ML17326A823

From kanterella
Jump to navigation Jump to search
Summary of Analysis of DC Cook Containment Response to Hydrogen Burn Transients
ML17326A823
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/31/1980
From:
OFFSHORE POWER SYSTEMS (SUBS. OF WESTINGHOUSE ELECTRI
To:
Shared Package
ML17326A822 List:
References
RP36A05, RP36A5, NUDOCS 8101190518
Download: ML17326A823 (78)


Text

SU MMARY OF ANALYSES OF D.C..COOK CONTAINMENT RESPONSE TO HYDROGEN TRANS)ENTS REPORT NO. 36AOG DECEi.'IBER 1980 ag 0 g j'9 0$t+

SUMMARY

OF ANALYSIS OF'.

C.

~ COOK CONTAINMENT RESPONSE C

TO HYDROGEN BURN TRANSIENTS PREPARED FOR WESTINGHOUSE ELECTRIC CORPORATION NUCLEAR TECHNOLOGY DIVISION OFFSHORE POWER SYSTEMS

'. 0.

BOX 8000 JACKSONVILLE, FLORIDA REPORT NO.

36A05 DECEMBER, 1980

~

~ '

~

RP36A05 INTRODUCTION The containment pressure response to hydrogen combustion has been analyzed with the CLASIX computer code for the Sequoyah plant, Reference l, and the McGuire Plant, Reference 2.

From these

analyses, certain general results may be applied to all present ice condenser designs.

(See Reference 2.)

The D.

C.

Cook plants have lower compartment sprays, while the plants previously analyzed do not.

Therefore, the analyses described in this report were undertaken for the D.

C.

Cook plants to determine the effect of lower compartment sprays on ice condenser containment response to hydrogen combustion and to provide plant specific CLASIX analyses 4

for the D.

C.

Cook plants.

CLASIX MODEL The CLASIX Model of the D.

C.

Cook ice condenser containment is shown in Figure 1.

This model is slightly changed from the Sequoyah and McGuire models in that the. fan/accumulator rooms are separated from the dead ended volume.

This results in a model with five com-partments or volumes instead of the four used in previous analyses.

COOK PLANT PARAMETERS Input parameters for the Cook analysis include MARCH output data for the mass and energy releases from the break, LOTIC output data for containment conditions prior to the onset of hydrogen producti on,

~

~

~ ~

RP36A05 and parameters for containment geometry and system descriptions.

LOTIC data for the Cook analysis are summarized in Tables I and 2.

Parameters for the Cook spray system and air return fans are given in Table 3.

Flow path parameters for the Cook containment are given in Table 4.

Parameters not specifically identified in Tables 1

through 4 are identical to those used in the base case of Reference l.

COOK ANALYSIS A series of calculations were performed for the Cook containment de-sign in which both system parameters and burn parameters were varied.

The first case was run with nominal containment safeguards without lower compartment sprays.

This case was run for comparison with the previous results.

The final three cases were run with nominal con-tainment safeguards including lower compartment

sprays, each run with different burn parameters.

In all cases, the flame speed was assumed to be 6 feet per second and burn initiation was suppressed in the ice condenser.

All four cases are summarized in Table 5.

The first two cases analyzed

)

for the Cook plant, identified as JVACl and JVAC2 respectively, have burn parameters identical to those used in the base case of Reference I, JV900.

Specifically, a burn is assumed to initiate at a hydrogen concentration of 10 percent by volume (V/0), to propagate to any adjacent compartment with a hydrogen concentration of 10 V/0 or more, and to have complete combustion.

In the third case, identified as

~

~

~

~

~

~

RP36A05 JVAC3, ignition occurs at 10 V/0 and propagation at 8 V/0 hydrogen.

The burn fraction is 1.0 for the 10 V/0 burns and 0.5 for the 8 V/0 burns.

In the fourth case, identified as JVAC4, the hydrogen con-centration for ignition and propagation is 8 V/0 and the burn fraction is 0.5.

The burn parameters for, cases JVAC3 and JVAC4 are the same as those in cases JV913 and JV901, respectively, of Reference 1.

COOK RESULTS The results from the four runs are shown in Table 5 and Figures 2

through 41.

A comparison between the first case, JVAC1, and the cor-responding cases from Reference 1, JV900, and Reference 2, JVD12, reflects some minor differences in the hydrogen transient in the

Sequoyah, McGuire and Cook containments.

These differences occur in the number and magnitude of burns, the peak temperature and pressure, and the amount of ice melt.

These differences are attributed primarily to the dissimilarities in the fan systems and in the lower compartment geometry designs.

Even though there are minor differences, the general nature of the transient, for these

cases, is very similar among the three plants.

The only significant deviation between the results o

the Cook analysis and the previous analyses for Sequoyah and McGuire occurs in the final three

. uns, JVAC2 through JVAC4, where sprays are present in the lower compartment.

As can be seen in Table 5, the runs with lower compartment sprays show a decrease in peak temperatures by a factor of I

RP36A05 at least 2 and a significant reduction in the amount of ice melt compared to the corresponding reference cases without lower com-

, partment sprays.

.The temperatures between burns are also reduced by a factor of about 2 or more.

REFERENCES 1.

Offshore Power Systems Report Number 28A52, "Summary of Analyses of Ice Condenser Containment

Response

To Hydrogen Transients,"

September 1980.

2.

Offshore Power Systems Report Number 28A54, "Suranary of Analyses of McGuire Containment

Response

To Hydrogen Transients,"

October, 1980.

SUBCOMttARTHEtLll RAIVNETERS>>

lk. G.

GOOK GhASl)k ANAhYSHS.

JEACb - UC. SPRAVi hOMHth MNLARTMII1I LCE CONDENSEth UHRHlh CDMttAthTHElN OHRlh ENOEDt REBXOth llllhUME (ETP')I

02. PRESSURE (!PS')t 2'.6% k 10

3<02 8;53! 7i LOi 3.43'/..46 Ni')'.lt7t 5 1'0) tt2, PRESSURE (OPSIA)t tt)D: PRESSURE (PSIA))

TEMPERATURE (E)>

LCE ttASS. (LOtt)i I<lt.42

4. li7i h5$.

Ii2'.96.

2P.22 h30>

II.6$, X'01 Inc 7.5, It..22'08'~2.28.

08<

lt38'.CE HEATi TRAttSFER AREth lt.900' BASED ON LOTIC'ESULTS. ATi 3ABO SECONDS.

