ML17334B158

From kanterella
Jump to navigation Jump to search
Crane Seismic Rept,Cask Handling Crane,150 Ton Capacity, Existing Bridge S/N 10038,New Trolley S/N 12124, Final Rept
ML17334B158
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 08/21/1987
From: Guminski R, Mcmahon M, Zacharsasz A
WHITING CORP.
To:
Shared Package
ML17334B157 List:
References
NUDOCS 8710140086
Download: ML17334B158 (468)


Text

ATTACHHENT NO. 2 AEP:NRC:0514M

FORM N 2493 CUSTOMER AMERICAN ELECTRIC POWER C.O. NO. C6884 REQN 79604 HITING CORPORATlON 8- 1-87 MJM QQLICTIQN ENGINEERING QEF3T. OATE BY HARVEY, ILLINOIS 60426 U.S.A. +

AREA CQQE 312 331-4000 PAGE ~ OF Rev 1 MJM/ASZ 9-15-87 chkd RGG WpW 3-'7; 3-22,"4-111, A-l, C--3)

N (PP "P

l P y* t Attachment No; 2"to- AEP:NRC:0514N:- P 1

.CRANE SEISMIC REPORT CASK HANDLING CRANE 150 TON 'CAPACITY EXISTING BRIDGE, S/N 10038 NEW TROLLEY S/N 12124 CUSTOMER: AMERICAN ELECTRIC POWER CORP..

COLUMBUS, OHIO

.INDIANA 5 MICHIGAN ELECTRIC CO.

FOR ~ DONALD C COOK FACILiTY BRIDGMAN, MICHIGAN P.O:NO.: . C6884 SPECIFICATION: DCC-MH-105-gCN Rev..0 ..

P DCCNE-101-OCN Rev. 0 ar es on+an M. McMahon

~"<lQTKRED PROPKBHl" E."..::::..";-:: ~+ Staff Engineer 6 ---ILLIHG"R ... GR-.33~~A',

,BY Zacharsasz ng ne ring Analyst BY R. G. Guminski Engineering Analyst

4 4

V

gy MJM pAQp ii Qf i 1 1 ABSTRACT The equipment reviewed i n this report is an 'lectric Overhead Crane.'. The crane is designed and rated for a capacity load of 150 tons on the main hook.

The crane was analyzed for the resistance to the specified Operational Base Earthquake (OBE) and the speci fied Safe Shutdown Earthquake (SSE). This was done with a load of 50 tons and no load on the main hook with the trolley at mid-span, quarter span, and end of span.

The crane was mathematically modeled as a multi-degree of freedom system of node points, interconnected by various finite elements.

"ANSYS", a large scale general purpose computer program was used to perform a static and a reduced modal analysis. It was found that excitations parallel to the runway (Y direction) would produce slip. This excitation was then proportioned to produce a maximum Y reaction that would not produce slip. Those components not directly analyzed by the computer program were manually analyzed with loadings from the computer program.

It was found that the stresses in the principal structural components did not exceed the allowable stresses with a 50 ton load on the main hook.

FORM N g494 WHITING R EON. DATE BY pAGE ~GF TABLE OF CONTENTS SECTION ANALYSIS OESCRIPTION

SUMMARY

OF RESULTS .

GEOMETRY SECTION SUPPLEMENTAL CALCULATIOHS APPEHOICIES

'XCITATION ANO RESPONSE SPECTRA, NATURAL fREQUENCIES ANO MOOE COEf FICIENTS

SUMMARY

OF COMPUTER RESULTS CRANE S TRES S ES, REACT I 0 NS Ei. COMPONENT LOAO I NGS NOMENCLATURE, REFERENCES EVALUATION OF 55 TON LOAO

FORM Nogg9g WHITING REQN 79604 PATE 8-21-87 PAGE 1-1 pF ANALYSIS DESCRIPTION The crane was analyzed to determine the effect of seismic excitations.

For this analysis, the matrix displacement method was used based upon finite element techniques. The crane was mathematically modeled as a system of node points interconnected by various finite elements representing straight beams. All masses and inertias were distributed among the nodes whose degrees of freedom characterize the response of the structure. The interconnecting finite elements were assigned sti ffnesses equivalent to that of the actual structure.

The mathematical model represents as accurately as possible the flexibility of the bridge girders, hoist rope, and girder end connection. The trolley, the drive units and the bridge trucks were represented as ri gid bodi es.

The crane was analyzed with the trolley positioned at mid-span quarter span and end of span. This was done with a load of 50 tons in the high and low position. The crane was also analyzed with an unloaded trolley at mid-span, quarter span and end of span.

The dynamic analysis was of the mode frequency (MODAL) type, solving for the resonant frequencies and the mode shapes that characterize the crane. The modes with meaningful participation in a given direction are directly expanded by the computer program to yield the expanded mode shapes, the element stresses and the reaction values. This type of analysis is linear and plastic deformation, sliding, friction, and slack rope are not taken into account.

The amplified response spectra used in the analysis are shown in Appendix 'A.'. These include the three orthogonal excitations for the speci fied earthquakes. Also included in this Appendix are the mode coefficients and natural frequencies for mode shapes considered.

FORM N~R494 7 9604 p<TE 8- 2 1- 87 BY G>A l4";n PAGE ~OP Impact factors for wheel flange to rail contact, etc., have been f

considered negli gi bl e. The state o the art today i s such that these impacts cannot rigorously be studied; however, independent time history analyses have been run in many cases, all indicating slow relative motion between the rail and the wheel. This is because of the time dependency of the forcing function coming from the building into the crane. Note that the only coupling through which these forces can be transmitted is dynamic friction. Upon reaching the rail the wheel will first rise through the corner radius and then contact the rail. During this period, the structure is starting to deflect as the end of the crane in this direction is flexible.

The computer analysis was performed using ANSYS, a large scale finite element program.

t

/ 4 A

FORM N 2404 WHITING REQN. ~~ ~ DATE BY ~ + PAGE i OF T+8I Z t-l M OOE COZFF(CIEWT JI@gtP lehgCE Exc,~ vavrotv Diamatol d40 EQ Yl Ig .Oo5 .aoob .O0OS I/q .

sos'oa5

.opal i QO.I END ~ 002. 002-Ho LMO Nlg .009 .Oooo , ool I/4t. rOM .os r QOZ.

EHD .ooS ~ OOZ F 00'f

FORM NiliQi w~~~~NG agan 79604 Dpzp 8-26-87 I- t

SUMMARY

OF RESULTS The crane was mathematically modeled using finite elements. On the basis of preliminary runs, the number of degrees of freedom and the si gni fi cance criteria foi modal expansion were adjusted. 'tatic and three load step reduced modal runs were made and the results summed. 'ecause slip occurs, the y excitation was proportioned and these results summed again.

crane was analyzed with the new trolley at mid-span, quarter span

'he and end of span. 'or these positions the analysis was done with a 50 ton load on the main hook and with no load.

Tables 2-1 and 2-2 summarize the maximum stresses in the members from the finite element model. Tables 2-3 and 2-4 summarize the maximum stresses from the manual calculations using the loadings from the finite element model. All stresses are within the allowables required by the job specification with a 5O ton load.

Table 2-5 summarizes the buckling stability of'he girder web which is also within the allowables required by the job specification.

Table 2;6 summarizes the rope load from the finite element model.

Because of the seismic acceleration a slack rope condition was found to exist under certain conditions. This cannot be truly simulated with a linear modal analysis. 'owever our experience with time history analyses shows that a modal analysis tends to produce conservative results. 'he rope load predicted by the modal analysis is well below the allowable rope load.

Table 2-7 summarizes the maximum crane bridge wheel loads. When the excess dynamic rope load (that which produces a slack rope) is deducted, a small upkick is produced by the loading conditions examined. When the wheel loads parallel to the runway are compared with the vertical wheel load times the coefficient of friction, it is found that the crane bridge will tend to slide under certain loading conditions examined. This sliding is oscillatory in natur'e and the loadings predicted by a modal analysis are conservative.

The reported wheel loads have been adjusted to account for frictional effects.

Although some non-li neariti es are produced by the speci fied excitations the speci fied linear analysis will conservatively predict the behavior of the crane during a seismic excitation.

I I'i

79604 8-26-87 WHITING REQN. OATE gY MJM PAGE 2-2 OP 7

Additional information on the response of the crane may be found in Appendix 'A'.

'he crane was found to meet the job specification requirements for a seismic excitation with a 60 ton load on the main hook. '

4'4

<c J

t't 5'~

FORM N R494 WHITING R EON

' DATE PAGE ~ OF T+aL~ 2 ~ OGE I~gqy ~< M AW~u< SWE55 P no& CoHPUY=Q OUTPUT 4gcow

~~ ~g~T True/ LoRD ELadetlr IvoDE H'5 I 0 Ql W~ A MIQ SO ON 2. 8 I2 eel 2.%,

2.'t.O

~

'TO 5.IAQKR glu go nial g2 ~

guy TIE'HE M IQ go 17 I Sp Z,R.O ~ Q zs.o 5'5 pgp Tip LIE 2'ND Qo L5 'f ~

P~g ~~~ Q~A145 ~ ~ ++CLED 8 T+gt p 2 -2 SSE QF'~I hrtlJA CTRL FRO I MWPyVZq dy~Pu7 CdMMNEhlT TRo~ L.oAO. IVozg

<<tow Yd J

&IgcEQ A MIQ Ohl 2.8'L QI2 3/.5 BZ>>7 ~ 9C 34t 32>>7 ~ 'T0 pinot 8 810 5o os gNp TtK R H IO So U~ 11 159 ZO3 3%~7 ~ 42s QHQ Yh= LHC ~AD HQ 78 2$ 't 23. 4 32>>7 ~ 72 A OOI TlCWAI DETAILS 5E~

h=

~i W%

FORM N $ 494 WHITING REON. 7~> ~ 8-Z< ~7 PAGE PATE GF~

SCRAPY OP hfaXICOM S74855 P<OH SUPIPLEMENr+RY CALCOLREOAJ (FOR.ROO1TIOAÃL DC>+ILS SCE: REFEREAlCCD PREEN')

C PMPOIJEN T DEVIL. pwca 5TAE'55 3LLOl4', EPEEEE first ) CKS/) he(.04.

&ID&EA)HE'E/ Fzw~c E Sesza /F3 Z1.2 0.06 8R/oGC AxLE SH8+R 0-I5 4',8 2g,8 0,28 luau S 'u&

BZID&C TsuCW SZISeC P/.4TE'u6 SHE'AR IENSloAJ

+/8 W-/9

/,/

.Ss

/4/+

24E 0 gi08 GZ3 PA( Seeded 4-Z2 /15 /Zi0 8,/3 k'E.LOS 4-H 3.8 zo+ g/g DOC,Mi 7E@&eg 4-26 /08 5/ 3 0/8 PgLyS SHE'AR s.9 BS.8 e,/9

)BR/QGE'RUCK 7Enl SION 4-Z9 //e 240 o,e8 SesAq. 0-25'-44 S,/ /f.9 0,5@

7RuCK 7o 5/R~GR BC LrS ZZ/ 34,Z o,76 gELD5 7,9 Zo,O 0,40

&~OCR rO ENO TIE 8OLr~ 4-79 28 7 36'. 8 0,78 eSLDS +88 /4s 0 28( 0 0,70 GIPON EL05 4-e4 /gi5 Zo,O g,53 CIROEP EAIO Sh'EAR 4-/05 /o,z /gag OF7/

SELDS 4-/OS /2 0 Z8,0 O.NO

~r

?f'.

h(

V I ~

r r

~

~

rr r P

p ~

J 'r g

J er aP at r r

ry r j r J

J P ~

r~ J J

r r

g r j f

~ 'g

~l

FORM N f494 WHITING REQN. ~ < PATE 8- ~~-8 7 GP~

~

BY PAGE

~uzi zp SVMMAfP~ OF 8+CKLI&G 5TABI//TY FROM SUPPLE'M9'AJAR Y CWLC UC.~7/GA)$ .

C ompoaGuT'TAB!// FAGER GR

/Le.oQ. SrdeuTP

/AC I"OR, 44',

GIRCeR P/E8 Oem 4-/o3 g, S97 01 687 s&E 0-/D3 e.876 6 9o9 FiPR WODITIOIVRI SE7A ILS SE'8 RZ~E'NEh/CED PACE.S.

st 1.

CORM N g49g WHITING REQN. ~~ + QATE A'-Z

  • Z-7 IP ZCMNAPY CF PlAXefu~ <POPE: LeAD

')

(IciPS 7RQLLEY Lotto $ 747iC Sue DIFFER.

MiQ. De /ZO 0 347.3 -/27. 3 MIO DN /20 0 583 7 Fyg ADOII70$8C. DETAILS BEG THENCE 5 94/ gg 84 P

,~ 1,1 1 g

FORM Neg4gg WHITING REQN. 7~+ ~ OATE BY ~ Z PAGE ~ ~ QF

/87 7>ere Z-7 Si>r~~~zy c- Rzx(num S~ez( Plass (K<PS)

A'x~~~ Nreex SE/>PIC lo&

+a~ LoAQ xr ilw-DN Are Ar Euo-bN Ar i/< Dp/

Op/UQR (O/j Z<l F9 t7g 6 7/ 2 (0/ ER /3g / /Q6,Q 2,7 k( ENO"AJO

/gg, ZOZ g)RJ V2R

/0/i ZO/

O,t

FORM N~2494 iTlNG REON 79604 PATE 8-21-87 BY M"M PAGE 1 OF 24 Cor~ ~-'-~i GEOMETRY SECTION The equipment analyzed in this report is an 'Electric Overhead Crane'hich is designed and r ated for a capacity load of 150 tons on. the main hook. This is based on using the new SFP design trolley (S/N 12124) on the existing bridge (S/N 10038) after recommended field modi fications.

For this analysis the li fted load is limited to 50 tons and a hook appr oach o f 10'-3-1/4" when loaded.

The mathemati cal model o f the crane with node numbering and global global coordinates is illustrated on pages 3-7 through 3-10.

The boundary conditions tabulated in table 3-1 are selected to provide the most realistic linear approximation to actual conditions in a seismic event as follows:

NODES - 101, 102, 201, 202 UZ: Simulates wheel to rail contact in the verti cal direction.

NODES - 101, 201 UY ~ Simulates the drive brake whi ch is automati cally set and which provides stabi li ty paral el the runway.

1 NODES - 101; 102 0 201, 202 ROTX: Simul ates the di fferential wheel loads of a fixed bogie truck subject to overturni ng.

NODE - 124 UX: Simul ates wheel to rai l contact perpendi cul ar to the runway.

i W 1i 4

FORM Ne2494 vvHiTINt- geog 79604 pATF 8 7* 7 pAGE ~EOP The other restraints of nodes 123 and 124 were selected to simplify the analysis.

Those nodes whi ch are coupled have the same displacement in the indicated directions only. Their displacements in all other directions are independent (released). This coupling is used to simulate load transfer between various components and is tabulated in table 3-2.

BRIDGE TRUCK NODES - 101-121, 102-122 UX: Simulates the load transfer from the bridge wheels to the runway rail perpendicular the runway.

TROLLEY NODES - 391-401, 392-402, 393-403, 394-404 UZ. Simulates wheel to rail contact in the vertical direction.

NODES - 393-403, 394-404 UX: Simul ates the dri ve brake 'whi ch is automatically set and which provides stability parallel the girders.

NODES - 392-402, 393-403 UY: Simulates wheel to rail contact per pendi cul ar to the 'gi rder s.

tt qr

'P It

!:i

FORM N 2494 WHiTigG REyl 79604 PATE 8-21-87 BY PAGE QF 2 u.>'zzV z7 The master dynami c degrees o f freedom for a reduced modal analysis tabul ated in table 3-3 are selected to obtai n those modal s hapes whi ch characteri ze the'ri nci pal vi brati ons of the structure. Placement is such as to include coupled modal shapes due to eccentricities. Higher degrees of freedom were not included because they will not contribute si gni cantly fi to the system response. This can be justified by the responses obtai ned.

girders, and the girder end connections are modeled as

'he uni form beams. 'he rope i s model'ed as a spar element whi ch i s capabl e o f supporting axi al loads only. These elements have the properties of the corresponding parts of the actual crane. 'he trolley, the drive, and certain short connections are modeled as rigid members capable of transmitting loads only. The bridge trucks are simul ated wi th a beam to simpli fy the wheel load analysis. Lumped masses were assigned to represent the..masses of the trolley, the bridge trucks, the drive and the wheels. Additionally the beam members were assigned distributed masses.

The trolley and drives were modeled as rigid members because past experience shows that components of this type are very stiff structures with high natural frequencies in excess of 40 Hz.

The simulation of the restraint of the crane perpendicular to the runway is modeled on only one side consisting of a linear spring and two rigid beams capable of tr ansmitting the load to the bridge wheels. The spring sti ffness is selected so that the resulting frequency of the x mode yields an acceleration value from the high frequency region of the response spectrum curve. The resulting loads are distributed to the two runway rails by the 2/3, 1/3 method. The reason for the 2/3, 1/3 distribution is to account for manufacturing tolerances in whi ch case one end o f the crane would tend to contact the

,runway rail before the other end. The other end would however carry a portion of the reaction due to frictional resistance to sliding before flanging of the wheels.

Although cer tain simpli fications are employed in making the li near mathemati cal model, these simpli fi cations are i n accordance with accepted practice. Such simplifications are employed to provide a model solveable with available resources while predicting the seismic response with reasonable accuracy.

  • 4 I

1 K J4

/O-0" SHEE'L BASE

/DLER TRUCK 6/@DENT B (~A~T)

TROLLEY Ml//hl 80/ST 23'-0" DR/VER -DRUM 4

/t///EEL Z/VO T/e AXLE /DLEQ kXLE BASE C.70C.

GIRDER A (ee>r) 0

~l 4)

I Giw/LE DR/v'E bR(VER TRUC K (NORfH)

REDO R NALY H %HE Csoorg) 7y I all SPAhl

+m

~N 0 Il x

z H

D C

CulaL.coS ~~t~ p' ~l ti 2CICCi C+ C I~CI I I

CaiclllICC CoDLQLCOID SCOW 60L<CC fhcK o ILSQLIDIIDICS SD II,P. mgoC.

I IQDD cl.an, Faa c sec g4 teDLLSg SICC ue A

~

LW eleclLe D.o<'h MIL CDLD, QDDLLDQ Ll~lf twlSLS QCDVCQIW 40v 00 saloe' I Delve 4 II +Col 4 DLg.o 4.O-,DS QLCID '?D.42 CD L bc/a CODD ICI C I

cLDotcL. 4c&

0

~C.f J C+S CD DC Cr+, QLW CC tLC Ca t .o CTD Q~v QLCL CCM CtOLIQ cf cleoecL C~ ~-Imae) fCSTDDCCD LISia

,4L44(O)4'D CCDCD

, ~

~. QLL L*SIID (~4 Q~) t CLCS IC, QDL SIIO (margi Chtf) zr m

apace a) ace rcaccc CLce oeo o z z

4)

~ m O

JZ QpMEpAL ARRA~~<HKNT QF OhlE, MoTGR RIDG

>o pm 0

~E. CI ~MPER, IE la 'PRES Ie-io raeS I5- 5'lg coaP. IQ.- 5'/q cevP.

I IQ &

I

-I 62 QIfM ~O&.

E~~%.

CRUD%

E~~ g C,CZs.<E. 6+'P26MK

'5~I2PI $ ~OCCAM 'it2RQODCJ LYCH fTKIXC~Ka.. + 8-47'B3

/

Q. I oP M+ Rc 6 C' lFa Q4 II EC~C~I~

Di~&~ XAPCQCDA~~

]Pi "AT-93,+IZQClC. RRC.

Ql QQKg.l.g P.S. OjITed 'X-o gXBWO I qa.~ygC~ C:

GIDDIER. A . Giaaaa W. z I5 Cjs 4)

C fpG Ng Q

. U(EQ A-<

BR1DGE END ELEvATloN QJ 0 O'I m

.I 1'I I

-1: LU z

IV lO

GLoEAL DIR<CTIO<~

IDLER TgUCK 255 204 254

&9 3e

'365 END TIE 25 202 s4 404 DRIVER 39/

7RUcK 252 402 203 392 25I TROLLEY 407 56>

3IS ll 3e2 &I 3IS GIRDER 20I 3I4 I gl 403 406 359 593 (vP) Ma i

503 40I SSI T50 35? z G) 5I2 GIRDER II iAi 3 I

IOe g mz 502 I53 3IO 309 102 307

!22 3o8 l52, 3oe soS ISI 50I 302.

GL06hL CRI+lh)

HAIHenWTiCea MeOeL ~F C  ! l03 IZ3

>o I

I Y I24 ~m 7RcLLE}'7 iD-SPAAI l wo6 IOI RHE (DOLPH) 12l

IDLER TRUCK 255 259

>a END TtF 202 fiRIVER (TRucK 205 . 251 GIRDER.

tel ie>

3IB 17

%f2 Kl aIS 402 201 f 39'2 359 MS >Slz ~ IS5 503 3Se TS9 35?

6IR0ER 35m

'A'93 406 (ui )

log 502 310 40I 305'07 153

>91 3oS 102 i t22 307 IS.

ISI f23 MAreensTicac ReoEL, DF CP~4E I

7RGLLE } AT QvAi27ER SPAN lol RHE i2i l 406 (Douyv)

. I t

V IS

JOI.ER TR U~

Kyoto 259 36 365 END TIE 25 202 DRIYER 252 (TRucK 205 GiRDER lp}

sew 3iS i7 he2 Kl sic 20I 39+

503 3I9 35t}

~

358 M7yc};

.3S6

}02 T5$

l55 35? z C) 012 CiiRDER 353 BII >p, 3 In IOQ m

~

<06(vi) 9 502 153 3IO 403

~g3

..I 3oa no) 122

>>7 I l5P

~ . 3o>>~ 303 lsl 3o I l23

/ATeehATicAL. ReaEL az cuzus lan >oI I24 lO m IRaLLZY aT EMQ WrH LoAD lol RHE (loI+ 'e o~ -A}eao~ce) i2l I

1 IOS (a ogv)

IDI.GR TRUCK20 255 20 259 369 36 pe 365 END TIE 202 9RIVER

/RUCK 252 203 251 p

sic glROBR 201 1pl <05 314 ~359 35S~> ? gee 3~2 l55'OV

~ 3M t5 ll 503 35?

353 W2 gIZOER ip,i IO~

153 502 310

$ 03 309 393 122 152 ao7 3o5'5I 303

~g 501 3o l23 10m HAIHENATiCf}LM>~pg oF CRAnJE lol RHE 7RCLLEV 'AT RISHI HAND ENID IZI PVITHODT LOAD 7'-8" Move APP<DA<H)

"Qt4I I

4oa t'll I ~

Cg-

~at

FORM No2494 WHITING REQN. ~~ + DATE BY +~ + PAGE ~ ii OF

/~+8'5'/7

/PUNT~ Py COt4 bI Tt ON $

Nally( .g I7R Z.KRO 0 ISFI ~KgB(T IH THE CNOI&YcQ 0 IRKCTIbN ~

TRAI45LArT]0 hl AQTRTloN Loe+TIeg Hood 0 X UY U~ WTX AoT'Y Ror Z-QnseR~M> I Z. t x OC x Gg 'PRIE. IZB X x x T~ee,O 8 tol x

~Z 'R IOZ. x X TFImtr, Q~ L. 20l X 2&2

'X pity I TaeL~

COv PLED hl OOPS 8 OOE'5 wl~H- KQVAl QQp ~E~ EblT DIPL KCT'I ON I 8 TH-6 ZNGlCATEQ QO OE5 T Ff&M5~TIOlV f2IOY+T'loN'Y U Z RoTY I 101 Y ROT z.

~PRltC I0) )2 I x IOZ I Z,K x Tao~ f +0l 3't l 0(

902 /92 X fo3 393 x f0+ 3't 'f X

FORM N~2494 WHITING REQN. +~@+ + OATE BY J t pAGE OF

~ 1'2<87 TABLE Dy'w ACMIC. QEGRE~5 c3F @Ego ~

bh~g Noo E5 Fo9 RCOUCEO HoOAL < hlAL-YS(5 ParE I t4 Knloi~ rKO Oin~T'lO n(

~ TRAKQ-RjI 0 N L~TImC H Oaz 80 '7 Ql 2 3IQ X

&wogq Q 35/ X 362

)C EH0 Cove 8 ISED X L 2.5'> X TRaa~ +07 X X LOAD +OP X DevE t4eH So 1 X 5o z. x X So>

n SYMMETRZCAL BOX GZRDER PROPERTZES PROGRAM l07 PROSIAM ID I-A- I-04(ol liNITING REON TT<O< DATE C-8-87 BY Nl " PAGE 3 /3 Of 2.-",

ONI&lNA L. &IRDRQ

~ t

~ 1

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

107 ~

.i

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1 ~ 2500 1 'A

~

~

1r ~

" Ct yl/

21 '000 2 B

'E

~

I 93 F 0000 3 C

~ r O 0 '125 4 o .Bt2.$

rgr ~ rAAj, 17 '00u 5 E le tqpTrrAE>>

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

15ga9n 6250 3E31< F 1753 fURQNY~',

6I2a5 ~ 1928 ZZr 598 '597

'8,;~

'4+8,'P 110 '250 jjwfP(%

16IV 80 ~ 3 61> TORS ZONAL CONSTANT (K)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

GlRDER END FRPGRAM 127 RRPGRAM IP 1-A-2-06 (Papal i%I TING T<GO" 87 SECTlON PROP'ERTIES E SV>>~ REqN pATS RAGS 3 -iW G

$ ECTION "ce- "

OR SZ58 7 ORIGiNAI Q IlTOS R A =.I.g gi7)+I %(at)~2(gaS)(7a $3

+ Z,ZS.'U) = )Os. I E

C x 4 x4ANG.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

117 '

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

GIVEN DATA

l. 72.ZS DIMENSION A (IN.) 72 '500 2~ Z.l DZMENSION B (ZN )

~

21 F 0000 3~ ~ ~

). DIMENSION C (IN ) 1 '500

a. vd.S'.

DZMENSZON D (ZN ) 70 '000 0 '125

~

3 l ZS DIMENSION E (ZN.)

6. 7, DXMENSXON F (ZN ) 17 0000 F
7. l,zS DIMENSION G (IN.) '500 8i '

9~

10.

lsC

~

l ~ CB 22 m DZME¹ZON H (ZNo)

DIMENSION 8 (IN ) (Y OF ANGLE)

DIMENSION K (IN.) (2 OF ANGLE)'-

1 0 5000 1

1 F

'800

'800

11. <.7 5 AREA OF ANGLE (ZNo 5 '500
12. ) MOMENT OF INERTIA OF ANGLE(XN- ) (VERT,) 19 '000
13. l . '7 MOMENT OF INERTIA OF ANGLE(X&)(HORZZ) 19 '000 COMPUTED DATA Z>y(ZN. ) (MOMENT M OF INERT+M OF SECTION) 62084 '136 Y (ZN.)~ 38 '003 Zx-x(ZN. ) (MOMENT OF XNERTZA OF SECTION) 891877 '612

lp FORM Ni9494 WHITING REQN. ~ ~ DATE l~

-F~<TIVE ToRSIONAL Pngpgqyi~ Ay "gg" (Ii OWSZ iC)

J 2 (.ZI Z5 I.Q) ]7.$ l Zg 76 )

7l.2 Q ~ I'V.C ~(QI) - I.l.5 -.CIRE CFFECl IVE Psascqv>Eg > 9 T4+MSnranl (" ~

I'P t A= ( llo,g ~ ll0.4,(f03.]) + !03 ~ I )/Q J0$ ,8 I/i +

Z~ i-8'>o< (~~)'(~'tm>>> (i~amo)(gsso)+" (isgmyzg~qg>> @~

I 2. l soo in +

Zyy 47.SS+ ZSS S COeV) +. (<<><)(COB'I) 4- (40SQCOS9)>W C08'f

)n"

~ <<44 w

. ~

~ 4 VP t

&lC

FY"--~- 1 SECTIONAL PROPERTIES PRDGRAM>>4 PRDGRAM iD i-A 2-5(044)

UP OF ROLLED & 'HIT1NG REQN 7TGON DATE G-B-B 7 'BUILT RECTANGULAR SECTIONS ) m BY N4 J T PAGE J /6 OF R LENIENT ELEMENT PROPERTIES/ ELEMENT T'fRU MI0 NO. DIMENSIONS CENTROID ROLLED i Ai Zxi Zyi 735 '497 30%

2. 7.M + 't7 z.5.57~

OOOO 80'T (1000+i) Dy. Yi

,7S (0.0)

ROLLED SECTION (xi'yi) .Hxi Fyi)

RECT SECTION All rolled sections must be entered before rec~gular sections. To enter rectangular sections, end rolled sections with Ai ~ 1000.

Zn order to execute program enter a-negative value for 'Xi'r 'Lhci'.

COMPUTED DATA 14 '342 Distance from the ~ 'y'xis to the centroid of the section.

33 '500 Distance from the 'x'xis to the centroid of the section.

35 '000 Area of the section.

640-4002 Zx - Moment of inertia about the. section's neutral axis which is parallel to the 'x'xis.

3F242 ~ 3277 Zy Moment of inertia about the section's neutral axis which is parallel to the 'y'xis-

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ y P

\h s f g

  • 1 pA

~ 4P

~W N h

I 0

P SECTIONAL PROPERTIES PROGRAM>>< PRDGRAM ID (BUILT UP OP ROLLED & WHITING REON~>f<> DATE G 8 87 RECTANGULAR SECTIONS)  ; BY HIJNI PAGE 8 /7 OF FL'7 G lfEIOPZR Ft4G CdHHECTIOhl E<dS EZZZENT PROPERTIES/

DZMENSZONS ROLLED Zxi Zyi r ~ 't. q,'t7 a,07C 30.

7,35 l 'k'f, +. k7 x5.570 j gdO.

Q S8 CT (lPPP+i) . i dyi Yi

~ 7Q F 047

~oOQ t7.5 (0.0)

ROLLED SECTZON ~ (xi,yi) ~ rixiiyi)

RECT e SECTZON All rolled sections must be entered before rectangular sections. To enter rectangular sections, end rolled sections with Ai ~ 1000.

Zn order to execute program enter a egative valu fo Ai ~i

'OMPUTEO OATA 21 '219 Distance from the 'y'xis to the centroid of the section.

28 '812 Distance from the 'x'xis to the centroid of the section.

93 '000 Area of the section.

2506 Ex Moment of inertia about the section's neutral OI824 ~

axis which is parallel to the 'x'xis.

23,064 '974 Zy Moment of inertia about the section's neutral axis which is parallel to the 'y'xis-

yll rP'w1 r~

E

~ '

~ i i FORM Na? F04 WHITING REQN. 7 ~ ~ DATE BY t J~ PAGE ~ '~ OF SZSS7 E rt=EeT) vE Peot'aR Tl E'5 6 lROEQ EN@ QokNEd,TlOAI (Aev I, pp s it't.2.-+ "" >)

AT ENDS A= (83.75 a JJ)5(gJ.2a)a 'Q.ZCI)/g = CI Ol In +

Z<~ = (4'I0 9+ (r Voq). (aSZ0)+ gCVO.V)(i4&ZO)+>(CSO,SgIOAOy+ <OUZO) 5 Z>> = l'pzp2, + Q2.pz (zmcci3 + (azwi)(~ace) ~ vQ(mco + ~M)

) O870'n" f I I BcIvh To RJ >0NRL +4pg~g5 g.(.SW) fa9$ 3 a tq W Ig l ~

Sgtf+

(a o.a-c ,..(g-~>>,)

Pgitt + p 7'ig <AI 0 C SL 0) j

e. = f2. 3 u,) Oi +4(z~)Q)-g(g~ S>7t. 'I n (ttap + paoo,tal)ial, >2 4 +4 (>4 (I<)+4(2ZpQ X Jag(>- lg(z~~(>)w

(.RSC Z.)

r)bt .M~M~~(3a '~ -a.tta- aPttaX3)

I-t.Qa))

.3 ~ ~

f'X IJ. J a.~1%) (5 fta a) ~(3)$

( () )ag

~2, 2

75ayp In ~

y = (u,i) 3 7SOgo (IL<

~9x tD <<) lap~

0a)gga)7 <

.oaten)

'i'~~3 L.oosaaa it>

lO'Fu<a t- t,( aaaoat(ii) i OFI~RP hT EH D5 %8~3 In +

(Rap iai p 2.98 ala)

ri

'p t

~l l

FORM Ni2404 WHITING REQN. ~ ~~ DATE 1

VC K3 J

A= 2. (2.'7.7) 9( S) L.'7~~) = 8~.9 ) I~<

&.9l

~ z.7w9'f Z~ Z. (OZVO)- 'F t.'S)( 7V 7)(e.Ot) czar+

,$ 9o

~ >'f 7 z f fizz t3 06 z(-~)(~~)(~is)g In<

+ (n~ z(>>-(v vJ)Qv~3)

Ji= g. (.'tVO) (.7/7)(zC IC3) .9)~ in>

Z.C.'I I (.7'fl)+ 9.+ ('8 ) - f 7'I 1)

(.4)'Ram 9, p 29',v~g<z an, )

WHITING REQN 01009 DATE L. I'E'cT']YE Poor ER T'IEs oF BzANL5 TN +l~vL.ATE TRUCKS 4ieumTa W/ 8~

)7+

>I /z 2'7.

Y~-Y VQ ORIG%

Wa XOLRI%

Fo~e< Distr.C'pOH p (Qlf f4em III,~E I 8p ~)

pop I0 X

~ +MT'F~ +E

]07.0 Ill

4 0

jl I

WHITING REQN. ~~ ~ DATE

' ~ >~

By

'~g 2~ I7 PAGE OF FO< FORCE I 9 Z- OIRFCTlO>f

<<~~ g zi0+ ~~eiE'~ll ~<IS pI'I>)

JISM% 0 LOLLER 8 f P ~~@j ~4' tfLlk-

~IT'H)> ~ (Pal ~>'W

~~or J zg x'we = '+~ ~ = gp0

~ll Wf ~('off flitp y

) icrv BE@+USE WVE HOOEL. RZSTa4I VS T'H E'6>0~ Oil Sl QE Otl LY'rgQ TOE I OA0 IS ASDONIKQ'O

~ 0IgYRIOV YK7~ TO T4~ Rtfll'M4 f Otl + V3 RE'S>~TAVC<

RRTIO +0 <CCOU<T ~ +DR FRIC97oHAL T'8 K Ot4 RKS~Alt4'Eb u 0 E:

~7 oRll/O'Q Jc 09 Z~is >'I" Z,( ~0t g~ +7bg qgcq tn~

P j('l 0

I

fORM N+R404 WHITING REON.

BY MJN PAGE 3-2ZRI OF S')lS'Z7 aEv el~ I w- l5-87 Me>s.s>

TnO aL.Y I

~see-MOOCI EO  %$ ~I&ID gAIQ ROISl ROF'L~

Q Dua, 'f THo )g P)g y - A,ii STI'.at - k4W~0 -~j'2gzF8)

- Z - C~al 'GVST Mg - Re>cue

)

RmVEO

(

@8+ ln 000 p4

.Mopy~ Ol" E~TICI ~ I+ DOO> I GRIOT 5 PeI NG.

&ecru'e ]S U~~> ~S + RIGIO LIH'y Pn~

TRANS ~ ITTlhl~

CPAR+Ll.cl v/~TP TgE- ~(<~PS P OV 0 K ~ MATOR+L I PPQUgNQ.I'

) ~E NPRJ "l6- g Q PH E- Pl~ PR~QOE<Cy

~~Q TO (STrPF) Ft)RTloN OF= Tlla ~~Th-TlOVI SPE Th'0

~ (zmF')~

~ (~~(>3)) = 31coo ooo K= 4PRIN6- 6 W'TI=, (6 /(q W = Wetly gP QahRlE, l4 (eivHour, LIFTING t-OAO3

+CdhL.E Q>Pl& pJ OF ~4VI W IA /4<C Hen)Rwc FRw~/KACY H z.

~V

'l

FORM Ni2494

'f * ~CR BY +J+ pAGE ~ ~~ OF WMZD' M p,ss Eie'~ E'NTS Q+SCqiPTlOhl W'ett eT Mwa ce I 9 4K@ /'l'J

~RoaLE'f LC=SS 5 4,OC.JC 'g)7 Z,PGOQ 32.0~g 8 LOG.K C) QL,Y

~

2.0000 j I e 7C 6<OS~ W/ 80 7 i-tWKD ~+0 904, .

I 2.0000 SlO. C Qp i~Q 0Fl>VF 4$ $ EMGL'f Soz. %OHIO l0 35 RKOVCT)gQ UH iT 5 2OOG 5I8 50'03 Dot v E TR~W$ lb'~ 2.03 S000 IZ.'7M lOf~ 1OI 7 000 S.la

~O<E5 TIVVQlfS lee, Z.O t +CHOO fl i&5 I 02~ XO2. 7.000 S.t 8

P he 4

FORM Ni2ill WHITING REQN. ~t ~ DATE BY +J + PAGE ~ ~+ OF S Z5'4'7 Is TR I Q UTE'D Mass ON 8E:am g ~E'ME'NT5 Dav'RtgUT.gr) WZ'IgH7 (t gf PT')

'&ROF R5 Gireo~q O'Imp~ Q

&ROan IH'CLubCS <OmHEiIS 970 +70 R+>~ 6'0 CO WAI g CO 5q 5u>M s Qpwc s Z.O l"-TRiS 8 SoeeT 9'0 8 iIem-w Co NDwvo R NIvC, (zW R~~o~a) 800 84SS Oa,WIT Y S>FIDKR

~ 0 p ~g ~ Ib ~ ~/in '+

I 2X II0,r.W 38t'.9 GtqgZFI Q 6'OO OQ//70 l6 Sm /in l2.~. IIO.r. F884, t E ND CO~PCCXI 0WS Oezpiyg T'Pg vl EIGHT O,

J QO lb /Ft M au OeW I Ty IZ,x I 8

~7g X38g. f OO t 087 l6 s~ ~

l i< "

CORM N02494 pE~ 79604 8-26-87 WH(y~NG pATg By ASZ/MJM PAGE 4-1 PF 112

~4@ %177 SUPPLEMENTAL CALCULATIONS This section summarizes the analysis of those components which were not directly analyzed by the finite element program utilizing the loadings that were generated by this program.

Page Subject 4-2 Scale Factor 4-4 Bridge Truck Loads 4-7 Bridge Wheel Loads and Upkick 4 Bridge Wheels and Axles 4-16 Seismic Lugs 4-27 Bridge Trucks 4-37 Girder to Truck Connection 4-71 Girder to End Tie Connection 4-93 Gi rd er Buc kl i ng St a bi 1 i ty 4-104 Girder Welds 4-105 Girder End 4-108 Trolley Wheel Loads 4-111 Rope For effects of seismic loads on trolley components see separate Structural Oesign Calculation Report.

FORM Niki94 WHITING REQN. ~~ DATE SY <" < 'PaGE ~ ~ Or-ScALE FAt" T 0 0 accuse 6 Ec+us E- Swo w I Lr AT RA I I &HE'Kl ZNTKg P'mr >P rH E Rr-MTIOhl 0 IR~T/0 Nx'0 KK CU 7~I= M~ I mQM RHEal LOAg IV VHE Z. OIRaCTlaN -ri~aS VIE. CoeFneEN7- o F WicTionl 7'HE

~8'I-&PA'TITAN I N T 8 8' J Otg~gg/~N W)I L 8E'i=M V'HP Q PnaO<a.T'EO gy + nrlaoh L-rHE I pi&AR'f 'f &4Q~ M++

8~ F'Rb PbRTld NEQ 8'y A 4CAI.E'ttttCTdg

~ H&7 ACCdtJNl'S FO< 4L.~DIN < 8 0 7+AT iS ORRIS E'0 *S. FO~I @WE:

W IIEHK Rz. Ry p qg Mmt~uM A~Tld~ P ~a~

Pt utTE E~t-N T AQAl +NA.l 'f$ t5

+HG F~ rrtRx RATION Ar CIRlVlfWQ!FK l p~ a wax 7'to)4 8Y y'z>t p'A tc,'t7D N

= R~- + Mx 5<8 lg ggPI.e Fute R

<Y hd F M

2 .

I z ~

CO (H~~ '~~~

5y Oe~EnVI<4- ~8~7 <X IS Ou~ F JPIMW+t4$

TO Y EX@ IT47(g hQ.

~a~= ~~(~i '

8CF =

Seq (t ~<<, )

~ ~

p1 FORM Ni2494 WHITING REQN. ~ ++ DATE BY +~ PAGE ~ OF P. ~', .e'7 7~BI E'-pc7OR 5 TRowy OQE SSE NII Q 5'0 T OP ~ I 0'fQ , 07Vt SoT ON ~ 192 0 , I 078 I/e <~o T UP . I02. t . 0434 So T DH , i%3l', J 079 EN,Q So V UP ~ 2.LC0 . I351'.

SOT OH 33(5 .2385 No Lom . Qgoi , 055'f Hp Lohg .o775 , @52.i Hp L04Q ~ 3496 .z.is ~

.le I

Ol At 0

FORM A g4g4 WHITING R EON. DATE Qp ASZ PAGE PP QJNI 8-2.9-87

/Ruche LoRDZ 7HZ )PAL 8 7 /g+ (c P(l()1(=Q 3 Y Z (=Op TyE P 7fPUC(.5 j g/ 7H 8('J8 MU(7(PLI(=9 BY /3 TG RECCO(JN7 ggg gg(C((C(gg( PC <(gg~lJ(>>

tf? (HG L(i'JN(=SIIWIA/Cl) Nh'CELh ~

7h'8'W(WM TRUCK L089 (S?< NEST (l

~h'E IVAN(h'UW CONS(bEglAI6. C&fPLE(6 4E YEASHl

((ILL OTA'84 777.t(Cg LOADS ARE SO&MIRIZ( cg D/REC(L Y ERG 7RBCES 8/9 To 8 &'F(8R T %8 APPLICBTI0% OF 7HZ 5CRLEFACioR 8$

pz(>>v(rosary DEsca(eeg,

RI 0

(i"i i

f

~

g

~t '

FORM N 2494 WHITING REQN. OATE BY ~ ~7- PAGE OF NIa hn S-Z.0-87 7ABLE 4-Q 7RocK i&/os (o8E 5'/Eo) 5UQ (/Nx) ciFFER (sic )

TROLL&', LOAD

~x /'r 'z C I StRl VCR uP II 2 Z6.5 /0/.7 /869'338 -//,2 I I-Z65'I/3 gO,/ -/78/

/VODG :P,3 34,3 /92.6 -$ 4,3 9.3 ZZ50 io1,2oi) 8'0 /0,9 /9.4 9O.P /339 -/o,9 i -/9.4 60.2 -/ZE2 un I8.57 3Z.O /S9.S 2Zoo -8, -3Z,O 50.3 '-2//3

//.8 44/ Z4Z8 30// -I/8 -44./ ZG',/ -B24

/I/O /0.6 25,O //08 /730 -lo6 -2<0 -/&$7 L/P 9,/7 39.5 CSa 27/7 9/7 SRS A.7 "1533 Sv I

/6,3 <9.8 250.2 Dgg7 -lo.3 -498 3/. 9 -3/8 /

xo ',9/6 43,9 //Co.f zgeo -9,/6 -<S.9 37. / -Z89/

I

/ZLZZ . UP //,2 0 /90.0 VS8,8 -//.Z 0 55,/ -Z78.3 (Nc)DE b!V //. 3 0 /eo.9 Zotel -//.3 0 <. 55 Z3>7

/02,202 No /0 9 0 8o9 /7/+ "/0 9 0 gP 9 7,5',57 O /AS 382.8 -8.57 0 SC3 -Zo3.o

//8 0 227,6 3741 -l/.8 0 /7i 7 -/9~,6

/O. 6 O 976 X5,7 -/o,d o 42,h -/88,3 UP g./7 0 O'Z 8 Z9'2,/ -9,/7 o 4o,/ -7/0.

Da'vo

/0.3 0 Z373 93<,a -/o 3 o 27.5 -'/5/,5 9./6 0 /D5i 0 pro. -9./6 0 sz.o -'7722 8 L. FDCCES lh/ K/PS h'OHCN7S /nJ IN.KIP hu $ LO/)8$ CgOggQJgy~

SY47 Eh/

1

~i)

<<JT X

0

/

FPORM N~R4g4 WHITING REQN. 7~ PATE 6 /7 87 BY ~B+ PAGE + ~ OF HIJ M 8 Z9"97 I A@LE 4-3 7ROCK IOAOS ( SSE -ScazeEi)

TROLL LOAD SI/W COAX) DIFFER (hoist/,)

FI Fz. Mx SRi VeR UP Zl. 3 338 I72.7 Z+36 -2/3 -53,Q 30,2 -234B A'm E DV 2/5 %'. 9 27/.9 33/3 -2/.5 -+9 -67.8 -3224 i', ZOi) Po 2D,9 25i Z /09,v /7ZS -Zo,9 -ZS;2 4Z,2 -/&/

gn /I.Z 42,2 IP42 ZSSV -l7.Z 42.2 38.2 -2808 Dhl zz,z 4'3,0 53/,O 4SI3 -2Z,2 -63.O -B,S -WZZV NO zo,+ 83 9 /Z9./ zM9 -Zo f -39,9 Sd,~ -ZaS dP /8. & 4Z.2 /89,9 1456 -/S,6 -Q.2 3S'I -4373 Pg /9,8 77Z 3394 5'2'/9,'8 -77,Z -42,6 -S/4/

P/0 /8,3 78. 8 /274 539/ -/8,3 -7@8 29'.9 -530

/Dan@ UP Z/,5 0 IS8,3 '743,6 -2/3 0 27.6 -503,I bN Zl 0 25'7) O ZSS.S 0 -69,2 -SRO 38.8 -46.0 (NeDE'OZ,ZOZ 5'a9 -Z/S'Z4.9 PlO 0 g70 Zo.g 0 LP I 7i 2 0 /76' CI<,9 -/7.Z 0 35;5 -43S/

CH 22,2 0 3/9,4 eo5.6 -ZZ,2 0 -Vo, l -4zS;8 No zo,4 0 //z,s se/.4 -2o,4 0 ~g,S -4O4.I END UP Ig,g 0 !73, 2 IS2I -/8.6 0 a/.6 -/339 bN'O /e.e, 0 324,8 /573 -/Pi 8 0 -5a4 - I39/

/8. 5 0 //4 0 /626 "/8'~ 0 zS;6 -/45'7 g/I /ONCE /hJ 4'/PS 5'OP!CiV74 /hJ W.K/F'hJ $ LO88L COOgQIN$ /~

SYNE~

Vl gl

,eh 0

J II

FORM N 24g4 WHITING REQN. ~ OATE eY ASZ PAGE 4- ~ PF H1dg 8-~k-87 9R/DcE. 5'HEEL, Lodob zuo UpK)cK T+E uHGEQ L0805 AEE DE78RNIAJE'0 BY HPPL.YP)6 THE 8A'tOGE 7RUCK REkCI7GA/Sy 3HG'&IV /P 5C/LEO 7+8~5 8 /9 IG 854p To TH8 7]?Ups /AJ Th8 FoL~oulieg +WAJ484:

8RIOGE cwoER A GIRDER 8 GIRneR BRIDGE 7'eve K OA IVGR.

TRucY- IbI E,R TROCK F?D RAIL 8

NzN WXN Wxw hSCE,I SCeeeaTIC 30 ORIUER 30 DRlvER 0F EN0 OF CRAhl8 2< ioL,eR 24 IDLER 48~/8 DRIVea 42~/8 IDLE'R 96 /4 DRIVER.

8< ~/y IOLew QRJOQE DR'IVE'R IRVCK IS LOGGED ON 5IROGR 8 ~ND /&LE'R 7RVCK /5 LOCATGQ Oh/ CIROER I

8.

4 A

FORM koZAOl WHITING REQN. DATE BY ~~ PAGE 4 - QF

< J 8 3-L%-87 Ci Ae&u)& glee8'L LoADS.

AfgIIAA

~ Fg (A'oh/ scRLEcI TABLEs 8l~ Tg 85'P) l5 Dn/lech 4ETulccv OPPGSli8 EPD$ 0F CRANE IN ~ I3 huD lh HWluER, FGR THE FOUR eeeeZS Ou 78& HELOSi08 F> 1$ Diu<DE'0 884daJ NIILTIPLIED BV /3 TO ACCCIINl FOR FRI CFIONRL RESISIAII'CB 97 TffE'uuESiRAVJED klH8ELS.

IIAIA)< AI ~<) > 6

+XMAS P/, Tee Nieidud Whee iOAD iS THE dEGATiVG OF QE'AHXIQurf CO/V SiQERAVC CORPLE78 RE VE-RSIL.

+X Hbx VERTICAL. HJHE'EL LOADQ AND UPKICK LOADS, AIHeBL loas5.

~2&AX)A~iy ~ O'FTRP~AING HAEC, JOAOQ TH+ Pf4X, N'UCK RGACI iG'AJS Fz tf~o >VAN

&ERE 74 Ec AJ FR9+ TH'8 S0H col. U/Y4'F sclQl.ED T88Le~ 8/9 ro 850,

4 n

FORM N 2494 WHITING REON. ~~ + OATE SY ~~z PAGE ~ ~ QF w~ 8-9-B?

IF Fz, z

( yg PA TH84 ~ZlfIN 0 +NO L/PRICK'CCURS .

~ r ~Ran UP- KICK CRL COCR7(QQS Fog 77llz collbl17og Ivzpgil = l< Fz '

OIteEC, A JfH~L '8

~zftlN 6 +HO o&Ce = ltIz<~- Q l'See PS,4+)

kA'EEL 8l7SE NB= EC7 IN (Oei.VEK)

= 48 QA (loLER)

~ DRIvG'R ~ CV2 IV54 24 I DI.eg 2A IDLER,'z Mx Fz

~2M x ~zA z e8 HIN P~ZB LlPxicz lowe PQp IH JEER </AJI V & &PIC+ LOADS> ~C LGR0 'Z Ti0KEN FA?0+ 7'll=FERCA)CE COLUMh/ Ah/0 O'082'N 7 Wx NRS TREE& ~ZG'H'h'8 "Sun COLVMnJ OF SCARC.GQ TABLE S B /9 TO 854. ELOPE'KI CK LO/fD (Rg) llNS 78K'EN FROM 7ifBLGS 862 gag) 86 P FOR LOAD lhl DONI7J POSll ION. Peg LGAOS lhl OP POSlll0N kh)D FOR 7 AIO-LOAD CONDITIWI POPE OPKlCK LOAD (Flj) uOES NOT EzlST AAJD TQEgEF0RE EQUAL.Q ZERO,

k t1 0

h

FOAM Niti94 WHITING REQN. ~ DATE BY ~~Z PAGE ~ O QF Md 8 8 9, 2 L ~z @5 Z j gg REM ~PA'/C4 OCCORS ueaL 'A'x updicK LO&

5PAe sP= 78 l8 IA. (DRivcR) f"'t t f8Pz

= 66'l8 ie (ID~8R) 3Q DR/'VER 94 IOLER 4Z /8 ID(.GR',

LOAD FACTOR =

A ~ A'8.375

062 '=O,64 WZ,ZH pA= fA

neivea 78, 37E g6.375

'8 rupivCA, fa = 30 78.375

= 938 IDLCR P~ = p4 r@.37s

O,36 Mx Nz

fg(Pz) > ~~

~ =-f (P Xc gv

i. = L, rag 8RIKvg LHP Pot) L, =R FOR LtRIQCC PHG Z L AgQ QXL JOE'RE. 7ifKGA) A7 NODE5 ZO/" FOR ZglvCA A+0 2OZ ln.eR FRuH 5CRLEO THALES 8 I~ lo 854

~ZR 340 ~ZR +E'QE'AKEN A7 PJODE,S l0/ FW'livCR ANIQ /OZ FOR IQLGR PROD SCIL.EQ. 788LES 8/9 TO 8S4.

X /5 8 DISTANCE 88TuJEEQ BRIDGE ENO AnlQ HRW) TROLLE'Y HOOD 9A/0 LEI'En$ 5 ue %'0I.LC y POSljTOe geD EMLS:

g MI~

\

'J th

FORM Neg494 WHITING R EON.

7~~ pATE BY A~Z PAGE 4- /I pF 8JH 8 2'i 87 RR HR/hJ TROLLEV gT t1IQ. XL = 45$ /Al,

/23 25 IQ g gigg, 75 BPIDGc sP8N g5 = 6'3Z g),

~WCE TH'C= LIBERA, COMPUTER ANALf'S/5 5goeg Ty~ P~/Z( ROPg GOIIIG IN COHPRESSION (SLRCK ROPE COAIDITION) IiIHCAJ THE LOAD -.

/5 jhl TH+ Z)OH'OSI1/CIA THE'PKICÃ LOB'D5 @/FRY PF TER&IN0

~~ SUB TRAC7j'Ng THE'FLATIVE, PROPORTION OF'HE /POD+

COPIPRESSIVE LOAD(Rug(aIIIICECIINNIITEXIST)PRO~ THg yPPIIg<TIL R'EA C 7/'ONS, 7jIJCENTIItg gEEEL LaAOS BRAKE LIIITECl OIU DRIVE+ TRUCK OhILV).

Qy//~+ TIIP QP)(/Pf QPf P///EPQ /PJ'S /8 7/IP Y D/tMCl /0N /S 7'N l0 8E ~I<l E'b 8 Y jgg $ 0/=f/=/CIEPJT 0$ FR/C(/Oh) OF 0 Z~ AI/O lil'E rt8A0UM L4/IEE/- /-Il<0.

