14.2.6NA.54Max(4)NA(7),(13)NANAHA3660(8)03680354,000162,840354,000585.4547.0585.42037.4(6)I2162.6'HA-NotApplicable(1)MininunDopplerpowercoefficient(pcm/%power)=-9.55+0.037324,whereoisin%power(seeFigure14.1.0.1)(2)Multiplepowerlevels,Tavg,andreactivityfeedbackcaseswereexamined.(3)Intentionallyomitted.(4)MaxinnznDopplerpowercoefficient(pcm/%power)=-19.4+0.071760,~hereQisin/power(seeFigure14.1.0.-1)(5)Mininxznandmaxinxznreactivityfeedbackcaseswereexamined.(6)CorePressure.(7)FullPowerDopplerPo~erdefectatBOLandEOLassunedtobe-966pcmand-893pcmrespectively.(8)Corethermalpower.(9)Includesreactorcoolantpumpheat,ifapplicable.(10)Fortransitioncycles,pressurizerpressureis2250psia.(11)2eroPo~erDopplerPowerDefectatBOI.assumedtobe-1081pcm.(12)ForTransitionCycles,VesselAverage'Temperatureis576'F.(13)2eropo~erDoppleronlyPo~erdefectatBOLandEOLassumedtobe-965pcmand-849pcm,respectively.UNIT214.1.0-20July1997( TABLE14.1.0-3SUHHARYOFINITIALCONDITIONSANDCOHPUTERCODESUSED:SEPARATEFULLVANTAGE5COREANALYSESFaultConditionsComputerCodesUtilizedHoderatorTemperature~c~m'F~HoderatorDensity~IIKc~mcc~DolerReactivityCoefficientsAssunedDNBCorrelationRevisedThermalDesignProcedureInitialNSSSThermalPowerOu'tput~AllIReactorVesselCoolantFlow~GPIIVesselAveragePressurizerTemperaturePressure~F~PGIAUncontrolledRodClusterAssemblyBankllithdrawaiAtpower(2),LossofElectricalLoadorTurbineTrip(4)ExcessiveNeatRemovalDuetoFeedwaterSystemHalfunctionExcessLoadIncreaseLOFTRANLOFTRANLOFTRANLOFTRANNA~+5+5NANANANA.54.54NA.54.54.54Min(1)Max(3)Hin(1)Hin(1)Hin(1)'NRB-2MRB-2NRB-2H>n(1)NRB-2Hax(3)Hax(3)MRB-2YesYesYesYesYes36BO366,400SB1.32100.02165567.6361550.43600366,400581.32100.03600366,4005B1.32100.00366,400547.02100.03600366,400581.32100.0'NA-NotApplicable(1)HiniaxzaDopplerpowercoefficient(pcm/Xqmwer)=-9.55+0.037320,whereOisin/po~er(seeFigure14.1.0-1)(2)Hultiplepowerlevels,Tavg,andreactivityfeedbackcaseswereexamined.(3)MaxiaxzaDopplerpowercoefficient(pcm/Xpower)=-19.4+0.07176Q,where0isin)'ower(seeFigure14.1.0.-1)(4)Hiniaxznandmaxiaxzareactivityfeedbackcaseswereexamined.(5)Includesreactorcoolantpgpheat,ifapplicable.UNIT214.1.0.21July,1997I TABLE14.1.0-4RPSTRIPPOINTSANDTIMEDELAYSTOTRIPASSUMEDINNON-LOCASAFETYANALYSESTriFunctinNominal~SeointPointAssumedInAnalsisLimitingTripTimeDelay~codsPowerrangehighneutronflux,highsetting(109%118l,0.5Powerrangehighneutronflux,lowsetting25%'5%0.5OvertemperaturedTOverpowerhTSeeTable2.2-1inTechSpecVariable,seeFigures14.1.0-5,6Variable,seeFigures14.1.0-5,68.08.0Lowpressurizerpressure1950psigHighpressurizerwaterlevel92%ofspanHighpressurizerpressure2385psig2428psig1907psig100%span2.02.02.0Lowreactorcoolantflow(Fromloopflowdetectors)90%'oopflow87%'oopflow1.0Undervoltagetrip2905voltseachbusNA1.5Underfrequencytrip57.5Hz57Hz0.6Low-lowsteamgeneratorlevel21%ofnarrowrangespan0.0~ofnarrowrangespan2.0Timedelay(includingRTDbypassloopfluidtransportdelay,bypasslooppipingthermalcapacity,RTDtimeresponse,andreactortripcircuitincludingchannelelectronicsdelay)fromthetimethetemperaturedifferenceinthecoolantloopsexceedsthereactortripsetpointuntiltheRCCAsarefreetofall.Thetimedelayassumedintheanalysissupportsatotal6secondresponsetimeofthecombinedRTDtimeresponse,reactortripcircuitdelay,andchannelelectronicsdelaypresentedintheupdatedTechnicalSpecifications.Noexplicitvalueassumedintheanalysis.Undervoltagereactortripsetpointassumedreachedatinitiationofanalysis.NANotApplicableUNIT214.1.0-22July,1997I ITABLE14.1.0-5ESFACTUATIONSETPOINTSANDTIMEDELAYSTOACTUATIONASSUMEDINNON-LOCASAFETYANALYSESESFActutionFuncionNominal.~StointLimitingActuationSetpointAssumedTimeDelaySafetyInjection(SI)Lowpressurizerpressure1900psig1800psig27w/offsitepower(Note1)37w/ooffsitepower(Note2)Lowsteamlinepressure600psig344psig27w/offsitepower(Note1)37w/ooffsitepower(Note2)AuxiliaryFeedwater(AFW)Low-lowsteamgeneratorwaterlevelHigh,steamgeneratorLevelTurbineTrip21%ofnarrowrangespan67%ofnarrowrangespan0.0<ofnarrow60arangespan82%ofnarrow60arangespanSteamlineIsolationonlowsteamlinepressureNAFeedwaterLineIsolationonhighsteamgeneratorwaterlevelNAFeedwaterLineIsolationonlowsteamlinepressureNANAcUNIT214.1.0-23July'997I TABLE14.1.0-5(continued)ESFACTUATIONSETPOINTANDTIMEDELAYSTOACTUATIONASSUMEDINNON-LOCASAFETYANALYSESForLossofNormalFeedwatrandLossofoffsitepowertoStationAuxiliariesoccurrences,thedelaytimeassumedis60'secondsfromtheinitiationofthesignals.ForFeedwaterLineBreakevent,thedelaytimeassumedis600seconds(10minuteoperatoractiondelay)fromtheinitiationofthebreak.Steamlineisolationtotaldelaytimeincludesvalveclosuretime,andelectronicsandsensordelay.TechnicalSpecificationsrequire8.0secondvalveclosuretime.FeedwaterLineisolationtotaldelaytimeincludesvalveclosuretimeandelectronicsandsensordelaytime.Note1:EmergencydieselgeneratorstartingandsequenceloadingdelaysNOTincluded.Offsitepoweravailable.Responsetimelimitincludesopeningofvalvestoestablishsafetyinjection(SI)pathandattainmentofdischargepressureforcentrifugalchargingpumps.Sequentialtransferofchargingpumpsuctionfromthevolumecontroltank(VCT)totherefuelingwaterstoragetank(RWST)(RWSTvalvesopen,thenVCTvalvesclose)isincluded.Note2:Emergencydieselgeneratorstartingandsequenceloadingdelaysincluded.ResponsetimelimitincludesopeningofvalvestoestablishSIpathandattainmentofdischargepressureforcentrifugalchargingpumps.SequentialtransferofchargingpumpsuctionfromtheVCTtotheRWST(RWSTvalvesopen,thenVCTvalveclose)isincluded.NA:NotApplicableUNIT214.1.0-24July,1997( TABLE14.1.0.6PLANTSYSTENSANDEQUIPNENTAVAILABLEFORFAULTCONDITIONSFaultConditionsReactorTriFunctionsESFActuationFunctionsOtherEuint~ESFEuint14.1.1UncontrolledRCCAbankwithdrawalfromasubcriticalconditionPowerrangehighflux(lowsetpoint)NAHANA14.1.2UncontrolledRCCAbankwithdrawalatpowerPo~errangehighflux,NAovertemperaturedelta-T,highpressurizerpres-sure,highpressurizerlevelPressurizersafetyNAvalves,steamgeneratorsafetyvalves14.1.3RCCAmisalignment14.1.4(includingroddrop)14.1.5UncontrolledBoronDilutionPowerrangenegativefluxrateSourcerangehighfluxHApowerrangehighfluxovertemperaturedelta.TLowinsertionlimitNAannunciatorsforboration14.1.6.1PartialandcompletelossofforcedreactorcoolantflowLowflow,undervoltageHAunderfrequencySteamgeneratorHAsafetyvalves14.1.6.2Reactorcoolantpurpshaftseizure(lockedrotor)LowflowHAPressurizersafetyNAvalves,steamgen-eratorsafetyvalves14.1.7Startupofaninactivereactorcoolantloop(Note1)UHIT214.1.0-25July,1997I TABLE14.1.0-6(Continued)PLANTSYSTEHSANDEQUIPHENTAVAILABLEFORFAULTCONDlTlONS14.1.8FaultConditionsl.ossofexternalelec-triploadorturbinetripReactorTriFunctionsHighpressurizerpres-sureovertenyeraturedelta-T,lo-losteamgeneratorlevelSteamgeneratorlo-lolevelPressurizersafetyvalves,steamgen-eratorsafetyvalves~ESFEiFAuxiliaryFeedwaterSystem14.1.19LossofnormalfeedwaterSteamgeneratorlo-lolevel,manualSteamgeneratorlo-lolevelSteamgeneratorsafetyvalves,pressurizersafetyvalvesAuxiliaryFeedwaterSystem14.1.1014.1.11Feedwatersystemmal-functionsthatresultinanincreaseinfeed-waterflowExcessiveloadincreasePowerrangehighflux,(lowandhighset-points),steamgener-atorlo-lolevel(intactsteamgenerators)Powerrangehighflux,overtemperaturedelta-T,overpowerdelta-1Highsteamgeneratorlevel-producedfeedwaterisolationandturbinetripNAFeedwaterisolationvalvesPressurizersafetyvalves,steamgeneratorsafetyvalvesNA14.1.12LossofoffsitepowertothestationauxiliariesSteamgeneratorlo-lolevelSteamgeneratorlo-lolevelSteamgeneratorvalves,pressurizersafetyvalvesAuxiliaryFeedwaterSystem14.2.4SteamgeneratortubefailureReactorTr>pSystemEngineeredSafetyFeaturesActuationSystemSteamgeneratorsafetyand/orreliefvalves,steamlinestopvalvesEmergencyCoreCool-ingSystem,AuxiliaryFeedwaterSystem,EmergencyPowerSystemUNIT214.1.0-26 TABLE14.1.06(Continued)PLANTSYSTEMSANDEQUIPMENTAVAILABLEFORFAULTCONDITIONS14.2.5FaultConditionsRuptureofaSteamLineReactorTriFunctionsSIS,low,pressurizerpressure,manualLowpressurizerpressurelowcompensatedsteam-linepressure,highcomtainmentpressure,manualFeedwaterisolationvalves,steamlinestopvalves~ESFEu~ientAuxiliaryFeedwaterSystem,SafetyInjectionSystemInadvertentopeningofSISasteamgeneratorrelieforsafetyvalveLowpressurizerpressure,Feedwaterisolationlowcompensatedsteam-valves,steamlinelinepressurestopvalvesAuxiliaryFeedwaterSystem,SafetyInjectionSystem14.2.6SpectruriofRCCAejectionaccidentsPowerrangehighflux,highpositivefluxrateHANANA14.2.8FeedwatersystempipebreakSteamgeneratorlo-lolevel,highpressurizerpressure,SISHighcontainmentpres-sure,-steamgeneratorlo-lowaterlevel,lowcompensatedsteamlinepressureSteamlineisolationvalves,feedlineisolation,pres-surizerself.actuatedsafetyvalves,steam.generatorsafetyvalvesAuxiliaryFeedwaterSystem,SafetyInjectionsystem14.3Lossofcoolantacci-dentsresultingfromthespectrumofpostu-latedpipingbreakswithinthereactorcoolantpressureboundaryReactorTripSystemEngineeredSafetyFeaturesActuationSystemServiceWaterSystemComponentCoolingWaterSystemsteamgeneratorsafetyand/orreliefvalvesEmergencyCoreCool-ingSystem,AuxiliaryFeedwaterSystemContairmentHeatRe-movalSystem,Emer-gencyPowerSystemNOTE1:.ThiscannotoccurinModes1and2asrestrictedbytheCookNuclearPlantUnit2TechnicalSpecifications.UNIT214.1.0-27 TABLE14.1.0-7DONALDC.COOKUNIT23600MNTUPRATINGPROGRAMINPUTASSUMPTIONSFORRCSVOLUMESInuAssumtionReactorVessel(ft')SteamGenerators(ft'total)IniialCondiion0%'GTP4308(1)~10'TP47644003(1)ReactorCoolantPumps(ft'total)314314LoopPiping(ft'total)SurgeIincPiping(ft')Pressurizer(ft')1175180011751800TotalRCSVolume(ft')(AmbientConditions)TotalRCSVolume(ft')(HotConditionsincludes3~forthermalexpansion)12,40412,77612,09912,462Notes:(1)TheSGtubevolumeisassumedtobe762ft'/SG(3048ft'otal)TheincreaseinSGpluggingfrom0%to10%resultsinatotalreductioninSGtubevolumeof"305ft'.UNIT214.1.0-28July1997 TABLE14.1.0-8DONALDC.COOKUNIT23600MNTUPRATINGPROGRAMINPUTASSUMPTIONSFORSTEAMGENERATORSECONDARYMASSInutAssumionInitialCondition0eSGTP101SGTPases(OriginaiDesign)~hwTem~gihTmCaseSteamgeneratorsecondarysidemass(Totallbs/SG)99,00098,000(2)105,000(3)NOTES:(1)InitialconditionsarepresentedforSGTPlevelsof0%(OriginalDesign)and10%/15:toboundtherangeofSGTPlevelsat3600MWt.(2)ForTavgof547'F(3)ForTavgof579'FUNIT214.1.0-29July1997Ie TABLE14.1.0-9DONALDC.COOKUNIT23600MWTUPRATINGPROGRAMREACTORCOOLANTSYSTEMPRESSUREDROP~'iReactorVessel,includingnozzles(psi)LoopPiping(psi)SteamGenerator(psi)gtSGTP51.795.5331.9115%SGTP49.075.23~3.8Total(psi)89.30(1)93.88(1)NOTES:(1)PressuredropscalculatedatBestEstimateFlow.UNIT214.1.0-30July3997) feedbackeffectofthe'egativefueltemperaturecoefficient.Thisself-limitationoftheinitialpowerburst,resultsfromafastnegativefueltemperaturefeedback(Dopplereffect)andisofprimeimportanceduringastartupincidentsinceitlimitsthepowertoatolerablelevelpriortoprotectiveaction.Aftertheinitialpowerburst,theneutronfluxismomentarilyreducedandthen,iftheincidentisnotterminatedbyareactortrip,theneutronfluxincreasesagain,butatamuchslowerrate.Terminationofthestartupincidentbythepreviouslydiscussedprotectionchannelspreventscoredamage.Inaddition,thereactortripfrompressurizerhighpressureservesasabackuptoterminatetheincidentbeforeanoverpressureconditioncouldoccur.14.1.1.2AnalysisofEffectsandConsequencesTheanalysisoftheuncontrolledRCCAbankwithdrawalfromsubcriticalaccidentisperformedinthreestages:first,anaveragecorenuclearpowertransientcalculation,then,anaveragecoreheattransfercalculation,andfinally,thedeparturefromnucleateboilingratio(DNBR)calculation.Theaveragecorenuclearpowercalculationisperformedusingspatialneutronkineticsmethods(TWINKLE)todeterminethe(1)averagepowergenerationwithtimeincludingthevarioustotalcorefeedbackeffects,i.e.,Dopplerreactivityandmoderatorreactivity.TheaverageheatfluxandtemperaturetransientsaredeterminedbyperformingafuelrodtransientheattransfercalculationinPACTRAN.Theaverage(2)heatflux,isnextusedinTHING'ortransientDNBRcalculations.(3,4).Analysisofthistransientincorporatestheneutronkinetics,includingsixdelayedneutrongroupsandthecorethermalandhydraulicequations.Inadditiontotheneutronfluxresponse,theaveragefue,cladandwatertemperature,andalsotheheatfluxresponse,arecomputed.UNIT214'.1-3July1991 In.dertogiveconservativeresultsforastartupincident,thefollowingadditionalassumptionsaremadeconcerningtheinitialreactorconditions:SincethemagnitudeoftheneutronfluxpeakreachedduringtheinitialpartofthetransientisstronglydependentontheDopplerpowerreactivitycoefficient,aconservativelylowvalueforDopplerpowerdefect(-1081pcm)isusedforanygivenrateofreactivityinsertion.Thecontributionofthemoderatorreactiv'tycoefficientisnegligibleduringtheinitialpartofthetransientbecausetheheattransfertimeconstantbetweenthefueland'themoderatorismuchlongerthantheneutronfluxresponsetimeconstant.However,aftertheinitialneutronfluxpeak,thesucceedingrateofpowerincreaseisaffectedbythemoderatortemperaturereactivitycoefficient.Althoughduringnormaloperation(100~ratedpower),themoderatorcoefficientwillnotbepositiveatanytimeincorelife,ahighlyconservativevaluehasbeenusedintheanalysistoyieldthemaximumpeakcoreheatflux.Theanalysisisbasedonamoderatorcoefficientwhichwasatleast0+5pcm/Fatthezeropowernomiralaveragetemperature,andwhichbecamelesspositivefohighertemperatures.ThiswasnecessarysincetheTWINKLEcomputercodeusedintheanalysisisadiffusiontheorycoderatherthanapoint-kineticsapproximationandthemoderatortemperaturefeedbackcannotbeartificiallyheldconstantwithtemperature.Thereactorisassumedtobeathotzeropower(547F).This0assumptionismoreconservativethanthatofalowerinitialsystemtemperature.Thehigherinitialsystemtemperatureyieldsalargerfuel-to-waterheattransfer,alargerfuelthermalcapacity,andaless-negative(smallerabsolutemagnitude)Dopplercoefficient.Theless-negativeDopplercoefficientreducestheDopplerfeedbackeffecttherebyUNIT214.1.1-4July1997 RCStemperatureof581.3Falongwithanominalpressureof2250psiawasfoundtoproducethemostconservativeresults.Assumptionsmadeintheanalysisare:Theplantisinitiallyoperatingat102percentoftheCookNuclearPlantUnit2corepowerlevelof3588MWt,,plus20MWtforreactorcoolantpumpheat.Aconservativecoreresidualheatgenerationbaseduponlongtermoperationattheinitialpower'evelprecedingthetrip.TheANS1979DecayHeatModelplustwosigmauncertaintywasassumed.Reactortripoccursonsteamgeneratorlow-lowlevelat0.0:ofnarrowrangespan.D.Theworstsinglefailureintheauxiliaryfeedwatersystemoccurs(e.g.,fa'lureofturbinedrivenauxiliaryfeedwaterpump).Auxiliaryfeedwaterisdeliveredtofoursteamgeneratorsatarateof450gpm.The450gpmisassumedevenlysplitamongthefoursteamgeneratorsandisdeliveredbytwomotordrivenpumpsatasteamgeneratorpressureof1123psia.~Automaticinitiationoftheauxiliaryfeedwaterisassumed60secondsafteralow-lowsteamgeneratorsignalisactuated.Secondarysystemsteamreliefisachievedthroughthesteamgeneratorsafetyvalves.Firstfoursafetyvalvesatanactuationpressureof1123psiawereassumedintheanalysis."*Anevaluationhasbeenperformedtojustifyanincreaseintheas-foundtoleranceofthemainsteamsafetyvalves(MSSVs)from+1<to+3<.TheevaluationtookcreditforthestaggeredactuationoftheMSSVs.TheevaluationassumedthattheMSSVsopenedat3%abovethenominalliftpressureforeachvalve.Theevaluationdemonstratedthatthesecondarysidepressure(assumingthestaggeredactuationoftheMSSVs)wouldnotexceed1123psiaduringthetimewhenAFWisbeingsupplied.ThesecondarysidepressuretransientwouldnotprecludetheAFWflowrateassumedintheanalysisfrombeingsuppliedtothesteamgenerators.UNIT214.1.9-3July1997 G.Theinitialreactorcoolantaveragetemperatureis4.1'Fhigherthanthenominalvalueof581.3F,andinitialpressurizerpressureis062.6psihigherthanthenominalpressureof2250psia.H.Theinitialpressurizerwaterlevelisassumedtoheatthemaximumnominalsetpoint(61.1%NRS)plusuncertainties(5%NRS).Pressurizerpoweroperatedreliefvalves(PORVs)areassumedoperabletomaximizepressurizerwatervolume.Themaximumpressurizersprayflowrateisassumedtomaximizepressurizerwatervolume.Anauxiliaryfeedwaterlinepurgevolumeof100ftperloopwas3assumed.Thisisthevolumethatneedstobepurgedbeforetherelativelycoldauxiliaryfeedwaterreachesthesteamgenerators.PlantcharacteristicsandinitialconditionsareshowninTable14.1.0-2.ResultsFigures14.1.9-1through14.1.9-3showthesignificantplantparametersfollowingalossofnormalfeedwater.Followingthereactorandturbinetripfromfullload,thewaterlevelinthesteamgeneratorswillfallduetothecollapseofvoidsandbecausesteamflowthroughthesafetyvalvescontinuestodissipatethestoredandgeneratedheat.Oneminutefollowingtheinitiationofthelow-lowleveltrip,themotordrivenauxiliaryfeedwaterpumpsareautomaticallystarted,reducingtherateofwaterleveldecrease.Theplotofpressurizerwatervolumeclearlyshowsthatthepressurizerdoesnotfill.Forcomparisonpurposes,thepressurizerfillsat1889ft3(whichincludesthepressurizersurgevolume).ThecalculatedsequenceofeventsforthistransientareshowninTable14.1.9-1.UNIT214.1.9-4July1996I 14.2.2PostulatedRadioaciveRelaesDueFailuresLiouid-ntaininTankTheinadvertentreleaseofradioactiveliquidtotheenvironmentisnotconsideredacredibleaccident.Anyradioactiveliquidsmustultimatelybedivertedtothemonitortanks,andanytritiumfromtheCVCStothemonitortanksalso,priortodischarge.(Liquidsfromthesetanksaresampledandmonitoredforacceptableradioactivelevelsbeforebeingreleasedtothelake.)Erroneoussamplingandmalfunctionoftheradiationmonitorwouldhavetooccursequentiallytodischargeradioactiveliquidinadvertently,andthisseriesofeventsisnotconsideredcredible.WasEvaoratorondensaeandMonitrTnksAnyspillageofradioactivefluidduetoequipmentleaksorruptureswoulddraindirectlytoeitherthesumptankorwasteholduptanks,orwouldaccumulateintheareasumpspriortobeingpumpedtothewasteholduptanks.Radioactiveliquidstobeprocessedbythewastedisposalsystemareultimatelystoredin'thewasteholduptanks.Periodicallythecontentsofthewasteholduptanksandthelaundrytanksareanalyzedandiftheradioactiveleveliswithindischargelimits,theliquidistransferredtothewasteevaporatorcondensatetanksandthentothemonitortanksforrelease.Effluentsfromthewastedisposalsystemandmonitortanks3and4arereleased,notrecycled.DistillatefromtheCVCSboricacidevaporatorisdischargedtomonitortanks.Thecontentsofmonitortanks1and2areanalyzedbeforebeingpumpedtotheprimarywaterstoragetanks.Occasionallyitmaybenecessarytodisposeofsomeoftheboricaciddistillatefortritiumcontrol.(Ifanalysisofthecontentsofthemonitortankiswithinprescribedlimitsfordischargetotheenvironment,theliquidispumpeddirectlytothewasteliquiddischargelineafterthenormall'ylocked-closedvalveinthislineisopened.)Theradiationmonitordownstreampreventsdischargeotfluidsaboveprescribedlevelsasexplainedintheprecedingparagraph.UNIT214.2.2-1July,1997 Arepresentativesampleisobtainedfromthemonitortanktodetermineappropriatereleasesetpoints.Administrativeclearancemustbegrantedtoopenalocked-closedvalve.Inthehighlyunlikelyeventthatthelocked-closedvalveisopenedandthetankcontentsareinadvertenlypumpedtothedischargetunnelforreleasetothelakewithoutbeingpreviouslyanalyzedforactivity,theradiationmonitorssetpoint'ssetsuchthatthereleasewillnotexceedreleaselimits.Ifitdid,theradiationmonitorwouldtripthesecondvalvedownstreamofthemonitorandterminatetherelease.Therefore,apumpingaccidenthavingrad'logicalconsequencesisnotconsideredcredible.UNIT214.2.2-1aJuly,1997 CondensatetoraaeTankPrimarwaterStoraoeTankandRefuelinWaterStorageTankThecondensatestoragetankandtheprimarywaterstoragetankareessentiallyfreefromradionuclides.Therefuelingwaterstoragetankcontainsarelativelylowlevelofradioactivity.Thesetanksarenotconnectedtotheradwastesystem.Intheunlikelyeventoflossofwaterfromanyofthesetanksthewaterwillpercolatedowntheundergroundwatertable,whichisestimatedtobeatelevation590',thatis,about20feetbelowgroundlevel.Thehydraulicgradientofthegroundisverylow;lessthan4~.Ourstudiesshowaminimumof50yearswouldberequiredforthewatertoreachthenearest.groundwaterwell.Thespilledwaterwouldpreferentiallyfollowtheverysmallnaturalgroundgradienttowardthelakeandwouldbeeventuallydilutedinthelakewater.Bythetimeanyradioactivematerialsreachthenearestdrinkingwaterintakefromthelake,Bridgmanis2.5milesawayfromtheplantdischarge,resultantdilution,dispersion,andradioactivedecaywillhavereducedtheradiologicalconsequencestoinsignificance."TheinformationpresentedherereferstotheoriginalUnit,1studies.LaterresultsofstudiesonthissubjectareincludedinSection14.2oftheUnit2UpdatedFSAR.UNIT214.2.2-2July,li97 Theinadvertentreleaseofradioactiveliquidwastetotheenvironmentisnotconsideredacredibleaccident.Anyspillageofradioactivefluidduetoequipmentleaksorruptureswoulddraindirectlytoeithersumpsorwasteholduptanks.Radioactiveliquidwastesaredivertedtotankstobeprocessedforrelease.Tanksaresampledandanalyzedtodeterminethattheconcentrationofradioactivenuclidescanbereleasedwithindischargelimits.Thereleasemustpassthroughanormallylockedclosedvalve,aradiationmonitorandanothervalveinseriespriortoreachingthedischargetunnelsforreleasetothelake.Administrativeclearancemustbegrantedtoopenthelockedclosedvalve.Inthehighlyunlikelyeventthat,thelocked-closedvalveisopenedandthetankcontentsareinadvertentlypumpedtothedischargetunnelforreleasetothelakewithoutbeingpreviouslyanalyzedforactivity,theradiationmonitorssetpoint.issetsuchthatthereleasewillnotexceedreleaselimits.Ifitdid,theradiationmonitorwouldtripthesecondvalvedownstreamofthemonitorandterminatetherelease..Therefore,apumpingaccidentinvolvingradioactivewastereleaseshavingradiologicalconsequencesisnotconsideredcredible.~Pi)~inThepipesrunningfromtherefuelingwaterstoragetank,theprimarywaterstoragetank,andthecondensatetanktotheauxiliarybuildingareinstalledinapipetunnel.Incaseofabreakinanyofthesepipes,thewaterwillentertheauxiliarybuildingsump,from~hereitwillbeprocessedasdescribedintheAuxiliaryBuildingliquidwastetanks.Nopipesfromthesetanksaredirectedtowardthecontainmentbuilding.UNIT214.2.2-3Duly,1997 CVCduksToensurethattheCVCSholduptank(s)failurewillnotresultinconcentrationsinexcessof10CFRPart20atthenearestpotablewatersupply,ananalysis,basedontheassumptionsgiveninStandardReviewPlanSection15.7.3,hasbeenperformedfortheruptureofaCVCSholduptankintheauxiliarybuilding.Nocredithasbeentakenforliquidretentionbythefoundationoftheauxiliarybuilding.Thetankwasassumedtobe80%fullatthetimeofruptureandtheliquidspilledisreactorcoolantatonepercentfailedfuel.Thecapacityoftheseinterconnectedtwintanksis128,000gallons.ParametersusedforthisanalysisareshowninTable14.2.2-1.AnInstantaneousPlaneSourcemodelwithy0andEy~0isused.Forarectangularangularplanesourceofwidthf,paralleltothex-yplaneandcenteredattheorigin,thismodelisrepresentedbytheequation:m,exp+Atezf,-ezfwhere:C~concentrationofdissolvedconstituentm'instantaneousreleaseperunitarea~retardationfactorn~effectiveporosityEcoefficientofdispersioninthex-directiont~timeU~approximaterateofradionuclidemovementX~radioactivedecayconstantE>~coefficientofdispersioninthey-directionUNIT214.2.2-4July1991 14.2.4STEAMGENERATORTUBERUPTUREG~ara1Theaccidentexaminedisthecompleteseveranceofasinglesteamgeneratortube(SGTR).Theaccidentisassumedtotakeplaceatareactorpowerlevelof3588MWtwiththereactorcoolantcontaminatedwithfissionproductscorrespondingtocontinuousoperationwithalimitedamountofdefectivefuelrods.Theaccidentleadstoanincreaseincontaminationofthesecondarysystemduetoleakageofradioactivecoolantfromthereactorcoolantsystem.Intheeventofacoincidentlossofoffsitepower,orfailureofthecondensersteamdumpsystem,dischargeofactivitytotheatmospheretakesplaceviathesteamgeneratorpoweroperatedreliefvalves(andsafetyvalvesiftheirsetpointisreached)ThesteamgeneratortubematerialisInconel600andasthematerialishighlyductile,itisconsideredthattheassumptionofacompleteseveranceissomewhatconse.vative.Themoreprobablemodeoftubefailurewouldbeoneormoreminorleaksofundeterminedorigin.Activityinthesteamandpowerconversionsystemissubjecttocontinualsurveillanceandanaccumulationof'inorleakswhichexceedtheTechnicalSpecificationlimitsisnotpermitedduringunitoperation.Theoperatorisexpectedtodeterminethatasteamgeneratortuberupture(SGTR)hasoccurred,toidentifyandisolatetherupturedsteamgenerator,andtocompletetherequiredrecoveryactionstostablizetheplantandterminatetheprimarytosecondarybreakflow.Theseactionsshouldbeperformedonarestrictedtimescaleinordertominimizethecontaminationofthesecondarysystemandensureterminationofradioactivereleasetotheatmospherefromtherupturedsteamgenerator.Considerationoftheindicationsprovidedatthecontrolboard,togetherwiththemagnitudeofthebreakflow,leadstotheconclusionthattherecoveryprocedurecanbecarriedoutonatimescalethatensuresthatbreakflowtotherupturedsteamgeneratoristerminatedbeforethewaterlevelin'theaffectedsteamgeneratorrisesintothemainsteampipe.Sufficientindicationsandcontrolsareprovidedtoenabletheoperatortocarryoutthesefunctionssatisfactorily.UNIT214.2.4-1July1997 DescritionfAccidentAssumingnormaloperationofthevariousplantcontrolsystems,thefollowingsequenceofeventsis,initiatedbyatuberupture:Pressurizerlowpressureandlowlevelalarmsareactuated,andpriortoplanttrip,chargingpumpflowincreasesinanattempttomaintainpressurizerlevel.Onthesecondarysidethereisasteamflow/feedwaterflowmismatchbeforetrip,asfeedwaterflowtotheaffectedsteamgeneratorisreducedduetotheadditionalbreakflowwhichisnowbeingsuppliedtothatsteamgenerator.Lossofreactorcoolantinventoryleadstofallingpressureandlevelinthepressurizeruntilareactortripsignalisgeneratredbylowpressurizerpressureorovertemperature~T.Asafetyinjectionsignal,initiatedbylowpressurizeroressurefollowssoonafterthereactortrip.Thesafetyinjectionsignalautomaticallyterminatesnormalfeedwatersupplyandinitiatesauxiliaryfeedwateraddition.Thesteamgenerato"blowdownliquidmonitorand/ortheairejectorradiationmonitorwillalarm,indicatingasharpincreaseinradioactivityinthesecondarysystem.Thereactortripautomaticallytripstheturbine,andifoutsidepowerisavailable,thesteamdumpvalvesopen,permittingsteamdumptothecondenser.lntheeventofacoincidentstationblackout,thesteamdumpvalveswouldautomaticallyclosetoprotectthecondenser.Thesteamgeneratorpressurewouldrapidlyincrease,resultinginsteamdischargetotheatmospherethroughthesteamgeneratorpoweroperatedreliefvalves(andthesteamgeneratorsafetyvalvesiftheirsetpointisreached).Followingplanttrip,thecontinuedactionofauxiliaryfeedwatersupplyandboratedsafetyinjectionflow[supplied'romtherefuelingwaterstoragetank,(RWST)jprovideaheatsink.Thus,steambypasstothecondenser,orinthecase,oflossofoutsideUNIT214.2.4-2July1997 power,steamrelieftoatmosphere,isattenuatedduringthetimeinwhichtherecoveryprocedureleadingtoisolationisbeingcarriedou't.'afetyinjectionflowresultsinrestorationofpressurizerwater,level.~RsulusInestimatingthemasstransferfromthereactorcoolantsystemthroughthebrokentube,thefollowingassumptionsweremade:Planttripoccursautomaticallyasaresultoflowpressurizerpressure.Followingtheinitiationofthesafetyinjectionsignal,bothcentrifugalchargingpumpsareactuatedandcontinuetodeliverC.,AfterreactortripthebreakflowequilibratestothepointwhereincomingsafetyinjectionflowisbalancedbyoutgoingbreakflowasshowninFigure14.2.4-1ofUnit1.Intheoriginalaccidentanalysis,theresultantbreakflowisassumedtopersistfromplanttripuntil30minutesaftertheaccidentinitiation.Anassessmenthasbeenmadeoftheimpactontheoriginalanalysisofallowingtheoperatorlongerthan30minutestoterminatebreakflowtothefaultedsteamgenerator.Thatassessmenthasshownthatthebreakflowterminationcouldbeincreaseduptotwohours(providedthesteamgeneratordoesnotoverfill)withoutexceedingtheoffsitedoseradiologicalguidelinesdiscussedinthe"Conclusions"portionofthissection(Reference2).Thesteamgeneratorsarecontrolledatthesafetyvalvesettingminus3%toleranceratherthanthepoweroperatedreliefvalvesetting.UNIT214.2.4-3July1997 Theoriginalanalysisassumedthattheoperatoridentifiestheaccidenttypeandterminatesbreakflowtotherupturedsteamgeneratorwithin30minut'esofaccidentinitiat'on.Anassessmenthasbeenmadeoftheimpactontheoriginalanalysisofallowingtheoperatorlongerthan30minutestoterminatebreakflowtothefaultedsteamgenerator.Thatassessment'asshownthatthebreakflowterminationcouldbeincreaseduptotwohours(providedthesteamgeneratordoesnotoverfill)withoutexceedingtheoffsitedoseradiologicalguidelinesdiscussedinthe"Conclusions"portionofthissection.(Reference2)Theaboveassumptionsleadtoaconservativeupperboundof140,264poundsforthetotalamountofreactorcoolanttransferredtotherupturedsteamgeneratorand56,525poundsforthetotalamountofsteamreleasedtotheatmosphereviatherupturedsteamgeneratorasaresultofthesteamgeneratortuberuptureaccident.RcoverPrdur1IntheeventofanSGTR,theplantoperatorsmustdiagnosetheSGTRandperformtherequiredrecoveryactionstostabilizetheplantandterminatetheprimarytosecondaryleakage.TheoperatoractionsforSGTRrecoveryareprovidedintheEmergencyOperatingProcedures(EPOs).TheEOPsarebasedonguidanceintheWestinghouseOwner'sGroupEmergencyResponseGuidelines(Reference1)wh'chaddressestherecoveryfromaSGTRwithandwithoutoffsitepoweravailablUNIT214.2.4-3aJuly1997 Themajoroperatoractionsincludeidentific"tionandisolationoftherupturedsteamgenerator,cooldownanddepressurizationoftheRCStorestoreinventory,andterminationofSItostopprimarytosecondaryleakage.Theseoperatoractionsaredescribedbelow.Identifytherupturedsteamgenerator.Highsecondarysideactivity,asindicatedbythesecondaryside'radiationmonitorswilltypicallyprovidetheinitialindicationofanSGTRevent.Therupturedsteamgeneratorcanbeidentifiedbyanunexpectedincreaseinsteamgeneratorlevel,ahighradiationindicationonthemainairejectormonitor,orfromthesteamgeneratorblowdownliquidmonitor.ForanSGTRthatresultsinareactortripathighpower,thesteamgeneratorwaterlevelwilldecreaseoff-scaleonthenarrowrangeforallofthesteamgenerators.Theauxiliaryfeedwaterflowwillbegintorefillthesteamgenerators,distributingapproximatelyequalflowtoeachofthesteamgenerators.Sinceprimarytosecondaryleakageadds.additionalliquidinventorytotherupturedsteamgenerator,thewaterlevelwillreturntothenarrowrangeearlierinthatsteamgeneratorandwillcontinu'etoincreasemorerapidly.Thisresponse,asindicatedbythesteamgeneratorwaterlevelinstrumentation,providesconfirmationofanSGTReventandalsoidentifiestherupturedsteamgenerator.Isolatetherupturedsteamgeneratorfromtheintactsteamgeneratorsandisolatefeedwatertotherupturedsteamgenerator.Onceatuberupturehasbeenidentified,recoveryactionsbeginbyisolatingsteamflowfromandstoppingfeedwaterflowtotherupturedsteamgenerator.Inadditiontominimizingradiologicalreleases,thisalsoreducesthepossibilityofoverfillingtherupturedsteamgeneratorwithwaterby1)minimizingtheaccumulationoffeedwaterflowand2)enablingtheoperatortoestablishapressuredifferentialbetweentherupturedandintactsteamgeneratorsasanecessarysteptowardterminatingprimarytosecondaryleakage.'UNIT214.2.4-4July1997 CooldowntheRCSusingtheintactsteamgenerators.Afterisolationoftherupturedsteamgenerator,theRCSiscooledasrapidlyaspossibletolessthanthesaturationtemperaturecorrespondingtotherupturedsteamgeneratorpressurebydumpingsteamfromonl'ytheintactsteamgenerators.ThisensuresadequatesubcoolingintheRCSafterdepressur'zationtotherupturedsteamgeneratorpressureinsubsequentactions.Zfoffistepowerisavailable,thenormalsteamdumpsystemtothecondensercanbeusedtoperformthiscooldown.However,ifoffistepowerislost,theRCSiscooledusingthepower-operatedreliefvalves(PORVs)ontheintactsteamgenerators.DepressurizetheRCStorestorereactorcoolantinventory.Nhenthecooldowniscompleted,SZflowwillincreaseRCSoressureuntilbreakflowmatchesSIflow.Consequently,SZflowmustbeterminatedtostopprimarytosecondaryleakage.However,adequatereactorcoolantinventorymustfirstbeassured.ThisincludesbothsufficientreactorcoolantsubcoolingandpressurizerinventorytomaintainareliablepressurizerlevelindicationafterSIflowisstopped.TheRCSdepressurizationisperformedusingnormalpressurizersprayifthereactorcoolantpumps(RCPs)arerunning.However,ifoffsitepowerislostortheRCPsarenotrunning,normalpressurizersprayisnotavailable.Znthisevent,RCSdepressurizationcanbeperformedusingapressurizerPORVorauxiliarypressurizerspray.TerminateSItostopprimarytosecondaryleakage.ThepreviousactionswillhaveestablishedadequateRCSsubcooling,asecondarysideheatsink,andsufficientreactorcoolantinventorytoensurethatSIflowisnolongerneeded.Nhentheseactionshavebeencompleted,SIflowmustbestoppedtoterminateUNIT214.2.4-5July1997 primarytosecondaryleakage.PrimarytosecondaryleakagewillcontinueafterSlflowisstoppeduntiltheRCSandrupturedsteamgeneratorpressuresequalize.Chargingflow,letdown,andpressurizerheaterswillthenbecontrolledtopreventrepressurizationoftheRCSandreinitiationofleakageintothrupturedsteamgenerator.FollowingSltermination,theplantconditionswillbestabilized,theprimarytosecondarybreakflowwillbeterminatedandallimmediatesafetyconcernswillhavebeenaddressed.Atthist'imeaseriesofoperatoractionsareIIperformedtopreparetheplantforcooldowntocoldshutdownconditions.Subsequently,actionsareperformedtocooldownanddepressurizetheRCStocoldshutdown"conditionsandtodepressurizetherupturedsteamgenerator.ConclusionAsteamgeneratortuberupturewillcausenosubsequentdamagetotheRCSorthereactorcore.Anorderlyrecoveryfromtheaccidentcanbecompleted,evenassumingasimultaneouslossofoffsitepowersuchthatliquiddoesnotenterthesteampipingspace.Thedosestothepublicasa,resultofasteamgeneratortuberupturehavebeenshowntobelessthanthepermissiblelimitsof10CFRPart100.Theselimitsare:forpre-accidentiodinespike,thethyroiddosein10CFR100'r300rem,foraccidentinitiatediodinespike,10%(smallfraction)of10CFR100or300remthyroidand2.5remgammabody.