ML17324B003

From kanterella
Jump to navigation Jump to search
Rev 0 to Books 1-3 of Analysis of Pressurizer Safety/Relief Valves Discharge Piping Sys Per NUREG-0737,II.D.1,Unit 1.
ML17324B003
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 06/06/1983
From:
TELEDYNE ENGINEERING SERVICES
To:
Shared Package
ML17324B004 List:
References
RTR-NUREG-0737, RTR-NUREG-737, TASK-2.D.1, TASK-TM TR-5364-1, TR-5364-1-R, TR-5364-1-R00, NUDOCS 8608060052
Download: ML17324B003 (392)


Text

8608060052 860730 PDR ADOCK 05000315 P

PDR L

\

i' ~

~,1 TECHNICAL REPORT TR-5364-1 REVISION 0 BOOK 1 OF 15 DONALD C. COOK NUCLEAR GENERATING PLANT ANALYSIS OP PRESSURIZER SAPBTY/RELKF VALVES DISCHARGE PIPING SYSTEM PER NUREG 073V, ILD.I, UNTF I JUNE 6, 1983

l

'i

'i F

AMERICAN ELECTRIC POWER SERVICE CORPORATION 2 BROAOWAY NEW YORK, NEW YORK 10004 TECHNICAL REPORT TR-5364-1 REVISION 0 BOOK 1 OF 15 DONALD C. COOK NUCI.EAR GENERATING STATION ANALYSIS OF PRESSURIZER SAFETY/RELIEF VALVES DISCHARGE PIPING SYSTEM PER NUREG 0737, II ~ 0.1, UNIT 1 JUNE 6, 1983 N'TELEDYNE ENGINEERING SERVICES 130 SECOND AVENUE WALTHAM,MASSACHUSETTS 02254 61 7-890-3350

4(

'I

~

1( % h

~ 'I, IC t

t

,C

\

r,

~ ~f 0

II I

1 C:

'I j

1 A

~

r

A TELEDYNE Technical Report ENGINEERINQ SERVICES TR-5364-1 Revision 0 TABLE OF CONTENTS PAGE

1.0 INTRODUCTION

Book 1 of 15

2.0 CONCLUSION

S 2-1 3.0 SYSTEM DESCRIPTION/DISCUSSION 3-1 4.0 THERMAL FLUIDS ANALYSIS 4-1 4.1 Introduction 4-1 4.2 RELAP Model 4 3 4.2.1 Pressurizer Conditions 4-3 4.2.2 Valve Modeling 4-4 4.2.3 Discharge Piping 4-5 4.2.4 quench Tank 4-5 4.3 RELAP Model Control Volumes 4-16 4.4 quarter Model 4-26 4.5 Unit 1 PORV Model 4-'36 4.5. 1 Condensate Modeled Case 4-36 4.5.2 ,PORV Modeled Transient 4-36 4.6 Valve Flow Rate Calculation 4-40 4.6.1 SV Flow Rate 4-41 4.6.2 PORV Flow Rate 4-.42 4.7 RELAP Plots 4-45 4.7.1 Unit 1 - Condensate/Steam Case 4 46 4.7.2 Unit 1 - 400o Solid Liquid Case 4-166 4.7.3 quarter Model - Cold Loop Seal/Steam Case 4-244 4.8 Force Time History Plots Book 2 of 15 4-260 4.8.1 Unit 1 - Condensate/Steam Case 4-261 4.8.2 Unit 1 - 400o Solid Liquid Case 4-320 4.8.3 quarter Model - Cold Loop Seal/Steam Case 4-392 4.9 RELAP Input 4-420 4.9.1 PORV Condensate/Steam 4-421 4.9.2 Condensate/Steam Restart 4-439 4.9.3 PORV Solid 400o Liquid 4-448 4.9.4 PORV Solid 400o Liquid Restart 4-467 4.9.5 SV Cold Loop Seal (quarter Model) 4-472

ga' \pl 4 Af t

/

C ~ ia<a jh

~ra

-p E

W I'

  • r" 0

P

~ (t is/.

A

g,J

)i TELEDYNE Techni ca 1 Report ENQINEERINQ SERVICES TR-5364-1 Revision 0 TABLE OF CONTENTS Continued PAGE 4.10 REP IPE Input 4-478 4.10.1 Unit 1 - Model Section A 4-479 4.10.2 Unit 1 - Model Section B '-489 4.10.3 Unit 2 - (quarter Model) 4-496 4.11 APPENDIX A 5.0 STRUCTURAL ANALYSIS Book 3 of 15 5-1 5.1 Deadweight Analysis 5-2 5.2 Thermal Analysis 5-2 5.3 Seismic Analysis 5-2 5.4 Force/Time History Analysis 5-7 5.4.1 PORV Transient 5-7 5.4.2 SV Transient 5-8 6.0 ANALYTICAL RESULTS 6-1 6.1 Stress Su@nary 6-1 6.1.1 Equation A-1 Stresses 6-6 6.1.2 Equation A-2 Stresses 6-17 6.1.3 Equation B-1 Stresses 6-28 6.1.4 Equation B-2 Stresses 6-39 6.1.5 Equation B-3 Stresses 6-50 6.1.6 Equation C-1 Stresses 6-61 6.2 Support Loads 6-72 6.3 Valve Accelerations 6-105 6.3.1 DBE Seismic Valve Accelerations 6-106 6.3.2 PORV Transient Shock Valve Accelerations 6-110 6.4 Nozzle Loads 6-114 6.5 Valve Loads 6-120 6.6 Miscellaneous Calculations 6-126 6.6.1 Thermal Boundary Displ acements 6-127 6.6.2 OBE Spectra 6-133 6.6.3 DBE Spectra 6-140 7.0 DRAWINGS 7-1

8.0 REFERENCES

8-1

ifqf IN C

4

'L

A TELEDYNE Technical Report ENGlNEERINQ SERV(CES TR-5364-1 Revision 0 TABLE OF CONTENTS Continued 9.0 COMPUTER ANALYSIS 9.1 RELAP/REP IPE Input Book 4 of 15 9.2 Deadweight/Thermal Input/Output Book 5 of 15 9.3 OBE Seismic X-Y Input/Output Books 6, 7 of 15 9.4 OBE Seismic Y-Z Input/Output Books 8, 9 of 15 9.5 DBE Seismic X-Y Input/Output Books 10, 11 of 15 9.6 DBE Seismic Y-Z Input/Output Books 12, 13 of 15 9.7 PORV Transient Shock Input Books 14, 15 of 15

~ I 1I "

l l

I C

I~

I!

-A-TELEDYNE Technical Report TR-5364-1 ENQlNEERING SERVfCES Revision 0 1.0 . INTRODUCTION American Electric Power Service Corporation {AEP), purchase order number 02676-820-1N, authorized Teledyne Engineering Services (TES) to analyze the Pressurizer Safety/Relief Valve Discharge Piping per NRC NUREG-0737, Item II. D.1, for the Donald C. Cook Nuclear Power Plant, Unit Pl.

This activity was performed in accordance with the TES (}uality Assurance program which meets the requirements of 10CFR50, Appendix B, and ANSI N45.2.11 as interpreted by Regulatory Guide 1.64, Revision 2.

The scope of work for this effort is described in detail in Teledyne Engineering Services Technical Proposal PR-5653 {Reference 1), dated May 4, 1981 and modified as stated in AEP letter dated November 29, 1982, from Mr. Sam Ulan (AEP) to,Mr. L. B. Semprucci (TES) and in AEP letter from Mr. Sam Ulan (AEP) to Mr.

P. D. Harrison (TES) dated March 15, 1983 (References 2 and 3).

The majority of the analysis was performed after the receipt of AEP letters dated November 29, 1982 and March 15, 1983 (References 2 and 3), which were issued after more complete information was available from,the EPRI data.

This analysis was performed using l ar ge di g ital computer programs supplemented with any necessary hand calculations. The RELAP5 MOD1 Cycle 14 computer program was used to do the thermal fluid transient analysis. The structural analysis, for all loading conditions, was done utilizing the TMRSAP computer program.

'he size of the pressuri zer safety/relief valve discharge piping system was so large that the computer models, for both RELAP and TMRSAP, strained the limits of the programs. This condition necessitated multiple RELAP runs in order to execute the thermal fluid transient analysis for the appropriate length of time.

For the structural analysis it was necessary to expand the core of the TMRSAP pr ogram in order to avoid an overconservative overlap analysis.

II I'

g I t

j "I

,ri t) Q '4

~~

a 'El,

r> TELEDYNE Techni cal Report ENGINEERINQ SERVICES TR-5364-1 Revision 0 2-1

2.0 CONCLUSION

S The analysi s performed by TES on the Pres suri zer Saf ety/Rel i ef Val ve Discharge Piping System indicates that all criteria of NRC NUREG-0737, Item II.D.1 is met for normal and upset (PORV discharge) conditions and is not met for the emergency (SV discharge) condition.

Evaluation of normal and upset conditions required structural analysis for deadweight, thermal, OBE seismic, and PORV transient shock loading conditions.

Details of the various loadings considered are provided in Section 5.

Based on preliminary SV thermal hydrodynamic transient analysis, excessive loads and stresses were anticipated and, therefore, it was decided; for economic reasons, that a quarter model SV thermal tr ansient analysis (RELAP5) should be performed to check the adequacy of the system for the emergency condition. In addition, due to the similarities of the Unit 1 and Unit 2 geometries, it was determined that the results of one unit could be considered applicable to the other unit. The quarter model consisted of the piping from the pressurizer, through valve SV-45C, and continuing down to the quench tank, for Unit 2. The SV transient analysis considered only the effect of valve SV-45C opening. The results of the quarter model analysis indicated substantial failure of the entire quarter model geometry. Considering that TES is required to analyze for the simultaneous opening of all thr ee SV valves (Reference 3), which is a more severe loading condition, it is evident that the quarter model analysis is sufficient to prove the failure, for the emergency condition, of both Units 1 and 2.

Therefore, this report for Unit 1 contains no analysis or results for the SV thermal condition or the SV thermal transient shock condition. Results of the SV quarter model analysis performed for Unit 2 are contained in the Unit 2 report, TES Technical Report TR-5364-2 (Reference 6).

~ y 'I f q r s~t. s C

t a

0

r> TEif23YNE Technical Report ENGINEERINQ SERVICES .

TR-5364-1 Revision 0 2-2 Section 6 contains a stress sumary of all node points, a summary of support loads, valve acceleration calculations, a sumary of pressurizer and quench tank nozzle loads, and a listing of the moments on the end of each valve for all loading conditions. It should be noted that valves NRV-151, NRV-152, NM0-151, NM0-152, NMO-153 are in excess of the veritical acceleration criteria of 2g for the

'nd PORV thermal shock transient condition. These values are considered acceptable per the approval given by AEP in their letter of May 26, 1983 from Mr. Sam Ulan of AEP to Mr. P. D. Harrison of TES (Reference 7).

~ FC CC C

Y ~

':f F

C 2 ~

A f

r ! : .~s CCC f ~ ~

~

~C

-r<-TELEDYNE Techni cal Report ENGINEERING SERV(CES TR-5364-1 Revision 0 3-1 3.0 SYSTEM DESCRIPTION/DISCUSSION The Pressurizer Safety/Relief Valve Discharge Piping consists of all of the piping from the pressurizer nozzles, down to the sparger in the quench tank. This information is depicted on TES drawing E-5763, Revision 2, generated from AEP drawings 1-GRC-6, sheets 1,', 3, 4; 1-GRC-7; 1-GRC-8; and 1-GRC-9.

The "Discharge" piping constitutes a very large system resulting in a large computer model. The size and geometrical complexity, which is due mainly to the sweeping curves around the pressurizer, complicates the modification effort in addition to causing longer run times..

Modification of this complex system, to attempt to secu're satisfactory "Safety Valve Discharge" results, is limited to draining the SV loop seals.

Heating the loop seals is not a viable "fix" because of the size of the loops.

These long loops contain sufficient quantity of water such that on SV Discharge, the water seal does not "flash" completely enough to reduce the very high loads caused by the water slug. Modification to the support system is also a poor option because of the very limited space in the annulus around the pressurizer, which makes construction very difficult.

Another aspect of the system that could be improved is the setting of the constant spring supports. During the data extraction of the deadweight analysis results, it was observed that the supports in the PORV loop area were causing significant upward displacements of the piping system, as detailed'in Section'.2.

The stresses in these regions are high and, although they do not exceed the allowable, they could be r educed by re-adjustment of the spring settings.

h g '=

~ ~

~ 4 IQ il L '

~ I f

A I

-A TELEDYNE Technical Report TR-5364-1 4-1 ENGINEERING SERVICES Revision 0 4.0 THERMAL FLUIDS ANALYSIS 4.1 Introduction The following analysis determines the fluid forces which act on the pressurizer safety and relief valve discharge piping of the American Electric Power Donald C. Cook Nuclear power Plant, Units 1 and 2. These forces are generated by the sudden opening of the pressurizer safety and relief valves during one or more of the pressurizer transients described in the AEP supplied 1982 letter to TES.

These forces, the resulting stresses they apply to the piping system, the resulting loads they impose on'the pipe supports, and the loads they transmit to the safety and relief valves became of increased concern as a result of the incident at Three Mile Island.

Following the Three Nile Island incident, the NRC issued NUREG 0578 and NUREG 0737 which required that each utility determine the effect of safety/

relief valve operation upon the valve and the discharge piping. An elaborate progr am involving both testing and analysis was established under the general management of the Electric Power Research Institute (EPRI). Intensive testing of safety and ~elief valves was performed at several locations across the country.

A full scale model of the pressurizer and discharge piping was built at Combustion Engineering in Connecticut.'imultaneously, an analytical program was initiated to choose and test a computer program which would predict the fluid forces; RELAP5 MODl was chosen. This is the latest in the family of RELAP programs developed at the Idaho National Fngineer ing Laboratory.

In this analysis, TES has used RELAP5 MOD1 Version 2.11 as it is made available through Control Data Corp with a post-processor, REPIPE version 3.10, which calculates the fluid forces .

P I A i

I ~ 'k ~ $ gl es

~ C

Technical Report 4-2 -ri-TELEDYNE TR-5364-1 ENGlNEERlNG SERVlCES Revision 0 This version. of RELAPS NOD1 is identified by the following computer job control language at Control Data Corporation:

BEGIN, REI AP5, R5N2, INPUT=INPUTFILE, SCM=377000B The computer analysis procedure for the thermal analysis portion is included in Appendix A.

RELAP5 calculates hydrodynamic data for control volumes in each segment of pipe. REPIPE then takes this data and defines two force time histories for a segment. One set of inlet junction forces, the other outlet junction forces.