~ INCLUDES. HEhTHDi OUI PORT!ION( OR ICE CONDENSER' INCLUDES. LCH CONDENSER'PPER'hENUM>

TABLE 2 SUBCOHPARTHENf PARAMETERS*

D. C.

COOK CLASIX ANALYSES JVAC2-4-UC + LC SPRAY LOWER COMPARTHEtiT ICE CONDENSER UPPER COHPARTHENT DEAD ENDED REGION F/A VOLUME (FT )

02 PRESSURE N2 PRESSURE (PSIA)

H20 PRESSURE (PSIA) 2.36 X 10 3.06 11.56 4.13 9.54 X 10 3.46 13.07 2.22 7.46 X 105 3.67 13.87 1.20 6.17 X 104 3.29 12.42 3.04 5.28 X 10 3.67 13.87 1.20 TEHPERATURE (F)

ICE MASS (LBH)

ICE HEAT TRAttSFER AREA 154 130 1.84 X 10 5

2.22 X 10 108 137 108 BASED ON LOTIC RESULTS AT 3480 SECOttDS i* INCLUDES HELTED OUT PORTION OF ICE CONDEtlSER

+ INCLUDES ICE CONDENSER UPPER PLENUH

~ If

~

~

RP36A05 TABLE 3 SYSTEM PARAMETERS D. C.

COOK CLASIX ANALYSES SPRAY SYSTEM NUMBER OF TRAINS FLOW RATE PER TRAIN (GPM)

UC LC F/A TEMPERATURE (F)

DROP DIAMETER (~)

'ALL TIME (SEC)

INITIATION TIME UC LC F/A HEAT TRANSFER COEFFICIENT (BTU/HR FT F) 2 2000 900 264 125 700 10.66 5.75 1.68 20 DURING LOTIC AIR RETURN SYSTEM/HYDROGEN SKINNER -SYSTEM NUMBER OF FANS FLOM RATE PER FAN (CFM)

INITIATION TIME (SEC) 41800 DURING LOTIC

TABLE 4 FLOW PATN PARAMETERS*

0.

C.

COOK CLASIX ANALYSES IC-UC MJS FLOW AREA (FT2) 2.2 20.0 308.0 FLOW LOSS COEFFICIENT 2,05 3.04 1.5 3.0 4.2

  • FUNCTION OF DOOR OPENING

" NUNBER OF BURNS LC IC UC 10 ~/0 100%

BURN UC SPRAY TABLE 5 SUHHARY OF RESULTS D. C.

COOK CLASIX ANALYSES JV{}CZ 10

/0 100%

BURN LCIUC SPRAY JVAg3 10 8 V/0 100/50K BURN LC4UC SPRAY 3

3 2

JV{}C4 8

/0 50K BURN LEUC SPRAY 15 12 0

NAGNITUOE OF BURNS LC IC UC 100 40 100 55 100 30 235 50 20 TOJAL NZ BURNED (LBH)

NZ REHAINING (LBH) 650 880 670 880 670 550 PEAK TEHPERATURE (F) LC IC UC 2000 1500 160 1000 1300 165 1000 760 290 280 700 140 PEAK PRESSURE (PSIA) LC IC UC ICE REHAINING (LBH)

FIGURES 26.0 29.0 29.0 3.4 X 10 2-11 Z4 ~ 5

.27.5 27.0 8.4 X 10

26. 5 31.0
33. 5 9 6 X 10 22-3'I 22.5 25.0 24.0 8.2 X 10 32-41

~

I ~

'I

~

I FIGURE 1 RP36A05 KEY: ~FAN FORCED FLOW PATHS (VALUESARE PER TRAIN)

~GEOMETRIC FLOW PATHS UPPER COMPARTMENT

~ 40,000 CFM ICE CONDENSER 1600 CFM LOWER COMPARTMENT FAN ACCUMULATOR ROOMS DEAD ENDED VOLUME

~100 CFM CI.ASIXMODEL OF ICE CONDENSER CONTAINMENTFOR D.C. COOK PLANT

IlllllISIIII II I I R III II I

I I f IIIIII lllllllllllllllll IIIIIIIIIIIII IIIIIIIIIIII I IIIIIIIIIIIII II IIIIIIII I II II II II IIIIIIIIIINlllllllllllll il IIIIIIIIIIII IlllllllllNlllllllllllllll il IIII II III

. IIII INI I

I I

II I

II IINIIIN II I

IIIIIIEEIEIIIIIIIIIIIIIIIII EII IIIIIII IIIEEIIIINIIIEIIIIIIIIIIIIIIIII III IIIIIIEIIIIIIIIEEIII IIIII IIII II I IIIIIIIIIIIIIIE IIII I II I IIIIIIII II II I I I

II IIIIII I II IIIEIIlt I I

II I III II I I II I I t

I I

I I

IESIlkRIEINIIi I

~ aaattan r

EEEE I..

I I I

.EEEE IEE iEEEE

l

~

~

~

~

~

EESRESRERRSOEEESSEEESSEEESEEERR%RE%SERE%

RREEESEESESSRSRSSLEREEESEERSEEESSEEESEEES RRRRRRRRRRRRRRRMIRRRRRRRRRRRRRRWRRRRRRR%

EESEESSSSRSSSSS&i%ESSE%ESSE%ESSE%SR%SEES EESEEESSESSSSEE&IEESSSEESEERESSSEESENEES ESSEEEERRESSRSRatEERRSERSEEESESS%ESSE%SR EEEEEESEEEESSEOWlEEESEESESES SEES%SCREE%

SRSSEEREEESEESSHlEEEQSEESSSEESSE%ESSE%RE SERE%ERE%ESSE%%%el%RE SESS%ESSE%SECRE%SR

%%%%%%%%%%%$ %%%0$ l%SSE%%%%%%%%%%%%%%CESS%

HIFjajaa%IIIIIIIIjagIIIIIei jIII@aI EE Lg I

g Cg&a~

ig

~arePS 5$

~ELLIEIRIE ORES IIh Qm

lt

~

~

~

~

~

W&MHW&%%%%%~%%%~&WWW~%%%%%%%WW%%'NRH

%%~~%%%%%%~%%%~~%%%&%HNWWWW&%%%%

%%~&&%~%NHWW~WWAWW'%%%%%%%%%%%%%%%%%%

W

%%%WAR\\

%RHKl WR

%%RHKRRWRR %%%%%%

W HW RRR H

%%%%Wi HHWRR%%%%%%%%%WHR MMR\\RWK\\ %%%%%

H

~

HRCM~RRISR'