~ReferenesWestinghouseOwnersGroup;EmergencyResponseGuidelines;PublishedbyWestinghouseElectricCorporationfortheWestinghouseOwners,Group.WestinghouseLettertoAEPNSD-NT-ESI-97-388(AEP-97-102);AmericanElectricPowerDonaldC.CookNuclearPlantUnits1and2,RevisedSGTRFSARSection14.2.4;datedJune26,1997.UNET214.2.4-6July1997 effectofthestuckassembly.Thepowerpeakingfactorsdependuponthecorepower,temperature,pressure,andflow,andarethusdifferentf'reachcasestudied.Theanalysesassumedinitialhotshutdownconditionsattimezerosincethisrepresentsthemostpessimisticinitialcondition.Shouldthereactorbejustcriticaloroperatingatpoweratthetimeofasteamlinebreak,thereactor'illbetrippedbythenormaloverpowerprotectionsystemwhenpowerlevelreachesatrippoint.Followingatripatpowerthereactorcoolantsystemcontainsmorestored'energythanatno-load,theaveragecoolanttemperatureishigherthanatno-loadandthereisappreciableenergystoredinthefuel.Thus,theadditionalstoredenergyisremovedviathecooldowncausedbythesteamlinebreakbeforetheno-loadconditionsofRCStemperatureandshutdownmarginassumedintheanalysesarereached.AftertheadditionalstoredenergyRhasbeenremoved,thecooldownandreactivityinsertionsproceedinthesamemannerasintheanalysiswhichassumesno-loadconditionsattimezero.Inaddition,sincetheinitialsteamgeneratorwaterinventoryisgreatestatno-load,themagnitudeanddurationofRCScooldownaremoreseverethanforsteamlinebreaksoccurringatpower.Incomputingthesteamflowduringasteamlinebreak,theMoodyCurve(Reference4)forfL/D0isused.H.Thetotaldelaytimeassumedforthesteamlineisolationis11secondsfromreceiptofactuationsignal.The11secondsteamlineisolationtimeincludesvalveclosuretime,andelectronicsandsensordelay.Forbreaksdownstreamoftheisolationvalves,closureofallvalveswouldcompletelyterminatetheblowdown.Foranybreak,inanylocationfollow'ingsteamlineisolation,nomorethanonesteamgeneratorwouldUNIT214.2.5-7July1997 experienceanuncontrolledb'owdownevenifoneoftheisolationvalvesfails.toclose.plantcharacteristicsandinitialconditionsareshowninTable14.1.0-2.ThelimitingcaseforCasesathroughewasshowntobethedouble-endedrupturelocatedupstreamoftheflowrestrictorwithoffsitepoweravailable(caseb).Table14.2.5-1liststhelimitingstatepointsforthisworstcase.Theresultspresentedareaconservativeindicationoftheeventswhichwouldoccurassumingasteamlinerupture.Figures14.2.5-4through14.2.5-6showtheRCStransientandcoreheatfluxfollowingamainsteamlinerupture(completeseveranceofapipe)upstreamoftheflowrestrictoratinitialno-loadconditions.Offsitepowerisassumedavailablesothatfullreactorcoolantflowexists.Thetransientshownassumesanuncontrolledsteamreleasefromonlyonesteamgenerator.Shouldthecorebecriticalatnearzeropowerwhentheruptureoccurstheinitiationofsafetyinjectionbyhighdifferentialpressurebetweenanysteamlineandtheremainingsteamlines~orbylowsteamlinepressureintwosteamlineswilltripthereactor.Steamreleasefrommorethanonesteamgeneratorwillbepreventedbyautomatictripofthefastactingisolationvalvesinthesteamlinesbyhigh-highcontainmentpressuresignalsorlowsteamlinepressureorhighsteamflowcoincidentwithlow-lowT-avg.Evenwiththefailureofonevalve,releasefromtheothersteamgeneratorsisterminatedbysteamlineisolationwhiletheonegeneratorblowsdown.Thesteamlinestopvalvesareassumedtobefullyclosedinlessthan11secondsfromreceiptofaclosuresignal.AsshowninFigure14.2.5-6,thecoreattainscriticalitywiththeRCCAsinserted(withthedesignshutdownmarginassumingonestuckRCCA)beforeboronsolution(2400ppmfromRWST)enterstheRCS.Apeakcorepowerlessthanthenominalfullpowervalueisattained.UNIT214.2.5-8July1991 semOverresurAnalsisBecausesafetylimitsforfueldamagespecifiedearlierarenotexceeded,thereislittlelikelihoodoffueldispersalintothecoolant.Thepressuresurgemaythereforebecalculatedonthebasisofconventionaljheattransferfromthefuelandpromptheat-generationinthecoolant.4Thepressuresurgeiscalcul'atedbyfirstperformingthefuelheattransfercalculationtodeterminetheaverageandhotspotheatfluxversustime.Usingthisheatfluxdata,aTHINC'alculation's(10,11)conductedtodeterminethevolumesurge.Finally,thevolumesurgeissimulatedintheLOFTRANcomputercode.Thiscodecalculates,the(12)pressuretransienttakingintoaccountfluidtransportintheRCSandheattransfertothesteamgenerators.Nocreditistakenforthepossiblepressurereductioncausedbytheassumedfailureofthecontrolrodpressurehousing.Inputparametersfortheanalysisareconservativelyselectedonthebasisofvaluescalculatedforthistypeofcore.Themoreimportantparametersarediscussedbelow.Table14.2.6-1presentsthe'parametersusedinthisanalysis.E'edRodWorhsand-HCharm1FacorsThevaluesforejectedrodworthsandhotchannelfactorsarecalculatedusingeitherthreedimensionalstaticmethodsorbyasynthesismethodemployingonedimensionalandtwodimensionalcalculations.Standardnucleardesigncodesareusedintheanalysis.Nocreditistakenforthefluxflatteningeffectsofreactivityfeedback.Thecalculationisperformedforthemaximumallowedbank.insertionatagivenpowerlevel,asdeterminedbytherodinsertionlimits.Adversexenondistributionsareconsideredinthecalculationtoprovideworstcaseresults.Appropriatemarginsareaddedtotheejectedrodworthandhotchannelfactorstoaccountforanycalcul'ationaluncertainties,includinganallowancefornuclearpowerpeakingduetodensification.UNIT214.2.6-9July1997 PowerdistributionbeforeandafterejectionCoraworstcasecanbefoundinReference(4).Duringplantstartupphysicstesting,ejectedrodworthsandpowerdistributionsaremeasuredinthezeroandCullpowerconfigurationsandcomparedtovaluesusedintheanalysis.Experiencehasshownthattheejectedrodworthandpowerpeakingfactorsareconsistentlyoverpredictedintheanalysis.ectvteedbakVetnactosThelargesttemperaturerises,andhencethelargestreactivityfeedbacksoccurinchannelswherethepowerishigherthanaverage.Sincetheweightofaregionisdependentonflux,theseregionshavehighweights.Thismeansthatthereactivityfeedbackislargerthanthatindicatedbyasimplechannelanalysis.PhysicscalculationshavebeencarriedoutCortemperaturechangeswithaflattemperaturedistribution,andwithalargenumberofaxialandradialtemperaturedistributions.Reactivitychangeswerecomparedandeffectiveweightingfactorsdetermined.Theseweightingfactorstaketheformofmultiplierswhich,whenappliedtosinglechannelfeedbacks,correctthemtoeffectivewholecorefeedbacksfortheappropriatefluxshape.Inthisanalysis,sinceaonedimensional(axial)spatialkineticsmethodisemployed,axialweightingisnotnecessaryiftheinitialconditionismadetomatchtheejectedrodconfiguration.Inaddition,noweightingisappliedtothemoderatorfeedback.Aconservativeradialweightingfactorisappliedtothe.transientfueltemperaturetoobtainaneffectivefueltemperatureasafunctionoftimeaccountingforthemissingspatialdimension.TheseweightingfactorshavealsobeenshowntobeconservativecomparedtothreedimensionalanalysisReference(4).Thecriticalboronconcentrationsatthebeginningoflifeandendoflifeareadjustedinthenuclearcodeinordertoobtainmoderatordensitycoefficientcurveswhichareconservativecomparedtoactualdesignconditionsfortheplant.Asdiscussedabove,noweightingfactorisUNIT214.2.6-10July1991 accumulators.Theaccumulatorsareconservativelymodelledat2300ppmforthepost-LOCAsubcriticalityrequirement.Anevaluationhasbeenperformedtodeterminetheeffectofa3minuteSIinterruptionduringtheswitchovertosumprecirculationontheLBLOCAanalysis.ThisscenariocouldoccuriftheRHRpumpwhichwasfirstswitchedovertorecirculationfailsatthetimetheotherRHRpumpissecuredforswitchover.UsingaconservativelyshortestimateoftheRWSTdraindowntimeandaboundingscenariofortheavailabilityofpumpedinjection,itwasshown(Reference28)thattheshort-termpeakcladtemperatureresultsarenotchallengedbyathreeminuteinterruptionofallECCSflow.14.3.1.1.3CoreandSystemPerformance14.3.1.1.3.1MathematicalModelTherequirementsofanacceptableECCSevaluationmodelarepresentedinAppendixKof10CFR50(1)14.3.1.1.3.2LargeBreakLOCAEvaluationModelTheanalysisofalargebreakLOCAtransientisdividedintothreephases:(1)blowdown,(2)refill,and(3)reflood.Therearethreedistincttransientsanalyzedineachphase,includingthethermal-hydraulictransientintheRCS,thepressureandtemperaturetransientwithinthecontainment,andthefuelandcladtemperaturetransientofthehottestfuelrodinthecore.Basedontheseconsiderations,asystemofinterrelatedcomputercodeshasbeendevelopedfortheanalysisoftheLOCA.AdescriptionofthevariousaspectsoftheLOCAanalysismethodologyisgivenbyBordelon,Massie,andZordan(1974).Thisdocumentdescribesthemajor(6)phenomenamodeled,theinterfacesamongthecomputercodes,andthefeaturesofthecodeswhichensurecompliancewiththeAcceptanceCriteria.TheSATAN-VI,Unit214.3.1-7July1997 WREFLOOD,BASHandLOCBARTcodes,whichareusedintheLOCAanalysis,aredescribedindetailbyBordelonetal.(1974);Kellyetal.(1974);Young(5)'(9)etal.(1987);andBordelonetal.(1974).Codemodificationsare(4)(6)specifiedinReferences2,7,13,and17.Thesecodesassessthecoreheattransfergeometryanddetermineifthecoreremainsamenabletocoolingthroughandsubsequenttotheblowdown,refill,andrefloodphasesoftheLOCA.TheSATAN-UIcomputercodeanalyzesthethermal-hydraulictransientintheRCSduringblowdownandtheWREFLOODcomputercodecalculatesthistransientduringtherefillphaseoftheaccident.UNIT214.3.1-7aJuly1997 TheBASHcodeisusedtodeterminetheRCSresponseduringthereflood"phaseofthetransient.TheLOTICcomputercode,describedbyHsienandRaymundinWCAP-8355(1975)andWCAP-8345(1974),calculatesthe(3)~containmentbackpressuretransient.ThecontainmentbackpressuretransientisinputtoBASHforthepurposeofcalculatingtherefloodtransient.TheLOCBARTcomputercodecalculatesthethermaltransientofthehottestfuelrodinthethreephases.Theimprovedfuelperformancemodel,describedinReference15,generatestheinitialfuelrodconditionsinputtoLOCBART.SATAN-VIcalculatestheRCSpressure,enthalpy,density,andthemassandenergyflowratesintheRCS,aswellassteamgeneratorenergytransferbetweentheprimaryandsecondarysystemsasafunctionoftimeduringtheblowdownphaseoftheLOCA.SATAN-VIalsocalculatestheaccumulatorwatermassandinternalpressureandthebreakmassandenez'gyflowratesthatareassumedtobeventedtothecontainmentduringblowdown.Attheendoftheblowdown,informationonthestateofthesystemistransferredtotheWREFLOODcodewhichperformsthecalculationoftherefillperiodtobottomof'core(BOC)recoverytime.OncethevesselhasPrefilledtothebottomofthecore,therefloodportionofthetransientbegins.TheBASHcodeisusedtocalculatethethez'mal-hydraulicsimulationoftheRCSfortherefloodphase.InformationconcerningthecoreboundaryconditionsistakenfromalloftheabovecodesandinputtotheLOCBARTcodeforthepurposeofcalculatingthecorefuelrodthermalzesponsefortheentiretransient.Fromtheboundaryconditions,LOCBARTcomputesthefluidconditionsandheattransfercoefficientforthefulllengthofthefuelrodbyemployingmechanisticmodelsappropriatetotheactualflowandheattransferregimes.Conservativeassumptionsensurethatthefuelrodsmodeledinthecalculationrepresentthehottestrodsintheentirecore.Thelargebreakanalysiswaspez'formedwiththeDecember1981versionof(4)theevaluationmodelmodified'toincorporatetheBASHcomputercode.UNIT214.3.1-8July1991 Figures14.3.1-15a-gThecladtemperatureatthehotspotisshownforthehotrod.Figures14.3.1-16-18ThecontainmentbackpressuretransientusedintheanalysisisprovidedforCasesA,FandG(theminimumandmaximumSIflowcases,andthe3413Mwtcrosstievalveclosedcase).Figures14.3.1-19-2?ThesefiguresshowtheheatremovalratesoftheheatsinksfoundintheloweranduppercompartmentandtheheatremovalbythesumpandlowercompartmentsprayforCasesA,FandG.Figures14.3.1-28-30Thesefiguresshowthetemperaturetransientsinboththelower-anduppercompartmentsofcontainmentand.flowfromtheuppertolowercompartmentsforCasesA,FandG.Thepeakcladtemperaturecalculatedforalargebreakis2140F,whichislessthantheacceptancecriterialimitof2200FThiemaxmumlocalmetal-waterreactionzs6,80percent,whichiswellbelowtheembrittlementlimitof17percentasreuiredb10CyFR50.46.Thetotalcoremetal-water'reactionislessthan0.3percentforallbreaks,correspondingtolessthan0.3percenthydrogengeneration,ascomparedwiththe.1percentcriterionof10CFR50.46.Thecladtemperaturetransientisterminatedattiwhhameentecoregeometryis.stillamenableto1tocooling.Asaresult,thecoretemperaturewillcontinueto'ropandtheabilitytoremovedecayheatgeneratedinthefuelforanextendedperiodoftimewillbeprovided.Assessment-forChangesinModelsandApplications10CFR50.46(a)(3)reuqirestherecordkeepingandreportingofchangesinLOCAevaluationmodelsandofchangesintheapplicationofthesemodelsReference21reportsthefollowingpermanentchangesthatapplytoUnit2ofCookNuclearUNIT214.3.1-13July1995 1.AnupdateofthefuelrodmodelintheLOCAevaluationmodeltomaintainconsistencywiththelatestapprovedversionoftheNestinghousefuelroddesigncode,and2AnestimationofthechangeinresultsisincludedtoaccountforcombiningmostsevereLOCAandplant-specificseismicforcesuponthesteamgeneratortubesindeterminingthesteamgeneratorflowreductionduringaLOCAevent.Additionally,thepotentialimpactofassumingonlytheaveragerodinthehottest-assemblyforcomputingfuelrodburstandrelatedchannelblockageeffectswasevaluatedasnotrequiringanyadjustmentintheresults.Reference21describesthesechangesinmodelsandapplicationsingreaterdetail.TabulationsoftheassessmentsagainstpeakcladtemperatureduetothesechangesforthelimitingcasesareshowninTable14.3.1-6.Ineachcase,thepeakcladtemperatureresultremainslessthan2200degreesF.ThecurrentlicensingbasispeakcladtemperaturesgiveninTable14.3.1-6arebasedonlargebreakLOCAanalysiscontainedinReference24.Intheseanalyses,thepeakcladtemperaturesforstructuralmetalheatmodelingandpowermarginallocationhavebeenspecified.ThecurrentlicensingbasispeakcladtemperaturesgiveninTable14.3.1-6includesthesetwoadditionalmargins.:ForbothcasesAandGinTable14.3.1-6,acorrectiontoaccountforerrorsfoundinLUCIFERof-6FwasappliedbasedontheinformationgiveninReference25.Acorrectionof253FwasalsoappliedtoaccountforchangestothepowershapeintheLBLOCAanalysis.Inaddition,acreditof237Fwastakenfortheeffectofthehotlegnozzlegapeffect.Thesecorrectionsaredescribedinreference26.Forbothcases,thelicensingbasispeakcladtemperatureisbelow2200F.Reference27reportsanerrorinthetranslationoffluidconditionsfromtheSATANtoLOCTAcodes.Theerrorresultsinapeakcladdingtermperaturepenaltyof15'F.ThepeakcladdingtemperatureforCasesAandGremainbelowthe2200'Flimit.UNIT214.3.1-14July1997 Anevaluationhasbeenperformedwhichdemons-ratesthatthelargebreakLOCAPCTsforcasesAandGinTable14.3.1-6willremainbelow2200FforareductioninsafetyinjectionflowratesresultingfromanincreaseintheRHRandhighheadsafetyinjectionpumpheaddegradationfrom10~to15<.UNIT214.3.1-14aJuly1997 20.Attachment13toletter,M.P.Alexich,I&M,toH.R.Denton,NRC,March26,1987,AEP:NRC:0916W.21.Fitzpatrick,E.E.(I&M),letterto'T.E.Murley(NRC),July18,1991,AEP:NRC:1118B.22.Stucker,D.L.etal.,"WestinghouseECCSEvaluationModel:RevisedLargeBreakLOCAPowerDistributionMethodology,"WCAP-12909-P,May1991.23.Tritch,S.R.(Westinghouse)lettertoR.C.Jones(NRC),November21,1991,ET-NRC-91-3633,"MethodologyClarificaitontoWCAP-12909-P."24.Fitzpatrick,E.E.(I&M)lettertoT.E.Murley(NRC),March12,1993,AEP:NRC:1118D.25.Fitzpatrick,E.E.(I&M)lettertoW.T.Russell~(NRC),March25,1994,AEP:NRC:1118E.26.Fitzpatrick,E.E.(I&M)lettertoNRCDocumentControlDesk,March22,1996,AEP:NRC:1118K.27.Fitzpatrick.E.E.(I&M)lettertoNRCDocumentControlDesk,April10,1997,AEP:NRC:1118L.28.AEP-97-004/NSD-SAE-ESI-97-020;"AmericanElectricPower,DonaldC.CookNuclearPlantUnits1and2;LBLOCAEvaluationfor3MinuteSIInterruption;January17,1997(WestinghouseLetterto'mericanElectricPower)UNIT214.3.1-17July1997 DONALDCeCOOKNUCLEARPLANTUNZT2TABLE14~3.11LARGEBREAKLOCACASESANALYZEDCASEA-oC~0~6i3588MwtCorePower>HighTemperature(T~615.2F),~gHOT'ighPressure(P2313psia),F2.220,F1.620,MinimumSZRCSQAHwithcross-tievalvesopen.Limitingbreakcase,i.e.,thi.scasehadhighestPCTforallcasesanalyred.C0'3588MwtCorePoweriHighTemprature(TH~-615'F)0DNHighPressure(P2313psia),F2.240,F<1.620MinimumSZwi.thcross-ti.evalvesopen.PCASEC-C~0.8,3588MwtCorePower,HighTemperature(T~615.2F),oHighPressure(P2313psia),F2.240,F~1.620,MinimumSZwithcross-tievalvesopen.CASEDCD~0.6,3588MwtCorePower,LowTemperature(T582.3F),High0Pressure(P2313psia),F2.220,F~1.620,MinimumSZwithNcross-tievalvesopen.CASE.EC~0.6,3588MwtCorePower,HighTemperature(T~615.0F),Low0Pressure(P2037psia),F2.220,F<1.620,MinimumSZwithQcross-tievalvesopen.C~0.6,3588MwtCorePower,HighTemperature(T~615.2F),0HighPressure(P2313psia),F2-220,F~1.620,MaximumSZNwithcross-tievalvesopen.UNIT214.3.1-18July1991 CaseAC0=0.6*HinSl3588Hwt615.2'F~2333isCaseCC,=O.BHinSI3588Hwt615.2'F~2313siCaseDC=0.6HinSl3588Hwt582.3'F~2313liTABLE14.3.1.6LARGEBREAKLOCARESULTSFUELCLADDINGDATACaseBC,"-0.4HinSI3588Hwt615.24F2~313*13CaseEC0=0.6HinSl3588Hwt615.0'F2~332~i3CaseFC0=0.6HaxSl3588Hwt615.24F~23133isCaseGC0=0.6RNRX-Tie3413Hwt611.2'F2~3333illPeakCladTemperature(4F)ComputedinAnalysisHodelAssessmentstFuelRodHodelUpdate,SeismicandLOCAForcesonSteamGeneratorTubes2140.0+10.0+20.01848.21766.01878.42074.72102.72090.0+10.0+20.0StructuralHetalHeatHodelingLuciferErrorCorrectionPowerHarginSkewedPo~erShapePenaltyHotLegNozzleGapBenefitTranslationFromSatantoLOCTACurrentLicensingBasisPeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionHaximgn(%)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(%)NotRodBurstTime(sec)NotRodBurstLocation.(ft)CALCULATIONASSUHPTIONS:-25.0-6.0~98.0+253.0-237.0+152072.0'.75258.9'U6.809.75<0.345.796.008.75250.13.566.25<0.360.936.256.2557.92.975.25<0.350.665.259.75239.93.309.75<0.350.'I16.009.75255.45.719.75<0.346.056.009.75253.16.189.75<0.346.046.00-25.0-6.0+253.0-237.0+152120.0*9.75244.46.089.75<0.346.106.00PeakLinearPo~er(Kw/ft),102%PeakingFactor(atLicenseRating)AccumulatorWaterVoiune(ft)peracctmnulatorCycleAnalyzed*SeetheLOCAevaluationlogmaintainedbytheUNIT212.714(12.721forCaseG)2.220(2.335forCaseG)946AllNuclearSafety8AnalysisSectionfortenporarymarginallocations.14.3.1-25July19' DONALDc.cooKNUCLEAR>LANTuNIT2TABLE14.3.1-7CASEA-LARGEBREAKLOCACg0,6J{ININNSAFERIARDSlV,SSANDENERGYRELEASERATESTime~e>>0.01.02.03.04.05.06.07.08.09..010011.012.012.413.014.015.016.017ep18.019.020.021'22,023.024.025.025.027.028.029.030.031.032.033.034.035.840.046.046.666.086.'5109.9135.2171.5257.9MassFlowRate70562.66324.58446.47776.40310.32388.30679.29057.27299.25547.22446.19737.17525.15806.15567.13863.12346.10803.9785.8687.7013.4975.5361.7165.7503.7368.6741.5803.5513.4940.4386.'3459.2581.1419.1406.1393.1381.193.2193.2193.2608.1623.2631.6637.8676.6691.8EnergyFlowRate37960066.34809386.30872684.25444113.21684814.17815357.17103044.16373321.15517895.14706648.13347482.11937678.10722934.10271911.9618894.8692759.7910304.7134722.6598154.5904895.5001042.3600314.3099603..3249819.2958259.2506588.1964716.1452731.1313192.1064918.833363.548032.354346.80449.79650.78887.78166.7361'361.7408.208262.208283.204153.199042.204636.200029.UNIT214.3.1-26 SBLOAModelAssessments10CFR50.46(a)(3).requirestherecordkeepingandreportingofchangesinLOCAevaluationmodels"andofchangesintheapplicationofthesemodelsTable14.3.2-14showsthepeakcladtemperatureobtainedforthesmallVbreakLOCAanalysisforboththehighheadsafetyinjectioncross-tieopenandclosedcases.Thevariouschangestotheevaluationmodelsshowninthetablearetakenfromreferences9,12,14,15,16,and17.Thepeakcladtemperatureresultforallcasesremainsbelow2200'F.AnevaluationhasbeenperformedwhichdemonstratesthatthesmallbreakLOCAPCTsforcases1and3inTable14.3.2-14willremainbelow2200FforareductioninsafetyinjectionflowratesresultingfromanincreaseintheRHRandhighheadsafetyinjectionpumpheaddegradationfrom10%.to15%.UNET214.3.2-7cJuly1997 RferencesSecion14.1."AcceptanceCriteriaforEmergencyCoreCoolingSystemsforWaterCooledNuclearPowerReactors,"10CFR50.46andAppendixKof10CFR50.FederalRegister,Volume39,Number3,January4,1974.2.Bordelon,F.M.,etal.,"LOCTA-ZVProgram:LossofCoolantTransientAnalysis,"WCAP-8305,June,1974,WCAP-8201,June,1974(Proprietary),June1974.3."ReportonSmailBreakAccidentsforWestinghouseNSSSSystem,"Vols.ItoIZZ,WCAP-9600,June1979.4."GenericEvalu'ationofFeedwaterTransientsandSmallBreakLoss-of-CoolantAccidentsinWestinghouse-DesignedOperatingPlants,"NUREG-0611,January1980.5."ClarificationofTMZActionPlanRequirements,"NUREG-0737,November,1980.6.NRCGenericLetter83-35fromD.G.Eisenhut,"ClarificationofTMZActionPlanItemZI.K.3.31,"November2,1983.7.Meyer,P.E.,"NOTRUMP,ANodalTransientSmallBreakandGeneralNetworkCode,"WCAP-10079-P-A,August1985(Proprietary).8.Lee,N.,etal,"WestinghouseSmallBreakECCSEvaluationModelUsingtheNOTRUMPCode,"WCAP-10054-P-A,August1985(Proprietary).9.Rupprecht,S.D.,etal,"WestinghouseSmallBreakLOCAECCSEvaluationModelGenericStudywiththeNOTRUMPCode,"WCAP-11145-P-A,October1986.10.Fitzpatrick,E.E.(I&M)lettertoT.E.Murley(NRC),July18,1991.AEP:NRC:1118B.11.Fitzpatrick,E.E.(I&M)AEP:NRC:1118D.lettertoT.E.Murley,March12,1993,12.Fitzpatrick,E.E.(I&M),letter1993,AEP:NRC:1118F.toT.E.Murley(NRC),October25,13.Fitzpatrick,E.E.(I&M),lettertoT.E.Murley(NRC),January12,1994,AEP:NRC:1118G.14.Fitzpatrick,E.E.(Z&M),lettertoT.E.Murley(NRC),March25,1994,AEP:NRC:1118E.15.Fitzpatrick,E.E.(I&M),lettertoW.T.Russell(NRC),December16,1994,AEP:NRC:1118H.II16.Fitzpatrick,E.E.(I&M),lettertoNRCDocumentControlDesk,March22,1996,AEP:NRC:1118K.17.Fitzpatrick,E.E.(I&M),lettertoNRCDocumentControlDesk,April10,1997,AEP:NRC:1118L.UNIT214.3.2-8July,1997 TABLE14.3.2-13SMALL-BREAKLOSSOFCOOIANTACCIDENTCALCUIATIONS(4"Break)REMLTSLPHTNOTRUMPPeakCladTemperature(4F)PeakCladTemperatureLocation(ft)PeakCladTemperatureTime(sec)LocalZr/H,OReactionMaximum(X)LocalZr/H,OReactionLocation(ft)TotalZr/H,OReaction(X)RodBurstArtificialLeak-ByPenalty(4F)BurstandBlockagePenalty(4F)TotalPeakCladTemperature('F)<<~NRSV153111.25846.1.0.45911.25None12None1543CALCULATION:NSSSPowerMWt102XofPeakLinearPoverkw/ft102XofHotRodPoverDistribution(kw/ft)AccumulatorWaterVolume,cu.ft..3588'2.764SeeFigure14.3.2-68946LPHTislovpressure,hightemperatureoperatingcondition.W/MSSVismainsteamsafetyvalvesetpointtoleranceincreasecaseat3588MWtcorepoverwithHHSIcrosstiesopen.'oesnotincludepumpheat14.3.2-21July1995 TABLE14.3.2-14SMALLBREAKLOFLANTACIDENTCALULATINPEAKCLADTEMPERATUREFASSESSMENTSSINELASTANALYSISParameterCase3*C~s2*Case3*Valuecomputedinanalysis195619471531DriftFluxFlowRegimeErrorsLuciferErrorCorrectionsBoilingHeatTransferCorrelationError.SteamLineIsolationLogicErrorContainmentSprayduringSBLOCA-13-16-6N/A-13-16-6+18N/A-13-16-6+18N/AAxialNodalization,RIPModelRevision,and+57-45SBLOCTAErrorCorrectionsAnalysisNOTRUMPSpecificEnthalpyErrorBurstandBlockage/TimeinLifeSBLOCTAFuelRodInitializationErrorLoopSealEvaluationErrorLicensingBasis&PermanentAssessments+20+0.-381988+20+10-381929+20+0+10-381529Case1Powerlevelof3250MWt*",HHSICross-tieClosedCase2Powerlevelof3413MWt*",HHSICross-tieClosedCase3Powerlevelof3588MWt**,HHSICross-tieOpen<<<<Notethatthepowerlevelusedintheanalysesis102%ofthevaluegivenanddoesnotinclude,pumpheat.UNIT214.3.2-22July1997 14.3.5.3.2FueHdnccdentAdiscussionontheboundingcaseforafuelhandlingaccidentinsideoftheauxiliarybuildingcanbefoundinsection14.2.1oftheUnit1FSARforthepotentialpoweruprateofUnit2to3588MWt.AnanalysisofthefuelhandlingaccidentbothinsidetheauxiliarybuildingandinsidecontainmentwasperformedbyWestinghouse.TheresultsarepresentedinTable14.3.5-6.14.3.5.3.3ckotWesSeeUnit2UFSARSection14.1.6.14.3.5.3.4SteCeneatoubeadMaSteamlneRuturesTheresultsofasteamgeneratortuberuptureradiologicalanalysisatapowerlevelof3588MWtisfoundinTable14.3.5-6.(TheanalysisisalsodiscussedinUnit1PSARChapter14.2.7.)Porsteamlinebreak,theCookNuclearPlantUnit2PSARanalysis(Section14.2.5)indicatedthattherewouldbenofuelfailuresforthistransient.Thus,theTechnicalSpecificationlimitsoncoolantactivitywillbethecontrollingfactorforoffsitedoses.ThislimithasnotbeenchangedsothePSARdoseresults(Unit1UPSARSection14.2.7)remainbounding.Aswiththelockedrotortransient,iffuelfailureswerepro)ectedtooccur,theywouldbeboundedbytheassumptionsinthelossofcoolantanalysispresentedinSection14.3.5.3.1andthereforeonlyasmallfractionofthe10CPR100limits.14.3.5.3.5RCCAssembEectoncidentAsdiscussedinUnit2UPSARSection14.2.6,analysesindicatethatfuelandcladlimitsarenotexceeded.Fromthisitisconcludedthatthereisnolikelihoodofasuddenfueldispersalintothecoolant.Sincethepeakpressuredoesnotcausestresstoexceedstresslimits,nofurtherconsequencetotheRCSislikely.Theanalysesalsoshowthatlessthan10%ofthefuelrodsinthecorewillenterDNBandreleasefissionproducts.IUNIT214.3.5-3July,1993 143,5,3,6~LCAEvenThesalientparametersusedintheLOCAanalysisarepresentedinTable14.3.5-5.TheresultingoffsitedosesarepresentedinTable14.3.5-6.Thesedosesarewithinthe10CFR1004uidelines.ThisinformationisapplicabletobothUnit1andUnit2oftheUFSAR.14.3.5.3.7nrolRoomHabitabilitAnalysesassociatedwithcontrolroomhabitabilityarepresentedinSection14.3.5oftheUnit1FSAR.These'nalysesboundbothUnits1and2.14.3.5~REFERENCE1."ORIGEN-TheORNLIsotopeGenerationandDepletionCode,"M.J.Bell,OakRidgeNationalLaboratory,ORNL-4628,Nay1973.e2."ORIGENYieldsandCrossSections-NuclearTransmutationandDecayfromENDF/B,"ORNLRSIC,ORNLDLC-38/ORYX-E,September1975.3.WCAP-10125-P-A,"ExtendedBurnupEvaluationofWestinghouseFuel,"December1985.NUREG/CR-5008,"AssessmentoftheUseofExtendedBurnupFuelinLightWaterPowerReactors,"February1988.5."FIPCO,AComputerCodeforCalculatingtheDistributionofFissionProductsinReactorSystems,"WCAP-7949(proprietary),August1972.UNIT214.3.5-4July,1997 ~GenralTable14.3.5-5PARAMETERSUSEDTOEVALUATETHEOFFSITEDOSESDUETOALARGE-BREAKLOCAAT3588MWT(PAGE1OF3)Corepowerlevel,Mwt3588SourceTermFiftypercentofthecoreiodineisassumedtobeuniformlydistributedinthelowercontainmentattimezero(TID-14844/RegulatoryGuide1.4)I-131I-132I-133I-134I-135IodinePlate-outFactorIodinespeciesElementalOrganicParticulate5.0x107curies7.3x1071.0x1081.1x109.5x1070.50.910.040.05100percentofthecorenoblegasisreleasedtocontainment.Kr-85mKr-85Kr-87Kr-'88Xe-131mXe-133mXe-133Xe-135mXe-135Xe-138ContainmnPrmeers2.6x107curies8.3x10~4.8x1076.8x1077.1x10~2.9x1072.0x1()'.1x1074.2x1071.6x10sVo'lumeofuppercontainment,ft~Volumeoflowercontainment(Includesdeadendedvolumes)VolumeoficebedsContainmentleakrate0-24hr,percent/day>24hr.7.74x10~3.62x10~1.11x10~0.250.125UNIT214.3.5-9July,1997 Table14.3.55PARAMETERSUSEDTOEVALUATETHEOFFSITEDOSESDUETOALARGE-BREAKLOCAAT3588MWT(PAGE2OF3)CninmntParamerscon'dContainmentSpraySystem"UpperContainmentSprayflowrate,gpmSprayfallheight,ftLowerContainmentSprayflowrate,gpmSprayfallheight,ftSprayInjectionStarts,SecAirSteamFlowRates,cfm0-10min.>10min.IdinRemov1PramrsUpperContainmentElementaliodineremovalbyspray,hr'njectionspray(115sec.to16min.)recirculationspray(>20min.)207585100650115416,000(averageflowratefromlowertouppercontainment)39,000(recirculatedbetweenloweranduppercontainmentthroughtheicebeds)103.2Particulateiodineremovalbyspray,hr'.3LowerContainmentElementaliodineremovalbyspray,"hr'njectionspray(115secto16min)recirculationspray(>20min)102.8Particulateiodineremovalbyspray,hr'.6IceCondenserIodineremovalefficiency0-10min.10-40min.>40min.00.30ElementaliodineDF(includesthecombined100effectsofspraysandtheicecondenser)ParticulateiodineDF100*Afourminuteinterruptionintheoperationofthecontainmentspraysystemduringthetransfertocoldlegrecirculationisassumedintheoffsitedoseevaluation.UNIT214.3.5-10July,1997 Table14.3.5-5PARAHETERSUSEDTOEVALUATETHEOFFSITEDOSESDUETOALARGE-BREAKLOCAAT3588MWT(PAGE3OF3)seaeousamteAtmosphericdispersionfactorsatthesiteboundaryandattheouterboundaryofthelowpopulationtone(LPZ),sec/m,andbreathingrates,m/sec:0-2hr.2-24hr.1-5daysl5-30daysSteBouda3.15x1000~LZ7.5x10~7.5x10~2.6x1067.9x10~0-8hr.8-24hr.BethnRate3.47x1041.75x101-30days2.32x104UNIT214.3.5-11July,1993 Table14.3.5-6ESTIMATEDDOSESFOR3588MWTPOWEROPERATIONAccidentDescritionFuelHandlingAccidentintheAuxiliaryBuilding0-2hourthyroidatSB0-2hourwholebodyatSBFuelHandlingAccidentinContainment0-2hourthyroidatSB0-2hourwholebodyatSBSteamGeneratorTubeRupture0-2hoursiteboundarythyroidwholebody0-8hourLowPopulationZone(LPZ)thyroidwholebodyLarge-BreakLOCA"0-2hourthyroidwholebody0-30dayLPZthyroidwholebodygamma"CalculateddosesDosesinrem2.60.61001.70.20.40.051542.41341.8UNIT214.3.5-12 14.3.7LONG'ERMCOOLINGThissectionhasbeenrevisedtoincorporateupdatedanalyticalmaterial<'>regardingpressurizedthermalshock(PTS)andthepreventionofReactorCoolantSystem(RCS)overpressurization"onditionsduring,orsubsequentto,periodsofrapidand/orprolongedsystemcooldown.'hismaterialindicatesthatcertainsmallLOCAsanddouble-ended(orequivalent)SGTRswithhighbreakflowrateshavereplacedlargesteamlinebreaks,certainsmallbreakLOCAsandfeedwaterlinebreaksasthedominantPTSrelatedaccidents.GeneraldiscussionsofthePTSissues,includingstagnantloopconcernsandEmergencyResponseGuideline(ERG)actionsarepresented.ThemethodologyfollowedinapplyingthisgenericinformationspecificallytotheDonaldC.CookNuclearPlantissummarized.ThePTSscreeningcriteriaandlimitingapprovedcalculatedPTSvaluesprojectedtotheendofvessellifedeterminedinaccordancewith10CFR50.61arealsoprovidedforDonaldC.CookUnits1and2.'inally,abriefgeneraldiscussionoflongtermcoolingandtheuseofWOG-ERGbasedplantemergencyoperatingprocedurestopreventexcessivecooldownandreduceanyPTSrelated'riskispresented.1.GnriBckroundndDsriionAcombinationofseverecooling(thermalshock)andhighpressureproducestheconditionthatiscalledpressurizedthermalshock(PTS)Withinthethickwallsofthereactorpressurevessel,asubstantialtemperaturegradientcanbeproducedbyrapidcooling,oftheinnersurface.Thisgradientresultsinthermalstressesthataretensileinnature'ndthatareamaximumattheinnersurfaceofthevessel.Ifthesystemispressurizedduringorafterthecooldownoccurs,anadditionalpressurestressisimposedonthevesselwall,againbeingtensileinnatureandhavingamaximumattheinnersurface.Itisthiscombinedpressure-temperaturestressthatisofprimaryconcernforPTS.,AlimitingPTSconditionthatmaychallengethereactorvesselintegritycanoccurduringaseveretransientsuchasalossofcoolantaccident(LOCA),asecondarysidedepressurization(steamlineorfeedlinebreak),orasteamgeneratortuberupture(SGTR).Suchtransientsmaychallengetheintegrityofareactorvesselunderthefollowingconditions:UNIT214.3.7-1July,1997 severeovercoolingoftheinsideofthevesselwallollowedbyhighrepressurization,significantdegradationofvesselmaterialtoughnesscausedbyradiationembrittlement,andthepresenceofacritical-sizedefectinthevesselwall.APTSconcernarisesifoneof=thesetransientsactsonthehighlyirradiatedbeltlineregionofareactorvesselwhereareducedfractureresistanceexistsbecauseoftheneutronirradiation.Suchaneventmayproducethepropagationoflawspostulatedtoexistneartheinnerwal'urface,therebypotentiallyaffectingtheintegrityofthevessel.TheWestinghouseOwnersGroup(WOG)completedagenericevaluationprogramofthe'everityofthethermalshocktransientandsubmittedareporttotheNRC,WCAP-10019,datedDecembe"1981I".Thisgenericreportconcludedthat,basedonaconservatireassessment,alloftheWestinghousePressurizedWaterReactors,includingDonaldC.CookUnits1and2,couldcontinuetooperateforaconsiderablenumberofyearsbeforethereactorvesselintegrityacceptancecriteriawouldbeviolated.TheresultsoftheWOGprogramdemonstratedthatnoimmediatereactorvesselintegrityconcernsexist.AspartofthiscontinuingeffortanotherreportwassubmittedtotheNRCinMay1982bytheWestinghouseOwnersGroup'".ThisreportprovidedadditionalinformationonWCAP-10019andrespondedtotheNRC'sshorttermactionneedsastheStaffperceivedthem"'.SeveralmethodologicaldifferencesexistbetweenReferences(1)and(2),particularlyonthesubjectofcrackarrestingasthebasisonwhichtopredicatevesselintegrity.Xntheabovestudies,andalsoaprobabilistictransientevaluationbytheNRC,itwasrecognizedthattransientsleadingtostagnationof(~)flowinthereactorcoolantloopswhilesafetyinjectionflowcontinuesmaybeanadditionalcandidatecontributingtoPTS.Thestagnantloopconsiderationsarediscussedbelow.UNET214.3.7-2July,1997 2.GeneralDiscussionofPTSRiskInludinSanantReactorCoolantLooConditionsDuringatransientoremergencyevent,allreactor,coolantpumps(RCPs)maybestoppedduetolossofsupportconditions(e.g.,offsitepowersupply,coolingwatertomotorsorseals)orduetomeetingtheRCPtripcriteria.Inthislattersituation,theoperatorwouldbedirectedtotriptheRCPsifasafetyinjectionpumpisrunningandtheRCPtripparameterisreached(e.g.,lowRCSsubcoolingorlowRCSpressure).AfterRCPtrip,unlesstheresidualheatremoval(RHR)systemisinserviceandisremovingdecayheat,naturalcirculationflowwillbeneededtoremovecoredecayheatthroughthesteamgenerators.,Ifnaturalcirculationflowdecreasesorisstoppedinonormoreloopsandsafetyinjection(SI)flowismaintainedtothecoldlegsoftheaffectedloops,therelativelycoldSIwaterwillmixwiththewaterinthecoldlegsandvesseldowncomer.ThiscancauseaPTS,concernforthereactorvesseliftheRCSpressure'remainsorbecomeshigh.ForarigorousdeterminationofthePTSriskfortheplant,literallythousandsofpostulatedcooldownscenarioscouldbeconsidered.However,byapplyingappropriatelyconservativeapproximations,itwaspossibletofocusonthelimitingcasesandalsoanalyzethisproblemonagenericbasis.AgenericstudyofPTSrisk,includingstagnant'oopconsiderations,wasperformedbytheWestinghouseOwnersGroupandisprovidedinWCAP-10319'".ThePTSstudyincludingstagnantloopconditionsconsistedof.threemainefforts:,aneventtreeanalysisoftheseventransient,familiesbelievedtoincludeall-thepotentialstagnantlooptransientsthatcontributetotheoverallPTSrisk.athermalhydraulicanalysistodetermineacharacteristicpressure,finaltemperature(reflectingthedepthofthecooldown),UNIT2l14.3.7-3July,1997 andtimeconstant(reflectingtherateofcooldown)foreachoftheuniquesequencesor"bins"identifiedintheeventtreeanalysis,andapplicationoftheNRCprobabilisticfracturemechanics(PFM)modelfromReference(4)todeterminethePTSriskassociatedwitheachoftheidentifiedsequencesorbins.IntheWCAP-10319study,thePTSriskisdefinedbasedonthefrequencyofsignificantflawextensionforlongitudinalflawsthatmayexistattheinnersurfaceofthereactorvessel.Asnotedbelow,weldsorientedinthecircumferentialdirectionhavealessstringentPTSscreeningcriterion(i.e.,300versus270'F),soselectionofflawsorientedintheaxialorlongitudinaldirectionforameasureofthePTSriskisappropriateandconservative.ThisselectedPTSriskparameterisevaluatedasafunctionofthemeansurfaceRT~~(referencetemperaturenil-ductilitytransition).ThisvesselsurfaceRT~parameter,nowreferredtoasthevesselRT~~(referencetemperatureforpressurizedthermalshock),isprovidedinFigure14.3.7-1.ThisfigurecanbeappliedtomostoftheWOGmemberplantsincludingtheDonaldC.CookNuclearPlant.InFigure14.3.7-1,thePTScontributionsassociatedwitheachofthesevencategoriesortransienttypesinvestigatedintheWCAP-10319WOGstudyareprovided.Thecorresponding"WOGTOTAL"isalsosho~nandcomparescloselywiththe"NRCTOTAL"fromReference(4).TheresultsofthisWOGstudyshowthattheoverallPTSriskforatypicalWestinghouseplantisdominatedbyLOCAsandSGTRs,specificallysmallLOCAswithequivalentdiametersinacertainrange(about,2"to6"fora4-loopplant)anddouble-ended(orequivalent)SGTRsthatoccursimultaneouslywithalossofoffsitepowerorotherconditionsresultinginatripofallRCPs.HotlegLOCAswerespecificallyanalyzedforthegenericstudytomaximizetheamountofcoldsafetyinjectionandaccumulatorwateraddedtotheRCScoldlegsandvesseldowncomerregions.NotethatforsmallerLOCAcases,SIflowwouldbeabletokeepupwithbreakflow;ifUNiT214.3.7-4July,1997 theRCPsaretrippedforthesecases,naturalcirculationflowMouldbemaintainedandthere,wouldbenouncontrolledcooldownofthecoldlegsandvesseldowncomerregions.Forlargerbreaksizes,thecooldownwouldbeuncontrolledbuttheRCSdepressurizesquickly.Thus,fortheseextremesinbreaksizes,eitherthetemperatureorpressurestresscontributionsareminimized,sotheseeventsbecomelessseverefromthePTSperspectivethanLOCAsinthe2"to6"rangeanalyzedforthePTSs'tudies.SomeofthescenariosusedfortheSGTRcasesalsoaccountforextendeddelaysinterminationofsafetyinjectionfollowingtheinitiationofoperatoractionstocooldownanddepressurizetheRCS(Note:Inadditiontoidentifyingandisolatingtherupturedsteamgenerator,theseoperatoractionsarecreditedfortheSGTRevent).ManualSIterminationdelaysfollowingdepressurizationoftheRCStotherupturedS/Gpressurewereassumedforthesecases.ThisdelaytendstomaximizethetimethatflowintherupturedloopissloweddownorstagnatespriortoSItermination.Themax'mumdelaycasescorrespondtoatotaltransienttimeofmorethan60minutesforoperatoractiontoterminateSIflow.ThiscategoryofSGTRiscalculatedtocontributelessthan1%totheestimatedtotalSGTRinitiatingeventfrequencyof3.9x10,'ccurrencesperreactor-year.Itisalsoimportant=topointoutthatinrecentyears,therehasbeenanincreasedawarenessoftheneedforperforminganyrequiredoperatorSGTRaccidentresponseactionsinatimelymanner.Thisincreasedoperatorawareness,combinedwithahighprobabilitythattheRCPswouldbeleftoperatingforadesignbasisSGTRevent,tendstomaketheSGTRcontributiontooverallPTSriskinWCAP-10319conservativelyhighwhenappliedtomost.WOGplantsincludingtheDonaldC.CookNuclearPlant.TheWOGstudyindicatedthatthecoldlegsandvesseldowncomerdonot,ontheaverage,cooldownasmuchfortheSGTRcasesasforsmallLOCAs.ItisbecauseofthisthatbelowanRT~~of290F,smallLOCAsUNIT214.3.7-5July,1997 arethedominantcontributorstoPTSrisk,despitethegreaterinitiatingeventfrequencyoftheSGTRcases.AtRT~~valuesabove290'F,SGTRsbecomethedominantcontributortoPTSrisk.AsimilartrendcouldbeexpectedfortheDonaldC.CookNuclearPlantsine~theinitiatingeventfrequenciesusedinthegenericPTSstudiesarecomparabletoorboundingwhencomparedtothoseexpectedattheCookplant.BesidessmallLOCAandSGTR,thenextmostlimitingeventidentifiedinFigure14.3.7-1isthelossofheatsinktransient.ThiseventisactuallytreatedasasmallhotlegLOCAsincetheoperatorwould,basedontheERGs,initiatehighpressureSIandopenthepressurizerPORVs.ThisbleedandfeedmodeofrecoveryisusedfortheunlikelysituationinwhichAFWisnotavailableandothermodesofsecondarycooling(e.g.,recoveryofmainfeedwater)cannotbeperformed.ThecharacteristicpressureassociatedwiththisscenarioisconservativelyPassumedtobe2000psiginWCAP-10319.WithcapabilitytoopenallthreepressurizerPORVsatDonaldC.CookUnits1and2,theRCSpressurewouldbeexpectedtobelessthan2000psigforthisbleedandfeedmodeofrecovery.Thus,applicationof'hegenericcurveforthisspecificcontributionisconsideredtobeappropriate.TheotherPTStransientscenarios,includingthoseinvolvingloopstagnation(suchassecondarydepressurization,anticipatedtransientwithoutscram,andfeedlinebreak),donotcontributesignificantlytothetotalfrequency.ThissupportsthewoGpositionthattheoverallriskfromPTSisdominatedbysmallLOCAandSGTReventsandisnotaffectedbyothercandidatesequences,includingseverecooldowntransientsthatresultinstagnantloopconditions.NotethatsmallsteamlinebreaksarenolongersignificantcontributorstothetotalfrequencyofflawextensionforatypicalWestinghousePWRaspreviouslysuggestedinanearlierWOGPTSriskstudy"'.UNIT21C.3.7-6July,1997 Basedontheassessmentsummarizedabove,resultsofthestagnantloopstudyareconsideredapplicableandconservativefortheDonaldC.CookNuclearPlant.EmergencyoperatingproceduresbasedontheERGsareavailableandtheoperatorsaretrainedtofollowtheprocedures.ThisincludessignificantactionssuchastrippingtheRCPsbasedonspecifiedcriteria,throttlingAFWflowwhencalledfor,terminatingSIflowwhenrequired,andonlycoolingtheRCSwithinspecifiedlimits.Sensitivitiestovariousoperatoractiontimesandcrediblefailuresarealsoconsidered,aswasnotedaboveforthedelayedSIterminationSGTRcases.BasedontheresultsfromthestagnantloopevaluationandlimitingPTSandscreeningvaluesasdescribedbelow,itcanbeconcludedthat,aslongasplantemergencyoperatingproceduresbasedontheERGsarefollowed,stagnantlooptransientsdonotsignificantlyincreasethePTSriskforatypicalWestinghouse-designedplantsuchastheDonaldC.CookNuclearPlant.3.LimiinRT-PTValusncreeninrieriaInJuly1985,theNRCpublishedanewruleunder10CFR50.61entitled"FractureToughnessRequirementsforProtectionAgainstPressurizedThermalShock(PTS)Events."Thisnewruleestablishedscreeninglimitsforthecalculatedreferencetemperatureforpressurizedthermalshock(RT~~)asfollows:a)270Fforplates,forgings,andaxialweldmaterials,andb)300'Fforcircumferentialweldmaterials.TheRT~~mustbecalculatedasperparagraph(b)(2)of10CFR50.61.InMay1991,theNRCissuedarevisionto10CFR50.61.ThisrevisionincorporatedthecalculationalmethodologyofRegulatoryGuide1.99,Revision2,"RadiationEmbrittlementofReactorVesselMaterial,"U.S.NuclearRegulatoryCommission,May1988.Inaddition,thisrevisionrequiredlicenseestosubmitprojectedvaluesofRT~~forthereactorbeltlxnematerialsforthetimeofthesubmittalandfortheprojectedexpirationdateoftheoperatinglicense.Perthisrequirement,theCookNuclearPlantsubmittedaplant-specificRT~~calculationforbothUNIT2l4.3.7-7July,1997 unitstotheNRC"'.ThecontrollingmaterialandthecalculatedRT~~valuesattheendoftheoperatinglicensesareasfollows:U~nilIntermediatetolowershellcircumferentialweld(9-442)CalculatedRT~~216'FScreeningLimit300'FUnit2Intermediateshellplate(C5556-2)CalculatedRT~~217'FScreeningLimit270FTheplant-specificRT~~calculation,forCookUnit1is,basedontheJuly19B5of10CFR50.61andtheplant-specificRT~~calculationforCookUnit2isbasedontheMay1991versionof10CFR50.61.