(NzNAx ).

y//ax O,ZS Rlz,~ex 7HG HWlrfUQ agent/ lOAQ Ic T//8 NWHrIUE eF meHWCIh'u~ COuSIDeglug-CorfP/.ETIAM REvGRSAL,,

nw

~

'P .

l>

f SIGV. W NtDICATE5 VPKICK 88AO 47&PKICK LV& MR THESTATIC PLVS DYN4A'IC 4'ONQITIOh). f9 Alp IS LOAb dhl OTh'GR SHEE/ OI= 7ROCK III/H8hl Ng IS WA 1' Ig, I l 1 )f WHITING REQN. ~~ DATE BY ~z PAGE + ~ QF 8-2.9 -87 ? ABLE '0 5 CeANE 8'H88'L LOAN SSE schiz.ea <c ~x~~x <vs+ /'uc. 7+8L8 20I, 20'Ltd TRdL % Are~) W6 "+ Icj/ 'I02 0480 DRjVGR MID IOI,20/ UP bh/ /0 In C S'/)'/7.8 7 /Z7. ~ /9/, Z ~ <5 7

80. 7 IS8 32,5

/9. 2 35,f 822 82@ LIP 3G. 3 /0S, 3 ws,g Z,3 87 830 Dk 4O,Z 248. 9 97. / /Z,S 34. 3 839 END UP g,g 42.2 /69.O I 7. I /4 0 Dg 9,9 44Z zS6.8 /9,3 36.6 ieD No Io,+ zo. 9 857 26. 0 4,3 5,2 846 I/y No /0 Z 2s,9 38,4 /09. 7 IS>.d 2S.4 -(26,O~) 0/

26. 0 55 35,5 8'

EiVD jVO 9,2 CP /OLerZ LIP /06 94,6 43,7 BZ2 /OZ,ZO2 baal IO,8 /30. I /22. 9 824 Iol. I 7s. e l72,3 H7.! LIP II8.3 54.9 9,4 sos Dg 19'5,Z /Z9.6 /o. 6 a4Z MID PIO /of 53,2 43. 8 846 '/+ N0 /0. g 48,0 442 850 EI45 MO 9,Z S8,6 ZS9 /5,3 859 /fLL FORCES IN KIPcp IN MOML CGVROINAM'V518M. 4 INbjCATE5 uPAvcK LoAO A7lrPCICK LOG FoR 7HE'5rhli C PL.oh bYNIHiC cONQI7IOA), 'W A/g js Lomb ON GTh'GR wAG EL oF TRvcx wHGAJ wp js M 8 II lU 4 >u l i,) 4'g jt FOAM N.g4y4 WHITING REQN. 7-' OATE 8Y ~Z PAGE ~ OF WJ < 8-z.~-87 r9R'QCE WHEEL. FZAet =- -.".=PC ~7R~SS Areal; ROLLS'C 57~g/ Z9 Gib. 088 /-PLL =0,6 (,g =2/2 <'/ sse <,=0,6 ,',"'2B9>>si . 27 TD, P> =588eP (tNx./oR OGE Food rara 4-y) = //./ c'/5 (//8x, FoR 555 FR0% 29 27 74au:- 0-5) Z 2 I/2, =/gg gSSUtfC ONCE .+IlF EFFEC IV+ IFJ SH'c=AQ C),s <</0.6 <<687K /.S ~s/ use 2 'Z,'I>><< /// O,gx/g Qx 0,87+ Bc2/QGG AxLE Rz /7RL .'/5/- //44 h'7, 2 ZO -gdO av gh'IV'ygIN 60 Kh/ =0.6 ,' =24>>sg yes 'E~, ssE L ALL =0& II = 9Z'74-'I <spa = // DEPTH 5 =Z.Z <3 ,'. hgOE'OF /WLVRE'S SFfegg FOR 5 ISMr~ LoADS I CI ~ + ~ \ g Ai 0 FORM N.2494 WHITING REQN. i- + DATE BY Z PAGE ~ OF 8JM 8-2-'f 87 Fuorn T45Lg +-4 / gz 995 A8<. Lodge p/?~.'xra = A'gag(= 44. 9 ~re A'zygo= I7~ ~o Y!P ious~ A'<>= 5S8 c. LO+0$ kgb DA?/UGR. A)(gyp'= //,/ g/P Nyrggg= 6<.Z KIP @gyes= ZS4,8 z(P /bc/=R gygyg)( = /// KIP +zaax = /95',Z sip F DR/upx/ a (Wvt/xxj +/ ///x//>x N~xnsv ) + /'449 z //7p,g 5;89x/g,,-'2 = 9%6 a(a IbL,eg = /3S,l + S88w I3.5 = 76,$ KIP z // 'Pg 4 8'w~ec .4 SSE p///vzg: Ao = (N<2ix ,)v(/zan ,'S///'/Q ) x .S1~ = /4/5.6 /.'/p /45 6 = 9.9//s/ I~ ~) 0 A '\ I ~I Ir T~ Pf, ~ t. FORM N g494 WHITING REQN., ~- D~ DATE SV A Z PaGE 4-/G OF NJ < B-?.9-87 8RlOGE IRuCk'EISMIC 6 JCS. 44. 1 1 e ,-7!e ~ 3Z5 soL7s TA'CR J J 5a Rl' CO he ml Ill II II II II II Il lg I 0 z'/c eeEEL, l1+ W, RlsIY, RAII 8~/8 Gy'ppN 8g ts/ 6YMml =

32. 7 K5(

I f I 1 WHITING REQN., ~+ DATE 8Y ~Z PAGE QF MJM e-2Q g7 2 468 ~/6'. 3/g S6 / / I B /I ~0e / / I I ,Za ~ >oo 'RICTIOV C3EFE, = g.25 ,92 c< = r~~ 'g = (4. ~ l >K Hw/c M4X, WHEEL OPK!C4 LG~O ~pgAx PUp FROM 78 BLED 4 0 70 oar - Ph> = !3.3 as~ ss< ~n~x 36'8 "'P 0 1 7 0 FORM N 24g4 WHITING REQN. ~ '~ ~ OATE BY S PAGE N PP

g. 2 +" 97 loan On> E~Cp OF Tpp COA)TOURED LUGS:

Fp = fv TAAI (QQ-CCi = OIS PpIIT, Tllhl (30-I4 Ofi OPSZ I MeX gyp p =O,S /3,3 = 6.7 Klp F =Ql<-'x =Q5P x/3. Z = g,g klP p = 0S x 36 6= /8,3 k'I/ 3g,6= /9.L-I na. SECTIOAI A A CSIIERk) = gag (53,42'-30 I-/4.G4I) C.g A~ 6,g Cos3746 (/ 2ZSB:2,3 0 jar 1 l II FORM Ni2494 WHITING REQN.. ' ~ DATE ~ ~ BY PAGE j~ pF MJH 8 2'I 87 c "riIDAJ 3 6 (TENsiDA)) DIRECT 8EAIDIAIS MH iHiZ ISi G0 bsH ( 6 Sv Fv,' J ~,69 -0 '" -4. oep r- ~ '7 /9<2 / g,7 xZ s3 p Zegga 2.2g> 468~ zan. ~,~8> ssE p: l83 S2 z xZ IS JA~468'8.3x 2,s3 S Z,ZS ~ 468 z,zs y,iz'E cTicJAJ C-C (rEAJsIoN) Diiaecr aeAJDJAIC, FJJ O,Z3 G D 5H'v, z, ~ 0563) SV = Go "<sv Gc <aH oez /9 o,zo + 6 7x/,g9 Z Zs'x 2. 86 Z.ZG'xZ 862 Z ZS zan SSE ~2 x o.20 /Z.3 /. 99 C Z,ZS.Z 86 2 25'xZ.86~ a.zs . 2,86z 6 1 k ~P I 0 FORM N 1494 WHITING REQN. 27) ( + rZ< ~ DATE BY ~-Z- PAGE +~ OF hlJM 8 2Q 8~ <sc-rom g-A (revs(ov) p p~g( G0 ( q c(h) ("3.$2-zg+l4 g4) Ze N~ w& 6- -/i 0.69-020) BH /v C&9z+a.5'c) Sv TFNSlLC = ~g + GA AH+ spy o~, 9 'in 3746'iZ~ /. 9x 0.49 $ .7 x/,48 > 2i 3 Z,2S>2,3z Z.ZS.2. ~ 6 /9 aN S;2. o, <9 /8.3 x/,48 I4, 2S( 3744',ZS<2 22$ 'x 2,9i G 3 6 p; II Ztftl ~, 'P 0 t, I 0 FORM N )494 7'D /" WHITING REQN. DATE BY cf (7 PAGE OF B-2 't-87 loc Pw FUN P1A7PL.,: l0/8 coLD FiN/sH FVF. +YtrW 90 K l V>ALL, =', 30 = ZO.O K~/ /g

I'/q; 2'/+

<gLL=O<6~q =/2.0 g<< /'wax = /9,3 <<p'~C USE 30 ~HEX 36 6 K/P ~AL LL // VjgL =04 E~,L =/6.+ gS/ /EP>>CR/- LOHQ OAJ AfgARSlbG P/M I. 8 75 )Fv (2+ 0 ZS 2 8) fp C.Z75 8= Pn~~,'- Vg(z 47'(O,/~3 < ~ >~<,','0 /0 OBC FyA/ = 3,7 K/P ~sF- Fyg = /0. I K/P /EH/'C/-"// LOAD OP ERR'/OE P N. /'/0 1 2 ~ZZ~ Pv ~4~35+ 3 /25(05 Pnnx + 0 73(0 f43 Pnax) /0 /0 oe- = 3 Fvz c/p Z 2 8/p FORM He2494 WHITING REQN AS> 'ATE 79/QH PAGE < ~Z "~ eV OF MJM 8-29 37 Fw (l,7S)+ FVP(~ ~ T-7'i y~ '(<,7e-/,7g) + r VP (I 7S) 2 E,~s 5,75 81 = 3T5 (IP z= -" ZZI Ri= 99 XII Rg= 8,Pep = = 0,875' I S'EPTh'ld PPg&88LE MOOG 5I= FAILURE IS S IGAR cg 4 IQlfkX gal= f = lT5 gSI I ~t FORM M 2494 'r WHITING REQN BY ~ we~ S-Z.'I-87 i ~ v~ ~ PAGE '+ OATE c OF c //Jgi ~( Adsauaw'>8 ~ g'T'h'-834 5~~,Z = 36 ZS/ 'WL: gECQ /YTdL: E70)()('LECTKO"GS ~oR WELg PyPE A AeD5 Gy~<<-D/KSI ~4L ALL 57'6 = ZZg k~1 SEC Lg,,~ZL = 5/x 0.4 = 3/,/ g~ // 06x3@fp = 0.6r 34 Vz. = 20' Khl 27.8~s/ li/ l~,4LL ZG P As/ C~IALL = Z78 CSI ~~C> ~l4L-'~OXXECZCi<ODE5 5'o xQ6 ~ uELO j~P~ C g>Z, -gg.Z<> One LLLL<<=,~'ZOFSi <<+ LLfL<<L o I = >73a (a,) R2, PQX, FoRCE OA'JBLD /I $ )pA R, (//25)H2g(/ Z5) g ~)t/+ (I/g ArlAx aW p: /Z g /21/z 08E = 3,5 K>P /AJAX pygmy ~~Wx=~aWx= 9 < "'l'hLo A r FA MBA 9.707~m. 31ZG(z~6) F~~aw cyr Al 4l, ff$ 'f 0 S'ORM Neg49g WHITING REQN. 79/r ' g OATE BY 8 "Z PAGE ' Qf NJH 8 z"-3+ 525 z+/' Fsegx 2 ~~2 FQN4x 0 707(a>/Zf)( z )Z ~~ ~ 2 +/ )z /. 48 5-l2 095 /8 = 2+ Es/ </a 5- IZ. sec L~ = 6,3esi Fg go)c 5'/~ Neo C H8x. FoaCE'V werc = Pwgx osE l3,3 roP S5E 36,6 K(P (WEF PG +/6,i. z z P~ax 438 z 07o7x OZS'(47 844) + 2 2(2x4 7E'2l4 ) Pry' 3,50 ose fc =3,9 ~st P~a g3/q I~' E 0 FORM N 2494 ~ 9< V WHITING REQN. OATE BY PAGE OP 8-f+-87 DOL 75 /8 z.~ Asz 4~ ~~ Qypppy Pg /c ~I /Nx. FopcE'/) BQL75 = Smack ggE /3, 3 Kip ss8 36.G ~i~ HEAR ~< P~~x Pnax srtesS nA 4 /y (8.8753~ 08E' = 5,5 <si '<z C = ~~2 ~ai Pexx (3.38) Pirex sr@ass 5 44 (2 zs) 2 66 r 4A'r ~ r = QAr FOR lg SOLIS (CREED) TENSE E. 4ze'A g< = 0. 962 w sHANK g8ep p<= 060/ w ~tie,W 44. FOAM No@494 WHITING R EON. 79 ~ ~ DATE BY ~+ PAGE + ~~ QF wary S-z.$ -87 W THEE'A D S gag G = to,a res/ /N 5//4NK sac 6=8.3 ~si co@8/A/Eo /Al sHRNK cg 2z 8 ~~ (gag /g g Cong Z 'l ups

1

'A IFORM N 2404 rrYp WHITING REQN. DATE BY A-'z PAGE -'~ OF M'K 8 ZBP 9F 9P/705 c 7&ocKS 2I,/9 /5/9 A A //'/8 A B AL Z'-6" 2'-O" 2'-o" DR/JGR Tc?ucQ = >~<~I ~Vnw -" 6 yew) = 08E GjHlL Z4/FBI L pL/ 6 6 (3pgg = I't P Rsl LgAD/<eS ceo rao/ es 4-4 ANo 4-5. FORM N 2494 '7Q WHITING REON. + + n DATE gy -'Z- PAGE 4 28 Qf MJ K 8-2. ~ I/Z 0> M.$ . 7'IZ 5 >/y CL 82 SECTlOhl 3-A SECTlohl 8-8 MCTlg4 A-A Wnq5 SIPSPLII=IEQ QPR CPIKP07EQ PEOSRHH PORPQ~, ~<I VIIIL M<IIOV C<W~ISTS 8P TWO A/27~94 8<8/YS gli> FCtSVCHS 0~7 OI=F PgonI on/8 slDE Iz Iv. AnJD nIELDED TQGETIIER(TDTIILTLIIn.I&E Leu87nf 8(FOALS /9nN, ) 4' bp ~ ' I'\ 1 1 >4 4t k fORM N 2404 WHITING REQN. ~~~~~ DATE ~f 4~ . 7 AEP 5OT BRIDGE DRIVER TRUCK OBE eV <~~ PAGE <-~~ OF i'~ MJ H g-~N'-87 TPUCK SI ZE TOP PLT = 0 75 X 19 00 IN. BQT FLT = 0; 75 'X '9.'00 IN. 2 WEB PLT = 0. 50 X 25. 38 IN. DISTANCE BETWEEN WEB PLTS = 8. 50 IN. TRUCK Wf fEEL BASE = 42. 38 IN. COEF. OF FR ICTION = 0. 250 RAIL TO CENTER OF TWIST = 15. 938 IN. ~~ FORCES IN THE-GLOBAL COORDTNATE" SYSTFlf ffff FX = 5880. 0 LBS. FY = 44900. 0 LBS. FZ = 179600. 0 LBS. +4. SECTION PROPERTIES AREA IN SG. I lif. VERT ICAL MOMENT OF INERTIA--

53. 9 6225. 8 GRAVITY='-

VERTICAL SECTION t1ODULUS ' 463. 3 VEFP~At; 'EI2'ITER QF T3: 4 HOR IZ. MOMENT OF INERTIA HOR IZ. SECTION NODULUS 1371. 7 144. 4 MAXIMUN DEFLECT IONS Vmerrant'.~DING-I HOR Z. BENDING DEFL. IN INCHES DUE TQ FX VERTICAL SHEAR DEFL. DUE TQ FZ HQRTZ ~~MR- DEFL. 'UE fU FX TRUCK STRESSES IN PSI BENDING STRESS TOP FLANGE = -====='-. 003V5 - O.'O045

0. 01419 A7 PdlN7 (N) SEC7/04)}

DUE TQ FX DUE TO FX A 00066 BENDING STRESS BOT FLANGE BENDING STRESS TQP FLANGE DUE TQ FY 1544. .5-(l)(4 5 " BENDING STRESS TOP FLANGE FZ-DUE TO FZ DUE TO 1~44 8214. 1 Z]fS I BENDING STRESS BOT FLANGE BENDING STRESS ON WEB DUE TO FX 8214. 431. 4 1 Zf($ TRANSVERSE SHEAR'N FLANGE DUE TO FX DUE TO FZ- SSA. A TRANSVERSE SHEAR ON WEB 7701. 5 0)(2) (3 FLANGE DUE TO FX-FLANGE DUE TO FZ-TORSIONAL SHEAR ON 265. 7 (I) 833.o. o4 t3)4u,) (Z) DIRECT TENSILE STRESS DUE TO FY TORSIONAL SHEAR ON TORSIONAL SHEAR ON WEB DUE TO FZ- O. 0 $) ffff: At.k OMABt.E BENDTNG' ' W -A1"LQIAIABE.E'HEAR"=' 44'00. 0 --- --- BEND. BEND; STRESS IN TOP FLG. DUE TO ~ES.>~@-BI-.-FI.~WOE FY 5 rCr~ ~= FZ 9758. 6 (f) 97:mr.-a 6 BENDING STRESS IN WEB DUE TQ FX ffc FY TOTAL TORSIONAL SHEAR STRESS IN FLANGES TOTAL TORSIONAL SHEAR STRESS IN WEB- 431. 4 f3 265. 7 (2 (Z) 398. 6 (g MAX TENSILE STRESS IN TOP FLANGE-MAX TENS I LE STRESS IN BOT FLANGE ---Wf2bl) 4 MAX SHEAR STRESS-CENTER TOP FLANGE --+w3 . (5 MAX-SHEAR STRESS-CENTER "'BOT FLANGE=."=- 5332. 4 HAX SHEAR STRESS-CENTER liES gpSi) S2RA. I fg lpga~ N'g 4 I "JR 1 il 1~ 4t FORM Nog104 WHITING REQN. 7 >'- PATE Z'~'- ~ BY ~~~ PAGE ~ ~~ OF ~Jw 8-ZC-87 AFP 50T BRIDGE DRIVER TRUCK OBE ANALYSIS OF TRUCK END DUE TO TORSION ADDED D I hIENS I ONS 82 = 5. 750 I N. AL = 11. 125 IN. CL = 7. 500 IN. TORSIONAL RESISTANCE 6. 4 IN~~4 SHEAR CENTER FROM CENTER OF TOP PLT- 10. 217 IN. WARP IhjG +ON~ 5~45 P. LE+6.. 93712. 5 IN-I BS. WARPING hIONENT AhIGLE OF TMIST 2ND DER I VATIVE 0. 3396E-06 3RD DER I VATI VE 0. 6108E-07 TRUCK END STRESSES IN PSI TENSILE STRESS DUE TO MARPINQ RIGIDITY THROUGHOUT THE THICKNESS 8 PT. A 712. 0 TFNS I I F Sj+F THROUGHOUT THE THICKNESS 0 PT. B 2544. 0 MIRXDIZ'l SHEAR STRESS DUE TO HARPING RIGIDITY AT A DISTANCE ( Y) l. '743 IN. THE INSIDE FACE OF THE WEB FROM 307. SHEAR STRES Tl&O~GOUT THE THICKNESS 8 PT. AT A DISTANCE (Z) 14. '717 IN. 'THE TOP FLANGE fROB DJ 9'11. 2 T FRAPPE N Q D E TO FX- 412. 6 TPANSVER E SHEAR STRESS IN WEB DUE TO FZ- b682. 8 N~ A%AX AX SHEAR STRESS "SHEAR IN WEB eB PT. D AKGE 749+. 1308. 0 7 aa STRESS CALC, CALLED E~TTSE 1 p1A 'i4 ~ '4 Il 4 ~ W PehM N+2404 P WHITING REQN. ~~( ~+ OATE AEP 50T DRIDQE IDLER TRUCK ODE BY ~~ PAGE ~ ~~ OF NJM ZC 87 SI ZE TQP PLT = O. 75 X 19. 00 IN. TRUCK i BOT PLW ~ = '-T5"Y PF. OU IK WEB PLT 0. 50 X 25. 38 IN. DISTANCE BETWEEN WEB PLTS ~ 8. 50 IN. TRUCK WHEEL BASE = 30. 38 IN. COEF. OF FR I CTION = 0. 2'50 RAIL TO CENTER QF TWIST = 15. 938 IN. FX = 5880. 0 LBS. FY 0. 0 LBS. FZ TBBTOO U Z~ SECTION PROPERTIES AREA IN SG. IN. VERTICAL NQNENT OF INERTIA VERTICAL SECTION NODULUS . 463. 83

53. 9 6225.

NGNENT QF INERTIA1371. 7 I3. 4 HORIZ. HOR IZ. SECTION NODULUS 144. 4 NAX I NUN DEFLECT IQNS IN I NCHES HORIZ. BENDINQ DEFL. DUE TO FX- 0. 00017 VERTICAL SHEAR DEFL. DUE TO FZ ~VKT= 0. 00782 TRUCK STRESSES IN PSI +0 RT POINT'Pl) STRESS TOP FLANQE DUE TO FX-BENDINQ STRESS BGT FLANQE DUE TG FX SECTION'ENDINQ 618. 6 618. 6 BENDINQ STRESS TOP FLANQE DUE TO FY 0.0 / BENDINQ STRESS TQP FLANQE DUE TO FZ 4527. 7 i (q BENDINQ STRESS BOT FLANQE DUE TO FZ BENDINQ STRESS ON WEB DUE TO FX 4527. 309. 3 7 p $5 TRANSVERSE SHEAR GN FLANQK DUE TG FX 356. 6 TRANSVERSE SHEAR ON WEB DUE TO FZ 592i. 9 265.0. 70 (I) (t) (g FLANGE DUE TO FX TORSIONAL SHEAR ON FLANGE DUE TO FZ DIRECT TENSILE STRESS DUE TO FY TORSIONAL SHEAR QN

0. 0

(>)(<) P) TORSIONAL SHEAR ON WEB DUE TO FZ O. 0 BEND. STRESS IN TQP FLG. DUE TO FY 5 FZ 4527. 7 I BENDINQ STRESS IN WEB DUE TO FX h FY 309. 4527. 7 3 3 TOTAL TORSIONAL SHEAR STRESS IN FLANQES-TOTAL TORSIONAL SHEAR STRESS IN WEB 265. 398. 7 6 I (2) NAX TENSILE STRESS IN TOP FLANGE '1'~2 (P>>) 5146. (k FLANQE ~%7. H NAX TENSI LE STRESS IN BOT FLANQE-

> (f/ NAX SHEAR STRESS-CENTER TOP NAX SHEAR STRESS-CENTER WEB (yS~) 6322. 4 P +I I k JK ~ j "V C't i SOIIM NeR404 WHITING REQN. ~~~+ ~ DATE BY ~"' PAGE ~ ~~ OF ma M 8-7.c -87 AEP 5OT BRIDGE IDLER TRUCK OBE o+ ANALYSIS OF TRUCK END DUE TO TORSION ADDED DIMENSIONS B2 ~ 5. 750 IN. AL = 11. 125 IN. CL = 7. 500 IN. TORSIONAL RESISTANCE PLT- 6. 4 IN+~ SHEAR CENTER FROW CENTER OF TOP 10. 217 IN. W P WARP INQ MOMENT ANGLE OF TWIST 2ND DERIVATIVE 3RD DERIVATIVE 0.0. 6108E-07 93712. 5 IN-LBS. 3396E-06 . ++ TRUCK END STRESSES IN PSI DUE TO WARPINQ RIQIDITY THROUGHOUT THE THICKNESS 8 PT. A TENS I LE STR S SHEAR STRESS THE THICKNESS DUE TO 8 PT. B MARPINQ RIQIDITY 712. 0 2544. 0 AT A DISTANCE (Y) 1. 943 IN. FROID THE INSIDE FACE OF THE WEB 307. 9 SHE THE THICKNESS 0 PT. Ds AT A DISTANCE EXP, 10. 717 IN. FRQtt T~ TOP FLANQE BII. 2 STRESS IN FLQ DUE TO FX- 412. 6 TRANSVERSE SHEAR STRESS IN WEB DUE TO FZ- 5138. 6 M*X SHEAR STRESS N WEB B FLANQE 1308. 7 STRESS CALC. CALL J 1 ea S dt II F WHITING REQN. ~74~~ OATC d AEP 50T BRIDGE DRIVER TRUCK SSE BY ~ PAGE + ~~ QF MJ8 8-2tF-87 TRUCK SIZE = O. TQP PLT '=" 75 X 19 OO IN. BUT=PI T "6; 75'~ MEB PLT ~ O. 50 X 25. 38 IN. DISTANCE BETMEEN MEB PLTS = 8. 50 IN. TRUCK MHEEL BASE = 42. 38 IN. COEF. OF FR ICTIQN = 0. 250 RAIL TO CENTER OF TMIST = 15. 938 IN. FX = 11100. 0 LBS. FY = b4200. 0 LBS. <<% SECTION PROPERTIES 'AREA IN SG. IN. VERTICAL MOMENT OF INERTIA VERTICAL SECTION NODULUS 463. 3

53. 9 622'5. 8 I

HOR Z. MOMENT OF I NERTIA 137i. 7 I HOR Z. SECTION N3DULUS 144. 4 MAXIMUM DEFLECTIONS IN INCHES HQRXZ. BENDINO DEFL. DUE TQ FX O. OOOBB O. 02029 VERTICAL SHEAR DEFL. DUE TO FZ TRUCK STRESSES !N PSI <<<<Af POulT N SSCt ]ON A-A TQP FLANGE DUE TO FX-. BENDINQ STRESS STRESS BENDINQ STRESS BOT FLANQE DUE TO FX TOP FLANGE DUE TO FY 1628. 9 1628. 9 ( 2208. 4 I 8'ENDINQ ( BENDINQ STRESS BENDINQ STRESS STRESS TQP FLANQE DUE TQ FZ BGT FLANGE DUE TO FZ ON MEB DUE TO FX 11744. 9 ] 11744. 9 g 814. 5 5'ENDING TRANSVERSE SHEAR ON FLANGE 'DUE TQ FX 673. 1 (~lI(~) TRANSVERSE SHEAR ON MEB DUE TO FZ 11012. 0~) TORSIONAL SHEAR ON FLANGE DUE TO FX 501. 6 (l)(>) TORSIONAL SHEAR ON FLANGE DUE TO FZ O. 0 (S) DIRECT TENSILE STRESS DUE TO FY 1191. 6 TORSIONAL SHEAR ON MEB DUE TQ FZ 0 (3 BEND. STRESS IN TOP FLG. DUE TO FY 5 BENDINQ STRESS IN MEB DUE TQ FX % FY TOTAL TOR SIGNAL SHEAR STRESS IN FLANQES TOTAL TORSIONAL SHEAR STRESS IN MEB FZ-- 13953. T3953. 814. 501. 752. 3 5 6 4 fi Pl (L) MAX TENS I LE STRESS IN TOP FLANGE +Ps)16773. 8 17i~~ MAX TENSI LE STRESS IN DOT FLANGE MAX SHEAR STRESS-CENTER TOP FLANGE SRERR STRESS=CENTER +ps> 766~U (5 ) I) )" SHEAR STRESS-CENTER MEB ~pi) 11807. 0 3) 'AX T. I 'tg 4:k

R) gl V

POhM Ni2404 REQN, ~ ~/'HITJNG A'~+ PATE P. 2>+- 8 PAGE ~ ~~ pF ~'~ HJH g Zo~-S7 AEP 50T BRIDGE DRIVER TRUCK SSE NALYSIS OF TRUCK END DUE TO TORSION ADDED DIMENSIONS 82 = 5. 750 IN. AL ~ 11. 125 IN. CL = 7. 500 IN. TORSIONAL RESISTANCE h. 4 IN~+4 'HEAR CENTER FROM CENTER OF TQP PLT-- 10. 217 IN. 176'F06. 3 I N-LBS. WARPING MOMENT ANGLE QF TWIST 2ND DERIVATIVE -- 6410K-Ob O. 3RD DERIVATIVE 0. 1153E-06 TRUCK END STRESSES IN PSI ENSILE STRESS DUE TO WARPINQ RIQIDITY THROUGHOUT THE THICKNESS 8 PT. A 1344. 1 THROUGHOUT THE THICKNESS I PT. B 480'. '5 SHEAR STRESS DUE TO WARPINQ RIQIDITY AT A DISTANCE ( Y ) 1. 943 IN. FRQN THE I NSIDE FACE QF THE WEB 581. 2 SH A R THI S' PT. Ds AT A DISTANCE- CZP IQ',7L7" EN'RQPt TM TOF FL'ANNE; '. ISSI;,S RANSVERS SHEAR STRESS IN FLQ DUE TO FX- 778. 9 TRANSVERSE SHEAR STRESS IN WEB DUE TO FZ- 9555. 3 NA SHEAR STRESS IN BQT FLANGE 2470. 6 II'I ll >X tl ~ 'g P ye P p ~ I,4f FORM Nr2404 WHITING REQN. ~~~ ~ OATE AEP OT BRIDGE--IDLER I'RlICK SSE BY PGC PAGE 4 35 Qf j'g vgN) 8-2.<~-8g TRUCK SI ZF TOP PLT = O. 75 X 19. OO IN. 1 BQT PC.T' WEB PLT =

0. 75
0. 50 X

X !MD

25. 38 IN.

DISTANCE BETWEEN WEB PLTS = 8. 50 IN. TRUCK I JHEEL BASE = 30. 38 IN. COEF. OF FR! CTION = 0. 250 RAIL TO CENTER OF TWIST = 15. 938 IN.

  • -" '>~ FORCES IH THE" GT'QBAL COORDINATE SYSTEM FX = 1 1 JOO. 0 LBS.

FY O'. 0 LBS'. "FZ 195200. 0 LBS." SECTION PROPERTIES AREA IN SG. IN. VER T I CAL MOMENT OF INERT I A VERTICAL SECTION MODULUS "463. 83

53. 9 6225.

VE~HVlC- CENTER'F GRITTY=='= E3. 4 IZ. MOMENT OF INERTIA-HOR I Z. SECTION MQDULUS HOR 1371. 144. 4 7 MAXIMUM DEFLECT IQNS IN INCHES HORIZ. BENDING DEFL. DUE TO FX = ~UUTZ2"

0. 00032

~ VERTICAL SHEAR DEFL. DUE TQ FZ 01106 RITZ. SHEi%R DEFL. DUE=TO =" 0. 0; 0008K TRUCK STRESSES IN PSI  %+ 4f'OINT (u) M'C7IO4 4.lf 11A7. SENOXNC STRESS TOF FLANGE BENDINQ STRESS BOT FLANGE BENDINQ STRESS TOP FLANGE BOT DUE TO FX DUE TQ FX DUE TO FY TO FY 6399. 1167. 0'. 7 (4) 7 0 '0 " 4 I DUE TO FZ-BENDINQ STRESS TOP FLANGE BENDINQ STRESS BOT FLANGE b399. DUE TQ FZ T T 4 S BENDINQ STRESS ON WEB DUE TQ FX 583. 8 TRANSVERSE SHEAR ON WEB DUE TO FZ TRANSVERSE SHEAR ON FLANGE OUE TO FX -'73. 8370. 5 Q 1 (1)(1) TORSIONAL SHEAR ON FLANGE DUE TO FX 301. A ('I TORSIONAL SHEAR ON FLANGE DUE TO FZ DIRECT TENSILE STRESS DUE TO FY

0. 0
0. 0

)(1 AI.(} TORSIONAL SHEAR ON WEB DUE TO FZ-- O. 0 3) "<<'J:CCNABI E BEMA' ~~'0K ~~"ALCCSNBCE ~AR "= I %GOO; 0 BEND. STRESS IN TQP FLG. DUE TQ FY 5 FZ %-~ 83K. 6399. 7 7 BENDING STRESS IN WEB DUE TO FX Sc FY 583. 8 'TOTAL TORSIONAL SHEAR STRESS IN FLANGES TOTAL TORSIONAL SHEAR STRESS IN WEB 501. 6 752. 4 MAX TENSILE STRESS IN TOP Fl ANGE-- --gPb) 7567. 4 gPQ)~<~ MAX TENSILE STRESS IN BOT FLANGE-MAX SHEAR STRESS-CENTER TOP FLANGE V%X SHEAR STRESS=CENTER BOT 'FL'ANU'E=====--'" '408.'7 MAX SHEAR STRESS-CENTER WEB (P50 91 ZT. 5 et 0 me CI ~, ~ VL Wj V lt 4 0 WHITING REQN., ~ 4'~ ~ DATE BY ~ ~ PAGE ~EP GP HJH g-2C 87 AEP 50T BRIDGE IDLER TRUCK SSE ANALYSIS OF TRUCK END DUE TO TORSION ADDED DIMENSIONS 92 = 5. 750 IN. AL = 11. 125 IN. CL = 7. 500 IN. TORSIONAL RESISTANCE b. 4 IN+~ SHEAR CENTER FROM CENTER OF TOP PLT- 10. 217 IN. QQHSZ8HT. N+~. WARP INQ MOMENT 17b'EtOb. 3 IN-LBS. ANGLE OF TMI ST 2ND DER I VATI VE 3RD DER I VATI VE 0. b410E-Ob

0. 1153E-Ob

~ %% TRUCK END STRESSES IN PSI TENSILE STRESS DUE TO MARPINQ RIGIDITY THROUGHOUT THE THICKNESS 8 PT. A---- 1344. 1 TENSILE STRESS/ THRQUQHQUT THE THICKNESS % PT. B 4802. 5 SHEAR STRESS DUE TO MARPINQ RIGIDITY THROUGHOUT JQE AT A DISTANCE (Y) ~~/ 1. 943 IN. FRQN THE INSIDE FACE QF THE MEB 581. 2 SHEAR STRESS DUE TQ MARP Q THICKNESS 8 PT. DJ AT A DISTANCE (Z) 10. 717 IN. FREPI THE TOP FLANQE 1531. 3 IN FLQ DUE TO FX- 778. 9 RANSVERSE SHEAR STRESS IN MEB DUE TO FZ- 72b3. 3 WAX SHEAR E IRAQI STRESS IN MEB D STRESS CGQC, C~t ggQ ~ T~~ t'< r t I IIHl ikRR'I l ~J! l Rig ~~'44l~S~ %%hi IM l~ ~ t 0 II N ~k I ) ~eh 0 fORM M.lani WHITING REQN. 7~ ~~ OATE BY +Z PAGE QF MJ M 8-M-87 ALLONHBMS '7/s" aoL7s grrPL,. A 325yg,N 082 52 as'g~ +Vtf>N /.5 =6'l,3 zsi YELL = 0;4 GRILL =36,845/ P~L ~ OP4 SPEAL 50F2 KS/ Nor.go (riiCer PPYWu TFYEOA~) BASE H7RL .'f578 83$ Gypping = g5/ NE/-0 Mal 'flhf. ESOXX EL&C7~DGS 6ypgiN = GQ CSI oeE Q6 = ZOPOKSl fV.ALL. B ~Yet N.BASS p0 q ~g( /.5' ~ ~~ ~LL ~~'<< 0.6 GYwH,NFcD ~ N. ALL ~ /,/ ~ l 0 f'P, fORM N 14%i WHITING REQN. 79 ~ OATE BY A5Z PAGE + 3~ OP~IX NIZAM 8-ZS-B7 BGL TE'L) CONNECT 7 I 0 AJ 'le el.rs IZO Ilg 0 0 (ov IOS I09 IIO II9 0 0 0 0 0 0 O. 0 Fx zoo iZ~lz (o'04 II 9 FY 0 0 0 l02 0 0 0 I05 0 IO6 .0 IO> F~ IOAb IS 7i&hgFERAED IN BERWIM+ A RIESS OV THUD, D7HER lOWDS PATE ~AJSFiEEAEL) /h) MAR OF BOLT> . 8C.7$ AIEC A)07 Ih) IE4$ IOQ, t l j1 C FORM N 2494 WHITING REQN. ~ ~ DATE EY '45Z PAGE 4 4O QF Maw 8-Q-87 4'gx, LOAbla65 PER 7ABL< +Z 8No 43 088 Fx II'8 K'IP FY 4R8 KIP Fz =Z50 2 klP M= 3ZC'7 IN. k.'lf 55K'~ 22.Z kjp Fy = 788 KIP'z = 339,"P WiP IITt< =5384 W. KlP NELDGQ COJUNE.CTiGAJ, (/q g/8 >9 115 ) II k IIS ll6 II7 II8 le l23 IZ2 l21 I20 l02 l03 le I05 I06 I65 II2 III IIO I09 108 I07 z WP. P. X~ +14> 144 55 145 PIS 56 ~ 147 148 ~ S7 145 ISO 58 ISI 152 155 154 I&f ~ ~ I6g ~ -oIS9 ~ I~ P-o IS7 lws 155 e-o f63 Z I25 l26 I27 l28 I29 ISO 13I 82 I33 IK I3S I36 Fx 200 5l 52 S5 t67 l42 I4I ~ I40 l39- 138 I37 p sy,+ ppqgcrive secaose cF ee8 ~ized, '~h@aA, lf SWORE WELDS NE'RF 7REA7ED 45 O'CCET'@E'LD5. P~OS WELD'VERE EMITTED) WHICH l5 CQVSERV<72<Q. BGCROSG /HELD'RE lPADED 8Y BOLT5. THGY APE'ONSIPC489 Ih)EFFECTIVC IIY Z DIRECTIFPAI (BOI.7 TENSION). "I e'en'y p 5 10 15 20 ASZ 25 CONSYS INPUT DATA 30 35 40 a~ce 45 LISTING 4-dl 50 V 55 V ~ 60 V i)2 65 V 08/21/87 70 V V V V V V V V V V

  • " 50T LOAD + TRUCK TO GIRDER 4 BOLTS y OBE m<8-~87
2. 79604 AS 2 4. 1. 1. 1.
3. 1. 3. 2.

4 2. 4. 0.

5. -1
6. 0. 875 36. 8 7.

10 8. 101. 1. 12. 1 13. 1. 8. 12 10. 200. 2. 13 11., ~j 14 12. -6. 6. -25. 125

13. 101. 12. 5625 2. 5
14. 102. -17. 5 12. 5625 2. 5
15. 103. -22. 5 12. 5625 2. 5
16. 104. -27. 5 12. 5625 2. 5 lQ 17. 105. -3? 5 12. 5625 2. 5
18. 106. -37. 5 12. 5625 2. 5 21 19'. 1 13. 14. 8125 8125 29. 375 29'4.

22 20. 114. 8.

21. 1 15. -8. 11. 8125 29'. 375 24 22. 1 16. 8. 11. 8125 29. 375
23. 117. -ii. 8125 29. 375
24. 1 18. 8., -11. 8125 29'. 375
25. 1 19'. -14. 8125 29 37
26. 120. B. -14. 8125 29. 375
27. 200. 0. 0. 0.

30 28. 9999. 29'. 101. i. 120.

30. -1 4 33 31.. 200. 11. 8 49': 8. -3267.
32. -1
33. 200. 11. 8 M9. 8 0. 3267.

34. ", ',, 35~,.200. -11. 8 . 49.'8"'<<;. ~ -'-.

0. -3267; 36".; '-1.

3267.'." Q 35 a 30 200. -11. 8 '7; M9. 8 40 38. -1 41 39. FINISH A A A A A A A

  • A A A A A A 45

~ 43 ~ 50 51 152.' l53. I )5 ~ 150 k l,p 5 Jl ~ '5 '1 ~t CONSYS ANALYSIS'PROGRAM>>>>>> REQUISITION 79b04 'ATE 08/21/87 VE3SION .< c~ RELEASED. 12/03/82 BY.'. ASZ.. PAGER..A 8 OF 8-L5-87 AEP>> 150T CRANE>> 50T LOAD>> TRUCK TO GIRDER>> BOLTS>> OBE >>>>>>>>>> WORST CASE ANALYSIS

SUMMARY

AD~>>BUCKMLLRZRDER>> 130LIS...>>.. QB DIRECTION l 9' LOAD STE Y I0 II l2 TRANSLATED FORCES....

TRANSLATED MOMENTS........

~ .... -c~P

11. 80 49. 80 0. 00
6. 35 NUMBER OF FORCE DEFINITION NODES... 1 MAXIMUM ABSOLU~S~TFSR Q5 ELEMENT 2EL~CS1 I!6!

1!2 COMPARISON FACTOR. MATCH ON ELEMENT 14 i. 3081508 I

1 IS AEP + 150T CRANE>> 50T LOAD + TRUCK TO CIRDER + BOLTS + OBE

( I22

~

LOAD STEP...... 2 23 I

l24 TR NSLAT FO TRANSLATED MOMENTS; >....... 2b07. 15 -15b. 35 -747. 00 NUMBER'OF FORCE DEFINITION NODES... 1 I M O TE STRESS ON ELEMENT 20 28. 1 KSI 29 OMPARISON FACTOR MATCH ON ELEMENT 20 52 1. 3081508 3'I AEP + 150T CRANE + 50T LOAD>> TRUCK TO GIRDER + BOLTS>> OBE DIRECTION LOAD STEP...... 3 Y TRANSLATED FORCES......... -11. 80. 49. 80. 0. 00

. 'RANSLATED MOMENTS......... -2b07. 15 15b. 35 747. 00 NUMBER OF FORC DE MAXIMUM ABSOLUTE STRESS ON ELEMENT 20 94 28. 1 K>l 42 COMPAR ISON FACTOR MAT ON E IS AEP>> 150T CRANE 969'~ IKICtLZ9LQIB9ISI i~QLT~i05 46 47 DIRECTION I

l40 LOAD STEP..

l49 I

50 TRANSLATED FORCES......... -11. 80 -49. 80 0. 00 TRANSLATED MOMENTS........ 26~0 1.5 ..4 W l'2 NUMBER OF FORCE DEFINITION NODES... 1 l53 154 MAXIMUM ABSOLUTE STRESS ON ELEMENT 14 COMPARISON FACTOR MATCH ON ELEMENT 14 Is 1. 3081508 w 56

>>>>>>>>>> HORST CASE ANALYSIS COMPLETE WORST CASE OCCURED DURING LOAD STEP 1

~ lW

~ IIV'

~ <

lu Al ~

C

<<<<<< 'CONSYS ANALYSIS PRO@RAM <<<<<<REQUISITION 79604 DATE 08/21/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ Ri M ~~'7 PACE PQQOF /l~

I AEP <<150T CRANE <<50T LOAD <<TRUCK TO QIRDER <<BOLTS <<OBE 3

SYSTEM PROPERTIES LOAD STEP.. 1 II<< I,.QCBJJdhLPB 4XIS CENTROIDS3 X AX IS.......... 0. 00 13. 25 Y AXIS......... 0. 00 13. 25 Z AXIS......... -15. 00 -0. 00 SHEAR AREAS.. 12. 03 12. 03 0. 00 14 POLAR MOMENTS OF INERTIA.. 2084. 70 2084. 70 4640. 13 Id Id TRANSLATED FORCES......... 11. 80 49. 80 0. 00

~

7 TRANSLATED MOMENTS........ -2607. 15 -156. 35 747. 00 Id NUMBER OF FORCE DEFINITION NODES... 1

<<<<<<<<<<SYSTEM ELEMENT STRESSES DIRECT STRESSES ARE EQUALLY DISTRIBUTED THROUQHOUT SHEAR AREA DRX.. 1. 0 DRY . 4. 1 DRZ 0. 0 P

-D POINT ELEMENT 1 NODE 101 AREA 0. 601 DIAMETER 0. 875 STRESS AT NODE 8. 9 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 101

0. 8 -2. 0 -13. 4 0. 4 0. 0 0. 0 FORCES AT NODE 101 FX FY -5. FZ 0.

2-D POINT ELEMENT 2 NODE 102 AREA 0. 601 DIAMETER 0. 875 STRESS AT NODE 9. 7 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 102 0.8:.,

FORCES AT NODE 102

-2.0 FX

<<..-13.

~.4, FY'

~. 4 FZ

0. 0 0.
0. 0 2-D POINT ELEMENT 3 NODE 103 AREA 0. 601 DIAMETER 0. 875 FORCES AT 8,

STRESS AT NODE I STRESS EXPANSION FOR NODE 103 0.

NODE'03

-2. 0

10. 5 FX ALLOWABLE

-13. 4

-0. FY

-l. 2

36. 8

-b. FZ

0. 0 0.
0. 0 4a 2-D POINT ELEMENT 4 NODE 104 AREA 0. 601 . DIAMETER 0. 875 i 47 STRESS AT NODE 11. 3 ALLOWABLE 36. 8

)45 STRESS EXPANSION FOR NODE 104 I

40 0. 8 -2. 0 -13. 4 -2. 0 0. 0 0. 0

<<50 I

FORCES AT NODE 104 FX -0. FY -7. FZ 0.

l51

)55 2-D POINT ELEMENT 5 NODE 105 AREA 0. 601 DIAMETER 0. 875 l53 STRESS AT NODE 12. 1 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 105

0. 8 -2. 0 -13. 4 -2. 8 0. 0 0. 0 FORCES AT NODE 105 FX -0. FY -7. FZ 0.

4 4~ A

>ll IP b>>

4 IfIlk P

~ Il

~W

  • l'

3 COhlSYS Al'lALYSIS PROGRAM +<<+ REQUISITION 79604 DATE 08/21/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAGE( g+ OF t/Z H~~ 8=25-8T AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + BOLTS + OBE 4'+44~+ SYSTEM ELEMENT STRESSES I

io I 2-D POINT ELEMENT 6 NODE 106 AREA 0. 601 DIAMETER 0. 875 ST S AT NODE 12. 9 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 106

0. 8 -2. 0 -13. 4 -3. 6 0. 0 0. 0 lioi FORCES AT NODE 106 FX -0. FY -8. FZ 0.
i
l 2-D POINT ELEl'lENT 7 NODE 107 AREA P. 601 DIAMETER 0. 875 iisi i

ST A NODE 9. 7 'LLOWABLE 36. 8

~

i4l STRESS EXPANSION FOR NODE 107

0. 8 2 0 -13. 4 p. 4 0. 0 0. 0 FO S AT NODE 107 FX 2. FY -5. FZ 0.

'is', 2-D POINT ELEMENT 8 NODE 108 AREA 0. 601 DIAMETER 0. 875 TKiEB A NODE 10. 4 ALLOWABLE 36. 8 po1 STRESS EXPANSION FOR NODE 108

0. 8 2. 0 -13. 4 0. 0 0. 0 FO S AT NODE 108 FX 2. FY -6. FZ 0.

'=s[

2-D POINT ELEMENT 9 NODE 109 AREA 0. 601 DIAMETER 0. 875 i?si A NODE 11. 2 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 109 I

0. 8 2. 0 -13. 4 -i. 2 0 0 0. 0 FO 8 ATN 0.

sol 2-D POINT ELEMENT 10 NODE 110 AREA 0. 601 DIAMETER 0. 875

11. 9 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 110
0. 8 2. 0 -13. 4 -2. 0 0. 0 0. 0 ISA FO S AT NODE 110 FX 2. FY -7. FZ 0.

~ilSS lse '-D POINT ELEMENT ii NODE 111 AREA 0. 601 DIAMETER A NODE . 12. 7 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 111 ISO'AO 0. 8 2. 0 -13. 4 -2. 8 0. 0 0. 0 FOlKES AT NODE 111 FX 2. FY -7. FZ. 0.

1,l ~

g les'. 2-D POINT ELEMENT 12 NODE 112 AREA 0. 601 DIAMETER 0. 875 14S I A ODE 13. 5 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 112 l45 0. 8 2. 0 -13. 4 -3. 6 0. 0 0. 0

, iAel A NODE 112 FX 2. FY -B. FZ 0.

I 471

.; Irs'. 2-D POINT ELEMENT 13 NODE 1 13 AREA 0. 601 DIAMETER P. 875 ITIE S. 6 AL~OABLZ 36. 8

".so STRESS EXPANSION FOR NODE 113

-1. 2 -2. 4 20. 2 1.1, 0.0 0. 0

~ e PUN:~T hlUD~ f5 FX =2. F'V 0.

use i 7'1 is~'2-D POINT ELEMENT FO RL'3 2

CES AT NODE 114 14 STRESS EXPANSION FOR NODE 114

-2 4 FX NODE

':T ""tt"AREAE 114 20 2

-2. FY

0. 601 3 7 17.

DIAMETER FZ P.b P. 875 0.

0. 0

II I Cr I,'4

'4 t 0

CONSYS ANALYSIS PROGRAM +4~ REQUISITION 79604 DATE 08/21/87 VERSIQN~I4 " ElERSEB&B/0$ /S... BY IISZ .*SF 'F:WS

-B7 OF L'+.-.

AEP + 150T CRANE + 50T LOAD + TRUCK TO CIRDER 4s BOLTS + OBE s4 I I

P I SYSTEM ELEMENT STRESSES I

'4( 2-9 POINT ELEMENT QB~B~RElh ~>Q~IRMETER 0 S7 STRESS AT NODE 25. 5 ALLOMABLE 36. 8

,, 8 STRESS EXPANSION FOR NODE 115 S

0 FORCES AT NODE 115 FX -i. FY 15. FZ 0.

12 1$

14 2-D POINT EL STRESS AT NODE MENT 1

28. 1

'116 ALLOWABLE

~~DLAMEIKB

36. 8

~ B7 STRESS EXPANSION FOR NODE 0 0 14 17 FORCES AT NODE 116 FX -i. FY 17. FZ 0.

18 2- PO STRESS AT NODE 25. 5 ALLOWABLE 36. 8 20 STRESS EXPANSION FOR NODE 117 21 FORCES AT NODE 117 FX 1. FY 15. FZ 0.

24 2-D POINT ELEMENT 1 STRESS AT NODE 28. 1 ALLOMABLE 36. 8 STRESS EXPANSION FOR NODE 118 FORCES AT NODE 118 FX 1: FY 0.

I

$0 2-D POINT ELEMENT 19 NODE 1 9 STRESS AT NODE. 25. 5 ALLOMABLE 36.

I $2 STRESS EXPANSION FOR NODE 119

$$ 8'5.

FORCES AT NODE 119 FX 1. FY FZ 0.

42 2'.

2-D POINT ELEMENT STRESS AT NODE FORCES AT NODE FORCE

-,'8.

120 DEFINITION NODE 20 STRESS EXPANSION FOR NODE 120

-i.

FX NODE 1 1

IRECT AREA ALLCN4ABLE i.

E E FY

36. 8 17.

M~O FZ 0.

FX 11.80 s FY 49. 80 > FZ 0. 00 MX, -3267; 00 s MY 0.00 s MZ 0. 00 y 47 48 MAXIMUM ABSOLUTE STRESS ON ELEMENT 14 8 80 8'1 44 8 54 W7

nr '

ew

~l I

4 = 4 I ~ P . 'L

CONSYS ANALYSIS PROGRAM %4% REQUISITION 79604 DATE 08/21/87 VERSION 4. 2 RELEASED..12/03/82 BQ. ASZ, HJM  ?.

.PAGE/

8

+ OF. ILZ, AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + BOLTS o OBE REPORT

SUMMARY

> FOR A 4 LOAD STEP ANALYSIS ++4++

WORST CASE ANALYSIS......... NO ELEMENT STRESSES PRINTED.... YES>> STRESS SUMMATION MODE WAS DIRECT ELEMENT STAT I ST I CS I

11 2. TYPE DESCRIPTION NUMBER USED 113I I I 1 2-DIMENSIONAL POINT ELEMENT........ 20 114(

I 2 FORCE DEFINITION NODE DIRECT..... 1 I 13 ale.

l TOTAL NUMBER OF ELEMENTS>>2 211 NODES ~ 21

',;,I SYSTEM PROPERTIES 20 LOAD STEP .;.',. 1 DIRECTION>> LOCATION OR AXIS..

21 122 I 1~!

I S.......

~

I I24; CENTROIDS>> X AX O. 00 13. 2 123 Y AXIS.........

Z. AXIS; .;......

0. 00 i3. 25.

-15. 00 29 P,

SHEAR AREAS.......'........

MENTS OF TRANSLATED FORCES.

INERTIA..

12 03 2084. 70

11. 80 M. 00 1

2084. 70

49. 80 0

4640. 13 O. 00 TRANSLATED MOMENTS........ -2607. 15 -156. 35 747. 00 ELEMENT STRESSES NUMBER i4-'AXIMUM 36 DESCRIPTION". USED 'LEMENT'ODE POINT ELEMENT '20 ih '14 '-D STRESS ALLOWABLE FACTOR "i. 3082

28. 1 KSt 36. 8 CSi l49) l4 1 .

OB COMPLETED 144)

I43

!44 I4; 143 I'40

~

~

lb

tr I

~ 'i

e>>>>>>>> CQhlSYS INPUT DAih LISTING 08/21/87 IsZ ..~~+-~7 .< uZ 5 10 l5 20 c25 30 35 40 45 50 55 60 65 70 V V V V V V V V V V V V V V AEP >> 150T CRANE>> 50T. LOAD <<, TRUCK TO GIRDER>>.BOLTS + SSE 79604 ASZ 4. l.

1 . 3.

0 4 O.

~

1i 5. -1 le: b. 0. 875 50. 2 i0 l 7. -i.

IGI 8. 101. 12.

I li 9. 1 13. 8.

I

~ 12 10. 200.

I I

11. -i.

~

~ C 12. b. -25. 125

13. 101. -12 5 12. 5625
14. 102. -17. 5 12. 5625 2. 5

, 117) 15. 103. -22. 5 12; 5625 2. 5

'ICi 16. 104. -27. 5 12. 5625 2 5 II 0:

~

I

17. 105. -32. 5 12. 5625 "
2. 5

~ i20II 18. 106. -37. 5 12. 5625 2. 5

1. 19. 1 13. -8. I . 81~2 2' 10 8. 14. 8125 375 1 14. 29.