SAP2SAP adds these force time histories. Finally, one force time history for each segment of axial, unbalanced loads is analyzed structurally.

C+

w ~l

4-3

>s-TELEOYNE Technical Report ENGlNEERINQ SERVICES TR-5364-1 Revision 0 4.2 RELAP Model 4.2.1 The D.C. Cook pressurizer was modeled as a single time dependent volume with the following transient conditions as specified by the 1-7:

American Electric Power 11/29/82 letter to LBS, pages

~Sf 'll Case 1: Steam, Loopseal Case p o g p+g e

R @~49 o p-p pP c~

gpg Zyoo

+Palo Zt'o4p Zhs'd Pressure l WD/)

p25rg J/ O Time (Sec)

,.:f" ('w hl W ~4 q; y /

~ .~=

0

is TELEDYNE Technical Report ENQINEERlNQ SERVICES TR-5364-1 Revision 0 PORV Steam/Condensate Slugs Case 2550 2500 2450 Pressure psi 2400 2350 0.8 2300 0.4 Time (Sec) 1.2 Case 2: Continuous Warm Water = 400oF (Same pressure as PORV, Case 1) 4.2.2 Safety valves and power operated relief valves were modeled as RELAP junctions using the following information:

manufacturer 0 if' CJJi Ti Safety Valve Crosby 0.022 Ft2 0.010 Sec.

HB-BP-86 (Ref. 13)

PORV Masoneilan 0.00806 Ft2 1.0 Sec NO-38-20721 (Ref. 14)

Valve orifice areas were calculated using the EPRI Safety and Relief Valve Test Report (Reference 16) and RELAP (Run ID BAICDRO) implementing rated flows. Calculated values are included in Section 4.6.1.

is'>

'ly I

'I 1

)

I'

4 5 ]< TELEDYNE Technical Report TR-5364-1 ENGINEERING SERVICES Revision 0 4.2.3 Discharge piping was modeled from all safety and power operated relief valves to the quench tank. This discharge piping included the following pipe sizes:

3 inch, 12 inch SCH 40 4 inch, 6 inch SCH 40S 4 inch SCH 120 3 inch, 6 inch SCH 160 Friction factors for 1.5 D or short radius bends and reducers were taken from technical paper 8410 by Crane. Calculations of these losses and constants are included in Appendix A. Segment lengths used are listed in Figures 4.2.1 and 4.2.2 for both models. The discharge piping defines segments with segments described as straight sections from elbow to elbow, valve to elbow, etc.

Also, a listing of RELAP5 input is included in this report. The SRV model is modeled from one safety valve to the quench tank. This was determined to be an adequate representation of safety discharge piping for both units and will subsequently be referred to as "The Quarter Model". The Quarter Model is modeled utilizing Unit 2's geometry.'.2.4 The Quench Tank was modeled in two parts: the sparger and the tank itself. The Quench Tank is modeled using cylindrical volumes containing water and air. The volume si zes are equal to quench tank volumes provided on Westinghouse Dwg. No. 110E272.

The sparger for D.C. Cook is a perforated pipe submerged in the water within the quench tank as indicated in Figure 4.2.3 of this report. It is represented in RELAP as a pipe equal in volume and similarly submerged.

TR->364-I i< TELEDYNE ENGINEERING SERVICES Revision 0 BY ~~~ DATE + i~ woo ds. 4CeC reap s, SHEET NO. OF I CHKO. BY~+T OATE~~ PROJ. NO, AMPERE E (~JPI/j z JA./

IO VV4S'C ruOrC A Zs Sr'.C n i~C-OFT Sca Ibo Pf CF/X

/4 lk lg JFP Q,o P ger NCJFJ 2I 4.$

20 25'C

~E rf +O

>Z M

2 JF I

9$

.0 3y ih:- IFi

~2 Sb SET W9

" FIGURE 4.2.1

A t

'I 4

"'-""i"'""IIi TR-5364-1 TELEDYNE ENQINEERINQ SERVICES Revision 0 4-7 BY OATE~ SHEET NO. ~(>F CHKO. BY ~+DATE + @~ 5M&/~ Meet~~

~c~o~

(,q9 2.0b FIGURE 4.2.2-1

, ... -~S-TELEDYNE ENGINEERING SERVICES TR-5364-1 4-8 BY ~g~~

e ,visgpn 0 OATE+~8Z 4/ACL7 SHCET NO. ~OF~ J HKO. BYG OATE~+

( 4 I

5 Eg MEhl 7 ]y4g lP/

(

F I GNiE 4.2. 2-2

"""'"'~TELEDYNEENGINE=RING SERVICES Revision 0 4-9 Y ~~+.~ +~

H K O. BY OATE 0 AT

+~

K,~LL~ ., +oWV Qz w&5Mpig~ i i<<~) A~a

~t=t'YTs4 Q.NwlE4 )

Ogg /

)0 I

FIGURE 4.2.2-3

e I

I "C

~

P

'I I

'1

n m x CD M CD 5 O CJl M C/I 4J N IS O WO

~g~rg. C ( wJA/. M>Iles A'AL/ Egl WifIEQ iud.ra>swCO Q'EI= 5 bgkwI A5AC.IPIA$

Vh'-5/28 A~~

PRES.V OPS/6 A-24)

CO 5

d~'>.c,"o" i Ls VEL 7pgRh1lffE/ 5 ADZ~a E LgEQ L~AE Dssc./IA/16~

vP I n

I I I

I I o fTI I m b.

P& 5 ill 2/5//-

I l i)~jil b p

/A>II'>FI/IILA a gf T A'C!W&

~

5 r&f57D7rL 8 iAl8 /IA'E Strl. /Ã ~Cy '~

CI >5'>'

<AIISl /p.~ REF~!

f

/1 l - Pl /C'AC>.~A,Scar OF 8 ZOClr',/fj GF ~'/'o:tQ, IIL'Lcr. &7AL I) 'Ni4c:5 r!>kiC 5 /C I(-,'

X X 9i.

43 ~ C 5(.

vz'. 0L m k081. In] TE>'AJAL vOL. = /8N J~ z z 0 0

.'4> PF tJ EC:CCI5 //F S/4REr 1PIAL 7 A'A4 ~/OEE I

~'A. /u6>> rc~+I~

A/III(E~g'4.cell/:

dCA.TCI//C/

(2 I //OL 65) gVEAJCFI7AA.~KGBAII/i46 F 02 f'll'.-f; Ep llj76~~' 'I k'C c.r 7>/.'5/Uas= y56~c.".2 p/.

~.C. C'JOE V&1 T1 3 8 AJOr~wiL-> ZO~~~ AL" I+sr~/A'IA.v /a W r E~IA. /ru'gJ O~(/0$+/Iv~ 5 FQlhL )

L'A,'E'ALL 0

5'rF: kl- 7lA6. pm/Cg /Igg 9'64. AFP( D~'6. /-5/2SA-Zy7 6 I S//A/A r VOZ W/// /b'A

/i5I. 6>> // cg>ttu //C/a/

V iVS /'rCW H;5;.ceSrCr.

r ware

~re S ~

~ 4 C

r~r

TR-5364-1 )> TELEDYNE ENQINEERINQ SERVICES Revision 0 4-11 8Y A DATE ~ 27ODAL.'D C COOL SHEET NO. OF CHKO. BYMYSAYERS/ hlUCI-r AR 8ZnJ. ~z-ICQ gg~S rf/2. PROJ. NO.

gE LAP5 ~

UEVCFI -rANk'OgE,L)AJQ NOBEL IT'e'E '~jd(~I 7Anfk A'~PIAEA'S -.

gV'-IJCF/~8/Jk'ViQ'll1~EL~X AS A ~HNIE~ OF PIPE Cg+lPO/JEA)7$

e j7-II /I ppWOp/IIA7-E /=We A/'ZW AVZ ~

m Cu~~ICISVrz.

NATE'0 ' 't/EL IAJ 7 ~IF ~LJEIJC/I gAJA'. IS A7 7IIF -AAIE /IFSH7 TFIF iv'ATE'g LE'lEL. gN r)E I(r "AA>SEp i ~IE -- Cj(CAJ ~+ i' Mp AR5ZA'I7FI L (//ATE&~ ~Dl 5 M/IS ~@~LE A PIPE'OATH ITS r ~AJbih'iPPAL 7D7IIE'EA)&~l ~ 7HZ ~VA<6E~

WITH ~IE7OQL IJUNSEÃ OF IGLOO'RUM =~ JAL ~C'LDuJ AREA PF IQE UPARC<<A'A-r. ~~au. ~ev"A")

6)P7 g(E 3/SCS i t/FPF /803ZI -g 3< 3 7VIP >JAL.t/E gF/(CII CPF~

AT TA'E QUA'ST B':+<JII'E gp <PO~~.

6 ZAC ii M =/'=", k'ZA iOI F>>I7 'I ~IA. = O.-"5 9;ZI '" An)$ DCA7FD

/4'oc/IFg =;rFOM THE'57 c."FTIIE gu'&JcFI 7/I./Uf .'tPR I&rUOk'ED N THE

/ IO~<EL/n/6.

V= /VOIIrIIAJAL. /A'7EPArA L Vie L)A'2'~7 ~ IIE T/I AJK = 48K yf (>.8'. Zr. ltOZZVZ) 7/PJQ /5 +2 % FVL.h OF hrATE'fC . . (4EF. 7ZLE'cAJ L5s u)IrH iAu u~v LATED 4-lg gg )

V< = WAWPll VVI (JIHE iV TllO ZgE.lJY:I/ TglVk' V = Old VOI uME,IV 77-.IE POHJCH THNC= BZ/I FIGURE 4.2.3-2

I

,ql ~

1 ~

~"

TR->>64-i ~A~TELEDYNE ENQINEERINQ SERVICES Revision 0 I

BY A DATE ~ gOMA ~2) C. 1" 00< SHEET HO. z OF~

CHKD. BY ~~CHOATE + vrrc~~ld &au. ~7A7/Oa'e/rS <5 z. PROJ. NO.

dz4cil gN4 "E~ 6

/Z gVEA/Cd TAVE IS C> L/nJSEP W/TA'=A'// '~ NLSGE &.

7~/EAI: zUS7-~/ i=

("') 'x

/I- //E/d//7 Ã 7//F EVEL;/KA1 307TOhl OF I HE 7AAJK i

.'ATi=h' A/zw(~)

, . I 0 n

uuusvz:

u; iA ZWCus.

Au-A w 3 ziz ~o NziC,>PCFrCv'--

We~a) = ~z.Vsaa -.p" Stk~ST/7UTiltJ6 N70 =QAQ<

gg yg88 J1-56ZS Q s-

~)

'/8-/340 =

Bv'AIL A@A EA'Od:

"5~ A FIGURE 4.2.3-3

4-13 Technical Report Revision 0

~jr'ELEDYNE ENQINEERINQ SERVICES

( BY +A + DATE~/LU JDoA/ALo c. coL A SHEET NO. OF~

OHHD. BY~K~ DATE~II 83 I/UC'A// SEAL aTATICAJ <ALIIS Y IZ PROJ. NO. D+'5L dEVC L( .A~P'<WL L, IV6 n= /I.FSM <<@=

h= Z.4eVs e= h~P= ~~.Fs+z. ~eye i/ 8g ~ = K >8 + uzIoIIr oF .LIAro// ~u//~acr. F//ou7//eJomw.

OF 7iVE ~v'EA/CH rAdK-Q-// = gYL'- = > 15gk >POLI: 'IF IOF .OF 7//E O/BiVCH 7AA/L'O 7E A<AT'E ~r'FACE:

<10M iVI4T= A'U/PRICE, 70 THE C~!JT" A'/ 7QF IOKIZAAJTAL ~-"C7/OAJ 07 7Hz ~~rAR6EP ~ C8'~ = =-. ~:.;~ 4+ \

C/Elhi/7 OF AJATEg lZVFL 'AJ gI hiVCFP TArtfK 8'OS'/LIF1 ZE AL~G = 6M'f$ ,

'L/PLUPIE OF ÃHTEÃ IPJ ~~0K/JC.~/ ?RAN'= 'I IF& (g'a Wee!C=-Ay=a ZZnweef ~W7ZW ~us /I'.as%

'loLUI/IE'F- AIR'A) ~~&'EAJCh'/'lg-

/IS IC64-1 )< TELEDYNE ENQINEERINQ SERVICES Revision 0 4-15 BY SA 2 DATE'/-XF-83 Z)ON A I D C. COO/ AJAR SHEET NO. OF~

CHKD. BYE+ DATE ~ Qg+LEpp( (y 5/lj. a7 871&J ~IVITS 4 Z. r~

PROJ. NO.

kE~LiV'5 "ifÃnJC // ~/I P~L/Alb.

I

,t E

Qw

~~o- I I

pZ I ji o

Wk

.I fj I

~j

>~ I

~C 1q

~ S I

I Q ! 0 0 I- I-I FIGURE 4,2,3-6

Techni cal Report ]5 TELEDYNE TR-5364-1 ENGINEERING SERVICES Revision 0 4-16 4.3 RELAP Model Control Volumes The Evaluation of RELAP5/MOD1 for Calculation of Safet /Relief Valve Dischar e Pi in H drod namic Loads report prepared by Intermountain Technologies, Inc. recommends using ten or more control volumes per bounded segment while avoiding significant control volume length differences to preserve pressure wave shapes. The ten control volume criteria recommended by ITI was adhered to except in piping arcs and in segments less than three feet in length. The D.C. Cook discharge piping is modeled using as few as one control volume per segment (pipe segments with lengths less than 0.5 feet) and up to thirty-two control volumes per segment.

Arc modeling for both units is represented in Figures 4.3.1 and 4.3.2.

All arcs for Units 1 and 2 were modeled in RELAP as having no fluid losses.

Essentially, RELAP calculates these as straight sections of pipe. J REPIPE, however, distributes the calculated forces to pre-assigned node points matching the TES

~ ~

structural models.

Average control volume lengths used for the D.C. Cook RELAP Units 1 and 2 model were:

Pioe Size Avera e C.V. Len th 3 inch SCH 160 0.4644 feet 6 inch SCH 160 0.5264 feet 4 inch SCH 40S 0.4471 feet 6 inch SCH 40S 0.8614 feet 12 inch SCH 40 0.8064 feet 3 inch SCH 40 0.4744 feet 4 inch SCH 120 0.5056 feet schematic of the discharge systems modeled in RELAP for the PORV

~

A Unit 1 model and the SRV 1/4 model for Unit 2 are given in Figures 4.7.1 and

~

4.7.2, respectively.