~TheNRChasapprovedthesubmittalandissuedaSafetyEvaluationreportdatedOctober1,1991.TheRT~~willberecalculatedandsubmittedtotheNRCwheneverchangesincoreloadings,surveillancemeasurements,orotherinformationindicatesasignificantchangeinprojectedvaluespertherequirementsof10CFR50.61.EmrencRons'idelinndTheirAplicaionforLonTrm~CnlinThegenericEmergencyResponseGuidelines(ERGs)developedbytheWestinghouseOwnersGroupcontainappropriatestepstopreventormitigatetheeffectsofPTSevents.ThesegenericguidelinesweredevelopedaspartoftheprogramforimplementationofitemI.C.1ofNUREG-0737andweresubmittedtotheNRC"'.AstheERGsweredeveloped,aPTSreviewoftheERGswasperformedtoensurethattheactionstakenwereappropriate'.Revision1oftheERGsincludedtheresultsofthisPTSreviewandthisversionoftheERGshasbeentransmittedtotheNRC"'.Asreportedabove,bothDonaldC.CookunitshavelimitingRT~~projectedvaluesthataregreaterthan200'Fbutlessthan250'F.Withtheseresults,bothunitsareconsideredtobeinCategoryIIwithrespecttoPTSmitigationactionsbasedontheERGs"'.TheDonaldC.CookUnits1and2emergencyoperatingproceduresarebasedontheWOGERGs.UNIT214.3.7-BJuly.1997 Forinitialcooldownfollowingeithe"ofthedominantaccidentscenarios,theoperatorisinstructedtousetheintactsteamgenerators(S/Gs)toremoveplantdecayandstoredheat.ThisisdonebyfeedingtheS/GswithauxiliaryfeedwatertomaintainanindicatedS/Gwaterlevelwithinthenarrow-rangelevelinstrumentspan,andrel'ievingS/Gpressurebymeansofthesteamdumpvalves(ifoffsitepowerisavailableorcanbequicklyrestored).Themainsteamsystematmosphericsafetyorreliefvalvescanbeusedifthesteamdumpsystemis'otavailable.LongtermcoolingcontinuesusingtheintactS/Gs,auxiliaryfeedwaterandtheatmosphericsafetyorreliefvalves.Inordertoassureeffectivelong-termcoolingforaLOCAcertainadditionaloperatoractionsareassumed.Theseactionsareprincipally(1)toswitchtheECCSfromtheinjectionphasetotherecirculationphase,(2)toplacethereactorcoolantpumpsinaconditionwheretheycanmosteffectivelyaidcorecooling,and(3)toswitchtheECCSfromcoldlegrecirculationtohotlegrecirculationattheappropriatetimetopreventboronprecipitation.Al'ftheseitemsandotherappropriateactionsthatneedtobetakentoensurePTSriskisminimizedarespecifiedintheplantemergencyoperatingprocedures.IIControloflongtermcoolingfortheseandotheraccidentscenariosrequiresspecificactionsandresponsesuniquetothetypeofaccidentthathasoccurred.TheplantemergencyoperatingproceduresprovidetheoperatorinstructionsforcontrollinglongtermcoolingandminimizihgPTSriskduringanticipatedaccidents.Theemergencyoperatingprocedurescovertherangeofactivitiesrequiredtotaketheplanttoasafeshutdowncondition,identifytheparametersthatmustbemonitored,theequipmentthatmustbeavailable,andestablishthesequenceforperformingtherequiredactivities.ProceduralcomplianceensuresthatactivitiesarecompletedwithintimeframesrequiredtopreventchallengingPTSriskconcernsandminimizeoperatorerrors.Thecompletesetofemergencyoperatingproceduresalsoaccountforotherunusualconditionssuchaslossofoffsitepower,somemultiplefailures(suchasLOCAplusSGTR)andequipmentfailures/unavailability.UNIT214.3.7-9July,1997 ~Refereee1.LetterNo.OG-58fromMr,.R.W.Jurgensen,Chairman,WOG,toMr.D.GEisenhut,Director,NRC,entitled,"ThermalShocktoReactorPressureVessel,"datedMay14,1981.(Attachment"SummaryReportonReactorVesselIntegrityforWestinghouseOperatingPlants"(WCAP-10019)).2.LetterNo.OG-70fromMr.O.D.Kingsley,Chairman,WOG,toMr.HaroldR.Denton,Director,NRC,entitled,"SupplementalInformationonReactorVesselIntegrity,"datedMay18,1982.(Attachment"SummaryofEvaluationsRelatedtoReactorVesselIntegrity"(WCAP-10019-S1)).3.LetterfromMr.T.M.Novak,NRC,AssistantDirectorforOperatingReactors,toMr.O.D.Kingsley,Chairman;WOG,datedMarch16,1982.4.NRCPolicyIssue,EnclosureA,"NRCStaffEvaluationofPressurizedThermalShock,"SECY-82-465,November23,1982.5.WestinghouseElectricCorporation,"AGeneric.AssessmentofSignificantFlawExtension,IncludingStagnantLoopConditions,FromPressurizedThermalShockofReactorVesselsonWestinghouseNuclearPowerPlants,WCAP-10319,December1983.6.LetterNo.AEP:NRC:0561D,"DonaldC.CookNuclearPlant,Units1and2,UpdatedReferenceTemperature,PressurizedThermalShockAnalyses,"datedAugust7,1990,fromMr.P.AlexichtoT.E.Murley.7.NRCSER,"SafetyEvaluationbytheOfficeofNuclearReactorRegulationRelatedtoAmendmentNo.157toFacilityOperatingLicenseNo.DPR-58,andAmendmentNo.141toFacilityOperatingLicenseNo.DPR-74,IndianaMichiganPowerCompany,DonaldC.CookNuclearPlant,UnitsNos.1and2,DocketNos.50-315and50-316,"datedOctober1,1991.8.LetterNo.OG-64fromMr.R.W.Jurgensen,Chairman,WOG,toMr.D.G.Eisenhut,Director,DivisionofLicensing,entitled,"EmergencyResponseGuidelineProgram,"datedNovember30,1981.9.LetterNo.OG-72fromMr.O.D.Kingsley,Chairman,WOG,toMr.HaroldR.Denton,Director,NRC,entitled,"PTSReviewoftheERGs,"datedJune22,1982.10.LetterNo.OG-111fromMr.J.J.Sheppard,Chairman,WOG,toMr.H.L.Thompson,Director,DivisionofHumanFactorsSafety,entitled"TransmittalofRevision1ofEmergencyResponseGuidelinesRevision1,"datedNovember30,1983.UNIT214.3.7-10July,1997 11.EmergencyResponseGuidelines-Revision1B(High-PressureVersion),WestinghouseOwnersGroup,February28,1992.UNIT214.3.7-11July,1997 FigureI4,3.7-IFREOUElICYOFSIGli!F!CANTFLA'~=XiclIS!OHFORLQNCITUOINALFLAISINATYPICALtESTIHCHQVSEPVRIOOC,IO-IIp"2NRCOTAL'RECAP-I03191>>OGTOTALCCLabIO-iC7CJ4kCClp-~L40IO-dCf4>>IP-7IO-Ig~o*~iy>>q,e>~re(bc>~r.ce'cer~~.e(L~gb~edK~cessfveFeedwaterIO-I200ZIO220250240250Zdp2TO250290300QUANSURF'ACERTNOTJULY1997 14.3.8NITROGENBLANKETINGThissectionwasaportionoftheresponsetoquestion212.34ofAppendixQoftheoriginalFSARwhichaddressedtheissuofnitrogenblanketingfromtheaccumulatorsinSBLOCA.Subsequentto1977,extensiveanalyseshavebeenperformedtostudythegeneralbehaviorofSBLOCA.Crediblesourcesofnon-condensablesinSBLOCAhavebeenconsideredinbothreferences1and2.Accumulatornitrogenwasnotidentifiedasapotentialsourceofnon-condensables.Crediblenon-condensableswerespecificallyaddressedinthedevelopmentoftheNOTRUMPcodewhichiscurrentlytheanalysisofrecordforbothunits.Referen1.WCAP9600,ReportonSmallBreakAccidentsforWestinghouseNSSSSystem,ApprovedT.M.Anderson,June1979.2.WCAP10054-P-A,WestinghouseSmallBreakECCSEvaluat'onModelUsingtheNOTRUMPCode,N.Lee,S.D.Rupprecht,W.R.Schwarz,W.D.Tauche,August1985.3.Letter,StevenA.Varga,NRCStafftoJohnDolan,May23,1985.14.3.8-1July,1997 1 INDEXOFUPDATEDFSARCHAPTERSIqp~pgSw/1/JChapter,1.Chapter2.Chapter3.Chapter3.Chapter4.Chapter5.Chapter6.Chapter7.Chapter8.Chapter9.Chapter10.Chapter11.Chapter12.Chapter13.Chapter14.Chapter14,AppendixJAppendixMIntroductionandSummarySiteandEnvironmentReactor(Unit$/1)Reactor(UnitP2)ReactorCoolantSystemContainmentSystemEngineered-Safety-Features"-InstrumentationandControlElectricalSystemsAuxiliaryandEmergencySystemsSteamandPowerConversionSystemWasteDisposalandRadiationProtectionSystemConductofOperationsInitialTestsandOperationSafetyAnalysis(Unitfjl)SafetyAnalysis(Unit)j2)July1995 CHAPTER1TABLEOFCONTENTSSectionTitleINTRODUCTIONANDSUMMARY~Pae1~0-
11.0INTRODUCTION
1.0-11.1.11.1.2F1.31.1.41.1.51.1.6PLANTSITESUMMARYSiteDescriptionMeteorologyGeologyandHydrologySeismologyLimnologyEnvironmentalRadiationMonitoring1.1-11.1-11.1-11.1-11.1-21.1-31.1-41.21~2.11.2.21~2.31.2.41.2.51.2.61.2.71.2.81.2DESIGNHIGHLIGHTSPowerLevelReactorCoolantLoopsPeakSpecificPowerFuelAssemblyDesignIceCondenserContainmentStructureOtherEngineeredSafety.FeaturesEmergencyPowerUseofSolid-StateLogicProtectionSystemReferences1.2-11.2-11.2-11.2-11.2-11.2-21.2-21~231~231.2-41.31.3.11.3.21.3.31.3.41~3.5SUMMARYPLANTDESCRIPTIONStructuresandEquipmentNuclearSteamSupplySystemReactorandPlantControlWasteDisposalSystemFuelHandlingSystem1.3-11.3-21.3-21.3-31.3-41.3-4July1995 CHAPTER1TABLEOFCONTENTS(Cont'd)Section1.3.61.3'1.3.81.3.9TitleTurbineandAuxiliariesElectricalSystemSafetyFeaturesSharedFacilitiesandEquipment~Pae1.3-51.3-51.3-61~371.41.4.11.4.21.4.31.4.41.4.51.4.61.4.71.4.81.4.9GENERALDESIGNCRITERIAOverallPlantRequirementsProtectionbyMultipleFissionProductBarriersNuclearandRadiationControlsReliabilityandTestabilityofeProtectionSystemsReactivityControlReactorCoolantPressureBoundaryEngineeredSafetyFeaturesFuelandWasteStorageSystemsEffluents1.4-11.4-11.4-101.4-111.4-131.4-171.4-181.4-181.4-191.4-201.4References1.4-221.5PLANTOPERATION1.5-11.6RESEARCHANDDEVELOPMENTREQUIREKNTS(Note:OriginalFSARSub-Chapter1.6isincludedforhistoricalrecordpurposes)1.6-01-iiJuly1995 CHAPTER1TABLEOFCONTENTS(Cont'd)Section1.71.81.9TitleQUALITYASSURANCEIDENTIFICATIONOFCONTRACTORSFACILITYSAFETYCONCLUSIONS~Pae1.7-11.8-11.9-11-iiiJuly1995 CHAPTER1LISTOFTABLESTable1.2-1TitleComparisonofDesignParameters1.4-1IndexofAECGeneralDesignCriteria1.6-1References1-ivJuly1995 CHAPTER1LISTOFFIGURES~Fiuse1.3-11.3-21.3-31.3-4TitleStandardSymbols-UnitsNo.1or2-PlotPlanPlantArrangement-SectionsnD-D",nE-E",andnF-Fn-UnitsNo.1and2PlantArrangement-Sections"G-G",nH-H",nJ-J",andnK-K"UnitsNo.1and2PlantArrangement-Sections"L-L"and"M-n-UnitsNo.1and1.3-51.3-61.3-7PlantArrangement-SectionsnN-N","P-P,nQ-Q,andnR-Rn-UnitsNo.1and2PlantArrangement-PlanBelowBasement-UnitsNo.1and2PlantArrangement-BasementPlan-Elev.591'-0"and587.0'-0"-UnitsNo.1and2PlantArrangement-MezzanineFloor-Elev.609'-OnUnits1and21.3-9PlantArrangement-633'-0"-Units1TurbineBuilding-MainFloor-Elev.and21.3-11PlantArrangement-ReactorBuilding-MainFloor-Elev.650'nStandardSymbols1-vJuly1995 CHAPTER2TABLEOFCONTENTSSection2.0TitleSITEANDENVIRONMENT~Pae2.12.1.12.1.22.1.32.1.42.1.52.1.6SITEDESCRIPTIONSummaryLocationTopographyAccessPopulationLandUse2.1-12~112.1-12.1-,32.1-32.1-72.1-122.22.2.12.2'2.2.32.22.32.3.12.3.22.3.32.42.4.22.4.3METEOROLOGYSourcesofDataGeneralMeteorologyDispersionMeteorologyReferencesGEOLOGYRegionalGeologySiteGeologySummaryofConclusionsHYDROLOGYSurfaceWaterHydrologyRegional.LocalGroundWaterHydrologyRegionalLocalSummaryofConclusions2.2-12.2-2202-72.2-82.2-102.3-12.3-12.3-32.3-52.4-12.4-12.4-12.4-12.4-22.4-22.4-32.4-52-iJuly1995 CHAPTER2.TABLEOFCONTENTS(Cont'd)SectionTitle~Pae2'2.5.12.5.22.5.3ENGINEERINGSEISMOLOGYSeismicityASeismicDesignFoundationMaterialsOperatingBasisEarthquakeDesignBasisEarthquakeResponseSpectraSupplementalDataConclusions2.5-12.5-12.5-22.5-22.5-32.5-42.5-52.5-62.5-72.62.6.12.6.22.6.32.6.42.6LIMNOLOGYANDECOLOGYIntroductionInitialStudiesNRCTechnicalSpecificationAppendixBPhaseStudies(1973to1982)OngoingStudyPhase(1983toPresent)References2.6-12.6-12.6-22.6-102.6-432.6-44a2-ii.July1995 CHAPTER2TABLEOFCONTENTS(Cont'd)SectionTitle~Pae2.7RADIOLOGICALENVIRONMENTALMONITORINGPROGRAM2.7-12.7.12.7.22.7.32'.4PurposeoftheRadiologicalEnvironmentalmonitoringprogram(REMP)PreoperationalStudySummaryofPreoperationalRadiologicalEnvironmentalMonitoringProgramREMPSamplingStations2.7-12.7-12e7-.1~2.7-22.82.8.12.8.22.8.32.8.42'.52.8e62.8.7PLANTDESIGNBASESDEPENDENTUPONSITEANDENVIRONSCHARACTERISTICSUnitVentGasEffluentLiquidWasteEffluentWindLoadingDesignGeologyHydrologySeismologyLimnology2.8-12.8-12.8-12.8-12.8-22.8-22.8-22.8-22.9PLANTDESIGNCRITERIAFORSTRUCTURESAND2.9-1EQUIPMENT2.9.1DefinitionofSeismicDesignClassificationClassIClassIIClassIII2.9-12.9-12.9-12.9-12-iiiJuly1995 CHAPTER2TABLEOFCONTENTS(Cont'd)Section2.9.22.9.32.9.42.9.52.9.6TitleClassificationofStructuresandEquipmentSeismicDesignCriteriaforSeismicClassIandIIPipingSeismicDesignCriteriaforClassI,ClassIIandClassIII,,StructuresClassIClassIIClassIIIForAllStructureSeismicClassificationsGeneralDesignConsiderationsforBuildingStructures.,AuxiliaryBuildingTurbineBuildingSeismicDesignCriteriaforEquipment~Pae2.9-22.9-52.9-82.9-82.9-82.9-82.9-92.9-102.9-122.9-152.9-162.10CONCLUSIONS2.10-.12ivJuly1995 CHAPTER2LISTOFTABLES2.1-12.1-22.1-32.1-42.1-52.1-62.1-6a2.1-72.1-7a2.1-&2.1-8a2.1-8b2.1-92.1-102.1-112.1-122.2-12.2-22.2-32.2-42.2-5.2.2-62.2-72,2-82.2-9MeteorologicalDataX/QGroundAverageHoursatEachWindSpeedandHoursatEachWindSpeedandHoursatEachWindSpeedandHoursatEachWindSpeedandHoursatEachWindSpeedandHoursatEachWindSpeedandDirection,Direction,Direction,Direction,StabilityStabilityStabilityStabilityClass:AClass:BClass:CClass:DDirection,StabilityClass:EDirection,StabilityClass:FPopulationTrendsoftheCountiesSurroundingtheDonaldC.CookNuclearPlantSitePopulationTrendsofCitiesandTownshipsinBerrienCounty,MichiganPopulationCentersof25,000orMoreWithin60MilesoftheDonaldC.CookNuclearPlantSiteDELETEDPopulationDistribution,1975PopulationDistribution,1990PopulationDistribution,1990ProjectedPopulationDistribution,2000ProjectedPopulationDistribution,2000ProjectedPopulationDistribution,2037ProjectedPopulationDistribution,2037TransientPopulationDistribution,1MileIncrements,1971AgriculturalStatisticsDELETEDDELETEDHospitalsinBerrienCounty,1993DataSummarySheet2vJuly1996 2.2-102.2-112.2-122.2-132.2-142.2-152.2-162.2-172.2-182.2-192.2-202.2-212.2-222.2-232.2-242.2-252.2-262.2-272.2-282.2-292.2-302.2-312.2-322.2-332.5-12.6-12.6-2DeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDeletedDelet:edDelet:edDeletedDeletedDeletedCHAPTER2LISTOFTABLES(Cont'd)EarthquakeswithEpicentersLocatedWithin200MilesofPlantSiteBibliographyofReportsProducedasPartofInitialPhaseofDonaldC.CookNuclearPlantEnvironmentalImpactAssessmentBibliographyofReportsProducedasPartofPre-Operational,PhaseandOperationalorTechnicalSpecification,AppendixB,.RequiredStudiesoftheImpactofDonaldC.CookNuclearPlantOutfallsonLakeMichigan2-viJuly1995 CHAPTER2LISTOFTABLES(Cont'd)TableTibia2.6-32.6-42.6-52.6-62.7-1207-22.7-32.7-52.9-12.9-2(PartA)2.9-2(PartB)2.9-2(PartC)SummaryofPlumeAreas,WidthsandVolumesCommonandScientificNamesofFishSpeciesCollectedfromCookPlanStudyAreas,SoutheasternLakeHichigan,1973-1982CommonNamesandTotalEstimatedNumberofEachSpeciesImpingedDuring1975-1982attheCookNuclearPlantEstimatesofAnnualEntrainmentLossesofFishLarvaeandFishEggsattheCookNuclearPlant1975-1982DELETEDDELETEDDELETEDDELETEDLoadingConditions:DefinitionsLoadingConditionsandStressLimits:PressureVesselsLoadingConditionsandStressLimits:PressurePipingLoadingConditionsandStressLimits:EquipmentSupports2-viiJuly1995 CHAPTER2LISTOFFIGURES.~Pf,use2.1-12.1-22.1-32.1-42.1-4a2.1-4b2.1-52.1-62.1-6a2.1-6b2.1-72.1-7a2.1-7b2.1-82.1-8a2.1-8b2.1-92.1-10RegionalFeaturesLocalFeaturesTitleTopographicMapofSiteTopographicUiewofPlantSiteDonaldC.CookNuclearPlantSectionsWestandNorthDonaldC.CookNuclearPlantTopographicMap1990PopulationDistribution,0-60Miles1990PopulationDistribution,0-5Miles1990PopulationDistribution,5-60Miles1990PopulationDistribution,10-60Miles2000PopulationDistribution,0-5Miles2000PopulationDistribution,5-60Miles2000PopulationDistribution,10-60Miles2037PopulationDistribution,0-5Miles2037PopulationDistribution,5-60Miles2037PopulationDistribution,10-60Miles1972DairyCattleDistribution0-10Miles1971TransientPopulationDistribution,0-8Miles2.2-1202-22.2-32.2-42.2-52.2-62.2-72.2-82.2-92.2-102'-11MeteorologicalTowerTornadosintheStateMainTowerWindRose,MainTowerWindRose,MainTowerWindRose,MainTowerWindRose,MainTowerWindRose,ofMichigan,1950-1989January-December1992January-March1992April-June1992July-September1992October-December1992January-December1992January-March1992April-June1992July-September1992ShorelineTowerWindRose,ShorelineTowerWindRose,ShorelineTowerWindRose,ShorelineTowerWindRose,2-viiiJuly1995 ~Piure2.2-122.2-132.2-142.2-152.2-162.2-172.2-182.2-192.2-202.2-212.2-222.2-23WindDirectionDistributions,WindDirectionDistributions,TurbulenceClassIV,SatelliteAllHours,200Ft.LevelWindDirectionDistributions,AllHours50Ft.LevelWindDirectionDistributions,AllHours,SatelliteWindDirectionDistributions,WinterWindDirectionDistributions,WindDirectionDistributions,SpringSummerWindDirectionDistributions,FallMonitoringSiteLocationsCHAPTER2LISTOFFIGURES(Cont'd.)TitleShorelineTowerWindRose,October-December1992WindDirectionDistributions,TurbulenceClassIV,200Ft.LevelWindDirectionDistributions,TurbulenceClassIV,50Ft.Level2.3-12.3-2RegionalTectonicMapGeologicCross-Section2.5-12.5-1a2.5-22.5-32.5-3a2.5-3b2.5-3c2.53d2.53e2.5-3fEpicentralLocationMapMapofPlantSiteRecommendedResponseSpectra-OperatingBasisEarthquakeRecommendedResponseSpectra-DesignBasisEarthquakeSiteSpectravs.ModifiedElCentro'34OperatingBasisEarthquakeResponseSpectraCookAuxiliaryBuildingFloorEl.650~-0>>OBEResponseSpectraCookAuxiliaryBuildingFloor.El.633'-0"OBEResponseSpectraCookDieselGeneratorBuildingFloorEl.609'-0"OBEResponseSpectraCookAuxiliaryBuildingFloorEl.587'-0"OBESiteSpectravs.ModifiedElCentro'34DBE2-ixJuly1995 CHAPTER2LISTOFFIGURES(Cont'd.)iure2.5-3g2.5-3h2'3i2.5-3jTitleResponseSpectraAuxiliaryBuildingFloorEl.587'nResponseSpectraDieselGeneratorBuildingFloorEl.609'-0"DBEResponseSpectraAuxiliaryBuildingFloorEl.633'-0"DBEResponseSpectraAuxiliaryBuildingEl.650'-0"2.6-12.6-22.6-32.6-42.6-52.6-62.6-72.6-82.6-92.6-102.6-112.6-122.7-12.7-2BathymetricChartofLakeMichiganThreeConceptsoftheSurfaceCurrentsofLakeMichiganSurfaceWaterTemperatureLocationsofCurrentMetersandTemperatureRecordersSchematicofTowedArrayRegion.ofLakeInfluencebyCookNuclearPlantDischargeCookandPalisadesNuclearPlantsMeteorologicalNetworksPresent36-stationCookNuclearPlantSamplingGridStationLocationsfortheMajorSurveysandShortSurveysGridofStationsUsedinBenthicSamplingNearCookNuclearPlantMapofSoutheasternLakeMichiganShowingPlantandFieldFishLarvaeSamplingStationsSpeciesCompositionoftheTotalNumberofFishImpingedEachYear1975-1982DELETEDDELETED2-xJuly1995 CHAPTER3TABLEOFCONTENTSSectionTitle~Pae3.0REACTOR3.1-13.1.13.1.23.1.3SUEQRYDESCRIPTIONPerformanceObjectivesPrincipalDesignCriteriaSafetyLimits3.1-13.1-23.1-43.1-113.23.2.13.2.13.2.2MECHANICALDESIGNMechanicalDesignandEvaluationReferencesCoreComponentTestsandInspections3~213.2-13.2-543.2-443.33.3.13.3.23.3.33.3.43.3.13.3.23.3.3NUCLEARDESIGNNuclearDesignandEvaluationPhysicsTestsAnticipatedTransientsWithoutTripCriticalityofFuelAssembliesReferencesReferencesReferences3.3-13.3-13.3-243~3253.3-253.3-263.3-263.3-273.43.4.13.4.23.43.4.2THERMALANDHYDRAULICDESIGNThermalandHydraulicEvaluationfortheInitialCoreThermalandHydraulicTestsandInspectionsReferencesReferences3.4-13.4-13.4-173.4-1&3.4-21UNIT13-iJuly1995 CHAPTER3TABLEOFCONTENTS(Cont'd)SectionTitle~Pae3.53.5'3.5&3.5.1References3.5.23.5.23.5.33.5.3NuclearDesignReferencesThermalandHydraulicDesignReferencesCURRENTWESTINGHOUSEOFARELOADFUELFuelMechanicalDesign3.5-13.5.1-13.5.1-343.5.2-13.5.2-63'.3=1'.5.3-13UNIT13ii CHAPTER3LISTOFTABLESTable3.2.1-13.2.2-1TitleInitialCoreMechanicalDesignParametersThermalandHydraulicDesignParameters3.3.1-13.3.1-23.3'-3NuclearDesignDataReactivityRequirementsforControlRodsCalculatedRodWorths,hp(UnitJjl)3.4.1-13.4.1-2.3.4.1-3ThermalandHydraulicDesignParametersEngineeringHotChannelFactorsSensitivityAnalysis3.5.1-13.5.1-23.5.2-13.5.2-23.5.2-33.5.3-1Westinghouse15x15OFADesignParameters.ComparisonofBurnableAbsorberRodsDesignParametersFuelAssemblyDesignParameters,CookNuclearPlant-Unit1,Cycle15KineticsCharacteristics,CookNuclearPlantUnit1WithWestinghouseOFAFuelShutdownRequirementsandMargins,CookNuclearPlantUnit1-Cycle15CookNuclearPlantUnit1Thermal-HydraulicDesignParametersUNIT13-iiiJuly1996 CHAPTER3LISTOFFIGURES.~Ftuse3.2.1-13.F1-23.2.1-33.2.1-43.2.1-53.2.1-63.2.1-73.2.1-83.2.1-93.2.1-103.2.1-113.2.1-123.2.1-133.2.1-143.2.1-153.3.1-13.3.1-23.3.1-33.3.1-43.3.1-5to3.3.1-103.3.1-113.3.1-123.3.1-13TitlaCoreCrossSectionReactorVesselandInternalsFuelLoadingArrangementTypicalRodClusterControlAssemblyCoreBarrelAssemblyUpperCoreSupportStructureGuideTubeAssemblyFuelAssemblyandControlClusterCrossSectionFuelAssemblyOutlineSpringClipGridAssemblyNeutronSourceLocationsBurnablePoisonControlRodDriveMechanismAssemblyControlRodDriveMechanismSchematicThimblePlugAssemblyControlRodPattern(Unit1)Cycle1AssemblywisePower(BOL)Cycle1AssemblywisePower(MOL)Cycle1AssemblywisePower(EOL)Thesefigureshavebeenintentionallydeleted.DistributionofBurnablePoisonRods-NumberofB.P.RodsperAssembly,Unit,1,Cycle1ArrangementofBurnablePoisonRodsWithinanAssembly,Unit1,Cycle1ModeratorTemperatureCoefficientvs.ModeratorTemperature,BOL,NoControlRodsInsertedUNIT13-ivJuly1996 CHAPTER3LISTOFFIGURES(Cont'd)~Ff.ure3.3.1-143.3.1-153.3.1-163.3.1-17TitleModeratorTemperatureCoefficientvs.ModeratorTemperature,BOL,AllControl-RodsInsertedModeratorTemperatureCoefficientvs.ModeratorTemperature,(EOL)DopplerCoefficientvs.ResonanceEffectiveTemperatureDopplerContributionstothePowerCoefficientvs.PowerLevel3.4.1-13.4.1-23.4;1-33.4.1-43.4.1-4a3.4.1-53.4.1-63.4.1-73.4.1-83.4.1-9ThermalConductivityofU02(DataCorrectedto95PercentTheoreticalDensity)Hi.ghPowerFuelRodExperimentalProgramComparisonofW-3PredictionandUniformFluxDataW-3CorrelationProbabilityDistributionCurveRodControlClusterAssemblyOutlineComparisonofW-3CorrelationWithRodBundleDNBData(SimpleGridWithoutMixingVane)ComparisonofW-3CorrelationwithRodBundleDNBData(SimpleGridWithMixingVane)~ComparisonofNon-UniformDNBDataWithW-3PredictionsComparisonofW-3PredictionWithMeasuredDNBLocationRadialPowerDistribution3.5.1-13.5.1-23.5.1-33.5.1-43.5.1-5.3.5.1-5aSchematicComparisonofWestinghouse15x15OFAWithENCFuelAssemblyDimensionsReactorCoreFuelAssemblyReloadPatternPlanViewofMidGridtoGuideThimbleJoint(BottomView)Elevati.onViewofMidGridtoGuideThimbleJointTopGri.dtoGuideThimbleandTopNozzleAttachmentTopGridt'oGuideThimbleandRemovableTopNozzleAttachmentUNIT13YJuly1995 CHAPTER3LISTOFFIGURES(Cont'd)~Fiure'itle3.5.1-63.5.1-73.5.1-83.5.1-93.5.2-13.5.2-23.5.3-13.5.3-23.5.3-3GuideThimbletoBottomGridandNozzleJointBottomNozzletoThimbleTubeConnectionMetAnnularBurnableAbsorberRodComparisonofBorosilicateGlassAbsorberRodwithPABARodCookNuclearPlantUnit1-Cycle15ExampleCoreLoadingPatternHeatFluxHotChannelFactorNormalizedOperatingEnvelope,FQECCSLimit2.15CookNuclearPlaneUnit1-Cycle14Measuredvs.PredictedCriticalHeatFlux-WRB1CorrelationTDCvsReynoidsNumberfor26"GridSpacingImprovedThermalDesignProcedureIllustrationUNIT13-viJuly1996 CHAPTER3TABLEOFCONTENTSSectionTitle'Pae3.03.1-13.13.1.1SUMMARYDESCRIPTIONReferences3.1-13.1-53.23.2.13.2.23.2.3MECHANICALDESIGNFuelReactorVesselInternalsReactivityControlSystem3.2-13.2-23.2-363.2-473.2References3.2-923.33.3.13.3.23.3.33.3NUCLEARDESIGN"Design'BasesDescriptionAnalyticalMethodsReferences3.3-13.3-13.3-93.3-553.3-593.43.4.1THERMALANDHYDRAULICDESIGNDesignBases3.4-13.4-1UNIT23-iJuly1995 CHAPTER3TABLEOFCONTENTS(Cont'd)SectionTitle~Pae3.4.23.4.33.4.4DescriptionEvaluationTestingandVerification3.4-5.3.4-333.4-533.4.53.4InstrumentationApplicationReferences3.4-543.4-573'3.5.13.5.2ANFFUELDESIGNDELETEDFuelandMechanicalDesign(DELETED)Thermal-HydraulicDesign(DELETED)3.5-13.5-13.5-2UNIT23-iiJuly1996 Table3.1-13.1-23.1-33.2-13.3-13.3-230333.3-43'53.3-63.4-13.4-23.4-33.4-43.5.1-13.5.1-23.5.1-3CHAPTER3LISTOFTABLESTitleReactorDesignComparisonTableAnalyticTechniquesinCoreDesignDesignLoadingConditionsforReactorCoreComponentsMaximumDeflectionsAllowedforReactorInternalSupportStructuresReactorCoreDescriptionNuclearDesignParametersReactivityRequirementsforRodClusterControlAssembliesAxialStabilityIndexPressurizedWaterReactorCorewitha12-FootHeightTypicalNeutronFluxLevelsatFullPowerComparisonofMeasuredandCalculatedDopplerDefectsReactorDesignComparisonTableVoidFractionsatNominalReactorConditionswithDesignHotChannelFactorsSystemDesignandOperatingParametersComparisonofTHING-IVandTHING-IPredictionswithDatafromRepresentativeWestinghouseTwoandThreeLoopReactorsDescriptionofAdvancedNuclearFuelsCorporationFuelAssembliesANF17xl7FuelAssemblyMechanicalDesignValuesFrettingCorrosionResults3.5.2-1Thermal-HydraulicDesignValuesUsedinEvaluationUNIT23-iiiJuly1995 CHAPTER3LISTOFFIGURES~Fiure3.2-13.2-23.2-33.2-43~253.2-5a3.2-63.2-73.2-83.2-93.2-103.2-113.2-123.2-133.2-143.2-153.2-163.2-173.2-183.2-193.2-203.2-213.2-223~2233~31TitleFuelAssemblyCrossSection17x17FuelAssemblyOutline17x17FuelRodSchematicPlanViewTopGridtoThimbleAttachmentGridtoThimbleAttachmentJointsTopNozzletoThimbleAttachmentGuideThimbletoBottomNozzleJointCoreBaxxelAssemblyUpperCoreSupportStructurePlanViewofUpperCoreSupportStructureFullLengthRodClustexControlandDriveRodAssemblywithInterfacingComponentsFullLengthRodClusterControlAssemblyOutlineFullLengthAbsorberRodDeletedBurnablePoisonAssemblyBurnablePoisonRodCrossSectionPrimarySourceAssemblySecondarySourceAssemblyThimblePlugAssemblyFullLengthControlRodDriveMechanismFullLengthControlRodDriveMechanismSchematicPartLengthControlRodDriveMechanismNominalLatchClearanceat,MinimumandMaximumTemperatureAxialZoningofUraniumEnrichmentandIFBAPoisoningUNIT23-ivJuly1995 ~Fiure3.3-23~333.3-43.3-53.3-63~373.3-83.3-93.3-103.3-113.3-123~3133.3-143.3-153'-163.3-173.3-183.3-193.3-203.3-21CHAPTER3LISTOFFIGURES(Cont'd)ExampleLowLeakageFuelLoadingArrangementProductionandConsumptionofHigherIsotopesExampleIFBAArrangementsWithinanAssemblyExampleIFBALoadingPatternExampleBoronConcentrationOverCycleLengthNormalizedPowerDensityDistributionNearBeginning-of-Life,UnroddedCore,HotFullPower,NoXenon,.forExampleCycleNormalizedPowerDensityDistributionNearBeginning-of-Life,UnroddedCore,HotFullPower,EquilibriumXenon,forExampleNormalizedPowerDensityDistributionNearBeginning-of-Life,GroupDatInsertionLimit,HotFullPower,EquilibriumXenonExampleCycleNormalizedPowerDensityDistributionNearBeginning-of-LifeUnroddedCore,HotFullPower,EquilibriumXenon,forExampleNormalizedPowerDensityDistributionNearEnd-of-Life,UnroddedCore,HotFullPower,EquilibriumXenon,forExampleRodwisePowerDistributioninaTypicalAssembly(AssemblyG-12)NearBeginning-of-Life,HotFullPower,EquilibriumXenon,UnroddedCoreforExampleCycleRodwisePowerDistributioninaTypicalAssembly(AssemblyG-12)NearEnd-of-Life,HotFuelPower,EquilibriumXenon,UnroddedCoreforExampleCycleExampleAxialPowerShapesOccurringatBeginning-of-LifeExampleAxialPowerShapesOccurringatMiddle-of-LifeExampleAxialPowerShapesOccurringatEnd-of-LifeFlowChartforDeterminingSpikeModelPredictedPowerSpikeDuetoSingleNonflattenedGapintheAd)acentFuelPowerSpikeFactorasaFunctionofAxialPositionMaximumFQxPowerVersusAxialHeightDuringNormalOperationPeakLinearPowerDuringControlRodMalfunctionOverpowerTransientsCycle,forCycleCycleUNIT23-vJuly1995 CHAPTER3LISTOFFIGURES(Cont'd)gQ~ure3~3223.3-233.3-243.3-253.3-263,3-273.3-283.3-293.3-303.3-313.3-323.3-333.3-343.3-353.3-363.3-373.3-383.4-13.4-23.4-33.4-43.4-53.4-6TitlePeakLinearPowerDuringBoration/DilutionOverpowerTransientsComparisonBetweenCalculatedandMeasuredRelativeFuelAssemblyPowerDistribution,Cycle1ComparisonofCalculatedandMeasuredAxialShapeMeasuredValuesofFQforFullPowerRodConfigurationsExampleDopplerTemperatureCoefficientatBOLandEOLExampleDoppler-OnlyPowerCoefficient-BOL,EOLExampleDoppler-OnlyPo~erDefect-BOL,EOLExampleModeratorTemperatureCoefficient-BOL,NoRodsExampleModeratorTemperatureCoefficient-EOLExampleModeratorTemperatureCoefficientasaFunctionofBoronConcentration-BOL,NoRodsExampleHotFullPowerTemperatureCoefficientDuringaCyclefortheCriticalBoronConcentrationExampleTotalPowerCoefficient-BOL,EOLExampleTotalPowerDefect-BOL,EOLRodClusterControlAssemblyPatternAxialOffsetVersusTimePQRCorewitha12-FootHeightand121Assemblies*XYXenonTestThermocoupleResponseQuadrantTiltDifferenceVersusTimeCalculatedandMeasuredDopplerDefectandCoefficientsatBOL,Two-LoopPlant,121Assemblies,12-FootCoreThermalConductivityofU02(DataCorrectedto95XTheoreticalDensity),MeasuredVersusPredictedCriticalHeatFlux-QRB-2CorrelationTDCVersusReynoldsNumberfor26"GridSpacingNormalizedRadialFlowandEnthalpyDistributionat4-FtElevationNormalizedRadialFlowandEnthalpyDistributionat8-FtElevationNormalizedRadialFlowandEnthalpyDistributionat12-FtElevation-CoreExit3-viJuly1995 CHAPTER3LISTOFFIGURES(Cont'd)~FiereTitle3.4-73.4-83.4-93.4-103.4-113.4-123.4-133.4-143.5.1-1VoidFractionVersusThermodynamicQualityH-HSTAT/Hg-HSAT100PercentPowerShapesEvaluatedatConditionsRepresentativeofLossofFlowAllShapesEvaluatedwithFNH1.59PWRNaturalCirculationTestComparisonofaRepresentativeWTwo-LoopReactorIncoreThermocoupleMeasurementswithTHING-IVPredictionsComparisonofaRepresentativeWThree-LoopReactorIncoreThermocoupleMeasurementswithTHINC-IVPredictionsHanfordSubchannelTemperatureDataComparisonwithTHING-IVHanfordSubcriticalTemperatureDataComparisonwithTHING-IVDistributionofIncoreInstrume'ntationDELETED3.5.1-2DELETED3.5.1-3DELETED3.5.1-4RodBowforENC17x17FuelUNIT2July1996