~ 3 21. 115. -8. 1 i. 8125. 29. 375 a24l 1 16. 8. 11. 8125 29. 375

23. . 117. -8. -1 i. 8125 29. 375 2+. 118. 8. -1 i. 8125 29. 375
25. 1 19. -8. -14. 8125 29. 375 1 26 120. 8. -1'4. 8125 29. 375

..I2OI I

17 200. p. 0. 0.

1301 28. 9999 I31" I I 29'. 101..1. 120.

e 1321 30. -1 l331 31. 200: cR. 2 78. 8 0. -5384.

(34'C 32

33. 200. ~~~. 2 -78. 8 0. 5384.

bs 34.

j32', 35.. 200. -22. 2 78. 8 0. -5384.

~ 132( 36. -i.

130 37. 200. -22. 2 -78. 8 5384 ICG 38. -l.

p

~

4 11 39. FINISH A A A A A A A A A A A A A l4 ' 'I l

I

'4'M s4$

'2 E

'V ~

4s, V yI

COhl- YS ANALYSIS,.PROGRAM o+~r. REQUISITION 79h04 DATg 08/ 1/87 I

VERSION. 0 .c~ . R LEASED ~1.03/Bc~ ... BY ASZ ... PAQE4.~8 OF.. l/Z

~

ew 8-ZS-B?

2 AEP + 15OT CRANE + SOT LOAD 4'RUCK TO GIRDER + BOLTS + SSE I I WORST CASE ANALYSIS

SUMMARY

AEP + 150T CRA .QLZKLRIHDEH 1t 30LTS +MS 7

DIRECTION L AD STEP 10 TRANSLATED FORCES....... ~ . 22. 20 78. 80 0. OO 12 TRANSLATED MOMENTS... 9 13 NUMBER OF FORCE DEFINITION NODES... 1 15 MAXIMUM ABSOLUT T %6..2 14 COMPARISON FACTOR MATCH ON ELEMENT 1. 0872481 14 19 AEP + 150T CRANE + 50T LOAD  % TRUCK TO QIRDER e BOLTS + SSE 0

21 LOAD STEP...... 2 23 4 TRANSLATED FORCES.

TRANSLATED MOMENTS........ *- 4339. 90 -294 15 -1182. 00 NUMBER OF FORCE DEFINITION NODES.... 1 XI M L E TRESS ON ELEMENT 20 ~ 46. 2 Yhl COMPARISON FACTOR MATCH ON ELEMENT 20 99 1. 0872481 31

+'50T CRANE +

,J'EP 50T LOAD w TRUCK TO QIRDER + BOLTS + SSE 33 DIRECTION LOAD STEP...... 3 Y TRANSLATED FORCES.....,.... ',"'22. 20 78. 80 0. 00 4 TRANSLATED MOMENTS........, M339. 90- 29'4. 15 1182. 00 9 NUMBER OF FORC DEFI 41 MAXIMUM ABSOLUTE STRESS ON ELEMENT 20 94 46, 2 KSI 42 COMPARISON FACTOR MAT 0 14 1

V AEP + 1 50T CR NE 144

I- DIRECTION l44 LOAD STEP 149<

iso'RANSLATED FORCES...,..... -22. 20 -78. 80 0. 00

"* * ~71 $8 s+

NUMBER OF FORCE DEFINITION NODES... 1 53.

MAXIMUM ABSOLUTE STRESS ON ELEMENT 14 Kbl COMPARISON FACTOR MATCH ON ELEMENT 14 ~ 1. 0872481 ignis 1

+41'~ WORST CASE ANALYSIS COMPLETE WORST CASE OCCURED DURING LOAD STEP 1

F f~g a

, Nhl pA I

qe e A

CONSYS ANALYBIS PROGRAM 44.45 REGUI SITION 79604 DATg 08/21/87 VERSION 4. 2 RELEASED 12/03/82 BY .P.SZ PAGE E W8 OF~IZ-MJM ll I$ 57 AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + BOLTS + SSE SYSTEM PROPERTIES LOAD STEP. D I RECT I Olg~AO~CQJg 0~)gp$

'7 ~

s Y

CENTROIDS> X AXIS......... 0. 00 13. 25

.'l l Y AXIS......... 0. 00 13. 25 AXIS.........

II2

)is, 1

SHEAR AREAS 2

POLAR MOMENTS OF INERTIA..

-15. 00

12. 03 2084. 70

-0 00 12.

2084. 70 03, 0. 00 4640. 13 TRANSLATED FORCES......... 22. 20 78. 80 0. 00

'RANSLATED MOMENTS..., ~ 4339 90 -294. 15 1182. 00 lIIII Ioi NUMBER OF FORCE DEFINITION NODES... 1 20 2l l22 I

A3 SYSTEM ELEMENT STRESSES l24 I23I DIRECT STRESSES ARE EQUALLY DISTRIBUTED THROUGHOUT SHEAR AREA hei DRX 1. 8 DRY 6. 6 DRZ 0. 0 27

~-D POINT ELEMENT 1 NODE 101 AREA O. 601 DIAMETER 0. 875 2oi STRESS AT NODE 15. 2 ALLO4lABLE 50. 2 pol STRESS EXPANSION FOR NODE 101 3l 1. 5 3I 2 -22. 4 0. 6 0. 0 0. 0 I $2 FORCES AT NODE 101 FX 0. FY FZ 0.

3 2-D POINT ELEMENT 2 NODE 102 AREA 0. 601 DIAMETER 0. 875 l $5 STRESS AT NODE 16. 5 ALLOMABLE 50. 2

$5 STRESS EXPANSION FOR NODE 102 37 1. 5 -3. 2 ~ -22. 4 -

~. 6 0. 0 0. 0

~ 3$ FORCES AT NODE 102 FX D. FY -10. FZ 0.

I$ o l4o c2-D POINT ELEMENT 3 NODE 103 AREA 0. 601 DIAMETER 0. 875 STRESS AT NODE 17. 7 ALL04NBLE 50. 2 STRESS EX ANSION FOR NODE 103 I4$ '.

'I l 1. 5- 30 2 -K 4 -1. 9 O. 0 0. 0 g.44) ~ ~

FORCES AT NODE 103 FX D. FY -11. FZ 0.

l 4'5 I

,45 2-D POINT ELEMENT 4 NODE 104 AREA O. 601 DIAMETER 0. 875 STRESS AT NODE 19. 0 ALLOWABLE'0.2

~45 STRESS EXPANSION FOR NODE 104

~ 48 1. 5 3I 2 -22.'4 -3. 2 0. 0 0. 0 p'so FORCES AT NODE 104 FX 0. FY -11, FZ 0.

IE E-D POINT ELENENT 5 NODE I05 AREA 0. AQI DIANETER 0. 875 STRESS AT NODE 20. 3 ALLOMABLE 50. 2 STRESS EXPANSION FOR NODE 105

i. 5 -3 2 -22. 4 4. 5 0. 0 0. 0

+'DG FORCES AT NODE 105 FX 0. FY -12, FZ 0.

~t 8

'b

,1 T~

<<te-, +$4

'4w '

CGNSYS ANALYSIS PPOGRAM +.+4 REQUISITION 79604 DATE 08/21/87 VERSION 4. 2 RELEASED 12/03/82 HY: ASZ PAGE 4 SG OF PZ e' w tn F- Q=37 AEP + 150T CRANE + 50T LOAD 4 TRUCK TO GIRDER + BOLTS + SSE

~

31 SYSTEM ELEMENT STRESSES l5 l6 2-D POINT ELEMENT 6 NODE 106 AREA 0. 601 DIAMETER 0. 875 S AT NODE 21. 6 ALLOWABLE 50. 2 STRESS EXPANSION FOR NODE 106

i. 5 -3. 2 -22. 4 -5. 7 0. 0 0. 0 o FORCFS AT NODE 106 FX O. FY -13. FZ O.

11 2-D POINT ELEMENT 7 NODE 107 AREA 0. 601 DIAMETER 0. 875 ST S AT NODE ib. 5 ALLOWABLE 50. 2 STRESS EXPANSION FOR NODE 107

-15 1. 5 3. 2 -22. 4 0. 6 0. 0 0. 0

/

I II FO S AT NODE 107 FX . 4. FY -9. FZ ~ 0.

5'.

el17 16 2-D POINT ELEMENT 8 NODE 108 AREA 0. 601 DIAMETER 0. 875

)IQ T AT NODE 17. 7 ALLCNABLE 50. 2 1)20 STRESS EXPANSION FOR NODE 108'.

11 2 -22. 4 . -0. 6 0. 0 O. 0 12 26 FGRC S AT NODE 2-D POINT ELEMENT, S .A OD 108 9

STRESS EXPANSION FOR NODE FX NODE

18. 9 109 4.

ALLIABLE FY AREA '. 601

-10.

50. 2 F.Z DIAMETER 0.
0. 875 109'.

5 3. 2 -22. 4 .-1. 9 0. 0 0 0 FG S AT NODE 1'09 .FX 4. FY -11. FZ 0.

20 so 2-D POINT ELEMENT 10 NODE 110 'REA 0. 601 DIAMETER 0. 875 8 A N D 20. 1 ALLCNABLE'0.2 STRESS EXPANSION FOR NODE 110

1. 5 3. 2 -22. 4 -3. 2 O. 0 0. 0 FO 8 AT NODE 110 FX 4. FY . -11. FZ 0.

15 36 2-D POINT ELEMENT 11 NODE 111 AREA 0. 601 DIAMETER 0. 875 A 21. 3 P7, 136-30 STRESS EXPANSION FOR NODE

1. 5 3. 2 iii-22. 4 ALLOWABLE ~

-.4. 5

50. 2
0. 0 FO AT NODE 111 FX . 4. FY -12. FZ 0.

141

'<21 2-D POINT ELEMENT 12 NODE 112 AREA 0. 601 DIAMETER 0. 875 ST A N E 22. 5 ALLGl4ABLE 50. 2 e44 STRESS EXPANSION FGR NODE 112 I

I AS 1. 5 3. 2 -22 4 -5. 7 0. 0 0. 0

'LS FO A NODE 112 FX 4. FY -13. FZ 0.

47 1

i+6 2-D POINT ELEMENT 13 NODE 113 AREA 0. 601 DIAMETER 0. 875 I

~TRe feee *. I

  • 50i STRESS EXPANSION FOR NODE 113 I51 I

2e 3 -3. 8 33. 6 1. 8 O. 0 0. 0 IS F A~dM 113 FX -3. FY 25.. FZ O.

53 54 -D POINT ELEMENT 14 NODE 114 AREA 0. 601 DIAMETER 0. 875 ISO

'Sd I

A Ol> A~

STRESS EXPANSION FOR NODE 114 ALLOBABCE r I

-2. 3 -3. 8 33. 6 O. 0 0. 0 FORCES AT NODE 114 FX -3. FY 23. FZ 0.

~

4 lp,A' F' h

CONSYS ANALYSIS PROGRAM EA4+

REOUISITION 79604 DATE 08/21/87 YEESIIIE 1I m~ RELEASED 18/03/88...>> BY.'-. ASZ..PAQE4 8-25-B7

+~ OF~

me NI AEP + 150T CRANE + 50T LOAD + TRUCK TO QIRDER + BOLTS + SSE SYSTEM ELEMENT STRESSES 2-D PoINT ELEMENT STRESS AT NODE 5

42. 0 D~5~8Sh ~601 .DIISIMEXER 0 87 ALLOWABLE 50. 2 8 STRESS EXPANSION FOR NODE 115 0

9 FORCES AT NODE -115 FX -2. FY 25. FZ 0.

I I

II 2-D POINT ELEM N ~O~DJAN STRESS AT NODE 46. 1 ALLO4lABLE 50. 2 STRESS EXPANSION FOR NODE 116 15 FORCES AT NODE 116 FX -2. FY 28. FZ 0.

) I7 15 POI 10 STRESS AT NODE 42. D ALLOMABLE 50. 2 I3 20 STRESS EXPANSION FOR NODE 117 21 P2 FORCES AT NODE 117 FX 2. FY 25. FZ 0.

0'23 24 2-D POINT ELEVE 18 N D STRESS AT NODE 46. 1 ALLOMABLE 50. 2 STRESS EXPANSION FOR NODE 118

<<2 3 2 OC SA OE 118 FX 2. FY 28. FZ 0.

30 2 D POINT ELEMENT 19 NODE 119 STRESS AT NODE 42. 0 ALLCNABLE STRESS EXPANSION FOR NODE 119

'<<2 FORCES AT NODE 119 FX 2. FY 25. FZ 0.

5 5 2-D POINT ELEMENT 20 N STRESS AT NODE . 46. 1 ALLOWABLE 5D. 2 ss STRESS EXPANSION FOR NODE .120 30 FORCES AT NODE 120 FX 2. FY 28. FZ 0.

g 41 42 FORCE DEFINITION NO REC Q 44 45 FX NX M~. 20

-5384.00 i s

'Y FY 78. 80 0.00 s

s FZ NZ

0. 00
0. 00 45 4 I4>

MAXIMUM ABSOLUTE STRESS ON ELEMENT 14 140

+150.

~

i

/52I I

Qlss>>

154>>

AJ iS

~W

'k I

( 1

~V ~

CONSYS ANALYSIS PROGRAM 44-i REQUISITION 79604 DATE 08/21/87 VERSION 4 2 RELE*SED IE/OO/88 ~K~87 HvH 8 EASE "L5-67

+SZO,F //2 AEP + i 5OT CRANE + 50T LOAD + TRUCK TO GIRDER + BOLTS + SSE J4 REPORT

SUMMARY

'OR A 4 LOAD STEP ANALYSIS %4+++

Is 4 HORST CASE ANALYSIS ELEMENT STRESSES PRINTED,... YESR STRESS SUMMATION MODE WAS DIRECT

'IO ELEMENT STATI STICS 12 TYPE DESCRIPTION NUMBER USED 1 2-DIMENSIONAL POINT ELEMENT........ 20 14 2 FORCE DEF INITION NODE DIRECT..... 1 I

14 TOTAL NUMBER OF ELEMENTS = 2ii NODES = 2i 14 SYSTEM PROPERTIES

. 20 21 LOAD STEP....... i DIRECTIONS LOCATION OR AXIS CENTROIDSR X AX S I O. OO Y AXIS....... 0. i3. 25,'

X 00, 00'i5.

M. 00 AREAS..:............ i2 03 AXIS..........,"'HEAR POLA NERTIA 2084. 70 2084. 70 4640. i3 24 TRANSLATED FORCES 22. 20 78. 80 0 OQ 31 TRANSLATED MOMENTS........ -4339. 90 -294'. 15 i i82. 00 MAXIMUM ELEMENT STRESSES

,.c.';..

DESCRIPTION 2-g POINT EL1&ENT'= '0 USED";

',' i4,'i ELEMENT NODE, STRESS

46. 2 r.S<

ALLIABLE

50. 2 x,w COMPARISON FACTOR
i. 0872 41 42 43, ~+40m JOB COMPLETED

'4 42 44 Sl ssj 54]

$ 1,

'\

7 P

f

CONSYS INPUT DATA LISTING Oei27!87 g 79$ g<

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 eo V V V V V ~ V V V V V V V v v V v

1. hEP + JSOT. CRANE o SOT LOAD w TRUCK TO. OIRDER.+,.HELDB a OGE I 79604 ASZ 4. 1. 1. O. i. 1. ASZ L' 4 1.

2 l.

1

~ca 4-5'~/IZ M JM 8-X7- 87 IO

!I I I

I 6.

7..

B.

9.

10.

-l.

0. 2 5 ..

-1.

3125 101. 102.

20.. 0

20. 0 2
i. 104. , 5. 2.

Il 1

12.

13.

103.

115.

.106 116.

1; 1 -'

1; 23.

2 12 107'4.

101. 165.

1 15. 113. 166.

1.

i.'.,

'2i.. ~

19. 200,,
20. -1.

! 21. .12. 12. -17. 625

22. 101

' 8 8125~5 37.S

-13. 8125 35. 375

-18.

-21 5

5 5

~ '

~

8.

8.

8 8125 8125

'5.

35 375 375

-26. 5 8. 8125 35. 375 8 27. 106. -29. 5 8. 8125 35. 375 1I 28,1 29.

07.

108.

-2'I 5

-26:5, ... 8. 8125 29. 375 8~Bigs 29'175

! 30. 109. -21. 5 '~. 8. 8125 29. 375

31. 110..- -.18,5 ~ "'~BJ25~'9 375 I 32. 1 11. 13. 5 8. 812S 29. 375
33. 112. -10. S . 8. 812S 29. 375

! 4. -18. 18. -17. 625

5. 125. -10. 5 - 8. 8125: 8. 5

-13. 5 "'-" '

-IB 5:...

8 6. 126. 8. 812S B. S B. Bl25 8. 5

-2l. 5 8. BIBB 8. 5

39. 129. -26. 5 8. 812S B. 5
40. 130. -29 5 8 812$ 8 14

- 41.

42:

131.

132.

-34.

-37.

5 5 ','

,,;.. " B. 8125 8125; B. 5

8. 5 43.. 1334 -42,5

-45. 5

. 8. BI25

8. BI25 B. 5 B. 5

-50. 5 8. 8125 8. 5 L -5/~5 8 8125 8~

. -S3. 5 I.;: i "-" .B. 8125 2.

I'~2..55S 50~ 5 '4'+"" 8 8125

-45.. 5

-42. 5

"',8. 812S B. 8125 2. 5

-37. 5 8. 8125 2. 5 8

54.

SS.

161.

162.

-34. 5

-57

-57, 5 '",;:

S

':;<'. 812S B. 8)25

-17. 625 8125 2 5 B.

5 5..

56. 165. 9. 5 8. 8125 29. 62S 57 J66 9. 5 -B. 8125 29. 625 58 1 67. -10. 5 8. 8125 3. 0 59 168. -10: 5 -B. 8125 3. 0 60 200. 0. O. 0.

bl 9999.

62 101. 1. 168.

63 bn 200. 11. S 49. 8 0 -3267 200. 11. 8 M9. 8 O. 3267.

-1.

8~00. -11. B 49. 8 0 -3267.

69 -l.

70 200. -11. 8 -49. 8 0 QP,67

-1 FINISH 72 A 4 A. Ag A,A .A. A A .A A A A A A

I l(ly N ~ $ t 't'M Ar VI C

~l

a. s

COtISYS ANALYSIS PPOGRAM I I I P EQU S T ON 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PACE 4-~0 OF l'lZ.

nJw g-z.7-8$

AEP + 150T CRANE 4 50T LOAD" 4. TRUCK TO GIRDER 4 'WELDS 4 GBE WORST CASE ANALYSIS

SUMMARY

AEP + 150T CRANE + 50T LOAD 4 TRUCK TO GIRDER + WELDS 4. OBE r

8 DIRECTION LOAD STEP...... 1 X Y i l0 Ill I

TRANSLATED FORCES......... 1 i. 80 49. 80 0. 00 TRANSLATED MOMENTS........ -2146. 55 -265. 49 995. 28 l3 NUM OF FORCE DEFINITION NODES... 1 li4 I

ll 5 I MAXIMUM ABSOLUTE STRESS ON ELEMENT 38 7. 9 ~St

le P
  • 0;l7 lis l9 AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + WELDS + OBE 20 21 DIRECTION LOAD STEP...... '2 l24 TRANSLATED FORCES.........

ii. 80 -49. 80 0. 00.

l25 -265. 49 795. 28 NUMBER OF FORCE DEFINITION NODES... 1" i27 t

)28 MAXI UM ABSOLUTE STRESS ON ELEMENT 37 7. 9 k.~l

'29 QMPARISON FACTOR MATCH ON ELEMENT 37 ~ 2. 5354452 30 3'l AEP + 150T CRANE 4 50T LOAD 4 TRUCK TO GIRDER w WELDS + OBE l33 DIRECTION 35 LOAD STEP...... 3 Y 37 ' ~ ~ ~ ~ ~ ~ ~ -1 l. 80 49. 80 0. 00 38 =

TRANSLATED MOMENTS........ "- -2146. 55 265. 49 995. 28 l39 NUMBER GF FORCE DEFINITION NODES.... 1 l40 l

l4 l ABSOLUTE STRESS ON ELEMENT 37 = 7. 9 VS'I COMPARISON FACTOR MATCH ON ELEMENT 37 = 2. 5354433 1 43 49,'AXIMUM i 44 AEP + 150T CRANE ~ 50T LOAD 4 TRUCK TO GIRDER + WELDS '+ GBE I46 47 DIRECTION 48 LOAD STEP...... 4 X Y

'50 l

TRANSLATED FORCES......... -i i. 80 -49. 80 0. 00 e

I~

I TRANSLATED MOMENTS........ 2146. 55 265. 49 -995. 28

'52~

NUM E OF FORCE DEFINITION NODES... 1 8~3

'l54'55 MAXIMUM ABSOLUTE STRESS ON ELEMENT 38 7. 9 KSl COMFAA"fhbhT1=ACTOR HÃfCH ON ELEMENT 38 = 2. 5354452 ll 6>

war~++ WORST CASE ANALYSIS COMPLETE WORST CASE OCCURED DURING LOAD STEP 3

'I W 4I 4 (t

" +'I t~

1 ~

al I

1a

CONSYB ANALYSIS PROGRAM %+<- 'EQUISITION 79604 DATE 08/27/87 VEPTSION 4~>.RELEASED 12/03/8r~ . BY'SZ....PAGE.4~+4..

blate 9-27-87 OF !!4.......

EP 4 150T CRANE 4 50T LOAD + TRUCK TO GIRDER 4 WELDS 4 OBE 4II SYSTEM PROPERTIES 5 I AD S X

10 CENTROIDS> X AXIS......... 0. 00 22. 50 Y AXIS......... 0. 00 22. 50 12 Z AXIS 13 SHEAR AREAS................ 33e 23 33. 23 0. 00 POLAR MOMENTS OF INERTIA.. 6299. 12 6299. 12 15729. 29 18 TRANSLATED FORCES......... -11. 80 49. 80 0. 00 17 TRANSLATED NOMENTS........ -2146. 55 265. 49 995. 28 18 19 NUMBER OF FORCE DEFINITION NODES... 1 20 21

++44+ SYSTEM ELEMENT STRESSES 4+4+4 24 25 DIRECT STRESSES .ARE EQUALLY DISTRIBUTED THROUGHOUT SHEAR AREA 27 DRX -0. 4 DRY i. 5 DRZ 0. 0

'9 3-D LINE ELEMENT 1 SIZE 0. 313 LENGTH 23. 000 AREA 5. 082 STRESS AT NODES 1 01 > 102 7. 8> 6. 3 ALLOWABLE 20. 0

0. 5,"

STRESS EXPANSION FOR

-0. 6 STRESS EXPANSION FOR NODE 102 D

1. 9 0. 0 0. 0 33 O. 5 3-D LINE ELEMENT 2 SIZE 0. 313 LENGTH 23. 000 AREA 5. 082 35 STRESS AT NODEB 113. 114 7 \ Q 37 39

<'TRESS '"'."

EXPANSION FOR NODE 113

0. 5 ""',"-. 6. 1. 9 0. 0 O. 0 STRESS EXPANSION FOR NODE 114
0. 5 0. 6 4. 4 0. 0 0. 0 41 42 43 3-D LINE ELENENT STRESS AT NODES 103> 104 3 SIZE 0. 250
b. 0>

LENGTH S. S

~0 ~E8 ~30 ALLDHASLE 20. 0 STRESS EXPANSION FOR NODE 103 45 45 0 5 ='0 STRESS EXPANSION FOR NODE 104 47 0. 5 -0. 6 4. 4 -0. 1 0. 0 0. 0 48 3-D LINE ELEMENT 4 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 1 05> 106 5. 5> 5. 3 ALLOWABLE 20. 0 STRESS EXPANSTD~NRD PD~EOQ

0. 5 -0. 6 4. 4 O. 0 0. 0 53 STRESS EXPANSION FOR NODE 106 0 6 55'.I V:7

P

~ e Vi

+H

~ 1 f4 1

CONSYS ANALYSIS PROGRAM ++< REOUISITIQN 79604 DATE OB/27/87 VERSION 4 2 RELEASEB I2/03/SP BY; ASZ PASS~56 DP //Z 8-27-87 AEP + 150T CRANE 4 50T LOAD + TRUCK TO GIRDER + WELDS + OBE

+4%4+ SYSTEM ELEMENT STRESSES 3-D LINE ELEMENT 5 SIZE 0 c~C5) OOQ ARK@ 0 530 STRESS AT NODES 107> 108 3I 3t 3. 5 ALLOWABLE 20. 0 Ic STRESS EXPANSION FOR NODE 107 I 0 0. 3 -0 0 STRESS EXPANSION FOR NODE 108

0. 3 -0. 6 2. 3 -0. 4 0. 0 0. 0 3-D LINE ELEMENT STRESS AT NODES 109'10 STRESS EXPANSION FQR NODE 109 6 SIZE
3. 0. 250 8i LENGTH
4. 0 3, 000 ALLOWABLE AREA 0. 530
20. 0 16 0. 3 -0. 6 2. 3 -O. 1 0. 0 0. 0 17 STRESS EXPANSION FOR NODE 110 I18 0. 3 -o. 6 2. 3 0. 1 0. 0 0 0 30 3-D LINE ELEMENT 7 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 l21 STRESS AT NQDEB 1113 112 4. 3i 4. 5 ALLOWABLE 20 0 (22 STRESS EXPANSION FOR NODE 111
0. 3 -0. 6 2. 3 0. 4 0. 0 0. 0 STRESS EXPANSION FOR NODE 112

/25 0. 3 -0. 6 2. 3 0. 6 0. 0 0. 0 25 27 3-D LINE ELEMENT 8 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODEB T TSi 116 6. Oi 5. 8 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 115 30 0. 5 0. 6 4 4 0 1 0. 0 0. 0 33

0. 5;..'- --,, '.'. 6 STRESS EXPANSION FQR NODE 116

-0. 1 0. 0 0. 0 34 35 3-D LINE ELEMENT STRESS AT NODES T 171118 9

STRESS EXPANSION FOR NODE 117 SIZE O. 250

5. Si,LENGTH
5. 3
3. 000 ALLOWABLE AREA 0. 530
20. 0 37 40 O. 5 ">=";.,";"':-

3-D LINE ELEMENT

0. 6 STRESS EXPANSION FQR NODE 118
0. 5' " 0. 6 10 SIZE O.
4. 4
4. 4 250

'O.

LENGTH 6

3;000 O.

0 0 AREA 0

0. 530
0. 0 STRESS AT NODES T 194 T20 3 3J 3. 5 ALLOWABLE 20. 0 43 STRESS EXPANSION FOR NODE 119 I

44 0. 3 0. 6 2. 3 -O. 6 0. 0 O. 0 l45 STRESS EXPANSION FOR NODE 120 45 0. 3 O. 6 2. 3 -O. 4. 0. 0 0. 0 l48'-D LINE ELEMENT 47 11 SIZE O. 250 LENGTH 3. 000 AREA 0. 530 l45 STRESS AT NODES T21> 122 3. 8i 4. 0 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 121 15 le 0. 3 0. 6 2. 3 -0. 1 0. 0 0. 0 STRESS EXPANSION FOR NODE 122 3I 0. 3 O. 6 2. 3 O. 1 0. 0 0. 0 854

-D LINE ELEMENT 12 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 136 STRESS AT NODES 1234 124 4. 3i 4. 5 ALLOWABLE 20. 0

,.,I STRESS EXPANSION FOR NODE 123 O. 3 0. 6 2. 3 0. 0 O. 0 STRESS EXPAhlSI ON FOR NODE 124 O. 3 0.

  • 2. 3 0. 0 0. 0

h4 A 4I

'4a I ~" tA II i s IY t<<

1

+>+ CONSYS ANALYSIS PROGRAM +I'< REQUISITION 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ABZ PAGE 0-57 OF 1/Z.

MJM 7 AEP + 150T CRANE + 50T LOAD 4 TRUCK TO GIRDER + WELDS + OBE I3 '.

14

(

SYSTEM ELEMENT STRESSES 4+4++

15 3-D LINE ELEMENT 13 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 ST B AT NODEB 1254 126 3. 14 3. 2 ALLOWABLE 20. 0 STRESS EXPANSION .FOR NODE 125

-0. 6 -0. 6 -4. 8 0. 6 0. 0 O. 0 10 STRESS EXPANSION FOR NODE 126

-0. 6 -0. 6 -4. 8 0. 4 0. 0 0. 0 12 3-D NE ELEMENT 14 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 14 STRESS Al" MODES 1274 128 3. 5i 3. 7 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 127

-O. 6 -0. 6 -4. 8 0. 0 0. 0 17 STRESS EXPANSION FQR NODE 128 18 -0. 6 -0. 6 -4. 8 -0. 1 0. 0 0. 0 20 3-D LINE ELEMENT 15 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 21 . STRESS AT NODES 129> 130 4. Oi 4. 2 ALLOWABLE 20. 0 22 STRESS EXPANSION FOR NODE 129 23 -0. 6 -0. 6 -4. 8 -0. 4 0. 0 0. 0 24 STRESS EXPANSION FOR NODE 130

28) S

-O. 6 3-D LINE ELEMENT ANGE STRESS EXPANSION

-0. 6 16 SIZE ~ '.

-4. 8,,

250

-0. 6 LENGTH

4. 6
3. 000
0. 0 AREA ALLOWABLE O. 530
20. 0
0. 0 29 FOR NODE 131 30 -0. 6 -O. 6 -4. 8 -0. 9 0. 0 0. 0 31 32 -4. 8 0. 0 O. 0 34 3-D NE ELEMENT 17 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 35 STRESS AT NODES 1334 134 4. 9i 5. 1 ALLOWABLE 20. 0 38 STRESS EXPANSION FOR NODE 133 37 -4. 8 -1. 4 0. 0 0. 0 38 STRESS EXPANSION FOR NODE 134

-0.6 .

': ~ -0.6 -4. 8 -1. 6 0. 0 0. 0 40 I

4'I 3-D LINE ELEMENT 18 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 (42 STRESS AT NODES 135. 136 5. 4. 5. 6 ALLOWABLE 20. 0 l43 STR S EXPANSION FOR NODE 135

>44 -0. 6 -0. 6 STRESS EXPANSION FOR NODE 136

~. 8 0. 0 0. 0 4d -4. 8 -2. 1 0. 0 0. 0 47 48 3-D LINE ELEMENT 19 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530

7. 6A 7. 5 .ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 137

-O. 8 -0. 6 -6. 8 -2. 1 0. 0 0. 0 BE EXPANSION FOR NODE 138 153! -O. 8 -0. 6 -6. 8 -1. 9 0. 0 0.0

(

154 1

155 EYCEHEAT 20 SI ZE 0. 250 LENGTH 3. OOO AREA 0. 530 ta 0 STRESS AT NODES 139> 140 7. 14 7. 0 ALLOWABLE P.O. 0 STRESS EXPANSION FOR NODE 139

-O. 8 -O. 6 -6. 8 -1. 6 O. 0 0. 0 STRESS EXPANSION FOR NODE 140

-0. 8 -0. 6 -6. 8 -1. 4 0. 0 0. 0

g ~ grqj~i k Ql 4 'tp R, 1 C

~rJ 0

J 4

'w f/'

41

CQNSYB ANALYSIS PROGRAM +~< REQUISITION 79604 DATE 08/27/87 VEQS3ON 9 2 .,RELEASEDM2/03/8~~,. HY',~SZ .... PAGE~ 5k. OF.. IL2-8J< 8 ~7 B7 EP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + WELDS + QBE BYSTEN ELEMENT STRESSES

'c 3 D LI'hE E EPT . QZH ~GO ~REA ~30 I'ie STRESS AT NODES 141I 142 6. 7I 6. 5 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 141 9 -0 10 STRESS EXPANSION FOR NODE 142

-0. 8 -0. 6 -6. 8 0. 0 0. 0 12 13 3-D LINE ELEMENT 22 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 143I 144 2. 7I 2. 9 ALLOWABLE 20. 0 STRESS EXPANSION FO~R D

-0. 6 0. 6 -4. 8 0. 6 0. 0 0. 0 7 STRESS EXPANSION FOR NODE 144

~

)e -0. 6 0. 6 19 c 20 3-D LINE ELEMENT 23 SIZE 250 LENGTH 3. 000 AREA 0. 530 I ES

'22 STRESS EXPANSION FOR NODE 145 23 -0. 6 0. 6 -4. 8 0. 1 0. 0 0. 0 STRESS EXPANSION F 25 -0. 6 0. 6 -4. 8 -0. 1 0. 0 0. 0 25 LI 25 STRESS AT NODES 147I 148 3e 7I 3. 9 ALLOWABLE 20. 0 29 STRESS EXPANSION FQR NODE 147 30 -0. 6 0. 6 31 STRESS EXPANSION FOR NODE 148 32 ~ -0. 6",;... 0. 6 -4. 8 0. 0 0. 0 3-D LINE ELEMENT 25 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 149I 150 4. 2I 4. 4 ALLO4JABLE 20. 0

'4

[35 37 ~h."'-

STRESS EXPANSION FOR NODE 149 06 "

8 -0. 9 0. 0 0. 0 35 . STRESS .EXPANSION FOR, NODE 150

-0. 6 -.-. 0. 6.

41 3-D LINE ELEMENT 26 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 42 STRESS AT NODEB 1 51I152 4. 7I 4 Lt aL STRESS EXPANSION FOR NODE 151

-0. 6 0. 6 -4. 8 -1. 4 0. 0 0. 0 STRESS EXPANSION FOR NODE 152 4d -0. 6 0. 6 -4. 8 0. 0 0. 0

+ 47 4e 49 STRESS AT NODES 153I 154 5. 2. 5. 4 ALLOWABLE 20. 0

$ 50 STRESS EXPANSION FOR NODE 153 151 -0. 6 0. 6 -4 8 -1 9 0 0 STRESS EXPANSION FQR NODE 154

-0. 6 0. 6 -4. 8 -2. 1 0. 0 0. 0 IS I'- 3-D LINE ELEMENT 28 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 gled STRESS AT NODES 1 55I 156 7. 5I 7. 3 ALLOWABLE 20. 0 57 STRESS EXPANSION FOR NODE 155

-0. 8 0.6 -6. 8 -2. 1 0. 0 STRESS EXPANSION FOR NODE 156

-0. 8 0. 6 -6. 8 -1. 9 0. 0 0. 0

tf <<4p Vt 4 4"

" >h I

1 1

~4 t'j f

4g I

CQNSYS ANALYSIS PPOGRAM 44+ REQUISITION 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAGEOS-5'P. OF //2 MJH 8-L7-)7 2i AEP + 150T CRANE + 50T LOAD 4 TRUCK TO GIRDER + WELDS 4 OBE

= I 4++++ SYSTEM ELEMENT STRESSES 51 3-D LINE ELEMENT 29 SI ZE 0. 250 LENGTH 3. 000 AQE~~~QO STRESS AT NODES 157> 158 7. 0> 6. 8 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 157

-0. 8 0. 6 -6. 8 STRESS EXPANSION FOR NODE 158

-0. 8 0. 6 -6. 8 0. 0 0. 0 N

13 3-D LINE ELEMENT 30 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 159> 1.60 6. 5> 6. 3 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 159 I

15 -O. 8 0. 6 -6. 8 -1. 1 0. 0 0. 0

'17 STRESS EXPANSION FQR NODE 160 18 -0. 8 O.e -6. 8 -0. 9 0. 0 0 0 3-D LINE ELEMENT SIZE., 0. 250 31 RLa 20 LENGTH 6. 000 AREA 1. 061 6'.

STRESS AT NODES 106> 107 " 5. 3> *

  • 22 STRESS EXPANSION "FOR NODE 106 23 0. 5 -0. 6 4. 4 -O. 6 0. 0 0:0 24 STRESS EXPANSION FOR NODE 107 0.3 -0. 3' -0. 6

~U

0. 0 0. 0 25 I 27 , 3-D LINE ELEMENT 32 SIZE, 0. 250
  • STRESS AT NODES 118> 119 5e 3> 3. 3 ALLOWABLE 20. 0 29 STRESS EXPANSION FQR NODE 118 30 0. 5 O. 6 4 -0 6 0. 0 0. 0 31 STRESS EXPANSI QN FQR NODE 119 32 0. 3 6. " .'= ,  ;, 2. 3 -0. 6 O. 0 0. 0 33 3-D LINE ELEMENT 33 SIZE 0. 250 LENGTH 5. 750 AREA i. 016 STRESS AT NODES 101> 165 7. 8> . 5. 8 ALLOWABLE 20. 0 35 STRESS EXPANSION FOR NODE 101
0. 5.. ~. 6 .":;: -':,.'. 4.. O. 0 0. 0 38

'-'0.3 '=

STRESS EXPANSION FQR NODE. 165

-O.h'" '-' "

2.4 39

0. 0 0. 0 40 41 3-D LINE ELEMENT 34 SIZE 0. 250 LENGTH 750 AREA 1. 016 STRESS AT NODES 113> 166 7. 8> 5. 8 ALLOWABLE 20. 0 43 STRESS EXPANSION FQR NODE 113
0. 5 0. 6 i. 9 0. 0 0. 0 STRESS EXPANSION FOR NODE 166 45 0. 3 0. 6 2. 4 1. 9 0. 0 0. 0 47 48 r 3-D LINE ELEMENT 35 SIZE 0. 250 LENGTH 5. 500 AREA 0. 972 49 STRESS AT NODES 125> 167 3. I. 4. 9 ALLOWABLE 20. 0 80 STRESS EXPANSION FOR NODE 125 i51 -O. 6 -O. 6 -4. 8 0. 6 0. 0 0. 0 i'2 STRESS EXPANSION FOR NODE 167 183 -0. 8 -0. 6 -6. 6 0. 6 0. 0 0. 0

-D LINE ELEMENT 36 SIZE 0. 250 LENGTH 5. 500 AREA O. 972 STRESS AT NODES 143> 168 2, 7> 4. 6 ALLOWABLE 20. 0 4.7 STRESS EXPANSION FOR NODE 143

-O. 6 O. 6 -4. 8 0: 0 0. 0 STRESS EXPANSION FOR NODE 168

-0. 8 O. 6 -6. 6 0. 6 0. 0 0. 0

~Pl +

4 i

'I e r f W

+~t

CQNSYS ANALYSIS PROGRAM w~w REQUISITION 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ABZ PAGE 0- l70 QF I/2.

RJM 8- 7 87 EP + 150T CRANE + 50T LOAD 4 TRUCK TO GIRDER 4 WELDS + OBE SYSTEN ELEMENT STRESSES 44+44 3-D LINE ELENENT 37 SIZE 0. 250 LENGTH 6. 000 AREA 1. 061 1,7 ST S AT NODES 161> 162 7. 91 5. 8 ALLOWABLE 20. 0 8 STRESS EXPANSION FOR NODE 161

-0. 8 -0. 6 -6. 8 -2. 4 0. 0 0. 0 10 STRESS EXPANSION FOR NODE 162

-0. 6 -0. 6 -4. 8 -2. 4 0. 0 0. 0 12 13 3-D NE ELEMENT'8 SIZE 0. 250 LENGTH 6. 000 AREA l. 061 STRESS AT NODES 163'64 7. 7i 5. 7 ALLOMABLE 20. 0 STRESS EXPANSION FOR NODE 163

-O. 8 0. 6 -6. 8 0. 0 0. 0 STRESS EXPANSION FQR NODE 164 18 -0. 6 0. 6 -4. 8 0. 0 0. 0 19 FORCE'EFINITION NODE DIRECT ELEMENT 39 NODE 200 21 FX -ii. 80 .> FY "

49. 80 > FZ 0. 00 (22 N -3267. OO j I'lY 0.00 > NZ 0. 00 23 MAXIMUS ABSOLUTE STRESS ON ELEMENT 37 ~ 7. 9 gal 27 29 30 31 32 34 37

'8 * '

40 5 41 43 48

,80 131

~ 21 l I lr3 I

134,

A'EQ tt E

CQNSYS ANALYSIS PROGRAM ++~:. REQUISITION 79b04 DATE 08/27/87 VERSION 4. 2,RELEASED 12/03/82.....BY'SZ RJ <

.......PAGE 8" >7 -Bi

~ 4/ OF, i!Z.. ,

AEP + 150T CRANE 4 50T LOAD 4 TRUCK TQ GIRDER + FIELDS 4 OBE REPORT

SUMMARY

> FOR A 4 LOAD STEP ANALYSIS WORST CASE ANALYSIS........ QO ELEMENT STRESSES PRINTED.... YES> STRESS SUMMATION MODE WAS DIRECT ELEMENT STATISTICS (12 13 TYPE DESCRI T 0 3-DIMENSIONAL LINE Ul&KB ELEMENT......... 3b

~

14 2 3-DIMENSI QNAL LINE ELEMENT......... 2 3 FO CE DE 15

'17 TOTAL NUMBER QF ELEMENTS = 39. NODES = b9 18 SYSTEM PROPERTIES 20 i 21 OAD ST X

24 CENTROIDSa X I AX S. ~: ." O. 00 22. 50 Y AXIS........'.. 0. 00 22. 50 27 Z'XIS..

SHEAR ARE S...............

INERTIA..

33. 23 33. 23 0. 00 20 POLAR MOMENTS OF b299. 12 b299. 12 15729. 29'.

TRANSLATED

" TRANSLATED FORCES......,... -i i. 80 49. 80 00 MOMENTS........ -214b. SS 2b5. 49 995. 28 33 35 MAXIMUM ELEMENT STRESSES 37 NUMBER COMPAR 38 i DESCRIPTION', USED' ELEMENT NODE STRESS 'LLCNABLE FACT(

30 -D LI ELEMENT '1 Sl 1 3-D LINE ELEMENT 2 2 ii3 7. 8 y.sl 20. 0 <~i 2. 5bl

, 41 3-D 3-D LINE ELEMENT 3b 37 . ibi 7. 9 K&I 20. 0 v.sl 2. 53.

LINE ELEMENT 2 43 45

, 47 JOB COMPLETED +++++

48 40 51 53 55 L7

~ t I'

'I WV

~I U ~

. L

CONBYS INPUT DATA LISTING ))++))+ 08/27/87 g7$ 60 P 5 10 15 20 2'5 30 35 40 45 50 55 60 65 70 7'5 80 I V V V V V V V V V V V V V V V V AEP a 150T CRQNg.+ SQT t QADI + TRUE 70 GIRDER MHELDS~BS 4

79604 ASZ 4. 1. 1. 0. 1. 1.

l. 1.
4. Pll 1 L
5. 3. 4. PAGE - oF I/2
6. -i. ew 8-2.7-87
7. 025 ZR 3 IO B. O. 3125 27. 3 1. 3.

~ I 9.

10.

-1, 101 j Oc~ 2 P..

12~

2. 12
11. 103. 104. 1. S. 2.
12. 115. 116. 1. l. 23. 2.

18 13. 106-I 10~ 1 14, ll

14. 101. 16 S 1. i.
15. 113. 166. 1. 1.

15 lb.

~ ' 125 5 167. S IB 17. 143. 168.

1 B. 161. 162. 2e

19. 200
20. -i.
21. -12.

22.

23.

24.

101 102.

103. -18.

4 ).

-13. 5 S:

-17. 625 LB!QR 35 37 8125 8..8125

35. 37S
35. 375 '.

'8 25.

26.

10'4.

105. -RS. 5 BJ312~5 RZ

. 8. 8125 3S. 375

27. 106. -29 5 8. 8125 35. 375
28. 107. -29, 5 P BIPS R'?) Q7P
29. 108 -26. 5 8. 8125 2'9. 375
30. 109. -21. 5 , 8. 8125 29. 375 31.

32 1 10.

~

-IB~R,SIRR

-13. 5 8. 8125 p77 375

29. 375 33 1 12. -10. 5 B. 8125 29. 375
34. -18. 18 -1?) I 62S

-10.5.812$

~

35. 125. 8.5 4

23

~

37,127.

38.

126.

128.

-IR~B

-13.

-21.

5 S

8. 8125 812~8. 5
8. 8125
8. 5
39. 129. -26. 5 8. 812S 8. 5 12 13 41..

42.

131. ~ ',. -37. -34. 5:;7 5" .'

Q..AIR@

8. 8125 =

Q

8. 5 0

43.

44.

132.

133.

134.

IR 5

-45. 5

8. 8125 8.11185
8. 8125
8. 5 8 2
8. 5
45. 135. -50. 5 8. 812S 8. 5
46. 136. -S3. 5 8. 8125 8I S
47. 137. -53. 5 ' B. 8125 2. 5
48. 138. -so. 5,;I B.e125 2. 5 139 -45 S. I . 8,22l25 2 5 32 50. 140. -42. 5 812S 2. 5
4) 51. 141. -37. 5 8. 8125 2. 5
52. 142. -34. 5 8125 2. 5
53. ,;:? -17. 625 ~ I
54. 161. -57,' I'.,'v,"...'w 8. 8125 2. S .

55.

56 162.

165

-S7. S . 8~81@~~

9. 5 8. 8125 29. 625 57 166. 9. 5 -B.'812S 29. 625 58 167. -10. 5 B. 8125 3. 0 59 168. -10. 5 -8. 812S 3. 0 60 200. 0. ~
0. 0.

61 9999.

62 101. 1. 168.

63 -l.

64 200. 78. 8 0 65 -l.

66 200. 22.2 ',- -7e.e  ; 0. 5384, 67 -1.

8. 78. 8 0. -5384.

69 -1.

8 70 200. -22. 2 -78,8 0 538$

I 71 -1.

FINISH A A A A II

~s

,sr.

ge t

4I K

A '

CONSYS Al'lALYS IS PPOGRAM ~4-<. PEGUI SI TI ON 79604 DATE 08/27/87 VEPSION 4. 2 RELEASED 12/03/82 BY:

HQ ASZ Q g, <<Q7 PAGEOS-Q GF //Z, AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + WELDS + SSE WORST CASE ANALYSIS

SUMMARY

+44++

4 AEP + -250T"CRANE + 50T LOAD. 4 TRUCK TO GIRDER *4 "WELDS 4 SSE i7 i r

10 DIRECTION LOAD STEP...... X Y tl 0 I

\

TRANSLATED FORCES........ ~ 22. 20 78. 80 0. 00 12 TRANSLATED MOMENTS........ -3621. 08 -499. 48 1574. 85 NUM QF FORCE DEFINITION NODES... 1 f14

.=i15 MAXIMUM ABSOLUTE STRESS ON ELEMENT 38 '= 13. 2 le OM A ISQN FACTOR MATCH ON ELEMENT 38 = 2. 0639749 il7 AEP + 150T CRANE ~ 50T LOAD + TRUCK TO GIRDER + WELDS '+ SSE f20 21 DIRECTION LOA TEP...... 2

<<3 TRANSLATED FORCES......... 22. 20 -78. 80 0. 00 25 MOMEN S........ 3611. 08 -499. 48 -1574. 85 25 NUMBER OF FORCE DEFINITION NODES...

'7 1 I2e MAXIMUM ABSOLUTE STRESS QN ELEMENT 37 13. 2 ICOSI 29 COMPARISON FACTOR MATCH ON ELEMENT 37 = 2. 0639758 l30 31 32 AEP' 150T CRANE 4'0T LOAD 4 TRUCK TO GIRDER ~ WELDS + SSE 33 I

34 DIRECTION LOAD STEP...... 3 Y 37 RA ATED FORCES.....,..... -22. 20 78. 80 0. 00 3S .* , TRANSLATED MOMENTS....:..', . '3611. 08 499. 48 1574. 85 39 NUMBER OF FORCE DEFINITION NODES... 1 40 41 MAXIMUM ABSOLUTE STRESS GN ELEMENT 37 = 13. 2 K~I 42 COMPARISON FACTOR MATCH ON ELEMENT 37 = 2. 0639749 la3 4<< AEP, + 150T CRANE + 50T LOAD + TRUCK TO GIRDER + WELDS + SSE 4e 47 DIRECTION ae LOAD STEP... Y 149 TRANSLATED FORCES..... ~ ~ .. -22. 20 -78. 80 0. 00 lr<<

>>53l I

<<<<Er~

TRANSLATED MOMENTS.......:

I

'I b 3611. 08 499. 48 -1574. 85 I

154 MAXIMUM ABSOLUTE STRESS ON ELEl"lENT 38 = 13. 2 V-Sl i<<r C ~ACTOR HATCH ON ECEMENT 38 2. 0639758 lleei

~ 71 WORST CASE ANALYSI S COMPLETE WORST CASE OCCURED DURING LOAD STEP '1

T ~'

~ ~

+<+ CONSYB ANALYSIS PROGRAM 1'~~:- REGUISITION 79604 DATE 08/27/87 VEP<IPN 9. RELEASEDM2/S3/D". BM ASZ PAGES-6&OF /!Z .

HJM 8-2.~-37 AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER 4 WELDS 4. BSE

++we-e SYSTEM PROPERTIES

~

5 l

e t LOAD STEP.

CENTROZ DS1 X AXIS...... .. 0. 00 22. 50 AXIS.. ~......

~

Y 0. 00 22. 50 12 Z AXIS..

13 I14 SHEAR AREAS....... ....~ ~ .. 33. 23 33. 23 0. 00 I POLAR MOMENTS OF INERTIA.. 6299. 12 6299. 12 15729. 29

'15 TRANSLATED FORCES......... 22. 20 78. 80 0. 00 TRANSLATED MOMENTS........ -3611. 08 -499. 48 1574. 85 NUMBER OF FORCE DEFINITION'ODES... 1 22

++4++ SYSTEM ELEMENT STRESSES 24 DIRECT STRESSES ARE EQUALLY DISTRIBUTED THROUGHOUT SHEAR AREA DRX 0 7 ' 4- DRZ DRY 0. 0 27 25 3-D LINE ELEMENT 1 SIZE 0. 313 LENGTH 23. 000 AREA 5. 082 STRESS AT NODES 101> 102 12. 8i 10. 5 ALLOMABLE 27. 3 30 STRESS EXPANSION FOR NODE 101 31 0 -Q. 9'= 7. 4 3. 0 0. 0 0. 0 32 STRESS EXPANSION FOR NODE 102

-1. 0 -0. 91 35 3-D l INE ELEMENT 2 SIZE 0. 313 LENGTH 23. 000 AREA 5. 082 9'.

STRESS AT NODES 1 13 114 1 STRESS EXPANSION FOR NODE 113 -:

9',4 (3> -

O. 9. '-"i. T. 4 3. 0 0. 0 0. 0 ESS EXPANSION FOR

-1. 0 0. 0. 6 0. 0 0. 0

>42 3-D l INE ELEMENT 3 IZ 43 STRESS AT NODES 1034 104 10. 0. 7 ALLOMABLE 27. 3 STRESS EXPANSION FOR NODE 103

-1.. 0 -0 45 STRESS EXPANSION FOR NODE 104 47 45

-l. 0 -0. 9 7. 4 -0. 2 0. 0 0. 0 49 3-D LINE ELEMENT 4 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODEB 105. 106 9. 2i 8. 9 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 105 1

~ e>

-1. 0 -0. 9 7. 4 -0. 7 0. 0 0. 0 I".,I STRESS EXPANSION FOR NODE 106

-1. 0 -0. 9 7. 4 0. 0 0 0 417

El p

~ k l

zj

1 AILl

CQIISYB ANAl YSIS PRQGPAM e-:<-c:- PEQUISITION 79604 DATE 08/27/87 VERSION 4 2 RELEASED 1~/33/SO BY ASZ PACE 7

+ 65 OF ~//

AEP + 150T CRANE 4 50T LOAD 4 TRUCK TO GIRDER + WELDB 4 SSE c4 +++++ SYSTEM ELEMENT STRESSES IS

,7 I

15 I

3-D LINE ELEMENT STRESS AT NODES 1 5

07'08 STRESS EXPANSION FOR NODE 107 SIZE O. 250

5. 41 LENGTH
5. 7 3, 000 AL'LOWABLE ARg~~~3'7.

9 -0. 5 -0. 9 3. 9 STRESS EXPANSION FOR NODE 108

-0. 5 -0. 9 3. 9 -0. 7 0. 0 0. 0

]

13 ll7 118

~

3-D LINE ELEMENT STRESS AT NODES 2091110 6

9'.

STRESS EXPANSION FOR NODE 109

-0. 5 -0.

STRESS EXPANSION FOR NODE 120

-0. 5 -0. 9 SIZE

0. 250
6. 24
3. 9 9

LENGTH

6. 5

-0. 2

0. 1
3. 000 ALLOWABLE AREA
0. 0 0
0. 530
27. 3
0. 0 I

20 3-D LINE ELEMENT 7 SIZE O. 250 LENGTH 3. 000 AREA 0. 530 21 STRESS AT NODES 111. 112 0 h9 1 STRESS EXPANSION FOR NODE 111 23 -O. 5 -0. 9 3. 9 0. 6 0. 0 0. 0 124 STRESS EXPANSION FOR NODE 112

-0. 5 -O. 9

-A~

I25 3. 9 0. 9 O. 0 0. 0

'25 27 3-D. LINE ELEMENT 8 SIZE O. 5 LE Dll STRESS AT NODEB 115> 116 9. 9i 9. 6 ALLOWABLE 27. 3 29 STRESS EXPANSION FOR NODE 125 30 -1. 0 0. 9 7 4 01 0.0 31 32 33

,-1.0 '" '.9, STRESS EXPANSION FOR NODE 116

. =

7.4 -0. 2 0. 0 0. 0 i34 3-D LINE ELEMENT 9 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 I35 STRESS AT NODES 227> 118 '9. 11 8. 8 Ah LOWABLE 27. 3 O'.

STRESS EXPANSION FOR NODE 117 35

,.-:,= =-1.0 0.9 -0.? ~

0. 0 0. 0

,'STRESS EXPANSION FOR NODE 128 C 39 -1. 9 7. 4 -1. 0 0. 0 145 1

i 47 3-D LINE

-0. 5

-O. 5 ELEMENT 10 STRESS AT NODES 119. 120 O. 9'.