%%RA H

RWKRHW i IIIHS RW

%5%%%1+PEg W

IMMLSHR R R R1P 8

5 N

R ~

g&lgg%&%%%

CR I

r 8

HN RP

~Kg Cp

... HID

-*F~>

FR/

1~

a'l (C

P, WWWWMW WMMMWW~W MWW~

MMWMM WW~~

MMMWWM WWWW

~WWM~MM lelW(

MMMM S

~I%M~~ ~WWW W~~~

a}~

g

~mwaawCwC

~W~W WW~W t

P~=am~

FI~&~

t&MMMWW

'%W~W

'WWMW~

WWMWWW

~ II

RP36A05 FI4VRE 7 EZ C

ug R8 Ifl W

0 az n

I 4 ~l am.e Tll% (SECONDS)

%P 52D CASc,'1 88080 FM 4080 SPIV BLSN 180 PCT AT 10 Vre 6 FPS T+3480

~

~

NIINIIIIIINIIIIIINIIIIIIIINIIIIIIII NINUEHNNNNIIUNununNIINII IIIUUmNNNillNINIINNIINlllln IIIINAIINIINNNNIEEEINlllllllllll IINIIINIIIINIIIININHIININIHIIIII INIIIIINNINllmIHNIIIUIHUIIIII IUHHNNIIH@IIIRRUIIUNNNIIII mlNIUUWm'l UHlmNKHIIHmml IIN IHIII HMII IIIHII Hlllllllllll HIHH lmNIIUm l!NllllllllllHNHNIHINIIIIIIIINII

.. IIIIIIIINIIII IIIINNIIIHINII

I

~

~

FIGURE 9 I

(

i I

I

! ljI

~

j t

t

~

l j i

~

j I

~

~

i I 'ilj,I I

~

t t (j',

g I

~

I i

> ~pt i +I;

~, I-I j i i I

~

t

~

t I

I

~

t t

t

~

I

~

t I (!

t' i

I a

I t

i l,'

I j

I l );

~

I l

~

I l

I gati l

I

~

~

~

I g

t

~

j e

i

,'~

l li, TjlK (5ECOteS)

AEP 52D CA%1 08800 FEW 4800 SPRAY BLAT f80 PCT Af I0 V/0 6 FPS T+34Q

~

~

FIGVRE 11 CK 4

e.e 0.8 BN.B TICK <SECONDS)

AEP SZD CASEI S8000 FW~ SPPAY RRN 100 PCT AT 10 V/0 6 FPS T+&80

~

~

WWWWWWWWWWWWWWWWWW SSWW WWWWWWWWWWWW WWWWWWWW WWWWWWWOSWWWWW WWWWO S WWWWW WWW'WWWW SWWWWW WW~SWW~W WWWWWWWWWWSOWWWWSOWWWWWWWWeSWSWSWW WWWWWWWWWWWWWWWWSSWWWWOIWW~ WWWWS WWWWWWWW&WS0WWWWSM WWWWWWWWWWWWWWWWWWWWSSWWSSWOlW

~WILLI

~WW SWWWWW 4h=

S WWWAXWWW RR5HiP

~ 5 5 WWWWWWWWWWSHfECSWWWW SH!a~at~

WWWWWWWWWW S

WW

'WWWWWWWW RL S~S

IIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIII lllllllllllllNlllllll lllHIIIIIIHllll IIIIIIIIIIIIIIINIIIIIIIIIIIIIIIIIIIII llllllllllltlllllllllNtllllll IIIIIIII IIIIIIIIIIHIIIIIIIIIIIIII I I I I IIIIIIIIIIIII II II I I I I I I

IIIIIIIIIIII I I

I I

IIIIIN II I It III I I

IIIIH t aaaaaaaraa llIIII

~lHNulHI

RP36A05 FIGURE 14 w

2 K

l3835

-Rz 4 ~

F $

~ K.f~.

+

~ ~

Tt t

- ~

~~ ~+

~ +t

~

a t

i' ~i

+i-p~

i

~

e

~

~

4

+ <<A

'+

1 TItK (SECOrfOS)

AEP 52D CASE2 80000 FCA 6328 SPRAY BLRN 100 PCT AT 10 V/0 6 FPS T+&80

SSISSSISNN~SNSSO~~~SkOL~SlS NI$$$$$$$$$$$$$$$$$$$$$$$$NSN$$$$$$$$$

SIl1$SSSAERSSSSSSSSSSSSRWCSSSOSRWSOSSOSOES aaaaaaaaaaaeaaeaaaaaaaaaaaaaaaaeaaaararaa NRKlRRSCRQRRSRSRER%%%0%E%%%0%%%%%%%%%%0%%

SRIISEE $$$$$$$$$ES S SS\\SERE ESSES S$$ E$NES P

~ISIIESSSSSEESSSESSSESSESSSSE$

~lsossssoRE8$ %sosskssssosssssLNROLo 5

IISSSSSSSSESRSEESSSSSSSESSSSSEPSRSSSS IISSSSSSSSSSESSSSEESSENSNN$

iaaaaeaaeaaaaaaaaaaeaaaaeeaaeaaaeaaaaae taaasaaaaaaaaaaaaaaaaaeaaaaeaa aeaama a

SSilOSSSCSSNSSSgSS SlSRSSS moC 8

INRslsssssNssoRRLs 5%5 osssogllss

%so taaaraaaarraLra aae aaa L a

'ESSSSS5%5 SO@

5 RRtf l

a SSRLRNSkSO lt

.$$$$$$NN

'SNSS 8%RE agaa 0/%

hSgRBm

%ASSES

RP36A05 fIGURE 17 2! A!

axe TPK (SECOteS)

AKP SZD CASE2 S8800 FCW 632S SPRAY RRN 180 PCT AT 10 VI8 6 FPS T+3488

RP3GA05 FIGUPE 18 I

~

I

~

I

~

~

I

~

I

~

~

~

I I

I I

I

~

~

I

~

~

~

I I

I

~

I I

I

~

~

~

I

~

~

~

I I

2IA P

I

~

~

I

~

I

~

I

~

I

~

~

\\

~

I

~

I fiMB.B

'I

~

~

~

~

~

I ~,

~

~

~

I

~

I I

~

I TIl% (SECONDS)