CHAPTER4TABLEOFCONTENTSSection4.0TitleREACTORCOOLANTSYSTEM~Pae4.1-14.14.1.14.1.24.1.34.1.44.1.54.1.6DESIGNBASESPerformanceObjectivesGeneralDesignCriteriaDesignCharacteristicsCyclicLoadsServiceLifeCodesandClassifications4.1-14.1-14.1-24.1-94.1-124.1-234.1-244.24.2.14.2.24'.34.2.4SYSTEMDESIGNANDOPERATIONGeneralDescriptionComponentsDescriptionPressure-RelievingDevices4'-14.2-14.2-14.2-24ProtectionAgainstProliferationofDynamic4.2-25Effects4.2.54.2.64.2.74.2.84.2.94.2.104.2.114.2MaterialsofConstructionMaximumHeatingandCoolingRatesLeakageWaterChemistryReactorCoolantFlowMeasurementsLoosePartsDetectionReactorVesselWaterlevelReferences4.2-254.2-284'-294.2-324.2-334.2-34'.2-344.2-364.34.3.14.3.24'.34.3.4SYSTEMDESIGNEVALUATIONSafetyFactorsRelianceOnInterconnectedSystemsSyst'mIntegrityPressureRelief4.3-14.3-14.3-22'.3-224.3-234-iJuly1995 CHAPTER4TABLEOFCONTENTS(Cont'd)SectionTitle~Pae4.3.54.3SystemIncidentPotentialReferences4.3-244.3-254.44.4.14.4.24.4.34.4.44.4.5SAFETYLIMITSANDCONDITIONSSystemHeatupandCooldownRatesReactorVessel,PressurizedThermalShockReactorCoolantActivityLimitsMaximumPressureSystemMinimumOperatingConditions4.4-14.4-14.4-24.4-34.4-34.4-34.54.5.14.5TESTSANDINSPECTIONSReactorCoolantSystemInspectionReferences4.5-14.5-14.5-254-iiJuly1995 CHAPTER4L1STOFTABLESTable4.1-14.1-24.1-34.1-44.1-54.1-64.1-74.1-84.1-94.1-104.1-114:1-124.1-134.2-14.2-24.2-3TitleSystemDesignandOperatingParametersReactorCoolantSystemDesignPressureSettingsReactorVesselDesignDataPressurizerandPressurizerReliefTankDesignDataSteamGeneratorDesignDataReactorCoolantPumpsDesignDataReactorCoolantPipingDesignParametersPressurizerValvesDesignParametersReactorCoolantSystemDesignPressureDropDesignThermalandLoadingCyclesSummaryofPlantOutageforYankee-Rowe(1964to1969)ReactorCoolantSystemCodesComponentTransientLimits.MaterialsofConstructionoftheReactorCoolantSystemComponentsReactorCoolantWaterChemistrySpecificationSteamGeneratorWater(Steam-Side)ChemistrySpecificationfor100XFullPower4.3-14.3-24.3-34.3-4SummaryofEstimatedPrimaryPlusSecondaryStressIntensityforComponentsoftheReactorVessel(Unit1),,~O'w~SummaryofEstimatedCumulativeFatigueUsageFactorsforComponentsoftheReactorVessel(Unit1)Unit1DesignTubeSheetStressesDuetoMaximumSteamGeneratorTubeSheetPressureDifferential(2485psig)Unit1RatioofAllowableStressestoComputedStressesforaSteamGeneratorTubeSheetPressureDifferentialof2485psig4-iiiJuly1996 CHAPTER4LISTOFTABLESable4.3-54.3-64.3-74.3-&Qtie51,500Sq.Ft.SteamGeneratorUsageFactors(IndividualTransients)PrimaryandSecondaryBoundaryComponents51,500Sq.Ft.SteamGeneratorUsageFactors(IndividualTransient)CenterofTubeSheetTubeSheetStressAnalysisResultsfor51,500Sq.Ft.SteamGeneratorsLimitAnalysxsCalculationResultsTableofStrains,LimitPressures,andFatigueEvaluationsfor51,500Sq.Ft.SteamGenerators4.5-1ReactorCoolantSystemQualityControlProgram4-ivJuly1995 CHAPTER4LISTOFFIGURES~Fiuee4.2-14.2-1A4.2-24.2-2A4.2-34.2-44.2-4A4.2-54.2-64.2-74.2-84.2-9TitleReactorCoolantSystemFlowDiagramSheet1ReactorCoolantSystemFlowDiagramSheet2ReactorVesselSchematicReactorVesselSchematicPressurizerSeries51SteamGeneratorRepairedSteamGeneratorGeneral,Arrangement-Model51FSteamGeneratorReactorCoolantPumpReactorCoolantPumpFlywheelFlywheelCharacteristicsCurveReactorCoolantPumpPerformanceCharacteristicsRadiationInducedIncreaseinTransitionTemperatureforMn-MoSteel4.3-14.3-24.3-34.3-44.3-54.3-64.3-7ReactorVesselStressAnalysis:AreasExaminedReactorVesselStressAnalysis:,Details-UpperReactorVesselStressAnalysis:Details-LowerPrimary-SecondaryBoundaryComponentsShellLocationsofStressInvestigationsPrimaryandSecondaryHydrostaticTestStressHistoryfortheCenterHoleLocationPlantHeatupandLoadingOperationalTransients(withSteady-StatePlateau)StressHistoryfortheHotSideCenterHoleLocationLargeStepLoadDecreaseandLossofFlowStressHistoryfortheHotSideCenterHoleLocation4.5-14.5-24.5-2a4.5-3SurveillanceCapsuleElevationViewSurveillanceCapsulePlanViewRadiationSurveillanceCapsulePlanViewforUnit1following1995SpecimenGuidetoThermalShieldAttachment4-vJuly1996 CHAPTER5TABLEOFCONTENTSSection5.0CONTAINMENTSYSTEMTitle~Pae5.0-15.15.1.1GENERALDESIGNCRITERIAGeneralCriteria5.1-15.1-15.25.2.15.2.25.2.35.2.4CONTAINMENTSTRUCTUREDesignCriteriaContainmentSystemStructureDesignVesselStructuralAnalysis(Static)Penetrations5.2-15.2-15.2-95.2-625.2-895.35.3.15.3.25.3'5.3.45.3ICECONDENSERDesignConsiderationsDescriptionofIceCondenserandComponentseIceCondenserOperatingConsiderationsDesignEvaluationReferences5.3-15.3-25.3-115.3-275.3-315.3-345.45.4.15.4.25.4.35.4.4CONTAINMENTISOLATIONSYSTEMDesignBasesContainmentIsolationSystemDesignDesignEvaluationTestandInspection5.4-15.4-15.4-7=5.4-85.4-85.55'.15.5.25.5.3CONTAINMENTVENTILATIONSYSTEMGeneralDescriptionDesignBasesSystemDescription5.5-15.5-15.5-25~535-iJuly1995 CHAPTER5TABLEOFCONTENTS(Cont'd)~Sectic5.5.45.5.55.5.65.5.7DesignEvaluationIncidentControlTitleMalfunctionAnalysisTestsandInspection~Pae5.5-135.5-155.5-165.5-175.65.6.15.6.25.6.35.6.4CONTAINMENTPENETRATIONANDWELDCHANNELPRESSURIZATIONSYSTEMDesignBasesSystemDesignandOperationTestDuringErectionDesignEvaluation5.6-15.6-15.6-15.6-25.6-25.75.7.15.7.25'.3CONTAINMENTSTRUCTUREINSPECTIONANDTESTINGStructuralIntegrityInitialContainment(Pre-OperationalContainmentPeriodic(PostOperational)LeakageRateTest5.7-15.7-15.7-55.7-65-iiJuly1995 CHAPTER5LISTOFTABLES~TtlePotentialMissilesConsideredinClassI(Seismic)StructureDesignWindVelocitiesandVelocityPressuresIndianaandMichiganElectricCompanyDonaldC.CookNuclearPlantSiteSoilResistivityMeasurementsDataTakenApril10&11,1969ElectricalPenetration-PrototypeTestsTableofDampingValuesSummaryofAnalyses-JetForcesImpactingonInternalStructuresSummaryofDynamicMotionsDynamicRotationsIceCondenserDesignParametersPipingPenetrations5-iiiJuly1995 CHAPTER5LISTOFFIGURESFure5.2-15.2-25.2-35.2-45.2-55.2.2-15.2.2-1A50212-25.2.2-2A5.2.2-35.2.2-45.2.2-4A5.2.2-4B5.2.2-55.2.2-65.2.2-6A5.2.2-6B5.2.2-6C5.2.2-6D5.2.2-75.2.2-85.2.2-95.2.2-105.2.2-10A5.2.2-115.2.2-11A5.2.2-12TitleLocationofResistivityTestATypicalElectricalPenetrationTypicalPipingPenetrationsTypicalFuelTransferTubePersonnelLocksTypicalArrangement.&DetailsPlantArrangementSections"G-G","H-H","J-J"&"K-K"PlantArrangementSections"L-L&"M-M"PlantArrangementMezzanineFloorEl.609'-0"PlantArrangementReactorBuildingMainFloorElev.650'-0"SectionalElevationContainmentBuildingDomeandWallReinforcingContainmentBuildingTypicalWallSectionContainmentBuildingRe-BarAnchorDetailsTypicalExpansionJointDetailOrthographicViewofPlantDynamicMovementsAuxiliaryandSwitchgearBuildingsDynamicMovementsContainmentandAuxiliaryBuildingsDynamicMovementsTurbineandSwitchgearBuildingsDynamicMovementsTurbine,AuxiliaryandContainmentBuildingsDynamicMovementsWDeflection(Inches)WDeflection(Inches)PipeRestraint,SteamPipeWindFunnelingEffectWindFunnelingEffectContainmentDesignPressuresandTemperaturesContainmentDesignPressuresandTemperaturesSect.ElevationUnitNo.1&2ShowingReactorContainmentThermalGradientsUsedFortheDesigninSummerOperation5-ivJuly1995 CHAPTER5LISTOFFIGURES~Ft.use5.2.2-12A5.2.2-135.2.2-145.2.2-155.2.2-165.2.2-175.2.2-185.2.2-195.2.2-205.2.2-215.2.2-225.2.2-235.2.2-245.2.2-255.2.2-265.2.2-275.2.2-285.2.2-295.2.2-305.2.2-315.2.2-325.2.2-335.2.2-345.2.2-355.2.2-365.2.2-375'.2-38TitleSect.ElevationUnitNo.1&2ShowingReactorContainmentThermalGradientsUsedfortheDesigninWinterOperationLegendforFigures5.2.2-14to5.2.2-50OrientationforComputerResultsFinish4M-(5/ll/71)DeadWeight(Mll&M22).(0&180)Finish4M-(5/ll/71)DeadWeight(Nll&N22)(0&180)Finish4M-(5/ll/71)DeadWeight(W.defi.&$.13)(0&180)Finish4M-(5/ll/71)DeadWeight(Sll&S22)(0&180)Finish4T(5/ll/71)InternalPressure(0&180)Finish4M(5/11/71)InternalPressure(Nll&N22)(0)Finish4M(5/11/71)InternalPressure(W&Q.13)(0)Finish4M(5/11/71)InternalPressure(Sll&S22)(0)SUPE2AGNSLOONO&GNSLOOTO-OperatingBasisEarthquakeSUPE2AGNSLOOMO&GNSLOOTO-OperatingBasisEarthquakeSUPE17A-OperatingBasisEarthquakeSUPE17A-OperatingBasisEarthquakeSUPE2A-GNSLOOMO&GNSLOOTO-OperatingBasisEarthquakeSUPE17A/GNSLOOTl&GNSLOOM3WindConditionSUPE17A/GNSLOOTl&GNSLOOM3WindConditionSUPE2A/GNSLOOTO&GNSLOOMO-WindConditionSUPE17A/GNSLOOTl&GNSLOOM3WindConditionSUPE17A/GNSLOOTl&GNSLOOM3WindConditionSUPE2A/GNSLOOTO&GNSLOOM1Liner.ThermalAccidentSUPE2A/GNSLOOM1&GNSLOOTOLinerThermalAccidentSUPE17A-LinerThermalAccidentSUPE17A-LinerThermalAccidentSUPE2A/GNSLOOM16GNSLOOTOLinerThermalAccidentSUPE2A/GNSLOOM1&GNSLOOTOLinerThermalAccident5-vJuly1995 CHAPTER5LISTOFFIGURES(Cont'd)~FTute5.2.2-395.2.2-405.2.2-415.2.2-425.2.2-435.2.2-445.2.2-455.2.2-465.2.2-475.2.2-485.2.2-495.2.2-505.2.2-515.2.2-51A5.2.2-51B5.2.2-51C5.2.2-51D5.2.2-51E5.2.2-525.2.2-52A5.2.2-535.2.2-545.2.2-54ATi.tieSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermalSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermalSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermalSUPE17A-ConcreteThermal(Normal&Accident)SUPE17A-ConcreteThermal(Normal&Accident)SUPE2A/GNSLOOMO&GNSLOOTOConcreteThermal(Normal&Accident)MeridianSUPE2A/GNSLOOMO&GNSLOOTOConcreteThermal(Normal&Accident)HoopSUPE2A/GNSLOOTO&GNSLOOMODesignBasisEarthquakeSUPE2A/GNSLOOTO&GNSLOOMODesignBasi,sEarthquakeSUPE17A-DesignBasisEarthquakeSUPE17A-DesignBasi.sEarthquakeSUPE2A/GNSLOOTO&GN3LOOMODesignBasisEarthquakeContainmentBuildingOperatingDeck-ReinforcingContainmentBuildingSteamGeneratorandPressurizerEnclosuresandCraneWallReinforcingContainmentBuildingSteamGeneratorandPressurizerEnclosuresTopSlabsandCraneWall-ReinforcingPlanMissileShieldCoveronTopofReactorCavityRemovableWallTypicalSectionAnchorageAssemblyofMissileShieldCoverRemovableBulkheadsSeparatingtheReactorCavityFromtheRefuelingCanalRemovableBulkheadsSeparatingtheReactorCavityFromtheRefuelingCanalStructuralBarrierTypicalSectionLoadingDistributionUnsymmetricalInternalPressureLoadingDiagramof30PSIofSteamGeneratorEnclosure5-viJuly1995 CHAPTER5LISTOFFIGURES(Cont'd.)~Fiere5.2.2-54B5.2.2-555.2.2-55A5.2.2-565.2.2-56A5.2.2-575.2.2-57A5.2.2-585.2.2-58A5.2.2-595.2.2-59A5.2.2-59B5.2'-59C5.2.2-59D5.2.2<<59E5.2.2-605.2.2-60A5.2.2-60B5.2.2-60C5.2.2-615.2.2-625.2.2-635.2.2-645.2.2-655.2.2-65A5.3-15.3-2TitleLoadingDiagramof22.5PSIofPressurizerEnclosureTypicalCoverWithoutConcreteTypicalSectionofCover.JetLoadLocationsPlans&Sect's.JetLoadLocationsSectionsDistributionofSoilReactionBeneathContainmentUnitsDistributionofSoilReactionBeneathContainmentUnitsGNSLOOM2/DeadLoad/Hypot.EarthquakeGNSLOOM6/DeadLoad/Hypot.EarthquakeLineratReactorPoolLinerJunctionWallandFDNSlabDevelopmentofCraneWall(InsideFace)ContainmentBuildingEmbeddedAnchorforSteamGeneratorsandCoolantPumpsIceCondenserSupportColumnAnchorageContainmentBuildingShearRecess&UpliftAnchorofCraneWallSealingArrangementforSlabEl.612'-0"andWallsSealingArrangementforSlabEl.612'-0"andLinerSealingArrangementPlantatElev's.612'-0",638'-0",652.7'2"Elevation"E-4"LookingNorthDynamicModelRuptureAnalysisDataForContainmentPenetrationsContainmentBuildingTyp.Re-BarArrangementatPenetration5'-0"PPlateUnderBi.axialLoadContainmentBuildingEquipmentAccessOpeningContainmentBuildingPersonnelAccessOpeningGeneralArrangementofIceCondenserIceCondenserRefrigeration(Sh1of2)5-viiJuly1995 CHAPTER5LISTOFFIGURES(Cont'd.)~Fiuue5.3-2A5.3-35.3-4TieleIceCondenserRefrigeration(Sh2of2)IceCondenserInsulatedDuctPanelsPlanViewTypicalIceCondenserDoorFrameSections5.5-15.5-25~53ContainmentVentilationUnitsNos.1or2(Sh1of2)ContainmentVentilationUnitNos.1or2(Sh2of2)FlowPathoftheContainmentAirRecirculation/HydrogenSkimmerSystemUnitsNos.1or2ContainmentPenetration&MeldChannelPressurizationUnitsNos.1or25.7-15.7-2ComputedStrainsComputedDisplacement5-viiiJuly1995 CHAPTER6TABLEOFCONTENTSSectionTitle~PaeENGINEEREDSAFETYFEATURES6.1-16.16.1.1CRITERIAEngineeredSafetyFeaturesCriteria6.1-36.1-36,26.2.16.2.26.2.36.2.46.2.5EMERGENCYCORECOOLINGSYSTEMSGeneralDesignCriteriaSyst:emDesignandOperationDesignEvaluationSafetyLimi.tsandCondi.tionsTestsandInspections6.2-16.2-16.2-46.2-306.2-356.2-366.3CONTAINMENTSPRAYSYSTEMS6.3-16.3.16.3.26.3.3DesignBasesSystemDesignDesignEvaluation6.3-16.3-46.3-116-iJuly1994 CHAPTER6LISTOFTABLESTable6.1-1Title4NetPositiveSuctionHeadsforPost-DBAOperationalPumps6.2-16.2-26.2-36.2-46.2-56.2-66.2-76.2-86.2-96.2-10SafetyInjectionSystemCodeRequirementsAccumulatorDesignParametersBoronInjectionTankDesignParametersRefuelingMaterStorageTankDesignParametersDesignParameters-ECCSPumpsSingleActiveFailureAnalysisEmergencyCoreCoolingSystemSinglePassiveFailureAnalysis-EmergencyCoreCoolingSystem,RecirculationPhaseAccumulatorInleakageRecirculationLoopLeakageSequenceofChange-overOperationInjectiontoRecirculation6.3-16.3-26.3-36.3-4ContainmentSprayPumpDesignParametersContainmentSprayHeatExchangersDesignParametersSprayAdditiveTankDesignParametersContainmentSpraySystemMalfunctionAnalysis6-iiJuly1995 CHAPTER6LISTOFFIGURES~PIuse6'.2-lA6.2-26.2-36.2-46.2-5TitleFlowDiagramEmergencyCoreCoolingSystem(SIS)UnitNo.1or2EmergencyCoreCoolingSystem(RHR)UnitsNo.1or2RangeofCoreProtectionProvidedbyVariousComponentsoftheEmergencyCoreCoolingSystemEquivalentBreakDiameterSwitchoverTimefor'WestPumpInjectiontoRecirculationRefuelingWaterStorageTank-SwitchoverFromInjectiontoRecirculationPhase6.3-1ContainmentSprayUnitNo.1or26-iiiJuly1995 CHAPTER7TABLEOFCONTENTS~ect~oTitleINSTRUMENTATIONANDCONTROLPaae7.1-17.1GENERALDESIGNCRITERIAInstrumentationandControlSystemsMissileProtection7.1-17.1-17.1-27.27.2.17.2.27.2.3PROTECTIVESYSTEMSProtectiveSystemsSystemDesignSystemEvaluation7.2-17.2-17.2-137.2-427.37:3.17.3.27.3.3CONTROLSYSTEMSDesignBasisSystem.DesignSystemDesignEvaluation7.3-17.3-17.3-37.3-87.47.4.17.4.2NUCLEARINSTRUMENTATIONGeneralDesignBasesCriteriaFissionProcessMonitorsandControlsNuclearInstrumentationSystemsDesignandEvaluation7.4-17.4-17.4-17.4-27.57.5.17.5.27.5.3ENGINEEREDSAFETYFEATURESINSTRUMENTATIONDesignBasesSystemDesignSystemEvaluation7.5-17.5-17.5-47.5-167.67.6.17.6.27.6.3IN-COREINSTRUMENTATIONDesignBasisSystemDesignSystemEvaluation7.6-17.6-17.6-17.6-47-iJuly1995 CHAPTER7TABLEOFCONTENTS(Cont'd)SectionTitle~Pae7.77.7.17.7.27.7.37.7.47.7.57.7.67.7.77.7.87.7.97.7.107.8OPERATINGCONTROLSTATIONSGeneralDesignCriteriaGeneralLayoutDesignBasisControlRoomLightingPlantCommunicationsFirePreventionDesignControlRoomAvailabilityHotShutdownControlAuxiliaryControlStationsLocalShutdownandCooldownStationPostAccidentMonitoringInstrumentationReferences,7.7-17.7-17.7-27.7-27.7-57.7-67.7-77.7-87.7-87.7-107.7-107.8-17.7-117-iiJuly1995 CHAPTER7LISTOFTABLESTable7.2-17.2-27.2-37.2-47.2-57.2-67.2-77.5-17.5-2TitleListofReactorTripsandActuationMeansof:EngineeredSafetyFeatures,ContainmentandSteamLineIsolationandAuxiliaryFeedwaterInterlockCircuitsRodStopsSymbolsandAbbreviationsProcessControlBlockDiagramDrawing108D087IndexReactorTripSystemInstrumentationResponseTimesEngineeredSafetyFeaturesResponseTimesProcessInstrumentationForRPSandESFActuationEngineeredSafetyFeaturesEquipmentExposedtoHarshEnvironment7.8-17.8-2Type"A"VariablesProvidedandFollowinganAccidentType"B"VariablesProvidedandFollowinganAccidenttheOperator'orManualFunctionsDuringtheOperator'forManualFunctionsDuring7.8-37.8-4Type"C"Variables'ProvidedtheOperatorforManualFunctionsDuringandFollowinganAccidentType"D"VariablesProvidedtheOperatorforManualFunctionsDuring7.8-5andFollowinganAccidentType"E"VariablesProvidedandFollowinganAccidenttheOperatorforManualFunctionsDuring7-iiiJuly1996 CHAPTER7LISTOFFIGURES~P1teTitle742-27.2-37.2-47~257.2-67~277.2-87.2-9ReactorProtectionSystemsControlRodBankInsertionMonitorRodDeviationComparatorPressurizerPressureProtectionSystemPressurizerLevelProtectionPressurizerSealedReferenceLegLevelSystemSteamGeneratorLevelProtectionSetpointReductionFunctionForOverpowerandOvertemperature4TTrips7.3-1SimplifiedBlockDiagramofReactorControlSystem~7.5-17.5-27~53ContainmentPressureProtectionEnvironmentalConditionsInsideContainmentLoss-of-CoolantAccidentEnvironmentalConditionsInsideContainmentMainSteamLineBreak'.6-17.6-27.6-3InCoreInstrumentationDetailsTypicalArrangementofMovableMiniatureNeutron=FluxDetectorSystem(ElevationView)SchematicArrangementofInCoreFluxDetectors(PlanView)7'-ivJuly1995 CHAPTER8TABLEOFCONTENTSSectionELECTRICALSYSTEMSTitle~Pae8.1-18.1&.1.18.1.2DESIGNBASESGeneralDesignCriteriaFunctionalCriteria8.1-28.1-28.1-48.2NETWORKINTERCONNECTIONS8.2-18.38.3.18.3.28.3.38.3.48.3.58.3.6STATIONSERVICESYSTEMS4160VoltSystemLowVoltagePowerSystems120VoltACVitalInstrumentBus250VoltDCSystem250VoltDCBatteryNSystemLightingSystem8.3-18.3-18.3-2System8.3-48.3-58.3-78.3-11&e48.5EMERGENCYPOWERSYSTEMDESIGNEVALUATION8.4-18~5-18'TESTSANDINSPECTION8.6-18-iJuly1995 CHAPTER8LISTOFFIGURES~Fiuue8.1-18.1-la8.1-1b8.1-28.2-18.3-18.3-28.3-38.4-1TitleAux.OneLineDiagramMainAuxiliaryOne-LineDiagramBus'AB'ngineeredSafetySystemMainAuxiliaryOne-LineDiagramBus'C'.&'D'ngineeredSafetySystemCookNuclearPlantSimplifiedOffsitePowerSourcesOne-LinehhSwitchingArrangementsDonaldC.CookNuclearPlantandNeighboringStationsVitalInstrumentBusDistributionSystem250VDCDistributionD.C.CookNuclearPlantTurbineDrivenAuxiliaryFeedwaterSystemOne-LineEmergencyDieselGeneratorFuelOilSupply8-iiJuly1995 CHAPTER9TABLEOFCONTENTSSection9.0TitleAUXILIARYANDEMERGENCYSYSTEMS~Pae9.1-19.1.9.1.19.1.2GENERALDESIGNCRITERIAAbaci.liaryandEmergencySystems'CriteriaRelatedCriteria9.1-29.1-29.1-39.29.2.19.2.29.2.39.2CHEMICALANDVOLUMECONTROLSYSTEMDesignBasesSystemDesignandOperationSystemDesignEvaluationReferences9.2-19.2-19.2-49.2-319.2-389.39.3.19.3.29.3.39.3.49.3.59.3.6RESIDUALHEATREMOVALSYSTEMDesignBasesSystemDesignandOperationSystemDesignEvaluationMalfunctionAnalysisTests:InspectionsSafetyLimitsandConditions9.3-19.3-19.3-29.3-69.3-119.3-119.3-129.4.19.4.29.4.39.4.4SPENTFUELPOOLCOOLINGSYSTEMDesignBasesSystemDesignandOperationDesignEvaluationTestsandInspections9.4-19.4-19.4-29.4-69.4-79.59.5.19.5.29.5.39.5.49.5.5COMPONENTCOOLINGSYSTEMDesignBasesSystemDesignandOperationComponentsSystemEvaluationMinimumOperatingConditions9-i9.5-19.5-19.5-19.5-49.5-79.5-9July1995 CHAPTER9TABLEOFCONTENTS(Cont'd)Section9.5.6TitleTestsandInspections~Pae9.5-99.69.6;19.6.29.6.3SAMPLINGSYSTEMSDesignBasisSystemDesignSystemEvaluation9.6-19.6-19.6-29.6-79.79.7.19.7.29.7.39.7.4REACTORCOMPONENTSANDFUELHANDLINGSYSTEMDesignBasesSystemDesignandOperationDesignEvaluationTestsandInspections9.7-19.7-2a9.7-49.7-319.7-329.89.8.19.8.29.8.3FACILITYSERVICESYSTEMSFireProtectionSystemCompressedAirSystemServiceWaterSystems'9.8-19.8-19.8-219.8-249.99.9.19.9.29.9.39.9.4AUXILIARYBUILDINGVENTILATIONSYSTEMGeneralDescriptionDesignBasisSystemDescriptionsDesignEvaluation,9.9-19.9-19.9-19.9-29.9-89.109.10.19.10.29.10.39.10.49.10.59.10.6CONTROLROOMVENTILATIONSYSTEMGeneralDescriptionDesignBasisSystemOperationDesignEvaluationIncidentControlTestsandInspections9.10-19.10-19.10-19.10-29.10-49.10-49.10-49-iiJuly1996 CHAPTER9LISTOFTABLESTable9.2-19.2-29.2-39.2-4Tit'leChemicalandVolumeControlSystemCodeRequirementsChemicalandVolumeControlSystemDesignParametersPrincipalComponentDataSummaryFailureAnalysisoftheChemicalandVolumeControlSystem9.3-19.3-29.3-3ResidualHeatRemovalSystemCodeRequirementsResidualHeatRemovalSystemDesignParametersResidualHeatRemovalMalfunctionAnalysis9.4-19.4-29.4-3SpentFuelPoolCoolingSystemCodeRequirementsSpentFuelPoolCoolingSystemComponentDesignDataSpentFuelPoolCoolingSystemMalfunctionAnalysis9.5-19.5-29.5-39.5-4ComponentCoolingSystemCodeRequirementsComponentCoolingSystemMinimumFlowRequirementsPerTrainComponentCoolingSystemComponentDesignDataComponentCoolingSystemMalfunctionAnalysis9.7-19.7-29.7-39.7-49.7-59.7-69.7-7ModuleDataCommonModuleData1100AlloyAluminumPhysicalandMechanicalPropertiesChemicalComposition-Aluminum(1100Alloy)BoronCarbideCSummaryofCriticalityAnalyses-NormalSt'orageConfigurationSummaryofCriticalityAnalyses-InterimCheckerboardLoading9.&-l9.8-29.8-39.8-49.8-59.8-6FixePumpStartingSequencesJuly1995CompressedAirSystemDescriptiveInformationServiceWaterSystemsComponentsDesignDataNon-EssentialServiceWaterRequirementsEssentialServiceWaterSystemMinimumFlowRequirementsPerTrainEssentialSexviceWaterSystemMalfunctionAnalysis9-iii ~Fiuse9.2-19.2-29.2-39.2-49.2-59.2-6CHAPTER9LISTOFFIGURESTitleCVCS-ReactorLetdownandChargingCVCS-ReactorCoolantDemineralizationCVCS-BoronMake-upCVCS-BoronHold-upFlowDiagramCVCS-BoronRecoveryCVCS-MonitorTanks9.3-1EmergencyCoreCooling(RHR)9.4-1SpentFuelPitCoolingandClean-up9.5-1ComponentCooling9.6-19.6-2SamplingPost-AccidentSampling9.7-19.7-29.7-39.7-49.7-5TypicalFuelTransferSystemSpentFuelPoolLayoutNormalStoragePattern(MixedThreeZone)InterimStoragePattern(Checkerboard)AcceptableBurnupDomaininRegions2and39.8-19.8-29.8-39.8-49.8-59.8-69.8-7FireProtectionWaterFireProtectionC02CompressedAirSystemNon-EssentialServiceWaterUnit1Non-EssentialServiceWaterUnit2Non-EssentialServiceWaterUnits1or2EssentialServiceWater9.9-19.9-29.10-1AuxiliaryBuildingVentilationSheet1AuxiliaryBuildingVentilationSheet2ControlRoomVentilation9-ivJuly1995 CHAPTER10TABLEOFCONTENTSSection10TitltSTEAMANDPOWERCONVERSIONSYSTEM~Pae10.1-110.1GENERALDESCRIPTIONS10.1-110.210.2.110.2.210.2,310.2.4MAINSTEAMSYSTEMDesignBasesDescriptionPerformanceAnalysisTestingandInspection10.2-110.2-110.2-110.2-610.2-610.310.3.110.3.210.3.310.3.410.3.5TURBINEGENERATORDesignBasesEquipmentDescriptionTurbineControlsLossofExternalElectricalLoadTestandInspection10.3-110.3-110.3-110.3-410.3-510,3-610.410.4.110.4.210.4.310.4.4MAINCONDENSERSDesignBasisDescriptionDesignEvaluationTestsandInspections10.4-110.4-110.4-110.4-310.4-3-10.510.5'10.5.2CONDENSATEANDFEEDWATERSYSTEMMainCondensateandFeedwaterSystemAuxiliaryFeedwaterSystem10.5-110.5-110.5-410.610.6.110.6.2CIRCULATINGWATERSYSTEMDesignBasisDescription10.6-110.6-110.6-110-iJuly1995 CHAPTER10TABLEOFCONTENTS(Contd)Section10.6.310.6.410.6.5TitleDesignEvaluationTestsandInspectionsDesignParameters~Pae10.6-410.6-410.6-410.710.7.110.7.210.7.310.7.4TURBINEAUXILIARYCOOLINGSYSTEMDesignBasisDescriptionDesignEvaluationTestsandInspection10.7-110.7-110.7-110.7-210.7-210.8SERVICEWATERSYSTEMS10.8-110.9MAKE-UPWATERANDPRIMARYWATERSYSTEMS10.9-110.10CHEMICALFEEDSUB-SYSTEM10.10-110.1110.11.110.11.210.11.3SECONDARYVENTANDDRAINSYSTEMDesignBasisDescriptionTestingandInspection10.11-110.11-110.11-110.11-310-iiJuly1995 CHAPTER10LISTOFTABLESTableTibiaAuxiliaryFeedpumpDesignParametersCirculatingWaterPumpDesignParametersJuly1995 CHAPTER10LISTOFFIGURES~Ft.use10.2-110.2-1A10.2-1B10.2-1CTitleMainSteamUnitNo.1(Sheet1)MainSteamUnitNo.1(Sheet2)MainSteamUnitNo.2(Sheet1)MainSteamUnitNo.2(Sheet2)10.3-110.3-1ABleedSteamUnitNo.1BleedSteamUnitNo.210.5-110.5-210.5-2A10.5-310.5-3A10.5-410.5-'4A10.5<<510.5-5AFeedwaterUnitsNo.1or2CondensateUnitNo.1Sheet1CondensateUnitNo.1Sheet2CondensateUnitNo.2Sheet1CondensateUnitNo.2Sheet2HeaterDrainsandVentsUnitNo.1Sheet1HeaterDrainsandVentsUnitNo.2Sheet2HeaterDrainsandVentsUnitNo.2Sheet1HeaterDrainSandVentsUnitNo.2Sheet210.6-1CirculatingWaterSystemUnitsNo.1and210-ivJuly1995 CHAPTER11TABLEOFCONTENTSSectionTitle~PaeWASTEDISPOSALANDRADIATIONPROTECTIONSYSTEM11.1-111.1.111.1.211.1.3WASTEDISPOSALSYSTEMDesignBasesGeneralDescriptionandOperationDesignEvaluation11.1-111.1-111.1-211.1-1511.211.2.1PLANTRADIATIONSHIELDINGDesignBasis11.2-111.2-111.311.3.111.3.211.3.311.3.411.3.5RADIATIONMONITORINGSYSTEMGeneralDesignCriteriaDesignBasisGeneralDescriptionandOperationReactorCoolantActivityMonitoringImprovedIn-Plant,IodineInstrumentationUnderAccidentConditions11.3-111.3-111.3-311.3-711.3-1511~31711.411.4~111.4.211.4.311.4.411.4.511.4.611.4.711.4.811.4.9\11.4.10PLANTHEALTHPHYSICSPROGRAMFacilitiesRadiationControl-AccessControlContaminationControlPersonnelContaminationControlAirborneContaminationControlExternalRadiationDoseDeterminationInternalRadiationDoseDeterminationRadiationProtection/RadiochemistryInstrumentationTestsandInspections11.4-111.4-111.4-,411.4-411.4-4'1.4-511.4-611.4-711.4-811.4-811.4-10July1995 CHAPTERllTABLEOFCONTENTS(Cont'd)Section11.511.5.111.5.2TitleSTEAMGENERATORBLOWDOWNTREATHENTSYSTEHDesignBasisSystemDesignandOperation~Pae11.5-111.5-111.5-211.611.6.111.6.211.6.311.6.4RADIOA'CTIVEMATERIALSSAFETYMaterialsSafetyProgramPersonnelandProceduresRequiredHaterialsRadioactiveWasteStorage11.6-111.6-111.6-311.6-411.6-411-iiJuly1995 CHAPTERllLISTOFTABLES~ableTiteWasteDisposalSystemPerformanceDataWasteDisposalComponentsCodeRequirementsComponentSummaryDataEstimatedLiquidDischargetoWasteDisposalSystemEstimatedLiquidReleasebyIsotope-TwoUnitsEstimatedAnnualGaseousReleasebyIsotope11.2-111.2-211.2-311.2-411.2-511.2-611.2-711.2-811.3-111.3-211.5-111.5-2PlantZonesClassificationsPrimaryShieldingDesignParameters,NeutronandGammaFluxesSecondaryShieldDesignParametersAccidentShieldDesignParametersRefuelingShieldDesignParametersPrincipalAuxiliaryShieldingInstantaneousRadiationSourcesReleasedTotheContainmentFollowingTID-14844AccidentRelease-Mev/SecGapActivityCirculatinginResidualHeatRemovalLoop,Mev/cc-SecRadiationMonitoringSystemChannelSensitivitiesandDetectingMediumReactorCoolantFissionandCorrosionProductActivitiesDuringSteadyStateOperationandPlantShutdownOperationDesignandMeasuredEquilibriumReactorCoolantFissionProductActivitiesforOperatingPWR'sandCalculatedValuesfortheD.C.CookStationsBlowdownTreatmentSystemComponentsJuly1995 CHAPTER11LISTOFFIGURESgituse11.1-111.1-2VentsandDrains~TtleWasteDisposalSystem-LiquidsandSolidsSheet1of3Units1and211.1-2a11.1-2b11.1-311.1-4WasteDisposalSystemWasteDisposalSystemWasteDisposalSystemWasteDisposalSystem-LiquidsandSolidsSheet2of3LiquidsandSolidsSheet3of3-GaseousFlowDiagram-GasSupplyandAnalysis11.2-1IntegratedExposureasaFunctionofDistancefromContainmentBuilding11.4-111.4-211.4-311.4-4AccessControlAreaContainmentAccessBuildingHotLaboratoryChemistryCountingRoom11.5-1SteamGeneratorBlowdownSystemUnit1or211.6-111.6-2a11.6-2bOrganizationandFunctionalStructureFuelAssemblyFlowChartMovableMiniatureNeutronFluxDetectorFlowChart11.6-2cFissionChamberDetectorFlowChartll-ivJuly1995 CHAPTER12TABLEOFCONTENTSSection12TitleCONDUCTOFOPERATIONS~Pae12.1-112.1ORGANIZATIONANDRESPONSIBILITY12.1-112.2LICENSEDOPERATORREQUALIFICATIONPROGRAM12.2-112.3EMERGENCYPLAN12.3-112.4RECORDS12.5REVIEWANDAUDITOFOPERATIONS12.5-112.612.7NUCLEARDESIGNANDSUPPORTCAPABILITYWRITTENPROCEDURES12.6-112.7-112-iJuly1995 CHAPTER12LISTOFFIGURES~piuteTitleJuly1995 CHAPTER13TABLEOFCONTENTSSectionTitle~Pae13INITIALTESTSANDOPERATION13.1-113.1TESTSPRIORTOINITIALREACTORFUELING13.1-113.213.2.113.2.2FINALSTATIONPREPARATIONInitialCoreLoadingPostloadingTests13.2-113.2-313.2-613.313.3.113.3.213.3.313.3.4INITIALTESTINGINTHEOPERATINGREACTORInitialCriticalityLowPowerTestingPowerLevelEscalationPostStartupSurveillanceandTestingRequirements13.3-113.3-113.3-213.3-213.3-313.413.4.113.4.2OPERATINGRESTRICTIONSSafetyPrecautionsInitialOperationResponsibilities13.4-113.4-113.4-1July1995 CHAPTER13LISTOFTABLESTableTitle13.1-1ObjectivesofSystemTestsPriortoInitialReactorFueling13.2-1ObjectivesofSystemTestsPriortoInitialCriticality13.3-1PostCriticalityTestingSummary13-iiJuly1995 CHAPTER14TABLEOFCONTENTSSectionTitle~Pae14.0SAFETYANALYSIS14.0-114.114.114.1.114.1.214.1.214.1.314'.314.1.414.1.514.1~514.1.614.1.614.1.714.1.814.1.914.1.1014.1.1114.1.1214.1.1314.1.13COREANDCOOLANTBOUNDARYPROTECTIONANALYSISReferencesUncontrolledRCCAWithdrawalFromaSubcriticalConditionUncontrolledRCCAWithdrawalatPowerReferences~RodClusterControlAssemblyMisalignmentReferencesRCCADropChemicalVolumeandControlSystemMalfunctionReferencesLossofReactorCoolantFlow(IncludingLockedRotorAnalysis)ReferencesStartupofanInactiveReactorCoolantLoopLossofExternalElectricalLoadLossofNormalFeedwaterFlowExcessiveHeatRemovalDuetoFeedwaterSystemMalfunctionsExcessiveLoadIncreaseIncidentLossofAllA.C.PowertothePlantAuxiliariesTurbine-GeneratorSafetyAnalysisReferences14.1-114.1-1414.F1-114.1.2-114.1.2-614.1.3-114.1.3-714.1.4-114.1.5-114.1.5-314.1.6-114.1.6-814.1.7-114.1.8-114.1.9-114.1.10-114.1.11-114.1.12-114.1.13-114.1.13-1614.214.F114.F114.2.2STANDBYSAFEGUARDSANALYSISFuelHandlingAccidentReferencesAccidentalReleaseofRadioactiveLiquids14.2.1-114.2.1-114.2.1-1414.2.2>>1Unit114-iJuly1995 CHAPTER14TABLEOFCONTENTSSection~Ttlegaae14.2.314.2.414.2.514.2.514.2.614.2.614.2.714.2.814.2.8AccidentalWasteGasesReleaseSteamGeneratorTubeRuptureRuptureofaSteamPipeReferenceseRuptureofaControlRodDriveMechanismHousing(RCCAEjection)ReferencesSecondarySystemAccidentsDoseConsequencesMajorRuptureofaMainFeedwaterPipeReferences14.2.3-114.2.4-114.2.5-114.2.5-914.2.6-114.2.6'-1514.2.7-114.2.8-114.2.8-714.3.114.3.114.3.214.3.214.3.314.3.3,14.3.414.3.414.3.514.3.514.3.614.3.6LARGEBREAKLOCAANALYSISReferencesLossofReactorCoolantfromSmallRupturedPipesorfromCracksinLargePipeswhichActuatestheEmergencyCoreCoolingSystemReferencesCoreandInternalsIntegrityAnalysisReferencesContainmentIntegrityAnalysisReferencesEnvironmentalConsequencesofaLossofCoolantAccidentReferencesHydrogenintheContainmentAfteraLossofCoolantAccidentReferences14.3.1-114.3.1-1214.3.2-114.3.2-7d14.3.3-114.3.3-1014.3.4-114.3.4-8314.3.5-114e3.5-3014.3.6-114.3.6-28Unit114-iiJuly1995 CHAPTER14TABLEOFCONTENTSSectonTitle14.3.714.3.8LongTermCoolingNitrogenBlanketing14.3.7-114.3.8-114.414.4.114'.214.4.314.4.414.4.514.4.614.4.6-14.4.714.4.814.4.914.4.1014.4.1114.4.11ENVIRONMENTALQUALIFICATIONANALYSISBasisofDiscussionPostulatedPipeFailureAnalysisOutsideContainmentAnalysisofEmergencyConditionsStressCalculationsDescriptionofPipeWhipAnalysisCompartmentPressuresandTemperaturesReferencesDescriptionofJetImpingementLoadAnalysisContainmentIntegrityPlantModificationsEnvironmentElectricalEquipmentEnvironmentalQualificationReferences14.4.1-114.4.1-114.4.2-114'.3-114.4.4-114.4.5-114.4.6-114.4.6-714.4.7-114.4.8-114.4.9-114.4.10-114.4.11-114.4.11-7Appendix14ARadiationSourcesA.lA.2A.3A.4A.5ActivitiesinthecoreActivitiesintheFuelRodGapFuelHandlingSourcesReactorCoolantFissionProductActivityReactorCoolantTritiumSourcesGeneralDiscussionVolumeControlTankActivities14A-114A-114A-414A-714A-1514A-1514A-21Unit114-iiiJuly1995 CHAPTER14TABLEOFCONTENTSSectionTitle~PaeA.7A.SA.9GasDecayTankActivityActivityinRecirculatedSumpWaterReferences14A-2114A-2314A-26Unit114-ivJuly1995 TableCHAPTER14LISTOFTABLESTitle14.1-114.1-214.1-314.1-414.1-514.1-614.1-714.1.10-114.1.10-214.1.10-314.1.10-4.14.1.13-114.2.1-114.2.1-214.2.1-414.2.1-514.2.3-114.2.3-214.2.5-114.2.6-1Unit1DesignPowerCapabilityParametersUsedinNon-LOCASafetyAnalysesReactorTripPointsandTimeDelaystoTrip'AssumedinSafetyAnalysesSummaryofInitialConditionsandComputerCodesUsedInstrumentationDriftandCalorimetricErrorsPowerRangeNeutronFluxDonaldC.CookNuclearPlantUnit1SGTPProgramInputAssumptionsforRCSVolumesDonaldC.CookNuclearPlantUnit1SGTPProgramInputAssumptionsforSteamGeneratorSecondaryMassIIDonaldC.CookNuclearPlantUnit1SGTPProgramInputAssumptionsforReactorCoolantSystemPressureDropTimeSequenceofEvents(ManualRodControl)TimeSequenceofEvents(AutomaticRodControl)TimeSequenceofEvents(ManualRodControl)TimeSequenceofEvents(AutomaticRodControl)PotentialTurbine-GeneratorMissilesFuelHandlingAccidentAuxiliaryBuildingInventoriesandConstantsofSignificantFissionProductRadionuclidesDataandAssumptionsfortheEvaluationoftheFuelHandlingAccidentInTheAuxiliaryBuildingActivitiesInHighestRatedDischargedAssembly(CuriesAtTimeOfReactorShutdown)FuelHandlingAccidentinContainmentParametersForFuelHandlingAccidentInContainmentDoseCalculationVolumeControlTankandLetdownActivitiesGasDecayTankEquilibriumActivityLimitingSteamlineBreakStatepointDoubleEndedRuptureInsideContainmentPithOffsitePowerAvailableParametersUsedinAnalysisoftheRodClusterControlAssemblyEjectionAccident14.2.7-1Unit1LossofA.C.PowertothePlantAuxiliariesSteamRelease14-vJuly1996 CHAPTER14LISTOFTABLES'ableTitle14.2.7-214.2.7-314.2.8-114.3.1-114.3.1-214.3.1-314.3.1-414.3.1-514.3:1-614.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3.2-1313.3.3-114.3.4-114.3.4-2Unit114-viJuly1996SteamLineBreak-SteamReleaseSteamGeneratorTubeRupture-SteamReleaseTimeSequenceofEventsLargeBreakLOCA-ResultsLargeBreakLOCA-CasesAnalysedLargeBreakContainmentData(IceCondenserContainment)MassandEnergyReleaseRatesMaximumSIMassandEnergyReleaseRatesMinimumSINitrogenMassandEnergyReleaseRatesSafetyInjectionFlowRatePlantInputParametersUsedinSmallBreakLOCAAnalysisSmall-Break.LossofCoolantAccidentCalculationTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculationTime'SequenceofEventsfor.ConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculationResultsHHSICross-TieValveClosedTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossof..CoolantAccidentCalculationsTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculationsTimeSequenceof,EventsforConditionIIIEvents3XMainSteamSafetyValveSetpointToleranceAnalysisfor3588MWTwithHHSICross-tieValvesOpenISmall-BreakLossofCoolantAccidentCalculations3XMainSteamSafetyValveSetpointToleranceAnalysisfor3588MWTWithHHSICross-tieValve'sOpenSelectedInputParametersDonaldC.CookIceCondenserAnalysisParametersDeckLeakageSensitivity CHAPTER14LISTOFTABLESTable14.3.4-314.3.4-414.3.4-514.3.4-614.3.4-714.3.4-814.3.4-914.3.4-1014.3.4-1114.3;4-1214.3.4-1314.3.4-1414.3.4-1514.3.4-1614.3.4-1714.3.4-1814.3:4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3.4-2414.3.4-25TitleCookNuclearPlantIceCondenserDesignParametersStructuralHeatSinkTableEnergyAccountinginMillionsofBTUMaterialPropertyDataUnit1/Unit2SteamlineBreakMass/EnergyReleasesInsideContainment102XPowerDER(4.6FTz)BreakFailure-MSIVUnit1/Unit2SteamlineBreakMass/EnergyReleasesInsideContainment102XPowerSplit(0'6FT2)BreakFailure-AuxiliaryFeedwaterRunoutProtectionDouble-EndedSteamLineBreakParametersSteamLineRupturesLowerCompartmentTemperatureTransientResults0.35FT2Split30XPower0.6FT2Split30XPowerKeyParametersAffectingSplitSteamLineBreaksTMDInputTMDFlowpathInputDataCalculatedMaximumPeakPressuresinLowerCompartmentElementsAssumingUnaugmentedFlowCalculatedMaximumPeakPressuresInTheIceCondenserCompartmentAssumingUnaugmentedFlowhCalculatedMaximumDifferentialPressuresAcrosstheOperatingDeckTofLowerCraneWallAssumingUnaugmentedFlowCalculatedMaximumDifferentialPressuresAcrosstheUpperCraneWallAssumingUnaugmentedFlow.SensitivityStudiesforCookNuclearPlantIPeakDifferentialPressure(PSI)BreakatOutletNozzlePeakDifferentialPressure(PSI)BreakatSideofVesselPressurizerEnclosureNodalizationVolumesPressurizerEnclosureNodalizationHydraulicDataUnit114-viiJuly1996 CHAPTER14LISTOFTABLES3'able14.3.4-26DifferentialPressure14.3.4-2714a3.