STRESS EXPANSION FOR NODE 11'9 STRESS EXPANSION FQR NODE 120

0. 9 SIZE 0. 250
5. 54
3. 9 9

LENGTH

5. 7

-1. 0

-0. 7

3. 000 ALLOWABLE AREA
0. 0
0. 0
0. 530
27. 3
0. 0
0. 0 3-D LINE ELEMENT 1 1 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530

~

I 49 STRESS AT NODES 1214 122 b. 24 6. 5 ALLOWABI E

>50 STRESS EXPANSION FOR NODE 121 I 51 -0. 5 O. 9 3. 9 -0. 2 O. 0 0. 0

,'52 I STRESS EXPANSION FOR NODE 122 I 53 -0. 5 0. 9 3. 9 0. 1 0. 0 O. 0

  • I54

-D LINE ELEMENT 12 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 I5 6 STRESS AT NODES 123> 124 7. OI 7. 3 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 123

-O. 5 0. 9 3. 9 O. 6 0. 0 STRESS EXPANSION FOR NODE f24

-O. 5 0. 9 3. 9 0. O. 0 O. 0

1 bl II

'4 I!4 i'$ ~

Ir Ak

~5

'k

~ 4+ * ~ ' 4 V I'

Sf )

~ II

CONSYS ANALYSIS PROGRAM +>c1 ~ REQUISITION 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ H7M PAGE 8- 2.'7-9 f-66 OF.. PZ 12 I AEP' 150T CRANE + 50T LOAD 4 TRUCK TO GIRDER + WELDS 4- SSE

+++4+ SYSTEM ELEMENT STPESSES

)=I dl 3-D LINE ELEMENT 13 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS A NODES 1 1.1 '0 25'26 STRESS EXPANSION FOR NODE 125 9

STRESS EXPANSION FOR NODE 126

-0. 9

4. Bi

-8. 0

-B. 0

5. 1
0. 9 o.e ALLOWABLE
0. 0
27. 3
0. 0 1 0. 0 0. 0

<<13 3-D NE ELEMENT 14 SI ZE 0. 250 LENGTH 3. 000 AREA 0. 530

... 14 STRESS AT NODES 127'28 5. 64 5. 9 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 127

~ ld 1. 1 -0. 9 -B. 0 0. 1 0. 0 0. 0

<17 STRESS EXPANSION FOR NODE 128 18 i. 1 -0. 9 -8. 0 0. 0 0. 0

'1 g t20 3-D LINE ELEMENT 15 'IZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 129> 130 9'B. 6. 4p 6. 7 27. 3 21 ALLOWABLE 22 ST S EXPANSION FOR NODE 129 l3 1,1 -0. 0 -0. 7 0. 0 0. 0 124 Pd

i. 1 ' -0.9'B.

STRESS EXPANSION FOR NODE 130 0 -1. 0., 0. 0 0. 0

'27 3-D LINE ELEMENT ib SIZE

0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 131'32 7. 21 7. 5 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 131 30 i. 1 0. 9 -8 0 -1. 5 0. 0 0. 0 31 ST S EXPANSION FOR NODE 132 1 1 -0 9' -8 0 -1. 8 0. 0 0. 0

!33 3-D L NE ELEMENT 17 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 133> 134 8. Oi 8. 3 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 133

-0. 9 -B. O O. 0 0. 0 35 STRESS EXPANSION, FQR NODE,134 1.1 ~; ~.9' -8.0 0. 0 O. 0

~ 40

)41 3-D LINE ELEMENT 18 SIZE 0. 250 LENGTH 3: 000 AREA 0. 530

!42 STRESS AT NODES 135'36 8. 81 9. 1 ALLOWABLE 27. 3 143 N 35 w..l44 I

-0. 9 -B. 0 -3. 1 0. 0 0.

45

  • STRESS EXPANSION FQR NODE 136 0'45

-O. 9 -B. 0 -3. 4 0. 0 0. 0 4'.

, 47 45 3-D LINE ELEMENT 19 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 4g 13 > 138 12. 5i 12. 2 ALLOWABLE 27. 3 50 STRESS EXPANSION FQR NODE 137 l51 i. 6 -0. 9 -1 i. 5 -3. 0 0. 0 F52 ST SS EXPANSION FOR NODE 138 k

1! 53 i. 6 -0. 9 -1 i. 5 -3. 1 0. 0 0. 0

  • 154!

3-D NE ELEMENT 20 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530

'.!5a STRESS AT NODES 139> 140 11. 7> 11. 4 ALLOWABLE 27. 3 i7I STRESS EXPANSION FQR NODE 139

1. b -0. 9 -11. 5 0. 0 0. 0 STRESS EXPANSION FOR NODE 140
i. 6 -0: 9 -11. 5 O. 0 0. 0

a4 ~

di R

  • 4(

M I

'L44 A"

++<- COI'ISYB ANALYSIS PROQPAN <:-e:- REQUISITION 79604 Dye 08/27/87 VERSION 4. 2 RELEASED~2/03/8~~ 337'ASZ ..PAGE < ~7.OF 21K..

8"27-87 AEP + 150T CRANE 4 50T LOAD + TRUCK TO GIRDER 4 MELDS + SSE 4

SYSTEI'1 ELEMENT STRESSES ++4<4 E-D LINE ELENENT ~ 1= ~~~52 ~EEGZ!~~X)QQ. AREA 0 E>0 STRESS AT NODES 141. 142 10. 91 10. 6 ALLQMABLE 27. 3 STRESS EXPANSION FQR NODE 141 STRESS EXPANSION FOR NODE 142 1.6 -0. 9 -11. 5 -1. 5 0. 0 0. 0 12 13 3-D LINE ELEMENT 22 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 1431 144 -

5. 4> 5. 7 ALLOMABLE 27. 3 18 STRESS E PANSION O
1. 1 0. 9 Q~ -8. 0 0. 9 0. 0 0. 0 I

17 STRESS EXPANSION FOR NODE 144 l1 8 i. 1 0. 9 120 I

3-D LINE ELEMENT 23 SIZE 0. 250 LENQTH 3. 000 AREA 0. 530 21 ~

STRESS AT 45 STRESS EXPANSION FOR NODE 145 23 i. 1 0. 9 -8. 0 0. 1 0. 0 O. 0 24 STRESS EXPANSION FOR NODE 146 O.' -8. 0 -0. 2 0. 0 0. 0 27 3-D LINE ELEMENT 24' 28 STRESS AT NODES 147'48 6. 8> 7. 1 ALLQMABLE 27. 3

<29 STRESS EXPANSION FOR NODE 147 30 1. 1 0. 9 -8 0 31 32

'33 STRESS EXPANSION FOR NODE 148 O. 9 -8. 0 -'1. 0 0. 0 0. 0 3-D LINE ELENENT 25 SIZE O. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODES 149i 150 7. . 7. 9 27. 3

'.l,':'.

61 ALLOMABLE STRESS EXPANSION FOR NODE'49 37 0;9 -8. 0 -1. 5 0. 0 0. 0 38 STRESS EXPANSION FOR NODE 150 1 1 ': -

0 40 41 3-D LINE ELEMENT 26 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 42 STRESS AT NODES 151A152 U386B 43 'STRESS EXPANSION FOR NODE 151

0. 9 -8. 0 0. 0 0. 0 STRESS EXPANSION FQR QDE 152 48 i. 1 0.9 -8.0 -2. 6 0. 0 0. 0 47 3-D LINE ELENENT 27 SIZE 0. 250 LENGTH ~5)~ORFS STRESS AT NODES 1531 154 9. 4 ALLOMABLE 27. 3 STRESS EXPANSION FOR NODE 153 I8: i. 1 0. 9 -8 0 STRESS EXPANSION FOR NODE 154
1. 1 O. 9 -8. 0 O. 0 0. 0 I84 3-D LINE ELEMENT 28 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 STRESS AT NODEB 1551156 12. 81 12. 5 ALLOMABLE 27. 3 STRESS EXPANSION FOR NODE .155 1.6 O. 9 -11. 5 -3. 4 0. 0 0. 0 STRESS EXPANSION FOR NODE 156
1. 6 O. 9 -11. 5 -3. 1 0. 0 0. 0

>%+

8 WV ok

vw

~ O'I I I' 0

l'h r

I'

~ L4

, 4(

'EE

CONSYB ANALYSIS PROGRAM ++<:- REGU I SIT I 79604 DATE 08/27/87 ON VERSION 4. 2 R ELEAaED 1 2/03/82 BY'.. ASZ, MJ N PAGE, + 68 OF //Z 8-2.7&7 AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER 4 WELDS + SSE

>4<44. SYSTEM ELEMENT STRESSES

-< 8 3-D LINE El EMENT 29 SIZE 0. 250 LEJlG~ 3 QOO ARE6 0 549 STRESS AT NODES 157~ 158 12. 14 11. 8 ALLOWABLE 27. 3 18 STRESS EXPANSION FOR NODE 157 l9, 1. 6 0. 9 -1

'0 STRESS EXPANSION FOR NODE 158

.. 11 l. 6 0. 9 -11. 5 20 3 0. 0 0. 0 I)2 3-D LINE ELEMENT 30 SIZE 0. 250 LENGTH 3. 000 AREA 0. 530 14 STRESS AT NODEB 159> 160 11. 3> 1 i. 0 ALLOWABLE 27. 3 (15 STRESS EXPANSION FOR NODE 159

>16

l. 6 0. 9 -1 l. 5 -l. 8 0. 0 0. 0 STRESS EXPANSION FOR NODE 160 118 i. 6 0. 9 -11. 5 0. 0 9'.

I19

.20 3-D LINE ELEMENT 31 SIZE 250 LENGTH 6. 000 AREA I. 061 121 STRESS AT NODES 1064 107 8 9.

l22 STRESS EXPANSION FOR NODE 106

.23 124

-1. 0 '-0. 4 -l. 0 0. 0 0. 0 STRESS EXPANSION FQR NODE 107 125 -0. 5 -0. 9 3. 9 -l. 0 0. 0 0. 0 I28 3-D LINE ELEMENT STRESS AT NODES 1 18> 1 19 32 SIZE 0. 250

8. 81 LENOTH
5. 5
6. OOO ALLOWABLE AR$8 ~Op~
27. 3 STRESS EXPANSION FOR NODE 118 33 34
1. 0

-05 3-D LINE ELEMENT

~ - '9 STRESS EXPANSION FOR NODE 119 0

33 SIZE

3. 9"
0. 250 LENGTH

-1 0

-1. 0

5. 750
0. 0
0. 0 AREA 1. 016
0. 0 STRESS AT NODES 1 01 i 165 12. Bi 9. 4 ALLOWABLE 27. 3 38 STRESS EXPANSION FQR NODE 101

=-0 9"'.

-1.,0 .,',"','0. 9 7. 4 3. 0 0. 0 0. 0 38 STRESS -EXPANSION'OR NODE 165 39 -0 6 1 3. 0 0. 0 41 3-D LINE ELEMENT 34 SIZE 0. 250 LENGTH 5, 750 AREA 1. 016 STRESS AT NODES 113> 166 12. 7i 5 ALLOWABLE 27. 3 43 STRESS EXPANSION FQR NODE 113 44 -1.0 "- ~ - ', 0.9 7. 4 3. 0 0. 0 0. 0 45 STRESS EXPANSION FOR NODE 166

-0. 6 0. 9 3. 0 0. 0 0. 0 4V 48 3-D LINE ELEMENT 35 SIZE 0. 250'ENGTH 5. 500 AREA 0. 972 49 STRESS AT NODES 125'67 4. 8i 8. 0 ALLOWABLE 27. 3 50 I STRESS EXPANSION FOR NODE 125 51j 1. 1 -0. 9 -8. 0 0. 0 0. 0

!52 STRESS EXPANSION FQR NODE 167 I 3 i. 5 -0. 9 -11. 2 0. 9 0. 0 0. 0 l>4 155 3-D LINE ELEMENT 36 SIZE 0. 250 LENGTH 5. 500 AREA 0. 972

.:58 STRESS AT NODES 143> 168 STRESS EXPANSION FOR NODE 143

1. 1 STRESS EXPANSION FOR NODE 168
1. 5 0.

0.9 9'8.

'11.2

5. 4s 0
8. 4
0. 9 ALLOWABLE
0. 0
0. 0
27. 3
0. 0
0. 0 W~ ~'P~< r," ri.~94~ ~P' w~Q)+84>+~+ ~

g 4

ah E p P W 41~

'%l yr

~~~ CQNSYS ANALYSIS PROGRAM ~~r; REQUISITION 79600 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAGE W-C9 OF>/Z NJH -2.7-87 EP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER 4 LJELDS 4 SSE SYSTEM ELEMENT STRESSES i 01 3-D LINE ELEMENT 37 SIZE 0. 250 LENGTH 6. 000 AREA 1. 061 ST S AT NODES 161> 162 12. 9i 9. 5 ALLOWABLE 27. 3 STRESS EXPANSION FQR NODE 161 1.6 -0. 9 -11. 5 -3. 8 0. 0 0. 0 10 ST SS EXPANSION FOR NODE 162 I. 1 -0 -8. 0 -3. 8 0. 0 O. 0

-D ELEMENT 38 SIZE 0. 250 6. 000 Obl STRESS AT NODES 163'64 STRESS EXPANSION FOR NODE 163

13. 24,LENGTH 9. 8 ALLOWABLE AREA 1.
27. 3 1 6

~ O. 9 -11. 5 -3. 8 0. 0 O. 0 STRESS EXPANSION FOR NODE 164 18 1. 1 0. 9 -8. 0 0. 0 0. 0 19 i20 FORCE DEFINITION NODE DIRECT ELEMENT 39 NODE 200 21 FX . 22. 20 's FY 78. 80 s FZ 0. 00 M -5384. 00 s MY 0.00 s MZ 0. 00 25 MAXIMUM ABSOLUTE STRESS ON ELEMENT 38 ~ 13. 2 l30 31 32 l331 i34 35 37 38 39 i40l

,. '41I 143 '

i 44 I

145

" i48' l47 I

~ 148

~

49(

50i l51l i 52

-1 1531 I

I I 5~

I i50

kJle r l)g 4 1 p I J

s'I

CQNSYS ANALYSIS PROGRAM ~~I:- REQUISITION 79604 DATE 08/27/87 VEPSQOhI~. RELEASED,.12/03/8., BY.' ASZ PAGE..L-.Za OF !!~ .

M JR 8-Z7-S7 AEP + 150T CRANE + 50T LOAD + TRUCK TO GIRDER 4 WELDS 4 SSE REPORT

SUMMARY

> FOR A 4 LOAD STEP ANALYSIS 4.4+44 8

ELEMENT STRESSES PRINTED.... YES STRESS SUMMATION MODE WAS DIRECT 8

1

\p ELEMENT STATISTICS I12 TYPE DESCRI 13 3-DIMENSI ONAL. LINE ELEMENT......... 36 14 2 3-DIMENSI ONAL LINE ELEMENT......... 2 3 PORC D ld 17 TOTAL NUMBER OF ELEMENTS = 39, NODES =

18 69'YSTEM PROPERTIES 20 P 21 OAD 22 24 CENTROIDSi X AXIS...; '...:;.... 0. 00 22. 50 28 P

Y" AXIS..: '.....: . 0. 00 22. 50 SHEAR AREAS........,...... 33. 23 33. 23 0. 00 gp POLAR MOMENTS OF INERTIA.. 6299. 12 6299. 12 15729. 29 30 31 TRANSLATED FORCES...,...... H. 20 78. 80 0. 00 32 TRANSLATED MOMENTS....,... -3611. 08 -499. 48 1574. 85 35 MAXIMUM ELEMENT STRESSES.

NUMBER',- COMPAR 38 DESCRZPTION USED ELEMENT NODE STRESS ALLOMABLE FACT(

3P 3-D LINE ELEMENT 36 38 163 3-D LINE ELEMENT 1 101 12. 8 KSI 27. 3 Wl 2. 13(

41 3-D LINE ELEMENT 38 163 13. 2 Kc I 27. 3 Y-SI 2. 06 42 3-D LINE ELEMENT 1 101 2 8 Sl "17. KSI 43 45 48 47 JOB COMPLETED 48 l4p (50 15'.

~

(P

~ I 53 54 5a

)

p

FORM Mrgiyi WHITING R EON. OATE SY ~Z. PAGE + ~ OF

< tn

. Q-ZC-87 CTIR0E'R 7c Eblis /'I2 CRAIG'c770A/.

'/lbz

'N 4 Z/16 I

I J I I

s I

~ I I

l I

I I

)o3 R))~

I I g

) I I I i II I I s I ZyC I

I

~l I

0 N

III 'C II II Il 0

4.

~ ~l I

0

+ ++I++++

I?-

+ +

+ ' Ig

+4

~$

I- g

~KXSPFP

>li9 z

+g gP P>P

~ 6' 1aLB=~R g

%D~ ZI sa ~lee a~

es Z/ Iq Ir/y, OS1$ Vvt& 4 /so

'1 0

~ ar4 P E

lr l~

I

CORM Nolis" WHITING REQN. 7~ ~0~ OATE BY A~Z PAGE < 7~ PF MJH 8-2G-87 I'soars Mrz L; AS,T]4f - 8 3Z5'ag

= g/ g wag p>L< 36.8ksi

=

~sZ 6><

G>

= 83.6 I sf

~ ('er's. <--38)

(P)L<PI ii/4EJ THIPOAT)

Base ffreL,: ASKS-A 36

.NE~ /YTRL.; We. ESOXX ELEc-Cga'BC f+ ~ = ZG 0<st eER F6. +38 ssG c+z< 273 ass Wx, zoauZ ~ac rwaL,E 855 AIUD 8 56 .

08E; F> =38,5 NIP Fy= 3 FKll +z =Zl Kil Hz=8 el ZAP, hfy "-$ 7,/ IN,kiP.

Mz = 373/ IN.

<IF'=

g7. 7 gP F>

= 49,5 K P F -2Z ~~ M= le,5 W,ne Qy lo~. 3 w. KIP Hz = 4359 IN, KIP,

r

~I f~fl I If f I

FORM N Z4OS REQN. 7g/'HITING ~ ~~+ DATE BY ~Z PAGE + ~3 OF gJH 8-2C-87

~oL>Eb Cpvegc7ioM 3,8 +ta

/2 res.

II7 IIS IIB l20 IZI I 2 IZS IZA 12$ 'I Z6 I 27 IZS I24

, Fg p

IOI Q Zoo I y 988 IZ. to2

~I K 0 lo3 Q Q III h

0 lOIQ Q llZ (os Q Q lib IO6Q Qis IOV Q Q (lS 0 lOSQ i'>~~ bo~rs

E f C ~

~ It%

I I

0 r

~ i I t-0 4 b ~

=R 1~

4 ~

I~

>I >~

L i~

4 ~ ~

~ 0 0 4 ~

~

~

k i r o

S>>

~e ~

g I

"5 1'

4 796~ 8-c7-z7 COhlSYS INPUT DATA LIST I NG z ~~4. 7S

%4+%4'.C

~~~!/

5 10 15 20 25 30 35 40 45 50 55 60 65 V V V V V V V V V V V V V FP +~g~RtttlNF + 50T .LOAD + GIRDER .O'Q END M2E +.. BOLTS +.QBE

2. 79604 ASZ 1. O. 0. 1. O. O. 0. O. i. O.
3. >1. 3. 2. gJH 8-2.7" 87
4. 2. 3.
5. 3. 5. 0.
6. -1.

7.

10 8.

9. -l.

12 10. 101 13 11. 117. 2. i. 13.

14 12. 200. 3.

13. -i.

td 14. -8. 8. 22. 5 17 15. 101. 1. 5 -9. 88 -0. 75 18 16. 102.

10 17. 103. 1. 5 -9. 88 -9. 75 20 18. 104. 1. 5 F. 88 -14. 25 21 9.

20. 106. -9. 88 -23. 25
21. 107. -9. 88 -27. 75 24 22. 10 25 23. -1. 1. 13. 4. 5.

2d 24. 117. -12. 13 =-

5. 100

.26. 9999.

27. 101. i. 1 29.
28. -1.
29. 200. 38. 5 2. 1 8. 87. 1 3731.

30.= -i.

31. FINISH A A A A A A . A A A A A A A 37 42 4d 47 45 i4O

'5O l51 2

4P 5 l55 m t5C

(g

~i 4 J t, I It04%

PJ ~

CONSYS ANALYSIS PROGRAM ++~- REQUISITION 7'7604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAGE 0 76 OF Ih J I

2 AEP + 150T CRANE 4 50T LOAD 4 GIRDER TO END TIE + BOLTS + OBE SYSTEM PROPERTIES +4<4+

6 LOAD STEP... DIRECTION> LOCATION OR AXIS e

10 CENTR0 I DSi X AX I S....... . I. 37 3. 00 AXIS.........

~

Y 1. 50 -7. 76 12 Z AXIS......... 2. 44 7. 42

~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 22. 78 10. 21 12. 57 POLAR MOMENTS OF INERTIA, . 1 5'PO. 43 3477. 98 5511. 66 16 A FORC S......... 38. 50 34. 00 2. 10 17 TRANSLATED MOMENTS........ 112. 88 388.'6 4099. 70 1e TI N NODES... 1 20 21

++%4+ SYSTEM ELEMENT STRESSES +++++

24 25 I RESS S ARE EQUALLY DISTRIBUTED THROUGHOUT SHEAR AREA 126,..'",' ', DRX 1 T. DRY. '. ~

3. 3 DRZ 0. 2

~-D POINT ELEMENT 1 NODE 1 01 AREA 0. 785 DIAMETER 1. 000 20 STRESS AT NODE 15. 4 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 101 0.8 . 12.9, 0.0 0. 0 -0. 8 0. 0 FORCES AT NODE 101 FX 12. FY O. FZ i.

2-D INT ELEMENT 2 NODE 102 AREA 0. 785 DIAMETER 1. 000 STRESS AT NODE 14. 9 ALLOWABLE 36. 8 36 STRESS EXPANSION FOR NODE 102 FORCES AT NODE 102.

1 ',

FX .

0 0

12. FY
0. 0
0. FZ

-0. 8 0. 0 30 NT ELEMENT 3 NODE 103 AREA O. 785 DTAMETER 1. 000 41 STRESS AT NODE 14. 8 ALLOWABLE 36. 8

~

42 44 45 2-D STRESS EXPANSION FOR NODE 103 FORCES AT NODE 103 I NT ELEMENT 4 NODE 104 FX

0. 0
12. FY AREA
0. 0
0. 785
0. FZ'.

-0. 8 DIAMETER 1. 000

0. 0 STRESS AT NODE 15. 3 ALLOWABLE 36. 8 STRESS EXPANSION FQR NODE 104 I

49 0. 0 0. 0 -0. 8 0. 0

~ 50 FORCES AT NODE 104 FX 12. FY 0.

151 152

~!I 53 ll STRESS AT NODE 15. 8 ALLOWABLE

  • -=. 36. 8 FZ 1.

54 STRESS EXPANSION FOR NODE 105

!55 -1. 2 12. 9 0. 0 0. 0 -0. 8 0. 0

!56 FORCES AT NODE 105 FX 12. FY 0. FZ

'4 ~

I'e'f irW

~1 I

t P'

~

f 4t f

'i ~

A(i

CONSYS VERSION 4. 2 ANALYSIS RELEASED PROD"RAM 4~+

12/03/82 ~Z'SZREQUISITION 79604

...PAG~7/

8.Z7 87 DATE 08/27/87 DF ~//

EP + 150T CRANE 4 50T LOAD + GIRDER TO END TIE 4 BOLTS 4 QBE r3 l

+404.4 SYSTEM ELEI'IENT STRESSES 4++4+

2- POINT ELEMENT STRESS AT NODE .

~QD~Q~~R lb. 3 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 106

-0 FORCES AT NODE 106 FX 13. FY 0. FZ 12 2-D POINT E 13 STRESS AT NODE 16. 8 ALLOWABLE 36. 8 14 STRESS EXPANSION FOR NODE 107 FORCES AT NODE 107 FX 13. FY 0. FZ 17

'I 5 2-D POINT ELEMENT D 19 STRESS AT NODE 17. 3 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 108 FORCES AT NODE 108 FX 14. FY 0. FZ I2 y

27 25 31 32 33 -'*

2-D POINT ELEMENT STRESS AT NODE STRESS EXPANSION FOR NODE 109 0.

FORCES AT NODE 2-D POINT ELEMENT STRESS AT NODE 9

STRESS EXPANSION FOR NODE 110 0.3 FORCES AT NODE 110

-3 10 9

9'6.

FX FX NODE

b. 4 NODE
5. 9 109 110 5.

RE ALLOWABLE FY AREA ALLOWABLE 8

0.

36. 8 0:

FZ FZ

'I 2-D POINT ELEMENT 1 1 DIODE 1 AR A STRESSAT NODE "

=

5. 9 ALLOWABLE 36. 8 y 35 '""'TRESS EXPANSION'QR NODE 111 39 *'"."'"". ' -0.2' -3. 9 FORCES AT NODE 11 1 FX 0. FZ 41 42 2-D POINT ELEMENT 12 NODE 112 AREA 78 STRESS AT NODE 6. 4 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 112

-0. 7 -3. 9 0. 0 45 FORCES AT NODE 112 FX 5. FY 0. FZ 47 45 2-D POINT ELEMENT 1,3 NODE 113 AREA 0. 785 DIAMETER 1. 000 STRESS AT NODE 6. 9 ALLOWABLE 36. 8 50 I51 53 54 STRESS EXPANSION FOR NODE 113

-1. 2 FORCES AT NODE

~-D POINT ELEMENT 113

-3. 9 14 FX NODE 114

0. 0
5. FY AREA
0. 0
0. 785
0. FZ'.

DIAMETER

0. 8
i. 000 STRESS AT NODE 7. 4 ALLOWABLE 36. 8 9 55 I

STRESS EXPANSION FOR NODE 114

(<<7 -1. 7 -3.9 0. 0 0.0 . 0.8 0 0 FORCES AT NODE 114 FX b. FY 0. FZ

s~l ~

Mf4

~' 1

CQNSYS ANALYSIS PROQRAM 4 + vP REQUISITION 79604 DATE 08/27/87 f VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAQE 4-7Z...OF PZ, I

I 1 MJM 8-D -87 AEP + 150T CRANE + 50T LOAD + QIRDER TO END TIE + BOLTS + QBE l3 4 ~

+++++ SYSTEM ELEMENT STRESSES +44++

5 2-D POINT ELENENT ID NODE I ID AREA O. 785 DIANETER I OOO STRESS AT NODE 7. 9 ALLOWABLE 36. 8 d STRESS EXPANSION FQR NODE 115 0 -2. 2 -3. 9 0. D 10 FORCES AT NODE 115 FX 6. FY 0. FZ 11 12 2-D POINT ELEMENT 16 NODE 116 AREA 0. 785 DIAMETER 1. 000 STRESS AT NODE 8. 4 ALLOWABLE 36. 8

~ ., 14 STRESS EXPANSION FOR NODE 116 15 -2. 7 - - -3. 9 0. 0 0 D O. 0 1d FORCES AT NODE 116 FX. 7. FY 0. FZ

. 17 15 2-D POINT ELEMENT 17 NODE 117 AREA 0 785 MET 0 10 STRESS AT NODE" 17. 8 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 117 .

1.2: 14. 5 0 0 22 FORCES AT NODE 117 FX 14. FY 3. FZ 0.

2-D POINT ELEMENT 18 NODE 118 AREA 0 7 25 2d

'TRESS AT NODE STRESS EXPANSION FOR NODE 118 .

14. 5 ALLOWABLE 36. 8 27 1.2 ".:" - 11. 2 0 0.

FORCES AT NODE 118 FX 11. FY 3. FZ 0.

a 2P 30 2-D POINT ELEMENT 19 NODE 119 AREA 0. 785 DIAMETER 1 00 STRESS AT NODE 1 i. 2. ALLOWABLE 36. 8 32 33 STRESS EXPANSION FOR NODE 119 1.2' FORCES AT NODE

'i'::

119

7. 8 FX
0. 0
8. FY 0
3. FZ 0

0.

35 3d 2-D'OINT ELEMENT 20 NODE 120 AREA 0. 785 DIAMETER i. 000 37 STRESS AT NODE' STRESS EXPANSION

8. i .., ALLOWABLE. 36. 8 3a FOR NODE 120 3P i. 2 ' 4. 5 O. 0

-O. 0 0 0 0 40 FORCES AT NODE 120 FX 6. FY 3. FZ 0; 2-D POINT ELEMENT 21 NODE 121 AREA O. 785 DIAMETER l. 000 STRESS AT NODE 5. 2 ALLOWABLE'TRESS

36. 8

~

44 EXPANSION FOR NODE 121 45 1. 2' .':"" 1. 2 0. 0 -0. 0 0 0 0 0 4d FORCES AT NODE 121 FX 3. FY 3. FZ 0.

47 4a 2-D POINT ELEMENT 22 NODE 122 AREA 0. 785 DIAMETER 1. 000 4p STRESS AT NODE 6. 1 ALLOWABLE 36. 8 50 STRESS EXPANSION FOR NODE 122 5 II 1. 2 -2 2 0. 0 -0. 0 0. 0 0. 0 15@I FORCES AT NODE 122 FX 4. FY 3. FZ O.

l;3 55 STRESS AT NODE'.

INT ELEMENT 23 STRESS EXPANSION FOR NODE 123 NODE 123 1 ALLOWABLE ARE'A 0. 785

36. 8 DIAMETER 1. 000
1. 2 -5.5 0.0 -0.0 0. 0 . 0. 0 FORCES AT NODE 123, FX 7. FY 3. FZ 0.

5 a %*9

.Ad@

4f b

~I

%W

CONSYS AhlAL YS IS PROGRAM 4 4 ~ f? EQUI SIT I ON 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: *SZ PAGE 0 "7+ OF I/Q rs g NJ~, 7

'I I AEP + 150T CRANE 4 50T LOAD ~ GIRDER TO END TIE + BOLTS + QBE I

il,I 4 SYSTEM ELEMENT STRESSES 2-D POINT ELEMENT 24 NODE 124 AREA 0. 785 ' DIAMETER l. 000 ST S AT NODE 12. 2 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 124

i. 2 -8. 9 0. 0 -0. 0 0. 0 0. 0 10 FO C S AT NODE 124 FX 9. FY 3. FZ 0.

12 2-D POINT ELEMENT 25 NODE 125 AREA 0. 785 DIAMETER i. 000 13 T S AT NODE 15. 5 ALLOWABLE 36. 8 14 STRESS EXPANSION FOR NODE 125 15 i. 2 -12. 2 0. 0 -0. 0 0. 0 0. 0 FO S AT NODE 125 FX i2. FY 3. FZ 0.

q 17 le 2-D POINT ELEMENT 26 NODE 126 AREA 0. 785 DIAMETER i. 000 lQ ST A NODE 18. 8 ALLOMABLE 36. 8 y 20 STRESS EXPANSION FOR NODE 126 21 1. 2 -15. 6 0. 0 -0. 0 0. 0 0. 0 22 FORGES AT NODE 126 FX 15. FY 3. FZ 0.

24 2-D POINT El EMENT 27 NODE 127 AREA 0. 785 DIAMETER 1. 000 ST S AT NODE 22. 1 ALLOWABLE 36. 8 STRESS EXPANSION FOR NODE 127 27 i. 2 -18. 9 0. 0 -0. 0 0 0 0. 0 FO S AT NODE 127 FX 17. FY 3. FZ 0 1

'1 30 32 33 35 8

2-D POINT ELEMENT AT NODE 128 2-D POINT ELEMENT 28 STRESS EXPANSION FQR NODE 128

1. 2 -22. 3 29 FX NODE
25. 4 NODE

'. 128 129 0

20.

AREA ALLO@ABLE FY AREA

0. 785

-0. 0

36. 8
0. 785 3.

DIAMETER FZ

0. 0 DIAMETER 1.

1; 000 0.

000

0. 0 37 8. 7 ~

. ALLCWABLE 36. 8 1

38 STRESS EXPANSION FOR NODE 129 39

  • 1.2 -25. 6 0. 0 0. 0 0. 0 0. 0 40 FO S AT NODE 129 FX 22. FY 3. FZ 0.

) 41 42 FORCE DEFINITION NODE ABSOLUTE ELEMENT 30 NODE 00 l43 F 38. 5 s FY 34. 00 s FZ 2. 10 MX 8. 00 s MY 87. 10 s MZ 3731; 00 48 47 48 MAXIMUM ABSOLUTE STRESS ON ELEMENT 29 = 28. 7 }C&t 4Q "I,50 I

151 152

]53~

++4++ JOB COMPLETED (54 I 5 158.

C S'i

4 796'< p-z7-z7 a+<-.++ CONSYS INPUT DATA LISTS NC 4:-4+4+

Asz ar'&z 9-8D gs ltZ

~ 20 40 45 60 65 5 10 15 25 30 35 ~

50 55

- V V V V V V V V V V V V V

1. AEP o 150T CRANE + 50T LOAD 4 GIRDER TO END TIE + BOLTS 4 SSE
  • 0. 1. 0. O. 0. 0. 1. 0.
3. 1. 3. 2. ev 8-f7-87
4. 2. 3. 2.

0 30 O.

6.

7. 1. 50. 2 10 8. 1.

9.

12 10. 101. 16.

13 I . 117. 2. 13.

14 12. 200. 3.

15 13. -1.

-B. 8. 22. 5

15. 101. -9, 88 -0. 75 18 16. 102. -9. 88 -5. 25

}19 I . 103. 1. 5 -9. 88 -9. 75 120 18. 104. i. 5 -9. 88 -14. 25 21 19. 105. 1. 5 -9. 88 -18. 75

20. 106. 1. 5 -9. 88 -23. 25

}~ 21. 107. 1. 5 -9. 88 -27. 75

~24 22. 108. 1. 5 -9. 88 -32. 25 2 . -1. 1. 13. 4. 5.

24- 117. 2. 44 -12. 13 3.

25. 200. 0.

a.99.

27. 101. 1. I 29.

O. O.

28.

10. 5 103. 3 6359.

31 t32 I

'0.

33 31. FXNISH A A A A A A A A A A A A A (3S

}35 35 40 4'I I42

}43

>44 45

'I147 40 491 I

'50'

'51 152 153 I

105]

5C

IP 11 el' tP W'

CONSYS ANALYSIS PPOGRAM 4i5' REG JISITI ON 79604 DATE 08/27/87 VEI3SION 4. 2 RELEASED 12/03/80 B~AQ PAGf +

8-27-87

~/~F~jl'JH AEP + 150T CRANE + 50T LOAD + GIRDER TO END TIE 4 BOLTS + SSE 13 I

4 SYSTEM PROPERTIES 44.+4+

I I5 LOAD STEP.. DIRECTIONS LOC 0 I 10 CENTROIDS> X AXIS......... 1. 37 3. 00 Y AXIS......... l. 50 -7. 76 12 Z AXIS......... 2. 44 7. 42 13 SHEAR AREAS.......... ~ .... 22. 78 10. 21 12. 57 14 POLAR MOMENTS OF INERTIA.. 1590. 43 3477. 98 5511. bb 15 15 TRANSLATED FORCES...

TRANSLATED MOMENTS........

~ ..... 57. 70 49. 50 2. 20 17 ib2. 01 554. 27 b908. 01 18 NUMBER QF FORCE DEFINITION NODES.... 1 21

+++++ SYSTEM ELEMENT STRESSES 24 DIRECT STRESSES ARE EQUALLY DISTRIBUTED THROUGHOUT SHEAR 25 27, DRX 2.5 'RY " 4.8 DRZ O. 2 AREA

~ D POINT ELEMENT 1 NODE 101 AREA 0. 785 DIAMETER 1. 000 STRESS AT NODE 25. 4 ALLOWABLE 50. 2 30 STRESS EXPANSION FOR NODE 101 31 l. 1 ~ - -

22.'7 O. 0 0. 0 -I. 1 0. D 32 33 FORCES AT NODE= 202-,, FX ", 20., FY O. FZ i.

2-D POINT ELEMENT 2 NODE 102 AREA 0. 785 DIAMETER 1. 000 35 STRESS AT NODE 24. 7 ALLOWABLE 50. 2 5 STRESS EXPANSION FOR NODE 1D2 37 0.4 "':-..;- 22.. 7:."...".-'--. O. 0' 0. 0 -1 O. 0

38 FORCES AT NODE',102.",
FX:=,. - 19. FY 0.

39 FZ'-D 40 41 42 POINT ELEMENT STRESS AT NODE STRESS EXPANSION FOR NODE 103 3 NODE 103

24. b ALLOWABLE AREA

'0.

0. 785 2

DIAMETER i. 000

-0. 3 -,- 22. 7'= 0. 0 0. 0 -i. 1 0. 0 44 45 FORCES AT NODE 103 FX 19'. FY 0. FZ i.

45 2-D POINT ELEMENT 4 NODE 104 AREA 0. 785 DIAMETER 1. 000 47 STRESS AT NODE 25. 3 ALLOWABLE 50. 2 48 STRESS EXPANSION FOR NODE 104 40 -1. 0 21. 7 0. 0 0. 0 -1. 1 0. 0 I

50 I51 ~

FORCES AT NODE 104 FX 20. FY 0. FZ i.

I52I 2-D POINT ELEMENT 5 NODE 105 AREA 0, 785 DIAMETER 1, 000 I 53 I

STRESS AT NODE 2b. 0 ALLOWABLE 50. 2 Is STRESS EXPANSION FOR NODE 105 I

-1. 8 21. 7 0. 0 0. 0 0. 0 ls5 FORCES AT NODE 105 FX 20. FY O. FZ i7I

,I ~

k~

CONSYS ANALYSIS PROGPAM >++ REQUISITION 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAGE 4 gg OF /lg EP + 150T CRANE 4 50T LOAD + GIRDER TO END TIE 4 BOLTS 4 SSE

~

h I

+++++ SYSTEM ELEMENT STRESSES 44fe4+

1 h-2-D POINT ELEMENT 6 NODE 106 AREA 0. 785 DIAMETER 1. 000 I7 ST S AT NODE 26. 7 ALLOWABLE 50. 2 18 I

STRESS EXPANSION FQR NODE 106 9 -2. 5 21. 7 0. 0 0. 0 0. 0 10 FORCES AT NODE 106 FX 21. FY O. FZ 2-D POINT ELEMENT 7 NODE 107 AREA 0. 785 DIAMETER i. 000 AT NODE 27. R ALLOWABLE 50. 2 STRESS EXPANSION FGR NODE 107

'1 51 -3. 2 21. 7 0. 0 0. 0 0. 0 A ODE 107 FX 22 FY 0. FZ 18 20 24 2-D POINT ELEMENT

-3. 9'1.

FORCES AT NODE 2-D POINT ELEMENT N

STRESS EXPANSION FOR NODE 108 108 8

9 7

28. 2 FX NODE NODE 108 ALLOWABLE 109
0. 0 22.

AREA FY AREA

'. 0. 785

50. 2 0
0. 785 0.

DIAMETER FZ

-i.

DIAMETER 1

1. 000
l. 000
0. 0 25 ST S AT NODE 10. 3 ALLOMABLE 50. 2 028 STRESS EXPANSION FQR NODE 109 27 1.1 ~

". -6. 5 ~ 0. 0 0. 0 0 0 FORCES AT NODE 109 FX 30 2-D POINT ELEMENT 10 NODE 110 AREA 0. 785 DIAMETER 1. 000 31 ST 8 AT NODE 9. 5 ALLOWABLE 50. 2

~ 32 STRESS EXPANSION FGR NODE 110 33 0.4 '

M.5 0. 0 0. 0 0. 0 34 FORC S AT NODE 110 FX 7. FY. 0. FZ i 35

~

g 2-D POINT ELEMENT 11 NODE 111 AREA 0. 785 DIAMETER 1. 000 31 A N 9. 5 ALLQMABLE 50. 2 k 38 STRESS EXPANSION FOR NODE 111 39 -0.3 .;,"'.." M.5 . 0.0 0. 0 0. 0 I 40 FO S AT NODE 11 1 FX 7. FY 0. FZ f,I

'0.

'el 41

[42 2-D POINT ELEMENT 12 NQDE 112 AREA 0. 785 DIAMETER 1. 000 la3 ST S A NOD 10. 2 ALLOWABLE 2 43i44

.l

-1'. D'.. 112-6.

STRESS EXPANSION FOR NODE 112 FORC S AT NODE 5

FX

0. 0
8. FY
0. 0
0. FZ
0. 0 4150.

148 48 2-D POINT ELEMENT 13 NODE 113 AREA 0. 785 DIAMETER 1. 000 149' ST A D 10. 9'LLOMABLE 50. 2

'50. STRESS EXPANSION FOR NODE 113

'51 -1. 8 -6. 5 0. 0 0. 0 0. 0 152( FORCES AT NODE 113 FX 8. FY 0. FZ 4i53I 2-D POINT ELEMENT 14 NODE 114 AREA 0. 785 DIAMETER 000 1

~ ~

1 ST S AT NODE 11. 6 ALLOWABLE 50. 2 STRESS EXPANSION FOR NODE 114

-2. 5 -6. 5 0. 0 0. 0 1. 1 0. 0 FORCES AT NODE 1 1 4 l=X 9. FY 0. FZ 1.

t p J M/I Ilt

~, I l I ~ I ,;,y,pre gge MrsT 0

>~

1

CONSYS ANALYSIS PROGRAM +4.K. REQUI SITIQN 79604 DATE 08/27/87 VERSION 4. 2 RELEASED 32/93/8r~ .. BY'ASZ.. PAGE .M3 .QF /iZ, .

Mg 8 8-1T-87 AEP + 150T CRANE + 50T LOAD + GIRDER TO END TIE 4 BOLTS + SSE t3 4  %+4<4

~

I I SYSTEM ELEMENT STRESSES ld 2-D POIN 5 ~LhHF

~STRESS v AT NODE 12. 3 ALLOWABLE 50. 2 STRESS EXPANSION FOR NODE 115

'10 FORCES AT NODE 115 FX 10. FY O. FZ 12 2-D POINT LEMENT 14 STRESS AT NODE, STRESS EXPANSION FOR NODE

13. 0 iib ALLOWABLE 50. 2 14 FORCES AT NODE 1 1 6 FX 10. FY 0. FZ 1 I le 2-D POINT ELEMENT 7 19 STRESS AT NODE 29'. 2 ALLIABLE 50. 2 20 STRESS EXPANSION FOR NODE 117 21 1 22 FORCES AT NODE 117 FX 23. FY .4. FZ 0.

0 24 2-D POINT ELEMENT 18 NODE 118 AREA 78 D ETE

'5 STRESS AT NODE 23. b ALLIABLE 50. 2 STRESS EXPANSION FQR NODE 118 27 18 F RCES AT NODE 118 FX 18. FY 30 2-D POINT ELEMENT STRESS AT NODE ~ '8.

STRESS EXPANSION FOR NODE 19 NODE 1

119'3 1 i9'REA ALLOWABLE 50. 2 FORCES AT NODE 119 FX 14. FY. 4. FZ 0.

35 35 2-D POINT ELEMENT 20 N E 1

,'," STRESS'T NODE...: '. 12. 8 ""= ALL'OMABLE 50. 2

, 35 STRESS EXPANSION FQR NODE'20 FORCES AT NODE 120 FX 9'. FY 4. FZ 0:

41 42 2-D POINT ELEMENT 21 NOD 1 T R

44 STRESS AT NODE STRESS EXPANSION FOR NODE 121

~

7. 9, ALLIABLE 50. 2 45 1. 7 1 9 .. 0 45 FORCES AT NODE 121 FX 5. FY ~ 4. FZ 0.

43

~ 45 2-D POINT ELEMENT 22 NODE 122 AREA 0. 785 DIAMETER 1. 000 49 STRESS AT NODE 9. 3 ALLOWABLE 50. 2 50 STRESS EXPANSION FOR NODE 122 51 1. 7 -3 7 0. 0 -0. 0 0 FORCES AT NODE 122 FX b. FY 4. FZ 0.

~ 53 POINT ELEMENT ~3 NODE 123 AREA O. 785 DIAMETER 1. 000 i55 STRESS AT NODE 14. 4 ALLOWABLE 50. 2

~ 150(

'E ~

STRESS EXPANSION FOR NODE 123

i. 7 FORCES AT NODE 123

-9. 3 FX

0. 0
11. FY 4. FZ

...0.. O.

0. 0

'YJ I IJ AP+

1

~I h

\

CONSYS ANALYSIS PROGRAM +er.- REOUI SI T I ON 79604 DATE 08/27/87 VERS I ON 4. 2 RELEASED 12/03/82 BY: ASZ PAQE4 84 OF /I/2 HJM 6 Z7-87

<<2 i EP 4 150T CRANE + 50T LOAD 4 GIRDER TO END TIE + BOLTS + SBE I31 i,4 I SYSTEM ELEMENT STRESSES 44%%4 15 2-D POINT ELEMENT 24 NODE 124 0. 785 DIAMETER l. 000 STRESS AT NODE STRESS EXPANSION FOR NODE 124

19. 8, ALLOWABLE AREA
50. 2
1. 7 -15. 0 0. D -0. 0 0 10 FORCES AT NODE 124 FX 15. FY 0.

12 2-D POINT ELEMENT 25 NODE 125 AREA 0. 785 DIAMETER 1. 000 STRESS AT NODE 25. 3 ALLOWABLE 50. 2 14 STRESS EXPANSION FQR NODE 125 15 1. 7 -20 6 0. 0 -0 0 0 0 .0, 0 Id FORCES AT NODE 125 FX 20. FY 4. FZ 0.

17 15 2-D POINT ELEMENT 26 NODE 126 AREA O. 785 DIAMETER 1. 000 STRESS AT NODE 30. 9 ALLOMABLE 50. 2 STRESS EXPANSION FOR NODE 126-21 1. 7 -26.3 0 0 FORCES AT NODE 126 FX 24. FY 4. FZ 0.

23 7

24 2-D POINT ELEMENT 27 NODE 127 AREA O. 785 DIAMETER 1. 000 25 STRESS AT NODE 36. 5 ALLIABLE 50. 2 STRESS EXPANSION FOR NODE 127 27 1.7 -31.9 '

0.0 -0. D FORCES AT NODE 127 FX 28. FY 4. FZ D.

~ 20 30 2-D POINT ELEMENT 28 NODE 128 AREA 0. 785 DIAMETER 1. 000 STRESS AT NODE . 42. 1 '- ALLQ4NBLE 50. 2 3'2 STRESS EXPANSION FOR NODE 128 33 1 7 -37. 5 0. 0. M. 0 0. 0 0. 0 FORCES AT NODE 128 FX 33. FY 4. FZ 0.

l 3S 2-D POINT ELEMENT 29 129 'REA 0. 785 0.6'0.

35 NODE DIAMETER 1. OOO 37 STRESS AT NODE',, 47. 7, 2 EXPANSION FOR NODE'29""

'LLO@ABLE'TRESS 35 39 1 7 -43.2 . ~ -0. 0 0 0 FORCES AT NODE 129 FX 37. FY ~ 4. FZ 0.

) 41 42I FORCE DEFINITION NODE ABSOLUTE ELEMENT 30 NODE 200 43 FX 57;70 s FY 49. 50 s FZ 2. 20 p 44 MX 10. 50 s MY 103. 30 s MZ 6359. 00 45 4d q 47 48 MAXIMUM ABSOLUTE STRESS QN ELEMENT 29 ~ 47. 7 Sl SORY IS 1 ~

152:

53l ++4++ JQB COMPLETED

,J

1 q4

~W l

4" 79'609

<<I<<I<<'<<I<<I CONSYS INPUT DATA LISTINC <<.'<<I<<I<<I<<I ASZ ea~&e 4- 5 e l.'2 5 10 15 20 25 30 35 40 45 50 55 60 65 V V V V V V V V V V V V V AEP <<I 150T CRANE + 50T LOAD <<I GIRDER TO .END TIE. <<I. WELDS <<I OBE cC 2. 79604 ASZ 1 . 0. 0. 1. 1.

  • 5 3. i. 1. <~~ 8-zc-87
2. 3.
5. 3. 5.

8 6.

9 7. 0. 25 20. 0 10 B. l. 375 20. 0 0. 56 3.

11 9. -1

~ 2 10. 10 j. 102. 1. i. 8. 2.

11. 117. 118. 1. i.

14 12. 104. 120. 1.

15 13. 108. 121. i.

14. 116. 122. i. l.

17 15. 1 12. 123. 1. l.

18 16. 51. 2. 2.

17". ~

3.

20 18. -1 21 19. 101. -j. 75 P. 88 1. 25

20. 102. -l. 75 -9. 88 -36. 38 21.

25.'00. 103. -1. 25 -9. 88 -36. 38 22o 104. -1. 25 -9. 88 -41. 88

23. 105. -1. 75 ~. 38 l. 25 Z4. 106. -i. 75 -9. 38. -36. 38 107. -i. 25 -9. 38 -36. 38
26. 108. -l. 25 -9. 38 -41. 88 27- 109. -i. 75 12. 62 i. Z5 30 28. 110. -1. 75 12. 62 -36. 38 31 29.. 111. -1. 25 12. 62 -36. 38 "

~j. 88 32 30. 1 12. -1. 25 12. 62 3i. 113. -i. 75 13. 12 i. 25

32. 114. -1. 75 13. 12 -36. 38

~

35 331 115. -1. 25 13. 12 -36. 38

34. 116. -1. 25 13. 12 -41. 88
35. 117. -3. 061 -14. 13 3.

~

35 36. 118. -3. 06 43. 87 3.

37. 119. '..06
43. 87 3.

~ 40 38. 5!. -1. 56 -7. 63 3.

/41 I

39. 52. -i. 56 1-. 37 3.

I 42 53. -j. 56 ip. 37 3.

143 I

40.'1.

54. -l. 56 19. 37 3.

~ (i 44

55. -1. 56 28. 37 3.

I 145 43. 56. -i. 56 37. 37 3.

I45 120. 25 -9. 88 -41. 88

~ [47t

45. 121. 2. 25 -9. 38 -41. 88 I45 122. 25 13. 12 -41. 88 i

40'50.'

47. 123. 2 25 12. 62 -41. 88
48. 200. 0. 0. 0.

151 ~

49. 9999.

I 5?l 50. 101. 1. 123.

15% 51. 51. 56.

I5 52. -j.

I55i 53. 200. 38. 5 34. 0 2. 1 8. 0 87. 1 3731.

~ 156 I

-1

55. FINISH A A .A A A A A A A A A A A

0 Jk 0

ICAL 4I! 4 4,

CONSYS .ANALYSIS PROGRAM

.,.,K-.,a.

AEP + 150T CRANE + 50T LOAD 4 3~1

++a GIRDER TO END

+++++ SYSTEM PROPERTIES +++++

7 REQUISITION 79604 TIE +

+

D WELDB 4 QBE Tg 08/2i/87 E '-2'-8~

<5 I I

LOAD STEP 17 I

I8 19 Y ilo CENTROIDS AXIS X -12. 61

'12!

Y AXIS......... -1. 88 -12. 61 S

i(4 SHEAR AREAS...........,... 52. 67 52. 67 43. 76

'1511 POLAR MOMENTS OF INERTIA.. 22680. 72 13490. 29 12049. 47 .

I(7 TRANSLATED FORCES......... 38. 50 34. 00 2. 10

',18 TRANSLATED MOMENTS........ 447. 75 576. 55 4057. 52

)19 NUMBER QF FORCE DEF INITION l2O NODEB... 1 I

l2( I

~

23 +++++ SYSTEM ELEMENT STRESSES f2l) i25'IRECT STRESSES ARE EQUALLY DISTRIBUTED THRQUQHQUT SHEAR AREA ga DRX 0. 7 DRY 0. b 27 DRZ O. 0 I

-D LINE ELEMENT 1 SIZE 0. 250 LENQTH 37. 630 AREA 6. 652 129 STRESS AT NODES 101> 102 7. Oi 7. 5 ALLOWABLE 20. 0 l30 STRESS EXPANSION FOR NODE 10 I32

0. 6 S. 6 -0. 3. 0. 0 -0. 0 STRESS EXPANSION FOR NODE 102 L3

~

Ls4 l

p5 3-D LINE ELEMENT 2 SIZE 0. 250 LENQTH 5. 500 AREA 0. 972

!38 STRESS AT NQDEB 10

<37 STRESS EXPANSION FOR NODE 103" I

I

!36 0 S.b ", " 0.5

'1.

0. 2

~lt RES NS (49 I -1. 3 0. 6 0. 2 -0. 3 -0. 0 k-4~

i<<1 L.i 3-D LINE ELEMENT 143<

STRESS AT NODES 105'06 3 ~IIEL

b. 9o 7. 3 ALLOWABLE 20. 0 (44I STRESS EXPANSION FOR NODE 105 1<(5! .