AEp 62D cA522 8eeee F~ 632a spiv ~ lee pcT AT le vre 6 pps T+3i8e

RP36A05 FIGURE 19 Re C

a.e 0.0 TICE (SECONOS)

AEP 52D CASE2 88000 FEW 6326 SPRAY BV2tt 100 PCT AT fe V/0 6 FPS T+3488

~ ~

E. SSAOS AS TV% (SECCNDS)

~ SRD CASER 8OOOe F~ &328 SF%AV RRtt ZOO PCT AT iO LVO 6 FPS T~34%

FIGURE 21 me.e Tlat% (SECCtCS)

~ sou cceca seeee ace eszs ~v~ see mv Av >e vie e rm ~+wee

~

~

g g

J gN t

h M~WW~~WMWWW WW~WW~~

MWMWWWM~~M wmmwwm C

C

~

Wg L S~~

CL'S~~

RC!

gg ~ H R

S

RAGA 05 r,

y

- ~

p f ~

I

~

~~

f+

~C 4 i r. l.

i

<<t gut I t e~

~ t'+ ~~

~

P

)

I ~

I

+~

vM

~

t te ~

>'w '~ rt"t

.w t ~rw 4 1

~ t ~ ~ ~t ~

~

j. g ~.

I y ~4

~e w"4'

~t t

y I-r t

-t '--t'

~.t V

~

W~. ~

~ ~

4 ~

~

~.

t 4

t I-r~

4

~t err'SE~Osi AEP 520 CA5E3 88888 FAH 6328 5PRAV' L~ PCT,AT X8-8 WS 6 FPf T+5480

~

~

ININ IHHIEHHHEIHIS IIIHllltllHIII tHHIIIHHHN IIIHIIIIIII NIIIIIIIH Sllllt t

llmN IIIII H I HNIIHHRlllllllHlllllllllllllllll III IIIHHNlllllll

~

~

g y

IISIIIIIIIIIIINIIIINIINNNINNNN llllllNIIIIIINIIIIUIIIIINllllllllll IIIIINNINllllllIIIII I IIIIIIIlll ININIINIINIIIIIII I IIIIIIIII NN N

IIIII I

IN I

I I I I Nl I I Nl t

I

~

aaaaaaaaaraaaaaQ~QQQQQQQQQQQSraQQQQQQQQQ QQ%%%%%%%%%MReRQlQQikQQiRiRSSiiQQQRQQQ%IQRiRWRiiRNQ

~QQQQQQQQQQQamQQaZQQQQQQQQQQQQaaQQQQQQQ

%%55%%QQ QQaiQQQRRiRQiitRiiRQliHiiQQQQR181

%55%%%%%RSkSSii HiteQQQQQiSIiRQQQQQQRiQlSRilQQQliQ aaasaaassaasssssasaasasaassaaaaasasasaaa

~sssaaaaasssssaassaaaaasaalsaaaassLaaas 85%%QSQSOS

~Q QQQRQiaiQRCiRQQ KQR%R RRQNQSRRSWRQQ QRQ RQQQRRQQQ%iliRQQRRRQ

~asaaasa R

SQQQRQSRilSQQQQSQRS Qaaaeaaaeae QQQQQ QQZaama Riii%fQQQQQQQ ih WSCQ8 ENQQ1%%QQSNQRQiI i5 iiI QQ ROSQSSSOSQLQRaaaSSR ERSNQSQQSJ ~

Q%5 I

Qa&Q r

r' l:

~9

~W&&W WWW~W

~~~WW~

~W~

~WW

~

~

~

~

r

RP36A05 FIGURE 28 a

VI l1.

I

~

I j

I i

I I

I

'l I

I i

~ !!

I

'~J L'g

+,+,

I i:

I

~

~

!: ':..i t ~1 VI!j R

c9.8

~

I T:

~

~

\\~

~

I I

i j

~

I I

I

~

I

~

I j! I.

I

~

I i~. I!

I, I

I

~

I I

I I

I

~

~

~

I I

i

~

~

I,'I'ii keA 8.8 189.8 I

I I

I i

~ iI:I:

t,

i

~ iI'

~

TIFK I SECONDS)

AEP 52D CASE3 80808 FFW 6326 %%AY 8VRN f80-58 PCT AT 18-8 Vre 6 FPS T+348

~IMIIIIIIIIRMNIIIIIIIIIIIIIIIIIMIIu

~EMEEEMEEEMMEMMMEMMEEEMEEMEEE

~EMEMMEEMMEMEMEEEEEMEEMEEEEEEEE

~MEMMEEMMMEMMMMMEEEEMMEMEE MMEMEEEMMMMEEEMMEEEEEEEMMMEE

~IIIIIIIIIIIIIIII I IIIII II IIIII IIIIIII II 1N II IM IS I%%II IIIII%5 I ll IIIII Ni

~MMMMEEME III I

... MEEMEEEE I I

~Il%IIII

~

~

~

~

~

RP36A05 P

FIGURE 30

~ '

~l 4~

~a Q.

4 I

~~~

~

h L ~

~

4 t

r m 4 i

L 4

~

+

~

t f I

4 I

4

+

o~

~

~ ~

~ ~

4

~4~ ~~f

+

j

~

~ ~ ~~

~

T?Pg (SECONDS)

PEP 529 CASE',3 88eeO FCtt 6328 SPRAY BVRN lee-58 PCT AT 19-8 Vie 6 FPS T+~

RP36A05 FIGVRE 31 248 CZ Cfl CL 1aae Tits (SECONDS)

AEP 529 CASE3 80000 FM 6328 SPRAY BURN 100-50 PCT AT 10-8 U/0'6 FP5 T+34W

~

~

~ I I Nllllllllllll I IIIIIIIIIIII IIIIII EIIIIIIIIIIIII IIIIIIIII II II Ill III IIIII I Ill.tll IIII'II.