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214,3.4-3314.3.4-3414.3.4-3514.3.4-3614.3.4-3714.3.4-3814.3.4-3914.3.4-4014.3.4-4114.3.4-421'4.3.4-43'4.3.4-4414.3.4-4514.3.4-46Summary-BreakMassFlowandEnergyFlowComparisonofPeakDifferentialPressuresFanRoom-BackflowContribution/ForwardFlowContributionCompartmentVolumeandAreaBlowdownMassandEnergyReleaseBlowdownMassandEnergyRelease3425MWT/Deps-MinSI/RHRX-TieClosedRefloodMassandEnergyReleases3425MWT/Deps-MaxSI/RHRX-TieOpenRefloodMassandEnergyReleasesRefloodTransientParametersDoubleEndedPumpSuctionRefloodTransientParametersDoubleEndedPumpSuction3d23MRP/Ceps-Min32/RMRR-TdeClosedPostRefinedMassandEnergy(/Releases3425MWT/Deps-MaxSI/RHRX-TieOpenPostRefloodMassandEnergy-ReleasesMassandEnergyBalances-MininnaaSafeguards3425MWT/Deps-MinsSI/RHRX-TieClosedMassandEnergyBalances-MaximumSafeguards.3425MWT/Deps-MaxSI/RHRX-TieOpenParametersUsedinBoundingSteamlineBreakMass/EnergyReleasesforUnit1andUnit2SteamLineRuptureinSteam'eneratorDoghouse1973WaltzMillPreliminaryTestConditionsPeakPressures/DifferentialsEffectsofVaryingPolytropicExponentCalculatedMaximumPeakPressuresComparedWithDesignPressureUnit114-viiiJuly1995 CHAPTER14LISTOFTABLESTableTitle14.3.5-114.3.5-214'.5-314.3.5-414.3.5-514.3.5-614.3.5-714.3.5-814.3.5-914.3.6-114.3.6-214.3.6-314.3.6-414.3.6-514.3.6-614.3.6-714.3.6-814.3.6-9~~~~Unit1ContainmentPressure,LeakRatesandBreathingRaCesAssumedforPurposesofRadiationDoseCalculationsatDifferentTimeIntervalsFollowingaMajorLossofCoolantAccidentCoreandGapAcCivitiesEquivalenceFactorIodineRemovalCoefficientsasaFunctionofTimefortheIceCondenserContainmentFollowingaLossofCoolantAccidentSiteDispersionFactorsAverageEnergiesperDisintegrationforVariousIsotopes;TimeDecayConstantsSummaryofOff-SiteDosesResultingFromaLossofCoolantAccident-DoseRate(Rem/hr)RHRorContainmenCSprayKeyAssumptionsUsedinEvaluatingtheControlRoomDosesDueToaLOCAfortheDonaldC.CookNuclearPlantUnits1and2CorrosionofAluminumAlloysinAlkalineSodiumBorateSolutionPost-AccidentContainmentTemperatureTransientUsedintheCalculationofAluminumCorrosionAEPAluminumInventoryInsideContainmentBuildingCoreFissionProductEnergyAfter830FullPower.DaysFissionProductDecayDepositioninSumpSolutionPlantParametersforCalculatingPost-AccidentHydrogenGenerationZincInventoryInsideContainmentBuildingFractionofEachHydrogenContributionConsideredForSubcompartmentAnalysisHydrogenConcentrationInSteamGeneratorSubcompartmentPair14-ixJuly1995 CHAPTER14LISTOFTABLESTableTitle14.3.6-1014a3.6-1114.3.6-1214.3.6-1314.3.6-1414.3.6-1514.3.6-1614.3.6-17HydrogenConcentrationInPressurizerSubcompartmentHydrogenConcentrationInFanAccumulatorRoomHydrogenConcentrationInInstrumentRoomHydrogenConcentration,LowerandUpperVolumeOverallContainmentHydrogenConcentrations;1.5XZr-H20Reaction;RecombinerStartsAt24Hrs.AfterAccidentRatesofHydrogenGenerationTemperaturesUsedinHydrogenAnalysisIgniterAssemblyLocations14.4.2-114.4.2-214.4.2-314.4.2-414.4.2-514.4.4-114.4.4-214.4.4-314.4.4-4EquipmentRequiredtoShutdownReactor(ForHighEnergyPipeRupturesOutsideContainment)HighEnergyLinesThatWereWalkedUltimateShearStressesatDistancedFromtheSupportsforeTwo-WayElementsTwo-WayElementsMajorPostulatedHighEnergyPipeBreaksStressValuesforMainSteamLeads1and4AllowableStressValues:OperationalPlusSeismicStresses<30,000PSI(~)ThermalStresses<18,000PSIStressValuesforMainSteamLeads2and3AllowableStressValues:OperationalPlusSeismicStresses<30,000PSI(*)ThermalStresses<18,000PSISupply,andSignalLinestobeProtectedStressValuesatPostulatedBreakLocationsAllowableStress-30,000PSIUnit114-xJuly1995 CHAPTER14LISTOFTABLESTableTitle14.4.4-514.4.4-614.4.6-114.4.6-214.4.6-314.4.6-3a14.4.6-414.4.6-4a14.4.6-514.4.65a14.4'-5b14.4.6-5c14.4.6-614.4.6-7Unit1StressValuesforFeedwaterLinesAllowableStressValues:OperationalPlusSeismicStresses<30,000PSIThermalStresses<18,000PSIStressLevelsMainSteamtoAuxiliaryFeedPumpTurbineLineAllowableStressValues:OperationalPlusSeismicStresses<30,000PSIThermalStresses<18,000PSIWestSteamEnclosure/MainSteamAccesswayVentAreaandVolumeInputstoTMDEastSteamEnclosureVentAreaandVolumeInputstoTMDModelParameters(WestMainSteamEnclosureandMainSteamAccessway)LargeBreakModelParameters(WestMainSteamEnclosureandMainSteamAccessway)SmallBreakModelParameters(EastMainSteamEnclosure)LargeBreakModelParameters(EastMainSteamEnclosure)SmallBreakMassandEnergyReleaseforEnclosure,LargeBreakMassandEnergyReleaseforEnclosure,SmallBreakDeletedDeletedSteamLineBreakinMainSteamSteamLinebreakinMainSteamFeedwaterLineBreakattheContainmentPenetration(ApplicabletoEastorWestSteamEnclosure)FeedwaterLineBreakattheTeeBetweenthe20"and30"Lines,20"LineRunningtoSteamGenerators2and3(ApplicabletoMainSteamAccessway)July1995 CHAPTER14LISTOFTABLESTable14.4.6-814.4.6-914.4.6-1014.4.6-1114.4.6-1214.4.6-1314.4.6-1414.4.6-1514.4.6-15a14.4.6-1614.4,6-16a14.4.6-1714.4.6>>1814.4.6-1914.4.6-2014.4.10-1Unit1RelationofNodeCalculatedPressuretoPressureCapabilityofSlabsPeakPressureDifferentialMainSteamLineBreakWestSteamEnclosurePeakDifferentialPressureFeedwaterLineBreakinWestSteamEnclosurePeakDifferentialPressureFeedwater'LineBreakinMainSteamAccesswayPeakDifferentialPressureMainSteamLineBreakinEastSteamEnclosurePeakDifferentialPressureFeedwaterLineBreakinEastSteamEnclosureRelationofNodesUsedinMainSteamAccesswayAnalysistoPanelIdentificationsPresentedinTable14.4.6-17PressureCapabilityofWallsandSlabsAroundMainSteamLineEnclosureEastofContainmentRelationofNodesUsedinEastSteamEnclosureAnalysistoPanelIdentificationsPresentedinTable14.4.6-15PressureCapabilityofWallsandSlabsatMainSteamEnclosureWestofContainmentRelationofNodesUsedInWestSteamEnclosureAnalysistoPanelIdentificationPresentedinTable14.4.6-16PressureCapabilityofWallsandSlabsofAuxiliaryBuildingAdjacenttoMainSteamLineAccesswayEffectsofPressuresandCircumferentialBreakImpingementLoadsonWallsandSlabsPanelstobeProtectedfromMainSteamLineLongitudinalBreaksFeedwaterLineBreeksTransmitterstobeProtectedwithSupplyandSignalLines14-xiiJuly1995 CHAPTER14LISTOFTABLESTableTitle14.4.11-114.4.11-214.4.11-314.4.11-414.4.11-514.4.11-614.4.11-714.4.11-814.4.11-914A.2-114A.2-214A.3-114A.3-214A.4-114A.4-214A.4-314A.4-414A.5-1DELETEDPeakEnvironmentalQualificationConditionsForLOCA,MSLB,andFeedwaterLineBreakInsideContainmentAirborneSourceTermDosesIntegratedDosesSubmergedLower,Uolume-ObserveratCenterBetaDoseFactorsDosefromAirborneSourceAfterAttenuation(ThicknessUnitDensity)BetaDoseFactorsDoseFromAirborneSourceAfterAttenuation(ThicknessofAluminum)BetaDoseFactorsDoseFromAirborneSourceAfterAttenuation(ThicknessofSteel)PipesconsideredInCalculatingOutsideContainmentDosesPeakEnvironmentQualificationconditionsforHELBOutsideContainmentCoreandGapActivitiesCoreTemperatureDistribution.NuclearCharacteristicsofHighestRatedDischargedAssemblyActivitiesinHighestRatedDischargedAssemblyCuriesatTimeofReactorShutdownParametersUsedintheCalculationofReactorCoolantFissionProductActivitiesReactorCoolantEquilibriumFissionandCorrosionProductActivitiesParametersUsedintheCalculationofReactorCoolantFissionandCorrosionProductActivitiesforSteamGeneratorTubeRuptureRadiologicalAnalysisReactorCoolantEquilibriumFissionandCorrosionProductActivitiesforSteamGeneratorTubeRuptureRadiologicalAnalysisTritiumProductionintheReactorCoolant14A.5-2Unit1RevisedTritiumProductionintheReactorCoolant14-xiiiJuly1996 CHAPTER14LISTOFTABLES~ebs14A.7-114A.8-114A.8-2GasDecayEquilibriumActivityConcentrationofIodineIsotopesintheRecirculationLoopRadiationSourcesCirculatinginResidualHeatRemovalLoopandAssociatedEquipment-Mev/cc-secUnit114-xivJuly1995 CHAPTER14LISTOFFIGURES~ureTitle14.1-214.1-314.1-414.1-514.1-614'.1-114.1.1-214.1.2-114.1-2-2IllustrationofOvertemperatureandOverpowerhTProtectionNominalTavg578.7F,NominalPressure2100psia0IllustrationofOvertemperatureandOverpowerhTProtectionNominalTavg547F,NominalPressure2100psia0IllustrationofOvertemperatureandOverpowerhTProtectionNominalTavg578.7F,NominalPressure2250psia0IllustrationofOvertemperatureandOverpowerhTProtectionNominalTavg547F,NominalPressure2250psia0CookNuclearPlant-Unit1NormalizedNegativeReactivityInsertionasaFunctionofTimeUsedforReactorTripinTransientSafetyAnalysesReactorCoreSafetyLimitsRodWithdrawalfromSubcriticalNuclearPowerandHeatFluxVersusTimeRodWithdrawalfromSubcriticalConditionFuelAverageandCladTemperatureVersusTimeRCCAWithdrawalatPowerFullPower,80PCM/SecInsertionRateMaximumReactivityFeedback,NuclearPowerVersusTimeRCCAWithdrawalatPower,FullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback,PressurizerPressureandWaterVolumeVersusTime14'.2-3RCCAWithdrawalatPower,FullMaximumReactivityFeedback,VersusTimePower,80PCM/SecInsertionRate,CoreAverageTemperatureandDNBR14.1.2-4RCCAWithdrawalatPower,FullPower,4PCM/SecInsertionRate,14.1.2-5MaximumReactivityFeedback,RCCAWithdrawalatPower,FullNuclearPowerVersusTimePower,4PCM/SecInsertionRate,MaximumReactivityFeedback,PressurizerPressureandWaterVolumeVersusTimeUnit114-xvJuly1995 CHAPTER14LISTOFFIGURES~Ft.ure14.1.2-614.1.2-714.1.2-814.1.2-914.1.3-114.1.3-2~14.1.6-114.1.6-214.1.6-314.1.6-414.1.6-514.1.6-614.1.6-714.1.6-814.1.6-914.1.6-1014.1.6-1114.1.6-1214.1.7-114.1.7-2RCCAWithdrawalatPower,FullPower,4PCM/SecInsertionRate,MaximumReactivityFeedback,CoreAverageTemperatureandDNBRVersusTimeRCCAWithdrawalatPower,100XPowerRCCAWithdrawalatPower,60XPowerRCCAWithdrawalatPower,10XPowerNuclearPowerandCoreHeatFluxVersusTimeforaTypicalResponsetoaDroppedRCCA(s}inAutomaticControlAverageCoolantTemperatureandPressurizerPressureVersusTimeforaTypicalResponsetoaDroppedRCCA(s)inAutomaticControlCoreFlowCoastdownVersusTime,CompleteLossofFlowNuclearPowerandPressurizerPressureVersusTime,CompleteLossofFlowAverageChannelHotandChannelHeatFluxVersusTime,CompleteLossofFlowDNBRVersusTime,CompleteLossofFlowFaultedLoopandCoreFlowVersusTime,PartialLossofFlow1/4NuclearPowerandPressurizerPressureVersusTime,PartialLossofFlow1/4AverageChannelandHotChannelHeatFluxVersusTime,PartialLossofFlow1/4DNBRVersusTime,PartialLossofFlow1/4CoreandFaultedLoopFlowVersusTime,1/4LockedRotorReactorPressureVersusTime,1/4LockedRotorNuclearPower,AverageChannel,andHotChannelHeatFluxVersusTime,1/4LockedRotorCladInnerTemperatureVersusTime,1/4LockedRotorStartupofanInactiveReactorCoolantLoopStartupofanInactiveReactorCoolantLoopUnit114-xviJuly1995 CHAPTER14LISTOFFIGURES~FiureTitle14.1.8-114.1.8-214.1.8-314.1.8-414.1.8-5~~14.1.8-614.1.8-714.1.8-814.1.9-114.1.9-2NuclearPowerPressurizerPressureandDNBRVersusTimeforLossofLoadMinimumReactivityFeedbackWithPressurizerSprayandPORVsLoopTemperature,CoreAverageTemperature,andPressurizerWaterVolumeVersusTimeforLossofLoadMinimumReactivityWithPressurizerSprayandPORVsNuclearPower,PressurizerPressure,andDNBRVersusTimeforLossofLoad,MaximumReactivityFeedbackWithPressurizerSprayandPORVsLoopTemperature,CoreAverageTemperatureandPressurizerWaterVolumeforLossofLoad,MaximumReactivityFeedbackWith'ressurizerSprayandPORVsNuclearPower,PressurizerPressureandDNBRVersusTimeforLossofLoad,MinimumReactivityFeedbackWithoutPressurizerSprayandPORVsLoopTemperature,CoreAverageTemperatureandPressurizerWaterVolumeVersusTimeforLossofLo'ad,MinimumReactivityFeedbackWithoutPressurizerSprayandPORVsNuclearPower,PressurizerPressureandDNBRVersusTimeforLossofLoad,MaximumReactivityFeedback,NoPressurizerSprayorPORVsLoopTemperature,CoreAverageTemperatureandPressurizerWaterVolumeVersusTimeforLossofLoad,'MaximumReactivityFeedback,NoPressurizerSprayorPORVsNuclearPower'andCoreHeatFluxVersusTime(LossofNormalFeedwater)PressurizerWaterVolumePressurizerPressureandLoopTemperatureVersusTime(LossofNormalFeedwater)14-xviiJuly1995 CHAPTER14LISTOFFIGURES~FiusaTtie14.1.10-114.1.10-214.1.10-314.1.10-414,1.10-514.1.10-614.1.10-714.1.10-814.1.11-114.1.11-214.l.11-314.1.11-4Unit1NuclearPowerTransientandCoreAverageTemperatureVersusTime,SingleLoopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,SingleLoopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerNuclearPowerTransientandCoreAverageTemperatureVersusTime,SingleLoopFeedwaterMalfunctionWithManualRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,SingleLoopFeedwaterMalfunctionWith,ManualRodControlAtFullPowerNuclearPowerTransientandCoreAverageTemperatureVersusTime,Multi-loopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,Multi-loopFeedwaterMalfunctionWithAutomaticRodControlAtFullPowerNuclearPowerTransientandCoreAverageTemperatureVersusTime,Multi-loopFeedwaterMalfunctionWithManualRodControlAtFullPowerPressurizerPressureandDNBRVersusTime,Multi-loopFeedwaterMalfunctionWithManualRodControlAtFullPowerNuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithManual'odControlCoreAverageTemperatureandDNBRVersusTimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithManualRodControlNuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithManualControlCoreAverageTemperatureandDNBRVersusTimeforExces'siveLoadIncreaseMaximumReactivityFeedback'WithManualControl14-xviiiJuly1995 CHAPTER14LISTOFFIGURES~FiuueTitle14.1.11-514.1.11-614.1.11-714.1.11-814.1.12-114.1.13-114.1.13-214.1.13-314.1.13-414.1.13-514.1.13-614.2.4-114.2.5-114.2.5-214.2.5-314.2.5-414.2.5-5NuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMinimumReactivityFeedbackWithAutomaticRodControlCoreAverageTemperatureandDNBRVersusTimefor.ExcessiveLoadIncreaseMinimumReactivityFeedbackWithAutomaticRodControlNuclearPowerandPressurizerPressureVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithAutomaticRodControlCoreAverageTemperatureandDNBRVersusTimeforExcessiveLoadIncreaseMaximumReactivityFeedbackWithAutomaticRodControlNuclearPowerandCoreFlowVersusTime(LossofOffsitePower)LoopTemperatureandPressurizerWaterVolumeVersusTime(LossofOffsitePower)CrossSectionL.P.TurbineRotor(Unit2)StressinL.P.TurbineRotorDiscsat176XSpeedCalculatedFailureSpeedsofL.P.TurbineRotorDiscsSketchofLastStageRegionL.P.TurbineUnitNo.1SketchofLowPressureTurbineRotorandCasingUnitNo.2Unit1TurbineLastStageWheelBreakandInjectedMassFlowVariationofReactivitywithCoreTemperatureat1050psiafortheEndofLifeRoddedCoreWithOneControlRodAssemblyStuck(Assume0power)DopplerPowerFeedbackSafetyIn)ectionFlowSuppliedbyOneChargingPumpNuclearPowerandCoreHeatFluxVersusTimeSteamlineBreakDERInsideContainmentWith.PowerCoreAverageTemperatureRCSPressure,andPressurizerWaterVolumeVersusTimeSteamlineBreakDERInsideContainmentWithPowerUnit114-xixJuly1995 CHAPTER14LISTOFFIGURES~FiteTitle14.2.5-614.2'-114.2.6-214.2.6-314.2.6-414.2.7-114.2.7-214.2.7-314.2.7-414.2'-514.2.7-614.2.7-714.2.7-8'4.2.7-914.2.7-1014.2.7-1114.2.7-1214.2.8-114.2.8-214.2.8-3ReactivityandCoreBoronConcentrationVersusTimeSteamlineBreakDERInsideContainmentWithPowerRodEjection,HotZeroPower(EndofLife)RodEjection,HotZeroPower(EndofLife)FuelCenterline,FuelAverage,andCladOuterSurfaceTemperatureRodEjection,HotFullPower(EndofLife)NuclearPower(FractionofNomina1)RodEjection,HotFullPower(EndofLife)FuelCenterline,FuelAverageandCladOuterSurfaceTemperatureAnnualOperationalThyroidDosesatSiteBoundary1XDefectiveFuelAnnualOperationalWholeBodyDosesatSiteBoundary1XDefectiveFuelAnnualOperationalThyroidDosesattheBoundaryofLowPopulationZone1XDefectiveFuelAnnualOperationalWholeBodyDosesattheBoundaryof.LowPopulationZone1XDefectiveFuelLossofAllA,C.PowertothePlantAuxiliarieslXDefectiveFuelLossofA.C.PowertothePlantAuxiliaries1XDefectiveFuelSteamLineBreakAccident1XDefectiveFuel-ThyroidDoseREMSteamLineBreakAccident1X,DefectiveFuel-WholeBodyDoseREMSteamGeneratorTubeRuptureAccident1XDefectiveFuel(3391MWt)SteamGeneratorTubeRuptureAccident1XDefectiveFuel(3391MWt)SteamGenerator.TubeRuptureAccident1XDefectiveFuel(3391MWt)SteamGeneratorTubeRuptureAccident1XDefectiveFuel(3391MWt)MainFeedlineRuptureAccidentCoreHeatFluxvs.TimeMainFeedlineRuptureAccidentReactorCoolantFlowvs.'imeMainFeedlineRuptureAccidentPressurizerWaterVolumevs'.TimeUnit114-xxJuly1995 CHAPTER14LISTOFFIGURES~FiureTitle14.2.8-414.2.8-514.2.8-614.2.8-714.3.1-la14.3.1-1b14.3.1-lc14.3.1-ld14.3.1-le14.3.1-1f14.3.1-1g14.3.1-2a14.3.1-2b14.3.1-2c14.3.1-2d14.3.1-2eMainFeedlineRuptureAccidentPressurizerPressurevs.TimeMainFeedlineRuptureAccidentFaultedandIntactLoopsRCSTemperaturesvs.TimeMainFeedlineRuptureAccidentSteamGeneratorPressurevs.TimeMainFeedlineRuptureAccidentSteamGeneratorMassvs.TimeReactorCoolantSystemPressure,CD-0.6,T-611.2FDonaldhotC.CookUnit1ReactorCoolantSystemPressure,CD-0.6P-2100psiaRCSlDonaldC.CookUnit1ReactorCoolantSystemPressure,CD-0.4,Th-611.2F,DonaldC.CookUnit1ReactorCoolantSystemPressure,CD-0.6,Th-580.7F,DonaldC.CookUnit1ReactorCoolantSystemPressure,CD-0.8,Th611.2F,DonaldC.CookUnit1ReactorCoolantSystemPressure,CD0.6,MaxSI,DonaldC.CookUnit1ReactorCoolantSystemPressure,CD0.6,RHRCrossTieClosed,DonaldC.CookUnit1BreakFlowDuringSlowdown,,CD0.6,T-611.2FDonaldC.hotCookUnit1BreakFlowDuringBlowdown,CD0.6,PRCS-2100psia,'onaldC.CookUnit1BreakFlowDuringBlowdown,CD-0.4,Th-611.2F,DonaldC.CookUnit1BreakFlowDuringBlowdown,CD0.6,T580.7FDonaldC.hot~~CookUnit1BreakFlowDuringBlowdown,CD-0.8,Th611.2F,DonaldC.CookUnit1Unit114-xxiJuly1995 CHAPTER14LISTOFFIGURES~PireTitle14.3.1-2f14.3.1-2g14.3,1-3a14.3.1-3b14'.1-3c14.3.1-3d14.3.1-3e14.3.1-3f14.3.1-3g14.3.1-4a14.3.1-4b14.3.1-4c14.3.1-4d14.3.1-4e14.3.1-4f14.3.1-4g14.3.1-5a14.3.1-5bCoreFlowrate,CD-0.6,CoreFlowrate,CD-0.6,CozeFlowrate,CD0.4,CoreFlowzate,CD-0.6,CoreFlowrate,CD-0.8,CoreFlowrate,CD-0.6,ThotRCShothothotMaxSI611.2F,DonaldC.CookUnit12100psia,DonaldC.CookUnit1611.2F,DonaldC.CookUnit1580.7F,DonaldC.CookUnit1611.2F,DonaldC.CookUnit1,DonaldC.CookUnit1CoreFlowrate,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1AccumulatorFlowDuringBlowdown,CD-0.6,Th-611.2FDonaldhotC.CookUnit1AccumulatorFlowDuringBlowdown,CD-0.6,PRCS-2100psia,DonaldC.CookUnit1BreakFlowDuringBlowdown,CD-0.6,MaxSI,DonaldC.CookUnit1BreakFlowDuringBlowdown,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1CorePressureDrop,CD0.6,Th-611.2F,DonaldC.CookhotUnit1CorePressureDrop,CD-0.6,PRCS-2100psia,DonaldC.CookUnit1CorePressureDrop,CD-0.4,Th-611.2F,DonaldC.CookhotUnit1CorePressureDrop,CD-0.6,Th-580.7F,DonaldC.CookhotUnit1.CorePressureDrop,CD-0.8,Th-611.2F,DonaldC.CookhotUnit1CorePressureDrop,CD0.6,MaxSI,DonaldC.CookUnit1CorePressureDrop,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1Unit114-xxiiJuly1995 CHAPTER14LISTOFFIGURES~FireTitle14.3.1-5c14.3.1-5d14.3.1-5e14.3.1-5f14.3.1-5gAccumulatorFlowDuringBlowdown,CD0.4T-611.2FDonaldhotC.CookUnit1AccumulatorFlowDuringBlowodwn,CD-0.6,T-.580.7FDonaldhot"C.CookUnit1AccumulatorFlowDuringBlowdown,CD0.8,Th,611.2F,DonaldC.CookUnit1AccumulatorFlowDuringBlowdown,CD-0.6,MaxSI,DonaldC.CookUnit1AccumulatorFlowDuringBlowdown,CD0.6,RHRCrossTieClosed,'onaldC.CookUnit114.3.1-6a14.3.1-6b14.3.1-6c14.3.1-6d14.3.1-6e14.3.1-6f14.3.1-6g14.3.1-7aCoreandDowncomerLiquidLevelsDuringReflood,Th-611.2F,DonaldC.CookUnit10CoreandDowncom'erLiquidLevelsDuringReflood,PRCS2100psia,DonaldC.CookUnit1CoreandDowncomerLiquidLevelsDuringReflood,Th-611.2F,DonaldC.CookUnit1CoreandDowncomerLiquidLevelsDuringReflood,Th-580.7F,DonaldC.CookUnit1CoreandDowncomerLiquidLevelsDuringReflood,Tht-611.2F,DonaldC.CookUnit1CoreandDowncomerLiquidLevelsDuringReflood,DonaldC.CookUnit1CoreandDowncomerLiquidLevelsDuringReflood,CrossTieClosed,DonaldC.CookUnit1CoreInletFlowDuringReflood,CD-0.6,ThotC.CookUnit1CD~0.6,CD0.6,CD0.4,CD0.6,CD0.8,CD-0.6,MaxSI,CD0.6)RHR611.2F,Donald14.3.1-7bCoreInletFlowDuringReflood,CD0.6,PRCS-2100psia,DonaldC.CookUnit1Unit114-xxiiiJuly1995 CHAPTER14LISTOFFIGURES~pluteTitle14.3.1-7c14.3.1-7d14.3.1-7e14.3.1-7f14.3.1-7g14.3.1-8a14.3.1-8b14.3.1-8c14.3.1-8d14e3.1-8e14.3.1-8f14.3.1-8g14.3.1-9a14.3.1-9b14.3.1-9c14e3.1-9d14e3.1-9eCoreInletFlowDuringReflood,CD0.4,Th-611.2F,DonaldhotC.CookUnit1CoreInletFlowDuringReflood,CD0.6,Th580.7F,DonaldC.CookUnit1CoreInletFlowDuringReflood,CD-0.8,Th611.2FDonaldhot~fC.CookUnit1CoreInletFlowDuringReflood,CD0.6,MaxSI,DonaldC.CookUnit1CoreInletFlowDuringReflood,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1SIFlow,CD0.6,Th611.2F,DonaldC.CookUnit1hotSIFlow,,CD-0.6,PRCS-2100psia,DonaldC.CookUnit1SIFlow,CD-0.4,Th-611.2F,DonaldC.CookUnit'hotSIFlow,CD-0.6,Th-580.7F,DonaldC.CookUnit1hotSIFlow,CD-0.8,Th-611.2F,DonaldC.CookUnit1hotSIFlow,CD-0.6,MaxSI,DonaldC.CookUnit1SIFlow,CD0.6,RHRCrossTieClosed,DonaldC.CookUnit1IntegralofCoreInletFlow,CD-0.6,Th-611.2F,DonaldC.CookUnit1IntegralofCoreInletFlow,CD-0.6,PRCS2100psia,DonaldC.CookUnit1IntegralofCoreInletFlow,CD0.4,Th611.2F,DonaldC.CookUnit1Integral'fCoreInletFlow,CD-0.6,Th-580.7F,DonaldC.CookUnit1IntegralofCoreInletFlow,CD-0.8,Th-611.2F,DonaldC.hotCookUnit114.3.1-9fUnit1IntegralofCoreInletFlow,CD-0.6,Unit114-xxivMaxSI,DonaldC.CookJuly1995 CHAPTER14LISTOFFIGURES~FureTitle14.3.1-9gIntegralofCoreInletFlow,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit114.3.1-10a14.3.1-10b14.3.1-10c14.3.1-10d14.3.1-10et14.3.1-10fMassFluxatthePeakTemperatureElevation,T-611.2F;Donald"CCookUnit-1-"'"'MassFluxatthePeakTemperatureElevation,PRCS-2100psia,DonaldC.CookUnit1MassFluxatthePeakTemperatureElevation,Th611.2F,DonaldC.CookUnit1hotMassFluxatthePeakTemperatureElevation,Th-580.7F,DonaldC.CookUnit1~hotMassFluxatthePeakTemperatureElevation,Th-611.2F,DonaldC.CookUnit1MassFluxatthePeakTemperatureElevation,DonaldC.CookUnit1CD0.6,CD-0,6,CD-0.4CD-0.6,.CD0.8,CD-0.6,MaxSI,14.3.1-10g14.3.1-11a14.3.1-11b14.3.1-11c14.3.l-lid14.3.1-lie14.3.1-1lfMassFluxatthePeakTemperatureElevation,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1RodHeatTransferCoefficientatthePeakTemperatureElevation,CD-0.6,Th-611.2F,DonaldC.CookUnit1hotRodHeatTransferCoefficientatthePeakTemperatureElevation,CD-0.6,PRCS,-2100psia,DonaldC.CookUnit1RodHeatTransferCoefficientatthePeakTemperatureElevation,CD0.4,Th611.2F,DonaldC.CookUnit1hotRodHeatTransferCoefficientatthePeakTemperatureElevation,CD0.6,Th580.7F,DonaldC.CookUnit1hotRodHeatTransferCoefficientatthePeakTemperatureElevation,CD-0.8,Th-611.2F,DonaldC.CookUnit1hotRodHeatTransferCoefficientatthePeakTemperatureElevation,CD0.6,MaxSI,DonaldC.CookUnit114-xxvJuly1995 CHAPTER14LISTOFFIGURES~TiteTitle14.3.1-llg14.3.1-12a14.3.1-12b14.3.1-12c14.3.1-12d14.3.1-12e14.3.1-12f14e3.1-12gVaporTemperature,CD-0.4,VaporTemperature,CD-0.6,VaporTemperature,CD-0.8,VaporTemperature,CD0.6,Th-611.2F,DonaldC.CookUnit1Th-580.7F,DonaldC.CookUnit1hotTh-611.2F,DonaldC.CookUnit1hotMaxSI,DonaldC.CookUnit1VaporTemperature,CD0.6,RHRCrossTieClosed,DonaldC.CookUnit1RodHeatTransferCoefficientatthePeakTemperatureElevation,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1VaporTemperature,CD-0.6,Th611.2F,DonaldC.CookUnit1VaporTemperature,CD-0.6,PRCS-2100psia,DonaldC.CookeUnit114.3.1-13a14.3.1-13bFuelRod.PeakCladTemperature,CD0.6,C.CookUnit1FuelRodPeakCladTemperature,CD-0.6,C.CookUnit1Tht611.2F,DonaldhotRCS-2100psia,Donald14.3.1-13c14.3.1-13d14.3.1-13e14.3.1-13f14.3.1-13g14.3.1-1414.3.1-1514.3.1-16FuelRodPeakCladTemperature,CD0.4,Th611.2FDonaldhot~fC.CookUnit1FuelRodPeakCladTemperature,CD-0.6,Th580.7F,DonaldC.CookUnit1FuelRodPeakCladTemperature,CD0.8T-611.2FDonaldhotC.CookUnit1FuelRodPeakCladTemperature,CD0.6,MaxSI,DonaldC.CookUnit1FuelRodPeakCladTemperature,CD-0.6,RHRCrossTieClosed,DonaldC.CookUnit1ContainmentPressure,CD-0.6,MinSI,DonaldC.CookUnit1ContainmentPressure,CD-0.6,MaxSI,DonaldC.CookUnit1UpperContainmentStructuralHeatRemovalRate,CD-0.6,MinSI,DonaldC.CookUnit1Unit114-xxviJuly1995 CHAPTER14LISTOFFIGURES/~i.ure~ingle14.3.1-1714.3.1-1814.3.1-19114.3.1-2014.3.1-2114.3.1-2214.3.1-2314.3.2-1~~14.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3.2-814.3.2-914.3.2-1014.3.2-11Unit1LowerCompartmentStructuralHeatRemovalRate,CD-0.6,MinSI,DonaldC.CookUnit1HeatRemovalbySumpandLCSpray,CD0.6,MinSIUpperCompartmentStructural,HeatRemoval..Rate,CD.0.6,.Max.SI,DonaldC,CookUnitLowerCompartmentStructuralHeatRemovalRate,CD-0.6,MaxSI,DonaldC.CookUnit1HeatRemovalbySumpandLCSpray,CD0.6,MaxSILowerandUpperCompartmentTemperatures,CD-0.6,MinSI,DonaldC.CookUnit1LowerandUpperCompartmentTemperatures,CD0.6,MaxSI,DonaldC.Cook'nit1SafetyInjectionFlowrateHotRodPowerDistributionRCSPressure(3Inch),ReducedTemperature,ReducedPressureCoreMixtureHeight(3Inch),ReducedTemperature,ReducedPressureHotSpotCladTemperature(3Inch),ReducedTemperature,ReducedPressureCoreSteamFlowrate(3Inch),ReducedTemperature,ReducedPressureHotSpotHeatTransferCoefficient(3Inch),ReducedTemperature,ReducedPressureHotSpotFluidTemperature(3Inch),ReducedTemperature,ReducedPressureTotalBreakFlow(3Inch),ReducedTemperature,ReducedPressureIntactLoopPumpedSIFlow(3Inch),ReducedTemperature,ReducedPressureRCSPressure(2Inch),ReducedTemperature,ReducedPressure14-xxviiJuly1995 CHAPTER14LISTOFFIGURESg~iureTitle14.3.2-1214.3.2-1314.3.2-1414.3.2-1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-2214.3.2-2314.3.2-2414.3.2-2514.3.2-2614.3.2-27CoreMixtureHeight(2Inch),ReducedTemperature,ReducedPressureHotSpotCladTemperature(2Inch),ReducedTemperature,ReducedPressureCoreSteamFlowrate(2Inch),ReducedTemperature,ReducedPressureHotSpotHeatTransferCoefficient(2Inch),ReducedTemperature,ReducedPressureHotSpotFluidTemperature(2Inch),ReducedTemperature,ReducedPressureTotalBreakFlow(2Inch),ReducedTemperature,ReducedPressureIntactLoopPumpedSIFlow(2Inch),ReducedTemperature,ReducedPressureRCSPressure(4Inch),ReducedTemperature,ReducedPressureCoreMixtureHeight(4Inch),ReducedTemperature,ReducedPressureHotSpotCladTemperature(4Inch),ReducedTemperature,ReducedPressureCoreSteamFlowrate(4Inch),ReducedTemperature,ReducedPressureHotSpotHeatTransferCoefficient(4Inch),ReducedTemperature,ReducedPressureHotSpotFluidTemperature(4Inch),ReducedTemperature,ReducedPressureRCSPressure(3Inch),ReducedTemperature,HighPressureCoreMixtureHeight(3Inch),ReducedTemperature,HighPressureHotSpotCladTemperature(3Inch),ReducedTemperature,HighPressureUnit114-xxviiiJuly1995 CHAPTER14LISTOFFIGURES~TiuseTitle14.3.2-2814.3.2-2914.3.2-3014.3.2-3114.3.2-3214.3.2-3314.3.2-3414.3.2-3514.3.2-3614.3.2-3714.3.2-3814.3.2-3914.3.2-4014.3.2-4114.3.2-4214.3.2-4314.3.2-44CoreSteamFlowrate(3Inch),ReducedTemperature,HighPressureHot,SpotHeatTransferCoefficient(3Inch),ReducedTemperature,HighPressureHotSpotFluidTemperature(3Inch),ReducedTemperature,HighPressureTotalBreakFlow(3Inch),ReducedTemperature,HighPressureIntactLoopPumpedSIFlow(3Inch),ReducedTemperature,HighPressureRCSPressure(3Inch),HighTemperature,HighPressureCoreMixtureHeight(3Inch),HighTemperature,HighPressureHotSpotCladTemperature(3Inch),HighTemperature,HighPressureCoreSteamFlowrate(3Inch),HighTemperature,HighPressureHotSpotHeatTransferCoefficient(3Inch),HighTemperature,HighPressureHotSpotFluidTemperature(3Inch),HighTemperature,HighPressureTotalBreakFlow(3Inch),HighTemperature,HighPress'ureIntactLoopPumpedSIFlow(3Inch),HighTemperature,HighPressureRCSPressure(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureCoreMixtureLevel(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressurePeakCladTemperature(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureCoreOutletSteamFlowRate(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureUnit114-xxixJuly1995 CHAPTER14LISTOFFIGURES~FiuseTitle14.3.2-4514.3.2-4614.3.2-4714.3.2-4814.3.2-4914.3.2-5014.3.2-5114.3.2-5214.3.2-5314.3.2-5414.3.2-5514.3.2-5614.3.2-5714.3.2-58,14.3.2-59Unit1HotSpotRodSurfaceHeatTransferCoefficient(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureHotSpotFluidTemperature(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureColdLegBreakMassFlowRate(3Inch,3X,MSSVTolerance)ReducedTemperature,ReducedPressureSafetyInjectionMassFlowRate(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureHotRodPowerDistributionReducedTemperature,ReducedPressureRCSPressure(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureCoreMixtureLevel(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressurePeakCladTemperature(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureCoreOutletSteamFlowRate(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureHotSpotRodsurfaceHeatTransferCoefficient(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureHotSpotFluidTemperature(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureColdLegBreakMassFlowRate(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureSafetyInjectionMassFlowRate(2Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureRCSPressure(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MPt,HHSICross-TieValvesOpenCoreMixtureLevel(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpen14-xxxJuly1995 CHAPTER14LISTOFFIGURES~FireTitle14.3.2-6014.3.2-6114.3.2-6214.3.2-6314.3.2-6414.3.2-6514.3.2-6614.3.4-114.3.4-214.3.4-314.3.4-4PeakCladTemperature(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenCoreOutletSteamFlowRat(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSI.Cross.-TieValvesOpenHotSpotRodSurfaceHeatTransferCoefficient(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressureHotSpotFluidTemperature(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenColdLegBreakMassFlowRate(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenSafetyInjectionMassFlowRate(3Inch,3XMSSVTolerance)ReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenHotRodPowerDistributionReducedTemperature,ReducedPressure3588MWt,HHSICross-TieValvesOpenSteamConcentrationinaVerticaldistributionChannelPeakCompressionPressureVersusCompressionRatioUpperCompartmentCompressionPressureversusEnergyReleaseforTestsat110Xand200XofInitialDBABlowdownRateIceMeltedversusEnergyReleaseforTestsatDifferentBlowdownRates14.3.4-514.3.4-614.3.4-714.3.4-814.3.4-9UpperCompartmentPeakCompressionforTestsWith175XEnergyReleaseAEPContainmentIntegrityAnalysisAEPContainmentIntegrityAnalysisAEPContainmentIntegrityAnalysisAEPContainmentIntegrityAnalysisPressureversusBlowdownRateSystemPressureUpperCompartmentTemperatureLowerCompartmentTemperatureActive/InactiveSump14.3.4-10TemperatureAEPContainmentIntegrityAnalysisIceMelt(lbs)Unit114-xxxiJuly1995 CHAPTER14LISTOFFIGURESiureTitle14.3.4-1114.3.4-1214.3.4-1314.3.4-1414.3.4-1514.3'-1614.3.4-1714.3.4-1814.3.4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3.4-2414.3.4-2514.3.4-2614.3.4-2714'.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214.3.4-3314.3.4-3414.3.4-3514.3.4-36Unit1DECLG:CompartmentDEHLG:CompartmentDEHLG;CompartmentDEHLG:CompartmentDEHLG:CompartmentDEHLG:CompartmentDEHLG:Compartment82XE5KE614-xxxiiJuly19954.5ft'ouble-EndedRupture,102XPower,MSIVFailureCompartmentTemperature0.86ft'plitBreak,100XPower,AFRPFailureCompartmentTemperatureWorstBreak-LowerCompartmentTemperatureComparisonUpperCompartmentTemperature(30XPowerLevel)'owerCompartmentPressure(30XPowerLevel)LowerCompartmentTemperature(30XPowerLevel)WorstBreak-LowerCompartmentTemperatureComparisonGenericAnalysisPlanatEquipmentRoomsElevationContainmentSectionViewPlanViewatIceCondenserElevation-IceCondenserCompartmentsLayoutofContainmentShellTMDCodeNetworkUpperandLowerCompartmentPressureTransientforWorstCaseBreakCompartment(Element6)HavingaDEHLBreakColdLegDouble-EndedGuillotineFullPowermhTransientColdLegDouble-EndedGuillotineFullPowermTransientColdLegDouble-EndedGuillotineFullPowermhTransientColdLegDouble-EndedGuillotineFullPowermTransientHotLegDouble-EndedGuillotineFullPowermhTransientHotLegDouble-EndedGuillotineFullPowermTransient CHAPTER14LISTOFFIGURES~FiuteTitle14.3.4-3714.3.4-3814.3.4-3914.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4-4414.3.4-4514.3.4-4614e3.4-4714.3.4-4814.3.4-49DECLG:Compartmentfj3DECLG:Compartmentfj4DECLG:Compartmentgj6IllustrationofChokedFlowCharacteristicsExperimentalCriticalMassFlow/HomogeneousThermalEquilibriumModeSteamGeneratorEnclosureAboveElevation665ft.SteamGeneratorEnclosureBelowElevation665ft.(1of2)SteamGeneratorEnclosureCut-OpenViewoftheSteamGeneratorEnclosure(2of2)SteamGeneratorEnclosurePressurizerEnclosureNodingPressurizerEnclosureNodingDiagramandFlowpathsTMDCodeNetworkTMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosure14.3.4-5014.3.4-5114.3.4-5214.3.4-5314.3.4-5414.3.4-5514.3'-5614.3.4-5714.3.4-5814.3.4-5914.3.4-60TMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosureTMDCompressibleFlowforPressurizerEnclosurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDifferentialPressurePressurizerEnclosureDiffexentialPressurePlotofthePeakCompartmentPressureasaFunctionofTimeinElement1foraDEHLBreakinElement1Unit114-xxxiiiJuly1995 CHAPTER14LISTOFFIGURES~Fi,reTitle14.3.4-6114.3.4-6214.3.4-6314.3.4-6414.3.4-6514.3.4-6614'.4-6714.3.4-6814.3.4-6914.3.4-7014.3.4-7114.3.4-7214.3.4-7314.3.4-7414.3.4-7514.3.4-7614.3.4-7714.3.4-7814.3.4-7914.3.4-80Unit1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement2foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement3foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement4foraDEHLinElement1July1995PlotofthePeakCompartmentPressureasaFunctionofTimeinElement5foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement6foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement25foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement40foraDEHLBreakinElement1PlotofthePeakCompartmentPressureasaFunctionofTimeinElement2foraDEHLBreakinElement2PlotofthePeakCompartmentPressureasaFunctionofTimeinElement25foraDEHLBreakinElement2PlotofthePeakCompartmentPressureasaFunctionofTimeinElement40foraDEHLBreakinElement1HotLegDoubleEndedGuillotineFullPowermhTransientHotLegDoubleEndedGuillotineFullPowermTransientColdLegDoubleEndedGuillotineFullPowerConditionmhTransientColdLegDoubleEndedGuillotineFullPowerConditionmTransientHotLegSingleEndedSplintFullPowerConditionmhTransientHotLegSingleEnded.Split,FullPowerConditionmTransientColdLegSingleEndedSplitFullPowermhTransientColdLegSingleEndedSplitFullPowermTransientPressurizerSprayLinemhTransientPressurizerSprayLinemTransient14-xxxiv CHAPTER14LISTOFFIGURES~Ft.ueTitle14.3.4-8114.3.4-8214.3.4-8314.3.4-8414.3.4-8514.3.4-8614.3.4-8714.3.4-8814'.4-8914.3.4-90e14.3.4-9114.3.4-9214.3.4-9314.3.5-114.3.5-214.3.5-314.3.5-414.3.5-514.3.5-614.3.6-114.3.6-214.3.6-314.3.6-414.3.6-514.3.6-6ComparisonofSatan(Zaloudek-Moody)toHenry-FauskeComparisonofSatan(Zaloudek)toMoodySubcooledZaloudekMeasuredDataversusModifiedZaloudekCorp.ZaloudekShortTubeDataExitPlaneQualityasaFunctionofUpstreamPressureforSaturatedLiquid(ModdyModel)HenryANL7740DataLoftTests809and813PressureGageP-1(NearRupture)Full-ScaleSectionTestFacilityDischargePipingCirculationPumpReceiverVesselInstrumentLocationVariableAreaFlowPathFlowArea-PressureDifferentialTotalFractionofIodinePresentintheContainmentasaFunctionofTimeFollowingaLoss-of-CoolantAccidentThyroidDoseasaFunctionofIceCondenserEfficiencyLong-TermPressureTransientUsedforContainmentReleaseRateCalculationsIntegratedExposureasaFunctionofDistancefromContainmentBuildingControlRoomThyroidDoseControlRoomBetaSilin:GammaBodyDoseAluminumCorrosioninDBAEnvironmentResultsofWestinghouseCapsuleIrradiationTestsDeletedDeletedDeletedCorrosionRateofAluminumasaFunctionofTemperatureUnit114-xxxvJuly1995 CHAPTER14LISTOFFIGURES~i~ureTtie14.3.6-714.3.6-814.3.6-914.3.6-1014.3.6-1114.3.6-1214.3'-1314.3.6-1414.3.6-14a14.3.6-1514.3.6-1614.3.6-1714.3.6-1814.3.6-1914.3.6-2014.3.6-2114.3.6-2214.4.2-114.4.2-2CorrosionRateofZincasaFunctionofTemperatureElectricHydrogenRecombinerHydrogenProductionintheContainmentasaFunctionofTimeFollowinganAECTIDReleaseLoss-of-CoolantAccidentContainmentHydrogenConcentrationWithOneElectricRecombinerStartedOneDayAfterLOCAContainmentPeakHydrogenConcentrationVersusRecombinerProcessRateWithRecombinerStartedOneDayAfterLOCAContainmentPeakHydrogenConcentrationVersusElapsedTimeAfterLOCABeforeStartingRecombinerSchematicDiagramofPost-AccidentContainmentHydrogenMonitoringSystem(PACHMS)ArrangementofPost-AccidentSamplingEquipmentinSprayAdditiveTankRoomPost-AccidentContainmentHydrogenDist.IgnitionSystem,DetailsofIgniterBoxandSpliceBox(NoHeading)D.C.CookUnit2ContainmentPlanBelowElevation652'7"D.C.CookUnit2ContainmentPlantAboveElevation652'7"D.C.CookUnit2ContainmentPlantAboveElevation715'ectionofContainmentDetailingLocationofHydrogenMonitoringSamplePartsESR-2,5,6,8,9PlanElevationofContainment(Elevation650'0")DetailingLocationofHydrogenMonitoringSamplePartsESR-1and7PlanElevationofContainment(Elevation633'0")DetailingLocationofHydrogenMonitoringSamplePartsESR-3and4Hi-EnergyLineBreakEquip/SourceArrg'tSections"D-D","E-E"and"F-F",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSections"G-G","H-H",and"J-J"and"K-K",UnitNos.1and2Unit114-xxxviJuly1995 CHAPTER14LISTOFFIGURES~FiuseTitle14.4.2-314.4.2-414.4.2-514.4.2-614.4.2-714.4.2-814.4.2-9~~14.4.2-1014.4.2-1114.4.2-1214e4.2-1314.4.2-1414.4.2-1514.4.2-16Hi-EnergyLineBreakEquip/SourceArrg'tSection"L-L",and"M-M",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSections"N-N"."P-P","Q-Q",and"R-R",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tSectionsPlantBelowBasement,UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tElev.591'0"and587'0",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tMazzanineFl.El.609'0",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tMainFloorElev.633'0",UnitsNo.1and2Hi-EnergyLineBreakEquip/SourceArrg'tMainFloorElev.650'0",UnitsNo.1and2LayoutandIdentificationofWallsandSlabsforEastMainSteamEnclosure,WestMainSteamEnclosure,MainSteamAccesswayIsometricViewofMainSteamEnclosureAccesswayWestofContainmentYieldLinePatternforPanelswithThreeEdgesFixedandOneEdgeUnsupportedSubjectedtoUniformlyDistributedLoadYieldLinePatternforPanelswithFourEdgesFixedSubjectedtoUniformlyDistributedLoadYieldLinePatternforPanelswithFourEdgesFixedSubjectedtoConcentratedPointLoadYieldLinePatternforPanelswithThreeEdgesFixedandFourthEdgeFreeSubjectedtoaConcentratedPointLoadattheFreeEdgeYieldLinePatternsforPanelswithThreeEdgesFixedandFourthEdgeFreeSubjectedtoaConcentratedPointLoadatInteriorUnit114-xxxviiJuly1995 CHAPTER14LISTOFFIGURES~ure14.4.2-1714.4.2-1814.4.2-1914.4.2-2014.4.2-2114.4.6-114.4.6-214.4.6-314.4.6-414.4.6-514.4.6-614.4.6-714.4.6-814.4.6-914.4.6-9a14".4.6-9b14.4.6-1014.4.6-10a14.4.6-1114.4.6-1la14.4.9-114.4.9-2IsometricMainstreamfromSteamTurbinetoContainmentPenetrationSleeveIsometricFeedwaterfromHeaters6Aand6BtoSteamGeneratorsAuxiliaryBuildingLetdownHeaCExchangerPipinghAuxiliaryBuildingSteamGeneratorBlowdownPiping4"MainSteamtoAux.FeedwaterPumpTurbine,UnitNo.1SchematicofWestSteamEnclosure/MainSteamAccesswayTMDNetworkforWestSteamEnclosure/MainSteamAccesswaySchematicEaseSteamEnclosureTMDNetworkforEastSteamEnclosurePeakEnvironmentalParameters(WestMainSteamEnclosureAccessway)PeakEnvironmentalParameters(EastMainSteamEnclosure)AuxiliaryFeedwaterPumpCompartment(UsedforAnalyzingBreak5G-MainSCeamtoAuxiliaryFeedwaterPump)EastMainSteamEnclosurePressureProfileElements2and3EastSteamEnclosureSmallBreak-WinterEastSCeamEnclosureSmallBreak-SummerEastSteamEnclosureLargeBreakWestSteamEnclosureSmallBreakWestSteamEnclosureLargeBreakFeedwaterLineBreakinMainSteamAccessway(Element7),'PressureVersusTimeUnit2MainSteamEnclosureTemperatureProfileinElements2and3EastSteamEnclosureWestSteamEnclosure4Unit114-xxxviiiJuly1995 TABLEOFCONTENTSSection~Pae14.014.0.1SAFETYANALYSIS~~~~~~~~~~~~~o~~~~~~~~~~~~~o~~~~~~~~SUMMARYOFRESULTS14.0-114.0-314.1COREANDCOOLANTBOUNDARYPROTECTIONANALYSIS..........14.1-114.1.0PLANTCHARACTERISTICSANDINITIALCONDITIONSUSEDINSAFETYANALYSIS~~~~~~~~~~~~~~~~~~\~\~~~14.1.0.1PIANTCONDITIONS14.1-214.1-214.1.0.2INITIALCONDITIONS14.1.0.3POWERDISTRIBUTION...14.1.0;-4REACTIVITYCOEFFICIENTSASSUMEDINTHESAFETYANALYSIS.14.1-314.1-314.1-414.1.0.5RODCLUSTERCONTROLASSEMBLY(RCCA)INSERTIONCHARACTERISTICS0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(14.1.0.6REACTORPROTECTIONSYSTEM(RPS)SETPOINTSANDTIMEDEIAYS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~14.1-514.1-614.1.0.7PLANTSYSTEMSANDCOMPONENTSAVAIIABLEFORMITIGATIONOFACCIDENTEFFECTS14.1.0.8RESIDUALDECAYHEAT14.1.0.9COMPUTERCODESUTILIZED14.1.1UNCONTROLLEDRODCLUSTERCONTROLASSEMBLY(RCCA)BANKWITHDRAWALFROMASUBCRITICALCONDITION14.1.1.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.1.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.