<46' O. 6 5. 5 -0 3 -0 Q I STRESS EXPANSION FOR NODE 106 I+7( -1. 0 5. 5 0. 5 0. 0 -0. 3 -0. 0

<ap(

.49 3-D LINE ELEMENT 4 SIZE 0. 250 LENQTH 5. 500 AREA 0. 972

<io STRESS AT NODES 107 108 7! 3b 7. 6 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 107

<5

-i. 0 -0. 3

-13'55

5. 5 0. 5 0. 2 -O. 0 l 5 3< STRESS EXPANSION FOR NODE 108

<sc 0 6 -0 3 -O. 0

'J

W ~I g4%

o4

,t W

CONSYS ANALYSIS PRQQRAM REQUISITION 79604 DATE 08/22 /87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PACE 9-Z7 OF ~'Z 4-"-'-87 AEP + 150T CRANE + 50T LOAD + QIRDER TO END'TIE 4 WELDS + OBE 4+4++ SYSTEM ELEMENT STRESSES

'5 I

Id 3-D LINE ELEMENT 5 SIZE 0. 250 LENQTH 37. 630 AREA 6. 652

/7 STRESS AT NODES 209> 110 3. 4i 3. 9 ALLQMABLE 20. 0 IC STRESS EXPANSION FQR NODE 109 0.6 -1.9 -O. 3 0. 0 0. 1 -O. 0 10 STRESS EXPANSION FOR NODE 1 10

-1. 0 -1. 9 0. 5 0. 0 0. 2 -0. 0 12 13 3-D LINK ELEMENT 6 SIZE 0. 250 LENQTH 5. 500 AREA O. 972 14 STRESS AT NODES 222i 112 . 3. 9i 4. 2 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 111 116 -1. 0 -1. 9 0. 5 0. 2 0. 1 -0. 0 117 STRESS EXPANSION FOR NODE 112 IS -1. 3 -1. 9 0. 6 0. 2 0. 1 -0. 0 p 20 3-D LINK ELEMENT 7 SIZE 0. 250 LENQTH 37. 630 AREA b. 652 21 STRESS AT'ODES 123'14 3. bi 4. 0 ALLOWABLE 20. 0 STRESS EXPANSION FOR NODE 113

)PD O. 6 -2. 1 -0. 3 0. 0 0. 2 -0. 0

/24 STRESS EXPANSION FOR NODE 224 125 -1 ~ .0 0. 5 0. D 0. 2 -0. 0

$ .2d I

i27 3-9 LINE ELEMENT 8 SIZE 0. 250 LENQTH 5. 500 AREA 0. 972 STRESS AT NODES 125'26 4. I> 4. 3 ALLOMABLE 20. 0 g 20 STRESS EXPANSION FQR NODE 225 30 0 2. 1 0 5

-'1.

0 2 0. 2 -0. 0 STRESS EXPANSION FQR NODE 116 Q 32 33

-1. 3 -2. I 0. 6 0. 2 O. 2 -D. 0

)34 3-D LINE ELEMENT STRESS AT NODES 1 17 118 9'IZE 0. 250 LENQTH 58. 000 AREA 10. 253 QI35 8. bo . 14. 0 ALLOMABLE 20. 0 3d 37 35

0. 7 7. I

STRESS EXPANSION FQR NODE 127 STRESS EXPANSION FOR NODE 118 W.3 M. 4 0. 1 30 0. 7 -12. 5 M. 3 M. 4 D. 8 0. 1 40 p 41 3-D LINE ELEMENT 10 SIZE 0. 250 LENQTH 3. 000 AREA 0. 530 t42 STRESS AT NODES 2 28i 119 14. Oi 24. 0 ALLQ4IABLE 20. 0 I

I 43 STRESS EXPANSION FOR NODE 118 I 44 0. 7 - -12. 5 -0. 3 -D.4 0. 8 0. 1 I

I 45 STRESS EXPANSION- FOR NODE 119 14d I 0. 7 -12. 5 -0. 3 0. 6 0. 8 -O. 2 147 I

I 45 3-D LINE ELEMENT 11 SIZE 0. 250 LENQTH 3. 500 AREA 0. 629 STRESS AT NODES 1 04'20 7. 8i 8. 1 ALLOWABLE 20. 0

+150 STRESS EXPANSION FOR NODE 104 151 -1. 3 5. 6 0. 6 0. 2 -0. 3 -0. 0

'S2, EXPANSION FOR NODE 120 154,'TRESS-i.

+153,'

I 3 5. 6 O. 6 1. 4 -0. 3 -0. 2 155 3-D LINE ELEMENT 12 SIZE O. 250 'ENQTH 3. 500 ..AREA 0. 619 15d I

STRESS AT NODES 108i 121 7. 6I 7. 9 ALLOl4ABLE 20. 0 QP 7 STRESS EXPANSION FOR NODE 108

-1.3 5. 5 O. 6 0 2 -0. 3 -O. 0 STRESS EXPANSION FOR NODE 121

-1. 3 5. 5 O. 6 i. 4 -O. 3 -0 2

ltd Alt

~am CONSY S ANALYS I S PROGRAM AEP + 150T CRANE + 50T LOAD + GIRDER TO END

~-<<~

TIE +

=. * ~lJL, REGUI S I T I ON 79604 8-1-a -BT DATE 08II'22 /87 l4ELDS + OBE SYSTEM ELEMENT STRESSES

l STRESS AT NODES 2 26i 222 4. 3i 4. 9 ALLOWABLE NEA ~F D
20. 0 II I I STRESS EXPANSION FOR NODE 1 ib 110')

STRESS EXPANSION FOR NODE 12Z

'r.;

I ~

I

-1. 3 -2. 1 0. 6 0. 2 -0. 2

'I 2 3-D LINE ELEMENT 14 SIZE 0. 250 LENGTH 3. 500 AREA 0. 619 I4I r STRESS AT NODES 1124 123 4. 24 4. 7 ALLOWABLE 20. 0

'ISI -1. 3 II7 I -1. 9 0. 6 0. 2 0. 1 -0. 0 r Ie STRESS EXPANSION FOR NODE 1Z3 I"

rj I2O 2-D POINT ELEMENT 25 NODE 51 AREA i. 485 DIAMETER 1. 375

)221 I STRESS EXPANSION FOR NODE 51

~

23j j24:

0. 7 4. 9 -0. 3 0. 2 0. 0 0. 0 2-D POINT ELEMENT 16 NODE 52 . AREA i. 485 DIAMETER 1. 375 STRESS AT NODE 3. 4 ALLO@ABLE 20. 0 27 2

30 132

'I33 STRESS AT NODE '.

STRESS EXPANSION FOR NODE 8

53 AL'LCNABLE

20. 0
0. 0 2-D POINT ELEMENT 18 NODE 54 AREA 1. 485 DIAMETER i. 375 "j3e RES r 39 37 3e 0.7 '4.2 STRESS EXPANSION FOR NODE< 54.

M.3 0. 1 0. 0 0. 0 2-D POINT ELEMENT 29 NODE 55 AREA 1. 485 DIAMETER 2. 375 41 rlI42 STRESS AT NODE 8. 7 ALLOMABLE 20. 0 143' O. 7 70 2 W. 3 0. 1 0. 0 0. 0 r'45r 85 ~AH STRESS AT NODE 1 1. 7 ALLOWABLE 20. 0 r'47 STRESS EXPANSION FOR NODE 56 l~.

l49 r.ir 15C I 52 I

<53 I54 I

~ 5 I

FORCE MX M

8 00 s

~LD DEFINITION NODE ABSOLUTE NY ELEMENT

87. 20 J 21 NZ

'D NODE 200 3732. OO 155 I

ry15e,~<- S o~ i:Z 5 10 45 20 25 30 35 40 45 50 55 60

'V V V U V V U V V V V V AEP + 150T CRANE + 50T LO+~4Q~D~TQ~J~F +.HELD/ + SSE

~ 4 2. 79604 ASZ 1. 0. 0. 1.

3. 8"L5 S7 4 2 3
5. 3. 5.
6. -1.
7. 0. 25 27 3 10 8 1. 375 27. 3 3.

9 -1.

10 101. 102

}1. 117. 118. 1. 1.

12. 104. 120. i. l.

15 13. 108. 12}.

1$ 14. 1}b. 122.

}5. 1 12. 123.

14 16. 51.

17 200.

18. -1
19. 101.

122 20. 102. -1. 75 -9. 88 -36. 38

~ l23 21. 103. -}. 25 -9. 88 -36. 38 124 22 104. -1. 25 -9. 88 -41. 88 p5 23. 105. -i. 75; -9. 38 1. 25 q 2$ 24. }06. <> 75 -9. 38 -36. 38.

27 25. 107. -1. 25'. -9. 3 -3 108. -}. ~5 -9. 38 -4}. 88

>>a 2 27. }09. -i. 75 12. 62 1. 25

28. 1}0. -1. 75 12. 62 -36 3 31 29.. }1 i. -l. 25 -,".. 12. 62 -36. 38 4 32 30. 112>> -}. 25'1 12>> 62 <<4}. 88
31. 113. 5
32. 114. -1. 75 13. 12 -36. 38 i 35 33. 1}5. -1. 25 13. 12 -36. 38
34. 116. -1. 25 }3. 12
35. 1 17.  ; '3. 06.::,', -14. }3 3.

3$ 36. 118. -3. Oh";."'

'43. 87 3.

30 37. 119. 06

38. 51. -1. 56 -7. 63 3.

141 39. 52 -i. 56 1. 37 3.

l42 40. 53. -}. 56 10 37 l43 41. 54. -i. 56 ~ 19. 37 3.

42. 55. -1. 56. 28. 37 3.

)45 43. 56. -i. 56 37. 37 3 l4$

I 44. 120. 2 25 -9. 88 -41. 88

w. 47 45. 121. 2. 25 -9. 38 -41. 88 44, 46. 122 2. 25 13. }2 -41. 88 I49l
,.~!
47. 123. 2. 25 12. 62 -4}. 88 I
48. 200. 0. 0. 0.

l511 49. 9999.

r I 52',

l531 I

I I

50.

51.

52 101.

-1 5}.

1.

1. '6.123.
53. 200. 57. 7 49. 5 10. 5 103. 3 6359.
54. -1
55. FINISH A A A A A A A A A A A A A r

~I, Wht vlpk

CDNSYS ARALYSIS PRQQRAII me% REGIIISITION 79604 D$TE 08/SI/87 HJH 8 Lc -87 AEP + 150T CRANE + 50T LOAD + GIRDER TO END TIE + WELDS + SSE

++me+ SYSTEM PROPERTIES AILS 19 CENTROIDS X AXIS........ 5. 24 -12. 61

)I 1 l 1 21 Y AXIS........ -1. 88 -12. 61 I

I14 13 SHEAR AREAS............... 52. 67 52. 67 43. 76 I

115 POLAR MOMENTS OF INERTIA.. 22680. 72 13490. 29 12049. 47 TRANSLATED FORCES......... 57. 70 49. 50 2. 20 le TRANSLATED MOMENTS...,.... 646. 24 835. 06 6845. 70 20 NUMBER OF FORCE DEFINITION NODES... 1

'a I

123 4++++ SYSTEM ELEMENT STRESSES 4++++

DIRECT STRESSES ARE EQUALLY DISTRIBUTED THROVt:HOUT SHEAR AREA 27 DRX 1.1 DRY 0 9 DRZ O. i 3 D. LINE ELEMENT 1 SIZE 0; 250 LENQTH 37. b30 AREA 6. 652 30 STRESS. AT NODES 1 01 o 102 1 i. 66 12. 2 ALLOWABLE 27. 3 R

31

0. 9 9. 5 -0. 4 0. 0 -0. 4 STRESS EXPANSION FOR NODE 102 3-D LINE ELEMENT 2 SIZE 0. 250 LENGTH S. 500 AREA 0. 972 RES STRESS'XPANSION FOR NODE 103 sa -i. 5 9. 5 0. 7 O. 3 -0. 0 f40 41

-i. 8 0. 8 0. 3 <<0 -0. 0 l42 l43 STRESS AT NODES 105 106 11. 36 XI~~30

1. 9 l44 1 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 105 145 145'C7 STRESS EXPANSION FOR NODE 106

-1. 5 9. 2 0. 7 0. 0 -0. 4 -0. 0 145, f49c 3-D LINE ELEMENT 4 SIZE 0. 250 LENl'TH 5. 500 AREA 0. 972 I,J STRESS AT NODES 1074 108 12. Oi 12. 3 j ~ ol ALLOWABLE 27. 3 XE85533739~RJJJQD~ 0 152'P31 -1. 5 9 2 0. 7 0. 3 -0. 4 -0. 0 STRESS EXPANSION FOR NODE 108 15'55 -1. 8 9. . 0. 8 0 3 -0 I

.i ~ 15 0 I

I 7

4 t

yl tt

I I3 I

AEP +

CONSYS ANALYSIS PROGRAM +++

.W4M.W /JI~KDB

'150T CRANE + 50T LOAD + CIRDER TO END TIE + WELDS + SSE MJM REQUISITION 79604 E .

8-Zc -87 DATE 08/21/87

++%++ SYSTEM ELEMENT STRESSES

~15 3-D LIhlE N ~r STRESS AT NODES 109. 110 5. 44 b. 1 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 109 10 STRESS EXPANSION FOR NODE 110 12

-i. 5 -3. 3 0. 7 0. 0 0. 2 -0. 0 13 3-D LINE ELEMENT 6 SIZE 0. 250 LENQTH 5. 500 AREA 0. 972 14 STRESS AT NODES 111 112 b. 2 6. 5 ALLOWABLE 27. 3 15 STRESS EXPANSION FOR

-1. 5 -3. 3 0. 7 0. 3 0. 2 -0. 0 l 17 STRESS EXPANSION FOR NODE 112

-1. 8 -3. 3 3 20 3-D LINE ELEMENT 7 SIZE 0. 250 LENCTH 37. 630 AREA 6. 652 P 23 124 1

0. 9'3.

STRESS *T NOD 8 STRESS EXPANSION FOR NODE 113 STRESS EXPANSION FOR 3>

-3. 6 6 -0. 4

0. 7
0. 0
0. 0
0. 2
0. 2

-0. 0

-0. 0 ilae 27 LI STRESS AT NODES 1154 116 6. 4, b. 8 ALLOWABLE 27. 3

> 29 STRESS EXPANSION FOR NODE 115

i. 5 3.

31 STRESS EXPANSION FOR NODE iib 32 -1.8 =, -3.6 .- =

0.8 '

0.3. 0. 2 -0. 0 3-D LINE ELEMENT 9 SIZE 0. 250 LENCTH 58. 000 AREA 10. 253 35 STRESS AT NODES 117 118 14. 2i 23. 2 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 117.

i. D ';.'-':"4.'1. 9.'-" '. M. 4 . -D. 7 -0. 6 0. 1 35 STRESS EXPANSION FOR NODE 118 39 1. 0 .'- " '21. 0'-

40 3-D LINE ELEMENT 10 SIZE 0. 250 LENQTH 3. 000 AREA 0." 530 STRESS AT NODEB 118'19 I

,P 144 43

).5 1.0 STRESS EXPANSION FOR NODE

-21..D'0. 4 STRESS EXPANSION FOR NODE 118 1 19

-0. 7 0. 1

[45 1. 0 -0. 4 1. 0 -0. 1 0 147 48 3-D LINE ELEMENT 11 SIZE 0. 250 LENQTH 3. 500 AR 49 STRESS AT NODES 1044 120 12. 64 13. 1 ALLOWABLE 27. 3

~P 50 STRESS EXPANSION FOR NODE 104

-1. 8 9 Q 8 152 STRESS EXPANSION FOR NODE 120 41 153 -1. 8 9. 5 .0. 8 2. 3 -0. 4 -0. 3 l54 3 D INE ELEMENT 12 SIZE 0. 250 LENGTH 3. 500 AREA 0. b19

+ID STRESS AT NODES 108'21 12. 3i 12. 8 ALLOWABLE . 27. 3 '

STRESS EXPANSION FOR NODE IOS

-I. 8 9. 2 O. 8 0. 3 -0. 4 -O. 0 STRESS EXPANSION FOR NODE 121

-1. 8 9. 2 O. 8 2. 3 -O. 3

~ a4 taS

~, j

, Fj 4

~l

CONSYS ANALYSIS PROGRAM 444 REQUISITION 79604 DATE 08/21/87 VERSION 4. 2 RELEASED 12/03/82 BY: ASZ PAGE 4 9Z QF ~

Q 4

f

~

.MJIvI B C 87

~ 4 AEP 4 150T CRANE + 50T LOAD 4 GIRDER TO END TIE + WELDS + SSE a3 14 I SYSTEM ELEMENT STRESSES le 3-D LINE ELEMENT 13 SIZE 0. 2SO LENGTH 3. 500 AREA 0 619 STRESS AT NODES 1164 122 6, 8> 7. 7 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 116

-i. 8 -3. 6 O. 8 0 3 D 0 Iol STRESS EXPANSION FOR NODE 122 I II -l. 8 -3. 6 0. 8 O. 2 -0. 3 I 'I 21 3I 3 D LINE ELEMENT 14 SIZE 0 250 LENGTH 3'00 AREA 0'19

,Icj STRESS AT NODES 1 12'23 6. 5i . 7. 4 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 112 11 8'I

-1. 8 30 3 0. 8 0. 3 O. 2 -0. 0 7 STRESS EXPANSION FOR NODE 123 18 -1. 8 30 3 0. 8 0. 2 -0. 3 IS 1 20 2-D POINT ELEMENT 15 'ODE 51 AREA i. 485 DIAMETER 1. 375 21 STRESS AT NODE 1D. 4 Ai LOWABLE 27. 3 STRESS EXPANSION FQR NODE 51

~I

~

23 I

i. 0 -
8. 2 -0. 4 0. 2 0. 0 0. 0 l25 2-D POINT, ELEMENT,16 NODE 52 AREA l. 485 DIAMETER 1. 375 28 STRESS AT NODE 5. 4 ALLOWABLE 27. 3 27 STRESS EXPANSION FOR NODE 52 2t 1. 0 3. 1 -0. 4 0. 2 0. 0 ~
0. 0 3o 31 32 33 38 2-D POINT ELEMENT STRESS', AT NODE':

1.0 2-D POINT ELEMENT

=- ..

STRESS EXPANSION FOR NODE 17

~2. 0 18 NODE

4. 3 NODE 53 53

~.

54 4'.AREA ALLOWABLE AREA

i. 485
27. 3 2
i. 485 DIAMETER DIAMETER D. 0
i. 375
1. 375 D. 0 1,'.4:
9. 3 38 STRESS AT NODE ALLOWABLE 27. 3 37 , STRESS EXPANSION FOR NODE! 54*

38 l3S 1..0 ', - -7. "

0.2, 0. D 0. 0

. Icol 2-D POINT ELEMENT 19 NODE 55 AREA l. 485 DIAMETER 1. 375 icll STRESS *T NODE 14. 4 ALLOWABLE 27. 3 STRESS EXPANSION FOR NODE 55 143 1. 0 -12. 2 -O. 4 0. 2 O. 0 O.d t44 .~

2-D 'OINT ELEMENT 20 NODE 56 AREA l. 485 DIAMETER 1. 375 see I

STRESS AT NODE 19. 5 ALLOWABLE 27. 3

!47 STRESS EXPANSION FOR NODE 56 sc8 1. 0 -17. 3 -0. 4 0. 2 0. 0 0. 0 14S ieo. FORCE DEFINITION NODE ABSOLUTE ELEMENT 21 NODE 200 Is FX 57. 70 s FY 49. 50 s FZ 2. 20 Ic

10. 50 J MY 103. 30 > MZ 6359. 00 MAXIMUM ABSOLUTE STRESS ON ELEMENT 10 ~ 23. 2 KSI

~ e' 4

N,P

SOhM Nog4$ 4 8-/7-87 By $ 5Z pAGE 4- 93 pF /12 w~w a-Q-8V

. (RgP

/a'g. a 78gi l I 7 ~ C7 ~ S

/5 -LI55 SQA, DESI&/ hfANtfilii -/filiPP, i~ ac=.w 73 Qf)

'i&it = 7~

Y I I S

ps'< fb g II II I

II gear p~p li Qz Il iq ~ 7i~

~.A,; II II 05 II >~>>'iIC ~

II If (I I U

+oR CHIC>447/oh)& hssv>F ~LE, ZDCidh 44E DIOFKY 4vPpoRiBD, CnRMR &Crimea PRoPEaM,S Wg PS. 9-/Q'.

M4v ea IA<: A 57 H -A 36 GV~]~ = ~~ ~Si Q= 29 OQO Ks/

S V

'1 4

FORM NrRi94 WHITING REQN. 7~~~ DATE BY ~ Z PAGE + -~ QF 8 Q-Sj gvegIi UDIPJAL 5TJFI=EMERY CA'ECC TO DETERM jNE'h'8 8FPZC (IVENESS OF SACER STII=FEAIGR 6'AS @Hah/ DET8RMIhlI/YQ 7HZ'RITICAL. 5%'ES5 gF gACP PANEL.

iz Ci-~'~

6w <~

'0 WuO k~ ~RE DEPT'NDANT PQ EACh'<HER, AND Pr'8'HL(rZS %OSMOSE DETERrtINED 50 TITBIT TIIE I'OiColllIWE Iz 7ROE. (PIE, 4!3) lh'5 EFFECT( VS NESS OI= IHG STIFPEAJER lS 887PPPfMIZ'0 88 Th'8 FgC.LONIIlJ &

RATIO /5

<CII~X 7=g,3 O=7$ Wl. bN= gQ el. t* /16 IN.

= 682 b~

5050xor3/ZS ET~EcTIvE PLATE NI07xf 8= l Mooo

~ gP I<

807iOH $7IF+EN88 BXgx /PIo, A~GLE

/'i "I~g 0,

=0ISb IN 3/2Z (c x4 94 + 424)

Ay= (2<494+420)CI3I25= 44 IN

S,"g r

es lf 1

S, jI

FORM N 249m WHITING R EON. ~~ ~ OATE BY PAGE + ~ OF H J ~ 8-z5-87 O,ZZ

=

p~4 3 co~gs' Ca WS

~ o,zz=l/3 wl 3= l,78 w i. =CS8P w.

o+

Y g = r'A= 9,3'ZP>/7g=0,C2e/~

7oiAz i'd ~eCr/Gu-

/,78 (li 2 o = O,p7 jtv 9's =

4./8 A~ = 4;0+/.78=6;l8 os~

l = g ~~ 44s037~t062 w/78(/28-037) =2,73/s/

~~ =0,82 zoo~ t=ic, 4/3 ~ ~'=~~ ~c=~<7 5<5 k 0 $ 2 pea 0<3/Z5 3'/,7 io.e.z.7~ gy8 ]g 93 xQ3/ZS OlC sr//=FEAIER '

ZFFEc7i Venl85S

/3~FF Doric<

gq gq o/'+7

I W4 k

i 0AM N t494 WHITING R EON. ~~ ~o OATE BV S2 PAGE 4 96 pF /lZ

<JM 8 Q-87 C8'Al TER S7IFFEAJER ~'/ " 7/2 /3E'N T g

+ 0 3/25 = 9/S$ ov, O.t8 kii,= (Z.494+548)O3IZS=4,8 iNz O,WZS~ (Zx 494+9 <8)

N- 0,04 /AI

/2

~ssnir it lc "7/z 6 .y IN, b=a cos4K'=3i/snni Z=9lsin-'.27K

+ s.Szs'2m-vzs~

= 3,875 g> Z(2n 3, Z'I5 OiZS) ccn>-4$

/.4P ly,

'0,/8 y =/iS Z,s - >e z'(a'nI') I2y'2ab'-(a J) =I.-I2w4 A+

-- 0, Z5' 75 = /. 875 lN Toils. Fog SECFiON I II7S (i,4Zn O, iS<)

4,6 75 A,= 4.8>/Z7S =C,6'7S lN<

2 = Oof+48~O44z~ii2+ III'(IS8-O44)Z=4Sini4

FORM Nei404 6, 67S g 90+082 go~,u ~~

g gp < gg io,9~45 Cf2 93m Oi3/ZS ~ OC

~

sT<FFE4eA EFpgCP>V8hlES~

/3z~z 0 83

= = 83 lo CEQKR .

WHITING REQN. ~@ DATE Ton 5TIFFE'NER - ANGLE QAJD KAli BY. As PAGE OF 8-2$ -87

/'J~

Q'P2Z Au6LE o 0,855 +

exp~ sj,6 ANG z Pg

=3os's~t ~ ~~~ 02Z =l/Z w).

41=/78 w~

r =9583 ]N.

8/

= r,'A; 0589'i/78 =062 is~

x B/'vT Q /4 x 7//z

(//~iueaY's Goo<, 2Z/sn, / c,.~2<4)

EZur ttP AFS'Auz 875~3'.EFS>o,25 eZs pE =3.87Scos Z(2P3.AS'-02S') SOS' Qlg C

O,I8 = I VZ Int, g, ZS x7,5'= I.875IN',

= ,'7(a'+/,B) /2 y') -2a6'(a--/)

cr= 3r/siu. 4-g2gzPG 5= a 6=3~/ejA-/, y=/,50iu.

2Z

=//Z w'F NES Pz = ~ 0, 3/Z 5 = 0, /gal ]~

AtP =(2A 4 94 6 9,35) 0,3(Zs.= 6,0 I <N e ~lz~'i9.Zw

I'g FORM N 2494 WHITING REQN. 7 oATE BY GZ PAGE ~ ~~ oe 1/2 MJM 8-Q g7 78 iAL Fog, SE'cPIOIU

/78(/lg +Q,ISg)-/8g IPJPOiS'6 g Q7 ig 5',6'7 A~

= 6,0/+/,780/.88 = 8<7 jN Z = g = g gg y g,g/(O,g7)~ wg62+/78((28 O,O7) -+//2

~ i.Z7S(i,el o,ol)-' 8,/oh~<

"- QBZ pg,p~ pig. <,(3 ~ O'=II,O k~= &'

R47 g //0+ o,sz pox~ a~ 64 Jz 93 ~ 0 31ZS>

4 ilk ~

0 t

P 4

FORM NeR404 WHITING REQN. ~+~44 DATE BY AZZ. PAGE + OF

~

~a~ 8-ZS-a7 4/ze Pause Freely r rr. Caecal z

4h ~O Iv lP Cr r &o Ew Foe P~~e<(wc- 5'red Pic. Ir y 7+m Fy ~~ our+> CwrrERI5 f1 u sr Pe 2

+ +, I O~.~

Pg~ ~ec< +C 4 :P.F.

~Pcsi4 st FAc go g W E'N W- ~rr, ~

l-kiri~~~ 5r~zss = ~ >= ~

2 9 O'OO 3

O'SZ m'C2 t octo) ( rr'g) R5 60 5'sr E'ER 12(i-~ )k b cpl7lc <9c. 5Ess Ppgpk j gyp glgpgE /3~~~ /)

VS'NEST R87? 0 OF THE'ZQ gr>PFENgg 7'FFECT/

Ze 7~'E Ecas7ic. Cairrcsc. 5'repass Exc zeus T~s g l)v IPt QPl Yl 8 c. D +7 ~E55 TA'Eiv TN E C R I TIcrP c 57REss 7$ ~ Er 7 o E odw c. THE VIED.P 5T'PE>>5

' 36. 0 <SW 0).

>yJl ~ = ""'

a-, 35 =

~ 2>,8 KSK

t$ 'J.

Px '0 - i .Pl ~ AJ x SORM N Rial 7~~~ +

' WHITING REQN..

BY

~~

3Z S-Q-8~

PAGE OATE

~/o 0F D>Reer STRESS

/7. 3/lS My o/ Mg cpp Fx <y + <z z.

A g~ g /t/0 /Se 490 42 85 Fx HI a ~Z

//g /s845'0 726 BzeoleC &keSS,

/Pity ("lz) My b B /B8 49O 3//o 990 L =

5h'EAR S~ZE'S5 Fz +

Mx = F~

2>98<83/~7 gw/73/ZS x Hx g4,Z5'x0,3/ZS'z.

Hx

/8ZO 7HE ALLPgl+8L< ST/8IC/~ /47/0 /5 I ~ ~I/V~D~~ 8Y TH~

//// i'oC THe /Leo/GF//Boe sT/EBBS /3/wDEO BY Th'8 ///A//A/url YlE/.D SiMM&TR pF I~E. NZ8

/

0BE 6 66 7 Pgg~ (~

I sse RgL~ =/ = 0 909

2 I

t. l

fORM N 2404 WHITING REQN.-

pAG E + // / R/p p /IZ lrtgH g-Z4F 87 pqy. A~z s-Ie-s7 dR'/'/4~1 MkW ~o/57 ROPE. - I/g pe/, p pIjjlON IOI IC V) XIPS RrG+r REg~Lrr/~ ~y 4LL gyes goer TAJO-4 PHR7 S PSr E'S PjlN, /3884CI40 0r IMAlCr7H

. A~coa88/.r g oaE L-oat PrCLc pggp L&7. FAccrrrp fp =0~ . 08c. F/j'ci OR f~/i 5

/ttg, g/= APE PRQrS, 5$ E F/CiOrc' =/I 40, OF ROPE'VSFenS gag /40 9 x 0,4 xgxz.

~+LL 77

/48 9 ~8.4 <4"Z

/I gag g /P3 4 ggq 772, 3

. y4 Ip k

I'J

fORM N gigg WHITING R EON. ~ 'ATE gY PS Z PAGg g- //2 PF //2.

8-LC-87 DYNAM/c /x

+0/D g4c 0+ P~

QT47.(c LoJD = Pp+.P~

P~

V20LL.GY BLoC< NEi6H7 8=20~0 >as =IGi

$ 8 /S~ iC Live L,owe Pz = 50 i i /

5787(C LOAD jg =N~ P,

/Z87ED LivE LO~ P =/597

ar

.~ '

,) P ikey

Pj

I ee e, ~

.~ e 4 ~ e;, .', W .*~'. e,.'ee i,'~ ee.

FOAM NeZG9G WHITING REQN. I ~ PATE

>Z /D2 //2 BY PAGE ~

GB HJH QQ 87 F04 PRnIEc.s I ///InID g I R!HIclf IRc ABov'/= <d5 I'-IEDclP s nIEUs RRI 8 xI5

)

Ay PONGN7 I tk<EAl A3 iitE'OW 0j SPi9 7/C Able> DYAJHHIC ~ <4R PBplEI 5 3 AIJlO 4I 4h'/CH AgQ BEI OCV 7IIE nIE~irCRL, AXIS, THa My

/5 78EEN AS THE DIFFERENCE OF c/li9IIC rfAJD Dj IIIRHIC..

F6g &QDER &8IoILITY, ITHJS 588'AJ bETERMINEQ THRT 7~ ZSMthlAh/7 LohCe CDNCIIe7OM /DDDLD 88 klltff Th'E Lo/IC'N Th'E DeDII/h) Pos/era@I (rh/S PRODuCES >h'E h//IT/IIV/I Ce/ADER STRESS). THE LD/IOII/65IIIEILE TRZEM Fl20hf 74868 5 855 AND 965, IT IS FOUR)D TH/T'V< Sg3+ILlg p'4 7IO 15 MAXIM(JM FOR Th'8 7KGLLGY 47 /VID,

FORM N gi9g WHITING REQN. 79 ~ OATE BY ASZ PAGE 4 /03 OF Hf JNI 8eg 5~ay TzeLE 4-6 PANEL l PANEL Z PhhlEL 3 Ph~E<

/9 76 76 /9

/6, 38 29,5z /7 69 /6,88 3&,~/ .

9,0 -/706 -3@3/

9,50 4,63 8,23 9'4 ko 40 gg 40 g,p kz 23. 9 23. 9 23,9 23. 9 kq 8.3 Sg 5,Q 8,9 Pea~ /0 o,83 054 0,54

~DcR 96',0 /5;0 /7. 8 ZO. 5 SCR 3c. 0 36,0 36,0 360 Lca 208 ZO. 8 ZO,S Zo.8 Rye g O,S90 0 556 0,2&7 8.246 R,, O,sH 0,597 o.3/5 e,297 RSS& e,8/6 a569 e,7i2 R~Io 6 0870 0 876 0 6Z7 Q 76 f

~a~ R=0,591 < 0,6@x

~Sr R<<=0,876 ~ D,909 .. Dg

p

% 1

~ tl

SORM Noki94

~z WHITING REQN Mg~ a-z.c-87

~ ~ ~ g~ y. DATE 4- /'7 6//RDE R ~BLVD (g I, DIJON, OAl /&. <-37, sDC Y OIN A A) garo -as6 Gruff/N ~4 4 5/

gl.LP NA/3LQ S Ogg lg GYHllll g5 /+ g ~+'BLED ~O,OK~I ALL.

(zci ~s. 4-38) n1AX LDADS (.Lee DS. Al-M). OSe Fz =250 2 Lie OWER Lc'ADS, Mg 788NSIEN~Q ThOWH ZOC.PHD /"-ONAIECFIOV res sHeaz ~z 9 r- ZR>,7 QZ/xl,2C(/8.53 -06ZS')+2<0.3I25(l+.53-y 57~ 55 2)(g 6 22/SO < 0.3lzS x2 (o,Z ~si c-, 339,+ x g6g3 13,8 KSI 2Z/So ~c, R2$ xz UPPER plgL gg Pgg r ZSlD,Z

' (Dx/ZS')( 85/3-0,6' S')L Lg = px 0,3/2g>> /2.0kSI Sh'EAR 57RGSS 0/ jg7 x ZZ/50 0 3398x2/x/ 2$ (/5 53-o, ,QS) 2 A3I25 <0707~22I~O

Pt SORM NiRi04 WHITING REQN. ~ ~~ PATE BY 2 PAGE: 4-/Ow Pf i/2 8-2C-87 l GAEA? AIEc.DS gag (- 250.2 Z~ 4.7E) (4S.375-/853-/47 Sh~88 SrzeSs Z(Q25) 0,707 x 2Z/SO 10a 9 g$ /

~so 339 g gp< $ ,75 (jfg3/5'- 19,5$ -I $ 7) 2(o,zs) 0,707>> Z2(S'o

r ~

WP

'k

(

AA I

4

Q

~ QO I C' I '

0 0 ~ 5 8 C. > ) ~

r a

Q I IIA I IA I I I I I I'A I I I IA ~ I I

I I I I I IA I II I I

I I I I I I I I I ~ I I' I I I

I I I

/ ~ I I II

' I I I

~ I I Q

~ 0 0 I ~

I

~ I ~ '

C FORM N-Z4g4 WHITING,REQN., 7~to~~ DATE BY PAGE'PP psz.. 1/zclg7 ROL.L E Y V/HE'El LO+05 TH E TROLL.- y T'~eL~'

RZ m~l 0 nl

~7

'R~

>~~~V-+ 6 Sus~

~o

~+ I Z.=-g HZ F'OeC S IN res. >L~~mI CaOnOI V~7 Z Ec z~eNT' w ~a VZRiUhlan VV HeZI

(~a~~ I z.)

TH K RAx I Nl 7'x V an'EN I= R4 K Twewr 8 ~7 Fop ~HE. 08K Z T~C I-P t" 59 SsK OlnKgTL y, THE K IHIHUNI t-X'd 7+trEN I=809 5 St f oq WE'Q~ g C 40 F.oA 7 THE ROPE QoWh(

JIVExg~p T Pa+

CesEs AH E'REH 5 RoP h IS QCSE'Rx=r Z PE'H <OPrt F'~KUId H wH tee. ~w How BE. FoR Th'ESE QAg R5 THE'Ro F'0RTId NA7R ANIOUI'l7 o p col K UF'Ioc K )5 OKDIKTFO Loap S ~T Noo<5 B~t~ 3~~

LoADS +T H OOKQ

ts r

1 I

S' I,

FORM N Z494 WHITING, REQN.. ~~~~ + PATE 8" '3- >

BY PAGE ~ Io- QP A 5Z 8-ZC-g7 g <A~- PzR F ~HOidumq &Io,DER TH g MAXI MIJ +

Fg lS TAtrK'g t=R44 T~@I r, Fop TltE QQc s't rap T'yE'S ~

0 I HEQ,TLV WHE'l iNI M IJNl. FY ib THE PlE&+tlt/

Ol- TPF M~Xlm uM ~N5l OKAPIJV6-WNIF'L,ETE'F VE'CSAL Le+0 s P~RAc La L 4iRo~p TPC MAXIH U1vl L=z iS T 4 n'Z h/ FR4~

0 $7 FOR THE OQ I=

6 <~ Pal 7~E SS E QR 18 rHE HlAXlmIJQ PX (l<~C.)

TInhES THe. COE'~lC(F.hlT',=

P~IC<iOng g.7 5) ti= T'HU iS L 55 T HE Nli>I~V~ Fz l5 ma- +Z~Vry~

0 F Q l= t4AXl Mlf Q4) hl~lOFPI Pl~

Co~F L=t 8 RP/CREA L

4 14>

0 g f

4

~ y.

C P

4

FORN N 2494 WHITINg REON 79604'ATE 8-21-87 PAGE OF I

as APPENOI X A This 'appendix summarizes the amplified response spectra and the modal response of the crane. '.

Page Table Ti tl e '

e A-2 Al Response Spectrum OBE A-3 A2 Response Spectrum SSE A-4 A3 , Freq 8 MC, Mi d; 50T, UP, OBE A-5 A4 Freq 8 HC, Mi'd, 50T, UP, SSE A-6 A5 Freq &MC', Mi d', 50T, DN', OBE A-7 A6 Freq & HC, Mid, 50T, DN, SSE A-8 A7 Fr eq 8 MC, 1/4:, 50T, UP, OBE A-9 A8 Freq 8 MC, 1/4; 5'OT; UP, SSE A-10 ,A9: Freq 8 MC., 1/4, .50T, DN, OBE A-11 A10 Freq'.MC, "1./4., 50T, ON, SSE A-12 All Freq '8 MC, End; 50T, UP, OBE A-13 A12+. Freq '& HC, End; 50T, UP, .SS.E, A-14 'A-1

'Freq 8'C','nd, 50T, DN, OBE A-15 Freq HC, End, 50T, SSE 3'Al 4 & ON, A-16 A15 Freq 8 MC, Mid, No'Load, OBE A-17 'A16 Freq & HC, Mid, No 'Load, SSE A-18 A17 Freq & MC, 1/4, No Load, OBE A-19 A18 Freq 8 MC, 1/4, No Load, SSE A-20 A19 Freq 8 MC, End, No Load, OBE A-21 A20 Fr eq & HC, End, No Load, SSE A-22 A21 Summary o f Computer Runs gf MC is the Mode coe ffi.ci ent (Ref 1, p 2.12.1-2.12.4)

Mc =

8l smj ~d);

('dsi F;)z Where Sai = modal spectrum acceleration for 1th mode Fi = frequency of 1th mode (eigen'value)

= maximum modal displacement vector d)> for lth.mode PIl = normalized modal, displacement vector for ith mode (ei qen vector) participation factor for 5th mode

~

=

/if I Mg f p) where t-~j is the square matrix containing all mode shape vectors such that the jth column is the mode shape vector for the i th mode = f0)

M']' reduced mass matrix OP = unit vector describing excitation

I F

1 f'p

~P H

~tf oC<

Al

PO R M Mrl4 04 WH(T(NG REQN. OATE el PAGE + QP S'25 J'7 k ~ I at a t I

~a aa I a a

.~ .Il

~ a I II .Ili!(

~

I ~ ~

a a

'. fI }I:

CP-F,-'C't'.f, lC I 'it!  :

I El l. Kl 'I ill F Fill 4'I HCPttt~tA ii a

,"ea e a. ~ I e!J I 14' lj ii! I tl

~

I a

.T ~

I F 'I Il 4I 1'

i -I'6:4'::-p~ 'ilj e ':j-'I ~ a IFIF I'.4

! Ii Il I!ja:I ~

f~}:

! I Etl! al I

Ijli 'l14 I

',i- ll('I  !~ i!

I.:

~

I F

a

.i-'ttt I!I. 1

~

e i! j!-=.

aa P FF 4

F F

~

I

~ li..

e

'iii a

\

~

a

'.l'.

a IIF, Ef \

aa I

'F I j

!a{i e a lii It.: r'\

I':! IFI.l4 I'f

~ :I I 'Ij:

~e 'I 1 a

~ 'f It a rl O

a ~  :;

jji at ~ E 8 a I

~

a II Ilia II tp '.I! ". 1 Ij 'I! a.

~

j F

!ir, I IIl }tet

~ ~

'I'ri FG fQJf a e

, I!j I l I F

, Ij,

..f(

a 1

':,il li" IjII C

II,'II Fp }4 I I,',I' (t

}I fl lii.'f:g '!

2 I.' at:I

~ ~ ~ ~

tt 4 I

el W" e 'IF 1(

\ l}I ll'lllf ~,

1 Et ILE Pt a I l4!I!Ii

~ I:I 14! I

~ t ~

}

I ft' I ia , I'I,":,

!".: I a F ftjI ~

i'FC f~~ .U '4a I'I e ~

'i':.t ail aa F

I a h P

( I':!te'-

f,(fL lfh't

~

Ill (jiij II:I I I I ~

I

,'-,,'O't; i,,li.

I. e

)

II ia

.~ l; jj!'!4c-t  ! . l ~ .lii!j'.-',.!j I!i'l".i.A fill ':ill ill(  !!!(l.'.!

if!f i}ii !4E I I

p 5 ~C a7 ~ 8t ~

C. 3 It 5 C 7 IO g.o OO SO ~

FRKQvevCy H z.

TA@l A

(-"

06(=

I XO~ Y G's in /Scg 6's tt} /~re~ in/~~ g 4 }I} /~~

o~ .Ool ~ tf 1~ 3,$ 7 1.5 S7g.C 1,0 33C 't

+C r07 0 lg,g f2. 3.8S (,0 VS( A at,7 2.88'

.o' ~w.S

.47 I.O .(5

',7t 0 5'Pr ~ lo 2P3a 2a gg,4 lQ L't H,l7

,'fl ISI C.

.V5

.3l

<,Q 88 V ,}5 58 to (QJ 'f ee g

~ F2P3 1$ > 0 fr%Z r '3 2a I QJIC ~ g P(a l .X.z 85. 0 +8r 0 4.<7

,SO ('fgaZ 33 1%.7 5 .)7 c 5.7 tf Z,5

(.a7 10

.75 ~sf.S r50 (gal rX 50 ?-

l.a l l 8' 2.0r 2..Q x..'f" 927.'f I,C C l 8 2. 33; 8C'f .08 QJ v2.7 g (.C Cl8 ~ SOP Q(a f -,os 2D

I

't

~ ll t'i

'I tt

~'

WHITING REQN. ~~++ .--DATE

.BY. PAGE OF g'2S'S7 P ~

IIII .! I! gj]

!.I I! I! i!! I:It IJB R: :iiit

't.=.r.it! I i i i! nddgg i-I tIIE I",!

L t pp I'EI i i!:.il I 'I I I'.I nl'!!

tili!, I!

rrl'.

. ~ 'll  !

I '

L I!Ij.

-'Tll I: I lt.

~ I I V

'FP I

I'I I ljll Ii ~

~

'!:,lI, I"

I-.I;::I I

I (

I

~

Ill LLI,I.".!Itl' W ~~IO I9 r 2 CII 7 8 0 IO

-- :Tn eLE FRKQueHCy

~sE a~ X e~ Y K yg 'f Hz. ]n /SCe Grg rq /em~ G'S >n/me< G >s IFI /~<

4gOl POOI 't .Ool F07 lf 3.ST z.9 l I2 73't

/w l.9 '73f-2.

.50 ~ IJ wz.5 R,7.0 J2. 3.85 (-9 2. !3 $ 'az. 3

.G7 , l2.

9C.'t .o8 Bo.9 g,l 7 ],X, AC 3P7 .8'0 zoo. J gal, J )3 Sl. I , I' ~.o5 qoS.Z r70 2.70'5 J.O ,2.I l 't.

l3 J.'t PQ 88.9 QLOP7 .55 l Q B3'f JS 5 0 F83

.5'0 zo9.7 IBV.J ao8.7 3C los ~

J JB'}Z la 4.r7 ~

I.r 7 I,a5 vo5.7 ,70 Z70 5 ,34 laV.l L'J QX>7 So z.3 lg l o.

~

'L.O 772 .23 8't ,IS SII'4 I I3L I-3',5

)I59, lF 2.0i 7 5'8'0 2..0 w.5 873'l.

X3 R8 9 l5 3.5 llSV, AB F ~

58;6 3 33 +.5 l 73'J F Ss9 20 SOB 4

t 0

P

~

TT

'O

~AHITINQ REGN 79'C Q~ DATE ~- ~5-8>

OY HJ H pAGE A" 9 pp ZZ I 85'I )

SUMMARY

OF NATURAL FREQUENCIES AND MODE COEFFICIENTS PAOMMUO I s I HZ X Y Z 0 a

4. 13 0. 9912 + MAX .0. 5329,>> .'.::"; '.

4.3220>>

4. 16 -0.1254>> O.'3077>> '6. 1500 + MAX
9. 05 0. 0202 0. 0218 0. 0022
9. 61 0. 0235>> 0. 0004 0. 0015
13. 30 ,O. 0229 ~ 0..0069',, ' 0; ooa3
14. 91 0. 1403 +. ". 0.,0002:,,...-;;. 0.,0007 11 18. 05 0. 0034 0. 0097 0. 0015 12 23. 32 0. 0006 0. 0057 0. 0003 14 31. ZB o. oo4a O. 0002 -. 0. 0008 15 35. 25 0. OOOT O. 0002 0. 0001 17 54. 53 0. 0003 a. oooi 0. 0000 10 56. 18 0. 0003 0. 0000 0. 0001
68. 95 0. 0003 O. 0000 o; aoo4.
75. 35 0. 0001 o..oaao .
0. 0001 CC 23 85. 98 O. 0001 0000 0. 0001 24 90. 24 0. 0001 0. 0000 0. 0001 26 91. 91 0. 0000 O.,OOOO 0. 0002 27 123. 90 0. 0000 O., 0000. 0. 0000 SICN IFICANCE FACTOR 0. 50X 0. 05X 0. 05X

>> INDICATES EXPANDED MODE h

fs>>

If

~l Ih I t

WHITIi4't QN 7 I~0 t DATE ~>

av AJW pwaF. A-5'r- tS lo

~z 7<we D zr CiZ3L SUt'tt'tARY OF NATURAL FREQUENCIES AND NODE COEFFICIENTS PAONHUS HZ X Y Z

- 4.13 i. 7650>> rtAX O. 9486>> 7. 7640

4. 16 0. 2216>> O. 5438>> io.95oo>> w,x 5 .--9. 05 0. 0445>> 0. 0479 0. 0049 6 9'. 61 0. 0504>> 0. 0009 0. 0032 8 1-3; 30 0. 0450>> 0. 0135 O.

0 0007 9 14. 9'i 0. 2681 Q. 0004 O. 0014 11 -18. 05 0. 0062 O. 0176 O. 0027 12 23. 32 0. 0012 0. 0104 O. QQQ5 14 31. 28 0. 0076 0. 0003 O. 0016 15 '5. 25 0. 0013 0. 0003 0. 0003 OV~

17 -

-.-54: 53 0. 0005 0. 0003 0. 0001 18 56. 18 0. OQQ5 0. 0001 Q. 0002

~ 4L 2O . ---68; S5 O..OOO5 ,O. OQOI o. oooa

21. 75. 35 0. 0002 0. 0000 0. 0002 23 85. 98 0. 0002 0. 0001 0. 0002 24 90. 24 O. 0001 , 0. 0000 O. 0001 26 9'1. 91 0. 0000 O. OOOO o. Oooo 27 123. 90 0. 0000 0. 0000 0. 0000 SIQNIFICANCE FACTOR 0. SOS . O. 05/ 0. 05/r INDICATES EXPANDED NODE

+I \ l A

~ gt V

WHITJi~lC REGiV ~~~~~ DAI';:.

BY MJ M FAG-C ptt zZ.

8:25'P7 TtABC.

SUl'lllARY OF NATURAL " FREQUENCIES AND MODE COEFFICIEiVTS PAOMMDO MODE FREQUENCY 'i lODE COEFFICIENT FO~PEC I- IED" D'I RECTION'Z X Y Z Uc'.

93 i. 8050 + MAX 0. 0815 +

l~3700>>

43. MAX
4. 14 0. 7464 4. O. hi38 + 0. 0209
7. 99 0. 0450>> 0. 0865 0. 02b4
9. 05 0. 0201 0. 0219 0. 0024 8 1 i. 59' 0. Olho O. 0237 0. 0003
13. 31 0. 0205>> 0. 0068 0. 0012 Tp r5. 0 11 18. 04 0. 0030 0. 0097 '.

0, 0012 12 23. 32 0. 0006 0057 0. 0003 14 .31. 23 0. 0040 0. 0002 0. 0008

~6 15 17

'3.35. 24.

89

54. 52

~. 0. 0006 UU

0. 0003
0. 0002
0. 0001
0. 0001 I
0. 0000 18 56. 18 0. 0003 0. 0000 0. 0001 20 68. 89 0. 0003 O. OOOO 0. 0004 21 75. 33 0. 0001 0. 0000 0. 0001

. UUOT 23 85. 97 0. 0001 0. 0000 0. 0001 24 90. 22 0. 0001 0. 0000 0. 0001 28'~~

26 27

91. 91 123. 90 SIGNIFICANCE FACTOR 0. 50/

INDICATES EXPANDED MODE

. 0. 0000

0. 0000 ppp
0. 0000 O. OOOO
o. 05r.
0. 0002
0. 0000
0. 05/

(tpp 4

~ v ~ hf g 0

I, I~

hg I

W1 I

IIIHITIND IILGi~l T i~~+ DATE IIY Yl J & PADE A-7 al= ZZ,

~g.z5:l7 SUNNARY OF NATURAL FREQUENCIES AND NODE COEFFICIENTS PAONNDS iTODE ~iEGU i4CY'ODE COEFFTC'IEiN~R SPE HZ X Y Z

2. 93 3. 3850 + MAX 0. 1528 81. 3000 + MAX
4. 14 1. 3260 l. 0900 0. 0375 5 7. 99 0. 1034 0. 1987. 4 0. 0607
9. 05 0. 0441 0. 0480 0. 0054 1 l. 59 0. 0325 ~ 0. 0482 O. 0007
13. 31 0. 0403 O. 0135 O. 0024 li l2
18. 04
23. 32
0. 0054
0. 0012
0. 0177 0. 0020
0. 0104 0. 0006 14 31. 23 0. 0077 0. 0003 , ", 0. 0015 15 35. 24 0. 0012 0. 0003 O. 0002 C~O2 17 54. 52 0. 0005 0. 0003 0. 0001 18 56. 18 0. 0005 0. 0001 0. 000 20 h8. 89 0. 0005 O. 0001 0. 0008 21 23.

~ED 75. 33

85. 97 Z
0. 0002
0. 0002
0. 0000
0. 000l
0. 0002
0. 0002 24 90. 22 0. 0001 0. 0000 0. 0001 2b 91. 91 0. 0000 0. OOOO 0. 0003 27 123. 90 0. 0000 0. 0000 0. 0000 C, 4: EU FACTOR 0. 50%

~OUI'It'NIFICANCE

0. 05% 0. 05%

INDICATES EXPANDED NODE

I

~ A h

"r c.4

~ t N Lk l

klHI TING REGiN 7K ~ ~ OAT .

OV MJM PArE W-8 OF ~~

~

2KZ1 TAB E 7 SUNI'IARY OF NATURAL FRESUEhlCIES AND I'lODE COEFFICIENTS F*ONQUO NOD RESUENCY NODE COEFFICIEj4T FOR SFECIFICD DIRECTION HZ X Y Z ha+ A  ? . 3000 . 0?30 ~

4. 16 0. 5832 + 2. 1760 + 0. 0936
5. 17 0. 6651 ~ 0. 0141 2. 2470 k NAX O O. OA9S>> O. 2526 ~ O. 0327 5 7. 44 0. 0427>> 0. 0315 0. 0168 4 6 12. 09 0. 0184 0. 0091 0. 0013

.0 6

14. 42 0. 0446 0. 0101 0. 0038 lb. 64 0. 0376 0. 0031 0. 0056 015j

.OO c. .

11 18. 63 0. 0330 ~ 0. 0084 0. 0086 12 14 15

23. 97
26. 44
37. 79
0. 0004 Q.

0,,

0028,.-

0003

0. 0008 O.

0006 0001

'.0. 0012 Q.

0023 0001 17 45. 33 0. 0002 0. 0001 O. 0007 18 48. 91 0. 0001 0. 0001 0. Oaa?

20 '?. 4315 0. 0002 0. 0000

0. 0000

', 0; 0000

68. O. 0001 0. 0001 21 .,

23 24 26

87. 93
91. 79 ioo. 40 121. 00
0. 0000
0. 0000 O.oooo 0.0000 SICNIFICANCE FACTOR 0. 50X INDICATES EXPANDED NODE

-'='" ,.

0. 0000
0. 0000

" 0,.'ooaa

o. oooo
0. 10X
0. 0001 O. 0000
0. Oooi
0. 10/

aooo

0

~ ~l

~ i t

0 e

ly 4

kh 4%

\ '4

WHITING RCQN 7VGOH DATE 4-6-8" BY gJM PAK ~> Or'.2.

TABLE

'Z.I SUiEMARY OF NATURAL FREGUENCICS AND MOE)E COEFFICIENTS PAONQUS l'lODE FREOUEiNCY l'lODE COEFFICIENT i=OR SP -CIFIED DXRTCTIOiil HZ X Y Z

2. 64
4. 16
5. 17 3.

1 ~

4040>>

i. 0310 6240 MAX 137. 4000 4 8460 +
0. 0345 MAX 0. 1368 0.

5.