~

~ ~ ~

A TlH EDYNE Techni ca 1 Report ENGINEERINQ SERVICES TR-5364-1 Revision 0 4-17 quench Tank modeling was achieved using twenty control volumes and twenty junctions. Eighteen volumes comprise the spar ger model while the remaining two are single volumes modeling the water and air spaces of the quench tank. The water and air volumes as determined from Westinghouse Dwg. No. 110E272 were input to RELAP to insure proper quenching capacity. Eighteen control volumes forming the sparger are initially 88K full of water representing a submerged pipe. The discharge holes were modeled as a single hole of equivalent area at the end of the pipe (a conservative assumption).

Finally, the tank rupture disk is modeled as a pressure actuated valve placed on the air volume and set to blow out at 100 psig discharging to atmosphere.

(Figure 4.2.3 represents the D.C. Cook Units' and 2 quench Tank).

Technical Report 1S-TELEDYNE ENGINEERINQ SERVICES e

BY + DATE ~om<~ Pq Mooel SHEET NO. / <>'S /

~+~ OATE ~ '7 83 f'3 CHKO. BY

@@9 - Z g~i FIGURE 4.3.1 ggP: a&( cg~c t2-9/-8 I Qr

. ro

,o V

E'~P!~ '

b b

,/, T

/ .~o ',, i T

S O

/4 0 nq 1

Yl ~

Qgc 4 'I/ 0 E'S S4 O

IN O

ES IIO Y

T Technical Report Reyision P I I TELEDYNE ENGlNEERlNQ SERVlCE$

4-19 BY - DATE SHEET NO. OF CHKD, BY ~C~ DATE 2 I~ 83 PROJ, NQ.

FIGURE 4.3.2-1 IZ~AF M02)eZ. OF nile (a ~~EVW77OV 4~9'-2" (A/C X) p.>ok l

559'l0 a.

~c~

& C "eP SCb I/) S VALVE

~S T 5

+r

'i

=-r.rsv

. I3.70" I

~

I

/

Technical Report

-ri-TELEDYNE ENQINEERINQ SERVICES 4-20

'8 ~ ~ cook'A'/7-4 8 By DATE s c. SHEET NO. OF CHKO BY~OATS~+ ARC ~ &~oem/'~'@zL~V. bN-'4o" FIGURE 4.3.2-2 3'ElAPX 61oDEl oF AIC D ELE'LfA 7/OAJ 4 r'V- IO (AA'C 2 )

vA ave

/

Mg.yb' I

I gc I~

y'e.

c (N C 55 OS V- ~ / (

E

///8 E" /,

\

,/g +IA g/hg pyqp~ Bosch-'<+

PzwAEA'8 -.

QgP/+PAL aiwzu-i'z N

/g ~ /Qg/~ 7~ = ran'/

rivzzu @oars rC //( rtZ /JOZZS uz~e. ~x r coxes~pe)~u)z AdC 'PC// hS.

Technical Report TELEDYNE ENGlNEERlNG SERVlCES 4-21 BY DATE~ ~ 8~ v. C. COO /C, UQI 7 SHEET ND. DF CHKD. BY SC DATE~>i ~3 Agg ~ C~ECbtSZg '/

pa aLgg g Q'-'5" 5'IGURE 4 ~ 3 ~ 2-3 W<~ / ="L /N e /fee .,e Z~~VA 77iOrV - '- ~" (A/CZ) w lg)./L y ceca 8 "c

,~s QT jj

/

T N

C')

~I g'l /V', j I

'i a C654'~

F gg

/z>> =c//~e P//I/8J ~/'c../:,'/JE P~~/AA'A dggg~g=,y g//I/r+c/PQ e:

~ //Jo/cn7~ srtuCruZAL 4ODFS 9E 7 fg/=l'hJ Qg~lg> grjP+Ec'c-pJ7'QHZ="/30pJ/ AJAR /lgC 'JCVTHS

Technical Report Revision 0 A TELEDYNE ENQINEERINQ SERYlCES 4-22 eY <>+ DAve > ~s 4> un i z i waRv sEc.ri o~ SHEET NO. OF s CHKO BY, OATEYT 23 so RE't A'P HobGL. ( D>~<5TPCRM) PROJ. NO. S36 f J

FIGURE 4.3.2-4 Os2s

/ o~ .

2%II S'+I Osso O>><

IIII' Osss D

> I qll (p pl3 oi~

gb 2 ~

AI3 6'SAGE O3 Osoo

'2'o.g23',

O 3Z F rt \+

I PA O335 OIo

Technical Report TR-5364-l Revision 0 E ENQNEERINQ SERVlCES 4-23 Y OATEN~ SHEET NO. OF 5 ciHKD. 8Y ~+DATE~Z~S r7iec ~ @4's's" 5'IGURE 4.3.2-5 (o

a~

yoga(o,

0 Technical Report Remi s i on P ]l TELEDYNE ENGINEERING SERVICES 4-24 BY ~~ DATE ~ ><"~~ vM ~'r ) HA>hl AP.C, cosh)CcTI DP 5 SHEET NO. / OF CHKD. BY + DATE~~~~ p~A,McHCS + T'E'E.S FIGURE 4.3.3-1 7~ SAIC'.f4h/

3O7I8 30@ 'SM GL, ~N BO Q 5 N Cr L ~AI e o N

0 I

8 04 5 N6r LJul I No725

%08 SNCL~ EIPJ BO(o SN&l ~LI 808 su&LzvM

/o7 p

Technical Report

-rS-TELEDYNE ENQINEERINQ SERVICES 4-25 ST <- < ORTS~>><~ oN tT' PoRV St= c T> cM SHEET NO. z OF z CHKO. BY ++ DATE~~~+ ~ BRAW)cRE5 + 75ES PROJ, NO, +3 ++

FIGURE 4.3. 3-2 702 54 &c3 oA yH~

Z n

0 ta SNAKC.g uu EJ5M- +ISZ9 Si3 gN~tuN 3PAMC//

l 5///9 5 lg. 5N6 L vs Go+ $ N& VUH SNAB

+pe SHC L~N~,

I HoI2S BRANCH Jog 0/ (yP zZSri~)

0 40$ gZu~hJ 08 SNGLJ uhl goy (EJJ sr~OJF~)

go~gg 'BRANCH 4090/

A TELEDYNE Technical Report ENGINEERING SERVICES TR-5364-1 4-26 Revision 0 4.4 9 N d 1 Before beginning the as-built analysis for the safety valves, it was almost certain that the loads would fail the system. A review of the testing that was done at Combustion Engineering in Connecticut indicated this would be the case. The cold loop seal discharge test at C.E. produced loads of 175 Kips.

The D.C. Cook Units 1 and 2 pressuri zers have three safety valves each with a loop seal larger than the C.E. test facility loop seal. Therefore, it was decided to make a small RELAP model of the D.C. Cook Safety Valve discharge line. This model contains one safety valve (SV45C) including its loop seal piping and its discharge piping through arc level 669'-2" up to, but not including, the quench tank. This model would be less expensive to run than the full three valve model.

The results of this small (quarter Model) confirmed our suspicion that the cold loop seal case would fail. It also allowed us to make a paremetric study of loop seal temperature in loads as is shown below. Only the steam discharge proved to be acceptable, therefore, TES has recomnened to drain the loop seals.

Loop Seal Loop Seal Temperature Position of Valve Opening Max Load Condition oF Loo Seal Time Sec LBF Col d 141o Upstream 0.010 115,000 Col d 141o Downstream 0.010 174,000 Hot 350o Upstream 0.010 156,000 Hot 350o Upstream 0.090 109,000 Hot 350o Upstream 0.130 124,000 Hot (Sat. 650o Upstream 0. 090 38,000, Water )

Steam 650o Upstream 0.010 6,000 The loop seal temperature distribution was calculated to be input to RELAP and is included in the Appendix A. The temperatures used for the cold loop

~ ~

seal r'anged from 584.4o at the pressurizer to 141.1o at the valve.

~

Technical Report TR-5364-l

)q ~LEDYgE EgggEERiNG SERytCES 4-27 BY +~~ OATE~+Z2

/g/J //"/ p~/O Vdtb'~c SHEET NO. 1 OF CHKD. BY ~>+ DATE ~ ~/gc.c v/ ~wc nl +<% Y i/F7<V4'//, nlR'y /5 3

/c o Wrac/~<: 8'HE'W ~ 4.d~ 4~

ovggrrsr -rrFAFE =(r~gFr s - jest,. z@) r=r = rE g 9g F r ggyp /-r .,

/.%9O ~r i~ 25 goo /os

&z5 C4 CM-~" C /o DFl//O<)

gcr2 Ff Z4>PC 7P y)PA. Vg - 4 2Q 5q F r g.(18) jF FIG.4. 4. 1-1

Technical Report 8> TELEDYNE ENGINEERING SERVlCES 4-28 sv ~~+ oAva~ ~> 8~ @~i p ir ALUrD fr auwS SHEET NO.~OF tS CHKO. BY~Es CATE~~TEST ~a~c u~8 zr~ I ViiV~8'C r7 +Qd q 12'w PvP&c F =-yO S r B (I I )

W

d. giga Cr g,/0)3~- F f /i, = (H &>8- W p'IZ p) r- r o& r<

izorTEA = F'ros (s.FAYEE wr') (v'.ESE, rr r (+SBErr -AT.EFTErr))

Y~~~

Spy/ru'E~&f i v-aux <s~jzr+ pr ipse'ud 4)

z. -gw9 wr FIGURE 4. 4. 1-2

Technical Report Reyi si on p 9E TELEDYNE ENQINEERINQ SERVICES 4-29 SY <~~ DATE 'i 8~ <A grD Vague SHEET NO. 8 OF b