1.3CONCLUSION
S4~1o0~10REFERENCES~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1t14.1-914.1-1014.1-1114.1.1414.1.1-114.1.1-114.1.1-314.1.1-614.1.
1.4REFERENCES
I14.1.1-7Unit214-iJuly1995 TABLEOFCONTENTS(Continued)Section14.1.2AUNCONTROLLEDRODCLUSTERCONTROLASSEMBLY(RCCA)BANKWITHDRAWALATPOWER(MIXEDCORE)..DELETED.......14.1.2A-114.1.2BUNCONTROLLEDRODCLUSTERCONTROLASSEMBLY(RCCA)BANKWITHDRAWALATPOWER(FULLVANTAGE5CORE)14.1.2B.4REFERENCES14.1.2B.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.2B.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.2B.3CONCLUSIONS14.1.2B-114.1.2B-114.1.2B-214.1.2B-514.1.2B-614.1.3RODCLUSTERCONTROLASSEMBLY(RCCA)MISALIGNMENT(INCLUDINGRCCADROP)14.1.3.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.3.2ANALYSISOFEFFECTANDCONSEQUENCES14.1.
3.3CONCLUSION
S14.1.3-114e1.3-114.1.3-314.1.3-614.1.
3.4REFERENCES
14.1.414.1.5RODCLUSTERCONTROLASSEMBLYDROPUNCONTROLLEDBORONDILUTION14.1.5.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.5.314.1.614.1.
6.1CONCLUSION
SLOSSOFFORCEDREACTORCOOLANTFLOW(INCLUDINGLOCKEDROTOR)eLOSSOFREACTORCOOLANTFLOW14.1'.2LOCKEDROTORACCIDENT14.1.
6.3REFERENCES
14.1.5.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.3-714.1.4-114.1.5-114.1.5-114.1.5-214.1.5-614.1.6-114.1.6-114.1.6-514e1.6-11Unit214-iiJuly1996 TABLEOFCONTENTS(Continued)Section~Pae14.1.7STARTUPOFANINACTIVEREACTORCOOLANTLOOP...........14.1.7-114'.7.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.7.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.
7.3CONCLUSION
S14.1.
7.4REFERENCES
14.1.7-114.1.7-114.1.7-314.1.7-414.1.8ALOSSOFEXTERNALELECTRICLOADORTURBINETRIP(MIXEDCORE)-DELETED.14.1.8A-114.1.9LOSSOFNORMALFEEDWATER14.1.9.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.9.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.8BLOSSOFEXTERNALELECTRICLOADORTURBINETRIP(FULLVANTAGE5CORE)o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~14.1~8B.lIDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.8B.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.8B.3CONCLUSIONS14.1.8B.4REFERENCES14.1.8B-114.1.8B-l14.1.8B-214.1.8B-514.1.8B-614.1.9-114.1.9-114.1.9-214.1.
9.3CONCLUSION
S~~~~~~~~~~~~~~~~~~~~~~14.1.9-514.1.
9.4REFERENCES
'...14.1.9-614.1.10AEXCESSIVEHEATREMOVALDUETOFEEDWATERSYSTEMMALFUNCTIONS(MIXEDCORE)-DELETED....................14.1.10A-1Unit214-iiiJuly1995 TABLEOFCONTENTS(Continued)Section~pae14.1.10BEXCESSIVEHEATREMOVALDUETOFEEDWATERSYSTEMMALFUNCTIONS(FULLVANTAGE5CORE)14.1.10B.lFEEDWATERSYSTEMMALFUNCTIONSCAUSINGAREDUCTIONINFEEDWATERTEMPERATURE14.1.10B-114.1.10B-114.1.10B.2FEEDWATERSYSTEMMALFlJNCTIONSCAUSINGANINCREASEINFEEDWATERFLOW14.1.11AEXCESSIVELOADINCREASEINCIDENT(MIXEDCORE).DELETED.14.1.10B-314.1.11A-114.1.11BEXCESSIVELOADINCREASEINCIDENT(FULLVANTAGE5CORE)14.1.11B.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.11B.2ANALYSISOFEFFECTSANDCONSEQUENCES14.1.11B.3CONCLUSIONS14.1.11B-114.1.11B-114.1.11B-114.1.11B-414.1.11B.4REFERENCES14.1.11B-514.1.12LOSSOFOFFSITEPOWER(LOOP)TOTHESTATIONAUXILIARIES14.1.
12.4REFERENCES
14.1.13TURBINEGENERATORACCIDENT14.1.12.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.1.12.2ANALYSISOFEFFECTSANDCONSEQUENCES................14.1.
12.3CONCLUSION
S..14.1.12-114.1.12-114.1.12-214.1.12-414.1.12-514.1.13-1Unit214-ivJuly1995 TABLEOFCONTENTS(Continued)Section14.2STANDBYSAFEGUARDSANALYSIS14.2.114.2.2
14.2REFERENCES
RADIOLOGICALCONSEQUENCESOFFUELHANDLINGACCIDENTPOSTULATEDRADIOACTIVERELEASESDUETOLIQUID-CONTAININGTANKFAILURES~pae14.2-114.2.1-114.2.2-114.2.2-614.2.3ACCIDENTALWASTEGASRELEASE14.2.4STEAMGENERATORTUBERUPHJRE14.2.3-114.2.4-114.2.4.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.2'.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.
4.3CONCLUSION
S14.2'.3CONCLUSIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~14.2.
5.4REFERENCES
14.2.5RUPTUREOFASTEAMLINE(STEAMLINEBREAK)14.2.5.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.2.5.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.4-114.2.4-314.2.4-914.2.5-114.2.5-114.2.5-314.2.5-1014.2.5-1114.2'RUPTUREOFCONTROLRODDRIVEMECHANISM(CRDM)HOUSING(RCCAEJECTION)14.2.6-114.2.6.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.6.314.
2.7CONCLUSION
SSECONDARYSYSTEMSACCIDENTENVIRONMENTALCONSEQUENCES14.2.6.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.2.6-114.2.6-714.2.6-1514.2.7-114.2.8MAJORRUPTUREOFMAINFEEDWATERPIPE(FEEDLINEREAK)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~B14.2.8.1IDENTIFICATIONOFCAUSESANDACCIDENTDESCRIPTION14.2.8.2ANALYSISOFEFFECTSANDCONSEQUENCES14.2.8-114.2.8-114.2.8-3Unit214-vJU13T1995 TABLEOFCOES(Continued)Secto~ae14.2.
8.3CONCLUSION
S14.2.
8.4REFERENCES
14.2.8-614.2.8-714.314.3.1REACTORCOOLANTSYSTEMPIPERUPTURE(LOSSOFCOOLANTACCIDENT)LARGEBREAKLOSS-OF-COOLANTACCIDENTANALYSIS14.3.1.1MAJORLOCAANALYSESAPPLICABLETOWESTINGHOUSEFUEL...14.3.1.2MAJORLOCAANALYSESAPPLICABLETOANFFUEL-DELETED...14.3.1-114.3.1-214.3.1-214.3.1-3014.3'LOSS-OF-COOLANTFROMSMALLRUPTUREDPIPESORFROMCRACKSINLARGEPIPESWHICHACTUATESTHEEMERGENCYCORECOOLINGSYSTEM14.3.2.1ANALYSISOFEFFECTSANDCONSEQUENCES14.3.
2.2CONCLUSION
S14.3.214.
3.3REFERENCES
ASYMMETRICLOCALOADSANDMECHANISTICFRACTUREEVALUATION.14.3.4CONTAINMENTINTEGRITYANALYSIS......~.......~..........14.3.2-114.3.2-114.3.2-414.3.2-814.3.3-114.3.4-114.3.514.
3.6REFERENCES
HYDROGENINTHEUNIT2CONTAINMENTAFTERALOSSOFCOOLANTACCIDENT14.3.714.3.714.3.814.4LONGTERMCOOLINGREFERENCES...........NITROGENBLANKETINGENVIRONMENTALQUALIFICATIONAPPENDIX14ARADIATIONSOURCESUnit214-vi14.3.5RADIOLOGICALCONSEQUENCESOFALOSSOFCOOLANTACCIDENTANDOTHEREVENTSCONSIDEREDINSAFETYANALYSIS14.3.5-114.3.5-414.3.6-114.3.7-114.3.7-1114.3.8-114.4-114A-1July1995 LISTOFTABLESTableTitle14.0-114.1~0-114.1.0-214.1.0-3OccurrenceEvaluatedforVantage5FuelTransitionRangeofPlantNominalConditionsUsedinSafetyAnalysesSummaryofInitialConditionsandComput'rCodesUsedSummaryofInitialConditionsandComputerCodesUsed;SeparateFullVantage5CoreAnalyses14.1.0-4RPSTripPointsandTimeDelaystoTripAssumedinNon-LOCASafetyAnalyses14.1.0-5ESFActuationSetpointsandTimeDelaystoActuationAssumedinNon-LOCASafetyAnalyses14.1.0-614.1.0-7PlantSystemsandEquipmentAvailableforFaultConditionsDonaldC.CookUnit23600MWTUpratingProgramInputAssumptionsforRCSVolumes14.1.0-8DonaldC.CookUnit23600MWTUpratingProgramInputAssumptionsforSteamGeneratorSecondaryMass14.1~0-9Donald'C.CookUnit23600HWTUpratingProgramInputAssumptionsforReactorCoolantSystemPressureDrop14.1.1-1TimeSequenceofEvents14.1.2A-1DELETED14.1.2B-1TimeSequenceofEvents(FullVantage5Core)14.1.5-114.1.6-114.1.6-214.1.7-1TimeSequenceofEventsTimeSequenceofEventsTimeSequenceofEventsTimeSequenceofEvents14.1.8A-1DELETEDe14.1.8B-1TimeSequenceofEvents(FullVantage5Core)14.1.10A-l2,3,4Unit214.1.9-1TimeSequenceofEvents~~DELETED14-viiJuly1996 TableTitle14.1.10B-1TimeSequenceofEvents(FullV-5Core)14.1.10B-214.1.10B-3TimeSequenceofEvents(FullV-5Core)TimeSequenceofEvents(FullV-5Core)14.1.10B-4TimeSequenceofEvents(FullV05Core)14.1.11A-1DELETED14.1.11B-lTimeSequenceofEvents(FullVantage5Core)14.1.12-1TimeSequenceofEvents14.2.2.-114.2.2-214.2.2-314'.4-1ParametersforLiquidRadioactiveTankFailureAnalysisGroundWaterActivitiesDue.t'oLiquidRadioactiveTankFailureReactorCoolant,EquilibriumFissionandCorrosionProductActivitiesParametersRecommendedforDeterminingRadioactivityReleasesforSteamGeneratorTubeRupture14.2.5-1LimitingSteamlineBreakStatepointDoubleEndedRuptureInsideContainmentwithOffsitePowerAvailable14.2.5-214.2.6-1TimeSequenceofEventsParametersUsedintheAnalysisoftheRodClusterControlAssemblE]ectionAccidenteronrosemy'14.2.8-114.3.1-114.3.1-214.3.1-314.3.1-414.3.1-514.3.1-614.3.1-7Unit2TimeSequenceofEventsLargeBreakLOCA-CasesAnalyzedUnit2InputParametersUsedintheLargeBreakLOCAECCSAnalysisLargeBreakLOCAECCSAnalysisSystemsModellingLargeBreakLOCAContainmentData(IceCondenserContainment)LargeBreakLOCAAnalysisTimeSequenceofEventsLargeBreakLOCAResultsFuelCladdingDataCaseA-LargeBreakLOCACW.6MinimumSafeguardsMassandEnerReleaseRatesssannergy14-viiiJuly1995 LISTOFTABLESContinuedTable14.3.1-8TitleCaseF-LargeBreakLOCAC~-0.6MaximumSafeguardsMassandEnergyReleaseRates14.3.1-9CaseG-LargeBreakLOCACD-0.6CrossTieClosed-3413MWtMassandEnergyReleaseRates14.3.1-10NitrogenMassReleaseRates14.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3'-814.3.2-914.3.2-1014.3.2-11PlantInputParametersUsedinSmallBreak'LOCAAnalysisTimeSequenceofEventsforConditionIIIEventsTimeSequenceofEventsforConditionIIIEventsSmallBreakLossofCoolantAccidentCalculationSmallBreakLossofCoolantAccidentCalculationSafetyInjectionFlowRatewithHHSICrossTieValvesOpenTimeSequenceofEventsforConditionIIIEventsSmallBreakLossofCoolantAccidentCalculationSafetyInjectionFlowRateWithHHSICrossTieValvesClosedTimeSequenceofEventsforConditionIIIEventsSmall-BreakLossofCoolantAccidentCalculations(3"Break)14.3.2-12TimeSequenceofEventsforConditionIIIEvents(4"Break)14.3.2-13Small-BreakLossofCoolantAccidentCalculations(4"Break)14.3.2-14SmallBreakLossofCoolantAccidentCalculationPeakCladTemperatureAssessmentsSinceLastAnalysis14.3.5-114.3.5-2FuelParametersandCoreGap.ActivitiesActivityintheHighestRatedDischargedAssemblyfortheReratedPowerof3588MWT100HoursFollowingReactorShutdown14.3.5-3ParametersUsedintheCalculationofReactorCoolantFissionandCorrosionProductActivities14.3.5-4ReactorCoolantEquilibriumFissionandCorrosionProductActivitiesUnit214-ixJuly1996 LISTOFTABLESContinuedTableTitleCHAPTER1414.3.5-5ParametersUsedtoEvaluatetheOffsiteDosesDuetoaLargeBreakLOCAat3588MWT14.3.5-6,EstimatedDosesfor3588MWTPowerOperationLISTOFFIGURES~i'iuseTitle14.1.0-114.1.0-214.1.0-314.1~0-414.1.0-5NormalizedRCCAReactivityWorthNormalizedRCCAReactivityWorthOvertemperatureandOverpowerdTVersusRCCAPositionVersusTimeAfterRCCADropBeginseProtectionDopplerPowerCoefficientUsedinSafetyAnalysesRCCAPositionVersusTimeAfterRodDropBegins14.1.0-6OvertemperatureandOverpowerhTProtection14.1.0-714.1.1-114.1.1-21979ANSResidualDecayHeatUsedinAccidentAnalysesRodWithdrawalFromSubcriticalNuclearPowerandHeatFluxVersusTimeRodWithdrawalFromSubcriticalFuelAverageandCladTemperatureVersusTime14'.2B-1RodWithdrawalatPowerNuclearPowerVersusTimeforFullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-2RodWithdrawalatPowerPressurizerPressureandWaterVolumeVersusTimef'rFullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-3RodWithdrawalatPowerCoreAverageTemperatureandDNBRVersusTimeforFullPower,80PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-4RodWithdrawalatPowerNuclearPowerVersusTimeforFullPower,4PCM/SecInsertionRate,MaximumReactivityFeedbackUnit214-xJuly1996 CHAPTER14LISTOFFIGURES(Cont'd)~FiureTitle14.1.2B-5RodWithdrawalatPowerPressurizerPressureandWaterVolumeVersusTimeforFullPower,4PCM/SecIn.,ertionRate,MaximumReactivityFeedback14.1.2B-6RodWithdrawalatPowerCoreAverageTemperatureandDNBRVersusTimeforFullPower,4PCM/SecInsertionRate,MaximumReactivityFeedback14.1.2B-7RodWithdrawalatPower100XPower,MinimumDNBRVersusReactivityInsertionRate14.1.2B-8RodWithdrawalatPower60KPower,MinimumDNBRVersusReactivityInsertionRate14.1.2B-9RodWithdrawalatPower10XPower,MinimumDNBRVersusReactivityInsertionRate14.1.3-1DroppedRCCA(s)NuclearpowerandCoreHeatFluxVersusTimeforaTypicalResponseinAutomaticControl.14.1.3-2DroppedRCCA(s)AverageCoolantTemperatureandPressurizerPressureVersusTimeforaTypicalResponsein.AutomaticControl14.1.6-1CompleteLossofFlowCoreFlowCoastdownVersusTime14.1.6-2CompleteLossofFlowNuclearPowerandPressurizerPressureVersusTime14.1.6-3CompleteLossofFlowAverageChannelandHotChannelHeatFluxVersusTime.14.1.6-4CompleteLossofFlowDNBRVersusTime14.1.6-5PartialLoss,ofFlow1/4FaultedLoopandCoreFlowsVersusTime14.1.6-6PartialLossofFlow1/4NuclearPowerandPressurizerPressureVersusTime14.1.6-7PartialLossofFlow1/4AverageChannelandHotChannelHeatFluxVersusTime14.1.6-8Unit2PartialLossofFlow1/4DNBRVersusTime14-xiJuly1996 CHAPTER14LISTOFFIGURES(Cont'd)~iure14.1.6-91/4LockedRotorCoreandFaultedLoopFlows<VersusTime14.1.6-101/4LockedRotorReactorPressureandNuclearPowerVersusTime1/4LockedRotorAverageChannelandHotChannelHeatFluxVersusTime14.1.6-121/4LockedRotorCladInnerTemperatureUersusTime14.1.7-114.1.8B-114.1.8B-2StartupofanInactiveReactorCoolantLoopLossofLoadNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithPressurizerSprayandPORVsLoss.ofLoadkPressurizerWaterVolumeandDNBRVersusTimeforMinimumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-3LossofLoadLoopandCoreAverageTemperaturesVersusTimeforMinimumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-4LossofLoadNuclearPowerandPressurizerPressureVersusTimeforMaximumReactivityFeedbackwithPressurizerSprayand'ORVs14.1.8B-5LossofLoadPressurizerWaterVoluqeandDNBRVersusTimeforMaximumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-6LossofLoadLoopandCoreAverageTemperaturesUersusTimeforMaximumReactivityFeedbackwithPressurizerSprayandPORVs14.1.8B-7LossofLoadNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-8LossofLoadPressurizerWaterVolumeandDNBRUersusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVsUnit214-xiiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~PireTtie14.1.8B-9LossofLoad-LoopandCoreAverageTemperatureVersusTimeforMinimumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-10LossofLoadNuclearPowerandPressurizerPressureVersusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-11LossofLoadPressurizerWaterVolumeandDNBRVersusTimeforMaximumReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.8B-12LossofLoadLoop"andCoreAverageTemperatureVersusTimeforMaximum,ReactivityFeedbackwithoutPressurizerSprayandPORVs14.1.9-1LossofNormalFeedwaterNuclearPowerandCoreHeat,FluxVersusTime14.1.9-2LossofNormalFeedwaterLoopTemperatureVersusTime14.1.9-3LossofNormalFeedwaterPressurizerPressureandPressurizerWaterVolumeVersusTime14.1.10B-1SingleLoopFeedwaterMalfunctionNuclearPowerTransientandCoreAverageTemperatureVersusTimewithAutomaticRodControlatFullPower14.1.10B-2SingleLoopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithAutomaticRodControlatFullPower14.1.10B-3SingleLoopFeedwaterMalfunctionNuclearPowerTransientand'CoreAverageTemperatureVersusTimewithManualRodControlatFullPower14.1~10B-4SingleLoopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithManualRodControlatFullPower14.1.10B-5Multi-loopFeedwaterMalfunctionNuclearPowerTransientandCoreAverageTemperatureVersusTimewithAutomaticRodControlatFullPowerUnit214-xiiiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)Fureitle14.1.10B-6Multi-loopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithAutomaticRodControlatFullPower14.1.10B-7Multi-loopFeedwaterMalfunctionNuclearPowerTransientandCoreAverageTemperatureVersusTimewithManualRodControlatFullPower14.1.10B-8Multi-loopFeedwaterMalfunctionPressurizerPressureandDNBRVersusTimewithManualRodControlatFullPower14.1.11B-1ExcessiveLoadIncreaseNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwith-ManualRodControl14.1.11B-2ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMinimumReactivityFeedbackwithManualRodControl14.1.11B-3ExcessiveLoadIncreaseNuclearPowerandPressurizerVersusTimeforMaximumReactivityFeedbackwithManualControl14.1.11B-4ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMaximumReactivityFeedbackwithManualControl14.1.11B-5ExcessiveLoadIncreaseNuclearPowerandPressurizerPressureVersusTimeforMinimumReactivityFeedbackwithAutomaticRodControl14.1.11B-6ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMinimumReactivityFeedbackwithAutomaticRodControl14.1.11B-7ExcessiveLoadIncreaseNuclearPowerandPressurizerPressureVersusTimeforMaximumReactivityFeedbackwithAutomaticRodControl14.1.11B-8ExcessiveLoadIncreaseCoreAverageTemperatureandDNBRVersusTimeforMaxipumReactivityFeedbackwithAutomaticRodControl14.1.12-1LossofOffsitePowertotheStationAuxiliariesNuclearPowerandCoreFlowVersusTimeUnit214-xivJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~FiteTitle14.1-12-2LossofOffsitePowertotheStationAuxiliariesLoopTemperatureandPressurizerWaterVolumeVersusTime14.2.5-1VariationofReactivitywithCoreTemperatureat1050PSIAfor.theEndofLifeRoddedCorewithOneControlRodAssemblyStuck(AssumesZeroPower)14.2.5-2DopplerPowerFeedbackforSteamlineBreak14.2.5-3SafetyInjectionFlowSuppliedbyOneChargingPump14.2.5>>4SteamlineBreakDERInsideContainmentwithPowerNuclearPowerandCoreHeatFluxVersusTime14e2.5-5SteamlineBreakDERInsideContainmentwithPowerCoreAverageTemperature,RCSPressure,andPressurizerWaterVolumeVersusTime14.2.5-6SteamlineBreakDERInsideContainmentwithPowerReactivityandCoreBoronConcentrationVersusTime14.2.6-1~~RodEjectionNuclearPowerandFuelCladTemperatureVersusTimeforHotFullPoweratBeginningofLife14.2.6-2RodEjectionNuclearPowerandFuelandCladTemperaturesVersusTimeforHotZeroPoweratBeginningofLife14.2.8-1FeedlineBreakwithPowerNuclearPowerandCoreHeatFluxVersusTime14e2.8-2FeedlineBreakwithPowerPressurizerPressureandPressurizerWaterVolumeVersusTime14.2.8-3FeedlineBreakwithPowerFaultedandNon-FaultedLoopTemperaturesVersusTime14.2'-4FeedlineBreakwithPowerSteamGeneratorMassandSteamGeneratorPressureVersusTime14.2.8-5FeedlineBreakwithoutPowerNuclearPowerandCoreHeatFluxVersusTime14.2.8-6FeedlineBreakwithoutPowerPressurizerPressureandPressurizerWaterVolumeVersusTimeUnit214-xvJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~FiuueTitle14.2.8-7FeedlineBreakwithoutPowerFaultedandNon-FaultedLoopTemperaturesVersusTime14.2.8-8FeedlineBreakwithoutPowerSteamGeneratorMassandSteamGeneratorPressureVersusTime14.3.1-114.3.1-2RHRandSafetyInjectionPumpFlowRatevs.RCSPressureHighHeadChargingPumpFlowRatevs.RCSPressure14.3.1-3aReactorCoolantSystemPressure14.3.1-4aBreakFlowDuringBlowdown14.3.1-5aCorePressureDrop14.3.1-6aCoreFlowrate14.3.1-7aAccumulatorFlowDuringBlowdown14.3.1-8aCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9aCoreInletFlowDuringReflood14.3.1-10aSIFlow14.3.1-llaIntegralofCoreInletFlow14.3.1-12aMassFluxatthePeakTemperatureElevation14.3.1-13aRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14aFluidTemperature14.3.1-15aFuelRodPeakCladTemperature14.3.1-3bReactorCoolantSystemPressure14.3.1-4bBreakFlowDuringBlowdown14.3.1-5bCorePressureDrop14.3.1-6bCoreFlowrate14.3.1-7bAccumulatorFlowDuringBlowdownUnit214-xviJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~Fu~e14.3.1-8bCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9bCoreInletFlowDuringReflood14.3.1-10bSIFlow14.3.1-11bIntegralofCoreInletFlow14.3.1-12bMassFluxatthePeakTemperatureElevation14.3.1-13bRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14bFluidTemperature14.3.1-15bFuelRodPeakCladTemperature14.3.1-3cReactorCoolantSystemPressure14.3.1-4cBreakFlowDuringBlowdown14.3.1-5cCorePressureDrop14.3.1-6cCoreFlowrate14.3.1-7cAccumulatorFlowDuringBlowdown14,3.1-8cCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9cCoreInletFlowDuringReflood14.3.1-10cSIFlow14.3.1-11cIntegralofCoreInletFlow14,3.1-12cMassFluxatthePeakTemperatureElevation14.3.1-13cRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14cFluidTemperature14.3.1-15cFuelRodPeakCladTemperature14.3.1-3dReactorCoolantSystemPressure14.3.1-4dBreakFlowDuringBlowdownUnit214-xviiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~FiureTitle14.3.1-5dCorePressureDrop14.3.1-6dCoreFlowrate14.3.1-7dAccumulatorFlowDuringBlowdown14.3.1-8dCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9dCoreInletFlowDuringReflood14.3.1-10dSIFlow14.3.1-11dIntegralofCoreInletFlow14.3.1-12dMassFluxatthePeakTemperatureElevation14.3.1-13dRodHeatTransferCoefficientatthePeakTemperatureElevation14.3.1-14dFluidTemperature14.3.1-15dFuelRodPeakCladTemperature14.3.1-3eReactorCoolantSystemPressure14.3.1-4eBreakFlowDuringBlowdown14,3.1-5eCorePressureDrop14.3.1-6eCoreFlowrate14.3.1-7eAccumulatorFlowDuringBlowdown24.3.1-8eCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9eCoreInletFlowDuringReflood14.3.1-10eSIFlow14.3.l-lieIntegralofCoreInletFlow14'.1-12eMassFluxattheTemperatureElevation14.3.1-13e14.3.1-14eRodHeatTransferCoefficientatthePeakTemperatureElevationIIFluidTemperature14.3.1-15eFuelRodPeakCladTemperatureUnit214-xviiiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)+Inure/~tie14.3.1-3fReactorCoolantSystemPressure14.3.1-4fBreakFlowDuringBlowdown14.3.1-5fCorePressureDrop14.3.1-6fCoreFlowrate14.3.1-7fAccumulatorFlowDuringBlowdown14.3.1-8fCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9fCoreInletFlowDuringReflood14.3.1-10fSIFlow14.3.1-1lfIntegralofCoreInletFlow14.3.1-12fMassFluxatthePeakTemperatureElevation14.3.1-13f14.3.1-14fRodHeatTransferCoefficientatthePeakTemperatureElevationFluidTemperature14.3.1-15fFuelRodPeakCladTemperature14.3.1-3gReactorCoolantSystemPressure14.3.1-4gBreakFlowDuringBlowdown14.3.1-5gCorePressureDrop14.3.1-6gCoreFlowRate14.3.1-7gAccumulatorFlowDuringBlowdown14.3.1-8gCoreandDowncomerLiquidLevelsDuringReflood14.3.1-9gCoreInletFlowDuringReflood14.3.1-10gSIFlow14.3.1-11gIntegralofCoreInletFlow14.3.1-12gMassFluxatthePeakTemperatureElevation14.3.1-13gRodHeatTransferCoefficientatthePeakTemperatureElevation~~~~Unit214-xixJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~FiuueTitle14.3.1-14gFluidTemperature14.3.1-15gFuelRodPeakCladTemperature14.3.1-16ContainmentPressure14.3.1-17ContainmentPressure14.3.1-18ContainmentPressure14.3.1-19UpperCompartmentStructuralHeatRemovalRate14e3.1-20LowerCompartmentStructuralHeatRemovalRate14.3.1-21HeatRemovalbySumpandLCSpray14.3.1-22UpperCompartmentStructuralHeatRemovalRate14.3.1-23LowerCompartmentStructuralHeatRemovalRate14e3.1-24HeatRemovalbySumpandLCSpray14.3.1-25UpperCompartmentStructuralHeatRemovalRate14.3.1-26LowerCompartmentStructuralHeatRemovalRate14.3.1-27HeatRemovalbySumpandLCSpray14.3.1-28LowerandUpperCompartmentTemperatures14.3.1-29LowerandUpperCompartmentTemperatures14.3.1-30LowerandUpperCompartmentTemperatures14.3.2-114.3.2-214.3.2-3SafetyInjectionFlowrateCrossTieValvesOpenRCSPressure(4Inch)HighTemperature,ReducedPressureCoreMixtureHeight(4Inch)HighTemperature,ReducedPressure14.3.2-4HotSpotCladTemperature(4Inch)HighTemperature,ReducedPressure14.3.2-514.3.2-6CoreSteamFlowrate(4Inch)HighTemperature,ReducedPressureIIHotSpotHeatTransferCoefficient(4Inch)HighTemperature,ReducedPressureUnit214-xxJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~piteTl.tie14.3'-7HotSpotFluidTemperature(4Inch)HighTemperature,ReducedPressure14.3.2-8TotalBreakFlow(4Inch)HighTemperature,ReducedPressure14.3.2-9IntactLoopPumpedSIFlow(4Inch)HighTemperature,ReducedPressure14.3.2-10HotRodPowerDistribution14.3.2-11RCSPressure(3Inch)HighTemperature,ReducedPressure14.3.2-12CoreMixtureHeight(3Inch)HighTemperature,ReducedPressure14.3.2-13HotSpotCladTemperature(3Inch)HighTemperature,ReducedPressure14.3.2-14CoreSteamFlowrate(3Inch)HighTemperature,ReducedPressure14.3.2-15HotSpotHeatTransferCoefficient(3Inch)HighTemperature,ReducedPressure14.3.2-16HotSpotHeatTransferCoefficient(3,Inch)HighTemperature,ReducedPressure14.3.2-17TotalBreakFlow(3Inch)HighTemperature,ReducedPressure14.3.2-18IntactLoopPumpedSIFlow(3Inch)HighTemperature,ReducedPressure14.3.2-19RCSPressure(6Inch)HighTemperature,ReducedPressure14.3.2-20CoreMixtureHeight(6Inch)HighTemperature,Reduced,Pressure14.3,2-21HotSpotCladTemperature(6Inch)HighTemperature,ReducedPressure14.3.2-22CoreSteamFlowrate(6Inch)HighTemperature,ReducedPressure14.3.2-23HotSpotHeatTransferCoefficient(6Inch)HighTemperature,ReducedPressure14.3.2-24HotSpotFluidTemperature(6Inch)HighTemperature,ReducedPressure14.3.2-25TotalBreakFlow(6Inch)HighTemperature,ReducedPressure14.3.2-26IntactLoopPumpedSIFlow(6Inch)HighTemperature,ReducedPressure14.3.2-27RCSPressure(4Inch)HighTemperature,HighPressure14.3.2-28CoreMixtureHeight(4Inch)HighTemperature,HighPressureUnit214-xxiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~FiureTitle14.3.2-29HotSpotCladTemperature(4Inch)HighTemperature,HighPressure14.3.2-30CoreSteamFlowrate(4Inch)HighTemperature,HighPressure14.3.2-31HotSpotHeatTransferCoefficient(4Inch)HighTemperature,HighPressure14.3.2-32HotSpotFluidTemperature(4Inch)HighTemperature,HighPressure14.3.2-33TotalBreakFlow(4Inch)HighTemperature,HighPressure14.3.2-34IntactLoopPumpedSIFlow(4Inch)HighTemperature,HighPressure14.3.2-35RCSPressure(4Inch)ReducedTemperature,HighPressure14.3.2-36CoreMixtureHeight(4Inch)ReducedTemperature,HighPressure14.3.2-37HotSpotCladTemperature(4Inch)ReducedTemperature,HighPressure14.3.2-3814.3.2-39CoreSteamFlowrate(4Inch)ReducedTemperature,HighPressureHotSpotHeatTransferCoefficient(4Inch)ReducedTemperature,HighPressure14.3.2-40HotSpotFluidTemperature(4Inch)ReducedTemperature,HighPressure14.3.2-41TotalBreakFlow(4Inch)ReducedTemperature,HighPressure14.3.2-42IntactLoopPumpedSIFlow(4Inch)ReducedTemperature,HighPressure14.3.2-43RCSPressure(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-44CoreMixtureHeight(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-45HotSpotCladTemperature(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-46CoreSteamFlowrate(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-47HotSpotHeatTransferCoefficient(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-48HotSpotFluidTemperature(3Inch)HighTemperature,ReducedPressureCrossTiesClosedUnit214-xxiiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~FimreTitle14.3.2-49TotalBreakFlow(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-50IntactLoopPumpedSIFlow(3Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-51RCSPressure(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-52CoreMixtureHeight(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3,2-53HotSpotCladTemperature(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-5414.3.2-55CoreSteamFlowrate(4Inch)HighTemperature,ReducedPressureCrossTiesClosedHotSpotHeatTransferCoefficient(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-56HotSpotFluidTemperature(4Inch)HighTemperature,ReducedPressure~~CrossTiesClosed14.3.2-57TotalBreakFlow(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-58IntactLoopPumpedSIFlow(4Inch)HighTemperature,ReducedPressureCrossTiesClosed14.3.2-59HotRodPowerDistribution3413MVZSICrossTiesClosed14.3.2-60RCSPressure(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-61CoreMixtureLevel(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-62PeakCladTemperature(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-63CoreOutletSteamFlowRate(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-64HotSpotRodSurfaceHeatTransferCoefficient(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressureUnit214-xxiiiJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)g+mreTitle14.3.2-65HotSpotFluidTemperature(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-66ColdLegBreakMassFlowRate(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-67SafetyInjectionMassFlowRate(3Inch,3XMSSVTolerance)HighTemperature,ReducedPressure14.3.2-68HotRodPowerDistributionHighTemperature,ReducedPressure14.3.2-69RCSPressure(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-70CoreMixtureLevel(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-71PeakCladTemperature(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-72CoreOutletSteamFlowRate(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-73HotSpotRodSurfaceHeatTransferCoefficient(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-74HotSpotFluidTemperature(4Inch,3XMSSVToleranceHighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-75ColdLegBreakMassFlowRate(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.2-76SafetyInjectionMassFlowRate(4Inch,3XMSSVTolerance)HighTemperature,ReducedPressureHHSICross-TiesOpen14.3.3-1LoopLayoutandGlobalCoordinates14.3.3-2RPVShellsubmodel14.3.3-314.3.3-414.3.3-514.3.3-6RPVSupportModelCoreBarrelSubmodelInternalsSubmodelHydrodynamicMassesinVessel/BarrelDowncomerAnnulusUnit214-xxivJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)~PireTite14.3.3-7WavePathforDepressurizationWavesEnteringRPVInletNozzle(ColdLeg)14.3.3-8WavePathforDepressurizationWavesEnteringRPVOutletNozzle(HotLeg)14.3.7-1LargeSteamBreakwithReactorCoolantPumpsRunningReactorCoolantSystem14.3.7-2LargeSteamBreakwithReactorCoolantPumpsRunningBrokenLoopColdLegTemperaturesVersusTime(Seconds)14.3.7-3LargeSteam.BreakwithReactorCoolantPumpsRunningIntac'tLoopColdLegTemperatureVersusTime(Seconds)14.3.7-4LargeSteamLineBreakwithReactorCoolantPumpsRunning14.3.7-5LargeSteamBreakwithReactorCoolantPumpsTripped-ReactorCoolantSystemPressureVersusTime(Seconds)14.3.7-6LargeSteamBreakwithReactorCoolantPumpsTrippedBrokenColdLegTemperatureVersusTime(Seconds)14.3.7-7LargeSteamBreakwithReactorCoolantPumpsTrippedIntactLoopColdLegTemperatureVersusTime(Seconds)14.3.7-8LargeSteamLinewithReactorCoolantPumpsTripped14.3.7-9TypicalSmallBreakPressureTransient14.3.7-10EnergyRemovalbyBreakatEquilibrium14.3.7-11EquilibriumPressureBetweenSIFlowandBreakFlowforSaturatedLiquidDischargefromtheBreak14.3.7-122InchColdLegbreak14.3.7-131InchBreak14.3.7-14.615InchBreak14.3.7-15MixtureHeightAboveBottomofCore,Ft14.3.7-161InchBreak14.3.7-17.615InchBreak14.3.7-18ChargingFlowfromOneCentrifugalChargingPumpUnit214-xxvJuly1995 CHAPTER14LISTOFFIGURES(Cont'd)iureTite14.3.7-1914.3.7-2014.3.8-114.3.8-214.3.