IIIIIIIIIIII Itll IIIIIIIIIII I II I

I I III III I

IIIIEIII IIIIII II I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIINI IIIIIIIIEII IIIIIIIIIII nl (a

I I

I IIIII III I

IIII Nl

... EIUII IIIIENII I r

I N

IINIUNI III

~

~

~

~

RP36AQ5 fe FIGURE 33

~ 4 1 W rt C

39.8 +

~ r.

f,.

r

~ r

~!~'f I

~ r

~

r-Tp I

>>Lj+

-.50 El'.+

~

~

TIJOU (SEC(NDS)

AEP 52D CASE@ 84888 FFN 6328 Q%AY RRN 58 PCT AT 8 & V/8 6 FPS T+3488

I4

~

~

g y W~~WW

&IWSW&W~~W~W~IMO&&

W~~~

W%~ WMW~M~

W~WWWW~~W~~~W~&kMWWWWWWWXWWW%&

WR mWWWWWW~~WWQISc~WW~WWW%%

~WWWWWWW~&

&&WAN~'WW&&W~IIV~~WWW&WS

~WWW~AWW WWWWWWWW&W~MWt

'WW W%W~WW g

CCCm Ra WWWW W\\W&W WWHWW&

H&W~~HW%

WW~WW&WWW g NW&~

WW

= g-s<g5 R?

Rg R

W&~

W%~&

&C W

WWW&

R mmw&mm W~

~WWWWC%~W

~

I 7

JJ 4'

I

~

I

~

~I RP36A05 FIGURE 36 Ig

~-

13KB

~ $

))1 js ttj~w l 11B.B fj'Egg.

+.

~.4 QL-I- CION lay 1

~

~

~

~

I aL.i.h

-4.e

~

~ e

~

~

.",t.

%94 e.e TPK (SECOND)

le 52D CASE4 8BB3B FW 6328 SPRAV RRN SB PCT AT 8-8 V/B 6 FPS T+348B

~ ~

NEERQNNQRNNQQNNRQNQEENNENQQNNQ AHRSRSRSEHHNSSBBllsmmBARESAS

~QRNNQNNNNNNNQNNRQNNNNNNNNQNNQNNN EENNNNNNNENNNNNQNNNNRNNRNQNNNRNNNENRN

~NNNNQNNNNQNRQRNNRQRNNQNNNNNNRNRNNE EEEENRNNNNQNNNINNNNNNNNNNNNNNNNNONNQE

~NNNNQNNNNNQONISENNNNENNENQNNNNNNNNNNE ENHkkQNNNNREIRlglQQQNRNNNNEQNNNNNNE ENNNNNNNNNNNERIRSlllRLNENNNENNNNENNNEENNEE ENQMQNNNRSRCRNQQIRRNNNNEONNENRMNENNE Nkaagaaaaarkk Rg Ikkkkgkgaa Qg PRE Q NgSN NR NE gk i.

R jfiii.

7 rkkk

~ESN NNkkk Nkkkkk REMEN

~

N r

~

NNRgaakk k

NRRNRRILN SL:

~

~

L I H&&&&WW&%%~%%&W&M~%~%~%%%&WHWH~&%%%

%mHW%%WÃ%&%&W~NH%%%%%%%%%%%%%%%R%%%%%%%

W&%&%N%%%%%%~&~%%~%%~%%%%%W%%%%%%~%

a ma%%%%%~W&%%&WSC%%%%%%% N%R%% R%% %%%%%%%

RWNHN%%%%%%%%%%%N%%%%%%~ %%%%% %%WAN%%%%%

&&&Ã&~%%%WW%%~$~%+%%%%%%%% %%%%%% NR%%%

%%&%%~%%%&%Ã~Wl~AN%%% %%%%%%%% W%Wg&&W aaammmmmmma~eassaaaamaeaaaaaamweeaaalaaa

%%%%%%%%%NWW&SWMStMWW&5%%%%%WQQ~AQg+%%

WWW%%~%%%%~RXk%4tSMNW% %%%%%%

amaawaaaa~laemaissgaat i gaiaFa'aggaaaag ega W&WWWW&~ ~%M~fgl~'W

~WWWW WW

.. i'=-wz r.=

Rm

~g l

rApeQg aaaCCCasCaaa I I s

aH

~ ~

g I NESEESEEENSEESNESEESREENNEEEEQEESEERENSE

$$$$$$$$$$$$$$RSSEaSSXEISEESEEEELE iSE ESEESSESESNNRRkfQORSISLISSESSERE)ESSES SER ESEEEEERRSSERQSRMSIC~SSNEEaESSE ESSES SNS EENSSSNNSRSP+RQN IQRNSSNRE Skkgk RgSIRg SS kl RES SO S

RE EkrkkgkggXa SEERS S

NR SI I RCI PkkySC g LEE )

.hadal SSSSSSSSSSESEESSEEEEEEESESESESESSSESEEEE SNSSSSESSRESSSSSSSSRSSSSNEESRERESEEESENR NRSSSSE SSSNSaaaESSNSESRSSSSSSEESSESIISQE EERSSSRSSSRERRgl%RSSEESSESSSSSESSREE NNE ES SSSSSRSSSRSRRR MIEIIStkkk ES SNEER S

RR

'!4 IE i~

i SESS R PSS E

ESTER CRLSS SENSES NNS RES ERE I

RM EN~CRIERS

~

g

~

t

QQQQQNQEQRQNQEEEEEEQRNQkEQQ EQQNEQQERRNENRQEQEQRQEERSQNEQ QEREEEERRNERQNQNEEEEENNREEREEEEENQ ENQEEQQQQNREEREEQEEQQERQEQRROE EQERNRNQENNRMENRQNQNEMEEEENEEENNEE EEEEEEEEREREEENRENEENQNREEEENNkg EREIRE

~EEENQQQNENQQENEENEEENQNE QN ER

~ENNEENEEQNEEEEQEENNENENNEENEERR EREIgk

~ENNNQNQRNNEEEI

~ NEENEER REER errIkaIE E

EERggEN

~EEEEEEQNQNONR ILIEEENENILRNNLNI

~ssssLsssss s

glLIIll P siil/ill I

L R

ER r R

~

R r I

E E

E E

Ip c

e EEEN I

IIIs IilsJ$

p NINER LENIN QNE l. 3 sshsssllasssssassssss

~

~

~ y

~NNNNNNQNNNEQNSNNNNNNNEENNNENNESSNE NNNNNNNQNNNENNSQNQNNRENNNNENEENENREE

~SNNNNNNNENENNRNEQQNNENEQENNNESNNE

~NNNNNNENERNNRaatNENNEEN RNRQEE RR ran SRNSNSENNR 1ISIISN SNNNQNRNNNNSNSlHINN

~NNNNNENNEENNRSI!RILE!N

~NENNNQQNENNgmlQN ENNNNEEQSNRILN R

~NNNNEENQEENRESRNlER

~NNSQRNNRER ENERXREEEEN$ 1N

~NRNRREQRNO

~NRNERQRRRIt u

NNERRREERRCI RERERRE

~NEERR i:-!f:5:

E E

E E

~N NINNgNIE I II II Ig- - '

~E CC r~mq 3

~a eagR/I~

hi EN R

RRQREIERQNRRRERREE

ATTACHMENT 3 TO AEP:NRC:00500

~ l

~

ITEM 1 OF ATTACHMENT 3 TO AEP:NRC:00500

I

~

g

~

(

~

SPA has reviewed the report entitl d "0. C. Cook Nuclear Powe Pl'ant American. Electric Power Estimate of Ultimate; Pressure Capacity of Containment Structure" dated 26 September

1980, prepared by Harstead Eraineerina Associates, Inc. which was transmitted to AEP fram the,NRC by letter from S.