4 <<f~

CHKD. BY DATE ~ Pea v w'g~ p

&a<ggrV Prod 8b 'g zv zr X y5ZPr iso 0.9r//Fr Er v <<Ãr~

4<dgg wy ~i@+ j~g y<

i

> "-O'P

/ 7~~, - S9 = 9.2/87'<

n-h, -;>HE. ~r FlGURE 4.4.1-3

Technical Report R ;; 0 A TELEDYNE ENGINEERING SERVICES 4-30 E

~~~ OF E E ST CHKO.

OATS~SEE BY~~DATE > ~

S j / ~rgb Vol 6'~8 Age'>447 SHEET NO.

PROJ, NO.

ggzgyg h'Pont

/d// Uec- bi- /7 .-fc US&U'A, YflP - /$$ 0$ y" (/ P /J )

r = d. ro fH

/

/. /QN

+ Z',<pz / 7 I r)r~j

/.S'/O/A,+y,/d US'AF) (! /"$ +F P <BQOgFF) 7dr8 c.

//', /z&o cq g/ g/PM AJ F DxN A A.use <gnarl+ ~

(.</P< -o'za)

'L FIGURE 4.4. 1-4

Technical Report A TELEDYNE ENQlNEERlNG SERVlCES I BY P AYAF OATE~BZ2- bw/'1 J'cD/o v>46M BMEET NO. OF CHKo. eY ~~ oaTE ~ ~ ~~

~>Rv'~xcSS.

E'P~cvuFM~~

vH~vZ az: NAY /5I ac// /'eo p/r /Nc r7KEE - O. d9$ 5 r7 <

88 g g/g M4M',/p F'r a.co8 pr 0 F~Cgcc ~c.c~; g. g.'9 K Cl I

/

d.25'2 ii 7o ~+E vened = y za( F/ z.~zw

d. Ei8 g W r

~

FIGURE 4.4. 1-5

Technical Report Revision 0 A TElEDYNE ENQlNEERINQ SERV(CES 4-32 CHKD. BY ~++ DATE ~

Drtfr1' c&ro vo4uwz SHEET NO. k <>F &

5z<u~no~ ~agv'e'<E <

~~

I= a. rotag +r jy = M ia W v.

g3 Jr'. @~9' cr)< (u. its~ ~ <<)

oui vying'iu i -i. u< zsiic i-w gian r us~)

2. &S P FIGURE 4. 4. 1-6

Technical Report

-ri-TELEDYNE ENQINEERINQ SERVICES 4-33 cHKD. 8Y ~ QATK~TT PaEV Fog

}PfcE'w QQQp~

-'LOS

'3N lT'HEET t~oQELEQ Np.

PROD. NP.

/ pF 2&Oo ic p

4)ue + I i(ol~...g Abut

= . 09zl r4 gP'i 15 z

,c 885 ~+

"g

(, O92i H-') /j. oo 8~>

hg l'

)l.~

'JC+i l

( ~PP fi ) /(, (ZOC 2, il'8~)

= . f~77 L~

, @77

<gC ~'7 T,TZI

-'f.(;

z. Yd'>'gieuiC . I)'tO -; i

@X','=-~

i/ )

i/OS m POl . oa5V kf l

~3,tu i i i'QA-) ( 6 c ei- ~

4. 98 7 Lh~

/ i)of J Ng~~r (,age I f)~) /(,,molo8 Il

. J)8 FIGURE 4.4. 2-1

Technical Report p )g ~LQDYQQ fNQpJQQQgQ $ QRQ[CQ$

4-34

~P-4 Ih(LET SLug ~OKLgQ SHEET NO OS CHKO. ST ~++OSTE~K~ 83 .FoR. PELE). Ug )T'

)/I

~'Q TIE,

,/ 0~8 7/3 gEO(r 7/

FIGURE 4.4.2-2

n m fb X7 (b I 0 Ul 'X Vl PE') >C'm 0 W I

0Ql C)

\AI VE +EI QQALli ( LEAI~~TII al~llJa CVO~ AP..A I I 0 0 tD o

/hlC/./

'].QGQ f"r <~ 144 -'c i( /bO l~jeV i~~ ~

p)

~p p A

i. Q /IVCc/

Seal /AC)

H (I E

NIC/J hlRV is j ~~C >I I /oO 0

0 m F I(illRE 4. 4. 2-3 III Z

0 0Z

Technical Report A TELEDYNE TR-5364-1 4-36 ENGINEERING SERVICES Revision 0 4.5 Unit 1 PORV Model The inlet piping to the PORV's is sloped toward the valves. Therefore, during normal operating conditions a saturated water (condensate) loop seal is formed at the inlet to the PORV.

As specified in American Electric Power's letter of November 29, 1982, referring to PORV transient conditions, the following cases were modeled:

Case Transient Condensate/Steam Discharge 400o Solid Liquid Discharge 4.5.1 The way in which the condensate/steam case loopseal was to be modeled was decided by using two methods on a small sample model.

a~ Low equality Steam Loop Seal (Saturated Conditions)

b. Solid Loop Seal (Saturated Conditions)

A low quality steam loop seal produced oscillatory mass flow rates through the valve. These oscillations were severe enough to cause rejection of this model and to choose the solid condensate case. These oscillations are the result of numerical instabilities in RELAP s choking correlation. This is due to the severe change in sonic velocities in the transition range between subcooled water and steam.

4.5.2 Both cases (loop seal and 400oF solid liquid discharge) were modeled and run on RELAP and REPIPE. The resulting force time histories were compared. It was not clear at this level which case was more severe. Therefore, the force time histories for both cases were input to the structural program. It could then be seen that the 400oF solid water discharge condition was the governing case.

->s-TELEDYNE.

Technical Report ENGINEERINQ SERVICES TR-5364-1 4-37 Revision 0 Both the loop seal and the solid water case exhibited unstable behavior (o'sci Ilations in the flow rate). The loop seal case showed these oscillations in the transition region at the tail end of the loop seal as it passed through the valve. RELAP tends to cause flow rate oscillations because of the severe change in sonic velocities between subcooled water and low quality steam. These flow rate oscillations result in high forces which tend to be overly conservative.

In the 400oF subcooled water case, the reason for the flow rate oscillation was more obscure. At approximately .400 seconds the flow suddenly decreases approximately 30 Ibm/sec in lmsec.

This can be seen in Section 4.7.2. A careful review of the RELAP output did not reveal a good physical reason for such behavior. Reasons for such behavior could be

1. A sudden reduction l

in the valve area vs. time data.

2. A build up of back pressure in the discharge line which will cause the valve flow rate to'uddenly decrease..
3. A sudden decrease in pressure in the pressurizer boundary condition which would result in reduced-flow.

All these things were checked to see if they were possible sources of the flow rate fluctuation. But the review indicated that they were not the source of the problem.

r< TELEDYNE Technical Report TR-5364-1 4-38 ENGlNEERING SERVlcES Revision 0 A partial tabulation of this review is shown below:

UNIT I Valve Junction

¹410 Cont. Yol. Cont. Vol. Reference 41101 40926 RELAP Run BHFRFGG Unit. 1 200-600 msec So 1 i d low Red Junction Cont. Yol. Cont. Vol. Cont. Vol.

¹410 ¹40926 ¹41101 ¹40926

. Time

.408

.409 Flow 111.18 83.424 0.0 0.0 p

248.89 245.55 p

2342.8 3058.

It can be seen that the downstream pressure does not exhibit a sudden increase that would reduce the flow through the valve. The upstream quality remains zero so that the flow through the valve is subcooled.

The pressure increases upstream which corresponds to a sudden reduction in flow area. However, the flow area increases it does not decrease.

The pressurizer time dependent volume does not exhibit any sudden change in pressure which would correspond to this flow change.

Past experience with the RELAP programs has shown problems with subcooled water and low quality steam flow. These problems have manifested themselves as severe oscillations in the flow rate. It is our opinion that the results from the RELAP run are highly conservative and overpredict the fluid forces.

Technical Report A TELEDYNE TR-5364-1 ENGlNEERlNQ SERVlCES Revision 0 4-39 Mhen the fluid forces from this RELAP run are combined with the seismic, deadweight, and thermal expansion loads, the allowables were slighlty exceeded. Since the principal fluid loads appear to be a result of an instability in the flow rate predicted by RELAP and not a result of an actual physical phenomena, it was decided that these loads were overly conservative and could justifiably be reduced by 20K. 'he fluid forces presented in Section 4.8 and elsewhere in Section 4.0 are the as calculated loads and have not been reduced by 2(C.

It should be noted that an alternative modeling practice that could have been employed in the solution of this problem would have been to make the PORV valves time dependent junctions and specify the valve flow rate. Had this been done, the flow rate oscillation and their resulting forces would never have occurred,

ri-TELEOYNE ENGINEERING SERVICES Techni,cal Report 4-40 TR-5364-1 Revision 0 4.6 Valve Flow Rate Calculation TES Flow Max Rating*

Rate Calculated For Steam Bore Area Opening Valve T e LBM/HR 9 3X Accom. ~IN~ Time Sec C~ros b 523,332 435,000 3.6 in2 0.010 Safety Relief (Ref. 18)

Val ve Masoneilan 199,000 1.0 Op d (Ref. 16)

Relief Valve

  • The maximum rating for steam at 3X accumulation value is from the Crosby Valve J

and Gage Safety Valve Drawing No. H-51688, Revision A.

Technical Report

]i TELEDYNE TR-5634-1 ENQINEERINQ SERVICES Revision 0 4-41

,= 4.6.1 The valve flow rates used in RELAP analysis of the SRVs were obtained by increasing the ASME rated flow by 15K; l(C to consider the ASME underating of the theoretical flow and 5X to cover tolerances. TES flow rate calculations are included in Figure 4.6.1.

WT = 51.5 AP ASME rated flow:

WR

= 51.5A (1.03P + 14.7)(.9)(.975)C (Ref. 17) where:

WT = theoretical flow WR

= rated flow coefficients:

1.03 - applies 3X accumulation 0.975 - valve flow coefficient 0.9 - represents theoretical flow rate reduced 1(C to equal ASME rating The equation TES uses to calculate the valve flow rate is Wmax = 1.05 x 51.5A (1.03P + 14.7)C(0.975)

This is an increase of 15K above the ASME rated flow as explained above.

-ri-TELEDYNE ENGINEERING SERVICES Technical Report 4-42 TR-5364-1 Revision 0 4.6.2 The Masoneilan PORV maximum flow rate for steam was taken from the EPRI Safet and Relief Valve Test Re ort as 199,000 ibm/hr (Table 4.5.1-1b).

A valve opening time of 1.0 seconds is used based on total valve opening times of all Masoneilan valves tested listed in Table 4.5.2-1. Since full open times averaged 2.76 seconds, with a minimum value of 1.64 seconds, TES has assumed 10(C opening in 1.0 second, because independent testing has shown that flow is not always directly proportional to stem travel. Most often full flow is obtained before full stem travel. 8ecause 1 second is a very long opening time, this was not considered overly conservative.

Technical Report Revision 0 )<~TELEDYNE ENQlNEERlNQ SERVICES 4-43 sv CHKD. BY~f~DATE~~

DATE~~jh C~SY Yam( V'A 4-VG SHEET NO. ~OT 2 PROJ. NO.

Q~~~ ~gag pLoW AQ~ Ct0~7pcrA r

P~a- aec. 77l h' -7.P3.j, I ar8 r7 8. 7>>7 2 (r78<)

iraluc

~4, grcur g~ ic.

&de/ 'B h'Sl(c88 4)

.BP-8f

. A Cc puler- P~ &TCDQ CixxoexY ~t Qclua rr7cnufcctu rr CPS+.SY Vclua c Ceca@. Cc pc gc, p

)lo 8 N4 ag 2~:a'o~ A.

PICC Je~ in ~

Qx'pl~ ~t pilif'IChheeeC ->>.84

' f ~~ p5i(j He Cat Iah~ oI Pbx l=l~ Pal.c (Vl )

f ~'~V PAOng Cod ~~eC4rCke'On >

in obkioe .ng Wrrux r) Ikey Calculadran Cs cacao onk7 4 dater 'ne. a Rai lx5 a '('cc aieeana mea ndk necaaeor 'ly rcjre-'rnw prC~'~

I i~f ~c fjC7ri& .

E): n CCCCVnd~

rrax glcua mr ~ 'n/~~a 8 .o, /~Mfa n=rce-.e 1 l

/

rr7ICTCwC.C. Qf&~O4Md p/2 - 77zy. 2 US>H(~ CEC I..

V,i,x = l.o5' Sl ox 3..cxae,(2'll Sxi axa rq 7'r)C. (5.).7S)

C.. i&OCo r3.~ - j~p O.?Z97 P~e - iaer} Pae,i' 2 8 pg C, =

l.o7]/ ct}

~~4~'n/...

=

~>>~~ ~~ i'j.-

Fig.4.6.1-1

Technical Report Revision 0 A TELEDYNE ENGINEERING SERVICES 4-44 CQciwel'~> HO.~OF CHKD. BY ~DATE~ rhea ~ @km vA<YE'~p~

GA~LA~

SHEET PROJ. NO.

2 S<

id, SZ S,g'/o.OS fQ/ r hr = /'/S, 37 ~/oec THE'ornrTvTEiz 'Qoor BA z~p

'roloe. foll efoen cree in /he ron iw+cK) 0 o&z. t+

iloo rc,4e. Q C il ofen'g - ISO.if /~c R~ ro/e. C? goto oo~;~ of/l.e I

~l E. ~ /Sa oi +l~c.

RCLAPS floso c'eo 'i'oh etLuErw lrilesx )E/S B7 ~l~e(

Col& 4eO8 bif inWfool;*ion, IQb y7- 138.DI AAoo = o. / T o / /.o rg (o coed)

O Q2.M 4>

( v)

O.OO8O( 4/ (R ev)

Fig.4.6.1-2

-A TELEDYNE Techni cal Report 4-45 ENGINEERINQ SERVICES TR-5364-1 Revision 0 4.7 RELAP Plots The following plots represent RELAP mass flows, pressures and qualities at various points along the discharge piping. Since RELAP had to be restarted, the plot time scales may vary (i.e. 0.0 - 0.2 seconds or 0.0 - 0.400 seconds). Also, the ordinate axis may not always be correct; many times multipliers will be off (COC is aware of this problem in RELAP). However, they do depict the trend accurately and are calculated and reported in RELAP every .0.001 seconds.

Correct peaks and times at which they occur are listed with each trace.

Plot Set Tr ansi ent 4.7.1 Unit 1 Condensate/Steam Case 4.7.2 Unit 1 400o Solid Liquid Case 4.7.3 quarter Model Cold Loop Seal/Steam Case A RELAP volume schemati c precedes each plot set.

Technical Report

]i TELEOYNE TR-5364-1 ENGINEERING SERVICES Revision 0 4-46 4.7.1 Unit 1 - Condensate/Steam Case

Technical RepA TcLEOYN- ENGILD ~tViNG S RVIC~S TR-5364-1 Revision 0 I

BY~~ D*TE HZ~ 8P WoDZC Sclsm~re. ,SHEET NO.~ OF~

t CHKD. BY ~CHOATE~

~wZr g SoSu'elE1 PROJ. NO. ~~

prRv'5l gl gaol

~2 WIIIP ~

I> 'i

-- <i/oy S

O o

qo

'jo d<

gb(bl FIGURE 4.7. 1-1

<s-TEt EDYNE ENGIN:-ERlNQ SERVICES

,, 4-4,8 BATEMO'87 WEAP /10DEl 9 cd PfAYz'c SHEET NO.. QS~

HKD. BY ~+OATE~EE 5 u~- 1 ~)Pi~ <WC S PROJ. NO. ~+

3d $ 0/

Og Aiy /EO<

,o4 o

e

/LP P w oK' Y~CTM V

/5rg '~ oP/4/

tO3>EI ESQ gP f0 Qadi ni/A vcZ

~nEES V

~

/////9 ffEEi if'oo~'gi2t t.S

~rosi FIGURE 4.7.1-2

"'""'"'WWTELEDYNEEiiIGINE RING SERVICES Revision 0 4-49 y ~9/ OaTE~+3-.

BY~~DATE~5A P P ODEUM SCgrPN'7&C SHEET NO..

PROJ, NO.

~

~~~

OF HKo.

wbJ ST7?Pr1H (gyiu gl3>b eisl f' p(t8I St30/

, FIGURE 4.7. 1-3

C)

O U Pl tu O.C.rp)X iWlrl Vpuy nulli'mC~t>. tycho

<'/~

C>

O.IQB SiC I

Vl C)

C)

M tA

+D Xl W W 8

8m O

( VlM VO tb I

fD t/l

+4 0 WOI X7 lTl ID K a O

ei'.DD Q (0

0.1R 0.15 TltK (5CCl 0M (D

RELAPS/NS]/01 OR LOS OF C93LFNT 'f 15 PR06RN 2g. sPo gg, c86 LR 0.% L%

TltK tRCl

C)

O O m m

~ ~

RELAPS/tSQl/0]4 REACTOR LOSS OF CNL AN%.>SOS PROGRAM s Cl o

ID

C7 O

2 0

Dl Pl REUFS/NNI/OI OR LOS OF COOL D.C.CMK UN I] PGRV OPEN N/lH/ ~

C7 Kl M W

( Ol CD

~~

Ã7 CD I Cl l/7 0 +

wo w,

&Cl I

Xl CD O

O d

0.00 O.tH 0.00 0.)2 O.l0 TltK ISKC)

RELAPS/tGOI/0]4 fKRCTOR LOSS OF 000I.FAT ANFI 'fSIS PROGRfN Cl QO C)

O Cl 8

8w O IA p O

O O. IS 0.2t 0.32 Ill 0.%

(SEC)

0. 40 0.55

C)

O O m

RELRPS/F01/01 REA N LOSS OF CM. SA. S 5 PR M O.H ~ .n O.N LN 0.%

T]tK tSKCl

RELAP5/NSl/0 0 fKACT LOSS OF COOLFN AHA. S D.C;COOK UNI PORIJ'tN 83/ /l O.N 4.l2 ZlHC tSECl

0 C)

O O I I RELRPS/F01/014 fKRCTOR LOSS Of COOL%T AN%.WSIS PROGRAM O

O I CJl ID QO Ol C)

O ID W ID S 0 8 Vl I

CJl ~

mO ID ~ 0 WOI.QI C)

ID X:

O O n

O o

0.15 0.14 0.52 O.CO 0.44 TINE (SEC)

REI.APS/NMll/014 REACTOR LOSS OF N 'fSIS PRO I I ID Kl tD I 0 Vl 3 V)

Wo

4) g 0 W0 I

C)

R7 ED aO 5

an aa aN TltK 1SKCl

RQ JPS/t$ 01/014 LOSS OF CNL O.C.MX UN T PGRV 83/ /

Cl Kl O

CI r4 O.N O.N L ll T1tK tSEC)

O O 2

rn I

RQ.AP5/Nl01/0)l fKACTOR LOSS Of'OOLfNT AHR. SfS PROGRAM d3 gh O

O C) 89.9 '~/~c.

I

@a,.~ ~c.. Ch C) fD Ã) A)

I 0 Vl X lA 0 0 CO W

X7 zm lb aO O

~l O

D 0.$ 5 O.B 0.32 0.% O.Q 0.56 T1HE tSECI

RO.missa ra m oa t. ar Cm. S[S PRMS!f

~qp l~/~

Q IO ~c(

Kl W W CD Kl CD I O Vl M CCl 40 D O WO C) mz CD a

O Rm O.H ~ .a O.IO LN loOl

?it% (M:C)

l I ~ ~ .I~

C7 r O CD lll fr)

RQAPS/NR / I aF D.C.COOK I I PORV / /

lh qOm I~/~

CI.I"r I MC Olo

~n

<<E R7WM

~D

( UlmaD CII

~. I Cl g l/l Ch ~.