&-3LargeSteamLineBreakwithReactorCoolantPumpsRunningLargeSteamLineBreakwithReactorCoolantPumpsRunningTypicalSmallBreakPressureTransientEnergyRemovalbyBreakPressureTransientEquilibriumPressureBetweenSIFlowandBreakFlowforSaturatedLiquidDischargefromtheBreakUnit214-uviJuly1995 PageVOLUMEIChapter1IntroductionandSummarFig.TableFig.FigeFig.Fig.FigeFigeFigeFigeFigeFig.Fig.Pacae1.0-11.0-21.0-31.1-11.1-21~131.1-41-11.2-11.2-21.2-31.2-41.2-51~2-11.3-11.3-21.3-31.3-41.3-51.3-61.3-71.3-81.3-91.3-11.3-21.3-31.3-41.3-51.3-61~371.3-81.3-91.3-101.3-111.4-11.4-21.4-31.4-41.4-51.4-61.4-71.4-81.4-91.4-101.4-11(6pages)Date1988199419891996198219821982ORIG1993199319931991199519891982198219821984199619821982199419821995199019901990199019901996199619961996198219911991198719871991198219911991198219871991 PageVOLUMEIChapter1IntroductionandSummarTableTablePacae1.4-121.4-131.4-141.4-151.4-161.4-171.4-181.4-191.4-201.4-211.4-221.4-1(pg1)(pg2)(pg3)(pg4)1.5-11.6-01.6-11.6-21.6-31.6-41.6-51.6-61.6-71.6-81.6-91.6-101.6-111.6-121.6-131.6-141.6-151'-161.6-171.6-181.6-191.6-201.6-211.6-221.6-231.6-24"1.6-251.6-1(pg1)(pg2)(pg3)(pg4)(pg5)(pg6)(pg7)(pg8)(pg9)(pg10)Date1991199419941991199319871987199419921991199119911991199119911982198419831983198219821983198219831982198219831982198319821985198519851985198519921985198519851985198519921989198919891989198919891989198919891989 Page3VOLUMEIChapter1IntroductionandSummarPacaeDateTable1.6-1(pg11)(pg12)(pg13)(pg.14)(pg>>)(pg16)(pg>>)(pg18)(pg>>)(pg2o)(pg>>)(pg22)(pg23)1.7-11.8-11.9-11989198919841989198919901989198919891989198919911993199419891982 Page4VOLUMEIChapter2SiteandEnvironmentTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableFigeFig.Fig.FigeFig.FigeFig.FigeFigeFig.FigeFig.Fig.Fig.FigeFig.Fig.Fig.Pacae2~112.1-22.1-32.1-42.1-52.1-62~172.1-82.1-92.1-102.1-112.1-122.1-132.1-12.1-22.1-32.1-42.1-52.1-62.1-6a2~172.1-7a2.1-82.1-8a2.1-8b2.1-92.1-102.1-112.1-122.1-12~12201-32.1-42.1-4a2.1-4b2.1-52.1-62.1-6a2.1-6b2.1-72.1-7a2.1-7b2.1-82.1-8a2.1-8b2.1-92.1-102~212.2-2202-32.2-42.2-52.2-62~27DELETEDDELETEDDELETEDDate199619961993198219931993199619961995199519951995199519951995199519951995199519951995199519951995199519951996199619951982198219961982198219961995199519951995199519951995199519951995199319931994199319951995199519951993 Page5Chapter2SiteandEnvironmentVOLUMEITableTableTableTableTableTableTableTableTableFigeFigeFig.FigeFigeFigeFigeFigeFigeFigeFig.FigeFig.Fig.FigeFig.FigeFig.Fig.Fig.FigeFig.Fig.Fig.FigePacae2.2-82.2-92.2-102.2-12~22202-32'-42.2-52.2-62~272.2-82.2-92~212.2-22~232.2-42.2-52.2-62~272.2-82.2-92.2-102.2-112.2-122.2-132.2-142.2-152.2-162.2-172.2-182'-192.2-202.2-212.2-222~2232~312~322~332.3-42.3-52~312~322.4-12.4-22.4-32.4-42.4-52.4-62.5-12.5-22.5-32.5-42.5-52.5-62.5-7Date19951994199319931993,19931993199319931993199319931982199319931993199319931993199319931993199319931982198219821982198219821982198219821982199219821995198219821982198219821982198419961982198819821982198219821982198219821982 Page6VOLUMEIChapter2SiteandEnvironmentPacaeDateTableFig.Fig.FigeFigeFigeFigeFig.Fig.Fig.FigeFigeFig.FigeFig.2.5-1(2pp)2.5-12.5-1a2.5-22.5-32.5-3a2.5-3b2.5-3c2.5-3d2.5-3e2.5-3f2.5-3g2.5-3h2.5-3i2.5-3j2.6-12.6-22.6-32.6-42.6-52.6-62.6-72.6-82.6-92.6-102.6-112.6-122.6-132.6-142.6-152.6-162.6-172.6-182.6-192.6-202.6-212.6-222.6-232.6-242.6-252.6-262.6-272.6-282.6-292.6-302.6-312.6-322.6-332.6-342.6-352.6-362.6-372.6-382.6-39198919821996-198219821982198219821982198219821982198219821982199319921992199219921993199219921992199219931993199319921992199219931993199319931993199319921992199219931992199219921993199319921993199319921992199219921992 Page7VOLUMEEChapter2SiteandEnvironmentTableTableTableTableTableTableFigeFig.FigeFigeFig.FigeFig.Fig.Fig.Fig.Fig.FigeTableTableTableTableTableFig.FigeFig.FigiPacae2.6-402.6-412.6-422.6-432.6-442.6-44a2.6-12.6-22.6-32.6-42.6-52.6-62.6-12.6-22.6-32.6-42.6-52.6-62.6-72.6-82.6-92.6-102.6-112.6-122~712~72207-32.7-42.7-52.7-62.7-72.7-82.7-12~722~732.7-42.7-5(pg(pg(pg(pg2.7-12~722~732.7-4DELETEDDELETEDDELETEDDELETED1)DELETE2)DELETE3)DELETE4)DELETEDELETEDDELETEDDELETEDDELETEDDate19921996199219931993199319921992199219921992199219921982198219921992199219921992199219921992199219951995199619961995199519951995199519951995199519951995199519951995199519961996 Page8Chapter2SiteandEnvironmentVOLUMEIPacaeDate2.8-12.8-22.9-12.9-22'-32.9-42.9-52.9-62.9-72.9-82.9-92.9-102.9-112.9-122.9-132.9-142.9-152.9-162.9-172.9-18Table2.9-1(3pp)Table2.9-2(5pp)2.10-1F10-2198919821982198219821992199019831991199419951994199419941994199419941994199519951994199419961982 Page9VOLUMEZIChapter3ReactorUnit1Pacae3.1-13.1-23.1-33.1-43.1-53.1-63.1-73.1-83.1-93.1-103.1-113.1-123~1133.1-143.1-153.2-13~223~233.2-43.2-53.2-63~273.2-83.2-93.2-103~2113~2123~2133.2-143.2-153.2-163.2-173.2-183'-193.2-203.2-213~2223+2233.2-243.2-253.2-263.2-273.2-283.2-293.2-303~231Date1996199219961994199419941994199419941994199219941994199619961996198219941982198619821982198219821982199419961996199619821982198219961982198219821982198219821982198219821982198219821995 Page10VOLUMEIIChapter3ReactorUnit1TableFigeFigeFigeFigeFig.FigeFig.Fig.FigeFigeFig.FigeFigeFigeFig.Pacae3~2323~2333.2-343.2-353.2-36302-373.2-383.2-393.2-403.2-413.2-423.2-433.2-443.2-453.2-463.2-473.2-483.2-493.2-503'-513.2-523.2-533.2-543.2.1-1(3pp)3.2.1-13.2.1-23.2.1-33.2.1-43.2.1-53.2'-63~2~173.2.1-83.2.1-93.2.1-103.2.1-113.2.1-123~2~1133.2.1-143.2.1-153'-1303-23~333.3-43.3-53.3-63~373.3-83.3-93.3-103.3-11Date19821982198319821982198219821982198219821982198219831982198719871994199519951995199519951995199519821982198219821982198219821982198219821982198219821982199619901992199219821992199219831983198419901987 Page11VOLUMEIIChapter3ReactorUnit1TableTableTableTableFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigeFig.Fig.Pacae3.3-123.3-133.3-143.3-153.3-163.3-173.3-183.3-193.3-203~3213~322303-233.3-243.3-253.3-263~3273.3.1-1(pg1)(pg2)(pg3)3.3.1-23'.1-33.3.1-3aDELETED3.3.1-13.3.1-23.3.1-33.3.1-43.3.1-113.3.1-123.3.1-133.3.1-143.3.1-153.3.1-163.3.1-173.4-13.4-23.4.33.4.43.4.53.4-63.4-7Date1996198219961992199219921992199219921992199219921992199319891990199519901994199019961995198219841984198419841984198419841984198419921990199319931982198219821993 Page12VOLUMEIIChapter3ReactorUnit1TableTableTableFig.Fig.Fig.Fig.Fig.FigeFigeFig.Fig.Fig.Pacae3.4-83.4-93.4-103.4-113.4-123.4-133.4-143.4-153.4-163.4-173.4-183.4-193.4-203.4-213~4~1-1(2pp)3.4.1-23.4.1-33.4.1-13.4.1-23.4.1-33.4.1-43.4.1-4a3.4.1-53.4.1-63.4.1-73.4.1-83.4.1-93.5-13.5-23.5-33.5-43.5.1-13.5.1-23.5.1-33.5.1-43.5.1-53.5.1-63.5.1-73.5.1-83.5.1-93.5.1-103.5.1-113'.1-123.5~1-133.5.1-143.5.1-153.5.1-163.5.1-173.5.1-183.5.1-193.5.1-203.5.1-213.5.1-223.5.1-233.5.1-24Date1993199319821993198719931993198319821982198219821982198219891989198919821982198219821982198219821982198219821996199619961996199619961996199619961996199619961996199619961996199619961996199619961996199619961996199619961996 Page13VOLUMEIIChapter3ReactorUnit1TableTableFig.Fig.Fig.Fig.Fig.FigeFig.Fig.FigeFig.TableTableTableFig.FigeTableTableTableTableFigeFigeFigePacae3.5.1-253.5.1-263.5.1-273.5.1-283.5.1-293.5.1-303.5.1-313.5.1-323.5.1-333.5.1-343.5.1-353.5.1-13.5.1-23.5.1-13.5.1-23.5.1-33.5.1-43.5.1-53.5.1-5a3.5.1-63.5.1-73.5.1-83.5.1-93.5.2-13.5.2-23'.2-33.5.2-43.5.2-53'.2-63.5.2-13.5.2-23.5.2-33.5.2-13.5.2-23.5.3-13.5.3-23.5.3-33.5.3-43.5.3-53.5.3-63.5.3-73.5.3-83.5.3-93.5.3-103.5.3-113.5'-123.5.3-133'.3-143.5.3-1(pg1)3.5.3-1(pg2)3.5.3-1(pg3)3.5.3-1(pg4)3.5.3-13.5.3-23.5.3-3Date1996199619961996199619961996199619961996199619961996199019901990199019901992199219921996199619941992199619961996199619961996199619961995199519921990199019921992199319901992199319901990199219911992199219901992199019901990 Page14VOLUMEIIChapter3ReactorUnit2TableTableTableTableTableTablePacae3.1-13.1-23.1-33.1-43.1-53.1-1(5pp)(Notes)3.1-2(pgl)3.1-2(pg2)3.1-2(pg3)3.1-2(pg4)3.1-33.2-13~223.2-33.2-43.2-53.2-63~273.2-83.2-93.2-103.2-113.2-123.2.133.2-143.2-14a3.2-14b3.2-153.2-163.2-173.2-183.2-193.2-203.2-213.2-223~2233.2-243.2-253.2-263~2273.2-283.2-293.2-303.2-313.2-323~2333.2-343.2-35Date1991199119911991199119911994199119911991198919911982199119821991199119821996199119911991199119911991199419941994199119911991199119911991199619911991199119911991199119911991199419941995199519951995 Page15Chapter3ReactorUnit2VOLUMEIIPacae3.2-363~2373.2-383.2-393.2-403.2-413.2-423.2-433.2-443.2-453.2-463.2-473.2-483.2-493.2-503.2-513.2-523'-533.2-543.2-553.2-563.2-573.2-583.2-593.2-603.2-613.2-623.2-633.2-643.2-653.2-663.2-673.2-683.2-693.2-703.2-713~2723~2733.2-743.2-753.2-763+2773.2-783.2-793.2-803.2-813.2-823.2-833.2-843.2-85Date19951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995 Page16Chapter3ReactorUnit2VOLUMEIITableFig.Fig.Fig.FigeFigeFigeFig.FigeFigeFigeFigeFig.FigeFig.Fig.FigeFig.Fig.Fig.Fig.Fig.FigeFig.FigePacae3.2-863.2-873.2-883.2-893.2-903.2-913.2-923.2-933.2-943.2-13~213~223.2-33'-43.2-53.2-5a3.2-63~273.2-83.2-93.2-103.2-113.2-123~2133.2-153.2-163~2173.2-183.2-193.2-203~2213.2-223~2233.2-24Date1995199519951995199519951995199519951995199119911991199119911991199119911982198219821982198219821982198219821990198219821982198219821982 Page17Chapter3VOLUMEIIIReactorUnit2Pacae3.3-13~323~333.3-43.3-53.3-63~373.3-83.3-93.3-103~3113.3-123.'3-133.3-143.3-153.3-163.3-173.3-183.3-193.3-203.3-213~3223~3233.3-243.3-253.3-263~3273.3-283.3-293.3-303.3-31303-323~3333.3-343.3-353.3-363~3373.3-383.3-393.3-403.3-413.3-423.3-433.3-443.3-453.3-463.3-47Date19911991199119951991199119911991199319951991199519911991199119911991199119911991199119911992199519911991199119951991199119911991199119911993199119911991199119911991199119911995199119911991 Page18Chapter3ReactorUnit2VOLUMEIIITableTableTableTableTableTableTableFig.Fig.FigeFig.FigeFig.Fig.Fig.Fig.FigePacae3.3-483.3-493.3-503.3-513.3-523.3-533.3-543.3-553.3-563.3-573.3-583.3-593.3-603.3-6133-1(3pp)3.3-2(pgl)3.3-2(pg2)3~333.3-43.3-53.3-63~313~323~333.3-43.3-53.3-63~373.3-83.3-93.3-10Date1991199119911991199119911991199119911991199119911991199119911995199119911991199119911991199119911991199119911991199119911991 Chapter3ReactorUnit2VOLUMEIIIFl.geFl.geFigeFigeFigeFigeFigeFigeFl.geFl,geFigeFl.geFl.geFig.FigeFig.Fl.geFig.FigeFigeFigeFigeFig.Fig.FigeFig.FigeFl.gePacae3.3-113.3-123.3-133.3-143.3-153.3-163~3173.3-183.3-193.3-203.3-213.3-223~3233.3-243.3-253.3-263~3273.3-283.3-293.3-303~3313~3323~3333.3-343.3-353.3-363~3373.3-383.4-13.4-23.4-33.4-43.4-53.4-63.4-73.4-83.4-93.4-103.4-11Date199119911991199119911991199119911991199519911991199119911991199119911991199119911991199119911991199119911991199119821991199119911993199119911991199119921991Page19
Page20Chapter3-ReactorUnit2VOLUMEIIIPacae3.4-123.4-133.4-143.4-153.4-163.4-173.4-183.4-193.4-203.4-213.4-223.4-233.4-243.4-253.4-263.4-273.4-283.4-293.4-303.4-313.4-323.4-333.4-343.4-353.4-363.4-373.4-383.4-393.4-403.4-413.4-423.4-433.4-443.4-453.4-463.4-473.4-483.4-493.4-503.4-513.4-523.4-533.4-543.4-553.4-563.4-573.4-583.4-593.4-60Date1991199119911993199119911991199119911991199119931991199319911991199119911993199119931991199119911991199119911991199319911991199219911991199319911991199119911992199119911991199119911991199119911991 Page21Chapter3ReactorUnit2VOLUMEIIITableTableTableTableFig.Fig.Fig.Fig.Fig>>Fig.Fig.Fig.FigeFig.Fig.FigeFigeFig.Pacae3.4-613.4-623.4-633.4-643.4-653.4-1(pg1)(pg2)(pg3)3.4-23'-3(2pp)3.4-43.4-13.4-23.4-33.4-43.4-53.4-63.4-73.4-83.4-93.4-103.4-113.4-123.4-133.4-143.5-13.5-23.5-33.5-4Date19911991199119911991199219921991199119911991199119911991199119911991199119911991199119911991199119911996199619961996
Page22Chapter4VOLUMEIIIReactorCoolantSstemTableTableTableTableTableTableTableTableTableTableTableTableTablePacae4.1-14.1-24.1-34.1-44.1-54.1-64.1-74.1-84.1-94.1-104.1-114.1-124.1-134.1-144.1-154.1-164.1-174.1-184.1-194.1-204.1-214.1.224.1-234.1-244.1-14.1-24.1-34.1-44.1-54.1-64.1-7F1-84.1-94.1-104.1-114.1-124.1-134.2-14.2-24.2-34.2-44.2-54.2-64.2-74.2-84.2-94.2-104.2-114.2-12(pg1)(pg2)(pg1)(pg2)(3pp)(2pp)Date199119911982198219821982198219821982198219821990199019901990199119821982198919821982198219821982199019961990199119911989198919891989199619961996198919911996198219821982198919821982199619821994198219891989 Page23Chapter4VOLUMEIIIReactorCoolantSstemTableTableTableFigeFig.Fig.FigeFig.Fig.Fig.Fig.Fig>>FightFigeFigeFigePacae4.2-134.2-144.2-154.2-164.2-174.2-184.2-194.2-204.2-214.2-224.2-234.2-244.2-254.2-264.2-274.2-284.2-294.2-304.2-314.2-324.2-334.2-344.2-354.2-364.2-1(3pp)4.2-24.2-34.2-14.2-1A4.2-24.2-2A4.2-34.2-44.2-4A4.2-54.2-64.2-74.2-84.2-94.2-9Ref.(4pp)4.3-14.3-24.3-34.3-44.3-54.3-64.3-74.3-84.3-9Date1989198219821982199519831991199119911996198219941982199519821986198219821982199619821987198719871989199619951984199619821982198219821989198219821982198219821982198219821982198219821982199019821982 Page24Chapter4VOLUMEIIIReactorCoolantSstemTableTableTableTableTableTableTableTableFigeFigeFig.Fig.Fig+FigeFig.Pacae4.3-104.3-114.3-124.3-134.3-144.3-154.3-164.3-174.3-184.3-194.3-204.3-214.3-224.3-234.3-244.3-254.3-264.3-14.3-24.3-34.3-44.3-5(2pp)4.3-64.3-74.3-84.3-1.4.3-24.3-34.3-44.3-54.3-64.3-74.4-14.4-24.4-34.5-14.5-24.5-34.5-44.5-54.5-64.5-74.5-84.5-94.5-104.5-114.5-12Date198219891989198919891989198919891989198919891989198919891989198919891990,19901989198919901990199019891982198219821982198219901990198619881986198219961982198219961996199619961996199619961996 Page25Chapter4VOLUMEIIIReactorCoolantSstemTableFig.Fig.FigeFigePacae4.5-134.5-144.5-154.5-164.5-174.5-184.5-194.5-204.5-214.5-224.5-234.5-244.5-254.5-1(pg1)(pg2)(pg3)(pg4)4.5-14.5-24.5-2a4.5-3Date199619961996199619961996199619961996199619961996199619891989198919901982198219961982 Page26Chapter5ContainmentSstemVOLUMEIVTablePacae5.0-15.1-15.1-25.1-35.1-45.1-1(2pp)5.2-15.2-25.2-35.2-45.2-55.2-65.2-75.2-85.2-95.2-105.2-115.2-125.2-135.2-145.2-155.2-165.2-175.2-185.2-195.2-205.2-215.2-225.2-235.2-245.2-255.2-265.2-275.2-285.2-295.2-305.2-315.2-325.2-335.2-345.2-355.2-365.2-375.2-385.2-395.2-405.2-415.2-425.2-435.2-445.2-45Date198919871982198219821989.198919821982198219821986198219901986198219821982198219821982198219821982198219821982198219821982198219901982198719821982198719871987198219871987198819871987198719871995198719901989 Page27Chapter5ContainmentSstemVOLUMEIVPacae5.2-465.2-475.2-485.2-495.2-505.2-515.2-525.2-535.2-545.2-555.2-565.2-575.2-585.2-595.2-605.2-615.2-625.2-635.2-645.2-655.2-665.2-675.2-685.2-695.2-705.2-715.2-725.2-735.2-745.2-755.2-765.2-775.2-785.2-795,2-805.2-815.2-825.2-835.2-845.2-855.2-865.2-875.2-885'-895.2-905.2-915.2-925.2-935.2-945.2-95Date19891989198219881989198919871995198819891990198719871991198919881987198719871987198719951988198819871988198719871987198719871988198819901991199019901990199019901990199019901993199019901990199019901990 Page28Chapter5ContainmentSstemVOLUMEIVTableTableTableTableTableTableTableFigeFigeFigeFigeFigeFigeFig.Fig.FigeFigeFigeFigeFig.Fig.Fig.FigeFigeFig.FigeFigeFigeFigeFig.FigePacae5.2-965.2-975'-985.2-995.2-1005.2-1015.2-1025.2-1035.2-1045.2-1055.2-1065.2-1075.2-1085.2-1095.2-1105.2-1115.2-1125.2-1135.2-1145.2-15F2-2(2pp)5.2-35.2-45.2-55.2-65.2-75.2-15.2-25.2-35.2-45.2-55.2.2-15.2.2-1A5.2.2-25.2.2-2A5.2.2-35.2.2-45.2.2-4A5.2.2-4B5.2.2-55.2.2-65.2.2-6A5.2.2-6B5.2.2-6C5.2'-6D5.2.2-75.2.2-85.2.2-95.2.2-105.2.2-10ADate1990199019901990199019901990199019901990199019901990199019901995199019911990199019901990199019901990199019821982ORIG198219881982198219821982198219821982198219821982198219821982198219821982198219821982 Page29Chapter5ContainmentSstemVOLUMEIVFigeFigeFigeFigeFigeFigeFigeFl.geFigeFigeFigeFigeFl.geFigeFigeFigeFl.geFigeFigeFig.Fl.geFig.FigeFl.geFigeFigeFl.geFigeFig.FigeFigeFigeFl.geFigeFigeFigeFigeFl.geFigeFigeFl.geFl.geFigeFig.FigeFigeFigeFig.FigeFig.Figepacae5.2.2-115.2.2-11A5.2.2-125.2.2-12A5.2.2-135.2.2-145.2.2-155.2.2-165.2.2-175.2.2-185.2.2-195.2.2-205.2.2-215.2.2-225.2.2-235.2.2-245.2.2-255.2.2-265.2.2-275.2.2-285.2.2-295.2.2-305.2.2-315.2.2-325.2.2-335.2.2-345.2.2-355.2.2-365.2.2-375.2.2-385.2.2-395.2.2-405.2.2-415.2.2-425.2.2-435.2.2-445.2.2-455.2.2-465.2.2-475.2.2-485.2.2-495.2.2-505.2.2-515.2.2-51A5.2.2-51B5.2.2-51C5.2.2-51D5.2.2-51E5.2.2-525'.2-52A5.2.2-53Date198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982198219821982 Page30Chapter5ContainmentSstemVOLUMEIVFig.Fig.FigeFigeFigeFigeFigeFig.Fig.Fig.FigeFigeFigeFig.Fig.Fig.Fig.Fig.FigeFig.Fig.FigeFigeFig.FigeFig.Fig.Pacae5.2.2-545.2.2-54A5.2.2-54B5.2'-555.2.2-55A5.2.2-56,5.2.2-56A5.2.2-575.2.2-57A5.2.2-585.2.2-58A5.2.2-595.2.2-59A5.2.2-59B5.2.2-59C5.2.2-59D5.2.2-59E5.2.2-605.2.2-60A5.2.2-60B5.2.2-60C5.2.2-615.2.2-625.2.2-635.2.2-645.2.2-655.2.2-65A5.3-15.3-25.3-35.3-45.3-55.3-65.3-75.3-85.3-95.3-105.3-115.3-125.3-135.3-145.3-155.3-165.3-175.3-185.3-195.3-205.3-215.3-225.3-23Date19951982198219821982198219821982198219821982198219821982198219821982199119911982198219821982198219821982198219961996198219821982198219821982198219881982199319841993198219841984198219821990198219821982 Page31Chapter5ContainmentSstemVOLUMEIVTableFigeFigeFigeFigeFigePacae5.3-245.3-255.3-265.3-275.3-285.3-295.3-305.3-315.3-325.3-335.3-345.3-1(pg1)(pg2)5.3-15.3-25.3-2A5.3-35.3-45.4-15.4-25.4-35.4-45.4-55.4-65.4-75.4-85.5-15.5-25.5-35'-45.5-55.5-65.5-75.5-85.5-95.5-105.5-115.5-125.5-13Date198219821986198619821988198819881982198819891993198919821986198619821982199619951995199519951995199519961982198219871993199619961987199319921992199219871987 Page32Chapter5ContainmentSstemVOLUMEIVFigoFigeFigeFigeFigeFigePacae5.5-145.5-155.5-165.5-175.5-15.5-25.5-35.6-15.6-25.6-35.6-45.6-15.7-15.7-25.7-35.7-45.7-55.7-65.7-75.7-85.7-15.7-2Date1987198719931993198519851982199319931992198619941982198219821982198219921982ORIG19821982 Page33Chapter6VOLUMEIVEnineeredSafetFeaturesTablePacae6.1-16.1-26.1>>36.1-46.1-56.1-66.1-76.1-86.1-96.1-106.1-116.1-16.2-16.2-26.2-36.2-46.2-56.2-66.2-76.2-86.2-96.2-106.2-116.2-126.2-136.2-146.2-156.2-166.2-176.2-186.2-196.2-206.2-216.2-226.2-236.2-246.2-256.2-266.2-276.2-286.2-296.2-306.2-316.2-326.2-336.2-346.2-356.2-366.2-37Date1989198919891989198919891989198919891989198919891982198219821982199319931993199319881996199219951995199519951995199519921982198219961990199019951982198219821982198219931993198219931982199619821993 Chapter6VOLUMEIVEnineeredSafetFeaturesTableTableTableTableTableTableTableTableTableFigeFigeFigeFig.FigeFig.TableTableTableTableFig.Pacae6.2-386.2-396.2-16.2-26.2-36.2-46.2-56.2-6(pg1)(pg2)(pg3)6.2-7(2pp)6.2-86.2-96.2-16.2-1A6.2-26.2-36.2-46.2-56.3-16.3-26.3-36.3-46.3-56.3-66.3-76.3-86.3-96.3-106.3-116.3-126.3-136.3-16.3-26.3-36-3-4(pg1)(pg2)6.3-1Page34Date19821982199519961993198919911993198919891991198919961993199519821982199119821982199419941982199419821982198219861991198219821982198919911991199219891982 Page35VOLUMEVChapter7InstrumentationandControlPacae7.1-17~127~217\227~237.2-47.2-57.2-67~277.2-87.2-97.2-107.2-117~2127.2-137.2-147.2-157.2-167~2177.2-187'-197.2-207~2217~2227~2237.2-247.2-257.2-267~227a7.2-27b7.2-287.2-297.2-307~2317~2327~2337.2-347'-357.2-367.2-377.2-387.2-397.2-407.2-417.2-427.2-437.2-447.2-457.2-46Date1993198219961990199619821982199619961982199619961982198219961996198219821996199619821982199619961996198219961996199619961982199219871996199619871987198719921994199519871996199619901987198719871990 Page36VOLUMEVchapter7InstrumentationandControlTableTableTableTableTableTableTableFigFigeFigeFig.FigeFigeFigeFigePacae7.2-477.2-487.2-497.2-507.2-517.2-527.2-537.2-1(pg1)(pg2)(pg3)(pg4)(pg5)7.2-2(pg1)(pg2)(pg3)(pg4)(pg5)(pg6)702-37.2-47'-5(2pp)7.2-67.2-7(2pp)7~227~237.2-47.2-57.2-6702-77.2-87.2-97~317~327~337.3-47'-57.3-67~377.3-87.3-97.3-107.3-117.3-127~3137.3-17.4-17.4-2Date19961987198719871987198719871989199219891990199019911992199119911991199119911991199119961996198219821982198219821982198219821987199019821982198219921983198219821990198219821982198219821991
Page37VOLUMEVChapter7InstrumentationandControlPacaeDateTableTableFig.FigeFigeFig.FigeFige7.5-17.5-27.5-37.5-47.5-57.5-67.5-77.5-87.5-97.5-107.5-117.5-127.5-137.5-147.5-157.5-167.5-177.5-187.5-197.5-207.5-17.5-2(2pp)7.5-17.5-27.5-37.6-17.6-27.6-37.6-47.6-57.6-17.6-27.6-37.7-17~727~737.7-47.7-57.7-67~777.7-87.7-97.7-107~7117.8-17.8-21982198219821982199619961995198719821996198219821991198219821982198219911982198919891989198219821982199119911991199119911986198219821982198219821982199519931991199119951986199619921996 Page38VOLUMEVChapter7instrumentationandControlPacaeTable7.8-1(pg-1)(pg2)Table7.8-2(2pgs)Table7.8-3(2pgs)Table7.8-4(pg1)(pg2)(pg3)(pg4)(pg5)Table7.8-5(pg1)(pg2)(pg3)Date199219961992199219941993199219921992199219961992 Page39VOLUMEVChapter8ElectricalSstemsFig.FigeFigeFigeFig.FigeFig.Fig.FigeFigePacae8.1-18.1-28.1-38.1-48.1-58.1-68.1-78.1-88.1-98.1-18.1-1A8.1-1B8.1-2A8.1-2B8.2-'18.2-18.3-18.3-28.3-38.3-48.3-58.3-68.3-78.3-88.3-98.3-108.3-118.3-18.3-28.3-38.4-18.4-28.4-38'-18.5-19.5-28.6-18.6-2Date19941982199019901991199119911987198219961996199619941994199019901990199119901990199019941994199019901990199019901990199419901990199019921991198219861995 Page40Chapter9VOLUMEVAuxiliarandEmerencSstemsTableTableTablePacae9.1-19.1-29.1-39.1-49.2-19.2-29.2-39.2-49.2-59.2-69.2-79.2-89.2-99.2-109.2-119.2-129.2-139.2-149.2-3.59.2-169.2-179.2-189.2-199.2-209.2-219.2-229.2-239.2-249.2-259.2-269.2-279.2-289.2-299.2-309.2-319.2-329.2-339.2-349.2-359.2-369.2-379.2-389.2-19.2-29.2-3(pg1)(pg2)(pg3)(pg4)(pg5)(pg6)Date19821982199019821982198219911986198219821988198719821982199519821996198219821990199219921994199419821982199619881996198219821982199319931982198219931991199619821995198219901989198919901983199219891990 Page41Chapter9VOLUMEVAuxiliarandEmerencSstemsTableTableFig.FigeFig.FigeFig.Fig.TableTableTableTableFig.TableTableTableTableTableTableFige9.3-29.3-29.3-39.3-19.4-19.4-29.4-39.4-49.4-59.4-69.4-79.4-19.4-29.4-29.4-29.4-29.4-39.4-1(lpp)(2pp)(3pp)(pgl)(pg2)(pg3)(pg4)Pacae9.2-3(pg7)(pg8)(pg9)(pg>>)(pg11)(pg>>)(pg13)(pg14)(pg>>)(pg16)(pg>>)9.2-4(2pp)9.2-19.2-29.2-39.2-49.2-59.2-69.3-19.3-29.3-39.3-49.3-59'-69.3-79.3-89.3-99.3-109.3-119.3-129.3-139.3-1Date1989198919891990198919891995199019891989198919891992198219931982ORIG198219821982199419941994199419941994198719861994199019901990199019911990199619961996199619961995198219861990198919951995198919961990 Page42Chapter9VOLUMEVAuxiliarandEmerencSstemsTableTableTableTableFig.Fig.FigePacae9.5-19.5-29.5-39.5-49.5-59.5-69.5-79.5-89.5-99'-19.5-29.5-39.5-49.5-19.6-19.6-29.6-39.6-49.6-59.6-69.6-79.6-89.6-99.6-19.6-29.7-19.7-2a9.7-2b9.7-39.7-49.7-59.7-69.7-79.7-89.7-99'-109.7-119.7-129.7-139.7-149.7-159.7-169.7-179.7-189.7-199.7-209.7-219.7-229.7-239.7-249.7-259.7-269.7-279'-289.7-29Date1985199619921992199619921982199219821990199619931993199519911983198919871987198819831983198219921987198219961996198219961996199419951996199219951996199119961996199619961994199419941994199419961996199619951995199519951995 Page43Chapter9tVOLUMEVAuxiliarandEmerencSstemsTableTableTableTableTableTableTableFigeFig.Fig.Fig.FigiTableTableTableTableTableTableTableTableFigeFigeFigeFigePacae9.7-309.7-319.7-329.7-19.7-29.7-39.7-49.7-59.7-69.7-79.7-19.7-29.7-39.7-49.7-59.8-19.8-29.8-39.8-49.8-59.8-69.8-79.8-89.8-99.8-109.8-119.8-129.8-139.8-149.8-159.8-169.8-179.8-189.8-199.8-209'-219.8-229'-239.8-249.8-259.8-269.8-279.8-289.8-299.8-309.8-19.8-2(lpp)9'-2(2pp)9'-2(3pp)9.8-39.8-4(3pp)9.8-59.8-69.8-19.8-29.8-39.8-4Date199519961995199419941994199419941994199419911994199619961994199419951995199319951993199319941993199319931993199419931993199519931993199419931993199319931993198719871987198719941987199319891989199119891989199319891993198219911993 Page44Chapter9VOLUMEVAuxiliarandEmerencSstemsFigoFigiFigeFigeFig.FigePacae9.8-59.8-69.8-79.9-19.9-29.9-39.9-49.9-59.9-69.9-79.9-89.9-99.9-19.9-29.10-19.10-29.10-39.10-49.10-1Date1993198519821992199519951995199519911991199519951992198919921987198619871986 Page45VOLUMEVISteamandPowerConversionChapter10SstemFigoFig.FigeFig.FigeFig.TableFig.Fig.FigeFigeFig.FigeFigeFigeFigeTableFigePacae10.1-110.1-210.2-110.2-210.2-310.2-410.2-510.2-610.2-110.2-1A10.2-1B10.2-1C10.3-110.3-210.3-310.3-410.3-510.3-610.3-110.3-1A10.4-110.4-210.4-310.5-110.5-210.5-310.5-410.5-510.5-610.5-710.5-110.5-110.5-210.5-2A10.5-310.5-3A10.5-410.5-4A10.5-510.5-5A10.6-110.6-210.6-310.6-410.6-110.6-1Date1992198219821983198519911985198819841991198219921986198219861994199519841984198419911985199119861991198219871990198919961991199519821982198219821991199119901982199519821982199619951982 Page46VOLUMEVIChapter10SteamandPowerConversionSstemPacae10.7-110.7-210.8-110.9-110.10-110.11-110.11-210.11-3Date19821982198219951996198319961983 Page47Chapter11VOLUMEVIWasteDisposalandRadiationProtectionSstemTableTableTableTableTableTableFigeFig.Fig.Fig.Fig.FigeTableTableTableTableTableTableTableTablePacae11.1-111~1211.1-311.1-411.1-511.1-611.1-711.1-811.1-911.1-1011.1-1111.1-1211.1-1311.1-1411.1-1511.1-1611.1-1711.1-1811.1-111.1-211.1-3(pg1)(pg2)11.1-411.1-511.1-611.1-111.1-211.1-2A11.1-2B11.1-311.1-411.2-111.2-211.2-311.2-411.2-511.2-611.2-711.2-811.2-911.2-111.2-211.2-311.2-411.2-511.2-611.2-711.2-8Date198519921982198319961994199219831996198219941993198519941985198219941996198919901990199319891989198919921994198219931995199219951983199519951982198219951995199619961995199519891995199519891989 Page48Chapter11VOLUMEVIWasteDisposalandRadiationProtectionSstemFig.TableTableTableTableTableTableTableTableFigePacae11.2-111.3-111.3-211~3311.3-411.3-511.3-611.3-711.3-811.3-911.3-1011.3-1111.3-1211.3-1311.3-1411.3-1511.3-1611.3-1711.3-1811.3-1(pgl)11.3-1(pg2)11.3-1(pg3)11.3-1(pg4)11.3-1(pg5)11.3-211.4-111.4-211.4-311.4-411.4-511.4-611.4-711.4-811.4-911.4-1011.4-1111.4-1211.5-111.5-211.5-311.5-111.5-2(2pp)11.5-1Date1982199019861988199019921992199519901990199319901995199519901992199219931994199019951995199119911990199519951996199519951995199519951995199519931995198719901983198919891983 Page49Chapter11VOLUMEVIWasteDisposalandRadiationProtectionSstemFig.Fig.Fig.FigePacae11.6-111.6-211.6-311.6-411.6-111.6-2a11.6-2b11.6-2cDate19951996199019961996198619861990 Page50VOLUMEVIChapter12Conductof0erationsPacae12.1-112.2-112.3-112.4-112.5-112.6-112.6-212.7-1Date19961994198819831996199619961992 Page51Chapter13VOLUMEVIInitialTestsand0erationTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTablePacae13.1-113'-213.1-313.1-413.1-113.1-113.1-113.1-113.1-113.1-113.1-113.1-113.1-113.2-113.2-213~2313.2-413.2-513;2-613.2-113.2-113.2-113.2-113.2-113~2-113.2-113'-113.3-213.3-313.3-413.3-513'-113.3-113~3113.4-1(lpp)(2pp)(3pp)(4pp)(5pp)(6pp)(7pp)(8pp)(9pp)(lpp)(2pp)(3pp)(4pp)(5pp)(6pp)('7pp)(lpp)(2pp)(3pp)Date19911991199119821989198919911989199119891991198919891982199119911991199119911991199119891991199119911991198219911982199119821989199119911983 Page52VOLUMEVIIChapter14SafetAnalsisUnit1TableTableTableTableTableTableTableFigeFigeFigeFigeFigeFigeFigeFigeFigeFig.Fig.FigeFigeFigeFigeFigeFigePacae14.0-114.0-214.0-314.1-114.1-214.1-314.1-414.1-514.1-614.1-714.1-8.14.1-914.1-1014.1-1114.1-1214.1-1314.1-114.1-214.1-3(2pp)14'-414.1-514.1-614.1-714.1-114.1-214.1-314.1-414.1-514.1-614.1.1-114.1.1-214.1.1-314.1.1-414.1.1-514'.1-114.1.1-214.1.2-114.1.2-214.1.2-314.1.2-414.1.2-514.1'-614.1.2-114.1.2-214.1.2-314.1.2-414.1.2-514.1.2-614.1.2-714.1.2-814.1.2-9Date199319931993199319931993199619931995199319931993199619961996199619951995199519951996199619961990199019901990199019921993199019941990199019901990199019901990199019901990199019901990199019901990199019901990 Page53VOLUMEVIIChapter14SafetAnalsisUnit1FigeFig.Fig.Fig.Fig.Fig.Fig.Fig.FigeFig.Fig.Fig.Fig.FigeFigeFigeFigeFigeFig.FigeFig.Pacae14.1.3-114.1.3-214.1.3-314.1.3-414.1.3-514.1.3-614.1.3-714.1.3-114.1.3-214.1.4-114.1.5-114.1.5-214.1.5-314.1.6-114.1.6-214.1.6-314.1.6-414.1.6-514.1.6-614.1.6-714.1.6-814.1.6-114.1.6-214.1.6-314.1.6-414.1.6-514.1.6-614.1.6-714.1.6-814.1.6-914.1.6-1014.1.6-1114.1.6-1214.1.7-114.1.7-214.1.7-314.1.7-114.1.7-214.1.8-114.1.8-214.1.8-314.1.8-414.1.8-514.1.8-114.1.8-214.1.8-314.1.8-414.1.8-5(3pp)(3pp)(3pp)(3pp)(3pp)Date199319961992199219901990199619901990199019901992199219901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990198219821990199019951995199019951995199519951995 Page54VOLUMEVIIChapter14SafetAnalsisUnit1PacaeFigeFig.Fig.FigeFig.TablTablTablTablFig.Fig.Fig.Fig.FigeFig.Fig.FigeFig.Fig.FigeFig.FigeFig.Fig.Fig.Fig.Fig.14.1.8-6(3pp)14.1.8-7(3PP)14.1.8-8(3pp)14'.9-114'.9-214.1~9-314'.9-114'.9-214.1.10-114.1.10-214.1.1014.1.10-414.1.10-5e14.1.10-1e14.1.10-2e14.1.10-3e14.1.10-414.1.10-114.1.10-214.1-10-314.1.10-414.1.10-514.1.10-614.1.10-714.1.10-814.1.11-114.1.11-214.1.11-314.1.11-414.1.11-114.1.11-214.1.11-314.1.11-414.1.11-514.1.11-614.1.11-714.1.11-814.1.12-114.1.12-214.1.12-314.1.12-414.1.12-114.1.12-214.1.13-114.1.13-214.1.13-314.1.13-414.1-13-514.1.13-6Date1995199519951990199019901990199019931993199319931993199319931993199319931993199319931993199319931993199019931990199019901990199019901990199019901990199019901990199019901990199119911989198219951995 Page55VOLUMEVIIChapter14SafetAnalsisUnit1TableFig.FigeFig.Fig.FigeFig.TableTableTableTableTableTablePacae14.1.13-714.1.13-814.1.13-914.1.13-1014.1.13-1114.1.13-1214.1.13-1314.1.13-1414.1.13-1514.1.13-1614.1.13-114.1.13-114.1.13-214.1.13-314.1.13-414.1.13-514.1.13-61421-114.2.1-214.2.1-314.2.1-414.2.1-514.2.1-6a14.2.1-6b14.2.1-714.2.1-814.2.1-914.2.1-1014.2.1-1114.2.1-1214.2.1-1314.2.1-1414.2.1-114.2.1-214.2.1-3Deleted14.2.1-414.2.2-114.2.2-214.2.2-314.2.2-414.2.3-114.2.3-214.2.3-114.2.3-214.2.4-114.2.4-214.2.4-314.2.4-414.2.4-514.2.4-614.2.4-714.2'-814.2.4-9Date199619961996199619961996199619961996199619901982198219821982198219821990,19961995199519961996199619961995199519961995199519951995199519951995199519931993199319901990199019901990199019901990199019921990199019921992 Page56eChapter14VOLUMEVIISafetAnalsisUnit1Fig.TableFig.Fig.Fig.FigeFig.Fig.TableFig.Fig.Fig.FigeTableTableTableFig.FigeFig.Pacae14.2.4-114.2.5-114.2.5-214.2.5-314.2.5-414.2.5-514.2.5-6~14.2.5-714.2.5-814.2.5-914.2.5-114.2.5-114.2.5-214.2."5-314.2.5-414.2.5-514.2.5-614.2.6-114.2.6-214.2.6-314.2.6-414.2.6-514.2.6-614.2.6-714.2.6-814.2.6-914.2.6-1014.2.6-1114.2.6-1214.2.6-1314.2.6-1414.2.6-1514.2.6-114.2.6-114.2.6-214.2.6-314.2.6-414.2.7-114.2.7-214.2.7-314.2.7-414.2.7-514.2.7-614.2.7-714.2.7-814.2.7-114.2.7-214.2.7-314.2.7-114.2.7-214.2.7-3Date198219901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199619961996199519951995198219821987
Page57VOLUMEVIIChapter14SafetAnalsisUnit1Fig.FigeFigeFig.Fig.Fig.FigeFig.Fig.TableFigeFigeFig.Fig.FigeFig.Fig.TableTableTableTableTableTableTableTableFig.FigeFigePacae14.2.7-414.2.7-514.2.7-614.2.7-714.2.7-814.2.7-914.2.7-1014.2.7-1114.2.7-1214.2.8-114.2.8-214.2.8-314.2.8-414.2.8-514.2.8-614.2.8-714.2.8-114.2.8-114.2.8-214.2.8-314.2.8-414.2.8-514.2.8-614.2.8-714.3.1-114.3.1-214'.1-314.3.1-414.3.1-514.3.1-614.3.1-714.3.1-814.3.1-914.3.1-1014.3.1-1114.3.1-11a14.3.1-1214.3.1-1314.3.1-1(pg1)14.3.1-1(pg2)14.3.1-1(pg3)14.3.1-214.3.1-3(2pp)14.3.1-414.3.1-514.3.1-614.3.1-1a14.3.1-1b14.3.1-1cDate1987198219821982198219901990199019901990199019901995199519951990199019901990199019901990199019901993199319931993199319931993199319931990199219961993199619961992199019901990199019901990199019901990 Page58VOLUMEVIIChapter14Safet=AnalsisUnit1FigeFig.Fig.Fig.FigeFig.Fig.Fig.FigeFig.Fig.Fig.Fig.FigeFigeFig.Fig.Fig.Fig.Fig.Fig.FigeFig.Fig.Fig.Fig.Fig.FigeFigeFig.Fig.Fig.Fig.FigeFigeFigeFi.g.FigeFig.Fig.Fig.Fig.FigeFig.Fig.FigeFig.Fig.Fig.Pacae14.3.1-1d14.3.1-1e14.3.1-1f14.3.1-1g14.3.1-2a14.3.1-2b14.3.1-2c14.3.1-2d14.3.1-2e14.3.1-2f14.3.1-2g14.3.1-3a14.3.1-3b14.3.1-3c14.3.1-3d14.3.1-3e14.3.1-3f14.3.1-3g14.3.1-4a14.3.1-4b14.3.1-4c14.3.1-4d14.3.1-4e14.3.1-4f14.3.1-4g14.3.1-5a14.3.1-5b14.3.1-5c14.3.1-5d14.3.1-5e14.3.1-5f14.3.1-5g14.3.1-6a14.3.1-6b14.3.1-6c14.3.1-6d14.3.1-6e14.3.1-6f14.3.1-6g14.3.1-7a14.3.1-7b14.3.1-7c14.3.1-7d14.3.1-7e14.3.1-7f14.3.1-7g14.3.1-8a14.3.1-8b14.3.1-8cDate1990199019901990199019901990'99019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990 Page59VOLUMEVIIChapter14SafetAnalsisUnit1FigeFig.Fig.Fig.FigeFig.FigeFig.Fig.FigeFigeFig.Fig.Fig.Fig.FigeFig.FigeFigeFigeFig>>FigeFig.Fig.Fig.FigeFig.FigiFig.Fig.Fig.Fig.Fig.Fig.FigeFigeFigeFig.Fig.Fig.Fig.FigeFig.FigeFig.Figei,FigeFig.Fig.Pacae14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14'.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.14.3.1-Sd1-Se1-Sf1-Sg1-9a1-9b"1-9c1-9d1-9e1-9f1-9g1-10a1-lob1-10c1-lod1-10e1-lof1-10g1-lla1-lib1-llc1-lid1-lie1-llf1-llg1-12a1-12b1-12c1-12d1-12e1-12f1-12g1-13a1-13b1-13c1-13d113e1-13f1-13g1-141-151-161-171-181-191-201-211-221-23Date1990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990