A.. Varga dtd.. 6 November 1980.

Nhite we appr ciate the reoort. was. a.preliminary, limited evaluation

.which'didnat necessari y ir!en.iiy all limit'ng failure modes nor did it, rigorously evaluate those modes which were identified, we have identified three areas-where SMA beli ves the Harstead report has underestimated the ultimate pressure retaining capacity of the 0. C. Cook containment.

Orr sheets 5-1-1 (second) throuah 5-1-3 of the Harstead calculations a

-shell pullout failure mod where the base slab concrete fails in diagonal

,tension is identified which limits the containment capacity to 46 psi.

Ne believe this evaluation is overly conservative becaus no consiCeration was

.taken of the capacity of the base mat concrete to carry diaaonal tension

"(shear) in accordance with the existing design code eqiation ven in the presence of mern'brane tension in the base mat.

In the attached analysis (shts.

1-3) Harstead's analysis has been modified ta include the effect of concrete"

.carrying diagonal tension.

Results of this analysis indicates that this particular failure mode, can carry internal oressures in excess of 70 psi.

On sheet 8-1-4 of the Harstead r port the moment capacity of th splice has. been arbitrarily assumed limited by a lever arm of 4.5 inches or the distance from the centroid of the tension bolt to the center of the 4 inch plate.

Since the capacity of'he 'oint to transfer mcment is limi ed by the bending capacity of the 2 inch solice olate loaded in tension, T, the arbitrary selection of the 4.5 inch lever arm increases the T seen by the bal.t.

In the attached analysis the limiting m ment on the splice is determined hy tension in the bolt.

The resultant capacity of the splice based on Harstead's elate canacity assumotinn is 43..- os'ather than the 23.5 psi determined in the r port.

It should also be noted that detaileci finite element analys's of the ha'ch indicates the maxinum moment does not cccur in the splice as will be further c'ocumented in the containment report currently under preparation.

Finally, Harsteah used s.c'fied minimum material strergths where the

'ther two ice containment evaluation reports (Sequoyah and McGuire) used actual mill test values (lowest test value) as reoorted in the attachment to Mr. Oirchs letter to NRC Chairman Ahearn dated 26 November 1980.

This results in a bias comparison unfavorable to 0.

C. Cook since such test values are greater than the so cified min'mum values used in design.

For the reasons stated above we believe the Harstead eport gives limiting internal pressure caoacities f'r the 0.

C.

Cook containment which are understated and have not been determined on a basis which can p rmit direct comparison with similar.containment systems.

@PE ~

SUIQKCT THEET OF

~JP FAHOOAAHIOIH HS&AICTO. OH H IC ARAA OIAI TOtlFHHIJ

,~p~l~~ ~a~~&

IH 8m~ 4~~

U OAI OHHATO FH~IC (FIAOHHHAI 1!EHFIFHH) FAFAOITT

<) 5ÃfMHIH&HEHISC.

T8W'MLS bfiMM IA CA~~

Qy.,~~

f'=

~PIP

/hi

~

~

~

Al UATlG OF Haec w~e a a~~

AXIALTPN&ll 5 LEAP PRIOR CONTAINER%'r 9HSL L SHEET OF 2

OS tgiIO xO.8i5 4>> (pii)~, 0 3xio x(~

a 2&9 > lO~

~ +.4 w IO

~ CZ495 w IO'

+ODIN GC ~~CIA'.I OP +48 FOE%MB CC COO& (IO'7j) v~ ~ e,off< (i aors-N~/~)

Nu

~ isa.+ g+.

fO > 12 X I Z ~

IEi Ei EE IN C'C7C g tg2,cia I+4&

ss C'29$

C, 0~5500 (I- > <O'F?)r 4,0 x PIC.C w 0 7+7

~ 8'8 4 PSI gAOI~L NHSAR. GAP~I~ CP'NCRPT6 IH '&WSBM~T

~,+o IQ

~ IQ

~ )Q e IC t o 34m K/Pf.

SHEET~ OF GGNSSRVATIVS}Y %@SUMS 48.2 P&l GARRlSP 57 5UMMA-WIOV OF FOLIC.S+. ~+ PSVSexi~Sa.

SV Haee<eaa Col.CuL.A-Tta~ O~ &UMMATlOH OF FGPCS&.

. g XC$5+ = 7Q - +8'. = Z.I.5-680 90 f9Z.K!fC

-:&O-%&2..4 l2:7.'5t'

~ eRSP 6 (PI~COml.

WH&as) F~iVu&,S

-V4t~ ~Y cGCuP-

.Qf'Q to Pss ft4-fgP HAM F'R,g~UR Q)VS+4

'CHS 1 'tMlflN& CA& OF PSAQ LOAQ GA&\\Hcn-

~.QH6tOQ t'l4 &~& fvtAf PM% &5'8+HS l ARALU'6t&{AKP)

~ (mt ~~8)

C gSAP xf)

F82,+oO

~ 5l,Cco

= Z9+.O K/F1

. g.~++pc gQ+oo4)/14+0

=

~ 52&

c =2.C)~992w

&7& = 79,9 I&l 1

RAPIAL 6HSAH CAPACt~ oP ~Sap-S f8-t 4 &ASS

-T9 9 ~ t2 ~ tZ~ta

'lt.o(

4/W.

90 fgZ C II@.O

~

OW Q~z: ~Htg tS Qua SW~g S

Lt m rr!w& CALcvAT(om /8 Ca~eRi rE.-P~.HSiiEO A~F L)SIS /NAY SROur OTHER.

g Atg~~E

~ODDS p)age 4,t N l7'/k)&,

~

~

~

~:. c" PtA 8: IH Eou/P BABE HhlcH m, Q.C Cooc Corer:

smash l

ae gJ os

&vs~ - Sa.lch.ks.