G W I

0 CD ID CI O

Sm~

O.N O.N O. l2 Ooll 0.14 TltC (SECI

le RELAPS/tSDl/014 fKACIOR LOSS Of CtmLt%T ANN.WSfS PROGRAM (p f.o tgjINC Q o.~s I ~~

I K7 (D I

CJl 0~

I lA GJ

~e

~

O WO C)

I Dl zm Kl lD

'n %m~

o

0. 24 0. 52 0. 40 0. 41 0.50 O.H TIE tSECt

A X CU CD REtSPS/NS /Ol REA OR D OF fSR. t S PRONAtl

( I CJl 0~

M O WO I Dl CD Kl lTl A) u %m 5

rt LH MR L LS 1.0l IltK (SD:l

IKLAPS/t$0 / OR LOS OF SR.

O.C.CON UN OPEN N/ /

KI W CD I

CJl l/I

  • 4J Ch O

I CD O.N 0.00 O. IR 0.1$

Tlat% l5EC)

C7 C) rn IUZ ED R~lt KD D ~ I 4

REAPS/tSD1/014 REACTOR LOSS Of COOL%IT AH%.ISIS PRONA11 Cg CI n

M Coo ID

=

o CI CD M CD R C I 0 Vl 0 Vl CO a) 0 WA I

C)

X7 lTl K

CD aO Im Cl O.N O.R Ill 0.40 (SECl

0. 4b

RELAPS/t$ 0 /Old fKACTOR I. S F a

CJ M

~X Kl mN Cl I4 0.55 o.n o.a LN TltC t5ECI

/NS l/Ol REACT OSS CRLf%

D .CNX lN l 1t / /

/~C O.074 SeC KIWW lb Kl Cb C l n til GO ~

0 AnQl I

C)

(D Cl O

1 z 1g lbj

o. 10t sec, O.N 0.N ,0.13 0.10 TltC (SEC)

RELAPS/tSOl/0]4 REACTOR OSS Of COOLFNT RNR.YSIS PROGRfN O.B 0.3l 0.%

TlNC (SECl

REl.AP5/NSl/01 HER R LOS DF CQX.f8'NR. S S PRO

> lb/~eC- 6,OS-S aC

.g ~~/~et Q o.45 >~~

o.n O.N LN Z]tK (SEC)

0 O m

'4 REUF5/t$ 01/Ol R L S OF a

0..

Cry ON I PORV OPEN Kf/ /

O O 0 iq 14/~~(

Cl

@ 0 IGt Se(

m O.OI O.OO 0.12 0.10 OM L24 T]NC tSEC1

RELAPS/MDl/Old fKACTOR LOSS OI'N FNT FIN%. SIS PROQRAII

~ Ib/~ Q g. ~(4 A4 0.% Oo 44 T]IIL ISECI

U D I

m RELAPS/NDl/Ol REACTOR LOSS OF CKL SFL S S PRONfN bI ID Q0 0

C) o C)

0) ÃI CD I

Vl K 0

Vl CXl ~

O WO I

lD O

O s

cl 0.% O.H o.a o.e L% O,N TltC ISKC)

RELfP5/180]/0 OR OF O.C.COOK lN l O.N 0.04 0.12 T]tfE lSEC)

CD CD CD I I m m ILC & XA.S IO Ll~ 1 RELfIPS/t$ 01/014 REACTOR LOSS OF'OOLf8 ANR.ISIS PROQRAtl o

re Ib/Dcc (9 g. M. I I

'V CJl go N0 I0 C)

O CI AIMS ID R7 CD n

Vl 2 Vl GO ~

0 wn gOc4 o I CD R7 ID O

-3.O Ib/~( Q 0,373 3<(

0. IO 0.15 0.52 O.Q O.ES O.M T]NE ISEC)

CD O O m

RELAPS/t$ 0 /0 S[5 PROGRAM O. Bol ~c CJ go N0 K7WW CD Me I 0 Ul

4) D V'A 0 W I

0 Ql CD X7 tD C5 O

> q IL/~~ (ao.soS ~c Illo.a tSEC)

O.N

C)

RELAPS/t$ 0l/014 OR LOSS OF IL o..can UNr> nevpem / r <

R7WW CD R7 CD n

CJl M l/l 4J ~

EZl ~

0 A I n

QP C)

X7 CD a

O a 0~~7 Q O.i97~C O.N 0.00 O.Q 0.1I O.XI 0 24 TIE (SEC)

enm was eas~ ia st<<es. IA Cl RELBPS/tSDl/014 REACTOR LOSS OF CMLFNT ANfL'fS S PROGRAM CS O

C)

O O

.1<9 P o,tao -'~~

0. 15 O.R 0.% O.ED 0. 4b 0 55 Tlt1C lSECl

RELAPS/NS)/Ol IKA OR OSS IF CN T O.C.CKK ljNIT P 83/ / l O.N O,D TlttC ISECI

RELAF5/NN1/0 l RERCGN t.OSS CM t RNR. S O.C.CRX UHlTI P OP& 83/ / l I

C0 CD

Ã7WW CD n

Vl 2

~e o ~N GJ wn I Ql CD m O.M 0.00 Oe)4 0. Ii O.X 0.24 TlNC (SECl

ro

~e II I c

' I i ll 'I gl

~o r0 e

~ e \

g il S U U

0 o I 1

RElJFS/t60 /Oll OR LOSS OF'ts P 4

S ED M lD I 0

~.Vl D lh 0 W I

0 C)

X7 Pl o s Im C+

i.o Q ~,&5 mc.

O.H o.n TltK aa tSEC)

O.N 'N l.04

.IAhr IWJZ C) r C) m

'4 RE /NS / lKACI L Ã O.C.fXNK LNl l PORV / /

Q D.hfM<

0) W (D C I CSI nM l/l 0 QjWO I Q d C)

'l+ I P Q.I74 me~

O.H 0.00 Ill LLR lSEC) 0.10 O.Q!

C)

O O

~ LES ll~D lOllS ~ l~

RELAPS/t$ 01/014 RERCTOR LOSS OF COOLFNT ANRASfS PROGRFN D

8 OD O

8 8 0l M (D O I O Q

Ul Vl CJl ~

d

~o O

~

WO Ql 8< I C) mz

%m O

. (p'(3 Q. ' L IO O.N O.R O.R 0.<0 0.40 O.lt T]NC (SECI

StS PRONNt l

h

REUPS/NN /014 OR S OF D.C.CMK lN IT P V / /

I Q)

Ch C I A VI Ul 2 Ao+ A 0 WOI DI C)

Kl CD C7 O.N O.OO Oo tQ 0 lS D.2E TlNC (SKCI

mnao>io>e acmroR t.oss ar coo.ter ma.>st r Rocaan d3 Ra ~

Pq o

Cl I O CO O

oa gd fD Xl lD c i Ol nK N M CAD

+d O WO Q I g2 O

d = .OQ e O.Eon C c

o.ia 0. 24 0.32 0. Cl 0.4b

'fltiC l5ECl

RELAPS/NS 1/0 OR OSS OF KLFN NR. S S PR RFN lD Rl lD C I 0 Ul K 4J K 0 WAI C)

O O.H 10 O.N TltK tSECl

~ ~

'4 REUFSI / ACTOR OS OF C D..CI lNlT1 PORV OPS 83/ /1 g

O.OI O.dd Ill 0. lR

[SEC)

Lld 0.%

CD O CD IlCl l~ RALtl ICh ~ I'Kl I RELAPS/t$ 0]/0]4 fKRCTOR LOSS OF'fmLfST ANf%.TS]S PROQRBH O

OO 8 ci Kl W W ID Kl IO C I 0 VI CJl ~

0 W I

0 CD Kl m

n o

u O

I Im

~') 0 LCD -'CC

0. 14 0.24 0.32 0.<O 0. 45 0.&

t]HE lSEE]

gflI

C7 m m RELBP5/AD /Old REACTN LOSS OF ESSP fN D

C3

ÃlWM fb Rl 0)

CJl n~

lA 4J W 0 wn I Ql C)

K7 lb

'Z5 O %m O.N O.TR D.N 0,%

TlNC (5KCl

CD CD m

ameSi t'ai Oa L S 0P 0 C.CRK ON T PORV OP / /

.67/g 0.1'%$ ~c I 0 Vl K g

4) >

0 Ch WO I Ql CD O

O.N 0.00 0.1R 0.1I T1NC tKC)

RELAP5/t$ 01/014 fK8CNR LOSS Of COOLfST fNR.YSIS PRONAtl O

~ 2 1 P 0.200 Sc<

O CI

O O m m

~ I RQ.RPS/N$ 1/014 RERCTOR LOSS CNL% FNfLTS IS PROGRAM Pg CD Xl CD I 0 Vl Z lh GO N O WO I Ql Sm g.co (9 /,0 aH Ln aa aN l.Ol TIE (5CC)

REUFS /0 REACTOR L D.C.COOK UHl l PORV I 0 o.a O. ll TltK ISECI

A z Cg c

7C o o RELAPS/tSOI/Old REACTOR LOSS OF'IILfST FlNFL'ISIS PROGRfN C) lD

'ZJ O

C+

I. O 0.24 0.$ 2 0.40 0,% 0.ea TIE ISECI

O O m m RELAP5/t$ 0 /Olk REX OR OSS OF CML f%fi S S PR RM I

lO

Ã7 MW ID X7 CD C I Vl Z 0

Vl Cad M 0 A 0 C)

I Ql 2

Al a

O Sm

~ g I 2) ~

4.H o.n 4.a 4.%

Tl& (SEC)

CD CD Pl Ptl RELAPS/ND / 1 RGCTOR L S OF C O.C.COOK UM T PGRV OPEN 83/(H/11 CD Rl

'a O

IK O.OI 0.01 O. Il O. II Tlat% tSEC)

RELAPS/tSDl/0]4 REACTOR LOSS Of CKLB4 VStS PROGRAM qi Q. 52-B 0.24 0.3l D.40 0.%

TlHE (SIC)

CD m

4 RQ.APS/tSDl/01 fK OR 0 5 OF Cm)LAIT ANR. SIS PRONFN I

Cq I

CD CD

( Vl 0D fb Kt lD I

Lh 0 W I

0 Ql CD

~Q I.O O.H o.a Tlat% f5Kl

4 S S PRONf8 D.C. lN OPEN /N/

fgO3 g 0,055 c(

O.M 0.12 0.10 TIE lSECl

CD CD CD m m IIIIICO M.O IQ ~ I& IQ l4 REAPS/t$ 0l/014 RERCTOR L055 OF COOLf%I AHR.TStS PRONfN O

I D

O PJ oa ID Bo LA

%7M'D M ID CO C I Ol 0~

Vl I/I K gj 0 W 0 I Ql O

g~ Q g.b~f5 ~c V1 O

0. $ 4 0.24 0.52 Ill 0.&

(SECl 0.48 0.50 O.M

O O rn m

'4 RELfIPS/NID1/014 fKRCTOR LOSS OF C NR. St PROCRAtl ~

I I

CD 4J I I ED C I

~~Vl K 0

V)

~o ~

O WO

~o I

CD Sm iE 9

U)

~ 9(p7 ace O.H Lll o.a LN Tlat% lSECI

o a m rn RGfFS/N$ 1/0 4 REACT L OF 84K O.N 0.10

O O m m IV% tSS 4~% KR II ~ INX a RELRPS/t$ 01/Old REACTOR L055 OF CKILFNT RNR VStS PROGRAM I

CJI O0 O

8" R

CCI CC.

8 m

O rt5 O I OQ C) bOO~c 0.15 0.24 '0,32 0.% 0. 41 0.50 TIHC (SEC)

REl.RP5/t$ 0 /0 fK OR LOSS OF C .FN AN . Sl PRO RM Q 1.0 >et O.H aa Tlat% tSEC)

C. COOK UNIT PORV OPIA /M/

O.M 0.11 TINE (SEC)

CD CD CD m m

~ IM ~~ ~ l4 W%tl1 Rf;LAPS/tSOI/OIW fKACTOR LOSS Of'OOLfNf ANFI YSIS PROGRAM o

I o

CD 00 8

o" K7 WW CD M CD I

CJl 0~

III GJ M O WO I

O CD mz CD O Im d

0. 1$ 0.24 0. 40 0.% 0.54 TItK fSEC)

CD CD CD m m

~ ~

e RD.APS/tSO /Oll REACTOR LOSS OF'KL SA. SIS PRONfN l

CD lD X) CD I

CJl 0

~

CII 4D ~

0 W I 0

CD Sm Z

8g 8 o.74e <(.

O.N O.N LN O.N le Ol Tlat% tSECl 8

4

/NlG /0 REACTOR UN IT 1 PORV Ql / /

>.c Q~.igg ~ C I

C)

~E Wj I

fD

~

Vl ern o wI Al n

mz Sm

I m

euaa sa sm>> ss aa a>>s a ssvl RELAPS/tSOl/014 fK8CTOR LOSS Of CMLFNT AN TS S PRONFN O

c4 oD 0 8" <<E Wj 8 Kl CD Ics c

CD I 0 Vl ~

C/l

~e O CsO 8 I ID I~I CD O Qm i.o g Oval s.cc O. IS 0.24 0.52 O.m Oe Eb 0.5S O.N TltlC ISEC)

RELRPS/tSO /Ol RERCTOR LOSS Ã f%A.TS S PROGRN1 O.H o.n o,a LN TltK (SCCA

O 0 m m RELAPS/tSOI/ CTOR 5 OF ILfS f88. I PROGRAM .

D.C.MX lNIT PORV OPEN %/ /

g7 Q o.o~

0 0

ÃIMW CD Kl CD C I CJl 0

~

C/l GJ ~

0 D 0 C)

CD D

O O.M O.OO O.ll O. IO Oo&

TIHC (SECI

RELAPS/tSDI/010 REACTOR L055 Of CNILfST 8NR TSIS PROGRAII O.?.19 ~I 0,2$ 0. 32 0.% 0.le TII1E (SECI

4 RELfPS/tSDl/0]4 fKRCTOR LOSS OF CML I MRlVl W0K R7 I

lD Ul O WO D I Ql Iz C)

~.gift >cC.