1667>>

3740>> MAX

5. 60 0. 1701 0. 6180 0. 0783>>
0. 1006>> 0393>>

5 6 12.7. 44 09 =0. 0371>>

0. 0743
0. 0183 0.
0. 0027 7 14. 04 0. 1611 O. 0076 0. 0120>>

8 14. 42 0. 0859>> O. 0194 0. 0071 9 -- lb. 64 0. 0698 0. 0058 0. 0101 10 18. 31 0. IL84>> 0. 0095 0. 0271>>

11 18. 63 0. 0594>> 0. 0152 0. 0147 12 23. 97 0. 0008 0. 0015 0. 0022 13 24. 79 0. 0025 O., 0066. 0. 0010 14 26. 44 0. 0051 O. 0011 o. ooai 15 37. 79 0. 0006 0. 0002 0. 0001 Lh 39. 04 0. 0003 0. 0001 0. 0008 17 45. 33 0. 0003 0. 0003 0. 0014 LO --- -as. 91 0. 0002 0. 0002 0. 0012 L9 53. 25 0. 0010 0. 0003 0. 0005 20 67. 15 0. 0004 0. OOOO 0. 0001 21 68. 43

  • O. OO01. O. 0000 0. 0003
85. 76 0. 0001 0. 0001 0. 0002 23 87. 93 0. 0000 O. 0000 0. 0003 24 91. 79 0. 0000" 0. 0000 0. 0001 25 91. 94 0. 0000 O. OOOO 0. 0003 26 100. 40 0. 0000 0. 0000 0. 0001 27 121. 00 '0. 0000 O. 0000 0. 0000 28 L79. 90 O. 0000 0. OOOO 0. 0000 SIQNIFICANCE FACTOR 0. 50/i 0. 10/ 0. 10/

INDICATES EXPANDED MODE

I l

4

WHIT INC REQN ~+~ + DAT-BY M K paaE +. IO ov z=

TABLE A 'f Z5'UMMARY OF NATURAL FREQUENCIES AND MODE COEFFICIENTS PAOMQDO MODE FREQUFNCY MODE COEFFICI -NT FOR SPECIFIED DIRECTION HZ X Y Z

i. 8170 73. 3000 +
2. 64
3. 14
4. 16
3. 4510 + MAX
0. 5675 +

'0. 0868 4,

2. 1760 +

MAX

> 34.0. 0943 O.

4800 0089'

+ MAX;

5. 60 0. 0488 0. 2528 0. 0248 5 7. 13 0. 3278 0. 0104 O. 4583 ~

6 7. 47 0. 0475 0. 0298 0. 1285 7 12. Li 0. 03OO + -

O. 009.1,: O. 0001 8 14. 37 0. 0108  ;, O.OLOT,. ' 0. 0004 9 lb. 62 0. 0257 ~ -

0. 0033 0. 0032 10 17. 54 O. 0968 O. 0021 0. 0221 ll 12
18. 59
23. 88
0. 0120
0. 0018 O. 0097
0. 0006 0.

0.

0034 0013 13 24. 73 0. 0022 ,"',,O. 0036 "',

0, 0006 14 26. 04 0. 0035 0.',0009  ;,.: ',0. 0020 15 37. 78 0. 0003 0.. 0001 0 0001 16 39. 03 0. 0002 0. 0000 0. 0004 17 45. 33 O. 0002 0. 0001 0. 0008

:~,

18 48. 89 0. 0001 0. 0001 0. 0007

'O..OOOL "; 0. 0003 L9 20

53. 24 bT. 15
68. 43
0. 0005 O. 0002
0. 0001

='.-,0000

';0000

~ -',-~ 0. 0000 Q. 0001 21 -

22 85. 76 O. 0000 O. 0001 O. 0001 23 87. 92 O. OOOO 0. OOOO 0. 0001 24 91. 79 O. 0000 0. 0000 O. 0000 25 91. 94 O. OOOO O. OOOO ~ O. 0002 26 100. 40 0. 0000 0. 0000 O. 0001 27 121. 00 0. OOOO 0. 0000 0. 0000 28 - 179. 90 0. Oooo O. 0000 0. 0000 SIl NIFICANCE FACTOR 0. 50K O. Lo/ O. 107.

INDICATES EXPANDED MODE

  • I tt 33t 44 I3 t I, I

I W33 I

3 tt t

NldITINQ REGN +~~J~ DAT-g r MJ ~ PAcE 4 j-r or-'z-TABLE SUhINARY OF hlATURAL FREGUEhlCIES AND NODE COEFFICIENTS PAONQDS F1ODE FREQUENCY l'IODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y Z I 2. 64 3. 4070 137. 4000>> NAX O. 1768 2 3. 14 b. 4710 ~ NAX 0. 1628 64. 6500  % NAX 3 4. 16 1. 0030 3. 8460 + 0. 0158

5. b0 0. 1195 O. b185 0. 0594 5 7. 13 0. 7857>> 0. 0249 1. 0820>>

6 '7. 47 0. 1118 0. 0703 0. 3002

12. I .0 04 O. 0183 0. 0003 8 L4. 37 0. 0209 0'. 0207 0. 0007 9 lb. 62 0. 0477 4 O. 0061 0. 005?

10 17. 54 O. 17T4 0. 0039 O. 0387 LL 18. 59 0. 0217 0. 0174 0. 0059 12 23. 88 0. 0033 0. 0010 0. 0022 I

i4,26.

15

~4. 3 04

37. 78
0. 0040
0. 0064
0. 0005 O.

065 0017

0. 0002 0.

0.

0.

0010 0035 0002 I* 39. 03 0. 0003 0. 0001 0. 0008 L7 45. 33 0. 0003 0. 0003 0. 0014 18 '8. 89 0. 0002 0. 0002 0. 0012 4 . 0010 003 0. 000 20 6T. 15 0. 0004 O. OOOO 0. 0001 21 68. 43 0. 0001 O. 0000 0. 0003 d~h 0. 0001 O. OOOL 0. 0002 S7. 92 0. 0000 0. OOOO 0. 0003

91. 79 0. 0000 O. 0000 0. 0001 4 . 000 0 0 . 0003 26 100. 40 0. 0000 0. 0000 0. 0001 27 121. 00 0. 0000 O. 0000 0. 0000 a1I' 000 O. 00 SIQNII. ICANCE FACTOR 0. SQX 0. IO/ 0. 10/

INDICATES EXPANDED NODE

'E pl'i At t

J r

PE5 KI tf

NHITriil(-"rrLGi~l 7rri>9 ph r':

BY MJ M PAG - A- ~2. 0,'. 2.7.

P2S'f7 TAaLE AII SU[II'IAf(Y OF NATLJRAL !=HEQUENC I ES AND MODE COEFF I C I ENTS P AOI'IEUO I'IGOE FREGUEIICY I'IODE CO. FFICIENT FOR SPECIFIED DIRECTION HZ X Y Z

3. 49 1. 7270>> MAX 22. 4000>> MAX 0. 2134
4. 01 0. 1411 +
5. 5910 0. 0283 3 4. 75 0. 1598 O. 6807 0. 0130>>
6. 59 0. 4757 0. 0219 0. 8717>> NIAX ~

5 8. 67 0. 0222 0. 2553>> 0. Oi76 6 11. 56 0.'171 0. 0277 0. 0013 7 12. 94 O. 0715>> "

- 0. 0024 0. 0310 8 13. 40 0; 0358 0. 0200 0. 0084 lb. 42 0. 0265>> 0. 0144 0. 0051 10 18. 18 0. 0532>> 0. 0048 0. 0116 11 19. 63 0. 0502>> 0. 0008 0. 0133>>

23, 63

25. 14
0. 0031
0. 0010 "0 0005 O.QO24

' 0. 0018>>

0. 0005
31. 32 0. 0054 O. 0000 0. 0058 15 36. 92 0. 0003 0. 0002 0. 0016 ih 42. 67 0. 0001 0. 0001 0. 0017 17 44. 51 0. 0001 0. 0001 0. 0026

~ 18 49. 81 0. OOOO .

O. 0000 ':, " - 0. 0002 19'0 55. 56 0. 0004 O. 0002:. ". '"';"" "

O. 0004 bb. 86 6 . 1

0. 0000 0. 0001 0005 O.OQ01 0. 0000 0. 0000 22 78. 16 0. 0000 0. 0000 0. 0003 23 90. 05 0. 0000 0. 0000 0. 0000
91. 70 0. 0000 0. OOOO 0. 0000
91. 80 0. 0000 O. 0000 0. 0002
92. 80 0. 0000 0. OOOO 0. 0000 27 120. 30 0. 0000 0. 0000 0. 0000 28 128. 20 0. 0000 0. 0000 0. 0000 SIGNIFICANCE FACTOR O. 50/ 0. 20/ O. 20/

INDICATES EXPANDED MODF,

~ J I

~ '

I P %F

<lllI EEEEV n.'GN 7TGOM DATC 4'-EG EE7 EEY MIM PAGE A-G ~D,- 2 gEZS I7 TAOLE A i 2.

Sl'NNAl?Y OF ilAT',;k(AL Fl?EQUEi>lafE Ai<ll) HODL CO F-ICIENTS - PA(3~lEUS NODE .i? GUENCY l'lODE CO F . ICIENT f=Of? SP -.CIFIED DIRECTION MZ X Y Z 1 3. 49 3. 3090>> l'lAX 42. 9300' NAX 0. 403S 2 4. 01 0. 2580>> 10. 2300 0. 0524

4. 75 O. 3754>> l. 5990 0. 0303
b. 59 1. 1680 0. 0538 2. 0900 0 l'lAX S. 67 0. 0496>> 0. 5695 0. 0396>>

6 11. 56 0. 0348>> 0. 0565 0. 0026 7 12. 94 0. 1417 + 0. 0048 0. 0612 8 13. 40 0. 0704 0. 0392 0. 0164 lb. 42 0. 0494>> 0. 0268 0. 0092 la 18. 18 0. 0965' 0. 0087 0. 0201>>

li 19. 63 O. 0893>> 0. 0014 0. 0223>>

12 "23. 63 0; 0056': '.

0..0010 , 0.,0031 13 25. 14 Oaia."'.

0. 0045 "
0. 0008 14 31. 32 0103'"'.

0 0001 0.0108>>

15 36. 92 0006 0. 0003 0. 0029 lh 42. 67 0. 0002 0. 0002 0. 0032 17 44. 51 0. 0002 0. 0002 0. oa49>>

18 49. 81 55'. 56 O. OOOO',";,, '"0. 0001...;,

,. .'. ',0; '. 0004 19 O. 0009'.

0004 ~"",,", 'A' I 0008 20 66. 86 Oaa i. .o. 0001 0 0010 r.l 69. 51 0. 0002 0. aaoa 0. 0001 2r~ 78. 16 a. oooo 0. 0001 0. 0006 l3 90. 05 0. 0000 0. 0000 0. 0001 24 91. 70 0. 0000 *O. 0000 0. 0000 25 91. 80 o. Ooaa 0. Oaaa 0. 0004 26 92. Sa 0. 0001 0. 0000 0. 0001 27 120. 30 0. 0000 0. 0000 0. 0001 28 128. 20 0. 0001 0. OOOO 0. 0001 SICNIFXCANCE FACTOR 0. 50@ 0. 20X 0. 20X INDICATES EXPANDED NODE

Hf~

rv t&

l Ty

(~

.aP ffHtl" ~

L!l IITII~!(-'EIN 79'9'ATE ~~ lg g7 BY M~K PAGE A- I OF Zi fc'S dg TABLE AI3

.)UI'lf!ARY OF I~IATUBAL FPEQ! >ENC I ES AND I IODF COEFFICIENTS P AOI IFDO NODE FI? EOUEIiICY I'IOIIE COFFF I C IEPIT FOI? SPEC IF IED DIRECTION Ii'.

HZ X Y Z

3. 3} 2. 5940 + MAX 0. 2644 + '
28. 0500 + HAX
3. 49 1. 7060 22. 4000 + MAX:, 0. 0088 3 4. Ol 0. 1397 5. 5910 0183 4 4. 75 0. 1593 0. 6806 0. 0155 5

7 8

1

7. 82 I. 56
13. 38
0. 3775

. 0}OO

0. 0250. +
0. 0204 +

'. 0. 0425

0. 2526 +

0.

0274 0199

=,O. 0332

0. 3388
0. 0006 O. 00}1 lb. 33 0. 0218 0. 0}46 O. 0025

}0 18. 18 0. 0539 0. 0048 ll 19. 54 0. 0531 +

.- 0. 0009

0. 0120
0. 0155 033 ~,: 0006 0012 ":

.'"~ -;,, O. -:.";0 0022

',:,O. 0024:

=

13 25. 14 O. - - ~ O. ',"... Q. 0008 14 30. 09 0063

0. =

0001 O. 0074

}5 36. 88 0. 0002 0. 0002 0. 0015

}6 42. 66 0. 0001 0. 000}

}7 44. 44 0. 0001 0005',, 'O. 0002, 0. 000}

0. 0017
0. 0026
49. 80 0. OQO, ~

OOOO . ',.". O. 0002

}9 55. 56. 0 'O. -

"'0. 0004 2O 66. 83 O. OOOO OOO1 0 0005 bl

69. 0. 0001 0. OOOO 0. 0000
73. }4 0. 0000 O. OOOO 0. 0003 I 25 0 0 9}. 80 o
0. 0000
o. oo
0. OOOO';-

=, o.

0.

oooo,

0. 0000 OOOO
0. 0000
o. Oooo
0. 0002 26 92. 80 0. 0000 ' '

'0. 0000 0000 C J~D. 30 0. 0000 O. OOOO O. 0000 28 123. 20 0. 0000 0. 0000 O. 0000 SIGNIFICANCE FACTOR 0. 50/i 0. 20X 0. 20X

p I

~ t I I

0 Oi 0

PJHI T I NG ffC;ON ~V<< + . DAT.

UY MJ M PACE A~/ QF 22.

~ c'5 TABLE A SUNDRY OF NATURAL FREQUENCIES AND NODE COEFFICIENTS PAQHEDS NODE FREQUENCY NODE COEFFICIENT FQR SPECIFIED DIREC'I ION HZ X Y I Z I 4. 8640 + l'fAX 4958',","'--,, 52. 6000 ~ MAX 2

3. 31.

3.'9 ~,3. 2680 e -,.'", ,,"O.

42".,9200; + MAX,',.-".". ":,0. 0166 '- ".

"'" 0. 0340 '~'"

2555 4 .:-IO'..2300-4="-:- .'"'"

E

4. 01 -
4. 75 0. 3741 4 l. 5990 0. 0361 7'

7.

8.

11.

".13.

82 69 56 '.',0.

38;",'"0:.0400

0. 8746 4 O. 0222 0.0984 ~
0. 5631 0510.+- ". ..;,.,O.;.0558';-",',";;:.

.4 ",".;.;-;

".-."'"~~0. 0391",,.;.", =:,,:;;", -.. O. 0022

'. 0. 7828 4

0. 0749 0012 '",

9 16. 38 ':-'.: 0..040T" + .:. - '.-"."";:,',0 '.0272",'" ..'.: '-=. 0044 10 18. 18 0. 0. 0086 0. 0207 ll 12

19. 54
23. 62 O.

0979'.

0946 0060

0. 0017
0. 00!0
0. 0260
0. 0038

,I3 15 16 17

'6.

25. 14 88
42. 66
44. 44

-'-,. O. 0021,'",

'O. 0005;,.'- '.

0. 0001
0. 0001

-,=,,':."j~;: q."'O.'.0045'.;";";j;;, ".;"":;',g...",,O. OOI4~;," ";",i

'-:.."".lO 000$ +~'l";;,"."-""'." '..

0. 0002
0. 0002
0. 0028:"~i ',
0. 0033
0. 0049
49. 80 0. 0000 .0. 0001 0. 0004 0009 ',;

18 56,'0.O..OOOI,'.; i;..0

55. 0004':,.;~~c,;,';u,.," ~,j':;-0..0008 19'0 g,o'OOI""-"," "0 0010 """.',

'.:;,'6.

83 '" = <" 'c"r'"'. '.,'",'", ",'-

21 9. 1 0 2" '* ""'"O'".,0000'- """"':~"":"<'".,'"'-" 0001 7.

22 78. 14 0. 0000 0. 0001 0. 0006 23 90. 05 0. 0000 0. 0000 0. 0001 24 25

91. 70 VI. 80
0. 0000

'0..0000 "

0. OOOO

.,--'O. 0000 ... 0. 0000

0. 0004 ~-,

OOOI,,=:-',"O..OOOO...

=

26 92. 80 27 120. 30 O.

"- ~ -'. OOOO

.O.

0. 0001;,'"""

OOOI,-'.'0000 20 128. 20 0. 0001 O. 0000 O. 0001 SIGNIFICANCE FACTOR 0. 50/ 0. 20K 0. 20X INDICATES EXPANDED NODE C

Vga 4

WHITING REQN 7~<+ ~ D*TE TABLE A I5

SUMMARY

OF NATURAL FREQUENCIES AND MODE COEFFICIENTS PAOMMNO MODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y z 1 2. 02 0. 0515 + 128. 5000 + MAX - 0. 0772 2 4. 14 0. 7560 4 MAX 0.6143 ~ 0. 1332 +

3 4 -- 5. 19

7. 98 Q.

O.

2460 0403 O.

0.

0105 0870

1. 9000 +
0. 0135 MAX 5 9. 05 0.0201 ~ 0. 0219 0. 0023 6

7 8

-- ii. 9. 63 59

13. 31
0. 0197
0. 0155
0. 0208 0.

0.

0004 0237 O. 0068

0. 0072
0. 0001
0. 0011 9 15. 09 0. 1499 + 0. 0006 0. 0067 10 18. 04 0. 0029 0. 0098 0. 0011 11 23. 32 0. 0006 0. 0057 0. 0003 12 28. 66 0. 0005 0. 0006 0. 0001 13 29. 99 0. 0023 0. 0002 0. 0000 14 31. 77 0. 0033 0. 0001 0. 0009 15 35. 30 0. 0007 0. 0001 0. 0002 ib . --43. 69 0. 0001 0. OOOO 0. 0001 17 54. 53 0. 0003 0. 0001 0. 0000 18 56. 18 0. 0003 0. 0000 O. 0001 19 *

.---.61. 02 0. 0003 0. OOOO O. 0002 20 68. 96 0. 0003 O. 0000 0. 0004 21 75. 35 0. 0001 0. 0000 0. 0001 22 83. 28 0. 0001 O. 0001 0. 0001 23 85. 99 0. 0001 0. 0000 0, 0001 24 90. 24 0. 0001 0. 0000 0. 0001 ooo 0. 0000 0. 0001 26 91. 91 0. 0000 0. 0000 0. 0002 27

~T4. 123. 90 80

0. 0000
0. OOOO SIQNIFICANCE FACTOR 0. 50X
0. 0000
o. Oooo
0. O5X
0. 0000
0. 0000
0. 20/

+ INDICATES EXPANDED MODE

< Olt

~ IC ('

\

S~

% t~[

I

,n eeaat

WHITING REQN 740~ DATE BY MJ M pAgE A-l7 Dp 2 z.

TABLE A IQ

~

l .J

SUMMARY

OF NATURAL FREQUENCIES AND MODE COEFFICIENTS PAOMMNS MODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y Z

2. 02 0. 0966 241. 0000 + MAX 1447 2 4. 14 1. 3430 + MAX i. 0910 0. 2387  %

3 5. 19 0. 6009 0. 0256 4. 5430 + MAX 4 7. 98 0.0926 ~ 0. 2001 0. 0311 +

5 9. 05 0.0442 ~ 0. 0480 0. 0052 +

6 9. 63 0;0422 ~ 0. 0008 0. 0159 ~

1 i. 59 0. 0316 0. 0483 0. 0002

13. 31 0. 0409' 0. 0135 0. 0022
15. 09 0. 2855 O. 0011 0. 0125 +

10 18. 04 0. 0052 O. Ol'77 0. 0019 11 23. 32 0. 0012 0. 0104 0. 0006 12 28. hh 0. 0010 0. 0011 0. 0002 13 29'. 99 0. 0044 0. 0003 0. 0001 14 31. 77 0. 0062 0. 0002 0. 0017 15 35. 30 0. 0014 0. 0003 0. 0003 16 17

't~C1 18 20 21

43. 69
54. 53

-.56. 18

68. 96
75. 35

"~0.

0.

0.

0.

0.

0002 0005 0005 0005 0002

0. 0001
0. 0003
0. 0001 0
0. 0001.
0. 0000 0.

0.

0.

0.

0.

0003 0001 0002 04 0008 0002 22 83. 28 0. 0002 O. 0001 0. 0001 23 85. 99'4

0. 0002 0. 0001 0. 0002
90. 24 0. 0001 0. 0000 0. 0001 25 9'1. 85 0. 0000 O. 0000 0. 0001 26 91. 9'1 0. 0000 O. 0000 0. 0003 27 123. 90 0. 0000 O. OOOO 0. 0000 28 j74. 80 0. 0000 0. OOOO 0. 0000 SIGN IFICANCE FACTOR 0. 0. 05X 0. 10m

+ INDICATES EXPANDED 507.'ODE

0 Jm 4

4 lf Ih 1 J

A3

WHITING REQN 77609 DATE C 7 8 uV TABLE A /7

SUMMARY

QF NATURAL FREQUENCIES AND NODE CQEFFICIENTS PAQMGNQ MODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y z 1 2. 64 1.8150 + MAX 73. 3000 4 MAX 0. 0630 2 4. 16 0. 5746 ~ 2. 1760 + 0. 0471 +

3 5. 60 0. 0414 0. 2528 + 0. 0453 4 6. 33 0. 4446 ~ 0. 0052 0. 9009 + MAX 5 7. 44 0. 0220 ~ 0. 0314 0. 0432 +

6 . 12.11 0.0284 + 0. 0091 0. 0003 7 14. 36 0. 0098 0. 0107 0. 0003 8 16. 61 0. 0206 4 O. 0034 0. 0022 +

9 17. 34 0. 1015 ~ 0. 0018 0. 0226 +

}0 18. 58 0. 0}00 0. 0097 0. 0030 23. 73 0. 0040 0. 0002 0. 00}1

    }2       24. 60     0. 0035              0. 0033            0. 0004
    }3       25 53      0. 0038              0. 0017            0. 0011
    }4       31.        0. 0002              0. OOOO            0. 0011
    }5           79 39'7.
0. 0003 0. 0001 0. 0001 16 39. 05 0. 0001 0. 0000 0. 0004
    }7       45. 34     0. 0002              0. 000}            0. 0007 18       48. 92     0. 0001              0. 0001            0. 0006 19       53. 26     0. 0005              0. 000}            0. 0003 20       67. 15. 0. 0002              0. 0000            0. 0000 21       68. 43     0. 0001              0. 0000            0. 0001 22       85. 76     0. 0000              0. 0001            0. 0001 23       87. 93     0. 0000              0. 0000            0. 0001 24       91. 79     0. 0000              0. 0000            0. 0000 25       9}. 94     0. 0000              0. OOOO            0. 0002 26      100. 40     0. 0000              0. OOOO            0. 000}

27 121. 00 0. 0000 0. 0000 0. 0000 28 179. 90 0. 0000 , 0. 0000 0. 0000 SIGNIFICANCE FACTQR 0. 50K '0. }Ox 0. 20% INDICATES EXPANDED MODE

t1 I f 'L a,

VHITINC REQN 7~<o~ DATE BY N JM PAGE A IV GP 2.2 g) TABLE

SUMMARY

OF NATURAL FREQUENCIES AND MODE COEFFICIENTS PAOMQNS MODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y Z 1 2. 64 3. 4030>> MAX 137. 4000>> MAX 0. 1181 2 4. 16 1. 0160 3. 8460>> 0. 0839>> 3 5. 60 0. 1014>> O. 6185>> 0. 1085>> 4 6. 33 1. 0910>> 0. 0127 2. 1590 >> MAX 5 7. 44 0. 0520>> 0. 0740 0. 1010 6 12. 11 0..0572>> 0. 0183 0. 0006 7 14. 36 0. 0189>> 0. 0207 O. 0005 8 16. 61 D. 0382>> 0. 0063 0. 0039 9 17. 34 0. 1864 0. 0033 0. 0398>> 10 18. 58 0. 0181 0. 0175 0. 0051 11 23. 73 0. 0072 0. 0003 D. 0020 12 24. 60 0. 0063 0. 0061 0. 0007 13 25. 53 0. 0070 0. 0031 0. 0020 14 3!. 39 0. 0004 0. OOOO 0. 0021 15 37. 79 0. 0006 D. 0002 D. 0001 16 39. 05 0. DOD3 0. 0001 o. oooa 17 45. 34 0. 0003 0. 0003 0. 0014 18 G 48. 92 0. 0002 O. 0002 D. 0012

    '19        53. 26   0. 0010             O. 0003               0. 0005 20        67. 15   0. 0004             0. 0000                0. 0001 21        68. 43   0. 0001             O. 0000                0. 0003 22        85. 76   0. 0001             O. D001               O. 0002 23        87. 93   0. 0000             0. 0000                0. 0003 24        91. 79   0. 0000             0. 0000                0. 0001 2>        91. 94   0. 0000             O. OOOO                O. 0003
              !00. 40   0. 0000             O. OOOO                o. oaoi 27       121. 00   0. 0000             O. OOOO                0. 0000 28       179. '90  0. 0000             O. 0000                O. 0000 SIGN IF ICANCE FACTOR   0. 50r              o.  !or.              o. 2or INDICATES EXPANDED MODE

JVE

   ~J f<<   ~   ~
                 ~

eJ J

 ~ 'N         ~1 V

QVl Y-vVV V>>

~H   11

WHITING REGN ~ ~ ~ DATE EY Motel PACE A-20 CP 22 TABLE

SUMMARY

OF NATURAL FREQUENCIES AND MODE COEFFICIENTS - PAOMRNO NODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y Z 1 3. 61 1- 2600 + MAX 9. 8790 + MAX 0.1846 ~ 2 4. 06 O. 2330 + 6. 7300 % 0. 0235 ~ 3 4. 65 0. 2234 + 0. 5985 ~ 0. 0079 ~

7. 74 O. 4103 I 0. 0177 0. 3795 ~ MAX 5 io. 73 0. 0098 4 0. 1372 + 0. 0049 6 11. 45 0. 0223 + 0. 1251 ~ 0. 0035 +

7 13. 20 0. 0208 0. 0255 + 0. 0015 8 15. 91 0. 0269 ~ 0. 0182 0. 0026 + 9 17. 76 0. 0426 + 0. 0072 O. 0089 4 10 19. 31 0. 0602 ~ 0. 0003 0. 0171 11 22. 81 0. 0040 0. 0003 0. 0025 + 12 24. 67 0. 0012 0. 0020 0. 0008 13 27. 08 O. 0062 0.. OOOO O. 0088 14 34. 26 Q. 0029 0. 0002 Q. 0008 15 36. 49 O. 0022 0. 0003 0.0015 + 16 42. 78 0. 0005 0. 0001 0. 0014 17 18 19 20 21

47. 13
52. 26
54. 74
63. 78
69. ZS
0. 0008
0. OOOZ O. 0002
0. 0002
0. 0001
                                      .. 0.

0. 0001 0001 O. 0002

                                         *0; 0001 OOOO
0. 0036
0. 0005 O. 001:1:
                                                              "0; 0008
0. 0004 22 73. 82 0. 0000 0. 0000 0. 0004 23 86. 27 0. 0000 0. 0000 0. 0001 24 91. 78 0. 0000 0. 0000 0. 0001 25 92. 03 0. 0000 0. OOOO 0. 0001 26 96. 97 0. 0000 0. 0000 0. 0001 27 116. 40 0. 0000 0. 0000 0. 0001 28 124. 10 0. 0000 0. OOOO 0. 0000 SICNIFICANCE FACTOR 0. 50K O. ZOX o. 40@

INDICATES EXPANDED MODE

a 0

 ~   ~

4 l Tfk

        > ll
     'P
 ~ t
   %  ~

ta g A me

WHITINQ REQN ~ ~ DATE BY M>M PABE + 2I OF 22. 3 gv" TABLE A ~0

SUMMARY

OF NATURAL FREQUENCIES AND NODE COEFFICIENTS - PAOMRNS MODE FREQUENCY MODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y Z

3. 61 2. 4290 + MAX 19. 0500 + MAX 0. 3518
4. 06 0. 4212 4 12. 1600 O. 0429 +

6: 6'5 b. Z161 1. 3830 0. 0183 ~

7. 74 0. 9540 0. 0411 0. 8788 4 MAX
10. 73 0. 0203 a. 2852 0. 0104 4 558 N3 ~

7 13. 20 0. 0410 4 0. 0503 0. 0029 8 10

15. 91 IV. /6
19. 31 0.

0. 0. 0506 + 0775 ~ 1076

                                       ~. 0.

o. 0341 0132 oao5 0. 0. 0. 0048 + OT56 + 0290 ~ 11 22. 81 0. 0073 0. 0005 O. OO42 +

                                            . UM 13       27. d8     0. 0115            0. 0001                     0 0157 14       34. 26     0. 0057            0. 0004                     0. 0014 4                  (Rf6                   . 0029 ih       42. 78     0. 0010            0. 0003                     0. 0027 17 19
47. 13
54. 74 6~00 0. 0015 0004
0. 0002 0'.

0004

0. 0067 0
                                                            ..."i9g<" 0.

O.

                                                                 ~'. 0021
       ~

20 63. 78 0. 0003 o. aooi ooih

60. 25 . 0. 000 . 0008 22 73. 82 0. 0001 0. OOOO 0. 0008 23 86. 27 0. 0001 o. aaoi 0. 0002
                                                                        . O03 25       92. 03     0. OOOO            0. OOOO                     O. 0002 26 28
96. 97 124. 10 0~0010. 0001
0. 0000
0. 0000
o. aooo 0
0. 0002 002
0. 0001 SIGNIFICANCE FACTOR 0. 507 0. 20K 0. 40X ND I@ATE~A ANDED

F4 'g gg

SQRM NoR404 C-l7 - 8'7 WH1TlNG REQN. 7 ~ too+ DATE BY MJ ~ pAGE OF 7

                    ~ABLE         A, Z.l Sumawpy                 ~BCMF'UTE 8          Ruhr/

I Rou.ay ST+rig. GYRAL 1C. PmraReg Yl 1O So T'P AOMMU Aa MN1UA P>~H1YlUO PFAOIBlNUO SOT 00 AoMQU AOrnNOO PSAoMM DO PFA0MNtoo No~ AOW Aa Nlrb@ blO PSWWANO ppAoMHt6 JEST QOT Op AOMQU Ao~U 0 pswoNlqOO PFADNlquO SoT QH Adhhg g AOMOO F5ho~DQ pc%)t%00 ko~O +oeq ~ AQNQHO KWAQMG f'Qorl@NO ENO QOT UP poMEU eo~E.UO psAoxEvo PFAO~F-uo ON ROMEO AONlFOO PShoMEDO PFAolheD Ho Lee QOg QN +0HLAH0 F5AORRNO PFpet+H5 SSE LoAQ STATlC OyHANtt'ON1 STRAiGe f' ~g Bio SOT O~ jEONlN Ug FSA0%elgf FFROMHu5 QO T Qt4 AOMMU AOVM D5 ~~wROS PpM>MDS Ho L~ p ozHMS- PDAO~QQS Pt=AO~H HS Aohlg US PS',meuS PPaoNleu5 gO T lJP AORS U QOT GH AOgqg Aod@D5 psAoHQD5 PPM~Q05 Lwo Ao KQ oJ AORS~ 5 t gAoegk5 PF4oWK5 Ho 5QT UP A~KU AOKEUS PgAOME'U5 PFA6ME05

           ~pT 08      Aors F-0     AOMEDD eAo~~OS PPerKDS Ho  Lo~   AQN8H       AOMR N5 PshdM Phd PF~Rg5

/ FORM N 2404 79604 DATE 8-21-87 BY N~ R+ Z7 pAGE ~QF APPENDI X 8 Thi s appendi x summari zes the maximum stresses and.maximum loadings from the computer output. All values are after application of scale factor for slip as explained in section 4 except for tables 819 to 854 which show factored and unfactored reactions. PAGE TABLE TITLE 8-3 81 Max Stresses, Mid, 50T UP, OBE 82 Max Stresses, Mid, 50T DN, OBE 83 Max Stresses, Mid, No LD, OBE 8-4 84 Hax Stresses, Hid, 50T UP, SSf 85 Max Stresses, Mid, 50T DN, SSE 86 Max Stresses, Mid, NO LD, SSE 8-5 87 Max Stresses, 1/4, 50T UP, OBE 88 Max Stresses, 1/4, 5QT DN, OBE 89 Hax Stresses, 1/4, NO LD, OBE 8-6 810 Hax Stresses, 1/4, 50T UP, SSE Bl1 Max Stresses, 1/4, 50T DN, SSE 812 Max Stresses, 1/4, NO LD, SSE 8-7 813 Max Stresses, END, 50T UP, OBE 814 Max Stresses, END, 50T DN, OBE 815 Max Stresses, RHE, NO LOAD, OBf 8-8 816 Max Stresses, END, 50T UP, SSE 817 Max Stresses, END, 50T DN, SSE 818 Max Stresses, RHE, NO LD, SSE 8-9 819 Reactions, Hid, .50T UP, OBE 8-10 820 Reactions, Hid, 50T UP, OBE, SCALED 8-11 821 Reactions, Mid, 50T UP, SSE 8-12 822 Reactions, Mid, 50T UP,, SSE, SCALED 8-13 823 Reactions, Mid, 50T DN, OBE 8-14 824 Reactions, Mid, 50T DN, OBE, SCALED 8-15 825 Reactions, Hid, 50T ON, SSE 8-16 826 Reactions, Mid, 50T ON, SSE, SCALED 8-17 827 Reactions, 1/4, 50T UP, OBE 8-18 828 Reactions, 1/4, 50T UP, OBE, SCALED 8-19 82,9 Reactions, 1/4, 50T UP, SSE 8-20 830 Reactions, 1/4, 50T UP, SSf, SCALED 8-21 831 Reactions, 1/4, 50T DN, OBE 8-22 832 Reactions, 1/4, 50T ON, OBE, SCALED 8-23 833 Reactions, 1/4, 50T DN, SSE. 8-24 834 Reactions, 1/4, 50T ON, SSE, SCALED 8-25 835 Reactions, END, 50T UP, OBE 8-26 836 Reactions, END, 50T UP, OBE, SCALfD 8-27 837 Reactions, END, 50T UP, SSE 8-28 838 Reactions, ENO, 50T UP, SSE, SCALED 8-29 839 Reactions, END, 50T DN, OBE 8- 30 840 Reactions, END, 50T DN, OBE, SCALED

l 1

FORM Hagio WHITING REQN DATE BY

                             ~fF29    17 PAGE       OF 8-31   841     Reactions, END, 50T DN, SSE 8-32           Reactions, END, 50T DN, SSE, SCALED Reactions, MID, No Load, OBE 842'-33 843 8-34   844     Reactions, MID, No Load, OBE, SCALED 8-35   845     Reactions, MID, No Load, SSE 8-36   846     Reactions, MID, No Load, SSE, SCALED 8-37   847     Reactions, 1/4, No Load, OBE 8-38   848     Reactions, 1/4, No Load, OBE, SCALED 8-39   849     Reactions, 1/4, No Load, SSE 8-40   850     Reactions, 1/4, No Load, SSE, SCALED 8-41   851     Reacti ons, END, No Load, OBE 8-42   852     Reactions, END, No Load, OBE, SCALED 8-43   853     Reacti ons, END, No Load, SSE 8-44   854     Reacti ons, END, No Load, SSE, SCALED 8-45   855     Girder to End Tie Connection, OBE 8-46   856     Girder to End Tie Connection, SSE 8-47   857     Trolley Reactions, OBE, Sum 8-48   858     Trolley Reactions, OBE, Diff 8-49   859     Trolley Reactions, SSE, Sum 8-50 . 860     Trolley Reactions, SSE, Di ff 8-51   861     Rope  Loads, OBE, Sum 8-52 8-53 862 863 Rope Rope Loads, OBE, Di Loads, SSE, Sum ff 8-54   864     Rope  Loads, SSE, Diff 8-55   865     Element Load, Girder A at   MAX STRESS 8-56   866     Element Load, Girder 8 at   MAX STRESS 8-57   867     El ement Load, Gi rder End, OBE 8-58   868     Element Load, Gi rder End,  SSE

F t l~ Jt

ESS-1. 2 FOR SRSS-4. 3 WHiTTNQ REGN TACO't DATE 6-l8-87

                                                                  ~ '

TABLE 8I 5AX IMUN..STRESSES. FRQM~Al2'15U OBE MID 50 U C.OMPONE . DK X GIRDER A 2S 311 793. 3120. 7080. 7778. 9977. 1?755. GIRDER 8 52 361 463. 4813. 4471. 6586. 9304. 15890. 5Q CONJS~~ END CONNECT-LHE 74 252 1282. 8105. 9979. 12920. 306. 13225.

                                      ~BE OBE     MID    50  D GIRDER A              28: '12         567.      5190. 108Zb. ". 12019. 9827. 21846    i GIRDER B              52    361       530.      6222. 10468. -'     2189. 9304. 21493.

JJ9 ~05 '6 END CONNECT-LHE 74 252 10?0. 10476. 269. 1 0534. 306. 10840. TABLE I63 6XXJ1MM 979KSREBMBDKJ~d3MS OBE MID NL COMPONEN ELEM ODE GIRDER A 30 313 249. 3325. 1442. 3633. 64S3. 10i 1 b. GIRDER B 52 361 336. 3510. 1351. 3776. 6248. 10025. END CONNECT-RHE SR. END CONNECT-LHE 74 25Z i084. 5953. . 208. 31 5. 6370. S TR cd IH PS I

v rp C V Qi4 t

'I kt"
       ~,) 4ka

ESS-1. 2 FOR SASS-4. 3 WHITING REGN 7~~~~ DATE r t8 BY HJ h pAQE ~B- Ot" $8 E7 XL505 ST3KGSKS~GRLP~QH5 SSE MXD 50 U RQt235 QXRDER A 28 311 1425. 4036. , 12653. 13357. 9977. 23335-QIRDER B C 54 363 1049. 4178. 10421. 1 1276., I 8853. ',. '20129. END CONNECT-LHE'4 252 2285. 10374. 17850. 20771. 306. 21077. TABLE 8 8 SHE MXD 50 D COMPONENT EL D QIRDER A 2812 1074. 7391.. '-20314. 21643.'9827. ,'1470. QIRDER B 52 361 1009. 8858...., f9636. 21565.. :9304. 30869. ~Q CO$ 9EQX=B END CONNECT-LHE 74 252 1904. 14942.. 506. 1 5071. 306. 15377. TABLE eC XQNH. Sj:ERSF-SSE MID NL COMPONENT ELEM DE QIRDER A 28 312 781. 381 1. 3625. 5318. 6769. 12087.. Q IRDER B 52 361 695. 4555. 3230. 5627. 6248. 1 1876.",. D CONNECT-RHE 17 54 1 9 9 END CONNECT-LHE 74 252 1929. 7794. 8039. 31 5. 83.54. S~E55 IH PS I

7. l% W

ESS-l. 2 FOR SRSS-4. 3 WHITING NEGN ~1940 DATE G-/8 E. EV WI~W PAGE 8-5 OF SZ A TABLE 8'7

                                     . UN~ESSESW~~

OBE 1/4 50 U CON l'l QIRDER A 27 310 901. 2878. .1665. 3445. 7184. 10630. I QIRDER B 51 360 806. 2481. , 1633. 3078. 7267. 10344. j CONN C -R 5 END CONNECT-LHE 74 252 1769. 7128. 184. 7347. 351. 7698.

                  'l TABLE OBE    1/4     50 D QIRDER A                 27"     310    1053. 4014.:.'-+~'7040.        8172.'--.-'""';;7184.,':', 15356.>>

QIRDER B 360 989. 3478. '7073. 7943.';~'267..-",w- 15210.' END CONNECT-LHE 74 252 1760. 9800. 525. 9971. 351. 10322. TABLE O'V ODE 1/4 NL Q IRDER A 26 310 848. 2199. 778. 2482. 4778. 7260. QIRDER B 51 360 734. 1878. 818. 2176. 4860. 7036. 055 Z7 R8 END CONNECT-LHE 74 252 1739. 5552. 144. '820. 357. 6176. 0 TREES IN 'PS I

V I l,

ESS-1. 2 FOR SRSS-4. 3 IIHITING REGN 7~~~'I D*p 4 -l8-3" TABLE 8<O AXLKJ~TBESBF~HM EBhM SSE 1/4 50 U GIRDER A 27 310 1895. 3678. 3982. 5742. 7184. 12927 GIRDER B 51 360 1695. 3120. 3905. 5278. '267. 12544 Q END CONNECT-LHE 74 252 3308. 9315. 393. 9892. 351. 10244 TABLE 8 II MAXIM SSE 1/4 50 D COMPONENT GIRDER A GIRDER B

             '"',- ELEM NODE
           .--5127 310 360 X

2035. 1914. . Y Z

                                                 .5665."",-13219"..'

4878. '",. 13277; SRSS STATIC 14525..:.7184. 14274..'*" 7267. SUM 21709. 21541. END CONNECT-RHE 17 154 4 63 8 597 END CONNECT-LHE 74 252 3311. 13926. 1222. 14366. 351. 14717. TABLE gi M~I~~Qggg~~~~~ SSE 1/4 Nl COMPONEN GIRDER B ~NQ CO~gg~ END CONNECT-LHE 27 74 OD 310 360 252 4 1649. 1 515. Z5. 3248.

                                          ~-~     2857.

2371.. 7451.

                                                         '822. 1931.

1959. 321. 3429. 8134. 4777. 4860. U~ 8600. 8289.

                                                                                               .Qb7 357.      8491.

srma x ps>

~ ~ ESS-1. 2 FOR SRSS-4. 3 WHITINQ RCGN 794,09 DAZE <-IB- 8" P}J+ PAGE 8 7 OF SE TABLE 8Q UK 'iXBESB OBE END 50 U COM QIRDER A 29 312 962. 2559. 691. 2S20. 4142. 6962 QIRDER B 43 353 799. 6909. 388. 6966. 0 2283. '249.

                                                                                                           'ND CONNECT-LHE     75    254   1297.      9558.         185.       9647.               445.      10092.

TABLE Q IP OBE END 50 D COMP T QIRDER A 35 319 2181. 9504. 372, - 9758. , 178. '936.

                                                                                     2283.

QIRDER B 43 353 940. 7280. 2032. '7616. 9899. END CONNECT-LHE 74 252 2777. 12173. 384. 12491. 358. 12849. TABLE

                                ~TRESSES~

OBE RHE NL COMPONENT E EM NOD RZC

  • 35 319 1516. 6905. 7073. 142. 72! 5.

QIRDER QIRDER B 59 7 369'83. 9791. 80. 9809. 9'24. 1 55. 9963. ENI} CONNECT-R E EA END CONNECT-LHE 75 254 485. 12S1 5. 56. 1 2S24. 443. 13268. sm~ss >~ F5>

4 ae ~ >41

ESS-i. 2 FOR SRSS-4. 3 WHITING REBN TND t DATE 4 i8 9> BY &JH I P*BE ~L GF TABLE Q I4 55XX5UN BTBFSSES SSE END 50 V COMP QXRDER A j19KRLEQ.303E 780. 6278. 998. 6405. 2508. 8913. QIRDER B 42 351 815. 14159. 646. 14197. 529. 14727. ~HKSO END CONNECT-LHE -75 254 2486. 16707. 357. 1 6895. 445. 1 7340. TABLE 8 IT SSE END 50 D COMP E EM D QIRDER A QIRDER B"" .

                         "35 43 319'4179.

353 1808. 12973..

                                                  '2783.'-
                                                                  ~',.'99.
                                                                   "". 3815.

13647. 13462.

                                                                                                178.
                                                                                              "'283.

13825! 15745'. Q. END CONNECT- HE - 75 254 2454. 17781. 366. 17953. 445. 18398. TABLE Qlg AXLKNLS SSE RHE NL COM QIRDER A 35 319'922. 10877. 1 f271. 142. 11413 QIRDER B 59 369 1 102. 17599. 1 53. 1?634. 1 55. 17789 M IgleaXJM END CONNECT-LHE 75 254 894. 23167.'28. 104. 23185. 23628 STRESS IH Pkl

    ~a
       ~ %

V ~% e 1 ~ ~ ~ '

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 7<<>+ 87/Obrj TABLE 4 g lg B KJ< PACE Q. f OF j 79604/MM/AEP > DC C t OLD MAIN TROLLEY MIDi 50T LD UP / OBE TO~MMAR LOAD STEP 1 SRSS STAT IC SUM DIFFER bi NODE LABEL T647. 0. 24 101 FZ 4289. 31966. 39130. 50709. 102034. 152743. 51325. 101 MX 72713. 16139508. 441464. 16145709. 44267. 16189976. -16101441.

                                      ~ I  ~                                8 102 MX          57126.       682900. 354863.       771715.        90260.      861974.    -681455.

123 FY 0. 0. 0. 0. 0. O. 0. 123 MX 0. O. O. 0. 0. 0. 0. 123 MY 0. 0. 0. 0. 0. 0. O. I~ 3ErK 124 FY 0, 0. 0. 0. 0. 0. 0. 'I ~ 124 FZ 0. 0. 0. 0. 0. 0. 0. 124 MY 0. 4

0. O. ', 0. 0. 0. 0.
0. O. O. . O. 0. 0. 0.

201 FZ 3288. 2779'1. 37826. 47053. 98309. 145362. 51256. 201 MX 43592. 14919499. 129377. 14920124. 43387. 14963511. -14876737

    . 202  MX         23884.       217245.. 128539'..- . 253551.        89376.. 342927.     -164176.

( tb ]n lh ) 40 i so 50

i

 ), ~

SRSS-4. 3 llHITING CORPORATION ANSYS SASS PROGRAM 79CoOQ 87/06/l 2. TA~LE 4 62D LS 2 MODE 1 SCALE FACTOR = . 1096 PAGE g )g OF 58 79604/M Jl'I/AEP> DCCz OLD MAIN TROLLEY MID> 50T LD UP / ORE 4V LOAD STEP SASS STATIC SUM DIFFER NODE LABEL C C 101 FZ 4289. 4613. 391 30. 39634. 1 02034. 1 4 16*8. 62400. 101 MX 727 13. 17b9535. 441464. 1825221. 44 67. 18b9489. -1780954. al ~ ~ c. ~ s)W 22'. 102 MX 571 26. 81473. 354863. 3b8550. 90260. 458809 -278290 123 FY 0. 0. 0. 0. O. 0. Q. l4 123 MX 0. 0. 0. 0. 0. 0. l,s 123 MY 0. 0. 0. 0. 0. 0. C 0 124 FY 0. 0. 0. 0. 0. 0. 0 (ie 124 FZ 0. 0. 0. 0. 0. 0. 0 0 124 MY 0. 0. 0. 0. O., O. 0 124 MZ O. 0. 0. 0. 0. 0. 0 C ~ ~ ~ C ~ ~ C R, ~ oJR 201 FZ 3288. 40'90. 37826. 38189. 98309. 136497. 601 0 201 MX 43592. 1635420. 129377. 1641109. 43387. 1684495. -159772~ td 23884. 32968. 128539. 134832. 89376; 224208. -45457 ( lL i) lL) 40 Iso sl

 ]st Ass s4 lssi

)se~

i j t , ~ ~ 'S t$

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 7/40 t 87/06/12 TABLE + S~ BY CEQ-I/ OF SS' !a 79604/MJM/AEPi DCCi OLD MAIN TROLLEY MID> 50T LD UP / SSE mecum.~s S LOAD STEP 2 3 SRSS STAT I C SUM DIFFER NODE LABEL

0. -4S31~453I 101 FZ 7768. 59916. 69900. 92392. 02034. - 1944 5. 9642.

8 1 101 MX 133853. 30263763. 790092. 30274371. 44267. 30318638. -30 30103. 10 BI. ISI052. ssi10K I 102 MX 107256. 1280471. 634667. 1433148. 90260. 1523407. -1342888. 123 FY 0. 0. 0. 0. 0. 0. le 'Fz ~ ~ ~ 0 '6:

~

4 123 MX 0.. 0. 0. 0. 0. s

0. 0.

sIN 123 MY 0 0. 0. O. 0. 0. 0. 124 FY 0. 0. 0. 0. 0. 0. 0. 124 FZ 0. O. 0. O. 0. 0. 0. 124 124 201 FZ MY MZ D., 0; 0. O., O. O. ~ 0.

0. 0...
0. O.

O. ~ 4 08. 0. 0. 59 1 1. 52090. 67532. 85492. 98309. 1 83801. 1281 b. 201 MX 85953. 27976091. 231842. 27977184. 43387. 28020571. -27933797 48493. '08205. 229821.- 470957. 89376. 560333. -381 582.

        '= ~ ss Ml ss

( Ih s j:~ tt'S);'. 37 ~ ~ C ass 0 o

     ~,

s 40

q4

  ~ j4
~ra TQ Cr

I3 ~ 4 I ( tSRSS-4. 3 WHITINQ CORPORATION ANSYS SRSS PROQRAN TABLE ¹ egg LS 2 NODE 1 SCALE FACTOR = . 0744 79604 /NJll/AEP Er

                          >   DC Cs    OLD NA IN TROLLEY N I Dn     50T LD UP B

7'fCOM

                                                                                  /

Hl SSE 87/06/12. PAQE 8.1Z OF 58'; I LOAD STEP SASS STATIC SUN DIFFER s( NODE LABEL 101 FZ 7768. 6989. 69900. 70676. 102034. 172710. 31358. 101 NX 2253546. '33853. 790092. 2391784. 44267. 2436051. -2347517. IIO a ~ C ~ V2. II 102 NX 107256. 1 12211. 634667. 653374. 90260. 743634. -5631 1 5. l2 123 FY 0. 0. 0. 0. 0. 0. 0. I3i l4 123 NX 0. 0. O. 0. 0. 0. O. IIS( 123 NY 0. 0. 0. 0. 0. 0. 0. 0 l7 124 FY 0. O. 0. 0. 0. 0. O. 0.'. ID 124 FZ 0. 0. 0. 0. 0. 0. 0 ID 20 124 NY O. 0. O. 0. O. 0 124 NZ O. 0. O. 0. 0. 0 V 201 FZ 59'1 1. 6255. 67532. 68078. 98309'. 166387. 30230 24 201 NX .85953. 2082353. 231842. 2096982. 43387. 2140368, -2053595 25 202 NX 48493. 58697. 229821. 242104. 89'376. 331480. -1 52729 27', 2D I 3l I )32; I JI I

 !34 I3D 3

I 44-

p,1

            > te>w 0
      ),  t
                        ~ 'W
   .)   ~

WM QC

                   /T'>>

WJ, ~ ~ RSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 77CoOM 87/06/12. TABLE ¹ BY bl JH PAGEOS. 50T LD DN / OBE TO~955 LOAD STEP 3 SRSS STAT IC SUN DIFFER NODE LABEL 101 FZ 4477. 3184 1. 90341. 95892. 102034. 197926. 6142. 101 NX 61 144. 16139510. 70410. 16139780. 44267. 16184047. -16095513. C ~ BI. I 102 MX 497 54. 682897. 8679. 684762. 90260. 775022. -594503. 123 FY 0. 0. 0. 0. 0. 0. 0. I0 123 NX 0. 0. 0. 0, 0. 0. 0. 123 NY 0. 0. O. 0. 0. 0. 0 C 124 FY 0. 0. 0. 0. 0. 0. 0. 124 FZ 0. 0. 0. 0. 0. 0. 0. 124 NY 124 NZ O. O. -

                                    ~

O. O. 0. 0.. O.. O. 0. 0. O. 0. 0. 0. C ~ ~ C 201 FZ 3969. 27673. 88798.. 93094. 98309. 191403. 5214. 201 NX 37625. 14919501. 54746. 14919649. 43387. 14963036. -14876262 24275. 217237. .15161. 219114. 89376. 308489. <<129738.

                                                         ~ ~

()L ~ )p ~4) A

FV Il t 4I i l4b tv AWED

 ~ tf

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 7VCOH 87/Ob/12. TABLE 8 gg LS 2 MODE 1 SCALE FACTOR = . j420 BY JY PAGE g-/ OF SS 79604/MON/AEP> DCC> OLD MAIN TROLLEY MID$ 50T LD DN / ORE LOAD STEP 3 SRSS STATIC SUM DIFFER

/6       NODE LABEL 101 FZ          4477.         4548. 90341.      90566.       1 0 034. 192600.        1 1468 101 MX         61144. 2292296. 70410. 2294192.          44267. 23384 59.   -2249924 10                                                      BiS 102 MX         49754.      102114. 8679. 1 1 3921.        90260. 204180.      -23661 t2     123 FY              0.           0.       0.          0.             0.          0.            0 5(
)'14$

123 MX 0. 0. 0. 0, 0. 0. 0 I

          ]23  MY             0,           0.       0.          0.             0.          0.            0
   '$6 17     124 FY              0.           0.       0.,         0.             0.          0.            0 16     124 FZ              0.           0.       0.          0.             0.          0.            C 124  MY             0.           O.       O.          0.             0.          O.            C 2$     124  MZ             O.           O.       O.          0.             0.          0.            C 201 FZ          39'69.        3956. 88798.      88'974.        98309. 187283.          9334 201 MX        .37625. 21 18750. 54746. 21 19791.         43387. 2163178.    -2076404 4

202 MX 24275. 38263. 1 5161. 47783. 8'9376. 1371 58. 4159 . ((g ]n, fL ) 7 bo 4$ y50

!51i l 52$

55/ I 5dl I

jo ~l >> t"4 ~t ~ sr

  'V pi ~

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 79CO f 87/Ob/12. TABLE ¹ g-~ B ?PAGE

                                                                                 ~7-      g-(5  OF 58
                                                                        /

tttCTX 0 LOAD STEP NODE LABEL

                ~

79604/MOM/AEPe NAIA DCC> 1 OLD MAIN TROLLEY MID. 50T LD DN 2 3 SRSS SSE STATIC SUM DIFFER 101 FZ 8573. 59707. 169533. 179944, 102034. 281978. -77911. 101 MX 114217. 30263766. 136583. 30264290. 44267. 30308557. -30220023. 10 V3RVU. 93BB~E7I71. -7%FOV: I 102 MX 93966. 1280460. 20144. 1284062. 90260. 1374321. -1193802. 123 FY 0. 0. 0. 0. 0. 0. 0. 15 23 FZ 123 MX 0. 0. 0. 0. 0. 0. 123 MY 0. O. 0. 0. 0. 0. 124 FY 0. O. 0. 0. 0. 0. 0. 124 FZ 0. 0. 0. 0. 0. 0. 0. 24 M 124 MY 0. 0. 0. 0. 0. 0. 0. 124 MZ 0. 0 O. 0. 0. 0. 0 201 FZ 7603. 51894. 166625. 174684. 98309'. 272993. -76376. 201 MX 76265. 27976094. 10743?. 27976404. 43387. 28019791. -27933017.