58ew~

C2Eymwrue ato+ear C~werw~ or= Swr rcpt

) g~gnm8 C. co~raac,LeN Bw J97WFEA PL@7'85 w G~p~M'pew (3) ASSume.

W Cad&~ Pa~

he v.

2.s 9.78" A~~~~c.~- -2 flag gg.)xpgC&m. x4 = gc/8 c'w/Q.QQ Iu. CIP SPLiCE

$p~ SJ(g /J +M d ~b+~Mc. 6cfLvee.w 4 1 ffS op +nytow '5<bg efj e $5' g

<~/Iu.

OP SPLIaB

(~)~fvfJ PPPd~

~/rE~wlru/+

S7 &4 % s Qg~ Pg gQ, fPg

(>>

~/L)= 8.75 -/.875

= 7.c'>

a gg g4//7.c) Q

= $. Cindia PCS/.

P/

Q

$ 75 (g g / 4 g e/ 87+)

= //9.0S A ur~ii/. EP'

~ a~<<

- ~s.z~r'z g= lo <~4.(~ '"+

+-a< 8>>Q 'Efgq (C,) Cown~ge Spa,re@

Mo~w7. Cwr Ac/7 Y 7o TMhT og 4g hing =jcS

/ bA

(. ]z

= jol.33Y--4 (d) aesuu *uT P,AS.S Tee

~ ~ >.<

(Q) +~SILE CAP/E ('T'JJ 0$

'70

'I p~'

B3~

43.ups'Sl.

33 f.~- iOS Ks-'~

56.6 P><

6g ya.ssv

~d

I

~

~

ITEM 2 OF ATTACHMENT 3 TO AEP:NRC:00500

g a

gl I

e SMA is currently oreparing a containment design report on the limiting

~nal static pressure. capacity of the D. C. Cook containment based on the mean as tested material properti s;ihich is.scheduled for completion by 31 january 198L Preliminary resu'ts of the analysis performed to da'te

'ndicate the limiting failure mode in the concrete is combined pressure and deacf weight shear in the base mat near 'the attachment to the cylindrical shelL (Note: this is not the same fa'lur mode evaluated by Harstead)

The

~ detailed analysis of this failure mode is being performed by 'AEPSC since the stear loads are based on the GENSHEL computer analysis originally performed by AEPSC during the initial design of the plant.

The input and output and desion assumptions originally used in the analysis are now being reviewed jointly by

~AEPSC and SW V

The other potentially limiting failure modes beino evaluated in detail

..are the limiting pressure capacities of the equioment hatch and personnel hatch; For both the equipment and personnel hatch a two dimensional finite element analysis usino the ANSYS computer program is being performed to develop limiting pressur capacities.

It is anticipated that the results of the evaluations currently underway will develop a limiting existing equipment hatch capacity of approximately 40 psi and 48 psi or the concrete based on mean material properties.

Low r hour d values using specified minimum strenqth properties

-would be aoproximatelv 30 osi and 40 csi r spectively..

~

~

ITEM 3 OF ATTACHMENT 3 TO AEP:NRC:00500

At the meeting with the NRC Staff an oral presentation was made by Oz. 3. O. Stevenson to the AC Staff using overhead transparencies as visual

.aids.

Or. Stevenson s presentation was limited to items 3 and 4 on the

.attached agenda.

Or.. Stevenson presented Side 1 which was a suggested modification of

'-'pup' of the Table entitled "Design Criteria and Lower Bound Pressure Capacity of Ice Condenser and Mark III Containments" which was attached to a

,Mmmandum to Chairman Ahearne from N. J. Oircks, Executive Director for Operations

-- NRC,

Subject:

Ice Condenser and Mark III Containment Internal Pressure Capabilities dtd. November 26, 1980., The suggested changes to the aziginal letter text are shown on Attachment l.

a..

-Desi'ressure reduced from 15 to 12 psi b.

-.Lower bound Static Pressure Capacity Hatch Cover changed from

=-49 7 to 69.7 psi c.

Material Strength Assumptions Change "Code Specified" to "Actual Mill Test Values"

- These modifications were suggested to make the D. C. Cook containment capacities directly comparable to Sequoyah and McGuire.

The actual mill test values used were the m an values taken from random selected samples of the containment materials shown in Slide During the meeting Or. F. Schauer, NRC Structural Branch Chief, indicated that the "Actual Mill Test Values" indicated for Sequoyah and h!cGuire were based on the minimum or smallest actual sample test value not the mean value.

Such a modification would reduce

~e pressure capacity values shown in Slide 1 by approximately 15 percent which would still significantly increase the lower bound static pressure

- capacity indicated for D. C. Cook on Attachment l.

The bulk of the rest of the meeting was an oral presentation by Or. Stevenson and a discussion of Harstead's report highlighting the areas of disagreement which are shown on Slide 3 which is summarized in Item 2 of this communication.

In addition Or. Stevenson briefly sumnarized the results of the hatch finite element analysis performed to date indicating the maximum moment in the hatch plate is occurring adjacent to the personnel hatch and not in the equipment hatch plate splice.

A finite element model was shown in Slide 4.

Two other discussions of interest during the meeting was Or. Schauer's comment that he thought the equipment and personnel hatch should be at least as strong as the concrete containment so that the limiting failure mode in containment pressurization aould be the concrete containment structure and not the hatches or penetrations.

Dr. Schauer further stated this should be true even if calculated hydrogen explosion pressures were well below the design capacity of the existing hatches or penetrations.

Or. Schauer s final point concerned the definition of the lower. bound

-cantairment capacity calculation required by Enclosure 2 to Mr. T.

M Novak's letter. to 3. Dolan (See Attachment 2) dtd. December ll, 19M.

He indicated

.that such a calculation should be based on a statistical 3 standard deviation belo~ the mean parameter.

He further indicated the probabilistic methodology vast. in the analysis should consider the methodology developed by Ames

.Labratory for the NRC.

He further indicated that the report from Ames.

Labxatozy describing the probabalistic methodology they used would not be available before. February, 1981.

<<r ih'Ttt)lit I'!II' I~

~I~III

~

~

~

~

~

i~

I~

~IIIII

~

~I~Ih

~~

~I~

~I~~

~I I

o

, III '~'

~ ~ I Io,') II<<, I),)

~.

t':i sA;.))I o'.I.IJ'I~. ' <<'I E.