~ .H o.n o.a O.N 1.0l TltK (SEC)

REUP5/tSO / S OF COOLfNT O.C.COOK LN PORV 0 / /

.98V7 6 oo ~c O.H O.M 0.12 O. I4 TlNE ISEC)

0 0 m

IV%~ 'g~ I1~ I ~r I RELAPS/tSOf/014 fKRCTOR LOSS OF'00 fM ANfLYSIS PROGRAM O

O0 D

8-O O CD R7 CD I A Vl S Vl Ao 0 &Cl I Ql C)

CD a

O %m o

O. IS 0.24 0.40 0. ED O.M O.H TINE fSECf

REl.flPS/t$ 01/014 IKACTOR LOSS OF C93L AIR. S[5 PROQRfN 4

RELfPS/t$ 0 i/0 L S

0. COOK LN I PORV OP / /

qg97 Q pa a<

I lO

~. O CJI D m

" Sm O.Ol 0.00 0,!2 O. l0 IJlK lSEC)

ID O O m m RELAPS/tSOl/014 REACTOR LOSS OF COOLFNT RHR.YSIS PROQRAtt I

C)

K7WW CD Kl CD I

CJl 0~

Vl 0 W I AJ 0

C)

Xl CD CI O

0.24 0.52 0.% 0,44 '.M TIHC tSECl

RELAPS/ND1/Old RERCTOR LOSS OF C SA 'fStS PRONN1 St P a779 ~~

O.H o.n 0. 0.&

?le ISCC)

'4 IKLRPS/NN /0

.C. UklTl PGRV OPEN / /

0) K) tb I

Ul 0

K l/l 0 W I

0Ql C)

II2

'n O

5 EV'OI O.OO O.fj 0.10 TltK lSEC)

CD CD m

4 RELRPS/tSOl/Old REACTOR LOSS OF'NLNl AN%.'TSlS PROGRAtt 0)

Cat bo gK

,~~ IS~/

O Ci P4

~0 he

~E Wj 0 W I

0Dl Kl m CD Cl ri t5 O %m O.LO O.B O.D 0.40 0.45 O.tt4 Tlat% tSECt

C)

U O 2

m m REUiPS/tSO /Ol OR LOSS OF US . 5 PROGRfN Qo xR

'I

-- ~>X '+/n<

] ad At.

O mO

~> C)

X7 lTl CD aO C+

lm O. I4 0.& 0.52 0. 40 0,4b 0.50 O.M T1NE (SfCl

RELAPS/ND]/014 OR LOSS IF f%FLYS S PIOCRAII

+IONIC 0.4 e.n O.N ) ~

TltC ISECI

lKUPS/tS0l l ACT L 5 CNX

.c.coox ux> ~v Os@ o.a 0.1R ZlHC ISEC1

C)

O O m m h%%8 SM 0 IW ~ L ~ ~

0 RELAPS/tSD]/0]4 REACTOR LOSS OF'KLFNT 8Hfi.YSIS PROCRfN 8V C)

Ia Xl O

o. Le 0.3l o.io 0.45 O.M TltK (SECl

r II f i ' I I II 'I 'il W

i~

r r s g U 0

IJ l

RELAP5/t$ 01/0 OR OF C 0 C.CNX N/t POAV OPEN / /

O.M O.N O. lR LLS TIE l SEC)

C3 D U m m IQE RRI s~lx cs D ~ aM 4

RELAP5/t$ 01/014 fKACTOR LOSS OF'OOLfST RNFLYSIS PRONAtt I Cu O

an o

f4 g

~E Wj sS (~. I CJl 0

~

va 0 W O I Al BI O

Im O

0,)5 0.24 0.22 0. 40 0.4$ 0.55 O.N T]MC l SEC)

RELRPS/tSOI/014 REACTN LOSS OF CIX)LfST QA.'ISIS PRONRII O.H Ln o.a LN O.N Tl tK l5KCI,

O O 2

Dl RELfFS/t$ 01/0 REACTOR MS P O.C.COOK lNITI PORV OPEN / /

I C)

R7 W

( Kl A CD I

CD Vl CAp Ch 4 O 4s I

0 Qt I

CD m

O.N 0.00 Oo ll 0.14 TINC t5EC)

RELAPS/ND]/0]4 REACTOR LOSS Of CIX]LEANT f%83S]S PROGRAM a.ia T]HE ]SEC]

REi.APS/t$ 0l/0 4 REACNR LOSS OF COOLNIT NH. S S PROGRAM 0 4I 0Ql C)

O.H o.n o.a o.a LN l.Ol TIE ISCCI

RELAPS/tSDl/014 REACTOR LOSS Of'OOLS'N%. l5 PROGRAM 0.& 0.40 TlHE lSEC)

RELAPS/tSD1/Dld fKACTIN LOSS OF CKL SR YStS PRONfN 0.% '.H o.n TltC aa (5CCI O.N

O O rn m OP / l o

l Ul

~.

Vl I C)

CJl ~

Ch ~.

O WO Rl I

tD Al

'ZJ o O c4 0.00 O.OI 0.00 0. 12 0, lO 0.24 TltK ISEC)

CD rn RELAPS/N301/014 fKACTOR L055 OF CMLfST RNR.YSI5 PROGRFN (18 /in<

Q CD.(obOMc

( e 0z I

lh 0 &tl I QI o fg

%m g

U)

Oe& 0.5l 0.% 0. 40 O.M TlHC fSECI

RELAPS/NSI/O fKACTOR LOSS Ã CÃlM lS PROGRAM I /in~ Q o707 sec fp9 O.H LN

?ltd tSECl

C)

Gi

.C.CSX lN I PGRV 83 Qo V4

. ~2 g lh//,-z.

I Cl O.into ~~

CO P>>

~ll o'c o' I Ql tD x Pl E7

-:Sm O.N O.N O.a 0.1l tL1$

Tlt1C (SECl

~ ICII S JL II I%1 IA RELAPS/N)DI/0]4 REACTOR LOSS OF' LFST ANFLTStS PROGRAM go i>>

>>I Q N

X h

8 8

R 0

o 0.15 0.24 0. Sl O.CI 0. 4b TINE (SECI

CI CD m rn

~ ~

Ra.menp]io]c mar0R LOSS Or C SA. S[S PROGRAM

]sSA' Q. 0-748 ~

I CD I

CD Kl CD C I Vl K 0

M O WA I

CD X7 CD o

O.H o.n a.e LN 1.01 TltK ISEC)

C)

/t$0 / REAGYDR X7WM tD R7 Cb I

Ol 0~

Ul GJ ~

O WO I

C)

Kl ED O

O.M 0.00 O.Q 0+M 0.%

TltK f SEC)

s RELAPS/NNl]/014 REACTOR LOSS OF'KUST AH%.YS(S PROGRAM Pg go

~0

'g 6~/ L ID M lD I

Ul 0K tA GJ W 0 A 0 I Ql CO Kl C9 n

O g

CI c4 o.ia 0.& 0. 32 0. 40 0. 4b 0.55 T]NL (SEC) 8

RENPS/t$ 0 /0 OR LOSS OF LFN SS PRO A is7l i I 'e o.n o.a AH lltK ISCCI

REUFS / OR L D.t'.CSX tN T PORV / /

C 0 Vl I

EJl ~

O WO I Ql O.IH O.N O.D 0. ! 0 LOO O.Rt TNC lSKCI

C)

C7 m

RELAPS/tSOI/OIW REACTOR LOSS Of CMl.fM ANR.YSTS PROGINll O W I

0 C>

O.l4 0.32 0.40 0.44 0.55 O.N TltiE (SEC)

4 RQ.APS/tSD1/0 4 REA OR LOSS OF 93L e Q) gO

~r g

(~y gib/~a. Q +.7$ f Mt tb 84 8

R CO K7 Pl ED O O %m O.H o.n o.a 1.04 IltC (SEC)

/ /0 RGKVOR L OF

.CMK UNIT) PORV O.OI 0.00 0. IR TltK (SEC)

4 RELAPS/t$ 01/Old fKACTOR LOSS OF'tmt.fNT AHB.YSfS PROGRAtt 8 t+3 / ~L Qo.m~ ~

Kl W

( Vl lD I

Vl Ol O

I C)

Pt g

0.& 0.52 0. 40 0.48 O.N TltiE tSEC)

o o m m

~ ~

a RELAPS/NSl /0 OR l.OSS OF f8 RHR.'fS 5 P Nl ID 1. 4 /i<2.O

Lt.'/

Pl h

a Qd CD M CD C I Ul 0

~

8 Ul CrJ ~

O O WO O I Ql ID

Ã7 CD o

o ci O. IS 0.24 0.32 0. 40 0.<e 0.54 O.H T]NE tSEC)

RELAPS/tSQl/0 l REACTOR LOSS SS Rt Kl W CD CD I O CJl M GJ Ch O O I

0O K7 CD o

O.N o.n e.e 1.0l TllC (SEC)

IKLRPS/t$0l /0

.CNX lN PORV 6' Qa xX o

e4 0.00 O,N L l0 lit% lSEC)

tD C) m KII ~ I&

4 RELAPS/tSOl/O]4 REACTOR LOSS Of Cm)LfST fNfiDSIS PR06RRi 4y bO

~O g

tz.x lLF/ I O

O (p Q.f (~ ~iC I Ch O

8 8

4 O

0.15 0.24 0.52 Oo40 0.0 0.50 O.N TlNE ISEC)

RELAPS/t60]/0 4 IKACTOR LOSS OF fS f%R. SlS PROCRN)

) ~~ 'Ib/y)a. ~ Q O.H o.n 0. IN

?ltK fSK)

zm Sm Z

Q C

0

Cl CD CD

~ ~

RELAPS/NSl/0 4 N LOS Pg

.c.cool; uzi may o / />s.

O 5/4 o

Qo

~ Vl

~O VO

o O rn rn RELAPS/tSO /0 OR L S Ã CKNJ%T AHfLTSt5 PROCRfN I

CJl CO ID Kl lD I 0

~'Vl D Vl GJ ~

0 W I

0 A.. 0 SEC.

0.24 o.a 4.%

Tl% (5KCl

RELfFS/N /

O.C. C93K UHI EN / /

R7WW lD M A)

I O Vl 0 AO I Ql CD 0.10

O O I I m m RD.APS/tSO]/0 REACTOR LOSS OF CtmL N.VS S PROGRAM I

C)

CD Kl CD a.a@3 . zest. I CJl 0~

Vl 4) 2 0 WOI C) m III

+.CD5 0 0 . 2.00 SCC a

O %m o

IJ O. Il 0.2f O.Q OA) L48 O.H TltC l5KCI

CD CD I I rn rn was <<aa la O~ ~ ~

4 e

Gg C.COOK lNIT PORV OP / /

~WM/

o M

~o J~ vs C I 0

~ Da g)

L11 0.24 TIE (SECI

U O m m Q~ l&h RELRP5/i%01/0)4 fKACTOR LOSS GF CNLl%T RHH. SIS PROGRSf gran.Z .VlC s c

'Og. f, a. saic.

C3 N~

oo 8 ~ gp.4> $E.c ( VlM AK fb I

A)

Cll GJ ~

g Q 0 WO oR I Dl C) o <Z.. LI . Znu S c -

0.)l 0.'R 0.4l 0.4I O.H

?ltd (SEC)

0 REGIS/NSl/014 fKACTOR 1.05 OF S P

.C.COOK lN PORV OPEN / /1

/we. A LOI o.a Lll L II TllC l5EC)

RELRPS/t$ 01/01 REACTOR LOSS OF COOL@IT Mi.YSIS PROCRRN 8/2i < . dZ I bI

-R Z) -'I lD I

CJl Vl CXh doB.3o - 72$ Mc- O I

CD 8

/5L./5 .Zoo sac 0.24

CD CD m

l r 4 IKLfFS/NSl/Ol0 RGICTOR L C

~ Q) 4g

.C.COOK UNIT PORY OP / /

5& A/5 I

Ol K7 M fD R3 <D I 0 Vl 0 W I

0 CD Sm z

LN 0.11 TIE (SEC) 8

RELAPSINO)IO]1 RERCEOR LOSS OF CKLfS RUB. S S PROGRAM lWKKZ.WZ, sac I

Ch lD M tD

~~Vl V n

Vl Ql ~o 0 wn I Gl C)

Ia X!

O C+

54.ZING > . zoo ~it.

0.14 0.40 4.% 4.M TltfC (SECI

O O m m RELRPS/NS /0]4 fKA GR OF QA. PR

.C.COOK LNlT PORV OPEN / / 5 gp Pre@ ./FR sEc II) X7 II)

C

>.03I 0 VI 4) g 0 W I

0Ill CD III oI %m IL ll T]!C (5KCI

e.a RELRPS/NlDl/014 REACTOR LOSS Of COOLNT AH%.TSIS PROGRAM I

i.di5. . 536 sEc 00 CD Kl CD I 0 Vl K Vl GJ M Wo 0%A+

I CU C)

Kl Sm CD I3 O

0.24 0.% 0.4I TltK (RCl

RELAPS/NN1/Ol d REACTOR LOS PR D.C.COOK U I 1 PORV P / /15 LN LQ L ll tltC l5ECI

O O rn RELAP5/tSD]/0]4 fKACTOR LOSS OF CMl AHR.WSIS PROGRAM CI I

CO CD D

OO RIME CD n

Vl M Vl 0 AI h

Cl x

CD Xl Pl Cb aO Im e4 0.! I 0. 1R 0.40 0,54 O.H TlNC lSECl

lKLAPS/NN]/ REA R 0 OF C O.C.COOK UNlTl PORV fN / /

LN LQ

'tltK l5Kl

a V

CU O O m m RQ.flP5/t601/Old REACTOR l.OSS OF'ÃL NR.'fSIS PROGRN1 tD M CD CJl n~

0 QwI nDl K7 I IP o

Z8 z98 n .s 0.14 O.Q o.a 0.4I 0,00 O.H lit% (SKI

IKLRP5/NSI/014 REACTOR PR

.C, CMK H V 0 /M/5.

kt~.@

D d

gw D

I D

f4 . /OP SC-C.

l4 LCN aW ~ - La Ll2 L lO twas ISCCI

D D Ill IL% XS II.IL'D M II ~

REAPS/NOI/OIN REACTOR LOSS Of m.FAT SJR.YSIS PROCRAI1 o

O

.9MZ~ . L,lb Mc O

riI eAIMS X7 III I n

<.Vl Vl Z

o wn I Ql C)

Kl

'l3 O

5 5:

0. I4 0.Q4 O.Q o.e L% 0.44 TIlK ISECI

m

'4 IKUP5/tSO /Old OR OS OF SA. S S ON%

O.C.CNK UHITl PORV OP% / / 5

( M 0M CD I

CJl CD CD CD CD o Sm

.oSS . Zo Mc Lll L li OM O.QI TltC I5KCI

RG.APS/tQDl/014 RERCTOR LOSS OF COOLFNT RNR. SlS PROGRRt

.0358 .Zm s c, D

85 o

d O.tS 0.24 O.R O.CI 0.54 Tlat% (SECl

REUFS/NR1/014 fKACTN LOS

.C.GXK UN PORV LR 'll TltK (5ECl

REl.fit'5/l13OI/014 REAOIOR LOSS OF O I.ISIT ROIS.ISIS PRORRRII D

.~gag a . Zua SSC" OD o

CIS Kl CIS tll D I 0 Ul C/I CrJ Z

N 0 440I D CD D Kl CD O

5

%m d

O. ID D.iI O.JD 0.% 0.$ l TltK tSECl

REurS/mO /

.C.COOK UHltl PGRY / /

a . 8$ Q OsG' Ql 8

. ZooSEC d

LN La eo lh LII TltC ISKCI

O O 114 A.ILCS SC ll ~ 1M RELflPS/tGOl/014 fKflCTOR LOSS OF CRW.f%T SADSIS PROGRfN CI g Z u .Zce) SEC 0+

D

+a 0O O

O. li 0.34 O.R Oo 40 fly tSECl

IKUFS/NS I/014 KACTOR LOS S S PRONfN

.C.COOK UHI PORV  % S3/ / 5.

a d

aa L l2 Lll T]tK t5KCl

CU o o rn m

+~serum~ 3i RD.BPS/tSO1/0] REttCTOR l.OSS Ot COOt.SIT BNB.TStS PRONN1 oQ Q go C/l CL

~ O 0 W I

n O

CO Cl d.