                                  ~  ~

202 MX 50317. 408174. 32774. 412568. 89376. 501943. -32319? ( I4 tn lb'. 11

       'O'P

)g,'c ~

SRSS-4. 3 WHITING'ORPORATION ANSYS SRSS PROCRAM 79K~"t 87/06/j2. BK - * * = SI"' t/I ss 79604/MJN/AEP DCC OLD MAIN TROLLEY MID 50T LD DN / SSE REII~Il3W SUllIIIIRY LOAD STEP 3 SRSS STAT IC SUM DIFFER ic1 NODE LABEL Q. S87K 101 FZ 8573. 6518. 169533. 169875. 102034. 271909. -67841. 101 MX 114217. 3263723. 136583. 3268576. 44267. 33l2844. -3224309.

                                                                                               -PFZK 102 MX           93966.      150078. 20144. 178210.      '90260. 268470.      -87951.
  ~ 2  123 FY                0.           0.         0.         0.          O.           0.          0.

fata 123 MX 0. 0. 0. 0. 0. 0. 0 123 MY 0. 0. 0. 0. 0. 0. 0 114, 3 c. j5 12 124 FY 0. 0. 0. O. 0. 0. 0 124 FZ 0. 0. 0. 0. 0. 0. 0 ls I 20 124 MY O. 0. 0. 0. 0. 0. 0 124 MZ O. O. 0. 0. 0. 0. 0 201 FZ 7603. 5686. 166625. 166895. 98309. 265204. -68587 201 MX 76265. 3016442. 107437. 3019318. 43387. 3062705. -2975931 202 MX 50317. 66482. 4'2774. 89587. 89376. 178962. -21 1 i27 I 24 P1 22 Iq 14) 2

sl 5'7

SRSS-4. 3 lltlITINQ CORPORATION ANSYS SRBS PRO(-'RAM 7940$ 87/Ol1/ lADLE ¹ Qg7 )t th PAGE 8 170P DCC> OLD MAIN TROLLEY )/4e 5PT LD UP / OBE S8'9604/MJM/AEP> 4 RMI~I. ON SUt B'1AAY LOAD STEP ) 7 3 SASS STAT I C SUM D FF ER I NODE LABEL 8 s7:I

             )01 FZ             766 .

9949~01. 34427. 3834. 299590. 42567. 134245.

                                                                                           .        9590.
                                                                                                  )768) 2.
                                                                                                           ~99590.

91678. 101 511641. 20048028. 63943.

                                                            .>I 20054657.           43197 20097804 -20011461.

d'C MX w45c5. -ri76 ~3 .a,. ev.'. a85796 '"-8T149. 102 MX +074). 2903) 8. ) 9 20. 3) 50) . 79899. 4049>>. - 25113. lc23 FY O. O. 0. P. 0. O. 0. 13' 141 I 123 MX 0. O. 0. P. 0. 0. 0 II S; 123 MY 0. O. 0. O. O. 0. 0 Id e ~ c 88T 17 )24 FY O. 0. O. O. O. 0. lid 124 FZ 0. 0. 0. O. 0. 0. 0 II0 124 MY 0. O. 0, O. 0. O. 124 MZ 0. 0. 0. 0. O. 0. 0 55V 201 FZ -3594. )7565. 11086. 2)080. 66138. 87218. 45058 201 MX 243707. 8123637. 30707. 8127350. 39328. 8166678. -8088022 s251 1 c ~ c ~ c Jc. ad'7 202 MX 66268. 725081. 17377. 728311. 85826. 814137. -642484 31 ~ ( l4 In lL) 331 7 lsd

         '8
 )io 50 Isll 1821

)Ss

 ~ 'I o 'Vgt y4l

~ cay Ii ~ I

~   P
<<1'W U
          '>Ff SS t. 3 IrII I. ' I II. CORPORATI    1 ON I ir'I ( . Sf >8 PRFI<"Rl Pt         77COQ             "rI<I,I' l) AIILE 'tI QQ LS 2 I IOD~S          1    5(:ALE,     ACTOI(   =    .I 024         II'I'MJ6           F'Ail'. /8  Clf S8'P 79604lt'II Jt IIAIEFI, DCC, OLD I'IA1N TAOLLEY I I4, . OT LD                           I   UIIE "QV
                                ~                  I AL'ACT1ON SI/I'Ii IAAY LOAD STEP                   1                                         SASS          STAT IC 4!     NODE LABEL 101 FY                  T639.        3111T.                501.       3204 5.                    O.      3204 5.          -3204 5.

5I 101 FZ 7662. 3551. 23334. 25286. 1 34 245. 1 59531. 1 00960 ~ 4 101 NX 511641. 2093877. 63943. 21 56429. 43197. 2199625. -21 1323 10 l02 FZ 7936. 3572. 21 176. 22395. r ir g 6mri l 45bb 7. 99777 11 102 I'1X 120741. 266132. 19" -0. 292872 89899. 332771. -202973 I12 l23 FY 0. 0. 0. O. 0. O. 0 IS! 14. 0. O. 0. O. O. O. 0 14, 1 123 NX 0. O. 0. O. 0. 0 I 15; 123 t'lY O. 0. O. 0. O. 0. 0 II4 1~4 FX 21338. 2511. 14092. 25695. O. 25695. -25695 12 124 FY O. 0. 0. O. O. 0. 0 15 124 FZ 0. 0. 0. O. D. 0. 0 II+' I I~ NX O. 0. O. 0, O. O. 0 I I 124 NY 0. 0. 0. 0. 0. 0. 0 21' 124 NZ O. O. O. 0. 0. 0. 0 201 FY 3995. 14717. 614. 15262. -0. 1 5262. -15262 2S 201 FZ 3594. 1800. 11036. 11793. 6,'138. 77'731. 54345 P4 201 NX 243707. 891 330. 30707. 924557. 3932S. 963334. -S85229 22FZ 3382. 1846. 10321. 1 1017. 61323. 72340. 50307 26 202 NX 66268. 222331. 17377. 232646. 85826, 318473. -146820 I27; I25 I I

~l 13m l                           ((6> -w    W )
'33'34 I

135

 'I34 P'l I35 41 I

44l s 451

 !44 4

)5O 151

                                                                                            ~ '

P)'p > C ~ tl k Ail rt

SPSS-4. 3 WHI TI!!C CORPORATION AtlGYS . ASS PROGRAM 7VCO't O7/Ob/> 5.

               'lt'.ALE 0 Qg,'f                                                     llY       H     't;CE@-(P Ol   5P 79604/MSM/AEP      DC C      QLD l'1A IN TROLLEY  1 /4   ".OT LD UP     /   O'E R FtWCTTQN SUPPFAAV LOAD STEP                                                 SHSS       8'l AT IC            SUM     DJFt ER I    NODE LABEL 101 FZ I~~Jo64554.

181 10. 56985. 87991. 30 245.

                                                                                                          ~ IVZi~

222237.

                                                                                                                    -~aVEI.

46254. 101 MX L 959565.

                                    /

37591906. u530c.. 146938. 5UHO. 37604438. 6%~~.. '3197. 1 c'ii7CFZ37647635. -37561241. sslZI".

  -IO 102 MX        226'936.       519789.       396 '5.      '68552           89899.        6 84'.     -47865 123 FY               0.                          O.            O.              0.             0.          O.

-'1si 123 MX O. 0. O. O. 0. O. 0. 123 MY 0. 0. O. 0. 0 ~

  !is ts!

IT 124 FY O. B~BJss.

0. O.

O. O. O. O. O. 603' ts 124 FZ 0. 0. 0. 0. 0. O. 0 Its 124 MY 0. 0. 0. 0. 0. 0. 0 124 MZ "0, 0. 0. 0. 0. 0. 0 C4 ~ ts C 201 FZ 84 94. 32936. 26508. 43123. bbi38. 109261.. 23015 201 MX 457280. 15231703. 67513. 1 5238716. 39328. 1 5270043. -1 51 99388 ss I C 202 MX 122815. 1354101. 38767. 1360212. 85826. 1446038. -1274386 Qc'

   !sc tsses les!

I

    . 44     1 i

les,'ss; I ss,

    >ss'p
    'V I'4 4p Mt

~1 t

           ~

SR'8-4. 4 ~~'-'.,:. N17 CORPORATION ANSYS SRSS PROC-'RAM 7)CuO f 87/Obl)5. ADLC ff 830 L.'fODE 1 SCALE FACTOR = . 0383 HJJA ~PAPE -jD DCCA OLD MAIN TROLLEY I/4> 50T LD UP / SHE Of'8'9604/MJM/AEP> LOAD e T: 1 3 SRGS STAT I C SUM DIFFER NODE LABEL 101 FZ 181 10. 4494. 56905. 59962. 134245. 194208. 74283. 101 MX 959565. 2680947. 146938. 4".f351286. 43197. 8884403. 880808r/ 45TJE 50' 0 . 53533 . 10~378. 17Ei808. 5 83>. 102 MX 226936. 471 786. 396'. 525026. 09899. hl 49825. -435127. 12 123 FY .. 0. O. O. O. 0. O. O. s( 0 O. 4i 123 MX O. 0. O. O. 0. 0. 0. 123 MY 0. 0. O. 0. 0. 0. 0. 1.8 4~ b. 32836. ~l732. 0. 5 l 732. -5l 732.

  ,7    124 FY                            0.                  0.            0.              O.             0.               0.                            O.

8 124 FZ 0. 0. 0. O. 0. 0. 0. '19i 0. 0. 0 124 MY 0. 0. 0. 0. 0. 0. 0.

        .i 8~4 MZ                         0.                  O.            0.              0.             0.               0.                            0.

fa? Af 1 rt 1 41. 20396. -0. 20396. -20396. I 23 "01 FZ 4" 94 2264. 26508. 27928. 66138, 94066. 38210.

        ~201   MX              4,'  / p'   0.      l 1'7   595   . 67513.         1277173.          39328.        1316501.                     -1237845.

51 C.A< t. 3 C, 8 ~c. 6 20'X

                                                                             ~                                ~  ~

28f 1 I 122815. 386047. 38767. 40i'.~963. 85826. 492789. -321 137.

  'Al 49 so

( l6) in 'Is Issf

   %91 41 42 43-1 44 148 f50 51 152]

i-I

0 t +p X;i

SRSS-4. 3 lFJHITINQ CORPORATION ANSYS SASS PROt":RAI'J 7N ~ 87/O:./ J 5. lABLE ¹ Q3/ J< Jh . PA('E Q-Z/ Ol= 79604/NSN/AEPF DCCF OLD NAIN TROLLEY J /4F 50T LD DN / Ol<E TVZACTIUlq SUHNARY LOAD STEP 1 3 SRSS STAT IC SUN DIFFER NODE LABEL

~

g s 101 FZ TO~5'Fsitsi. 12496. 34355. 25T5. 107729. J VVSOO.. 13763. }34245.

                                                                                                      'F9iSOIF.=252500 248008.        20433 I

9 I 101 NX 528054. 20047981. 268216. 20056728. 43197. 20099925. -20013531 s= p. ~~593. ZCHVK IOsSOTsF. TTO4TST. T~b~s. 203'l si . I"'02 1t) 102 MX 79323. 290333. 60M'8. 307014. 89899. 3969 J 3. -2171 14 123 FY 0. 0. O. O. O. O. 0 I'~ I

14. 123 NX 0. O. 0. O. O. 0. 0 123 NY 0. 0. 0. 0. 0. 0. 0 ts I

T . 209. 0. 205 -3PFU3

15) 124 FY 0. 0. O. 0. 0. 0. 0
)15I        124 FZ               0.             0.          0.             O.                0.             0.          0
 'Ipl

'4O~ I 124 MY O. 0. ~

0. O. 0. 0. 0
            }24 121 TS!

NZ 201 FZ 4863, O. 0. I'40slsF2. 17540. 0. I*FT4. 40712. 0. isSII551 44596.

                                                                                      =0.

66138. 0. 110734. 0. T4055K ~sS0555 0 21542 541 201 NX 221374. 8}23610. 62897. " 8126869. 39328. 8}66197. -8087542 sSS I SC' 0 ~X 7533}. 725089'. 88543. 734349. 05826. 820175. -648522

'4d s

29'01 Sl' ss S Sd. 1 lspss s40 41 42 14S 44< 14sf l4ps ss Is:

 '52 lss     1 ISS,
)st.

h eg Ag

                    , ~
 ~'

II

             ~ 0 'f
    ,jg'l P

4P,g p)4 lt'

SRSS-4. 3 WHITING CORPORATIUN ANSYS SRGS PRO('RAN 7$ (oO f 87/06/j .. TABLE 0 832 LG 2 NODE 1 SCALE FACTOR = . 1436 D M AQEQ-Z+Ot- 5K 79604/NJN/AEPi DCCp OLD 61AIN TROLLEY ]/4i 5OTLD DN / 01~E REACT I ON SVNNARY LOAD STEP 1 2 3 SRSS ~ STAT IC ~ SLW D OFFER NODE LABEL

~

7 I 101 FY 7679. 43325. 251 b. 44072. O. 44072. -4407 di 101 FZ 12496. 4949. 107729. 108564. 134245. 242810. 25681. 101 NX 5280 54. 290791 5. 268216. 2967617. 43197. 3010313. -2924420. 102 FZ 12593. 5025. 104054. j 04934. 122672. 227606. 17738, 102 NX 79323. 266407. 6059 8. 284494. '8'7899. 374394. -1 94595 123 FY 0. 0. 0. 0. 0. 0. 0

   .3 I      la     Z            0.            0.        0.           0.               0.            0.           0

) Ia! 123 NX 0. 0. 0. 0. 0. 0. 0 I 123 NY 0. 0. 0. 0. 0. O. 0 1 c. 28272 2687. 20950. 35290. 0. 35290. 35a+90 124 FY 0. 0. 0. 0. 0. 0. 0 ldj 124 FZ 0. 0. 0. 0. 0. 0. 0

 'ldl                            0.                       0.          0.               0.            0.           0 I

RO: 124 NY 0. O. 0. 0. 0. 0. 0

 'dl    ~     124 NZ              0.            O.        0.          0.               0.            0.           0 2 In Y           3761.       20409.      1974.      20847.               -0.       20847.     -20847
    ~

3 201 FZ 4863. 2526. 4071 2. 41079. 66 1 38. 107217. 25059 201 NX 221374. 1209219. 62897. 1230923. 39328. 1270251. -1 1 91 596 D 644. 25 39618. 39973. 1 323. 101296. 21 351 202 NX 75331. 233062. 88543. 260447. 85826. 346273. -1 74620 3$ SOI 3l,I 3 (l6) tn lb D4 35

  ,35(
   '30i I 43i 45 I 40>

53, l 153 I 153 Isa l 55!

  ) so',
     ~7

4 4 l

       , 4 I    fl I

SRSS".4. 3 NllTTINQ CORPORATlON ANSYS SASS PRCi('RAIN 7'7<0 t 87/06/15. lA B 0+ RIAGE 8 23 OF'f 79604/Mdt'I/AEP DCC. OLD MA1N TROLLEY 1/4 50T LD DN / SSE Rf ACTION

SUMMARY

LOAD STEP 3 SRSS STAT IC Slit'I D1 Ff'ER NCiDE LABEL

-I 7 I
           ~

l 14505. 561 577. 5841. 561795. 0. 561 795. -561 S I 101 FZ 81. 64420. 202145. 213535. 134245. 347781. -7929C 79.'41 jy I 101 MX 1009399. 37591820. 61S523. I 37610456. 43197. 376536513. -3756726( IIO 102 FZ 23821. 65435. 195l 74. 207224 12672. 3c'9BVh. -B4 551 11 102 MX 1 50887. 519799. 142351. 559662. 89899 64956 1. -46976 12 123 FY 0. 0. 0. 0. 0. 0. ( ISI I 1 0. 0. 0. O. 0. IC; 123 MX 0. 0. 0. 0. 0. 0. I I sl 123 l'1Y O. 0. 0. o. 0. 0. l 4 FX 52505. 20812. 40831. 69693. 0. 69693. -6969" 124 FY 0. 0. 0. O. 0. 0. C 124 FZ 0. 0. 0. 0. 0. 0. C I MX 0. 0. 0. 0. 0. 0. C 124 MY 0. 0. 0. 0. 0. O. ( 124 MZ 0. O. 0. 0. 0. 0. ( 201 FY 7208. 263436. 4629. 263575. -0. 263575. -26357'. 2Sl I 201 FZ 9857. 32889. 76509. 83860. hb 138. 149998. -1772c 12Ci P01 t'1X 4134S4. 15231654. 131519. 15237833. 3932S. 15277160. -151985()'. I2s I 2 FZ 9308. 33466. 74420. 82128. 61 323. 143451. 202 MX 1 54894. 207965. 1378713. 85826. 1464539. -1 92BBII

                                                                                                          -2080'354108.

120' 20

   ".I  2I I'4)    in
 ,'ss'C
'ass I

Lse pcs

,         I byI

'ICS, l CCi iCOI I SQ'S 11 s2: ) ss. I

0 4I Q's Wg i

~l t
            'I
      . SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM
                ¹  88'0 LS        MODE  1   SCALE FACTOR                     n 7840't
                                                                                ~     W O-, ZO.

PAGZ8-20OF i J 5.

                                                                                                                  $8
2) 79604/MJMIAEP, DCC, OLD MAIN TROLLEY J/4. 50T LD DN I SSE ~

REACT ION SLJl'lMARY LOAD STEP I 2 3 SASS STAT IC SUM 0 I FFi=R Id I NODE LABEL 7 101 FY 14505. 61028. 5841. 63000. 0. 63000. -63QOO. I 101 FZ 24181. 6962. 202145. 203705. 134245. 337951. -69460 I

'0 I         101 MX         1009399.      4102855.       618523. 4270231.           43197.      4313428          -4227035 110        102 FZ           23021.          7063,     1 951 74. J 96749.       1 221672.        3 J 9421    ~      74077 102 MX         1 50887.       472144.      J4 3. 1.     . 15704.         89899.         bn5604.        -425805 12       123 FY                  0.           0.           0.           Q.              0.                0.              0 12       1   F                   O.            O.          0.           O.              0.                 a.             0

'4 123 MX O. 0. 0. 0. 0. , 0. 0 123 MY 0. 0. 0. 0. 0. 0. 0 10 Jc4 FX 52505. 44 50. 40831. bbbb2. 0, bb662. -66662 17 124 FY 0. 0. 0. Q. 0. 0. 0 124 FZ 0. 0. 0. Q. 0. 0. 0 1 O. 0. 0. 0. 0. C 124 MY 0. 0. 0. 0. 0. 0, C 124 MZ 0. O. 0. 0. 0. 0. C 2 1 FY 208. 28838. 4629.. 30083. -0. 30003. -3008".

                          " '"                                                                                       -1108'.

201 FZ 9857. 3552. 76509. 77223. 66138. 143361. 201 MX 413484. 1731876. 131519. 1785402. 39328. 1824730 -174607* 2 F 30 . 3 1 . '74420. 75087. 61323. 136410. -1376 20; 202 MX 1 54894. 400749. 207965. 477328. 85826. 5631 54. -391 50 J

20 I-,

r21' (g~> )n I J '2 41 42 44> 144 47 LI 40 20 Il. 10

t) 4 El $~1

SHSS-4. 3 hiIIST1NG CORPORATION AilSYS S)RSS PROGf?AII >9/0+ O//06/56. I A[)LF j', 8/$ AGE 8-g5 C)F 58 79604/NJN/AEP DCC. OLD I'IAIN TROLLEY END...OT LD UP / QDE 4

       )   RI-ACT ION SVI'INARY LOAD STEP                                       3       GAGS      STAT I C            SUI'I               D 1 FFER sl     NODE I ABEL 1  7        1      FY        94 58. 124413.         1 55 7. 124781.               0. 124781.                 -124781 slI
 )

I 101 FZ 89 58. 10369. 1 4 579. c20008 5 48423. 168430. 1284 1 5 101 NX 566820. 75 1 156. 1 14640. 7543356. 4 5 630. 7584986. -75017 lg 102 FZ 86 17. 120'98. 1 c~447. l 9379. 5 37229. 156608. 1178li0 102 llX 92425. 1299616. 17988. 1303023. 90937. 13'73762. -1212084 l)" 123 FY 0. 0. 0. 0. 0. 0. 0

  )IS>       5c        Z          0.                         0.           O.              0.             0.                      0 Q)I 4)        123 NX               0.           0.            0.           0.              0.             0.                      0
  'ts        123 NY               0.           0.            0.           0.              0.             O.                      C l)4        1 c. FX       22763.       1 3537. 1 51 02.       304 88.              0       30488                   -304()~.

i) I 124 FY 0. 0. 0. 0. 0. 0. C 124 FZ 0. O. 0. 0. 0. 0. C lc.4 l'IX 0. 0. 0. 0. 0. 0. ( 124 NY O. O. 0. 0. 0. 0. C 124 NZ O. 0. 0. 0. 0. 0. ( 201 FY 4321. 55248. 61 9. 55421. -0. 55421. -5542 5 201 FZ 3946. 5791. 5903. 9163. 51 973. 61 136. 4285 ( 201 NX 171249. 2166 56. 4005 l. 2173184. 37940. 2211123.

    "7'$
                                                                                                              -213524'oS I

I 2 FZ 3800. 6597. 5193. 9216. 46754. 55970. 3753( eel 202 NX 32874. 706258. 12112. 7071 7. 05033, " 792160. -62209: ao PII Psz) Ilsc isa iso 41 4s 4ol

         )

SSoI

   }SI[

s~s

     -I I

s "7

        . ~

J ' I <l~ y~'y A' il

RSS-4. 3 NHITIhlG CORPORAT ION ANSYS SRSS PROGRAI'I 79Cbl O7/06/ j*. ThBLE 4 934 LS 2 I'IODE 1 SCALE I ACTOR = . 2c~60 D JM r ACE g-Z5 or DCC. OLD I'IAIN TROLLEY ENDi SOT LD UPi/ ODE S8'9604/NJN/AEPi C, REACTION SUI'INARY I LOAD STEP 1 1 3 SRSS STAT IC SUN DIFFER I NODE LABEL 101 FY 9458. 30364. 1 51 7. 39542. O. 39542. -39542. 101 FZ 89 58. 31 18. 14 579. 17393. 1 40423. 16581 5. 1 31 030. 101 I'IX 566820. 261 1714. 1 1 4640. 2674972. 4 1 630. 271 6603. -2633342. L10 102 FZ 06 17. 3757. 12447. 1 5598. J 37229. 152827. 121631. 11 102 I'1X 92425. 795582. 17908. 801135 90939. 892074. -7101 96. 2 123 FY 0. 0. 0. O. 0. 0. 0. 123 FZ O. 0. O. O. 0. 0. 0. I 123 NX 0. 0. O. O. 0. 0. I 123 NY 0. 0. 0. 0. 0. 0. 0. 0 124 FX 22763. 3330. 15102. 27519. O. 2751 9. -27519.

 ~ 2     124  FY                0.               0.          0.           0.             0.              0.                              0.

(10 124 FZ 0. 0. 0. 0. 0. 0. 0. 0 1 0. 0. O. O. 0. 0. 0. 0 124 NY 0. 0. 0. 0. O. 0. 0. '21 124 NZ 0. 0. 0. 0. 0. 0. 0. 43 l. 1 19. 19560. -O. 19560. -19560. 201 FZ 39.'46. 1 695. 5903. 7300. 51 973. 59273. 44673. 201 NX 1 71249. 1 305205. 4001 i. 1317000. 37940. 1354939. -1279060. 1 . 6671. 6 54. 342 . 40003. 202 I'1X 32874. 704022. 121 12. 704893. 85033. 789926. -619859. 29 10 I 11 ( lb~ In 22 I>> 42 n

0 f a-.

 /

r

6. T D E 4 @37 DY CZ8-ZyOF $ JI'IIAEPr DCCr OLD HAIN TROLLEY ENDo 50T LD UP I BBE 8'96041l'I RLACT I ON SUI'll'lAI)Y LOAD STEP 3 SASS STAT IC .SUI'I DIFFER NODE LABEL 1 81 4 . 238174. 3154. 236085. 0. 238805. -230385. 101 FZ 20903. 19969. 34857. 45285. 148423. 193707. 103138. 101 NX 1090343. 14392910. 251470. 14436342. 4l *30. 14477772. -14394712. 1 Z l 9214. 23349. 29689. 42377. l 37229. 179606. 94052. 102 NX 177749. 245384Q. 36569. 246Q542. 90939. 2551481. -2369602. 123 FY 0. 0. 0. 0. 0. Q. 0.

0. 0. 0. 0.

123 NX 0. O. 0. 0. 0. 0. 0. 123 NY 0. 0. 0. 0. 0. 0. 0 4d 25 55. 350'bO. 61273. 0. 61213. -61273 124 FY 0. 0. 0. 0. 0. 0. 0 124 FZ 0. 0. 0. 0. 0. 0. 0

0. 0. 0. 0 124 NY O. 0. 0. O. 0. 0 124 NZ O. 0. 0. 0. 0. 0 2 F 0 . 105 6. 1184. 105909. -O. 105909. -105909 201 FZ RV26. 11079'. 141l5. 20041. 51 973. 72014. 31932 201 MX 330448. 4089399. 82349. 4 103555. 37940. 4141475. -406561 5 ia, 2 12396. 19543. 46754. 662 77. 2721 1 202 NX 63933. 1295153. 26002. 1296991. 85033 1382024. -121 1957 RS I

20 (lb In i 4% ll ~ vQ] 0 , 0 \ 't >e ' 1 ~RSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAN 79'C >'f 07/Ob/)*. TABLE ¹ S38 LS 2 MODE 1 SCAI-E FACTOR = . 3356 DY , PNE 8-ZBOF $8 79604/MSM/AEPI DCCI OLD MAIN TROLLEY END. 50T LD UP / SSE 31 REACT ION SVMl'lARY LOAD STEP 1 3 3 SRSS STAT I C SUM DIFFER NODE LABEL ,7 I 101 FY 181 48. 59451. 31 54. 62240. 0. 62240. -62240. 101 FZ 20903. 5228. 34857. 40979. 140423. 189402. 107444. I ~ 101 MX 1090343. 4270530 251490. 4414694. 41630. 4456324. -4373064. >15 102 FZ 19214. 6551. 29b89. 35966. 137229. 173195. 1 01263. I ;I I 102 NX 177749. 1418050. 36569. 1429615. 90939. 1520554. -1338675. 123 FY 0. 0. 0. 0. 0. 0. 0. 123 FZ 0. 0. O. 0. 0. 0. 0. 123 NX 0. 0. 0. 0. 0. O. 0. '5I 123 MY 0. 0. 0. 0. 0. 0. 0. FX 43037. 4454. 35050. 55682. 0. 55682. -55632 124 FY 0. 0. O. 0. 0. 0. 0 124 FZ 0. 0. 0. 0. 0. 0. 0 '21'24 II5 10 0 I 124 124 MX NY 0. 0. D. O. 0. 0. 0. 0. O. 0. 0. 0. 0 0 124 l'lZ 0. 0. 0. 0. 0. O. 0 201 FY 8308. 30500. 1 104. 31711. -0. 31711. -3171 1 201 FZ 8926. 2509. 14115. 16888. 51 973. 68861. 35035 201 MX 330448. 2318412. 82349. Z343291. 37940. 2381231. -2305351 202 FZ 8294. 2438. 12396. 151 12. 46?54. 61866. 31642 202 NX 63933. 1290520. . 26002. 1Z92365. 05033. 1377398. -'1207331 lgd I 31l (t4> ih tL) 32m ]35 41 43) 44 ~ I 45 i 145 I 4 40. I 551 l5 I I 152 I 53 ld'5 Qr ~ 'V% ~great QL f' - 1 Pl 'l ' 0 GRSS 4. 3 IJIIITIPIC CORPORATION Al'ISYS SRSS PRGCRAI'I 07/Ob/Jb. ¹ f.LE QQ I}y Ivl J/I ACE/-Z OF 58 I 7960 I/MJM/AEP DCC OLD MAIN TAOLI EY END 50T LD DN / OI4E REACT ION SUI'li.}ARY LOAD STEP 1 1 3 SASS STAT IC SUM DIFFER NODE LABEL l01 FY 94 85. 124404. 1 554. 1 24775. 0. 124775. - I 24775. 101 FZ 11859. 122bh. 1009( 4. 102395. 1 48423. 250818. 46027. 101 MX 5706 19. 7520127. J 1 5524. 7542630. 4 I 630. 7584260. -7501000. 102 FZ 1 1725. l 2047. 99231. 1 0064 5. J 37229. 37874. 365On. 102 MX 86981. 1299553. 1 2447. 1 302520. 90939. 1393459. -1211581. 12 123 FY 0. 0. 0. 0. 0. 0. O. l~ FZ O. O. 0. 0. 0. 0. O. 123 MX 0. 0. 0. 0. 0. 0. 0. 15 123 I'IY 0. 0. 0. 0. 0. 0. 0. td J~ FX 247 85. 1 3494. 17575. 3324 5. 0. 3324 5. -3324 5. 124 FY 0. 0. 0. 0. 0. 0. 0. 124 FZ 0. 0. 0. 0. 0. 0. 0. l~ I'IX 0. 0. O. 0. 0. O. 0. 0 124 MY O. O. O. 0. 0. 0. 0 124 MZ 0: 0. 0. 0. 0. 0. 0 201 FY 4222. 55248. 568. 554 12. -0. 55412. -554 12 201 FZ 4730. 6172. 19398. 20899. 51973. 72872. 31074 201 MX 146836. 2166144. 14328. 21 711 63. 37940. 2209102. -2133223 2 e. F2 4431., 6589. 18786. 20395. 46754. 67149r 26359 25 202 MX 244 ah. 706144. 107a1. 7o6649. 85033. 791682. }2r (tV) ce 40 53 p5 5d 52 ,l ,I RSS-4. 3 WHITING CORPORATION ANSYS SASS PROGRAI'I 7t~o 07/OC/lb. IABLE 5 8~ LS I'1ODE SCALE FACTOR = . 3365 UY ~J PAGE 8-jQ O. 5 8 79604/MJN/AEP> DCCI OLD I'IAIN TROLLEY END) 5OT LD DN / OBE K9R:TTtR MI~IA LOAD STEP 3 SRSS STATIC SUM DIFFER NODE LABEL 4 . 408c51. 1554. 49797. 0. 49797. -49797. ,h 101 FZ 11859. 5083. 100964. 101785. 148423., 250208. 46637. 101 MX 570619. 3172331. 115524. 3225311. 41630. 3266941. -3183681. 0 1 ~ Fc. l1725. 5294, 99231. 100062. 137229. 237291. 37168. 11 102 I'1X 86981. 837853. 12447. 842448. 90939. 933337. -751509. I 2 123 FY 0. 0. 0. 0. O. 0. 0.

0. O. 0. 0. O. 0.

123 MX O. 0. 0. 0. 0. 0. O. 123 0. 0. 0. 0. 0. 0. n. MY

c. i 1 575. 30755. O. 30755. -30755.

124 FY 0. 0. 0. O. 0, 0. 0. 'IS 124 FZ 0. 0. 0. 0. 0. 0. 0. 0. 'S 10 124 MY 0. 0. 0. 0. O., '.,', 0. 0. 21 124 Mz 0. O. 0. 0. 0. 0. -0 362, -6.3620. 201 FZ 4730. 2451. 19398. 20117. 5l 973. 72090. 31S56. 201 MX 146836. 1378161. 14328. 1386036. 37940. 1423975. -1348096. C

e. 9.

125 26 202 MX 24446. 704054. 10741. 704560. 85033. 789594. -619527. 17 i?S 25 I 10 ( I6y in I 25 37 55 50 i I40 41 ~ +2 'S; 46 50 ,'55 I $ 56I ~ I... 0 t%P,, SRSS-4. 3 i!iI IT I NQ CGRPORAT ION ANSYS SE)SS PROGRAl'} 79CO~ 07/Ob/ b.J 'l ) )I<LE 0 JN eAeEOJ/ OF $8 79604/NSN/ALSP DCC. OLD l'lAIN TROLLEY END 50T LD DN / SGE ) RE=ACTION SVNl'lAHY sl LOAD STEP 1 3 SRGS STAT I C SUN DIFFER )) NODE LABEL 1 FY 1 8254. 2381 50. 3357. 238872. 0. 238872. -238872. ls 101 FZ 23256. 23568. 189387. 192259. 148423. 340682. -43837. 101 NX 1105214. 14390159. 263896. 14434951. 41 630. 14476501. -14393321. 0 1 ~ FZ 221 79. 23226. 186073. 188824. 137229. 326053. -51595. 102 MX 167216. 2453678. 27237. 2459520 90939 2550459. -2368581. l" 123 FY 0. 0. 0. O. 0. O. 0. O. 0. 0. 0. O. 123 NX 0. 0. 0. 0. 0. 0. 0. l)s 123 NY 0. O. 0. 0. 0. 0. 0. I~ 4 2 0 0. 354a9. 64557. O. 6n 557. -645~7. 124 FY 0. 0. 0. 0. 0. 0. 0. ~ 4 124 FZ 0. 0. 0. 0. 0. 0. 0. 10 O. 0. O. 124 NY 0. 0. 0. 0. 0. 0. 0. 124 NZ O. 0. 0. O. O. 0. 0. 2 1 08. J . 1058 c.. -0. 1 9c.. -1 05892. 201 FZ 10032. 1 1 847. 36619. 39774. 51 973. 91747. 12199. 201 I'lX 281493. 4089592. 32768. 4099399. 37940. 4137339. -4061459. 340. 8 43. 80 4. -1210953. RS 202 NX 48478. 1294846. 24 556. 1295986. 85033. 1381019'. I 17 ts (L> in IL 44 Sp " 40 S1 SS SS l~~ B A'w y4 wCh V'

4. 3 WHITING CORPORATION ANSYS SRSS PRO(-'RAM 7f5I80 t 07/06/Jb.

TABLE ¹ O'Q. LS 2 MODE 2 SCALE FACTOR = . 2385 8 P(((:E ~OP +8 79*04/MSM/AEP. DCC. OLD MAIN TROLL Y END 50T LD DN / GSE c 1 REACT ION GUi'll'lARY I LOAD STEP 1 1 3 SRGS STAT IC SUM DIFFER NODE LABEL 101 FY 18254. 74899. 3357. 771 64. 0. 77164. -771 b4 101 FZ 23256. 81 1 l. 189387. 190982. 148423. 33'9404. -42559 101 MX 1105214. 5056053. 263896. 5182163. 41 630. 5223793. -5140533 102 FZ 221 79. 8908. J 86073. 137602. 1 37229. 324331. -50373 15 102 MX 1672 16. 1472227. 27237. 1481943. 9093'9. 1572832. -1391004 123 FY 0. 0. 0. 0. 0. 0. 0 123 FZ 0. 0. 0. 0. 0. 0. 0 123 MX 0. O. 0. 0. 0. O. 0 123 MY 0. 0. 0. 0. 0. 0. 0 124 FX 47263. 7327. 35459. 59538. 0. 59538. -59538 124 FY 0. 0. 0. 0. 0. 0. 0 124 FZ 0. 0. ~'. 0. 0. D. 151 O. C (1 5( 4 MX O. O. 0. 0. 0. 0. C ~ 8( I 124 I'lY O. O. 0. 0. C 21 I' 124 MZ 0. 0. 0. 0. 0. 0. C 22 201 FY 81 08. 36548. 1083. 374 52. -0. 374 52. -374 5C 201 FZ 10032. 3841. 36619. 38162. 51973. 90135. 138ll a.l 201 MX 2814 93. 2412508. 32768. 2429096. 37940. 2467036. -23911."ii 202 FZ 91 31. 3807. 35401. 36757. 4*754. 8351 1. 999 I 28' 202 MX 48478. 1290395. 24556. 1291539'. 85033. 1376572. 475 28 1 -120650'8'5 C2 C8 I 5811 I,I SRSS-4. 3 MHITINQ CORPORATION ANSYS SRSS PROQRAM, 7~~ 0 87/06/17. TABLE 8 Q gQ B J < QAQE eg3 OF J'g 79604/N JN/AEP 5 DC 0 6 OLD NA IN TROLLEY AID> NO LD / OB E REACTION SUGARY t OAD STEP NODE LABEL 1 2 3 SRSS, STATIC,... SUN 101 FY 651, 241646. 241647. 0. 241647. -241647. 101 FZ . 28 18. 31807.. 13366. 34616. 77038. 1 1 1 654. 42421. 0.'. 101 NX 61465. 16139502. 32461. 16139652. 43418. 16183070. -16096234. 102 FZ '597. 3144'9. 1 1463. 33574. 68869'. 102443. 35295. 102 8X 50387. 682901, 12219, 684867,, 89442, 774308. -595425. 123 FY 0... 0, 0.,

0. 0. 0. 0. 0 123 FZ 0. 0. O. 0. 0. 0. 0.

I 123 NX 0. 0. 0. 0 123 NY 0. 0. 0. 0. 0. 0 124 FX 32423. 854. 4497. 32744. 0. 32744. -32744 124 FY 0. 0. 0. 0. 0. 0. 0 124 FZ O. O. 0. 0. 0. 0. 0 124 NX 0. O. 0. 0. 0. 0. 0 124 NY 0. 0. 0. 0. O. 0. 0 124 NZ 0. 0. 0. 0. 0. 0. 0 201 FY '924. 221 007. 229. 221009. 221009. -221009 201 FZ 2006. 27639. 12811. 30529'. 73312. 103842. 42783 201 NX 37572. 149'19495. 28612.'49'19569., 42515. 14962085. -14877054 202 FZ '1778. 27582. 10829. 29684. 65144. 94828. 35459 202 NX 23751. 217251. 11012. 218822. 88536. 307358: -130287 ( [I,1 <n 1L) 25 5 ~0 1~ 07 I ~ '. ll 1 '1 C4 sRss-n, 3 NH1TINQ coRPCR*TICN ANsYs sRss PRCBRAM 79(yog 27/CA/17. TABLE B gn4 Ls 2 M0DE 1 scALE FAcT0R ', 0201 JM PAeE8-gq OF St L2 79604/MJN/AEPi DCCi QLD'AIN TROLLEY MIDi NO LD / OBE REACTION

SUMMARY

LOAD STEP 1 2 3 SRSS STATIC SUM D IFF ER NODE LABEL'01 FY 651. 19360. 174. 19372. 0. 19372. -19372. 101 FZ

     '01   MX       '1465;   2818. 2603.

1293655. 13366. " 13906.

                                              '2461; 1295521.

77038.

                                                                         "'3418.

90943. 1338939. 63132.

                                                                                                     -1252104.

102 FZ, 2597. 2575. 11463. 12032. 68869. 80902. 56837.

                             '. 0

102 MX 50387. 63514. '7453. 123 FY '

0. 0, 12219.
                                                    '0, 81989.
0. " 89442.
                                                                              -'" 0.   "

171431. 123 FZ 0. '0. 0. 0. 0. 0. 0. 123 0. 0. 0. 0. 0. 0. 0.

      '123 MX MY         "                                            0'          0'" "     '

0. 124 FX 32423. 834. 4497. 32744. 0. 32744. -32744. 124 FY 0. 0. 0. 0. 0. 0. 0. 124 MX 0. O. 0. 0. 0. 0. 0. 124 MY 0. O. 0. 0. 0. 0. 0. 2n-ll O. 0. O. O. O. 0. O. 201 FY 924. 1771 5. 229. 17740. 17740. '17740. 201 FZ 2006. 2262. 12811. 13163. 73312. 86475. 60150. 201- MX '7572.1195383. 28612. '1 f96315, 42515, 1238830. " -1'1 53800. 202 FZ 1778. 2283. 10829. 11209. 65144. 76352. 53935. 202 MX 23751. 28769'. 11012. 38898. 88536. 127433. 49638. ( ll, in >hi hg hO', 171

.1P 1

4 I Wk tp ll fCt

   ~e I+

SRSS-4. 3 BITING CORPORATION ANSYS SRSS PROGRAM 7 f (r 0 9 87/06/17. TABLE 0 pe B fh N PACE Q-gg OF gP'kZ2 79604/MM/AEPn DCC5 OLD MAIN TROLLEY MID5 NQ LD / SSE REACTION

SUMMARY

'"c LOAD STEP 1 2 . 3 SRSS . STATIC .... SVM DIFFER NODE LABEL 101 FY 1287. 453119. 352. 453121. 0. 453121. -453121. 101 F Z 5987. 59644. 31962.. 67933. 77038. 144970. 9105. 101 MX 1 14435. 30263751. 74935. 30264060. 43418. 30307478. -30220643. 102 FZ 5451. 58975. 27412. 65262. 68869'. 134132. 3607. 102 FIX 951 50, 1280471, 27069 1284287. 89442. 1373728. -1194845. 123 FY 0. 0. 0. 0. 0. 0. 0. 123 123 123 FZ MX, MY 0. 0. 0. 0... 0..., O. 0. 0. 0. 0. 0.... 0. 0.. 0. 0. 0. 0., 0. 0 0 0 I~ 124 124 124 FX FY FZ 61748. 0. 0. 1 580. 0. O. 10525. 0. 0. 0, 62658. 0. 0. 0,

0. ,

62658. 0. 0.

                                                                                                                -62658 0

0 124 0. 0. 0. 0. 0. 0 124 124 MX MY MZ 0. O. O. O. O. 0. 0.

                                                        ~          07 0.

0, 0. 0.... 0. 0 0 201 FY 1709. 414417. 462. 414421. 414421. -414421 201 FZ 4598. 51830. 30635. , 60382. 73312. 133695. 12930 201 MX 75797. 27976082. 66882. 27976265. 42515. 28018780. 27933750 202 FZ 4024. 51724. 25894. 57984. 65144. 123127. 7160 202 MX 48954. 408215. 25947. 411958, , 88536.. 500494. .-323423 I2'( 33 ( IL >n IL )

  '3 136 l38
  ~ 40 141 sC i 43 IC4 sC5 48 147; 148

I~ O'I fL E 1 jk/ 4t I 14 gl>>

't;4           123 FZ 123 MX 123  MY 124 FX 0.

0.

                                   "0.

61748. 1 0. 0. 542. 0. 0. 0. 10525. 62657. 0.

0. "

0. 0. 0. 0. 0. 0. 0. 62657. 0. 0. 0.

                                                                                                                   -62657.

124 FY 0. 0. 0. 0. 0. 0. O. 124'Z '0. '0. 0. 0. 0. 0: 0. 124 0. 0. 0. 0. 0. 0. 0. MX 124 MY 0. 0. 0. 0. O. 0. 0.

             '124  MZ                0.              0".          0.            K             '0.          0.

201 FY 1709'. 215.990. 462. 23058. -0. 23058, -23058. 201 FZ 4598.. 3061. 30635. 31 129. 73312. 104441. 42184. 201- IIX . '5797 155.1117. 66SS2. 1554407. 42515. 1596923. 1511592 202 FZ 4024. 3143. 25894. 26393, 65144. 91537. 38751 202 MX 48954. 55198. 25947. 78208. 88536. 166744. 10327 "5 0 I OC

     'I

(/4>>

        ~

pn I ba'71 t40'1' l42 l43, I i 44. I I

 /45 i46 4,,

I ~ IAS I I 54

      )t ~
      %if g

5'f '

TABLE gaqll'Y

4. 3 WHITINQ CORPORATION ANSYS SRSS PROQRAN 79604/NM/AEP REACTION SUNDRY LOAD STEP
                            'CC     OLD HAIN TROLLEY  1/4  NO LD  /'BE
                                                                      ~0(o0 3M f

akAZ 87/06/17. PAQE g-J7 OF +8 1 2 3 SRSS STATIC - SUN DIFFER NODE LABEL 101 FY 7570. 299492. 700. 299588. 0. 299588. -299588. 101 FZ 7539. 34459. 11498. 37101. 96753. 133854. 59653. 101 NX 509939. 20048044. 78267. 20054681. 41 923. 20096603. -20012758. 110'. c, 102 FZ 7942. 34792. 9142. 36840. 85152. 121992- 48312. 102 NX 74318. 290332. 21240. 300445. 88685. 389130. -21 1760.

             '123 FY             0.                               0.           0.             0.          0."'.
   ,cl        123 FZ             0,           0.       0.                      0.             0.          0.

Ilh 123 NX 0. 0. 0. 0. 0. 0. 0. 123 rely 0. O. 0. 0. 0. 0 124 FX 291 51. 111 13. 12583. 33639. 0. 33639. -33639. I 15'. 124 FY 0. 0. 0. 0. 0. 0. 0

0. 0. 0. 0 tol 124 NX 0. O. D. 0. 0. 0. 0

'aiI 124 llY 0. O. . 0. 0. 0. 0. 0 ea '124 Ht 0. 0. 0. 0. 0. 0. 0

~ 6'01 201 FY Ft 3624..

3225. 140492. 17577. 526. 6260. 140540. 18935. 53637. 14054D. 72573.

                                                                                                   -140540 34702
'25'02        201 llX 202 FZ t1X 220551.

2894. 59766. 5123646. 17811. 725083. 15605. 5653. 28522. 8126663. 18909. 728101.

                                                                        '8847.

48820. 85403. 816551 1. -8087816 67729. 813504. 29911

                                                                                                   -642699 W

I OI 3I 3'h ((g) tg 1CO) h3 P7I 3OI l40: 42'43 I lw'I I45I I40 I 47'4O I I 7'" 1'

  '53 154
,Jig'f,lg

'C,i Vt,

SRSS-4. 3 NHITINQ CORPORATION ANSYS SRSS PROQRAM 79Cy4I 't 87/06/17. ABLE 0 egg LS 2 MODE 1 SCALE FACTOR ~ ~ 0775 BY 8 6 PAQE8-gp OF S8'~~ 79604/MdN/AEPl DCCi OLD MAIN TROLLEY 1/4> NO LD / OBE REACTION SVMMARY l'01 LOAD STEP "NODE LABEL FY 1 0 1 FZ 101 MX 7570. 7539.

                     '09939.

1 2 23803. 2698.

                                  '607676.

1 3 700. 1498. SRSS 24988. 14011. STATIC 96753. 0. SVM 24988. 110765. DIFFER

                                                                                                      -24988.

82742. 78267. 1688427. 4 1 923. 1730349. -1646504. 102 FZ 7942. 2703. 9142. 12408. 85152. 97560. 72744. 102 MX 74318. 266032. 21240. 277033. 88685. 365718. -188348. 14 IC

lri
   ~

123 123 123 124 124 FZ MX MY" FX FY

                         '.'   0.

0. 291 51. O. 0.

0. '

0. 2364, 0, O. 0. 0. 0. 12583. 0. 0. 0. 0. 0. 31838. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 31838. 0.

                                                                                                      -31838 O.

0. 0. O. 0 12>>" FZ '0. 0. 0 124 MX 0. 0. 0. 0.

          '24    MY            0.          O...      0.          0.

0. 0. 0. 0. 0. 0 124 MZ 0. 0. b. 0. 0 201 FY 3624. 1 1323. 526. 11901. 11901. -1 1901 608! i. 15609'.74O495. 201 FZ 3225. 1371. 6260. 7174. 53637. 46464 2s'02 ZOr Mr 202 FZ MX

                       -220891."706609:

2894. 59766. 1400., 217437. 5653. 28522. 227297. 38847. 6503. 48820. 85403.

                                                                                      '779342.

55323. 312700.

                                                                                                 -701647 42317
                                                                                                   -141895 22' 3C r'32, 30'40 1

141l I l42 s43 I:, 1 i43: 14' l 147 I I42

~ 4 0I I

? 3 ptO %1

 'PW*

>i;> ~f04 A<a, 4

       <<v

SRSS-4. 3 NHITINC CORPORATION ANSYS SRSS PROQRAM ~0~0 87/06/17. TABLE 0 QQg BY HJM PACEB-Q'P OF Sb 79604/MOM/AEP 6 DC Ce OLD MAIN TROLLEY 1 /46 NO LD / SSE I REACTION

SUMMARY

LOAD STEP 1 2 3 SRSS STAT I C SUM DIFFER NODE LABEL' ~ 101 FY 1 41 77. 561 578. 1 597. 561759. 0. 561759. -561759. 101 FZ 16636. 64616. " 27501. 72169. 96753. 1689~~~. 24585. 101 MX 955632. 37591937. 183870: 37604531. 41923. 37646454. -37562609.

  ~  .-

102 FZ 102

              '!23 MX FY 16309.

133585. 0. 65241. 21783. 519798. 49478.

0. 0.

70688.

                                                                        '0: "-

538965. 85152. 88685. 0." ""'. 155840. 627650. 0: 14464.

                                                                                                              -450280.

123 FZ 123 MX 123 MY 124 FX 54272. 0.

                                    '" 0.

0 '." 20795. 0. 0. 28306. 0. 0. 0 " 0. 0. 0" 64646. 0. 0. 0. 0. 64646. O. 0. 0. 0. 0.

                                                                                                               -64646.

124 FY 0. 0. 0. 0. 0. 0. 0.

            ~   124   MX                0.            O.         0.          0.            0.             O.          O.

124 MY 0. O. 0. 0. 0. 0. 0. 1 24 -M O. 0. O. 0. 0. 0. 0. 201 FY 6788. 263436. 1214. 263526. -0. 263526. -263526. 201 FZ 7768. 32960. 15001. 37037. 53637. 90674. 16600

               '201 IIX       411454. 15231720.           '33352. 15237313.      '8847.       15276160: -15158466 202 FZ             6990.        33397. 13547.'6711.               48820.         85531.      12109 202 MX         108988.       1354097.      67500. 1360152.        85403.      1445554. -1274749
31 ~

I I ((bi in Jb Ic

 'OOI 40
    'I
,42 l
  ~
    .5'is,

, 47' ill

    ~ 0 I

iss I 753

e h6 o 149 ~ P ~+A +

SRSS-4. 3 NMITINQ CORPORATION ANSYS SRSS PROGRAM

               ~

7~4~ ( 87/06/17. TABLE 8 /5() LS 2 NODE 1 SCALE FACTOR ~ ~ OS21 BY M PACEg-V~OF SB ~ 79604/NJM/AEPi ~ DCC> OLD MAIN TROLLEY 1/4. NO LD / SSE I REACTION SUMNARY LOAD STEP 1 2 3 SRSS STATIC SUN DIFFER NODE LABEL 101 FY 141 77. 30718. 1597. 33869. 0. 33869. -33869. 101 FZ 16636. 3451. 27501. 32326. 96753. 129080. 64427.

                 '" '55632; 101 NX                   '2091436.       183870.      2306760.         41 923. 2348683. -2264838.

102 FZ 16309. 3418. 21783. 27426. BS 1 52. 112578. 57726. 102 NX 133585. 471695. 49478. 492736. 88685. 581421. -404051. 123 FY - 0.'-

0. 0. 0 .
0. 0 123 FZ 0.

123 123 124 NX NY

                 '-'"'        0.

0.

0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O. 0. P. FX 54272. 4053. 28306. 61344. 0. 61344. -61344. 124 FY 0. 0. 0. 0. 0. 0. O.

0. 0. 0 124 NX 0. 0. 0. 0. 0. 0. 0.
 'Z15   124 NY                0.              0.      0.             0.               0.           0.        0.

X~X[ 24 N 0. 0. 0. 201 FY 6788. 14825. 1214. 16350. -0. 16350. 16350. 201 FZ 7768. 1746. 15001. 16983. 53637. 70621.. 36654. 201 tlX '411454. 97Tl

  .0    202  F.Z         6990.             1788. 13547..       15348.         48820.        64168.      33472.

202 NX 1089881 381647. 67500. 402602. 85403. 488005. -317200 ( (gal >0 Ih) 00 ia0, I sJ

                                      ~  '

'%%jtgka:, ~ ~ lent ~

                                 . ~
   'p
                     ~ 'I I+

4'I W1" %'6'~ e

                                                                                                        ~
                                                                                                            -        "~ a SRSS-4. 3 WHITINC CORPORATION ANSYS SRSS PROQRAN                  7'tI300       87/06/17.
   'I
           'TABLE   f                                                     BY               PACE P-q/ OF            SS

>4 79604/NM/AEP9 DCCP OLD NAIN TROLLEY RH END> NO LD / OBE REACTION

SUMMARY

LOAD STEP 1 3 SRSS STATIC SUN DIFFER l7 l NODE CAB 101 FY 4723. 52689. 918. 52908. 0. 52908. -52908. 0i 101 FZ 4374. 3301. 5745. 9194. 107363. 116557. 98l69. [10> 101 >>X 242849. 3188424. 69730. 3198419. 39266. 3237685. -3159153.

"l 12l 102 FZ 102 NX 6698.

127156. 4182. 1210645. 4369. 19009. 9025. 1217453. 96327. 91092a 105352. 1308545. -1126361. 87302. 13l 123 0. a. 0. 0. 0. 0. I14) 123 FZ 0. O. 0. 0. 0. 0. 0. 115, 123 NX 0. O. 0. 0. 0. 0. 0.

   '10       '123                0.          0.         0.            0.                0.                    0.            0.

124 FX 241 62. 6711. 12596. 28063. 0. 28063. -28063 124 FY 0. 0. 0. 0. 2~ a.,"' 0.

                                                                                       'a.
0. 0 0

j22 21 23 124 124 24 NX NY N 2D1 FY 201 FZ D. 0. 2386. 41 80. 0. O. b. 29456. 2463" 330.

                                               .3629.

a. 0. 0. 29554. 6059. D; 0. 0. 0. 29554. 0. O.

0. '
                                                                                                                    -29554 0

0 "aa 43041. 49100. 36982

 >aa'02      20 FZ                     28h8. 3067.   '926.                     f 37631.