Page60VOLUMEVIIChapter14SafetAnalsisUnit1TableTableTableTableTableTableTableTableTableTableTableTableTableFig.FigeFigeFigeFigeFig.Fig.Fig.FigeFigeFig.Fig.FigeFigeFigeFigeFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.FigeFig>>FigeFig.Pacae14.3.2-114.3.2-214.3.2-314-414.3.2-514.3.2-614.3.2-7.14.3.2-7a14.3.2-7b14.3.2-7c14.3.2-7d14.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3.2-1314.3.2-114.3.2-214.3.2-314.3.2-414.3.2-514.3.2-614.3'-714.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3.2-1314.3.2-1414.3.2-1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-2214.3.2-2314.3.2-2414.3.2-2514.3.2-2614.3.2-2714.3.2-28Date1990199019901990199019961995199519951996199619901990199619901990199019961995199519951995199519951990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990199019901990 Page61VOLUMEVIIIChapter14SafetAnalsisUnit1FigeFigeFl.geFl.geFigeFl.geFig.Fig.FigeFl.geFl.geFigeFl.geFigeFl.geFigeFig>>FigeFigeFl.geFigeFigeFigeFigeFig.FigeFigeFig.Fig.Fl.geFigeFigeFigeFl.geFigeFigeFig.FigePacae14.3.2-2914.3.2-3014.3.2-3114.3.2-3214.3.2-3314.3.2-3414.3.2-3514.3.2-3614.3.2-3714.3.2-3814.3.2-3914.3.2-4014.3.2-4114.3.2-4214.3.2-4314.3.2-4414.3.2-4514.3.2-4614.3.2-4714.3.2-4814.3.2-4914.3.2-5014.3.2-5114.3.2-5214.3.2-5314.3.2-5414.3.2-5514.3.2-5614.3.2-5714.3.2-5814.3.2-5914.3.2-6014.3.2-6114.3.2-6214.3.2-6314.3.2-6414.3.2-6514.3.2-6614.3.3-114.3.3-214.3.3-314.3.3-414.3.3-514.3.3-614.3.3-714.3.3-814.3.3-914.3.3-1014.3.3-11Date1990199019901990199019901990199019901990199019901995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519941994199419941994199419941994199419941994 Page62VOLUMEVIIIChapter14SafetAnalsisUnit1Pacae14.3.4-114.3.4-214.3.4-314.3.4-414.3.4-514.3.4-614.3.4-7.14.3.4-814.3.4-914.3.4-1014.3.4-1114.3.4-1214.3.4-1314.3.4-1414.3.4-1514.3.4-1614.3.4-1714.3.4-1814.3.4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3.4-2414.3.4-2514.3.4-2614.3.4-2714.3.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214.3.4-3314.3.4-3414.3.4-3514.3.4-3614.3.4-3714.3.4-3814.3.4-3914.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4-4514.3.4-4614.3.4-4714.3.4-4814.3.4-4914.3.4-5014.3.4-5114.3.4-52Date1992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992 Page63VOLUMEVIIIChapter14SafetAnalsisUnit1PacaeDateTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTable14.3.4-5314.3.4-5414.3.4-5514.3.4-5614.3.4-5714.3.4-5814.3.4-5914.3.4-6014.3.4-6114.3.4-6214.3.4-6314.3.4-6414.3.4-6514.3.4-6614.3.4-6714.3.4-6814.3.4-6914.3.4-7014.3.4-7114.3.4-7214.3.4-7314.3.4-7414.3.4-7514.3.4-7614.3.4-7714.3.4-7814.3.4-7914.3.4-8014.3.4-8114.3.4-8214.3.4-8314.3.4-8414.3.4-8514.3.4-114.3.4-214.3.4-314.3.4-414.3.4-514.3.4-614.3.4-714.3.2-814.3.4-914.3.4-1014.3.4-1114.3.4-1214.3.4-1314.3.4-1414.3.4-1514.3.4-1614.3.4-1714.3-4-1814.3.4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3.4-24(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992 Page64Chapter14VOLUMEVIIISafetKnalsisUnit1TableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableFigeFigeFigeFigeFigeFig.Fig.FigeFig.Fig.Fig>>Fig.Fig.FigeFigeFigeFigeFigeFig.FigeFigeFigeFigeFigeFig.Fig.FigeFig.FigeFigeFigeFigeFig.FigeFig.FigeFigeFig.FigePacae14.3.4-2514.3.4-2614.3.4-2714.3.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214.3.4-3314.3.4-3414.3.4-3514.3.4-3614.3.4-3714.3.4-3814.3.4-3914.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4-4514.3.4-4614.3.4-114.3.4-214.3.4-314.3.4-414.3.4-514.3.4-614.3.4-714.3.4-814.3.4-914.3.4-1014.3.4-1114.3.4-1214.3.4-1314.3.4-1414.3.4-1514.3.4-1614.3.4-1714.3.4-1814.3.4-1914.3.4-2014.3.4-2114.3.4-2214.3.4-2314.3.4-2414.3.4-2514.3.4-2614.3.4-2714.3.4-2814.3.4-2914.3.4-3014.3.4-3114.3.4-3214.3.4-3314.3.4-3414.3.4-3514.3.4-3614.3.4-3714.3.4-3814.3.4-39(3pp)(>>pp(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)(2pp)Date1992199219921992199219921992199219921992199219921992199219921992199.219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992 Page65Chapter14VOLUMEVIIISafetAnalsisUnit1Fig.Fig.Fl.geFigeFig.FigeFl.geFig.Fig.FigeFl.geFig.Fig.FigeFig.Fl.geFl.geFigeFig.FigeFig.FigeFig.FigeFigeFigeFig.FigeFig.Fig.Fig.FigeFig.FigeFig.Fig.Fig.Fig.Fig.Fl.geFigeFigeFig.Fig.FigeFig.Fig.Fig.FigeFigeFigeFigeFig.Fl.gePacae14.3.4-4014.3.4-4114.3.4-4214.3.4-4314.3.4-4414.3.4.4514.3.4-4614.3.4-4714.3.4-4814.3.4-4914.3.4-5014.3.4-5114.3.4-5214.3.4-5314.3.4-5414.3.4-5514.3.4-5614.3.4-5714.3.4-5814.3.4-5914.3.4-6014.3.4-6114.3.4-6214.3.4-6314.3.4-6414.3.4-6514.3.4-6614.3.4-6714.3.4-6814.3.4-6914.3.4-7014.3.4-7114.3.4-7214.3.4-7314.3.4-7414.3.4-7514.3.4-7614.3.4-7714.3.4-7814.3.4-7914.3.4-8014.3.4-8114.3.4-8214.3.4-8314.3.4-8414.3.4-8514.3.4-8614.3.4-8714.3.4-8814.3.4-8914.3.4-9014.3.4-9114.3.4-9214.3.4-93Date199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992199219921992 Page66VOLUMEIXChapter14SafetAnalsisUnit1TableTableTableTableTableTableTableTablePacae14.3.5-114.3.5-214.3.5-314.3.5-414.3.5-514.3.5-6~14.3.5-714.3.5-814.3.5-914.3.5-1014.3.5-1114.3.5-1214.3.5-1314.3.5-1414.3.5-1514.3.5-1614.3.5-1714.3.5-1814.3.5-1914.3.5-2014.3.5-2114.3.5-2214.3.5-2314.3.5-2414.3.5-2514.3.5-2614.3.5-2714.3.5-2814.3.5-2914.3.5-3014.3.5-3114.3.5-3214.3.5-114.3.5-214.3.5-314.3.5-414.3.5-514.3.5-614.3.5-714.3.5-8Date1995198219861982198219821982198219831982198319861982198619821982198219831982198219821982198219821996199619951995199519951995199619901990199019901990199019901990 Page67VOLUMEIXChapter14SafetAnalsisUnit1TableFigoFig.Fig.FigeFigeFigeTableTableTableTableTableTableTableTablePacae14.3.5-9pg1pg2pg314.3.5-114.3'-214.3.5-314.3.5-414.3.5-514.3.5-614.3.6-114.3.6-214.3.6-314.3.6-414.3;6-514.3.6-614.3.6-714.3.6-814.3.6-914.3.6-1014.3.6-1114.3.6-1214.3.6-1314.3.6-1414.3.6-1514.3.6-1614.3.6-1714.3.6-1814.3.6-1914.3.6-2014.3.6-2114.3.6-2214.3.6-2314.3.6-2414.3.6-2514.3.6-2614.3.6-2714.3.6-2814.3.6-2914.3.6-114.3.6-214.3.6-314.3.6-414.3.6-514.3.6-614.3.6-714.3.6-8Date1995199519951982198219821982198719871989198219911989198219821982198219821982199019901990199019901990199019901990199019901990199019901990199019911990199119901990199019901990199019901990 Page68VOLUMEIXChapter14SafetAnalsisUnit1TableTableTableTableTableTableTableTableTableFig.FigeFig.Fig.FigeFig.Fig.Fig.FigeFig.FigeFig.Fig.FigeFig.Fig.Fig.Fig.Fig.Fig.Pacae14.3.6-914.3.6-1014.3.6-1114.3.6-1214.3.6-1314.3.6-1414.3'-1514.3.6-1614.3.6-1714.3.6-114.3.6-214.3.6-614.3.6-714.3.6-814.3.6-914.3.6-1014.3.6-1114.3.6-1214.3.6-1314.3.6-1414.3.6-14A14.3.6-1514.3.6-1614.3.6-1714.3.6-1814.3.6-1914.3.6-2014.3.6-2114.3.6-2214.3.7-114.3.8-114.4.1-114.4.2-114.4.2-214.4.2-314.4.2-414.4.2-514.4.2-614'.2-714.4.2-814.4.2-914.4.2-1014.4.2-1114.4.2-1214.4.2-1314.4.2-14(2pp)Date19901990199019901990199019901990199019821982199019901990199019901990199019901990'9901990199019901990199019901990199019931993199219921982198219821982198219821982198219821982198219871982 Page69VOLUMEIXChapter14SafetAnalsi.sUnit1TableTableTableTableTableTableFig.FigeFig.Fig.Fig.FigeFig.Fig.Fig.Fig.Fig.Fig.FigeFigeFigeFigeFig.Fig.Fig.Fig.Fig.FigeTableTablePacae14.4.2-1514.4.2-1614.4.2-1714.4.2-1814.4.2-1914.4.2-2014.4.2-2114.4.2-2214.4.2-2314.4.2-2414.4.2-2514.4.2-2614.4.2-2714.4.2-2814.4.2-1(pg1-7)14.4.2-1(pg8)14.4.2-214.4.2-314.4.2-414.4.2-5(4pp)14.4.2-114.4.2-214.4.2-314.4.2-414.4.2-514.4.2-614.4.2-714.4.2-814.4.2-914.4.2-1014.4.2-1114.4.2-1214.4.2-1314.4.2-1414.4.2-1514.4.2-1614.4.2-1714.4.2-1814.4.2-1914.4.2-2014.4.2-20A14.4.2-2114.4.3-114.4.3-214.4.3-314.4.3-414.4.3-514.4.4-114.4.4-114.4.4-2Date19821982198219821982198219821995198219951982198219821990199019961994199019901990198219821982198219821982198219951982198219821982198219821982198219821982198219821995198219901990199319901990199519901990 Page70VOLUMEIXChapter14SafetAnalsisUnit1TableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableTableFigeFigeFig.FigeFigeFig.FigeFig.Fig.FigeFig.Pacae14.4.4-314.4.4-414.4.4-514.4.4-614.4.5-114.4.5-214.4.6-1-14.4.6-214.4.6-314.4.6-414.4.6-514.4.6-614.4.6-714.4;6-114.4.6-214.4.6-314.4.6-3a14.4.6-414.4.6-4a14.4.6-514.4.6-5a14.4.6-614.4.6-6a14.4.6-6b14.4.6-6c14.4.6-714.4.6-814.4.6-914.4.6-1014.4.6-1114.4.6-1214.4.6-1314.4.6-1414'.6-15(2pp)(3pp)(2pp)(2pp)(2pp)14.4.6-15a14.4.6-1714.4.6-1814.4.6-1914.4.6-2014.4.6-114.4.6-214.4.6-314.4.6-414.4.6-514.4.6-614.4.6-714.4.6-814.4.6-914.4.6-9a14.4.6-9b(5pp)14.4.6-16,14.4.6-16aDate1990199019901990199019901994199419961990199319901996199019901993199319931993199319931990199419941994199419941994199419941994199419941994199419941994199419941994199419821982198219821993199619871987199319931993 Page71VOLUMEIXChapter14SafetAnalsisUnit1Fi.g.Fig.Fig.Fig.Fig.Fig.TableTableTableTableTableTableTableTableTableTablePacae14.4.6-1014.4.6-10a14.4.6-1114.4.6-11a14.4.7-114.4.7-214.4.8-1~14.4.9-114.4.9-214.4.9-314.4.9-114'.9-214.4.10-114.4.10-214.4.10-314.4.10-414.4.10-114.4.11-114.4.11-214.4.11-314.4.11-414.4.11-514.4.11-614.4.11-714.4.11-1DELETED14.4.11-214.4.11-314.4.11-414.4.11-514.4.11-614.4.11-714.4.11-814.4.11-914A-114A-214A-314A-414A-514A-614A-714A-814A-914A-10Date199319931993199219901990199019901996199019821982199019901990199.019901996199019941990199019901996199619941990199019901990199019901992199219821982'1982198219821982198219821982 Page72VOLUMEIXChapter14SafetAnalsisUnit1PacaeTableTableTableFigeFig.Fig.14.G-214A-1114A-1214A-1314A-1414A-1514A-1614A-1714A-1814A-1914A-2014A-2114A-2214A-2314A-2414A-2514A-2614.G-114.G-214.G-314.G-414.G-514.G-614.G-714.G-S14.G-914.G-1014.G-1114.G-1214'-114.G-214.G-314.G-l14.G-1Notes(pg2)(pg3)(pg1)Date198219921992199219921993199319921992199219921992199219921992199219871987198719871987198719871987198719871987198819871987198719871987198819881987 Page73VOLUMEXChapter14SafetAnalsisUnit2TableTableTableTableTableTableTableTableTableTableTableTableFig.FigeFig.FigeFigeFig.FigeTableFig.Pacae14.0-114.0-214.0-314.0-414.0-514.1-114.1-214.1-314.1-414.1-514.1-614.1-714.1-814.1-914.1-1014.1-1114.1-1214.1-1314.1-1414.1.0-114.1.0-114.1.0-114.1.0-114.1.0-214.1.0-314.1.0-414.1.0-514.1.0-614.1.0-714.1.0-814.1.0-914.1.0-114.1.0-214.1.0-314.1.0-414.1.0-514.1.0-614.1.0-714.1.1-114.1.1-214.1.1-314.1.1-414.1.1-514.1.1-614.1.1-714.1.1-114.1~1-1(2pg(3pgs)s)(pgl)(pg2)(pg3)(pg4)(3pgs)Date19951995199519951995199319951995199319931995199319951995199519961996199619961993199319951995199519931993199319931996199619961993199319931993199319931993199319911991199119911991199119911992 Page74Chapter14VOLUMEXSafetAnalsisUnit2FigeFig.FigeFigeFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pacae14.1.1-214.1.2A-114.1.2A-214.1.2B-114.1.2B-214.1~2B-314B-414.1.2B-514.1.2B-614.1.2B-714.1.2B-114.1.2B-214.1.2B-314.1.2B-414.1.2B-S14.1.2B-614.1.2B-714.1.2B-S14.1.2B-914.1.3-114-214.1.3-314.1.3-414.1.3-514.1.3-614.1.3-714.1.3-114.1~3-214.1.4-114.1.5-114.1.5-214.1.5-314.1.5-414.1.5-5Date1992199519951991199319911991199119911991199119911991199119911991199119911991199319961995199519951995199619911991199119911991199119911991 Page75VOLUMEXChapter14SafetAnalsisUnit2TableTableFigeFigeFigeFigeFigiFigeFigeFig.Fig.FigeFigeFigeTableFigePM8614.1.5-614.1~5-714.1.6-114.1.6-214.1.6-3,14.1.6-414.1.6-514.1.6-614.1.6-714.1.6-814.1.6-914.1'-1014.1.6-1114.1.6-114.1.6-214.1.6-114.1.6-214.1.6-314.1.6-414.1.6-514.1~6-614.1.6-714.1.6-814.1.6-914.1.6-1014.1.6-1114.1.6-1214.1.7-114.1.7-214.1.7-314.1.7-414.1.7-514.1.7-114.1.8A-114.1.8A-2Date19911991199119911991199619961991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199219951995 Page76VOLUMEXChapter14SafetAnalsisUnit2PacaeDateTableFig.FigeFigeFig.FigeFigeFig.FigeFigeFigeFigeFigeTableFigeFigeFig.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14'.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.14.1.SB-1SB-2SB-3SB-4SB-5SB-6SB-1SB-1SB-2SB-3SB-4SB-5SB-6SB-7SB-8SB-9SB-10SB-11SB-129-19-29-39-49-59-69-19-1,9-29-310A-110A-2(2pgs)(2pgs)1991199119951995199319911995199519951995199519951995199519951995199519951995199119911995199619911991199119921992199219951995 Page77Chapter14VOLUMEXSafetAnalsisUnit2PacaeDateTableTableTableTableFig.Fig.FigeFig.Fig.FigeFig.Fig.TableFigeFig.14.1.10B-114.1.10B-214.1.10B-314.1.10B-414.1.10B-514.1.10B-614.1.10B-714.1.10B-B14.1.10B-914.1.10B-114.1.10B-214.1.10B-314.1.10B-414.1.10B-114.1.10B-214.1.10B-314.1.10B-414.1.10B-514.1.10B-614.1.10B-714.1.10B-S14.1.11A-l14.1.11A-214.1.11B-114.1.11B-214.1.11B-314.1.11B-414.1.11B-514.111B-114.1.11B-l14.1.11B-21991199119931993199119931993199119911993199319931993199319931993199319931993199319931995199519911993199119911991199119911991 Page78Chapter14VOLUMEXSafetAnalsisUnit2FigeFigeFig.FigeFig.FigeTableFigeFigeTableTableTableTableTableTableFig.Pacae14.1.11B-314.1.11B-414.1.11B-514.1.11B-614.1.11B-714.1.11B-814.1.12-114.1.12-214.1.12-314.1.12-414.1.12-514.1.12-114.1.12-114.1.12-214.1.13-114.2-114.2.1-114.2.2-114.2.2-214.2.2-314.2.2-414.2.2-514.2.2-614.2.2-114.2.2-214.2.2-314.2.3-114.2.4-114.2.4-214.2.4-314.2.4-414.2.4-514.2.4-614.2.4-714.2.4-814.2.4-914.2.4-114.2.5-114.2.5-214.2.5-314.2.5-414.2.5-514.2.5-614.2.5-714.2.5-814.2.5-914.2.5-1014.2.5-1114.2.5-114.2.5-2(2pp)14.2.5-1Date199119911991199119911991199119911995199519911991199219921991199519931993199319931991199619911991199319931991199119911991199419941991199119911991199119911991199119911991199119911991199119911991199119911991 Page79Chapter14VOLUMEXSafetAnalsisUnit2FightFigeFigeFigeFigeTableFig.Fig.TableFigeFig.Fig.FigeFigeFig.Fig.FigePacae14.2.5-214.2.5-314.2.5-414.2.5-514.2.5-614.2.6-1.14.2.6-214.2.6-314.2.6-414.2.6-514.2'-614.2.6-714.2.6-814.2.6-914.2.6-1014.2.6-1114.2.6-1214.2.6-1314.2.6-1414.2.6-1514.2.6-1614.2.6-1714.2.6-114.2.6-114.2.6-214.2.7-114.2.8-114.2.8-214.2.8-314.2.8-414.2.8-514.2.8-614.2.8-714.2.8-1(3pp)14.2.8-114.2.8-214.2.8-314.2.8-414.2.8-514.2.8-614.2.8-714.2.8-8Date199119911992199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119931991199119911995199519951995199519911991199119911991199119911991 Page80VOLUMEXChapter14SafetAnalsisUnit2TableTableTableTableTableTableTableTableTableTableFig.FigeFigeFig.FigeFigeFig.FigeFigeFigeFigeFigeFigeFigeFig.FigeFigeFigeFigeFigeFigePacae14.3.1-114.3.1-214.3.1-314.3.1-414.3.1-514.3.1-614.3.1-714.3.1-814.3.1-914.3.1-1014.3.1-1114.3.1-1214.3.1-1314.3.1-1414.3.1-1514.3.1-1614.3.1-1714.3.1-1(2pp)14.3.1-214.3.1-314~3~1-4(2pp)14.3.1-514.3.1-614.3.1-714.3.1-814.3.1-914.3.1-1014.3.1-3014.3.1-3114'.1-114.3.1-214.3.1-3a14.3.1-4a14.3.1-5a14.3.1-6a14.3.1-7a14.3.1-8a14.3.1-9a14.3.1-10a14.3.1-11a14.3.1-12a14.3.1-13a14.3.1-14a14.3.1-15a14.3.1-3b14.3.1-4b14.3.1-5b14.3.1-6b14.3.1-7b14.3.1-8bDate19951991199119911991199119911991199319931995199519951996199119911996199119911991199119921996199219921992199219951995199119911991199119911991199119911991199119911991199119911991199119911991199119911991 Page81VOLUMEXIChapter14SafetAnalsisUnit2Fig.FigeFig.FigeFigeFig.FigeFig.Fig.FigeFig.Fig.Fig.Fig.Fig.Pig.Fig.FigeFig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Fig.Pig.Fig.Fig.Fig.Fig.Pig>>FigeFigeFigeFigePig.Fig.Fig.FigeFigeFig.Fig.Fig.Fig.Fig.FigeFig.Fig.Fig.FigiPacae14.3.1-9b14.3.1-10b14.3.1-lib14.3.1-12b14.3.1-13b14.3.1-14b14.3.1-15b14'.1-3c14.3.1-4c14.3.1-5c14.3.1-6c14.3.1-7c14.3.1-8c14.3.1-9c14.3.1-10c14.3.1-11c14.3.1-12c14.3.1-13c14.3.1-14c14.3.1-15c14.3.1-3d14.3.1-4d14.3.1-5d14.3.1-6d14.3.1-7d14.3.1-8d14.3.1-9d14.3.1-10d14.3.1-11d14.3.1-12d14.3.1-13d14.3.1-14d14.F1-15d14.3.1-3e14.3.1-4e14.3.1-5e14.3.1-6e14.3.1-7e14.3.1-8e14.3.1-9e14.3.1-10e14.3.1-11e14.3.1-12e14.3.1-13e14.3.1-14e14.3.1-15e14.3.1-3f14.3.1-4f14.3.1-5f14.3.1-6f14.3.1-7f14.3.1-8f14.3.1-9f14.3.1-10f14.3.1-11fDate1991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991 Page82VOLUMEXIChapter14SafetAnalsisUnit2PacaeDateFig.FigoFig.Fig.FigeFig.Fig.Fig.FigeFigeFig.Fig.FigeFig.Fig.FigeFig.Fig.Fig.FigeFig.FigeFigeFig.FigeFig.Fig.Fig.FigeFig.Fig.FigeTableTableTableTableTableTableTableTableTableTableTable14.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.3.1-12f.1-13f.1-14f.1-15f~1-3g.1-4g.1-5g.1-6g~17g.1-Sg.1-9g.1-10g.1-llg.1-12g.1-13g.1-14g.1-15g.1-16.1-17.1-18.1-19.1-20.1-21~122.1-23.1-24.1-25.1-26~127.1-28.1-29.1-30.2-1~22~23.2-4.2-5.2-6~27a.2-7b~27c.2-8.2-1~22~23.2-4.2-5.2-6~27.2-8.2-9.2-10.2-1119911991199119911991199119911991199119911991199119911991199119911991'99119911991199119911991199119911991199119911991199119911991199119911991199119911991199619961996199619911991199219961991199119921996199119951995 Page83VOLUMEXIChapter14SafetAnalsisUnit2TableTableTableFigeFig.FigeFigeFigeFigeFigeFig.FigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFig.FigeFigeFig.FigeFig.Fig.FigeFig.FigeFigeFig.FigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigeFigePacae14.3.2-1214.3.2-1314.3.2-1414.3.2-114.3.2-2,14.3.2-314.3.2-414.3.2-514.3.2-614.3.2-714.3.2-814.3.2-914.3.2-1014.3.2-1114.3.2-1214.3.2-1314.3.2-1414.3.2-1514.3.2-1614.3.2-1714.3.2-1814.3.2-1914.3.2-2014.3.2-2114.3.2-2214.3.2-2314.3.2-2414.3.2-2514.3.2-2614.3.2-2714.3.2-2814.3.2-2914.3.2-3014.3.2-3114.3.2-3214.3.2-3314.3.2-3414.3.2-3514.3.2-3614.3.2-3714.3.2-3814.3.2-3914.3.2-4014.3.2-4114.3.2-4214.3.2-4314.3.2-4414.3.2-4514.3.2-4614.3.2-4714.3.2-4814.3.2-49Date1995199519961991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991199119911991 Page84Chapter14VOLUMEXISafetAnalsisUnit2Fig.Fig.Fig.FigeFigeFigeFig.Fig.FigeFig.FigeFig.FigeFigeFigeFigeFig.FigeFig.FigeFl.ge'igeFigeFig.FigeFig.Fl.geFige~FigeFigeFigePacae14.3.2-5014.3.2-5114.3.2-5214.3.2-5314.3.2-5414.3.2-5514.3.2-5614.3.2-5714.3.2-5814.3.2-5914.3.2-6014.3.2-6114.3.2-6214.3.2-6314.3.2-6414.3.2-6514.3.2-6614.3.2-6714.3.2-6814.3.2-6914.3.2-7014.3.2-7114.3.2-7214.3.2-7314.3.2-7414.3.2-7514.3.2-7614.3.3-114.3.3-214.3.3-314.3.3-414.3.3-514.3.3-614.3.3-714.3.3-814.3.3-914.3.3-1014.3.3-1114.3.3-1214.3.3-1314'.3-114.3.3-214.3.3-314.3.3-4Date19911991199119911991199119911991199119911995199519951995199519951995199519951995199519951995199519951995199519941995199419951994199419941994199419941994199419941994199419941994 Page85Chapter14VOLUMEXIISachetAnalsisUnit2PacaeDateFigeFigeFigeFigiTableTableTableTableTableTableFig.Fig.Fig.FigeFigeFig.FigeFigeFigeFigeFigeFig+FigeFigeFigeFigeFigeFig.FigeFig.FigoFig.Fig.14.3.3-514.3.3-614.3.3-714.3.3-814.3.4-114.3'-114.3.5-214.3'-314.3.5-414.3'-114.3.5-214.3'-314.3'-414.3.5-514.3.5-614.3.6-114.3.7-114.3.7-214.3.7-314.3.7-414.3.7-514.3.7-614.3.7-714.3.7-814.3.7-914.3.7-1014.3.7-1114.3.7-114.3.7-214.3.7-314.3.7-414.3.7-514.3.7-614.3.7-714.3.7-814.3.7-914.3.7-1014.3.7-1114.3.7-1214.3.7-1314.3.7-1414.3.7-1514.3.7-1614.3.7-1714.3.7-1814.3.7-1914.3.7-2014.3.8-114.3.8-214.3.8-314.3.8-414.3.8-114.3.8-214.3.8-314.4-114.A-1(3pp)19941994199419941992199319931993199319931993199319931993199319901993199319931993199319931993199319931993199319821982198219821982198219821982198219821982198219821982198519821982198519821982199319931993199319821982198219911989 Page86VOLUMEXIIChapter14AppendixJSafetAnalsisPacaeDateORIG Page87Chapter14AppendixMSafetAnalsisVOLUMEXIIIPacaeDateORIG I:Iuu'~AILIW~UpLSIIWI'AVAIL~1I'KS,>>>>1ICL1LNCLI.INL'ul.TNL'NCLLALWNVQNAQLLIQtitIJLCAVAILLLLQS)asti)CCINOCyQuotOut~I~NutYULOICuluu>>olOvtyut~Ntv/NCu>>olOouoyoloJlaaCu>>I'LNNIALUC.CQ41NULLI*VI'IANCUNI)wIANQ1I'INAI.111'~yl)SUII,uv4~l4V).4>>IIsaililLIWuullLIANQ~CIIIILNLCIPNI)154IIsuNl~IU11.4IulllcaCUIMIylIIMAIoty~t)1$1VCI)~IUIUIU)ilALNNulliIANQ4Null.jattuulISI~.5SIVI~IQ)1.4N.Q.NuiliLNIN44ClultNtyuuf1404)4)0~IOS).4IUIlI)I)14IS11IVIV)Ull)1ILIAIuasu1LasCu>>ILlvoCyoasoCSyvlvuycovvucu,NUNI<<>>I~yulo.'syul>>Nycuvvascv,Ntuluaausl>>AJystoto~yuloIlslCLIAINI~II'>>clucoNootCluu,CKuciolyy~Ium~CiuQN1Q>>ctv>>ll4uluutUyvcoltuvc'>>NIJIIlouuNluluuuQN41lucLlvolualcouvlouluCausivy~)'i>>asCut~IClw1>>I~,14/LC)II>>lelvallov1>>I~IVIu>>~Ilc>>slvla'c~IL(lscKl1>>aclvoIIU>>Aca:~lucU>>1~)I~Ia~l>>c~IL)lv>>col>>VvloullyAINUSI'vvlyuJisIl/vva:lvocoluNovoV>>luclty,Ila/Lc-tc)C>>ul>>ulf>>uyvcocvcv,Qa:VISNNuulu>>1lalvtI4cluuulaslvcNvuloluvlcasu>>NCAClou.Lccocua4O>>AJL+NJ.'yAv>>c>>SONlvvINVo>>VOI~Avvc>>S>>NtouINCocoAv>>C>>S>>laCuCVluvc>>1>>luVuuuastIlaulaa~IUvtlvtujNutCL>>aauut1.$4))luI.IQI)S.I.~IUIsI"s.'s~Iss>L,CvlulI~.S1.$)oIu5Lla.ISCQ.I4l.u4$.1Slu.lSa).144).$I/)J)SLI))14J.ISI.44J.ulIl~.IuIuI-su.uuIUSl4oI4c1$.)).$1oluSNI.'4.I.-4o.u$44.0Si).14)I.)Lcl11)u'.U4IIv.)u)4Ilu~IU>:.4~1414.4%PIuIQ$41$).u$5.$$11.u$41.$i)).$l/CU).14I.441.I44o.)ul4441.4uIQ$1.4~IO1$.4).)1~lu$54.551.~44.4$11.5$11.144).i41$Qalcu).QLlu1.1~Ig1).4~l4oa~'~lQ14.)).I)ulu544.)SSLI~)5$.VSV.1$)$.4$14.144)Av>>ccyvlllaCool)ICIVNL~1IU/IacIc>>ISVSQ5VUUS)yu5CUQAIKNUICNC15ACNILIIO))*>>Thistableisretainedfor)Lxstoricalpt)rposesonly.XtcoloparesoriginalCookPlantparaloeterStoothersiLLLilarnL)Clearplants. TLCLSl,)-lCCouCI>>awl)SSISISNCSMKJSa)4AwcalpVII>>fiapecatureQltieceaco,'VICNICLDC>>COOS'NOUSfLiufWITSIINQ1Iaalt>>la~akaIt)LtiSIONSfif)QNWILTSIiNQ)~PILC~LAIf3$>>4INDIINPOINTilLB~X)0.1POINTSSJCNlMITSILIOgQl+~gf)I.ONa4>>OOOINSONl1QQkkf5N)5)0jNeatfraaetpretLOOTPtu>>erSct)wNea)fceseterSucteceArea,ttiwraioNeatfles,Scu/Lc-tt)NOOI~Neapplus,~tu/Lf-tt)iuereisTherso)Output,LulttNests'Locus)Du)put>>Lv/ICllosl~clel$4ftscefel>>por~C4foacNaeelselpressure>>fuelCeaccalfoapecacure>>Hoslauaat)00)paverNooIal%etOwrpovof$),204)4)>>>>AQ$)$,4444tlI~.~4$)I)$04540$),10014)>>$00.5)$,4004.)I~.445)i)$04500$1,)00l)$,400541,MO$.)I~.i4$)i0$0i)40I~)S,)l5l)$,4004$)>>004$.)14.04$)1)$0l0444),l40I)l,4005$4.)045.5))A4$))),TLsra~IOutput~Lv/ICOCNoolo>>aaOwrpuvsrCOSTICCNINICLLDSSICNPSSIILTSSS)l>>l)0.4L).$14.~)I1514))1~1$IOil4)4)iiiSI~l)iNTuelieoeoL)leoQestiaSolpltcL,la.OverallDlusaeioue,la.Taa~INOISLCtsoQO)~TouslefocalNOISLC~youseNVOLecotOcliepefieseuLlyI'uelSa>>4~NaukefOaat~IleQleeetec>>Iu.OlaastrelCop,I~.ISetluaI~))(44loa))CIO4TIIICLOOOO>>IaClo4NotarialTaaolfell~I~Iletecl~IDeeeltytfetTLeoc~flee))ptssetec>>la.(S~IoaI~))t4SIoa)lLOOSCL>>I~.SCCCoaleasISO)5O.SO)~.i)404.4N)IS>>SUO)N,OOO))$~I)lO.i))0.00)$0.00150.4)411Iree)IayICISIOCofelSi-~1-$)4,145$~0.)II$0.4004SCCCoaloeoIt-.)$4.$41~.i)40~.ill)I4,404))4>>000)1$,I))O.i))DAO)$O,DOSS0.4)41StrceleylkllStaroro4$l$)-$)0.)45$0,14l$4t4000SCCCaelees1$0)$0.$41~.4)404.4)4)I4,004))4,000$)$,l)l0.4114.004$0.4)i)Ilccaloy005IOCecsl$4$)-$)4.)III0.4000SCCCoalesalisll~.5$4).N)0))41l)0,1)0ISi,SI~))I>>LSS~.4))0>>004$0.0)i)SlrcaloyQO)StatsrelSi$)-$)~.144$~>>4000OCCCosloss)SOIS~.541~.4140O.igIN>>)04))4>>)04)12,014'.4))~.004$0.4)41XlrcalogQOSIOCOCO4$001-$)~.)44$~>>4404$0SL5)$1SO4ClusterCeetculieoeeiliesNO>>atroailasucLecCIO44IOSNotarialClelTLICLaeoe~NueLerotCIVOC~ceN~ecotCoatcelSu4OpecCluster$1Cl-ISOIa-SOSType)04SS-Co)4Mu>>LO40.4)$Sl44SfC4LSS)0SOSfype)INSS~)4NOILO4~.OI$51)4iSSlCl-ISTIa-KgTypo)0lSS~)4NOILO40>>OL$$1)0,40$1Cl-1$1la-SOS44SSC4-LQl>>-044)Typo)04SS~)4TypeW~lNOCLO4NOI4$~.OL$~.OIO1)51)4IINS5$441I. TASI.F1.1-1tCusclousl)~FCKFFINXJLLIEIN.$45$CoroScluccur~CoreIsrreII.P.IO.D.~Ca.ThsraslShiallI.P.IO.O.~la.ICNIMDC,CIsCFNUCll'ANtllNTNll'rSIANN1QIIAI.NI'VIINTICI.O/IS)I5ISN.5/144AZlilcSTATIICINNIrsIANII1fJNcl.~a>tdIla.0/IS1,$ISII.S/I44.0INIIIANVQINTIl~HIII.'l144.0/I51.5III.5II44.4VOINTISACVUNITSIANN$KBSMSLL109.0/111.5IISolfl)lo$)laI~NONINSONI)fQShJ~~F~LIll.~)5/1)).I))545)5I$9'40414)414445Al4449)0)I)I)1)4CINALNOCLSAIPFSICNPATASlruccurolGlsreccorcectcefuelVellhCtAOPQ))~lbs.ClalQOIShc~lhseCoreDlaascsr~la.[FSUIvslsuc)CseeNsllhc~la.IAcclvslusl)~etlsccocThlchasssaalCoatoslclouTotVsrsfflwSCosl~la~~uCCoaVscor~IusScsolslaIlls-VscertiesIcosi~la.00/0,ICsllVolwsIsclo)NtshsrollwlAsssahllss001SuiotsrAssseilyteeloraaaceasrsccerIsclceLoalloSTechuISwI'uslPlscharlshursut,III'/NccIAvsrsa~VersaCycl~F%ulllhrlwCureAvsrsSolsslSarlchosac~suellhCIsctoaI~silos1SOIIos1FqulllhclwCuacrolQisroccsrloricaFttscclvslialcitlccscloatIOSlualuSotLite)Co!leNotousr~CloseNoc~NotcasersCloseO'Uc~Culltuusc~SeoulSaFgulllhclam1I4,40044,54lII).)14410IO154.091911041ru~Iua~uoa-Ualtorall,04011,4001.15l.SO1.10I,II)1.15l1.091)I4,40044~54)111.)141.41010IS4.09191144)rsIloa,aoa~ltora14,00011,IOO1.15).IO3.)0I.IN)1.1541.49)1IO~OIIO44,4IIO13).514l1010154.141911441rsSloa,auamlteIall,)0414,)001.15)la9991.152I)4,I)014,14094.$144-10101$4.10111l)9)reSloa,~oa~ltora1$,10411,0001.1)1.411.401.441.111I~14)I.II3l)4,)OO14,140III.S14I~1$4;IIIS)104)roIloasaoa-uatteale504)),0001.451.5$1.141.1~I.IIOI.)I1.4)) TAYLORl,l-l(c'ovciwue4)<<XN)lNCT~llNl00<<il0C.0005<<UCIPA<<yl.liltCcilTSIA<<0l~N~I.:tlT7IUNS'TATI'NITSIJ<<0l~IIILL'lhll<<UIANPUINTfl~litt.~tiJll~Politt0TAlllUNITS)AOO$~+85Lq.~.0001<<SUNi)15Nll70OO4CIwcetCooCcolAeeaublcesIcecsCIs)gwLerof0CCleeesallee<<usherofALsoc)erOv45peraccAeeeeklyTotalOO4QorckSIC4-IS)Iw-00)SIloSevTe<<lel.l.I-)laSlC4-15)Iw-00)ii~S))0SeeTualv).I.I-)STC4-1$)Iw-So)S)loSeuTVLI~).l.I-)AOSXC4-1$))s-OOI40))I~See)OLIO).).I-)S)C4-IS)lo-Q00S)4eTello)I).)-))9lotosCoocescrecloueTo54ucceeccec4uuovcc4ooto45loeecce4~clues(Lvo)))Col4/Loc,ppwlppa1100/ILLSII00/I)0SIC<<0/IlloISS)/)OILllSolll10~I0)TvcoactolecpovetvlcLsoro4eIaeecce4,clues/equIIILClsaseoooeo4esoeclaa,ppo/ppoIlia/LSO~stowvocIL~<<OII)4L/L/0$ppwOorosvotCL,Col4I)IL/L/)0ppwKloeclcCLececceclecIceIILII0$4Iloo/laoI)IL/L/0$ppwI)IL/II0)ppoIlIL/L/)0ppwlliL/LI)lppwIILSIIOO)1000/0)0I)ILILIl)0ppa).)IL/LI)ILIL/Slppee$.0ILIL01ssIlo4eretutTeuyeteiuCeeCoefflciesc~ILILI'pICJ4ececucpceeevceCuefflclesc~IL/LlpelHO4ececocOesslcyCoefflclewcIL/I/0lealQupplecCuefflclevc~CLILIy-0.)510-i-).I5IUeo.l5IoCI.O5lo-0.1514'-S-0.~514-I.U510-I.ls14-0)514i-)o)s1014.)sloiei.o~10-0.15IO,'-0.~5lo-1.4~loS-I.)slo4.)~Io-I-).0510)5loi1).0510eo.o)cv-0,)4-II510SI~~loCO.)slo-).Sa10-0'.)sloa10icoW.IOco-0.)0-Islo-S-I.O51010.)14i).SaI~W.)sIO0).SaIO-<"40.$a10)-).Sa10-Is14Italo)COlafCCTOaCow.i<<Tst)ty)1COUL0)qulaTIS)ttSCouposeocOeectocVeee~IASNSillClotsiAMlllCluesiAs<<LIllCloseiL4tlllCluesiAa<<LIliC)0500I~IiOgi I'Ael.kI.1-1(CUOCIaaaau4)QSt5<<ENCEQa<<ILI.QC.GCIENBA<<tILHCWIITSIANQ1~INil.CaaaXH<<ISTATIONUNITSIA<<D1~<<el.I~lafINDILIItOINTI)~IMP!tOINTWACOl<<IITS1ADD)il.DaDOS)OS'$WWNI."IW44NI,SfssaCeaefafucSlTaahsSIJO~9NI~llSlJsLSNEIllCluesALSIO'.IllCloseCsACNEillClassALSILIllI:lessCsASIAIllClassALSIO:IIIClueCoASNSlllClass0astsillclassCoLOSlllClassANhSlllClaraCs90tfsssuclsocSlI'fsuwlsocQe)I~ITeohLSISCIllCluesCLONklllCINvsCLSNEIIICleesCASNSClueCLSIQ:IIICINvsAACIDillCluesALiNEIIICI~esALANSIllClsao0ASNklllC)asa0LSHSCloseletcossuclcerSelecyValvesQesclocCuulsafpiplsSI'SINCItNDSSIQItLSLNETSSSOyTIIK<<EAAIII<<COOI%ITSTSTC)IliNElllUSAS~Il.IASNEIIIUSASQ)lILSNEllluiAS<<)I.IASHcIllUSLS1)l.lUSASD)l1949$919).9599104101101'0)104I04ASescfsftCIOOCyNe~COUCpuf~ICICSesccoctclasryNeerOaacpuc~Dcu/IacOpscsCIOStressure,pslSSoeccoc)al~cTestocscUCOSesccofOalclscTespscscuf~NosherolloopsQes)SOI'fossuco~psi<<DNNISaTssperscuceatNCJCONC~CICfesCtressure(AIIJ)~psISCuolssrVuluao~isclu4INSycsssaaclfsc,cu.foc~ISeoccalctluvaspaIucslSeeccoctlovIh/eect<<INCITLkOESICNO'ASLNLTS<<SOyIIIE<<CALCU<<VESSLI.)l$411,094s10ll)5S)4.)$99.114<<$454)IQ)IC~ll,All)SA,QDOII~ih51l$011,09Us1011)55)4.1$94a)4145$<<50)IO)ll~)INQSP,Cyy))I,lo')SS9411~14ll)5$41594.0414<<$450II)0I)aAIXII)<<,000ISI~.551~Ia10ll)55$).5410.1145$F50)1144450)SSISOO1)00)500<<10ll)5540.140)a)1050111090ll14$Htacscl~ISsuessochsrsSseI'shia4.1-1SessosechoesSeoTO<<le4.1-1SA-)41CCOJO~,lovallayareal~lacscssllycla4vlrhNUNCOOIClcsc~IlilsoaOCsoiSA-)0)Cra4OD~lovalloyscca)~lacorsallycle4vlchsaaoCoalrlcscalalssaaces)SA)0)Cr~galovalley<<Ce~)C)alar<<a)lyila4vlihauoca<<)cia~ca)a)OH<<f+IOAID)IOS109110lllDNOISOtreasurestel~DsellsTsapoCOCaaCo~tOpsrocls<<tfsssuco~poISlaelJsDlsaeC~ColShell~laoOUC~IJODloasforLccoeoNucflss~IN~OverallNNIS<<ColVesselASaclosuceNeo4,IC-IO.)45$450l)1$I)1)A)-)/IS41-9))/ISl45$4$4111$I)))A)-)/IS14554SII1)3$I))lAl-)/IS4)-91)/)1(QNICI)4)V-II/104)-915/IAIlhalc1)14554$011)$)1).0144I/IS)4554$011)5)55.5)Q41$IllHIalaaCIO4Thlchuoss,CN.)hsshellOIJoolIhoscoso<<esse~cofcusioaascu5/))5/11Chefs9ulfsavCsIuCClassAvesselses4INsoaCeaps1eepsfaICCO4alo4ocCliofuloshhoC)5/)1ag5CC~~~~IoJ0ll ZAibNl<<lI(Cunttau<<<<d)IISl)4ll)IISIIfl)0,l)ll11ll)l)l11$TubaNacofielShe)INutpri~IfuhpS)QDes)Sotti<<euro.CellfuhoSideQe<<ISOTuaturetuteaTuhpSideDesitatlovllh/hrShellSidsDOOISatceiiuco,pellShellSidsDealSOTiapitaturo,OpefaCIOStfseeutTubeSide~NuatuilyiISOp<<rat)oftressure,ShellSide<<Nails<<a<<pulSMaalaamlhliacufs~IOutlieacCulllead,1Nydtaletetlcfisctcisewi~Tub~Side(cold)~paiSCNINCICALDCSICNtASAHCTSLSGtTUNSSACIONCOOLANTtt)tf1l)4NuahacoiUaitil))TypoIlsl)S))0lllI)1l)lIlll)$l4etsattieiuto~piigDueliaTiapetatuto~fOpiletiaStressure,Nualuil~piISSuccloafeepetstuce,Due)enCapacity,SpaDe~ISONeed<<ic<<Nydtoec~ClcTe<<Ctreasure(cail)~yeISIbltorfyyaIQNatufNitlaS(uaaeplato)CSINCICALDSSIQItASAUSTCSSOtTNSSCACTOSCOURANTtlI'ISOSSfSSSNCNkBMKgyl+lyALDKSICNI'ASANCTCOSOtTUSSTSANLLNCNATOILSl)1NuaheroiUaicoll4fypyDONAIQC<<CINSUINLCANCIANTUNITSIANO1IJggll.<<<<I1<<<<4VittlcelU-Tad~vlthIac<<SCOI-wlecucaseparator'IacouiICath<<aSteel)lSS450)).0aIUlOSS400ll)$IOSSidi<<ISa)I/O)IO)ViteIcal~~IOSI<<~C444radialSlavvltlabutte<<~uccloa4ladIorlaoutoilluchatSO)ISS45011)$$)SSS<<$00~1))IIO)AClaductlou~IOSIOspeed4000NtZIONSTATIONUNITS'IANO1I<<<<<<<<a<<<<<<<<<<I<<<<<<<<4VitctcilU-TuhivithIutictal-wtetutuseparatorlucaaalCalbulaSteel)lSS4$0)).0aIOIOS5400113$IOS5(diaISO)I/4)IO)VittIceI~~IOS)i~talecadialflouvithIotcoa~actteaeadI<<utica<<Colaliiclaarjo1445450113$$)S~),$001)))I0)AClaductlos~lail~ipiad~Ircool~<<I4000NtINIIIANtUINTSl0!~<ALE4ViftIcal0-T*ivithIutuSCOIaol~twiseparator)atua<<ICilbuaaSteel)lS5450)l.ialuIOS5$5411)$I)OS.1I/4)I)04VtttIc4)~<<IOS)o~tiSef4dliltlovvlthhoccoaiu<<.'ciaosadhuticoatsl~IacbofSO14454$0ll)5Nb40,000151)IIOAW)adustilelugli<<peedtOINfSSACNUNITS)ANQ1VifticplII-fuhovlchiateScs)-~otocwosapefacoc)scsaa)Cal)asaStool240$45011.4aIOl045N4)))5IO)0I/O))ID4Veriteal~~Iaglo~taisc4diolSlavvltghoccoa~uclle44adhoflcooco)dlechatSo144$450111$5$).$~0<<0001$$)II0AC)aductloa~IOS)~ipied~Itcooled4000NtII<<S<<SUSIIMQg)1forties)II-f+vllhIOCOSTeli~4)et<<ce04ycgpcuflacose)Csthw5C4<<)140$4$0)).0s)0~)04$$$4111$l0101/44VoctlcolaslaSIOscaSocodip))Ivlthhalloa~wclw+hericwcs)diechorS0144$4$0111$$44.$~4,$0014)))IDAC)44<<cII>><<IOO)e~~iccoo~4ON)lgll)l)Sl)$IIOIllliatarielNutASI.D.~Ia.ColdLip-I.~.IIa.~atvaeutuapaadSteanCtaeratur-Deiilotfoiiwo~piiSl<<D,~SisTable4,)-l)S))-I/1144$SiiTahl~4.l-llp1)-I/1)I1405AuatuulttcSS)S1)-I/1ll140$AwCeaitlcSS)S1)-l/1)I1405AusleollioN)Sl)-)/11)144$}}