0.1$ 0.5R 0.40 0.4I T]NC tSEC)

O O m m REUFS/tSO /0 l4 REACTOR S tN P OF'.C.COOK U OP / 115.

I

( Vl 0 lD .Xl I

CD V'A O WO I

C)

Kl m P

lD a

O Im 4N 4ll 421 Tlirt (MXl)

U D m m ac~air.~il RQ.APS/t$ 0l/Old REACTOR LOSS Gf COOLFN RNH.ISIS PROGRAM d

nO <

Sd' lD %7 fD I

Ol 0

V'e K0

~ 0 wn O I Z

Ill (D

O Im d

0. J4 O.Q D.il

?ltd (SEC)

RELAP5/NR)/0] REACfN OF SA. 5l5 PRQGRAtl D.C.mt'NIT1 PORV OPEN /M/ 5.

La L l1 L10 IltK lSECI

O CD I I rn rn ted I5~1LLL 5C II ~

RELAPS/NO /Ol REACTOR LOSS OF COOLfST SA.YStS PROGRAM

~)

cI nD Q Bo 8 ( WUl rlY ID I

CI)

III I<

Ul CA> P CL d 0 A O I Ql P

CD Iao rI' O. I0 O.R 0.40 0.54 O.H TilC tSECl

C3 REUFS/NR /0] REACIOR LOSS OF O.C.COOK LN V EN / / 5 C)

D O

D Q0 Bd CD M CD CJl n~

ar Vl 'N 4) D 0 w I Ql n

C)

Kl mz tO CD O Sm O

OoH Lle Ll2 0 li l]lK tSEC)

$i O O Pl RE1 RPSlt$ 01!Old RCACNR LOSS OF CKlhfW YSfS PR06RSt I

o CO CD ~I ClCD N

Vl ~

(p) g Ch ~

0 WA I QI o X7

'aCD O

d.

O. I0 0.14 0.32 o.e 0.% o.se - 0.H TltK fSKl

CD CD CD rn IKLAPS/%0l/Old RE OR OF SA. S PR06RNl

.C.COOK UHlll PORV OPEN /N/

I lO Vl K n

Vl 0 W I

0Al CD K7 Ib el ID LOI O.D YllC (SECl

CD O Dl Pl

<<<<a <<<<~a RELAP5/N01/014 REACTOR LOSS OF'OOLFNT FFHFl.'YSI5 PR06RAN I

h3 CD CD AIMS CD M (b Cl Ul Vl CA M CL a O CsO I

CD O

-59$ spc-O. II 0.'Q o.a 0.% O.N TttK lSEC)

IKLJF5/t801/014 RGEIOR LOS OF SFL S S PRONA O.C.COOK Nl PNV OP / / 5

. 9y'<)2+49 . oswscc La L l1 L li T]% tSECl

RELAPS/N)Dl/014 REACtOR LOSS OF CNM.RJT RNA 'ISIS PROGRAtl

.CAP ~ ZOO 0 C

/099-'/S.s895 c.

4 RELAPS/t$ 01/0 I 0 IK S lS RON 8 C.COOK UHIT P V OPEN / /

/ ooo - zoo&c I

M C)

CD M (D I

Ol 0

~

Vl GJ ~

O WO m

.58 . oz8 'saic Im All 0.24 T]tK lSECI

RQAFS/tSDI/Dll REACTOR LOSS OF'ODLFN ANR VSTS PROCRfN I

PO C)

R7 WM CD M CD I 0 Vl V M GJW 0 W 0 o f

Sm O.R 0.52 o.a 0.4I O.M TltK tSEC)

CD m

RELfPS/t$ 01/0]4 fKACTOR L055 Of'N SlS P O.C. COOK UN 1 PORV OP / /15.

,9c7+gC)Q 0$ 'g Sk'C I

M CD Ol

~E

Ã7 WW IS fb Kl A)

I 0 CD P1 Im Z/Spy' Zoo SEC O. Il D.R4 TIE ISECl

o o IQR 4CD M.lt.& S% ~ l&l ~ p REI.OPS/tS01/0]l REACIOR LOSS OF CKLfSZ RNfi.ISIS PADNAG

. Z/3dg no D

gl CC

~n O

.o 3 S ~ 9/8 ~Bc 8

O. IS O.R 0.32 Oa 40 O.SS TltK lRC)

O O I I rn aaaa ua.a m a~

RELAP5/NS1/014 REACTOR LO 5 SIS PRONOUN O.C.COOK lN T PORV OPEN 83/ /15.

. ooo o MSkC O

0 X7 4M 4 fD A)

I 0

.9'o/6j Q O M<

d 4a LQ 411 TltK ISECl

RG.RPSINl01/Old RERCTOR l.OSS OF CmlLfWF SA. S S PROCRN}

I C)

CD Xl W M ID M Al C I CJl 0

3 VI Gd M 0 WA Pl Sm 0.24 0.% O.H TltK tSEC)

C)

O 0 REUFS/NS 1/0] 0 REACTOR O'QXW CD K7 CD C I A

~. CJl ~

0 A 0 I Ql C)

K7 CD O

LQ LN liter lSEC)

I II

CD O I I m

Il4t ZES CLILZR ~ ~ CNS RQ.RPS/tNOl/Ol REACTOR LOSS OF ILfS AN8. Sl S PROGRAM CS

. Zd5 5 I

CD

~ / 9 .g/5 SiC-Oo o

8 Qo CD M CD C I CJl 0

~

lA Vl

~n C

CC:

040 I Ol O CD Kl CD O

C+

.0 3/ 44 s 0.14 0. Q4 0. 40 0.44 0.44 TINE ISECl

I

k.
  • t ~

nZ ca C

7C CD CD CD m m REUFS/NS /Ol REACTOR L05 D.C,IK UNl VOP / /

l. 0000 ~ oo SEC I VlMKl K7 I

V)

CJl O

I CD Kl II) a O

.$8gCP OI O SSC..

rt5 o.a O.Q TllK tMX:l 8

J W~

RQ.APS/NDl/0]l fKRCTOR l.OSS OF CMLSJT RHFl. SIS PROGRAM.

O.l< LR 0.40 Lib 0.'%

TlNC tSEC)

I

~ I I I I

I II t /

r I

~ I' I

C)

O O I

Pl Pl

~ ~

lKUFS/F01/014 REACTOR LD S C NR. S PR fN O.C.COOK UH T V N M/ /1 .

(Bj . o4.+ pic.

Kl M tD I

~. Ol Vl Ch 0 I

.2/ZPZ . 2'mac LH OM Oe QE

~ ~

ID o o foal

%St ~ l1.lLV ~ N W IM RD.APS/F601/Old RERCTOR LOSS GF COOLl%l'NR.YSlS PROGRNt Yl D

Ul ~

~

0 O

8 O.LI O.il 0.% 0.% 0.% 0.50 TltK (SECl

~ ~ M" Md t1 . ~ ~ t ~ 'I

~ la 4

RELAPS/NS /0 RE OR lOSS COOPT Sl S PROGRNl I O.C.CMK UHl I PORV 0 / /

b~ c7e4 7 oe

/W./L u .~~c O

O 7ip>c mcrOR L or c SI P

.C.CMK l PORV OP / 5.

gg (Q 0 SF-C-1N O. ll 0 tl T]IK lSECI

P '

ply ~

hl

'Jl r

1 1

~ ~ t r a

)

I

~

~

~ %- P

O O 2

m

<<~<<g~<<B REl.APS/tSDl/014 IKACTOR l.OSS OF'OOLANT FNR. S S PROGRAM b~ oD y~

CV fs 8

Ill 0-C)

,. Zoo sEc.

C) d 0.1 ~ 0.15 L% 0.40 ~ '4b L54 O.N l]tK (SECI

~ ~

l'

CD CD m m IKLAPS/NSl/Ol REACTOR LOSS COOL fSR. lS PR Nl C.CNK UH Tl PORV OP% / / 5.

QI ori g

C7 O

r4 o Z0 hj Cb Ã7 CD I 0 M CrJ W

~O 0 WO IO IL dO a 0 Q*C.

'.0! AN AII tltK tSKCI

v J ~I ~

U D m

REl.APS/tSOI/O] fKACIOR LOSS Of CN)L QA.1SlS PROGRAt1 I

PO C)

%7 WW CD ÃI CD I 0 Vl K III GJ A R~ 0 0 W I QI C)

Pl Im

/5 5. ~ ~ zdo $ <c O.Q 0. 40 0.5b O.M TltK lSECl

4 ~

4'

mmsmo]io] mcrw ioss or S D.C.CGX UHl PORY OP / / 5.

K7 MM ID Kl A) n Vl &

M 4)Z 0 WO I Cu tD m

-:Sm g

L 4.Q Lll T]lC (SEC)

V)

  • ~ ~ =~

'4

~J zF~

O O REI.OPS/t$ 01/014 RERC1'OR LOSS OF CRN.SJT RNFl.fS[S PROCRAtl g O8 X << 5 .S MC

>EGAD o mn I Al CD a

Z3gg.d'c D. ID 0.% 0.40 0.50 O.H TltC lSEC)

~

D

O CD m m 4

Pv lKUFS/NR I/014 RE OR I. S T IS

.C.COOK UNIT P RIt PEN / / 5.

Q D

~Q X ~

~

Pi O

Xa

~ * -: I ~*

ll 41 l ~ V' V I II I~

REl.APS/t$ 01/Old RERCTOR L055 OF'X.AT RNR. S[5 PROCRRFf 0.5l o.e L10 Tits (SECl

~ ~

o O p lIooo o,n o k

jo ot

~ R

C)

U 0 m

~ ~

REUF5/t601/0] 4 REACTOR 0 ~

I lNl l OF'C.COOK PORV OP% /M/l5.

tD X7 (b c i n Ul M Vl 0 W n I

C)

LOI Ll1 TltC l5KC)

~ II W'A 4W 5~ ~ <<7 '

< ~ I' 'I 1 \ 0 ~

I 1

I f ~ p

~4 I

t I

i I

f~ , Wa << I<<1 W<<

I i j I

~"

I ~

I~

"1 1 ." I

RELAPS/tSOI/O 4 REACTOR LOSS OF'OOLfST RNFL SlS PROGRFN O.R TltK tSECI

II I

4 II lt I

i 'I

'L 1Q l

f I

4 1

,* m 'At I WO

'I Og ' N' ~ A& %4 A

RELAP5/%0 /0 fKACTOR L S o 3/7 0 SEC Q

~ A ~ V g 4 h,

I l

E 4

I 3

~l I

t

l. J &"~

1 '.

I VA )

~ ~

?

t.

4 I

I I

- ~ ~ l I I ~ n' v t l l

V'~. c'f a IV ~ I,,

'hV

REI.APS/tS01/OIW fKRCKR LOSS Of'HMRT AN%.'ISIS PROGRNI CD M A) n Vl K M

o wn I

0.14 0.5R 0.40 0.55 ZltlE I SEC I

l ~

i g I; I ~

Jv I

k rC at, j I~

I I

jv II IL IS 11 Ie

RELAPS/t$ 01/Old REACTOR LOSS OF CNILf8 R.VSIS PROGRAM

. Zoo SEC O.R oe 0.% O.Q tltK ISECI

A I

'1 ~ f

  • i l

J S

P C

(

'I I

k j~.~

o Il e~ 'l I

4 i

4

~ *~

)4'tA A Wy ~ I &I' J f ~ << ~ N 4 += ~ ~ 8 " ~4

O 0 I I m m C.COOK Nl PORV OPEN nH<15.

. /9'fsEc I

M C)

/ .z/ ~ s .c.

L l2 LLI Lit TltK (50:l

4, ~

Vl g 44 4%gal! ' 4l

/I 4 4 ~. 4 g g* MO ~t jr k

~

I 4

IJ l

'4 J

4 I

i jl

'I l )

L

~ '0 Q> '4

~ ~

4 44

\

l I\ C I

4 p '4

~ 4 " ~

~ + "

4 eve

CU O O rn RQSPS/N01/0 4 REACTOR LOSS OF CHX.FAT AH%.'fSIS PRODRRN Qo X r P4 QA 8

Ra Cl lD

0. Kl O.Q 0.24 4.XR 4.C 4% 4.50 4.N TltC (SKCI

VW lee V I t

j

'WV I jlj l e I

~ &

rv ew

~ I s e fVW ~ ~

g

~ ~ ~

~ ~ \ I ~ ~

CD CD CD RELBPS/mO]/ l W S or VS<5 P 8tl

.C.CKK UHlll PORV OPEN / / 5

~E i

Vl 40

~e

+

O WO I Ql CD X7 CD o5 o a OWC I.a Oo IQ TltK (SECl

P aa V

>>taV f < ">>h q C.

I PP

~

P L

jLI 0 ga vr

~P r4L

~r

~ LP ~ VVL ~ LP

~

~~ '>> ) ~ ~ LP PL*

1 I*

~

~

I ~

~

P P ~ 'L 'P L

O O Pl Rl.lR.SR ~ RO ft/RL 1RRR RELBPS/t60t/Ot4 REOCIOR LOSS OF CmtLff/1 tR/fLISfS~PRO RRtl Qo zS o

ao szc O. ll O.Q O.R 0.4) 0.4b D. Sl TltK (SEC)

IQ t A Q )y mtp j jc>M

~ t =~ ~

U' 5

)J

'I

~

@tent ~ )

RKUFS/t$ 01/014 REACTOR LOSS OF C RA. PRON C.COOK N PORK OP /M/ 5.

joel f l j

~ fe J

I;I Ie j

l 1(

l Sl ~ IP 0 5 ~ ~ ~

5 55 yen I re 5

O O I

m aa scca si ~ i~ex RQ.APS/t$ 0l/Old fKRCTOR LOSS OF CMLFN ANR.'JS 5 PROGRRN SE N

S I CJl 0~

S M O WO I QI R C) o O.N 0.34 Oo52 0.40 0.55 O.H TlnC (SECI

~ a~ t wio *vs ~

~

g f! l'l 0~

gnat\

IW - 4 jv&

I A

tp t'

~l C'r II

'I I

'e t

g l

l A ~ W I~

ClH

~E w~

c~;~c

~t v +

I Cd ~V 4l

'I' v ~

J I%

gl I J' I)

).c g (( v <"

I lrP

~pl

~ wW W M V

RELfFS/Cg /01 REACTDR S CMLfS

.C.CMK UM I PORV 0 / /

o O SEc.