'.PLA

~ I t'I",I,"b8

. 2

~ ~ '

~ I

~ '.I' I,

HT ttAHE

?

COtITA1ttIIENT TYPE flE 1 IIFOACEO COtlCAETE 1CE CO)IDEH SEA AE 1 tlFOACED COHCAETE ICE C,OHOEHSEA STEEL SIIEI.L 1CE COtlDEHSEA STEEL St)ELL lCE COHDEtlSEA

~

Oo C.

COOK Utl}T 1

~ o I

~ ~

.",';
.I). C.

COOK

.. "'; 'tllT 2

~ ~

~ ~i

~ I sEquoYAII UHlT 1 1.

I SEIEIJOYAII UHl f 2 I

I~

1)ESlGtl COIITAltIIIEIIT OES1GH PRESSURE p~la 12

~

~ ~

IIATCII COYERo '7'

~

0)U)PHEH'f ..

ACTUAL HiLL

~ ~

l 1)

)IATCII,,"~

TPST VAI-UES 40 8 P)VEA SIIL'I l 69 7

ACl-3lO/6) 12 12 Aci-ola/s>

~ ~

I IIATctl COVER::

EOUIPHEIIT' AcTUAL Hlj-L (1)

.'IATCII

':J'EST AALU)S g0.8.,

COVLII..!,',

SIIELI.:. 69.7

~

20' '.

.! c.

~ ~

'I ACTUAL H1Lg..

ASHE SEt:

TEST VALUES SU)I SEC.

0 Attg MttITEA

$960 Al)DEIIOA '

~

~

SIIEI.I..

(2)'

TE)ISIOtl.":.~

36 lgl0 I

~

'2

~

oo

~

~

~

. SIIELL...",. ACTIIAL HlLL t21 '.: j. ;'}:IIS10tl " -

TEST YALUES 36 Y 1 ELD.

Ast<E SEC. lit SUI) SEC.

0 A)ID )IIIITEA 1960 ADDENDA I

<<I

~ 7

~

~.I

' I I I

~ ~

~

~

E

~

~

~

~

~

~

7

~ I

~

. )Sl

'RITERIA AIIO EOUEB OOUIIO PRESSUIIE.CARACTTT I

~

~ ~

OF lCE CONDENSER A)ID..

HARK III COIITAIIIHEIITS.

~

~ 7

~ ~

~

~ o<<

~ r LOWER IIOUIIO I'AINE(';g'..

TlATEIIIAl,',OOTEAIIIIIO STATlC-..:,.; BOD)'";;,

5TRNGTtl CfttTftllh Ft)8 I AESSUAE, '....;,T,,"-.,

QSSlJHPTlOHS COIITAlttt%HY

. CAPACITY.,

~.'

':;)!. '... ',

(ESiGtl o<<'CGUl Af UHIT 1

STEEL.

SIIELL

~

lCE COtll)EllSEA 15'2) 40

~

.: SIIELL:.:,'.,:

ACTUAL HILL

'EIISlotl":",:.

TEST YALUES YIELO I

ASIDE SEC'.

111 Sl)D SEC.

0 AHD SUINEA

~-

1970 ADDEHBA HCGIIIIIE "

UNIT 2 STEEI.

'IIEI.L lCE CO)ll)EIISEA

~I ~

. SIIEI.L

ACTUAL HILL

{2)

TEHS10)l'.",-." 'EST YALIIES Co ',

" VIELO.'i'.

~

~ o

~.r

~ 0

~

~

ASIIE SCC. '111 Sul) SEC.

0 Sl)IIHEA 1970 ADDEIIDA

Q IhK.2

'USORY"OF MATERIAL PROPERTIES

~',: GENER: PLATE' SA44Z GRADE"60 YIELO uLTIMATE

-SPECIFIEQ MINIHN

-. SANPtE SIZE, W HBN VALVES 32.0 60.0 64 7 2

HPJIPMENT'ATC}f <<bA516 GHADE IO SPECIF IED HINIMUH

'QNPLE SIZE =5 MEAN VALVES 38.0 53.2 70.0 81.2

'3 SGLTING - SA193 SAMPLE SIZE -2 ea.

1/2" x 2 1/2" GRADE 87

. SPECIF IEO MINIMA MEAN VALVES V x 5 I/2."'SPLICE)

'PECIF IED

- MINIMUM*

~HEAN VALVES

.: L 1/4 x 10 "(COVER) 9'ECIFIED HINIMUH MEAN VALVES 105.0 119.0 105.0 121.3 105.0

'20.1 125.0 137.0 125.0 141.0 125.0 140.3

--4 REINFORCING ROD A15 GRADE 40 18S SPECIFIED MINIMUM SAMPLE SIZE 9

MEAN VALVES 40.0 49.8 70.0 81.8 S.

CONCRETE -28 OAY STRENGTH SPECIFIEQ MIN IMUH'AMPLE SIZE 8 MEAN VALVE 3.5 4,774

CQNENTS'N HARSTEAD'S REPORT

-'R4ZlR "AREAS OF. DISCUSSION'NO DISAGREEMENT ARE:

<<Y

'Tj SPLICE PLATE IN EttUIPMENT" HATCH.

. LIMITS CAPACITY OF CONTAI,'SENT TO

~ ~24 psl 2), CAPACITY OF CONCRETE BASE MAT TO TRANSFER SHEAR OR DIAGONAL TENSION

'STRESS LIMITINGCONTAIQlENT CAPACITY TO'~

46 ps~g

34 tREt7 ]LOT+

I ~

t

\\

t ~.(<<

~

~ t I

~ P

>>J'

~

71'A&7 al ga l

3 184

$ 43

)84 16 7Q 75 9

187 lie

$ 88 79 7

7a

$ 30 r

l 3

lli 13 a5 S3/

1 1

$ 38

'6 1

13

/

93 /

>>J

/9 l O

13

/

0

~

$ 46

$ 47 4

VI ~ ~ ~ ~ ~ ~ ~ t ~ . ~, <<VWYv1>><<" "<<jt't>>>> ttv4%t ~ 't+',<< ~ '>>>I jA)<<8<>> 'P,4" , ~ t v ' ~ I t V t ~ C ~ vv I $00 1al t tel.T Allis I>> ~ '=.I c 'II