43557. a~'195. 31706 202 >4X 50351 901 107 742h. 902543. 84353. 986896. -818190 I25I P2

30 131 l33 (lb >n I6 a a t ga F41 42 44 1

40 47 421 a

   '50j l51,'5
   '53 p5a g'50

< ~w

        ~ P,'

I t'n

3 NHITINQ CORPORATION ANSYS SRSS PRO('RAM $ 940 S7/06/17. TABLE 0 -gpss LS 2 MODECALE FACTOR "~: 3696 BY '< tIK PACE ~g OF $8 79604/MM/AEP2. DCC9 OLD MAIN TROLLEY RH ENDS NO LD /, OBE ~,,

  . REACT ION 

SUMMARY

LOAD STEF NODE- LABEL 101 FY 4723. 1 2 43606. 3 9'18. SRSS 43871. STATIC 0. SUM 43871. DIFFER ,e l 101 FZ 6574. 2755. 9013. 107363. 116376.

                                                                                                                      -4387'5745.

9835: 101 thX 242249. 2919299 69730. 2930312- 39266. 2969578. -289104! 102 FZ 6698. 3285. 4369. 8646. 96327. 104973. 8768c 102 MX 127156. 822455. 19009 0.

                                                                 '32444,            '91092,    923536.                 741351

( 123 FZ . 0. 0. ~

0. 0. 0. 0. (

123 MX 0. 0. 0. 0. 0. 0.

                                                                                                            -77219'RSS-4.

( 23 MY 0. 0. 0. 0. ( 124 FX 24162. 3637. 12596. 27490. 0. 27490. -2749( 124 FY 0. 0. 0. 0. 0. 2o '242~ MX 0. 0. 0.

0. 0.

O. 0 ( 124 0. 0. 0. 0. 0. 2~ MY 201 FY 2386. 25550. 330. 25664. 0. 25664. -25664 ( 201 FZ 4180. 2078. 3629. 5913. 43041. 48954. 3712( 202 FZ. 41 95. 2214. 3067. 5649. 37631. 43280.

 ~l        202 MX             50351.          855039.                856552.         84353. 940905.

3198'424. (ll in= l4 ) i

     'l                                  ~  ~ h 47'ht I$ 0 41
 ~ 45
    ~0 f$ 1
   $ 21 I

1 54i "rS Sa

r b'p'

                          . ~

lk 1 ,ig ~~

                   'si %'

P'~W '

   ~     I ~ '
                       ~ ~

~ ~ I

                   ~ ~

0 ~

     ~ ~
               ~ ~

so 71 h roo'

       ~ ~ '
                     ~   ~ ~

~ ~

                 ~ ~
                       ~ ~
                 ~ ~
   ~ ~

K V

f' EFS-i. 2 FOR SRSS-4. 3 WHITING REQN 7960~ DATE sv NJ M eseE 8 9J ov ~8 TABLE 6 SUM OF ELEMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM (1b i irl-1b ) HID 50 U 14 I 151 16043. 31397; '883. , 7186..~; '.'-'75429;,::,'2660800- " HID 50 U 15 I 155 '"'16043.. 30706. '006.'"",':.'186.. ';;,.',:..~81974""".';"3678000. 4: MID 50 U 73 I 255 10918. 31489. 1994. 7343. 81149. 2632800. HID 50 D 14 I 151 19532. 33957. 1919. 7962.+ 79934. 3225800.

'" HID     50 D    72 I; 251-::-14076..:.<< 28447 ..-'907.                          ; 7567          =-.,'-",i   78280;:;'-=3040000 I
                                                                                  ~

HID 50 D 73 '255':. -.14076. "28622; '-. 2038.".- '==7567..".-; '84808.-";.--'2693500. 1/4 50 U 15 I 155 20947. 17933. 2013. 3909. 81926. 2035300. 1/4 50 U 72 I 251 '833. 19224. 1843. 3928. 69930. 2121200. 1/4 3 78 3

    '/4         U 50 D 14 'X.,"'J'5L      '-  28780 ",'" 23k f4     '
                                                                 '952           ~
                                                                                  '"'""'"<jw'"'199'<<" '"'"j~"'84590'","-m210fXQO 1'/4  50 D '15    I  '1.55'       28?80... 23250. '.'2078.+","a";- 4199. "' '7149.'f>.>>2587800;
    . I/4 I
                                                                                                                                                                    '/4 50 D    73      255          10000.       26659.             1 929.                4803.                  75181.                             2492i00.

END 50 U 14 I f51 29151. 21424. 1920. 2528. 81186. 1537100. END 50 U

                   '215 I    155         29i51.       21 82.            20                         28                 84
   ..END    50 U        I   251   ';";q '15569    . 22476     "", =.,,:1 853 'P ix~q',"".",,4828      '~':,';:

I 255 72249'~q~'~l"2459XQO'D 50 U 73 -~" 15569. 22368...:".',19'14'.,".."'"";"".,4828. "'.","'727f5;,~,"'-'2631 300. D D 14 I f5 8544 < 67 ' 28 END 50 D 15 I 155 38544.* 21272. 2078. ~ 2528. 86446. 2777500. END 50 D 72 I 251 15788. 29950. 1870. 5747. 73735. 3545000. END 50 9 73 I 255 15788 29990 4 7 9 0 HID NG " 14 I 351 '1066. 19294.;-';:1844. -. =; 621 5. " ",'. 70725 "-:.: -'825300. I '1,55 . 11066. '9300.. ";;1956 -"'" '.". 6215..".-;~':.77762 """,2061100., HID NO f5 HID MID NO 73 I 255 7974. 16409. 1947. 5996. 77115. f540900. 1/4 NO 14 I 151 16398. 15056. 1872. 3635. 74327. 1315300. 1/4 NO 15 I 155 16398 1/4 NO 72 I"'51,;.6594. ', 14876.."-'-': f829. "", ',;,,'3401.":"",.'."68306..,';.";"f'664800. 1/4 NO 73 I. 255 '."" '6594. f4925..'.- 'XBBf'.",,"' "340f,"'~+~g',20985::;"...'1407900. RHE NO 4 RHE NO 15 I 155 32938. 21125. 2026, 1919. 81224. 2826200. RHE NO 72 I 251 1 9222. 28387. 1875. 5672. 75245. 2472600. RHE NO 73 I 255 19222 ~ 53. 9 0 7 Ppag~y A HA@I MUM

ICg 9 pt 4 Q ~7 I r! tl 1

EFS-1. 2 FOR SRSS-4. 3 HHITING REGN 7B,OH DATE G I<

                                                                     +" +                PAGE B HG OF 5'8 8'Y HHECXIQN SUM OF ELEMENT FORCES             IN ELEMENT CO-ORDINATE SYSTEM                    (i bi in-1b )

MID 50 V 14 I 151 21542. 45516. 1935. 8881. 814383588800. MID 50 V 15 I 155 21542. 43946. 2051. 8881- '5805. 5572400. MID SO U 73 I 255 13950. 49034. 2037. 9520. 84829. 3913200-MID 50 D 14 I 151 27797. 48384. 2002. 10480.% 89851. 4594700. MID MID 50 D 72 I 251 20028. 40584. 1985. 10025. ..87497. 4347600. MID 50 D 73 I 255 :20028. 40827. 2123. " 10025. '"'2097 .'"3832800. 1/4 50 U 15 I 155 27566. 25721. 2068. 5358. 86226. 2984700. 1/4 50 U 72 I 251 11503. 25017. 1867. 4904. 72983. 2818800. 1/4 50 D 14 I 151 41197.. 34329. 2048," ',5769'. 96331.--;,3069900.

                                                                     '769.

1'/4 50 D 15 I 155 41197. 34435. 2182.. ' 9541$ . - '3877400.

                                                                                                 *'I 50 D  73   I   255       15089. 37989. 1978.           6421.            79191.
                                                                                                     "'/4 3562500.

END 50 U 14 I 151 43470. 39246. 2027. 4068. 95340. 2767800.

  .END      50 V  72   I'51     ',   28267. 32414. 1903.:.',       6617...'.,80005.'.. 3109'4QO.
                                                                     '6617. ' "774X4..," "'4441400.

END 50 V 73 I 255 " 28267. 31987. 1987 END 50 D 15 I 155 577018 38856.'220.< 4066. 97105. 5098100. END 50 D 72 I 251 28531. 44051. 1929. 8000. 82034. 4948800. N T MID 14 I 151 '4376. 25195. 1877. ~ 7889. 74649. 2375300. MID NO NO 15 I 155 14376. 25173. 1992. '889. 80787. 2700000. MID NO 73 I 255 10353. 21 585. 1982. 7677. 80014. 201 1400. 1/4 NO 14 I 151 22264. 22804. 1917. 4909. 79905. 1925400. 4 1 1/4 1/4 NO NO 72 73 I I 251 101 255 ,-=10117. I7. 19833., 19910. T 1850. 1908.

                                                                 '244.
                                                                  ,     4244.

70999. 72975. " 2286800. 189450O. RHE NO iS I 155 57245. 37546. 2192. 3089. 93236. 4987600. RHE NO 72 I 251 34657. 49500P 1957. 8738. 86433. 3848500.

  • Oavoms A <AGO~VH

C"

            ~ I
,I

'C ~ jul lf P 4%'\ ~ ~

   ;L<

EFS-1. 2 SRSS-4 NHITINt'EQN 770a t DATE C-/< ~

                                                                                                             ~

FOR 3 BY +> < PACE E C? ~QF ( TABLE 8+7 SUN OF ELEMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM f ibP in-ib ) HID 50 V 60 J 391 111710. 0. Q. 0. 0. 0. MID 50 V.hi J 393 70629. 18774. 1 1484. 0, 0. 0. HID 50 U 63 J 394 71057. 0. 11946. 0. 0. 0. NID 50 D 60 J 391 161740. 0. 0. 0. 0. 0. NXD HID HID 50 D 5o n 61 J 393 62 J 392 63 J 394 118900 161490. 119130. ' 13 25653. 0. 11 0.. 11757.,".; 0 0. O. 0. 0. 0. Q. 1/4 60 J 1/4 50 V 61 J 393 45590. 10718. 8623. 0. 0. 0. 1/4 50 V 62 J 392 75758. 21635. 0. 0. 0. 0. 1/4 V 63 J 394 78111 4 9 1/4 1'/4 60 J 391 61 J 393 1bl840. 95357., '4473. 0. 0'. 0.;= 11872.'-': '" 0. O. 0. 0 0 O. 0. 0. 1/4 63 J 394 130'980. 0. 11815. 0. 0. END END END. END 60 J 391 61 J 393 392 394 102230. 50635 77394.. 76243.. 0. 15 05. 28127. 0. 14 0 12029. 0. Q.,, ',"'. ='

                                                                                   '.0.

0. 0. 0. 0 0.

                                                                                                .0.

p. 0 0. 0. END 50 D hi J 393 92174. 15370. 13332. 0. 0. 0. END END 50 D 62 J 392 50 D- 63 J 394 118460. 120080 39380k'.

0. 4 ¹.

O. 0. 0. NXD 60 J 39'1 63063. 0. 0. 0. O. 0. HID 61 J 393 28189. 12423. 1081 1'. '. " 0. 0. 0. HID 62 J 392 63068 ' 0 5XD 1/4 1/4 1/4 1/4 RHE NG NQ NO 63 J 394 60 J 391 hi J 393 62 J 392 63 J 394 60 J 391: hl J 393 28015. 74837. 14259. 47858., 74139'. 46043. 26048. 0. 0. 8622. 16797., 0. 5405. 10835. 1002i. 0. 9968. 0. 1 1 571. 0. 0. 0 0. 0 0. 0. 0 0. O. 0 o. 0. 0 0. O. RHE 1 0. 0. 0. RHE 62 J RHE 63 J 394 49360. 0. 12015. 0. 0. 0. OEllOTPS A H ~YAM

t 4 P 4

    ~ I W VI ~ P

EFS-i. 2 FOR SRSS-4. 3 WHITING REGN 7ggo'/ D*TE Cc

                                                                                                           -/f $ 7 PACa    0 IE~ov I

TABLE 85$ ~ ~LLKf DIFFERENCE OF ELEMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM ( lb'n-1b ) MID 50 V 60 J 391 38715. 0 0. 0. 0. 0. MID 50 V hi J 393 22955. -18555. -11366. 0. 0. 0. 1 MID 50 U 63 J 394 22523. 0. -1 1828. 0. 0. 0. MID 50 D 60 J 391 -11312. 0. 0. O. O. O. MID 50 D 62 J 392 . .11054. -25434. 0. 0. 0. O. MID 50 D 63 J 394 -25553. 0. -if639.'/4

0. O. O.

50 U hl J 393 21572. -10379. -8440. 0. 0. 0. 1/4 50 U 62 J 392 48253. -2129'6. 0. 0. O. 0. i/ 0,."" 1/4 50 D 60 J 391 ', 15005. ',""' 0. 0. '

0. O.
   '1/4    50  D   61 J 393    -28194.+   '-14134.      -11689'.               0.               0.            O.

1/4 50 D 63 J 394 -10983. 0. -11632. 0. O. 0. END 50 U 60 J 391 71553. 0. 0. 0. O. O. END 50 U 1 J 9 19589 4 54 END 50 U 62 J 392 49678.. *-2747& .".'i '".,'; 0., 0';): ""'. 0. O.

                                               . "0. "'-.f1677.                 0.           "

END 50 V 63 J 394 4069'T. "";-".i, 0. 0. D END 50 D 61 J 393 -21950. -14718. -12980. 0. O. O. END 50 D 62 J 392 861 1. -38729P 0. 0. O. O. 63 J 94 -314 END MID MID NO NO D 60 J 391 61 J 393 37564. 15180. -12197. 0... -'10689.

0. 0.

0. O. 0. 0. 0. MID MID NO 63 J 394 15347. 0. -10713. 0. 0. O. 1/4 NO 60 J 391 52251. 0. 0. 0. 0. 0: 1/4 1/4 NG 62 J 392 26313. -16447. *

0. O. 0. 0.
  .'/4      NO      63 J 394   -'3781..           0.  ="

RK31. 0. 0. 0. RHE NO ~ 61 J 393 -4579. -14494. -1 1078. 0. 0. 0. RHE NO 62 J 392 25433. -24448. 0. 0. 0. O. RHE 3 I

         +   OEV0taS     W  Miw~m

A

       ,ta~kr e

~t- a C4

,'5

EFS-1. 2 FOR SRSS-4. 3 NHITINQ REGN 7~~~~ DATE BY +> + PAGE 6 H OF ZC TABLE 857 SUM OF ELEMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM (1bE in-1b ) MID 50 V 60 J 391 140210. 0. 0. 0. 0. MID 50 V 61 J 393 89304. 26111'. 21084. O. 0. MID 50 V 63 J 394 90170. 0. 21872. 0. 0. 0. MID 50 D 60 J 391 2373608 0. 0. 0. 0. O. MID MID 50 D 62 J 392 236870. - 36496. 0. O. 0. MID 50 D 63 J 394 182410. "

0. " 21462. 0. 0.

1 1/4 50 U 61 J 393 58727. 14893. 17960. 0. 0. 0. j 1/4 50 V 62 J 392 92011. 28496. 0. 0. 0. 0. 1/4 1/4 1/4 V 50 D 60 50 D -'61 J 391 226460. J 393 149140. 0 0.: 21413. 22496.

0. 0.

0. 0. 0.

                                                                                                  ]

1/4 50 D 63 J 394 193040. 0. 22450. 0. 0. END 50 V 60 J 391 118270. 0. 0. 0. 0. END 50 V 62 J 392 89566. 38764. ',', O. 0. 0. O. D 50 V 63 J 394 93943. 0. 23158. 0. 0. Q. END 50 D 61 J 393 141350. 28468. 24612. 0. 0. 0. END 50 D 62 J 392 166370. 56766.~ 0. 0. 0. 0. MID NO 60 J /91 79278. 0. 0: 0. 0. 0. MID NO 61 J 393 36341. 16267. 20246. 0. O. 0. MID NO 63 J 394 35943. 0. 20280. 0. 0. 0. 1/4 1/4 1/4 NO NO NO 60 J 391 62 J 392 63 J 394 89014. 5732T. 58353. 0. 22714. 0.

                                                           ';0.

19705. 0. 0.. O. 0. O. 0. 0. 0. 0. RHE NO 61 J 393 38282. 25167. 21264. 0. 0, O. RHE NO 62 J 392 64824. 39439. 0. 0. 0. 0. R H~E

          + OE VOvcs    e +~MUM

J), 1 l F 5~r

EFS-l. 2 FOR SRSS-4. 3 WHITING REGN +TG>+ DATE 8 TABLE 66Q DIFFERENCE OF El EMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM ( Ibi in-1b ) MID 50 U 60 J 391 10219'. O. 0. 0. 0. 0. MID 50 U 61 J 393 4280. -25891. -20966. 0. O. 0. MID 50 U 63 J 394 3410. 0. -21754. 0. 0. 0. MID 50 D 60 J 391 -86927. 0. 0. 0. 0. 0. ID MID MID 50 50 D D 62 J 392 63 J 394

                               -86440. -36277.
                               -888259         O.

0.

                                                   -21344..

0., 'O.

0. ', '

O. 0. 0. 1/4 50 U 61 J 393 8436. -14554. -17777. 0. 0. 0. 1/4 50 U 62 J 392 32000. -28157. 0. 0. 0. 0. 1/4 50 D 60 J 391 -49614. 0. D. ., 0. O'.'.. -, '. D. 1/4 50 D bi J 393 -81978. -21075. '-22313 O. 0. - ',-'"'; 0. 1/4 50 63 J 394 -73044. 0. -22267. 0. 0. D O. END 50 U 60 J 391 55515. 0. 0. 0. 0. 0. END D 50 U 50 U 62 J'92 63 J 37506. 394'2997.

                                         -38113.:

O.

                                                         .0.
                                                    -22806.

0... O.,:= ';, 0,', ~ 0. 50 D bl J 393 -71125. -27817. -24260. 0. 0. 0. END 50 D 62 J 392 -39294. -56115k 0. 0. 0. 0. 4 + MID NO 60 J 391 21349. O. 0. 0. 0. 0, MID NO 61 J 393 7027. -16041. -20124. 0. O. MID NO 63 J 394 7419. 0. -20158. 0. 0. 0. 1/4 NO 60 J 391 38074. 0. 0. 0. 0. 0. 4 1/4 NQ 62 J 392 16845. -22363. " O. 0. O. 0. 1/4 NQ 63 J 394 11471. 0. -19515. O. 0. 0. N RHE NO hi J 393 -16813. -24256. -20772. 0. 0. 0. RHE NO 62 J 392 13910. -38528. 0. O. 0. 0. OE HOTZg A H I HIMUR

     )(r 4r C

ttl

EFS-1 2 FOR SRSS-4. 3 MHITINQ REGN 796+ I DAyE paaz 8 5I-aw ~~

      ~

sv NJ< TABLE g 4/ SUM QF ELEMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM l lb> in-Ib ) MID 50 U 70 J 406 i82840. D. 0. O.. O. 0. MID 50 D 70 J 406 367280. + O. .O. O. O. 0. I/4 50 D 70 J 406 352890. O. 0. 0. 0. 0. END 50 U 70 J 406 i39200. 0. 0. 0. 0. 0. END MID NO 70 S 406 24694. O. O. O. O. 0. f /4 NO 70 J 406 23664. O. O. O. 0. H p ggg~g P, MAxIHlJIN

44M'+ F

EFS-i. 2 FOR SRSS-4. 3 WHITING REGN 7~~O t DATE BY <JK PAGE g~l OF DIFFERENCE OF ELEMENT FORCES IN ELEMENT CO-ORDINATE SYSTEM ( lb'n-lb ) MID 50 V 70 J 406 57192. 0. 0. Q. O. O. MID 50 D 70 J 406 -127250.~ 0. O. 0. O. 0. 1/4 50 D 70 J 406 -112860. 0. 0. 0. 0. Q. END 50 U 70 J 406 100840. 0. 0. 0. 0. 0. 1/4 D HID, Na NO 0 7Q J 406 70 J 406 15307. 1633&. Q. O. O. O. 0. O. 0 0. 0. O.

'~ ~ IO L u 4, <<4+

EFS-l. 2 SRSS-4. 3 HITING ?f609 y 8 FOR REGN K! ** ~J DATE TABLE P.KB'U& QF ELEMENT FORCES IN ELEifENT CO-ORDINATE SYSTEM (lb'n-lb ) NID 50 U 70 J 406 232540. Q. 0. '0. 0. HID 50 D 70 J 406 583660.+:, O. 0. 0. O. i/4 i/4 50 D 70 J 406 556660. 0. 0. 0. 0. 0. END 50 U 70 J 406 164930. 0. 0. O. 0. END 5 70 J-. HID NO 70 J 406 3i220. O. ~ O. 0. 0. 0. i/4 NO 70 J 406 28491. O. "O. 0. 0. 0. RH

                                                                                     ">~cx 4c gg gg~g  +   NlAX~tlM

+4 t

~tl

&I

EFS-1. 2 FOR SRSS-4. 3 WHITINC REGN 7~<o'F DATE BY MJN FAGS 8 SY OF

                                                 '7s MSE         RQ~QAO                                                         in-l b )

DIFFERENCE aF ELE>~EN'ORCES IN ELEMENT CO-ORDINaTE SVSTEN { lb> MID 50 U 70 J 406 7496. 0. 0. 0. 0. HID 50 D 70 J 406 -343630. ~ 0. 0. " 0, O. 1/4 50 D 70 J 406 -316630. 0. 0. 0. 0. 0. END 50 U 70 J 406 75100. 0. 0. 0. 0. 0. END 0 NID NG 70 J 406 8781. 0. 0. 0.. 0. 0. 1/4 NO 70 J 406 21509. 0. 0. 0 O.. 0. ORHOTK5 + M I Nl&Vhh

4l *~1 4i>

   'J

FORM iV t494

                                                'WHITING R oN    f           7 '/Co't         pATE       8 I 2- 8  7'Y J                  pAGE                  OF gf/c c'~ c'7 Tn,gL.p EL.E~a~T           Lo:~os         Foe,  . c   I~os~             A          ~~ T~: Fo.~IT thAXIH J>>4     STR~'~              'N IT+IN WE'=l-<I -N7 FRDM ~Z. 7O 32                (POMie~                   GiROEI;            Sh TIOII)
                                            ~I ~~ ~.(,               gooF,gINATE                   SvS<~'

Lo~n ~~~ Fy I=z Mx Hf Y ( or Ki+) +z. (,ea) gwr ) ((4 h'ip) DIF+ (ur tris) QQE MIO ul 2$ ll 33 R ff,7 ZN,v . WS'I 9'I I78'I l 2230

      'ON   2$ '  3IQ     as 'I     f2. 3                       $ '7S'f         68-13    f     - 2758        z.9I7 27    3 I0               2 9       2,0 0            2'I>~ 5         2.9 2.I5        I  SZ3 I     I@$ $

2.7 Qf 0 ~ xj. Q jt 3 +53 zo9.1 ~7ovl 3 9'7 2.~68 UP 29 Q I2 22 G 7.Q 19. 'f zza C l62d 7 ZC Bog 203 Q l7 I Co 7 2.2.7 7 z" 2. I Z.Sa I SATE Mlg ~P aN za Sl SS f Z. I7i f I 7, I'5.5 Ibi5 4'POi $

7. I
                                                                          '9 COI'I I
                                                                                  'Ig307 -39~V)
                                                                                                  <84'9       388z
                                                                                                              'tI+3 Zc,l                                              Io ~d'}     z/7 7 QIO 7I.                                           - Zg  Ir~ 2. Jz'8 BIO 8'.s 329      70 2                        369 7                             gL77         I 7/a oo9 309    3$ <        7.5        2.9      0      icy.5                             g <5(       25 I 2

i.(%~1 ff4 Vl

~4 ~

FORM 'N 2<9+ WHITING REQN. 79 ~ OATE MJ 1 PAGE 8-SC PF D8

                                                           .  +~sz.z~

GAOL.E: eI l'< E I EVENT LO:>Og FOe, . C leOE'R 8 01 TH-~ giaXI HVI'5 $ 7R +5g ~/V IT'H.IN 17'= I- EM NT I=Riinn +5 70 55 ( nlOlvli4W &RDKff 5 K:idi'I)

                                            ~1 QQ Ehl 7                g~ IC'l      PI&Tc        ZYS<~

Tm~ 1=x Fy 1=@ Mx Nly ( w tris ) M z. (xl p) (,Ns ) pe ) ( lv x>p) Dim (ul xip) QBE WIG BC I I Zi7 Ili7 98v.o tV V'+I I C 7(9 X 707 341 9't I "}.0 @ 15.7 g5R50 -$ 750 J5o't zS' 22.7. l 2-)C43 1317 51 340 5'1 340 '( 'j 3IJ.Z Vv'7F Ig Z.i gP l8.2 g.s 200 I I2. V '5185 1088~ 256$ zC 0 IC ~ 7 IO5 0 ISR Z. 2.790 7 BOC 8 I 6 'I9 SEE Mlg UP 3(3 lg.b I I S. C. g 2.4.2. Gg~oo $ lcl 2PZ 7 QCI Sg.2 I7,g 876. o 9$ 740 -3IQS) q g84 oN p4d 9 0

                                      ~         86,7                             87 037         I072 l    lg/C IO~            SQO                             OS  1 g'f -200'f2.         Z72.g 3C0 342     31                      2.3.5              1$4  l'o    19500            7070     +70 0 34 2. O'I  C   l 7. 7        9'b 2        ~

227 9 2&74/ -0 1'73 f700

AT 1 AT "gL

~ if
*t TTJ   T
    -1. 2 FOR"'SRSS-4. 3                                 'HIZING"REGN       '7ZZa<>9      DAZE 57       >IJ>A           RAOE    5-67    OR  $5
                                                              '4/l'25$ 7 AaC QBE         Q IR DER END LOADS SVM OF ELEMENT FORCES IN'CEMENT CO-'ORDI'NATE SYSTEH                        (lb>   in-ib )

MID 50 U ELEM NODE 35 J 319 FX FY 31453.. 15646. FZ

i. a"aaa.

127770. ii a 703400.

                                                                              . a*aa 2126700.       3895700.

MID 50 V 42 I 351 33575. 16043. 121620. 625020. '2195600. 3924900.+ NZD=YZfl&9&369 Sf489. f0918. 1l7i84~84050. "~50300. "'7~4400. I

                      ~ 5'~7979 MID    50  D   18    301   37818. 14942. 183890.       642950.        271 1700.      3351700.

MID 50 D 35 J 319 28447. 17463. 178580. 789470. 2350400. 31 1 1300. MID 51fli 42 5~> 532. 1 72450. /95205. 2Ei 43200. 387 ITOO. MID 50 D 59 J 369 28622. 14076. 167350. 615700. 2263100. 2927400. 1/4 50 V I 301 35 .~Z9 rr~IflI 1/4 50 18 42 I 351 22049. f9224. 21956. 11406. 8596. 20947. 150770. 69154. 137180. 510490. 3T854D. 2121600. f394200. 1592900. 22T55oo. U 962820. 2003200. 2130900. 1/4 50 59 J 369 19288. 7833. 1/4 50 0~~301 U D 35 J 319

                             ~8998.

26584. 1558~34086. 11721. 63996. 98454. 227100. 65264'0. 387440. 1362300. 2863630. 1975500. 20727<70. 1774800. 3030600. 1/4 42 I 351 END

       ~~~9~59 50 50 U D

18 I 301 29214. 25795. 28780. 2>aiaa59~ 0000. 13018. 219210. 92947. 1 57040. 1328100. ZI3200. 790000. 2759700. I735700. 2375900. 2700000. 2723700. 1559200. N~~ ~ END . 50 U 50 U 35 J 319 4 22476. 10426. J51=248 '72 29'15.1 59 J 369 50488. Zaf445.0 321480. f434.DOD. 1401200. 227IBOO. 2552600. 29278'Oo. ND ND END 50 D 18 I 301

            ~~s42~r9 50 D I 351 22368.

26644. 25985. 15569. 14022. 45087. 241480.+ 9950~4863':~33Z4. ~sroso'. 38544.+ 228900. 112940.. 799980. 1357900.

                                                                                           - 2774100.

2877700k 1571700. r750800 '. E67870<r. 2007700.+ 2760600. 2929200. END 50 D 59 J 369 29990. 5788. 57879. 1 581 50. 1700900. 3221900. MID I~~of~sfo~'493~2Z93. 35 J 319 16318. 1 affi6436. l609500. TB97300. NO 9921. 77726. 499360. 1323500. 1792800. ~1~0~9 MID 1/4 NO NO 42 I v 351 369 18 I 301 25368. f6409~974. 22060. 11066. 8899. 72515. 6796~49DT 101990. 450750. 431420. 1537700. r27 2211000. 400~675800.'. 1627700. 1326000. ~/a~O1/4 1 /4 NO NO 35 J 319 42 ~51 59 J 369 14876. 2Z534. 14925. 6669. f6398. 6594. 52031. B9Z93. 46985. 277320. 747530. 176310. 1082300. l534205. 1048700. 1738800. fssif400. 1 533900. RHE NO 18 I 301 24589; 14574. 107570. 810510. 1986900. 1419400. RHE NO 3~319=28387. TOZ72. 40'f50. 295220. 1575600. 2596800. RHE NO 42 I 351 25813. 32938. 96593. 1349200. 1821400. 2950100. RHE NO '59 J 369 28053. 19222. 34926. 45552. 1520400. 3725200. h OKFATS A MAAMl/W

~ 4 EFS-l. 2 FOR SRSS-4. 3 NHITING REQN 7')~0M 04TE Q l-7 S7 BY Md& PC 82 ~5- 8 ~OF .=

                                                              ~ v~gZ(f O 7 TABLE     Co SSE       G IR DER END LOADS SUM QF ELEMENT FORCES IN ELEMENT CQ-QRDINATE SYSTEM                     (1 bi   in-Ib )

ELEM NODE FX FY FZ MX MY MI~O 0 18 I 301 57798. 17855. 164000. 762110. 3078800. 3883900. MID 50 U 35 J 319 49060. 22282. 157680. 946480. 2805700. 6Z91300. MID 50 U 42 I 351 51328. 21542. 149840. 808370. 2836700. 5933300. MI~O l3 59 ~59 49034. 13950. 144280. 626190. 3107000. 4388700. MID 50 D 18 I 301 57835. 21290. 263230. 875340. 3807500. 4775100. MID 50 D 35 J 319 40584. 24870. 256530. 1083900. 3237100. 4450400. NID 50 D 42~51 581'75~7797. 248510. f 131300. 3724800. 5516700. MID 50 D 59 J 369 40827. 20028..242200. 875960. 3102700. 4166900. 1/4 50 U 18 I 301 36850. 14991. 185460. 685390. 2793500. 2260500.

    /4 50~3S~319              25017. 1 1540. 852'95.      420390.      1673800.      2942500.

1/4 50 U 42 I 351 35935. 27566. 168110. 1268100. 2652100. 3138100. 1/4 50 U 59 J 369 251 14. 1 1503. 78998. 29'9140. 1635100. 2579000. 4 50 ~8~SOT 48302. 22T69. 329250. 935280. 411050D. 3048400. 1/4 50 D 35 J 319 37878. 16861. 134610. 541780. 2367400, 4345200. 1/4 50 D 42 I 351 47440. 41197. 310980. 1914700. 4021500. 4054600. f74 50 D 59~369 37989. 15089. 128040. 45T530. 2309300. 3891300. END 50 U 1 8 I 301 48868. 2Z824. 180610. 1 392200. 3321 500. 2832600. END 50 U 35 J 319 32414. 13751. 60077. 507080. 1842800. 3228500. EAD 5~I 4~~5 4673 . 43470. 164810. 1976400.. 3224000. 5372000. ND 50 U 59 J 369 31987. 28267. 53522. 1 55580. 1784800. 4616300; ND 50 D 18 I 301 49965. 24123. 330690%'403800. 4213600. END 50 D 35~3T9 44051. 21069. 2402000. 5135900. END 50 D 42 I 351 48101. 57701k 316400. 2894200.+ 4097300. 5373400. END 50 D 59 J 369 43930. 28531. 75158. 227920 2326500. 5234300. 1~0 MID T8 I 50~9697~T090. 35 J 319 10T010. 520220. 2093500 24711OO. NQ 21482. 12930. 95709. 628360. 1578600. 2382100. MID NQ 42 I 351 40332. 14376. 88631. 585300. 1993900. 2895800. MID NO 59 J 3'69 21585. f0353. 53T31. 453T'90. f525100. 2189900. 1/4 18 I 301 38721. 12007. 120310. 590990.

                                                                         ~

NQ 2186700. 1971500. 1/4 NQ 35 J 319 19833. 9209. 61845. 366440. 131 5200. 2387100 116 iH M: .28~o5. 1/4 NQ 59 J 369 19910. 101 17. 55824. 238410. 1271200. 2055000. 18 I 301 R~~~3T9 RHE RHE NQ NQ 42 I 351 45144. II950'0. 47713. 25976. 1 1 8580. XSTK7. 4'74Tf. 57245. 105550. 1278000. 43029'0. 2098400. 2852300. 2504700. 2633100. 2519000. 4078000. 5172300. RHE NQ 59 J 369 48769. 34657. 41236. 70761. 2431000. 6697100. PENOTF5 P HAM< H V P

APPENDIX 5 WHITING REFERENCES

                          OMENCLATURE
                                       ~   R EON.

u>PJ E'~f3'7 DATE FORM Mog494 NOMENCLAUTRE A Area Length of section that is buc kl i ng Length of section that is buc kl i ng c Distance to extreme fibers d Distance to N.A. E Nodulus of elasticity Fx Force applied in the "x" dire ction Fy Force appli ed i n the '"y'" di re ction Fz Force applied in the "z" dire ction Ix Moment o f Inerti a about "x-x" axis Iy Moment o f Incr ti a about "y-y" axis Iz Moment of Inertia about "z-z" axis Jx 'Polar Moment of Inertia about "x-x" axis Jy Polar Moment of Inertia about "y-y" axi s Jz Polar Moment of Inertia about "z-z" axis L Length Nx Moment about "x" axis Ny Moment about'y" axis Mz Moment about "z" axis p Load ROTX Rotation'about the Global "x" axi s used i n modal analysis ROTY Rotation about the Global "y" axis used in modal anal ysi s ROTZ Rotati on about the Gl obal "z" axis used in modal analysis UX Displacement in Global "x" di rection used in modal analysis UY Displacement in Gl'obal "y" di rection used in modal analysi s UZ Displacement in Global "z" di rection used in modal analysis Centroid location in "x" dire cti on Centroid location in "y" direction z Centroid location in "z" direction Tensile or Compressive Stress Shear Stress

1

   'll' 1

WHITING REQN. 7 9604 PATE 8- 2 1- 87 BY Pt" Pt I 2$S7 PAGE ~BOP p REFERENCES "ANSYS Engineering Analysis System User's Manual," Swanson Anaysi s Systems, Inc., Eli zabeth, PA, Revision 4. 1, 1983. "Design of Weldments," Blodgett, James F. Lincoln Arc Welding Foundatiori, Cleveland, Ohio, 1965. "Formulas for Stress and Strain," R. J. Roark, McGraw Hi 1 1 Book Co,, New York, 1'965, 4th Edi tion. "Formulas for Stress and Str ain," R.J. Roark and W.C. Young, McGraw Hi 1 1 Book Co., New York, 1975, 5th Edi tion. "High Strength Bolting for Structural Joints," Bethlehem Steel Co., Bethlehem, PA 1972. "Manual of Steel Construction," American Institute of Steel Constructi on, Inc., New Yor k. 1980. NUREG: 0554, "Single-Failure-Proof Cranes for Nuclear Power Plants," U.S: Nuclear Regulatory Commission, May, 1979. "Python Rope Data", Uni rope Limi ted, 1985. "Regulatory Guide 1.29", Seismic Design Classification, U. S. Nuclear Regul atorg Commi ssi on, Rev 3, September 1978. "Regulatory Guide 1.92", Combining Modal Responses and Spatial Components. in Sei smi c Response Analysis, U.S. Nuclear Regulatory Commission, Rev. 1, February, 1976. "Roebling Wi.re Rope Handbook," The Colorado Fuel and Zr on Corporation, Trenton, NJ; 1966. "Specification for Welding of Industrial and Mill Cranes," AWS D14.1-70, Ameri can We 1di ng Soci ety, Mi ami, Florida, 1970. "Speci fi cation for Weldi ng o f Industri al and Mi 1 1 Cranes," AWS D14.1-85, Ameri can Welding Soci ety, Mi ami, Florida, 1986. "Speci fications for Electric Overhead Traveling Cranes," C.M, A.A. Speci fi cation 870, Crane Manufacturer' Associ ati on o f Ameri ca, Inc., Pi ttsburgh, PA 1975 & 1983.

a. FORM N 2404 wH~T~>G <Eog 79604 pATE 8-21-87 By M JM pAGE C-3 -Rl QF l'2 '8'7 REV MJN 9-I$ -87 Pg),1587

15. "Standard Handbook for Mechanical Engineers",

T. Baumeister and L; S. 'Marks, McGraw-Hill Book Company, New York, 1967, 7th Edition.

16. "Steel Design Manual," R. 'L. 'Brockenbrough and B.G'. Johnston, U. 'S.Steel 'Corporation, 1981.
17. "Structural Welding Code - Steel ", AWS D1.1'-85,
         %meri can Weldi ng Soci ety, Mi ami,"Fl or i da,'985.
18. "Whiting Crane Handbook," Whiting Corporation,
     '9.

Harvey, Illinois, 1967 8-1979.

         "Mire Rope User's Manual," American Iron
         'and  Steel Institute, Was hi'ngton, D. C., 1981, 2nd Edi   tion.

20.. "General Seismic Requirements for Equipment in D.C: Cook Niiclear Plant", AEPSC Specification Number DCCNE-101-(CN, Revision',. AUgust'8, 1970.

          "General Specifications for the upgrade of the 150/20 ton
          'capacity auxiliary building overhead bridge crane to single-failure-proof condition",      AEPSC    Specification Nunber DCC-MH-105-(CN, Revisioii     0, April    20, 1987.

FO R M No4404 WHITING REQN. GATE gy MJN pygmy D-l pp

                                                  +si APPENDIX 0 EYALUATION OF 55 TON LOAD After the completion of all computer runs with a 50 ton load,          it  was requested that the crane be evaluated wi.th a 55 ton load during a seismic event. The initial runs indicated that the SSE produces stresses that are closer to the allowables than the OBE. The trolley at midspan with the load down produces the maximum girder stresses and the trolley at end with the load down produces the maximum wheel Toads.

Therefore these two cases were run with a 55 ton load but with all other items as in the body of the report for the 50 ton load. The mode coefficients for these runs are shown in tables 01 and 02 and the unfactored and factored reactions are shown in tables 03 through D6. 'he wheel loads were derived as described in the body of the report and tabulated in table 07. The maximum stresses from the computer runs are summarized in tables 08 and Dg. The rope loads are summarized in table 010. The results for trolley at mid are summarized and compared with the results for 50T and with the allowables in table 011. The results for trolley at end are summarized and compared with the results for 5OT and with the allowables in table 012. For those components which were alanyzed manually with loadi ngs from the computer program the highest stresses were proportioned from the analysis for 5OT by applying a multiplier for the appropriate component from tables 011 and 12. The results are shown in table 013. The girder web stability was similarly proportioned as shown in table 014. It was found that the stresses in the crane did not exceed the allowable stresses when loaded with a 55 ton load during the s peci fied s ei smi c event.

l e ipse>> 1 kl Ft All

klbi3T3NQ AEGN 70 ~'~ t DA1E'ABLE SIJNNARY OF NATURAL FREOUENCI ES AND NODE COEFF IC IENTS .-PAOl'll'lDS .55....., ... NODE FREOUENCY NODE COEFFICIENT FOR SPECIFIED DIRECTION HZ X Y Z 1 2. 02 0. 09'55 + 241. 0000 + MAX 0. 200b 2 2. 83 3. 4330 + SAX 0. 1574 88. 8900 + l'lAX 3 4. ia 1. 3270 + 1. 0900 + 0. 0461

b. 32 0. 3182 0. 0343 1. 5750 ~

5 7. 99 0. 1032 0. 1987 ~ 0. 0602 ~ b 9. 05 0. 0441 0. 0480 0. 0054 7 9. 64 0. 0378 0. 0017 0. 0225 8 ii. 59 0. 0325 o. Oas2 0. 0007 9 13. 31 0. 0403 + 0. 0135 O. 0024 10 15. 09 o. 28a9 + 0. 0011 0. 0129 ii 12

18. 04
23. 32
0. 0054
0. 0012
0. 0177
0. 0104 0.

0. 0020 0006 13 28. 72 0. 0005 O. 0011 0. 0000 14 31. 23 O. OO77 0. 0003 0. 0015 15 35. 24 0. 0012 0. 0003 0. 0002 16 43. 69 O. 0002 0. 0001 0. 0003 17 54. 52 0. 0005 0. 0003 0. 0001 19'1. 18 20

56. 18 68.

02 89 O. 0. 0. 0005 0006 0005 O. 0001

0. 0000
0. 0001 0.

o. 0. 0002 oooa 0008

75. 33 0. 0002 0. OOOO 0. 0002 23 24 25 26 27 83.

85. 90. 91. 28 97 22 85

91. 91 123. 90
                      '.'. 0000'.

0. 0.

0. 0001 0.

0002 0002 OOOO OOOO

0. 0001
0. 0001
0. OOOO
0. 0000 O.

OOOO 0000 0. 0. 0. 0. 0001 0002 0001 0001

0. 0003
0. 0000 28 174. 80 . 0. 0000 0. 0000 O. 0000 SIQNIFICANCE FACTOR 0. 0. 05X 0. 05/

EXPANDED NODE 50K'NDICATES

          ~1

(%%

                                          ~t
                              ~ i a t',WI541P IL,
  • I C'%
    <<OI .

A.gl

          ~  41/

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROQRAN TABLE ¹ Qg LS 2 NODE 1 SCALE FACTOR sl . 1107 79604/NJN/AEP. DCCA OLD NAIN TROLLEY NID> SST L'D DN n~ 1940+

                                                                       /  SSE 87/07/)4.

FARED-3 oF iS HR'AOTIOlil RUHlFAR

                                                                               'X'UN I) 3         LOAD STEP              1         2          3     SRSS     STATIC                    DIFFER
 ~I d 'NODE    LABEL r                                                  0189.          0.      50189.       -50189.

e( 101 FZ 8341. 6691. 174882. 175208. 104525. 279734. -70683. ol 101 MX 1 14225. 3351455. 130566. 3355941. 44352. 34002'93. -331 1 589. IO 1 58. 1 68755. 96374. 265128. -72381. 102 NX 93993. 153495. 20605. 181163. 90341. 271 504. -90822. l2 123 FY 0. 0. 0. 0. 0. 0. 0. 13 0. I~ 123 NX 0. O. O. 0. 0. 0. 0. IS; 123 NY 0. O. 0. 0. O. 0. 0. Id -64308. 124 FY 0. 0. 0. 0. 0. 0. 0. 124 FZ 0. 0. 0. 0. 0. 0. 0. IO 20 124 NY 0. O. 0. 0. O. 0. 0. 21 124 NZ O. O. 0. 0. 0. 0. 0. 931. 201 FZ 7356. 5835. 172091. 172347. 100800. 273147. -71 547. 24 201 NX 76239. 3097556. 103406. 3100220. 43474. 3143693. -3056746. 202 NX 50304. 67267. 90095. 89459. 179555. -636. 2T 33 42 43

    ~S Ad<

lddc IS) I ) iS3'>di ISS f ISdi

               .e V  ~

h ('% 4 y I 'g ~

4 SRSS-4.'3 4lHITINQ CORPORATION ANSYS SRSS PROQRAM 'T9CO 5 87/07/) 4.

               %ABLE 0 QQ                                                  BYg PJ<       PAQE  9 C  OF l3 79604/MdM/AEP>   DCCe   OLD MAIN TROLLEY MID?    55T LD DN    /  SSE    X REACTYU~OMMAR LOAD STEP           1           2         3        SRSS      STATIC            SUM     DIFFER
  ~6~

IS'01 NODE LABEL 10 FZ 9~~359719. 8341. 174882. 453121. 184985. 0. 104 525. 453121. 289511.

                                                                                                        -453121.
                                                                                                         -80460.
  !       I      101 MX       114225. 3026376'9. 130566. 30264266.        44352. 30308618. -30219914.

xo a. 915. 58902. 168438. 178615. 96374. 274989. -82242. si 102 MX 93993. 1280460. 20605. 1284071. 90341. 1374412. -1193730. 12 123 FY 0. 0. 0. 0. 0. 0. 0. 13 0. 0. 0. 0.

                ?03 nX              0.           0.       0.            0.            0.           0.          0.

~, ss! 123 MY 0. 0. 0. 0. 0. 0. 0. is? 6 61 1*0 ~ 18358. 64309. 0. 64309. -64309. 124 FY 0. 0. 0. 0. 0. 0. 0.

  ! ?SI          124 FZ             0.           0.        0.           0.            0.           0.           0.

10 0. 0. 0. 0. 0. 20 124 MY. O. 0. 0. 0. 0. 0. 0. 2l 124 MZ 0. O. 0. 0. 0. 0. 0. 862. 414421. -0. 414421. -414421. 23 201 FZ 7356. 51905. 172091. 179899. 100800. 280699. -79098. 24 201 MX 76239. 27976096. 103406. 27976391. 43474. 28019864. -27932917. 23'26 3986. 92648. 266634. -81337. 202 MX 50304. 408174. 32586. 412551. 89459'h 502011. -323092. 27 I 20I 33i

   !33 i 36k 7

30 30 I

      ~ I i       !

I 62'46

    ?47
~   l4 0
    ?40,'
SC~
     'h s IS 0
     ?36 s

~ %F I'p

      ~

SRSS-4. 3 WHITING CORPORATION ANSYS SRSS PROGRAM 7 ~<>~ OIIOIIj 7. TABLE B~BLB 2 MDD~2 BCA . = < IS ~Q,M~DA )+22 O~,DE 13 9604/MJN/AEPI DCCI OLD HAIN TROLLEY HINDI 55T LD DN / SSE

                                                                                     'X'EACTION SUNNARY LOAD STEP           1         2           3       SRSS      STATIC                   SUI'1      DIFFER NODE LABEL 101 FY        1 8235. 76898.      3286.         79099.           0.             79099.         -79099.

101 FZ 228 50. 7448. 201904. 203330. 152746. 356076. -50583.

                  %1 NX        04536                   'I                                            I                  283 102  FZ       21852.      8569. 198536.         199919.      141 556.            341475.         -58363.

102 MX 167002. 1479978. 26226. 1489602. 91070. 1580672. -1398532. 123 FY 0. 0 0

  ,$             123  FZ            0.         0.           O.           0.          0.                     0.            0.

l ~ 123 NX 0. 0. 0. 0. 0. 0. 0. 123 NY

  ~  d           124  FX       47259.      7482. 34951.         592 S3.          0.             59253.         -59253.

II s& 6'24 124 FY FZ 124 HX 0. 0. 0. 0. 0 0. O. 0 0. 0. 0 0. 0. 0. 0. 0. 0. 0. Ioj 124 NY O. O. O. 0. 0. O. 0. 124 M E*: 2DI FY 8098. 37335. 1018. 38217. -0. 38217. -38217.

  'si           '01   FZ         9986. 3785. 38378.         39836.       52632.             92469.            12796.
  <<I             201 NX       283481      2 95        4                                           2 BRRZ 202 FZ          9086.      3811. 37109.         38395.      47413.               85808.            9018.

202 NX 48462. 1290425. 24622. 1291569. 850S7. 1376626. -1206512.

  $ 4, I

ssi

   $ 01 Ps
  'isa 40   1 I

411 421 j4$ 142 j,sl'j j l4OI 140 ' IBO I IB I i IBS F24'22' ISB j I I

 ~   AI      C
    ~

g

i'I li',

                            / ~ ~  '

e s ~ ~

                       ~'
 ~

e

                ~.

0 ~ ~

        ~ ~
    ~ ~

i C ~ ~ 4

~ ~ ESS-1. 2 FOR SASS-4. 3 NH1TINQ REQN ~BC~ DATE BY F1J PACE ~9 OF <3 TABLE OB AXIDIUM. STRESSESWBOKPWAOMMD~ 5 SSE MID 55 D CIRDER A 28 312 1049. 7590. 20983. 22338. 10132. 32470. C IRDER B 52 361 . 985. 9096. 20341. 22304. 9609. 31913. END CONNECT-LHE 74 252 1905. 1 5340. 480. 1 5465. 305. 1 5770. TABLE Og MA>3595 STBESSKS EEO5 PEAOMEDS. 55 SSK END 55 D COMPONENT ELEM ODE CIRDER A 35 319 4172. 13583. 665. 14225. 181. 14406. CIRDER B 43 353 1796. 12846. 4008. 1 3576. 2359. 15935. D CONN END CONNECT-LHE 74 252 5316. 17455. 668. 1 8258. - 358. 18616. W~ L DT'JfF = = 2.700 I

                   ~ <                      ll C

FORM N 2494 WHITING REQN. 7~~ + DATE BY J pAGE + OF gsz Z-z7-Z7 Q -lO ROI E.. LO~OS 5$ E 5e+L<O T Lo~ S pVllC. + 4mme-

                                       +Y%V%C OYtfAMIC M(0         O~        423 2       -363 2
                                      +59.2.      -2~9 2 ENb 42,$ .2. JftP =     QllFO  T, AL Ld&AQLE            lo83 T 3II C I 04+          30 o<p        aii Ci8

FORM NiZ49+ WHITING REQN. DATE A 7Ap -- Q- ll CO~e+F., -all Q=Zr/== f 50 .<rlZ, 55 T T ROLJ '=Y AT MIO LOAQ OOOO . 4 -N'F'111%II ETCH 50 T QQ T'av:.g 4DORSTh 6R ~P +u.o il 'H~<E'L Og WXaug, 07 ,9't lo.S 'f -5 J0~7 H7,S' 'J-5 sv.l 07 1.03 H z. MAX'g

                                       'fl.2.    "t-5     J96r5      07     l   OB
                        ~m                                 M.7       07      J.O   J
                  'Hx ~)c             JOB         y-5       JO7      07 hJ+NIgg!

I w5 07 War W J3'4 I +5 JZS'. D7 Po ~~ s-5 07 3JQ 85 328 DS'f J.OQ 32~ 7 ~ Vf 80 'J 85 l i03 327 .'f8 Eda COR g 6 85 ISC of leod gg,7 ~ 57 t S 85 J$ 8 DS I.03 32,7 "JS rlopK sup 5 83.7 423.2. Qro J,07 /0 Sgr2. ~ 30 863 OiR: Pu ~ -asa.c GC+ -BCG Z. 0 IO I. OC, LO~OS lg fIF 5 STeasg J g Kst

~M tq

FOAM N~2494

                                                               ~J IIII'I                  ~78         'Y PAGE      D       QF f27 I7 7AgI I-       Q   - l2 Co~F~elSQN                      5P~EZ8             +0      neo S5 T              .

T R 0 I-LEY A T E."IO LOAD Oo'NH Rwrio RAT'lO ZTcN 85< SW 775 L.b opt Srn \50 I AI7 IIW Atlatl 0q Ax~ 9,9 s-5 '.g 07 7,00 Igloo WV mX C 'f.2, 'I-5 4c. 7 07 I,O'l W z. 2St'.8 +-5 ace 8 07 l. O' H4x'u~ O'-5

                                                   $ 7I7         07       J,OQ Wx i@4)C         9,9                                07 gy'hh jQ(                  'f-5                     07   .

Wr~ t '7$,2. 9-3 203i7 07 Io 0'f Pu~ IOC +-5 IO. t 07 ,'f 8 <wore A IS.g ej 11 Of I.O I 32 7 6 I87 Q I7 Of , I.Ol 32 7~ EHo4e Q I'. L GI7 )9,2. 09 l 00 3X 7 L IS't QI7 I8 09 I.O I P2.. 7 52 0.0 t'59.2. ROPE Sup olo I 08 I o5$ x2. p2 7 Oie - L80 0 ~ 849 299. 2. 0 IO I.07 LO~Oa I H k'iF S 5TQES5 IQ KQ I

g t*-'. I'~ ~4

FOAM N 2494 8-"7-8". WHITING RfQN. 71SO t OATf

                                                                    < "M       PAGE       o '>       ot:

Bv 8SZ a-z7-87' Tact E 0 I3 ATto ED STRESS Eg I 4' ~~~+<<T~ ANAt-YZE'Q tvfpph/At.t y oe Co<I'uTE'R t QAQtk~&5 S~ge,g $ t o 855 COP Pd (((.NT MyL.T o wow SoT

 ~     Axis                         '0 ~l$       9. 'I        l,09                8Zo 7        ,3I has(Ni(. 4J6-                                 )5    I      I,OQ                 +2o 7        .4Q GR TRUCKS             TENS      . 9-33        ~6. 8      I.04                 3go7         ESP Tag To Ging        eo(           s  -5z      /go    2. I.O "1               50 2 T'g(.y g-70         I3 ~  g. 1 0't               +7o 3        .5o

( in'~ KT SoL.T 'f-89 .'f7.'I I o3 $0 2. ~ .'l5 vVe(.g 9- 'I2 20o 2 I 03 27 op .SS 9.- I 0$ )>.8 l.o f I f.C . 7Q 5-rRESS I ~ rCS l D.I + R+TIOEo cIR0Kg 80<ff I I N~ 5lAGI~TQ COH POH EI4T Sm~~ Hloi 7

                                                                       ~(ury
                                                                        ~o     Au.o W Wacko JOT                    rs r
  &ROE'e'8            I'GAEL.<      9  - to3,87(            I,og         ,902.  ~ 90$}}