LN A I1 A 1$

lit% ISECI

yp I ~ I~

.~i '!

gEE IIII I r 11% err I

"~:

~ ' I ry I I I IrV 4

~ II Vr

~ r

.3 r I'

I E

r r

E.

~ r E

I 4 ll th -r 1 I I

I I

P lt' I

t I

I, lf 4I r

PI J r ~~ VI rr \v '

D CI m m RELAPS/tGOl/Old fKACZOR LOSS OF CKLfNT AHfi.TSIS PROGRAM fD M lb I 0

>. Vl Vl F

4) D 0 ~

Wo AA I Al C)

~Z~I ~ 2ADS-L.

O.QI Tlat% l5CCl

l ~ ~ p~$ I4 44'=.R JV+B8 ~BY.'i'"-':.-'~ "i~..': ";- ~

(> ~, t 4 ~

~ I v l

'lg

)f) I t

l' e

~

1'r iC'l

~ ~

I\

%1 'I r

l'g l

I I ~

I s< t J

~ Q l

it~

/ 'f k

I C

b~~ WC P

L ~ W~ h l

CD CD CD m m I

RKUF5/tSO]/OI REACTOR d3

~

.C.CSX NIT PORV OP / / 5 lD M lD C I 0 O 5+C-0.11 TltK ISD;l

aa g.f j' a aa IL it>

I' a

)

l Jt I

e8" 0 ~

"' "v 'P L a A av av

CQ O O ILN '7%4 l?CI.N SC Q Qh, RD.APS/tSDl/0]4 REACTOR LOSS OF'tmLfST AN%.TSIS PROCRAtt Qo P4 hN X7 WM 8

( VlM 0Z CD I

CD lh GJ D 8 O WO I

8 C)

CD aO CI S C+

C$

Ilk

c'tsl cv n s'eJ It j ct s see r

RELfF5/tSQ / RE OR 5 CM  % T PRONATE

.C.CNK UNtT PORV 0 / /

~K~ & sEp O,N O. Ii 0N TltK (SECl

t4+

C7 C

P

~ t

~ t>>

IC t

i~ y I

1

~ I t I

t i.

grQ

RELAPS/INOI/OI4 REACTOR LOSS OF'INLFN ANfl. SIS PROGRAM

.3 O.D ill@ ISECI

~ .

I A I

>> ~

r*

fV

'I "l

I' vv e

C l

)>>g g/ I ~

IKUPS/NR /Q1 < OR OSS DF

.t.'.COQK UHITl PORY OPEN / /15.

Qo R

o R

O

/ F. pow cz Q sKc LN AN Llk TltK (SKCl

~Y!Fi'7,')i-"..+'-'> -1 S'."3DVP38.-

p }iA ~, t f 'p't:$ 1 pe a ~4h~'Is'iAi d4 1~ ~ .~ 4 iHfhA 6 'RVlVi+0 t I A4~

t

~~t~ W'4 w t

1 t

c,lI ~ ~8 jPc h

j s~r r

i Fp I "(

II I

'I

<< ~

)

}

i F

/ II

<<J gl tv r v.

lf, t

~ ~ I' t

~

gj l<t !

l

'At) 4 Y < "i)

"[ d.ah

O O m m REl.APS/tSO]/0]4 fKACTOR LOSS OF C f% AHR.YSt5 PRONAt!

0.2t O.R 0.% 0.$ 0 O.H TlNC lSEC)

-"""))VRB>>GN) 3'-"~a>F~~"'-."

A TELEDYNE

  • Technical Report ENGINEERINQ SERVICES TR-5364-1 Revision 0 4-244 4.7.3 uarter Model - Cold Loo Seal/Steara Case

~ ~~

I 'II Vl I

l AI I

I pV ft

~

5 I%I,

+V W JE r

E

~ E,

~ r' p I I,C JI ~

JS I

V E

V A

Technical Report A TELEDYNE ENQINEERINQ SERVICES 4-245

~g DATE 1 /i-88 pl oQE'g SRv 0 Isa'Hatt.ce SHEET NO. I OF

$ (R CHKO. BY CHOATE~ g.///g gh/t 7 2 FROJ. NO

'w~~

y 4 A'g oog

, PQQ~RJIZ'5g 7%OP Vo< one S/0 y~

~CPv'os 5 XwE:CE'OE. OO9 JA'CtW d/0

///s'//Q

/ ce i82n I+3 4 carer 0/f

~orvd L II2$ ilail o/s numb

//5'4 I/SP

/Ik IJE

~ gol I/~

J~g/g FIGURE 4.7.2-1

p,Q~~ l J )<<

~ f~ ~ J4 -y~

.;-'M(R38 Gal).@~ YlP~ ~

I t

Tl" I t J

gn <.

t l

Cy II fr';

)

C t) la+

tl r

% ~ fib~ fS

  • I I ~ ~ V All'I ew CC E

l I'

i

  • A lg y l

QI M t" 5 0' i' 'I tg l 'I P~ t

CD M CD C 1 0 Vl 2 Vl 0 W I

0 Dl ED Kl CD O

I OMIT RELRPS/NSl/0 fKRCTOR LOSS OF'NUS FNR.'fSlS PROCRSl REP UNII2 L NE 5 3/ 2/05.

o

~l D

OO 8ci CI CD h

0.0 0.2 0.4 OA IltK lSECI

I~

4 ~

aa .

g$ l a

) ~ t,'g'aQ,Q p ~ . tacan,

( Vl 0K III W III I

Ih CttI O O W I

0 At tD Xl A)

'13 O

I rt'ELRPS/t$

0 /0 fKA OR L S  % Rtt 5 PRO RNI UNf I LINE RE 5 83/02/05 o

0+

Ho D

O III Eg W D0 n

Ct d

0.0 O.R 0,4 O.N

~g )g~ k0'T"'%"-

~t" 8)VRBB'e~)k Nr+~3)~ i>k' 'L "-"

rt &- P t

jf

~

g t

lj t,

,j "C

'Y I,y P

I C

l, C

s'mf~

Y 14

.'-';*"j > W P

t W 1 l

g ~

4

~rr~ 'I

~ rl ~ 't r I

~

t 'Pl N ~

I ~ r

'7 t

I.

l l t

't l,'C r r" '

P t

4f Lg - r

<< tk~~

lg w 4"Wh l r CI lr fg ' Jj r 'ter ry)ortl I

i, l'4 i QLi d ci ~P I ra r r.

RELAPS/tSOI/OI REA OR LO S OF CtmlfNT fNRDSIS PRmlRfN AEP UNIT2 I INE RELAPS /02/05 O.oz5 s c

-OO/SC C-O

~S 0.0 0.1 0.4 TINE tSECI

tlr h

~ 'I 5I ~

CD W CD n

Vl 3 th 0 wn I QP C)

X7 CD a

O S

%0 C SL S~

RELAPS/NSI/OIW REACTOR LO S OF RHH TSI PROSRAtl AEP UNIT2 I LINE RELAPS 83/0 / S.

~I>> D rBS'2./'. ZiC S<C O

o P4 z>>I O d

0.0 Oo1 L4 0.0 TltK ISECI

t,(

I t,P g

k?

M

\Q>g ~ U

( WUl 0M CD I

CD Vl 0 W I

0 C)

X7 CD Q

RELBP5/NS /0 RER OR 0 Of AN S PR N lNl ) L NE RELAP 8 /02/

I o PO CJl C) d 4.4 4.R at lltK (SECl

~V'f'~,3=7 <<>>"-"

ggQvH38 iAIIPPB~i.'3'".9 i Al I

r IC ~

lay IC I .- ~

>> ~

CD Ig or I gp "4[ IC' 11 H

o~

~ .>>

l P ii, h' 5 ~ K'VII~I oo

, ~ ~

gO

>>I>>

I)">>

I' 4, I l(

'cv 't 1

i, 1

I fI CL CJl~ororaor ~V714HAA4

) fp'p

~ ~ Ii'r Q ~ o IIi

>>r ~i" opolrtA os@ o rol i, 1 r = .t ororp4p' l)ikiriilh,o

(~'ll CD W l 0 CD M

Vl (p) g 0 WAl CD O

r+

REL8P5/tSO]/0 IKA OR LOSS OOLBIT fNR.ISIS PRONRN REP UNfT2 1 L)HE RELAP5 83/0 /05.

oz. d.o13 i~

Cl I:

o d

0.0 0.1 .0.0 TlNE (SEC1 8

gI I~+~ r ~~a

'-'"-'QIVRBP ')'R.""+< '~ "~k-I

'I I' II l I 1~

ir I "r r

I-t"-

II IM N

i~

I li l~

I I"' :CI r it 4

)

li'.

~l

'll C= ":I I, C i ~ ~g .C l<<

tl tI

~4 t',' I r I; J7 C(~Wma+)) 84K;,'C J I

Li ~ j 'r rrr I

lgf II Q 1 Q~ K ~

I

~ 1 I~

( W OM CD I

CJl CD ErJ K 0 A I O

CO CD o

O REUFS/l$ 01/014 REACTOR LDSS I'ML% RNR.YSTS PROCRfN IKP UNlT2 1 L NE RElBP 83/ 2/05.

o O.O//SEC Ia d

0.0 0.1 ~ Oo4 o.e.

TltK tSKC)

~

~

p ~

~,

C.

1

$ Ital t L

lD W ID I

CJl 0D EA 4J N O WO I Ql R7 tD 13 O

IKLAPS/tSOl/Ol REA OR LO 5 OF'NLY ANfLTSl5 PROGRAM AEP UNIT2 l lNC RE P5 3/02/05.

~ 3 O

O d

'0.0 Oo1 TltK lSECI

elf~ See eA.ee eee w eel>> ~ '

e e

'a t

NI I

fc;

~ ~ e l ~

1e e j,e

  • er 4 Vi lI ee t

I 'e e

e e

Ie n

\/

.lI ie e vA cele~

'K VV l

p C 'e'We e ~ 4 eA,

~ ~ie =i >a ~ i =

Vc>>,,e,ee eeeceee e ew V~ee, e. e

AIMS CD M CD I

CJl 0~

CA 0 W I

0Ql C)

CD O

rt5 RELAP5/NS /014 REACTOR LOSS OF COOLfNT fNfLTS S PR RRtI AEP UN LINE.RE BPS a3<02105.

yp.8 a. zlo mc tv 4 2:

L.

CQ 0+0 O.Q 0.4 T]tK (SEC)-

  • I OH ~ ~ ~ ~ ~

I 4

'L4

/E F

CP W CD I O CJl 3 III GD N 0 WO I

C)

CD O

~ Va IICII IC.W.IO SC RELRPS/t$ 0 /Old REACTOR LO 5 Of M)LfST NA.ISIS PROCRRtl AEP UNII2 l LlNE'EUlP 83/02/05.

bD I>>D i

/g8.0d.g 5~

o fV z>> CI

~

IL. 4)

- "CD 0ID O

Ir CD O o

d 0.0 0+1 '.4 '-

0.e

-TltK lSEC)

I me g 6'9 I) P"'t cia~

0

'q Cl G) t B3 4

)

~

p)m s~j 0

~n.

C3 ~

1

~t g.QJ f

<.-'f "1'p US p

ria~

AP 1

EJ I e I i:: '4-Ri:";" . '.siy~r~>p.;>'. ~vrvWa,~M' I

) P

~4

~ A~ + ~ %~ t 0

I( Kl 0(D eI x 0 W I

0 C) lb O

S C+

RELAPS/N3D / REACTOR LOS NT ANFL PRO Rtl AEP UNTT2 l LlNE RE 3/ 2/05.

Q D w g3 g

P4 Z

~

CD Cl C7 d

LO O.R 0.4 TlNC tSECl

";ffj.,"~,ST)"A~

8MiVH5>. ='ÃW~3t"KÃ'~

Whl&~ "h

)C 1 C rs I'

p<<~,

t q f\g

),J

'6 1 C

1 6'g j'@ (

o r~

S'0 ~~"" 4"l sV'4 0'0'F~ . Q'lg "l'0 ~g" b '.H)K".Q:,'.,EKW;.t"=" 1q, t,

CT t. 5 Of'MLfMNFL)Sl PROGRNl BEP UNtT2 1N REUPS 10 /05.

O zcs7.Y cr. us~>~

8 aII c" h D

Cl o

0.0 0.2 Oi4 TltK tSECI

V<<I ~ V<<e WW>> I Ih <<<<V IVI O~<<W ~

<<S f~

Ig/

p4 V

Cn V

~

~ 1 fi

~

fV V h

C C

"<<~ jaaoo~.~cirro)

Qt~-"~~'0

%.ro-~ Rk

'h >

$ +g>>h hf h'C S>>'

Ih

~M<<hh>><<~

W>>V h F I ~ <<Ih th << ~I V~ ~ I<<VI*<< ~

( WVl AK CD I

CD O WA I Ql CD CD O

S RELAPS/t$ 0 /01 REACTOR L S IF NB. Sl PROC%0 EP UNIT2 1 LlNE RELY 83/0 /0 .

8

+0 8

8 2I 0.0 0.1 O.E 0.0 t1NC ISECl

BMYG:-U37

@gal>8~~tem rP'"y~~~pqy

'P,S-b I

i tq b 4 PI 8

,y W.

~ ~

g 'I II c~ 5j 5 S IH I f )p

) C~@

x l" CD I

C) 9 NC

'Ig M

C* i!

t E3=

( v- ~

p ~0 It..~ Q. $ R@'0p ~'QÃl'0 .

I Il ll

'3'5':

g I

A.l'OH i ~23QQCS. 9&hcCC)

I

lN88Md SISl MtS 1' 30 SSO NlQU38 WLO/LSN/SchA38

/~it, i

,I III I'I 1'

~ttW,A

~

L lg W II I

-'-<< ."'.D 1 1')"" L t'=': "." '-. ig

<<'"KIDI'-' t-."'-' .'""='2 t.<<'iVI" t"I "

.'".'PN Kt~~,t PJJ A <<

4

- <<I

<-, ="jL)'.

c I